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Preface 

The first edition of this textbook was written 25 years 
ago. A lot has changed since then, both in artificial in-
telligence and for the authors. Janet Finlay, who was the 
first author then, has now shifted her full-time focus to 
another non-human intelligence ... dogs, and her influ-
ence is still felt in the pages that follow, not least in the 
various canine examples. 

A major driver for the first edition was the lack of an 
appropriate textbook for an introductory course on ar-
tificial intelligence (AI) at the University of York where 
Janet and I were at the time. In the first edition, we said 
that our aim was to create a book that gave a sound in-
troduction to technical aspects of AI without assuming 
too much background knowledge beforehand, especially 
for those coming to AI from areas other than computer 
science. Then and still today, most books on AI either as-
sume too much technical knowledge or provided a very 
limited coverage of the subject. 

In the introduction to the first edition we wrote, “It 
is clear then that although the goals and emphases of AI 
may have changed over time, the subject is far from dead 
or historical.” This was written as AI was entering its long 
‘winter’ and hence had almost an apologetic tone. How 
things have changed! 

Over the years we did think (indeed the publisher sug-
gested we think) about a second edition, but for many 
years, while there was much new work in the frontiers of 
AI, the fundamentals were relatively stable. This started 
to change with developments around big data and the 
web, but it has really been in the last few years that we 
have seen more substantial changes, and so it felt an ap-
propriate time for a new edition including new topics 
such as deep learning, big data, the Semantic Web, large-
language models and explainable AI. 

This edition, while substantially expanding the mate-
rial covered, still seeks to follow the same principles as 
the first edition, providing accessible coverage of the key 
areas of AI in such a way that it will be understandable 
to those with only a basic knowledge of mathematics and 

computer science. The huge growth of data science and 
the ubiquity of AI mean that today this approach is more 
important than ever, and I hope that the new material in 
this new edition has followed this principle as well as the 
first. 

The book takes a pragmatic approach to AI, looking 
at how AI techniques are applied to various application 
areas, and includes both more traditional symbolic AI 
and sub-symbolic AI including neural networks and 
deep learning. It covers both general principles such as 
reasoning and machine learning and also more specific 
techniques for areas such as computer vision, language 
understanding and the web. 

Ultimately all AI impacts humans directly or indi-
rectly. This was always true, and in the first edition we 
wrote, “It may not be long before AI is an integral part of 
all our lives.” This is now far more clear as aspects of AI 
permeate nearly every area of life from online shopping 
to smart cities. So, the book attempts to highlight both 
the design issues involved in having AI work alongside 
humans and also the social, ethical and philosophical 
challenges raised by AI. The book concludes with a brief 
peek into possible futures for AI, although, given the 
pace of change, these futures may be upon us before you 
read this. 

This book does not claim to be comprehensive: 
there are many books on the market which give more 
detailed coverage in specific areas. However, it does 
attempt to give a broad view of AI that is accessible 
to a wide audience and yet opens up more technical 
aspects. Throughout it attempts to give the reader a 
sense of the overall feel of the area not just how to 
do it but also when, where and why to use particular 
techniques. 

Educators can use the book to support a one-semester 
introductory module spending approximately one week 
each on Chapters 2 to 8 and selected further chapters. 
Alternatively it can be used as a longer course cover-
ing most of the chapters, again at around one week per 

xxi 



xxii ■ Artificial Intelligence 

chapter. You are encouraged to include some material on 
social, human or philosophical aspects, both to bring the 
topic to life and most critically because the questions of 
how AI fit into wider society are some of the most press-
ing for everyone. 

If you are an AI professional, this book will primarily 
be useful to give you a grandstand view of the area, help-
ing you to understand the field as a whole, and identify 
the particular topics you need to know about in more de-
tail. Having identified these areas use the recommended 
reading at the end of each chapter or web resources to dig 
deeper. 

For the more casual reader, after the introductory 
chapter you might like to skip to Chapters 19, 20 or 23 to 
address some of the ‘why’ questions for AI and then step 
back to delve into topics in the earlier chapters given 
that context. Indeed educators might also want to take 
this approach with their classes. 

Look at the book’s website https://alandix.com/aibook 
/ for lots of support material including code examples, 
videos and teaching resources. 
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1 CHAP T ER 

Introduction 

1.1 WHAT IS ARTIFICIAL INTELLIGENCE? 
Artificial intelligence (AI) is many different things to dif-
ferent people. It is likely that everyone who picks up this 
book has their own, albeit perhaps vague, notion of what 
it is. As a concept, AI has long captured the attention 
and imagination of journalists and novelists alike, lead-
ing both to popular renditions of current AI develop-
ments and futuristic representations of what might be 
just around the corner. Television and film producers 
have followed suit, so that AI is rarely far from the public 
eye. Robots, computers that talk to us in our own lan-
guage and AI entrepreneurs are continually in the media, 
though there is some division as to whether these devel-
opments will provide us with benign servants or sinister 
and deadly opponents. 

But outside the media furore, what is AI all about? Un-
fortunately there is no single answer: just like in the me-
dia representation, it very much depends upon who you 
talk to. 

1.1.1 How Much Like a Human: Strong vs. Weak 
AI 

One of the major divides in AI is between strong and 
weak AI: 

strong AI – There are those who view AI in high-level 
terms as the study of the nature of intelligence and, 
from there, how to reproduce it. Computers are 
therefore used to model intelligence in order to 

understand it. Within this group there are those 
who believe that human intelligence is essentially 
computational and, therefore, that cognitive states 
can be reproduced in a machine. Others use 
computers to test their theories of intelligence: 
they are interested less in replicating than in 
understanding human intelligence. For either of 
these groups, it is vital that the techniques proposed 
actually reflect human cognitive processes. 

weak AI – On the other hand, there are those who 
view AI as a discipline that provides engineering 
techniques to solve difficult problems. Whether 
these techniques reflect human cognition or 
indicate actual intelligence is not important. To 
this group the success of an AI system is judged 
on its behaviour in the domain of interest. It is 
not necessary for the machine to exhibit general 
intelligence. 

A third set of people, who fall somewhere between the 
previous two, want to develop machines that not only 
exhibit intelligent behaviour but are able to learn and 
adapt to their environment in a way similar to humans. 
In striving towards this, it is inevitable that insights 
will be gained into the nature of human intelligence 
and learning, although it is not essential that these are 
accurately reproduced. 

This book takes this third, more pragmatic line, leav-
ing it to you to decide which side of the strong/weak ar-
gument you want to adopt. 

1.1.2 Top-down or Bottom-up: Symbolic vs. 
Sub-symbolic 

Another major divide is between those who address the 
problem top-down or bottom-up: 

DOI: 10.1201/9781003082880-1 1 

https://alandix.com/glossary/aibook/strong AI
https://alandix.com/glossary/aibook/human intelligence
https://alandix.com/glossary/aibook/human intelligence
https://alandix.com/glossary/aibook/weak AI
https://alandix.com/glossary/aibook/human intelligence
http://dx.doi.org/10.1201/9781003082880-1


2 ■ Artificial Intelligence 

symbolic AI – Most of early AI addressed intelligence 
top-down, starting with high-level human abilities 
such as logical reasoning and then building systems 
that emulated these. Crucially they can be seen as 
symbol manipulation systems, where symbols are 
tokens that represent quite complex concepts such 
as ‘human’, ‘block’ or ‘move’. 

sub-symbolic AI – On the other hand, there are meth-
ods that start off with very simple models inspired 
by human neurons, and by combining many mil-
lions or billions of these aim to achieve intelligent 
behaviour bottom-up. For many today, these arti-
ficial neural networks are what first come to mind 
when they hear “AI”. 

In addition there are methods that are clearly 
sub-symbolic in nature, but not based on neural 
networks. Some take their inspiration from other 
natural life forms or processes that seem to exhibit 
‘intelligent’ overall behaviour, even when the individual 
components are not deemed (very) intelligent. This has 
included emulating ant colonies, the immune system, 
evolutionary development and crystal formation. These 
in-between systems may include representations that 
have a symbolic nature (e.g. rules) but operate in a 
bottom-up fashion. Others apply purely mathematical 
or statistical approaches to very large datasets, for 
example, the algorithms underlying web search. 

In the brief AI history later in this chapter, we will 
see (spoiler alert) a general arc of dominance in the field 
from symbolic to sub-symbolic methods. However, it is 
likely that the next major AI steps will combine the two. 

1.1.3 A Working Definition 

So, can we derive a definition of AI that encompasses 
some of these ideas? A working definition may go some-
thing like this: 

AI is concerned with building machines that 
can act and react appropriately, adapting their 
response to the demands of the situation. Such 
machines should display behaviour compara-
ble with that considered to require intelligence 
in humans. 

Such a definition incorporates learning and adaptability 
as general characteristics of intelligence but stops short of 
insisting on the replication of human intelligence. Indeed 

it can sometimes be more useful to think of AI as Alien 
Intelligence – something that behaves intelligently, but 
not necessarily as we know it. 

1.1.4 Human Intelligence 

What types of behaviour would meet this definition and 
therefore fall under the umbrella of AI? Or, perhaps more 
importantly, what types of behaviour would not? It may 
be useful to think about some of the things we consider 
to require intelligence or thought in human beings. A 
list would usually include conscious cognitive activities: 
problem solving, decision making, reading and mathe-
matics. Further consideration might add more creative 
activities: writing and art. We are less likely to think of 
our more fundamental skills – language, vision, motor 
skills and navigation – simply because, to us, these are au-
tomatic and do not require conscious attention. But con-
sider for a moment what is involved in these “everyday” 
activities. For example, language understanding requires 
recognition and interpretation of words, spoken in many 
different accents and intonations, and knowledge of how 
words can be strung together. It involves resolution of 
ambiguity and understanding of context. Language pro-
duction is even more complex. One only needs to take up 
a foreign language to appreciate the difficulties involved 
– even for humans. 

On the other hand, some areas that may seem to us 
very difficult, such as arithmetic calculation, are in fact 
much more formulaic and therefore require only the abil-
ity to follow steps accurately. Such behaviour is not in-
herently intelligent, and computers are traditionally ex-
cellent as calculators. However, this activity would not be 
classed as artificial intelligence. Of course, we would not 
want to suggest that mathematics itself does not require 
intelligence! For example, problem solving and interpre-
tation are also important in mathematics, and these as-
pects have been studied as domains for AI research. 

There are also some “grey” areas, activities that require 
skill and strategy when performed by humans but that 
can, ultimately, be condensed to a search of possible 
options (albeit a huge number of them). Game playing 
is a prime example of such an activity. In the early days, 
chess and other complex games were very much within 
the domain of humans and not computers and were 
considered a valid target for AI research. But today 
computers can play chess at grandmaster level, largely 
due to their huge memory capacity. Some would say that 
such brute force techniques are not true AI; however, 
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when AlphaGo beat the Go Grandmaster Lee Sedol, 
commentators described AlphaGo’s game as ‘beautiful’ 
[189]. It is hard not to think of this as intelligent, even if 
it is not clear how it achieves what it does. 

1.1.5 Bottom-up and Top-down 

However, it should be noted that many of the things that 
make us intelligent, especially in more creative ways, are 
not easily explainable by us. A mathematician may be 
able to justify each step in a proof, but not the ‘gut feel-
ing’ that led to formulating a particular lemma that was 
crucial to the proof. In day-to-day life these two aspects 
of human problem solving and activity work together. 
On the one hand is the fast emotional or subconscious 
thinking that leads to instant reactions and rapid deci-
sions when time is limited. On the other hand is our more 
leisurely logical and also imaginative thinking. These are 
often called ‘System 1’ (fast, subconscious, emotional) 
and ‘System 2’ (slow, conscious, rational) [151]. Early 
symbolic AI focused almost exclusively on System 2 pro-
cesses, whereas systems such as AlphaGo and neural net-
works, which rely on more sub-symbolic methods, in 
general are more like highly competent System 1 think-
ing. This book will consider both of these aspects of AI, 
and in later chapters we see how they can be in various 
ways integrated. 

However, before we move on to look in more detail at 
the techniques and applications of AI, we will pause to 
consider how it has developed up to now. 

1.2 HUMANS AT THE HEART 
As a theoretical discipline there will be some who study 
AI purely for its own sake, just because it is fun to create 
algorithms that do cool things. There will also be a few 
on the extreme end of strong AI who study it for the sake 
of the artificial entities that are being created, maybe to 
stand up for the rights of coming sentient artificial life 
forms. 

However, for the majority, AI is being developed and 
used because it does something in the human world, to 
solve problems in engineering, medicine, law or day-to-
day life. Whether or not AI is like a human in terms of 
the intelligence it portrays, it is for humans. 

Indeed, every AI-based system will, in the end, need 
to work with people. Sometimes this will be very explicit, 
such as a chatbot, in others virtually invisible, for exam-
ple in an engine management system. 

In the latter case it may be possible for the ultimate 
human user to ignore or be ignorant of the AI aspect. It 
is a black box that does a job; so long as it is reliable and 
performs well, how it does that job doesn’t matter. Simi-
larly the programmer or engineer creating the system in 
the black-box is only concerned with meeting a specifi-
cation. Even such systems may need to be comprehensi-
ble by an engineer or lawyer if there is a malfunction or 
accident, that is the behaviour may need to be explain-
able (see Chapter 21). Humans will be involved over a 
long timescale in the creation and oversight of the sys-
tem, but, for day-to-day use, the AI and the human can 
operate separately. 

However, more often the boundaries are less clear, 
with levels of active interaction or mutual influence. For 
example, when a media website suggests films you might 
like to watch, you may often take it for granted, but 
sometimes the intelligence of the underlying algorithm, 
or lack of it, is obvious. 

We will deal with the more direct human contact in 
Part IV; however, you will find examples throughout the 
book. If you get into the technical aspects of AI, there 
may be times when you just want to get your head down, 
buried in the algorithmic details. However, when you do, 
from time to time take an opportunity to step back and 
think about the wider picture, how the systems you are 
creating fit into a wider human and technical and human 
environment. If you don’t, you might find yourself pro-
ducing something that is wonderful in itself but useless 
or even dangerous for the purpose it is intended. 

1.3 A SHORT HISTORY OF ARTIFICIAL 
INTELLIGENCE 

AI is not a new concept. The idea of creating an intelligent 
being was proposed and discussed in various ways by 
writers and philosophers centuries before the computer 
was even invented. The earliest writers imagined their 
‘‘artificial’’ beings created from stone: the Roman poet 
Ovid wrote a story of Pygmalion, the sculptor, whose 
statue of a beautiful woman was brought to life (the musi-
cal My fair lady is the more recent rendition of this fable). 
Much later, in the age of industrial machines and the dis-
covery of almost magical qualities of electrical phenom-
ena, Mary Shelley had Victor Frankenstein manufacture 
a man from separate biological components and bring 
him to life through electricity. By the 1960s, fiction was 
beginning to mirror the goals of the most ambitious AI 

https://alandix.com/glossary/aibook/AlphaGo
https://alandix.com/glossary/aibook/Go
https://alandix.com/glossary/aibook/Lee Sedol
https://alandix.com/glossary/aibook/System 1
https://alandix.com/glossary/aibook/System 2
https://alandix.com/glossary/aibook/System 2
https://alandix.com/glossary/aibook/AlphaGo
https://alandix.com/glossary/aibook/neural networks
https://alandix.com/glossary/aibook/neural networks
https://alandix.com/glossary/aibook/sub-symbolic
https://alandix.com/glossary/aibook/System 1
https://alandix.com/glossary/aibook/strong AI
https://alandix.com/glossary/aibook/chatbot
https://alandix.com/glossary/aibook/explainable AI
https://alandix.com/glossary/aibook/explainable AI
https://alandix.com/glossary/aibook/Ovid
https://alandix.com/glossary/aibook/Pygmalion
https://alandix.com/glossary/aibook/Mary Shelley
https://alandix.com/glossary/aibook/Frankenstein


4 ■ Artificial Intelligence 

researcher. In Arthur C. Clarke’s 2001, we find the com-
puter HAL displaying all the attributes of human intel-
ligence, including self-preservation. Other films, such as 
Terminator and Ex Machina, present a vision of cyborg 
machines almost indistinguishable from humans. 

Early philosophers also considered the question of 
whether human intelligence can be reproduced in a 
machine. In 1642, Descartes argued that, although 
machines (in the right guise) could pass as animals, they 
could never pass as humans. He went on to identify his 
reasons for this assertion, namely that machines lack 
the ability to use language and the ability to reason. 
Interestingly, although he was writing at a time when 
clocks and windmills were among the most sophisticated 
pieces of machinery, he had identified two areas that still 
occupy the attention of AI researchers today and that are 
central to one of the first tests of machine intelligence 
proposed for computers, the Turing test. 

Precursors of AI can be seen in the development of 
first mechanical and later electronic devices for various 
forms of specialised calculations, including landmark 
systems such as Babbage’s Difference Engine for 
calculating polynomials and the Bombe for decrypting 
Enigma Machine messages. Even these would, at the 
time, seem to mimic certain human traits that would 
have been regarded as requiring human thought. As 
these machines became programmable, the step from 
calculation to computation brought yet more thought-
like potential. This was foreseen by Ada Lovelace when 
she described the fundamental difference between 
the Difference Engine and Babbage’s later Analytical 
Engine: 

The Difference Engine can merely tabulate, and 
is incapable of developing, the Analytical Engine 
can either tabulate or develope. [176] 

She noted the potential for “symbolic results”, but she 
also cautioned about the “possibility of exaggerated 
ideas” about the capabilities of the Analytical Engine, 
a sentiment that might have been better heeded by AI 
commentators over the years. 

Turing and the Turing Test 

To find the start of modern AI many look more than 
one hundred years after Babbage and Lovelace, to 1950, 
when computers were still basically large numeric calcu-
lators. In that year, a British mathematician, Alan Turing, 

wrote a now famous paper entitled Computing machin-
ery and intelligence, in which he posed the question “can 
machines think?” [276]. His answer to the question was 
to propose a game, the ‘imitation game’, as the basis for 
a test for machine intelligence. His test is now known as 
the Turing test. 

His proposal was as follows. Imagine you have a per-
son able to communicate with two others, one male and 
one female, only through a teletype or computer link. 
This person must try to distinguish the male from the fe-
male simply by asking questions, while those being ques-
tioned try to fool the interrogator about their gender. In 
the Turing test, one of the human participants is replaced 
by a computer. If the computer is able to convince the in-
terrogator it is the human, Turing argued, it can be said 
to be intelligent. 

The Turing test has been widely criticised since it was 
proposed, and in Chapter 23 of this book we will look 
in detail at some of the objections to it. However, the 
main criticism is that it takes a behavioural rather than a 
psychological view of intelligence. Regardless of the crit-
icisms the Turing test is significant as it provided the first 
concrete goal for AI research. 

1.3.1 The Development of AI 

In 1956 about a dozen researchers met at Dartmouth 
College. They represented a number of academic disci-
plines including mathematics, electrical engineering and 
psychology, but they had one interest in common: using 
the powerful tool of the computer to simulate human in-
telligence. It was here, at the Dartmouth Workshop, that 
the name “Artificial Intelligence” was coined. 

In the early days of AI, research concentrated on 
applications that were considered to involve intelligence 
and reasoning, mainly game playing and theorem 
proving. During the decade following the Dartmouth 
Workshop there were significant developments in search 
techniques, pattern matching, heuristics and constraint 
satisfaction, which are still important today. However, 
these early applications proved to be solvable using rapid 
searches through all possible options, rather than the 
selection strategies and reasoning applied by humans, 
and attention turned to the problem of modelling and 
reproducing true understanding. 

From the mid-1960s researchers concentrated on 
applications such as perception, language understanding 
and general problem solving. One such application, 
ELIZA [299], was hailed by some as a breakthrough 
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in language understanding. ELIZA appeared, on the 
surface, to understand and respond intelligently to 
human conversation, albeit in the slightly artificial 
context of Rogerian psychoanalysis. “Patients” would 
communicate with ELIZA via a keyboard, and the 
program would respond in such a way that many 
patients believed that they were talking to a human. A 
conversation with ELIZA would run something like this 
(machine responses in upper case): 

TELL ME ABOUT YOUR PROBLEM 
men are all alike 
HOW DO YOU FEEL ABOUT MEN? 
none of them can be trusted 
NOT ANY? 
well very few 
COULD YOU BE MORE PRECISE PLEASE? 
my grandfather was trustworthy 
TELL ME ABOUT YOUR GRANDFATHER 
he is dead 
HOW LONG HAS HE BEEN DEAD? 
a couple of years – he was my mother’s father 
TELL ME ABOUT YOUR MOTHER 
she is very nice 
CAN YOU THINK OF A SPECIFIC EXAM-
PLE? 
she is always glad to see me 
IS YOUR FATHER ALSO ALWAYS GLAD 
TO SEE YOU? 
most of the time 
HOW DID YOUR PARENTS TREAT YOU 
AS A CHILD? 

Such a conversation may appear convincing, but does 
ELIZA therefore pass the Turing test? In 1966, the pro-
gram’s developer, Joseph Weizenbaum, wrote a paper to 
dispel this notion (at the same time casting some doubt 
on the validity of the Turing test) [299]. ELIZA actu-
ally works on the basis of some clever tricks of substitu-
tion, pattern matching and random selection. The user’s 
sentence is searched for key words that are then either 
substituted into a new sentence by ELIZA or used to 
fire an associated response. If more than one possible re-
sponse is available, ELIZA chooses between them ran-
domly. In spite of appearances, therefore, ELIZA embod-
ies no understanding of the English language. As Weizen-
baum says, it shows “how easy it is to create and maintain 
the illusion of understanding” [299]. Once these tricks are 
understood it is very easy to fool ELIZA: 

HOW DID YOUR PARENTS TREAT YOU AS 
A CHILD? 
they gave me my grandfather clock 
TELL ME ABOUT YOUR GRANDFATHER 
… 

However, research continued into language understand-
ing in the early 1970s and another significant system 
emerged: SHRDLU. SHRDLU (the name comes from 
six of the 12 most commonly used letters in English) 
was developed by Terry Winograd [301]. The system can 
understand and comply with quite complex sentences, 
but there is a catch: it is restricted to the domain of 
simulated blocks. Although this may seem limited, 
SHRDLU still far surpassed any other system of the 
time. 

Consider an instruction such as “Find a block that is 
taller than the one you are holding and put it on top of the 
red box.” What knowledge is required to interpret such 
a sentence? First you need to understand the concepts of 
relative sizes. Then you need to interpret the reference 
in the second clause: to what does “it” refer? Then you 
need to understand relative position and differentiate by 
colour. SHRDLU was able to interpret such instructions 
through the use of stored knowledge and was one of the 
applications of this period that led to the development 
of a number of methodologies for knowledge represen-
tation (discussed in Chap. 2). 

1.3.2 The Physical Symbol System Hypothesis 

In 1976 Newell and Simon proposed a hypothesis that 
has become the basis of research and experimentation 
in AI: the physical symbol system hypothesis [210]. The 
hypothesis states that 

A physical symbol system has the necessary 
and sufficient means for general intelligent ac-
tion. 

So what does this mean? A symbol is a token that rep-
resents something else. For example, a word is a symbol 
representing an object or concept. The symbol is physi-
cal, although the thing represented by it may be concep-
tual. Symbols are physically related to each other in sym-
bol structures (e.g. they may be adjacent). In addition to 
symbol structures, the system contains operators or pro-
cesses that transform structures into other structures, for 
example copying, adding and removing them. A physical 
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symbol system comprises an evolving set of symbol struc-
tures and the operators required to transform them. The 
hypothesis suggests that such a system is able to model 
intelligent behaviour. 

Without a clear definition of human intelligence, the 
only way to test this hypothesis is by experimentation: 
choose an activity that requires intelligence and devise a 
physical symbol system to solve it. Computers are a good 
means of simulating the physical symbol system and are 
therefore used in testing the hypothesis. It is not yet clear 
whether the physical symbol system hypothesis will hold 
in all areas of intelligence. It is certainly supported by 
work in areas such as game playing and decision making, 
but in lower-level activities, such as vision, sub-symbolic 
approaches (such as neural networks) often prove to be 
more useful. However, this in itself does not disprove the 
physical symbol system hypothesis, since it is clearly pos-
sible to solve problems in alternative ways. 

The physical symbol system hypothesis is important as 
the foundation for the belief that it is possible to create 
artificial intelligence. It also provides a useful model of 
human intelligence that can be simulated and therefore 
tested. 

1.3.3 Sub-symbolic Spring 

By the late 1970s, while the physical symbol system 
hypothesis provided fresh impetus to those examining 
the nature of intelligent behaviour, some research 
moved away from the “grand aim” of producing general 
machine understanding and concentrated instead upon 
developing effective techniques in restricted domains. 
Arguably this approach has had the most commercial 
success, producing, among other things, the expert 
system (see Chap. 18). 

The 1980s saw a period of great optimism within 
AI. In 1982 Japan launched the Fifth Generation 
Computer Project, aiming to become a world leader in 
supercomputing and artificial intelligence [206, 253]. 
This led to rival initiatives in the UK, US and pan-EU. 
The amounts were staggering for the time, the UK’s 
Alvey Programme alone was 500 million pounds 
sterling [214]. The central focus of the Fifth Generation 
Computer Project was on logic programming, that is 
traditional knowledge-rich AI. However, the funding 
also allowed other areas to flourish. 

The development of artificial neural networks, in the 
late 1980s and early 1990s, modelled on the human 

brain, was hailed by some as the basis for genuine 
machine intelligence and learning. Neural networks, 
or “connectionist” systems, initially proved effective 
in small applications, but many have huge resource 
requirements. Traditional AI researchers were slow to 
welcome the connectionists, being sceptical of their 
claims and the premises underlying neural networks. 

In one example, a recognition system used neural net-
works to learn the properties of a number of photographs 
taken in woodland. Its aim was to differentiate between 
those containing tanks and those without. After a num-
ber of test runs in which the system accurately picked out 
all the photographs of tanks, the developers were feeling 
suitably pleased with themselves. However, to confirm 
their findings they took another set of photographs. To 
their dismay the system proved completely unable to pick 
out the tanks. After further investigation it turned out 
that the first set of photographs of tanks had been taken 
on a sunny day while those without were cloudy. The 
network was not classifying the photographs according 
to the presence of tanks at all but according to prevail-
ing weather conditions! Since the “reasoning” underly-
ing the network is difficult to examine such mistakes can 
go unnoticed. 

The Great AI Winter 

To some extent expectations of AI were over-hyped. 
Progress in some areas was rapid but often hit limi-
tations. This led to a period of around 15 years, often 
called the AI Winter, when funding and enthusiasm 
died, and it seemed as if progress had slowed. If you 
talked to many in AI during this period, they would feel 
they were having little impact outside the research lab. 

In fact, many of the areas that would have once been 
seen as part of core AI were progressing steadily during 
this time, notably vision, speech and robotics, but this did 
not counter the overall sense of a subject in the doldrums. 

Historians of the Dark Ages in Europe (500–1000 
AD) tell us that it was far from a period of anarchy 
and ignorance, but one where knowledge flourished in 
pockets, often at the outer fringes. Similarly historians 
of AI can pick up the threads of work that flourished 
during this AI winter. In particular, while it was not 
originally seen as an AI revolution, the web changed 
everything. 

The seeds of the impact of the web on AI were (in 
retrospect) evident from the late 1990s and early 2000s. 
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As domestic use of the internet grew, recommendation 
systems for shopping services grew. These were initially 
seen as purely statistical algorithms, rather than AI, but 
the often uncanny ability of “other people bought ...” to 
recommend pertinent books and music had the feel of 
intelligence – recall our definition “considered to require 
intelligence in humans”. 

Similarly the success of search engines, notably 
Google’s PageRank algorithm [32], harnessed the 
growing volume of human-produced material on the 
web to produce results that were not just sensible but 
often prescient. Around the same time Berners-Lee and 
others proposed the semantic web with an aim to make 
the material on the web machine-readable and hence 
available for large-scale intelligent reasoning [25]. 

1.3.4 AI Renaissance 

It is no hyperbole to describe as seismic the impact of Al-
phaGo’s defeat of Go grandmaster Lee Sedol in 2016 [17]. 
Go had been considered an almost impossible challenge 
for AI requiring true human insight and intelligence. 

Although the win had been unexpected, the resur-
gence had begun some years earlier, not least with the 
success of IBM’s Watson at the quiz game Jeopardy! 
[101], even leading some to warn against overblown 
optimism and the possibility of a return to another AI 
winter [128]. It would be good to be able to say that 
this resurgence was purely due to the ingenuity of AI 
researchers creating new and more powerful algorithms. 
There is truth in this, but the reality is more prosaic – 
more about speed and scale than science. 

The technology giants did have access to human in-
tellectual capital and funding for internal AI initiatives. 
However, they also had access to vast amounts of data 
and computational power, the twin enablers of deep 
learning. Well before AlphaGo, Google researchers had 
written about “The unreasonable effectiveness of data”, 
describing the way big data analysis based on simple 
word concurrence was able to tackle issues that had 
been thought to need knowledge-rich natural language 
understanding [122]. 

However, the availability of big data and massive 
computation has in turn led to new approaches and 
algorithms. Some are brute force, but others are highly 
creative ways of harnessing that power, for example 
general adversarial learning approaches inspired by 
game playing. 

Furthermore the application scale has continued to 
yield new surprises. In particular, GPT-4 and other 
large-language models are based on deep neural 
networks trained on billions of documents. They behave 
as if they have grammatical and even semantic abilities, 
despite being based solely on low-level weights. This 
has led to a scale-based version of the physical symbol 
system hypothesis, where it is believed that simply 
making bigger and bigger deep neural networks will 
lead to AI systems that exhibit true general intelligence. 

1.3.5 Moving Onwards 

At the end of the introduction to the first edition of this 
book we said that “it may not be long before AI is an 
integral part of all our lives”. Of course, this is now the 
case: personalised product recommendations and news 
on the web, voice-operated home automation systems, 
face recognition on our phones and autonomous vehicles 
on the road. 

Of course this ubiquity has led to its own challenges, 
not least ethical issues including gender, ethnic and so-
cial bias in the outputs of many machine learning algo-
rithms and the need for explainable AI. 

Time will tell how far the trend towards bigger and big-
ger machine learning will take us. Even if it does continue 
to be successful, there will be increasing needs for ‘small 
AI’ for environmental reasons (large AI models consume 
lots of power) and also social (only the rich can afford big 
AI). 

It does seem likely that the next step however will re-
quire a re-integration of the more knowledge-rich tech-
niques of ‘traditional’ symbolic AI and the hugely suc-
cessful but hard to interpret sub-symbolic systems. 

1.4 STRUCTURE OF THIS BOOK – A 
LANDSCAPE OF AI 

The chapters that follow will take a relatively pragmatic 
approach to AI and are divided into five parts: 

Part I. Knowledge-Based AI – This is rooted in classic 
areas of AI covering knowledge representation, 
reasoning and search. While these are mostly con-
cerned with symbolic AI, they are also important 
basics for those interested in neural networks 
and machine learning as they give a conceptual 
vocabulary with which to interpret more emergent 
features. 
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Part II. Data and Learning – This covers various forms some impact on people. However, some applica-
of machine learning, that is techniques where the 
AI algorithm works from data and creates its 
own rules. This includes some more traditional 
algorithms, various forms of neural networks, 
statistical techniques and architectural decisions 
for deep learning. It will consider more conceptual 
and theoretical issues for any form of machine 
learning as well as techniques for dealing with big 
data and practical ‘data wrangling’. 

Part III. Specialised Areas – This part considers a 
number of specific areas: games, natural language 
processing (NLP), vision, time-varying signals and 
media, robotics, agents and the web. Each of these 
has some specialised methods and algorithms, but 
also there is much overlap and many cross-cutting 
lessons. It is well worth dipping your toes into all 
the areas even if you have one specific focus. 

Part IV. Humans at the Heart – Every computer 
system and every system involving AI will have 

tions and some issues have more direct impact 
than others. In this part we consider such areas 
including expert and decision support systems, 
methods for designing human interactions with 
intelligent systems, issues of bias, privacy and 
explainable AI, more cognitively inspired AI and 
critical philosophical, social and ethical questions. 
We see that there are still many opportunities for 
using understanding of human cognition to inspire 
AI and for AI to help us understand some of the 
profound aspects of being human. 

Part V. Looking Forward – The book ends with a short 
glimpse into the possible future directions of AI: 
what is current, upcoming and maybe coming 
next. In such a fast-moving area, some of this 
will undoubtedly look dated by the time the book 
is even printed. However, looking back to the 
epilogue of the first edition, 25 years ago, there are 
issues that are still valid today. So, clearly, some 
challenges are likely to take longer to come to 
fruition ... maybe ones you would like to address 
yourself. 



I 
Knowledge-Rich AI 
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2 CHAP T ER 

Knowledge in AI 

2.1 OVERVIEW 
Knowledge is vital to all intelligence. In this chapter we 
examine four key knowledge representation schemes 
looking at examples of each and their strengths and 
weaknesses. We consider how to assess a knowledge 
representation scheme in order to choose one that 
is appropriate to our particular problem. We discuss 
the problems of representing general knowledge and 
changing knowledge. 

2.2 INTRODUCTION 
Knowledge is central to intelligence. We need it to use 
or understand language, to make decisions, to recognise 
objects, to interpret situations and to plan strategies. We 
store in our memories millions of pieces of knowledge 
that we use daily to make sense of the world and our 
interactions with it. 

Some of the knowledge we possess is factual. We know 
what things are and what they do. This type of knowledge 
is known as declarative knowledge. We also know how 
to do things: procedural knowledge. For example, if we 
consider what we know about the English language, we 
may have some declarative knowledge that the word tree 
is a noun and that tall is an adjective. These are among the 
thousands of facts we know about the English language, 

However, we also have procedural knowledge about 
English. For example, we may know that in order to pro-
vide more information about something we place an ad-
jective before the noun. 

Similarly, imagine you are giving directions to your 
home. You may have declarative knowledge about the 
location of your house and its transport links (e.g. “my 
house is in Golcar”, “the number 301 bus runs through 
Golcar”, “Golcar is off the Manchester Road”). In addi-
tion you may have procedural knowledge about how to 
get to your house (“Get on the 301 bus”). 

Another distinction that can be drawn is between 
the specific knowledge we have on a particular subject 
(domain-specific knowledge) and the general or 
“common-sense” knowledge that applies throughout 
our experience (domain-independent knowledge). The 
fact “the number 301 bus goes to Golcar” is an example 
of the former: it is knowledge that is relevant only in a 
restricted domain – in this case Huddersfield’s transport 
system. New knowledge would be required to deal with 
transport in any other city. However, the knowledge 
that a bus is a motorised means of transport is a piece 
of general knowledge which is applicable to buses 
throughout our experience. 

General or common-sense knowledge also enables us 
to interpret situations accurately. For example, imagine 
someone asks you “Can you tell me the way to the sta-
tion?”. Your common-sense knowledge tells you that the 
person expects a set of directions; only a deliberately ob-
tuse person would answer literally “yes”! Similarly there 
are thousands if not millions of “facts” that are obvious 
to us from our experience of the world, many acquired 
in early childhood. They are so obvious to us that we 
wouldn’t normally dream of expressing them explicitly. 
Facts about age: a person’s age increments by one each 
year, children are always younger than their parents, peo-
ple don’t live much longer than 100 years; facts about the 
way that substances such as water behave; facts about 
the physical properties of everyday objects and indeed 
ourselves – this is the general or “common” knowledge 
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that humans share through shared experience and that 
we rely on every day. 

Just as we need knowledge to function effectively, 
it is also vital in artificial intelligence. As we saw 
earlier, one of the problems with ELIZA was lack of 
knowledge: the program had no knowledge of the 
meanings or contexts of the words it was using and so 
failed to convince for long. So the first thing we need 
to provide for our intelligent machine is knowledge. As 
we shall see, this will include procedural and declarative 
knowledge and domain-specific and general knowledge. 
The specific knowledge required will depend upon the 
application. For language understanding we need to 
provide knowledge of syntax rules, words and their 
meanings, and context; for expert decision making, 
we need knowledge of the domain of interest as well 
as decision-making strategies. For visual recognition, 
knowledge of possible objects and how they occur in 
the world is needed. Even simple game playing requires 
knowledge of possible moves and winning strategies. 

2.3 REPRESENTING KNOWLEDGE 
We have seen the types of knowledge that we use in 
everyday life and that we would like to provide to our 
intelligent machine. We have also seen something of 
the enormity of the task of providing that knowledge. 
However, the knowledge that we have been considering 
is largely experiential or internal to the human holder. 
In order to make use of it in AI we need to get it from 
the source (usually human but can be other information 
sources) and represent it in a form usable by the ma-
chine. Human knowledge is usually expressed through 
language, which, of course, cannot be accurately under-
stood by the machine. The representation we choose 
must therefore be both appropriate for the computer 
to use and allow easy and accurate encoding from the 
source. 

We need to be able to represent facts about the world. 
However, this is not all. Facts do not exist in isolation; 
they are related to each other in a number of ways. First, 
a fact may be a specific instance of another, more gen-
eral fact. For example, “Spotty Dog barks” is a specific 
instance of the fact “all dogs bark” (not strictly true but a 
common belief). In a case like this, we may wish to allow 
property inheritance, in which properties or attributes of 
the main class are inherited by instances of that class. So 
we might represent the knowledge that dogs bark and 
that Spotty Dog is a dog, allowing us then to deduce 

FIGURE 2.1 Four knights: how many moves? 

by inheritance the fact that Spotty Dog barks. Secondly, 
facts may be related by virtue of the object or concept to 
which they refer. For example, we may know the time, 
place, subject and speaker for a lecture and these pieces 
of information make sense only in the context of the oc-
casion by which they are related. And of course we need 
to represent procedural knowledge as well as declarative 
knowledge. 

It should be noted that the representation chosen can 
be an important factor in determining the ease with 
which a problem can be solved. For example, imagine 
you have a 3×3 chess board with a knight in each corner 
(as in Figure 2.1). How many moves (i.e. chess knight 
moves) will it take to move each knight round to the 
next corner? 

Looking at the diagrammatic representation in Fig-
ure 2.1, the solution is not obvious, but if we label each 
square and represent valid moves as adjacent points on a 
circle (see Figure 2.2), the solution becomes more obvi-
ous: each knight takes two moves to reach its new posi-
tion, so the minimum number of moves is eight. 

In addition, the granularity of the representation can 
affect its usefulness. In other words, we have to deter-
mine how detailed the knowledge we represent needs to 
be. This will depend largely on the application and the 
use to which the knowledge will be put. For example, if 

https://alandix.com/glossary/aibook/ELIZA
https://alandix.com/glossary/aibook/declarative knowledge
https://alandix.com/glossary/aibook/declarative knowledge
https://alandix.com/glossary/aibook/general knowledge
https://alandix.com/glossary/aibook/game playing
https://alandix.com/glossary/aibook/property inheritance
https://alandix.com/glossary/aibook/procedural knowledge
https://alandix.com/glossary/aibook/declarative knowledge
https://alandix.com/glossary/aibook/declarative knowledge
https://alandix.com/glossary/aibook/chess
https://alandix.com/glossary/aibook/chess
https://alandix.com/glossary/aibook/knowledge representation!granularity


Knowledge in AI ■ 13 

FIGURE 2.2 A different representation makes the solution clearer. 

we are building a knowledge base about dog family re-
lationships for a pedigree management system, we may 
include a representation of the definition of the relation 
“cousin” (given here in English but easily translatable 
into logic, for example): 

an offspring of a sibling of a dog’s parent 
is the dog’s cousin 

However, this may not be enough information; we may 
also wish to know the gender of the cousin. If this is the 
case, a more detailed representation is required. For a 
female cousin: 

a daughter of a sibling of a dog’s parent 
is the dog’s cousin, 

or a male cousin: 

a son of a sibling of a dog’s parent 
is the dog’s cousin. 

Similarly, if you wanted to know which side of the fam-
ily a dog’s cousin belongs, you would need different in-
formation; from the dog’s sire’s (father’s) side: 

an offspring of a sibling of a dog’s sire (father) 
is the dog’s cousin, 

or its dam’s (mother’s) side: 

an offspring of a sibling of a dog’s dam (mother) 
is the dog’s cousin. 

A full description of all the possible variations is given in 
Figure 2.3. Such detail may not always be required and 
therefore seem unnecessarily complex, but some simple 
reasoning systems may need this form of expansion. 
Note too as we are more precise, or at least exhaustive, 
we may miss or, if we are observant, notice cases that 
might slip between or challenge our definitions, for 
example dog surrogacy, 

There are a number of knowledge representation 
methods that can be used. Later in this chapter we 
will examine some of them briefly and identify the 
areas for which each is best suited. In later chapters 
of the book we will see how these methods can be 
used in specific application areas. But what makes a 
good knowledge representation scheme, and how can 
different schemes be evaluated against one another? 
Before going on to consider specific approaches to 
knowledge representation, we will look in more detail 
at what features a knowledge representation scheme 
should possess. 

2.4 METRICS FOR ASSESSING KNOWLEDGE 
REPRESENTATION SCHEMES 

We have already looked at some of the factors we are 
looking for in a knowledge representation scheme. 
However, we can expand upon these and generate 
some metrics by which to measure the representations 
available to us. The main requirements of a knowledge 
representation scheme can be summarised under four 
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a daughter of a sister of a dog’s dam

is the dog’s cousin

a daughter of a sister of a dog’s sire

is the dog’s cousin

a daughter of a brother of a dog’s dam

is the dog’s cousin

a daughter of a brother of a dog’s sire

is the dog’s cousin

a son of a sister of a dog’s dam

is the dog’s cousin

a son of a sister of a dog’s sire

is the dog’s cousin

a son of a brother of a dog’s dam

is the dog’s cousin

a son of a brother of a dog’s sire

is the dog’s cousin

FIGURE 2.3 Full list of variants of the relationship “cousin”. 

headings: expressiveness, effectiveness, efficiency and 
explanation. 

• expressiveness. We have already considered some of 
the types of knowledge that we might wish to rep-
resent. An expressive representation scheme will be 
able to handle different types and levels of granular-
ity of knowledge. It will be able to represent com-
plex knowledge and knowledge structures and the 
relationships between them. It will have means of 
representing specific facts and generic information 
(e.g. by using variables). Expressiveness also relates 
to the clarity of the representation scheme. Ideally, 
the scheme should use a notation that is natural and 
usable both by the knowledge engineer and the do-
main expert. Schemes that are too complex for the 
latter to understand can result in incorrect knowl-
edge being held, since the expert may not be able 
to critique the knowledge adequately. In summary, 
our representation scheme should be characterised 
by completeness and clarity of expression. 

• effectiveness. The second measure of a good repre-
sentation scheme is its effectiveness. In order to be 
effective, the scheme must provide a means of in-
ferring new knowledge from old. It should also be 
amenable to computation, allowing adequate tool 
support. 

• efficiency. Thirdly, the scheme should be efficient. 
The knowledge representation scheme must not 
only support inference of new knowledge from 
old but must do so efficiently in order for the new 
knowledge to be of use. In addition, the scheme 
should facilitate efficient knowledge gathering and 
representation. 

• explicitness. Finally, a good knowledge representa-
tion scheme must be able to provide an explanation 
of its inferences and allow justifications of its rea-
soning. The chain of reasoning should be explicit. 

In the rest of this chapter we will use these four metrics 
to compare the effectiveness of the techniques we will 
consider. 

2.5 LOGIC REPRESENTATIONS 
Logic representations use expressions in formal logic to 
represent the knowledge required. Inference rules and 
proof procedures can apply this knowledge to specific 
problems. First-order predicate calculus is the most com-
mon form of logic representation, with Prolog being the 
most common language used to implement it. 

Logic is appealing as a means of knowledge represen-
tation, as it is a powerful formalism with known infer-
ence procedures. We can derive a new piece of knowl-
edge by proving that it is a consequence of knowledge 
that is already known. The significant features of the do-
main can be represented as logical assertions, and gen-
eral attributes can be expressed using variables in logical 
statements. It has the advantage of being computable, al-
beit in a restricted form. 

So how can we use logic to represent knowledge? Facts 
can be expressed as simple propositions. A proposition is 
a statement that can have one of two values: true or false. 
These are known as truth values. So the statements It is 
raining and I am hungry are propositions whose values 
depend on the situation at the time. If I have just eaten 
dinner in a thunderstorm, then the first is likely to be 
true and the second false. Propositions can be combined 
using operators such as and (∧) and or (∨). Returning 
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FIGURE 2.4 Truth values for simple logic operators. 

to our dining example, we could combine the two state-
ments: It is raining and I am hungry (which for conve-
nience we will express as P ∧ Q). The truth value of the 
combined propositions will depend upon the truth val-
ues of the individual propositions and the operator con-
necting them. If the situation is still as it was, then this 
combined propositional statement will be false, since one 
of the propositions (Q) is false. 

Figure 2.4 shows a truth table that defines the truth 
values of and and or. 

Do note however that the use of ‘and’ and ‘or’ in day-
to-day speech is not always the same as in formal logic. 
For example, if asked about food preferences, you might 
reply “I like sausage and ice cream” or “I’d like ice cream 
or I’d like sausage”, but neither would be taken to mean 
you’d like both on the same plate. Note too that the word 
‘like’ in the two sentences means something different, in 
the first ‘enjoy’ in the second ‘want to eat now’, but this re-
quires an understanding of context. So, when expressing 
natural language in formal logic take care that the trans-
lation may not be direct. 

Propositional logic is limited in that it does not allow 
us to generalise sufficiently. Common elements within 
propositions cannot be used to make inferences. We need 
to be able to extract such common elements as parame-
ters to the propositions, in order to allow inferences with 
them. Parametrised propositions give us predicate logic. 
For example, if we wish to represent our knowledge of 
the members of Thunderbirds’ International Rescue or-
ganisation, we might include such facts as 

father(Jeff, Virgil) 
father(Jeff, Alan) 

to mean Jeff is the father of Virgil and Jeff is the father of 
Alan, respectively. Father is the predicate here and Jeff, 
Virgil and Alan are parameters. In predicate logic, pa-
rameters can also include variables. For example, 
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father(Jeff, x) 

where x is a variable that can be instantiated later with a 
value – the name of someone of whom Jeff is the father. 

Quantifiers (universal and existential) allow the 
scope of the variable to be determined unambiguously. 
For example, in the statement above, we do not know 
for certain that there is value for x; that is, that Jeff 
is indeed someone’s father (ignoring the two earlier 
facts for a moment). In the following statement we use 
the existential quantifier, ∃ (read as ‘there exists’), to 
express the fact that Jeff is the father of at least one 
person: 

∃x ∶ father(Jeff, x) 

Similarly we can express rules that apply universally 
using the universal quantifier, ∀ (read as ‘for all’): 

∀x ∀y ∶ father(x, y) ∨ mother(x, y)
→ parent(x, y)

∀x ∀y ∀z ∶ parent(x, y) ∧ parent(x, z)
→ sibling(y, z) 

The first of these states that for all values of x and y if x is 
the father of y or (∨) the mother of y, then x is the parent 
of y. The second uses this knowledge to say something 
about siblings: for all values of x, y and z, if x is the parent 
of y (i.e. the father or the mother), and (∧) x is the parent 
of z, then y and z are siblings. 

Inference methods allow us to derive new facts from 
existing facts. There are a number of inference proce-
dures for logic, but we can illustrate the principle using 
the simple rule that we can substitute a universally quan-
tified variable with any value in its domain. So, given the 
rule about parenthood and the facts we already know 
about the family from International rescue, we can derive 
new facts as shown below. 

Given 

∀x ∀y ∶ father(x, y) ∨ mother(x, y)
→ parent(x, y) 

father(Jeff, Virgil) 
father(Jeff, Alan) 

we can derive the facts (by substitution) 

parent(Jeff, Virgil) 
parent(Jeff, Alan) 

Similarly, given 
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∀x ∀y ∀z ∶ parent(x, y) ∧ parent(x, z)
→ sibling(y, z) 

parent(Jeff, Virgil) 
parent(Jeff, Alan) 

we can derive the fact 

sibling(Virgil, Alan) 

Facts and rules such as these can be represented 
easily in Prolog. However, predicate logic and Prolog 
have a limitation, which is that they operate under 
what is known as the closed world assumption. This 
means that we assume that all knowledge in the world is 
represented: the knowledge base is complete. Therefore 
any fact that is missing is assumed to be false. Prolog 
uses a problem-solving strategy called negation as 
failure, which means that it returns a result of false if it 
is unable to prove a goal to be true. This relies on the 
closed world assumption [233]. Such an assumption 
is useful when all relevant facts are represented but 
can cause problems when the knowledge base is 
incomplete. 

In summary, logic is 

• expressive: it allows representation of facts, 
relationships between facts and assertions about 
facts. It is relatively understandable. Prolog is less 
expressive since it is not possible to represent 
logical negation explicitly. This in turn leads to less 
clarity. 

• effective: new facts can be inferred from old. It is 
also amenable to computation through Prolog. 

• efficient: the use of predicates and variables makes 
the representation scheme relatively efficient, 
although computational efficiency depends to 
a degree on the interpreter being used and the 
programmer. 

• explicit: explanations and justifications can be pro-
vided by backtracking. 

2.6 PROCEDURAL REPRESENTATION 
Logic representations, such as we have been looking at, 
are declarative: we specify what we know about a prob-
lem or domain. We do not specify how to solve the prob-
lem or what to do with the knowledge. Procedural ap-
proaches, on the other hand, represent knowledge as a set 

of instructions for solving a problem. If a given condition 
is met, then an associated action or series of actions is 
performed. The production system is an example of this 
[209]. 

A production system has three components: 

• a database of facts (often called working memory) 

• a set of production rules that alter the facts in the 
database. These rules or productions are of the form 

IF <condition> THEN <action> 

• an interpreter that decides which rule to apply and 
handles any conflicts. 

2.6.1 The Database 

The database or working memory represents all the 
knowledge of the system at any given moment. It can 
be thought of as a simple database of facts that are true 
of the domain at that time. The number of items in 
the database is small: the analogy is to human working 
memory, which can hold only a small number of items 
at a time. The contents of the database change as facts 
are added or removed according to the application of 
the rules. 

2.6.2 The Production Rules 

Production rules are operators that are applied to 
the knowledge in the database and change the state 
of the production system in some way, usually by 
changing the content of the database. Production rules 
are sometimes called condition–action rules, and this 
describes their behaviour well. If the condition of a rule 
is true (according to the database at that moment), the 
action associated with the rule is performed. This may 
be, for example, to alter the contents of the database by 
removing a fact or to interact with the outside world in 
some way. 

Production rules are usually unordered, in the sense 
that the sequence in which the rules will be applied de-
pends on the current state of the database: the rule whose 
condition matches the state of the database will be se-
lected. If more than one rule matches, then conflict res-
olution strategies are applied. However, some produc-
tion systems are programmed to apply rules in order, so 
avoiding conflict (this is itself a conflict resolution strat-
egy). 
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FIGURE 2.5 Production system rules for assessing a loan application. 

2.6.3 The Interpreter 

The interpreter is responsible for finding the rules 
whose conditions are matched by the current state of the 
database. It must then decide which rule to apply. If there 
is more than one rule whose condition matches, then 
one of the contenders must be selected using strategies 
such as those proposed below. If no rule matches, the 
system cannot proceed. Once a single rule has been 
selected the interpreter must perform the actions in 
the body of the rule. This process continues until there 
are no matching rules or until a rule is triggered which 
includes the instruction to stop. 

The interpreter must have strategies to select a single 
rule where several match the state of the database. There 
are a number of possible ways to handle this situation. 
The most simple strategy is to choose the first rule that 
matches. This effectively places an ordering on the pro-
duction rules, which must be carefully considered when 
writing the rules. An alternative strategy is to favour the 
most specific rule. This may involve choosing a rule that 
matches all the conditions of its contenders but that also 
contains further conditions that match, or it may mean 
choosing the rule that instantiates variables or qualifies a 
fact. 
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For example, 

IF <salary is high> and < age > 40> 

is more specific than 

IF <salary is high>. 

Similarly 

IF <salary > £40,000> 

is more specific than 

IF <salary > £20,000> 

since fewer instances will match it. 

2.6.4 An Example Production System: Making a 
Loan 

This production system gives advice on whether to make 
a loan to a client (its rules are obviously very simplistic, 
but it is useful to illustrate the technique). Initially the 
database contains the following default facts: 

<client working? is unknown> 
<client student? is unknown> 
<salary is unknown> 

and a single fact relating to our client: 

<AMOUNT REQUESTED is £2000> 

which represents the amount of money our client wishes 
to borrow (we will assume that this has been added us-
ing other rules). We can use the production system to 
find out more information about the client and decide 
whether to give this loan. Figure 2.5 shows a set of rules 
that could be used to determine this. 

Imagine our client is working and earns £7500. Given 
the contents of the database, the following sequence oc-
curs: 

1. Rule 1 fires since the condition matches a fact 
in the database. The user answers YES to the 
question, instantiating the variable WORKING 
to YES. This adds the fact <client working? is 
YES> to the database, replacing the fact <client 
working? is unknown> 

• Database contents after rule 1 fires: 
<client working? is YES> 
<client student? is unknown> 
<salary is unknown> 
<AMOUNT REQUESTED is £2000> 

2. Rule 2 fires instantiating the variable SALARY to 
the value given by the user. This adds this fact to 
the database, as above. 

• Database contents after rule 2 fires: 
<client working? is YES> 
<client student? is unknown> 
<salary is £7500> 
<AMOUNT REQUESTED is £2000> 

3. Rule 4 fires since the value of SALARY is less than 
five times the value of AMOUNT REQUESTED. 
This results in an instruction to grant a loan of 
SALARY/5, that is £1500. The system then clears 
the database to the default values and finishes. 

This particular system is very simple and no conflicts can 
occur. It is assumed that the interpreter examines the rule 
base from the beginning each time. 

To summarise, we can consider production systems 
against our metrics: 

• expressiveness: production systems are particularly 
good at representing procedural knowledge. They 
are ideal in situations where knowledge changes 
over time and where the final and initial states 
differ from user to user (or subject to subject). The 
approach relies on an understanding of the concept 
of a working memory, which sometimes causes 
confusion. The modularity of the representation 
aids clarity in use: each rule is an independent 
chunk of knowledge, and modification of one rule 
does not interfere with others. 

• effectiveness: new information is generated using 
operators to change the contents of working mem-
ory. The approach is very amenable to computation. 

• efficiency: the scheme is relatively efficient for 
procedural problems, and their flexibility makes it 
transferable between domains. The use of features 
from human problem solving (such as short-term 
memory) means that the scheme may not be the 
most efficient. However, to counter this, these 
features make it a candidate for modelling human 
problem solving. 

• explicitness: production systems can be pro-
grammed to provide explanations for their 
decisions by tracing back through the rules that are 
applied to reach the solution. 
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2.7 NETWORK REPRESENTATIONS 
Network representations capture knowledge as a graph, 
in which nodes represent objects or concepts and arcs 
represent relationships or associations. Relationships 
can be domain specific or generic (see below for 
examples). 

Networks support property inheritance. An object or 
concept may be a member of a class and is assumed to 
have the same attribute values as the parent class (unless 
alternative values override). Classes can also have sub-
classes that inherit properties in a similar way. For ex-
ample, the parent class may be Dog, which has attributes 
such as has tail, barks and has four legs. A subclass of that 
parent class may be a particular breed, say Great Dane, 
which consequently inherits all the attributes above, as 
well as having its own attributes (such as tall). A particu-
lar member (or instance) of this subclass, that is a partic-
ular Great Dane, may have additional attributes such as 
colour. Property inheritance is overridden where a class 
member or subclass has an explicit alternative value for 
an attribute. For example, Rottweiler may be a subclass 
of the parent class Dog but may have the attribute has no 
tail. 

Alternatives may also be given at the instance level: 
Rottweiler as a class may inherit the property has tail, but 
a particular dog, whose tail has been docked, may have 
the value has no tail overriding the inherited property. 

Semantic networks are an example of a network rep-
resentation. A semantic network illustrating property in-
heritance is given below. It includes two generic relation-
ships that support property inheritance: is-a indicating 
class inclusion (subclass) and instance indicating class 
membership. The network of classes, subclasses and their 
properties and relations is sometimes called an ontology. 

Property inheritance supports inference, in that we 
can derive facts about an object by considering the 
parent classes. For example, in the Dog network in 
Figure 2.6, we can derive the facts that a Great Dane has 
a tail and is carnivorous from the facts that a dog has 
a tail and a canine is carnivorous, respectively. Note, 
however, that we cannot derive the fact that a Basenji 
can bark since we have an alternative value associated 
with Basenji. Note also how the network links together 
information from different domains (dogs and cartoons) 
by association. 

Network representations are useful where an object or 
concept is associated with many attributes and where re-
lationships between objects are important. Considering 
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them against our metrics for knowledge representation 
schemes: 

• expressiveness: they allow representation of facts 
and relationships between facts. The levels of the 
hierarchy provide a mechanism for representing 
general and specific knowledge. The representation 
is a model of human memory, and it is therefore 
relatively understandable. 

• effectiveness: they support inference through prop-
erty inheritance. They can also be easily represented 
using Prolog and other AI languages making them 
amenable to computation. 

• efficiency: they reduce the size of the knowledge 
base, since knowledge is stored only at its highest 
level of abstraction rather than for every instance or 
example of a class. They help maintain consistency 
in the knowledge base, because high-level proper-
ties are inherited by subclasses and not added for 
each subclass. 

• explicitness: reasoning equates to following paths 
through the network, so the relationships and in-
ference are explicit in the network links. 

Some kinds of knowledge or data you encounter will be 
very clearly networks, for example links in web pages 
or friend connections in a social network. Others you 
may build up based on analysing the meaning of data 
(such as the semantic network above) or derived from 
other forms of information, for example connecting 
words that frequently occur close to one another 
in text. These are all symbolic networks, where the 
individual nodes have a well-defined meaning (a web 
page, person or word). However, you will also encounter 
sub-symbolic networks, including different forms of 
neural network, that is where the nodes in the network 
have no predefined meaning. We will discuss these in 
Chapter 6. 

2.8 STRUCTURED REPRESENTATIONS 
In structured representations information is organised 
into more complex knowledge structures. Slots in the 
structure represent attributes into which values can be 
placed. These values are either specific to a particular 
instance or default values, which represent stereotypical 
information. Structured representations can capture 
complex situations or objects, for example eating a meal 
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FIGURE 2.6 A fragment of a semantic network. 

in a restaurant or the content of a hotel room. Such 
structures can be linked together as networks, giving 
property inheritance. Frames and scripts are the most 
common types of structured representation. 

2.8.1 Frames 

Frames are knowledge structures that represent expected 
or stereotypical information about an object [196]. For 
example, imagine a supermarket. If you have visited one 
or two, you will have certain expectations as to what 
you will find there. These may include aisles of shelves, 
freezer banks and check-out tills. Some information will 
vary from supermarket to supermarket, for example the 
number of tills. This type of information can be stored 
in a network of frames where each frame comprises a 
number of slots with appropriate values. A section of a 
frame network on supermarkets is shown in Figure 2.7. 

In summary, frames extend semantic networks to in-
clude structured, hierarchical knowledge. Since they can 
be used with semantic networks, they share the benefits 
of these, as well as 

• expressiveness: they allow representation of 
structured knowledge and procedural knowledge. 
The additional structure increases clarity. 

• effectiveness: actions or operations can be associ-
ated with a slot and performed, for example, when-

ever the value for that slot is changed. Such proce-
dures are called demons. 

• efficiency: they allow more complex knowledge to 
be captured efficiently. 

• explicitness: the additional structure makes the rel-
ative importance of particular objects and concepts 
explicit. 

2.8.2 Scripts 

A script, like a frame, is a structure used to represent a 
stereotypical situation [243]. It also contains slots that 
can be filled with appropriate values. However, where a 
frame typically represents knowledge of objects and con-
cepts, scripts represent knowledge of events. They were 
originally proposed as a means of providing contextual 
information to support natural language understanding 
(see Chap. 13). 

Consider the following description: 

Alison and Brian went to the supermarket. 
When they had got everything on their list 
they went home. 

Although it is not explicitly stated in this description, 
we are likely to infer that Alison and Brian paid for 
their selections before leaving. We might also be able 
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FIGURE 2.7 Frame representation of supermarket. 

to fill in more details about their shopping trip: that 
they had a trolley and walked around the supermarket, 
that they selected their own purchases, that their 
list contained the items that they wished to buy. All 
of this can be inferred from our general knowledge 
concerning supermarkets, our expectations as to what is 
likely to happen at one. Our assumptions about Alison 
and Brian’s experience of shopping would be very 
different if the word supermarket was replaced by corner 
shop. 

It is this type of stereotypical knowledge that scripts 
attempt to capture, with the aim of allowing a computer 
to make similar inferences about incomplete stories to 
those we were able to make above. Schank and colleagues 
developed a number of programs during the 1970s and 
1980s that used scripts to answer questions about stories 
[243]. The script would describe likely action sequences 
and provide the contextual information to understand 
the stories. 

A script comprises a number of elements: 

• entry conditions: these are the conditions that must 
be true for the script to be activated. 

• results: these are the facts that are true when the 
script ends. 

• props: these are the objects that are involved in the 
events described in the script. 

• roles: these are the expected actions of the major 
participants in the events described in the script. 

• scenes: these are the sequences of events that take 
place. 

• tracks: these represent variations on the general 
theme or pattern of the script. 

For example, a script for going to a supermarket might 
store the following information: 

Entry supermarket open, shopper needs goods, 
conditions: shopper has money 
Result: shopper has goods, 

supermarket has less stock, 
supermarket has more money 

Props: trolleys, goods, check-out tills 
Roles: shopper collects food, 

assistant checks out food and takes money, 
store manager orders new stock 

Scenes: selecting goods, checking out goods, 
paying for goods, packing goods 

Tracks: customer packs bag, assistant packs bag 

Scripts have been useful in natural language under-
standing in restricted domains. Problems arise when the 
knowledge required to interpret a story is not domain 
specific but general, “common-sense” knowledge. 
Charniak [46] used children’s stories to illustrate just 
how much knowledge is required to interpret even 
simple descriptions. For example, consider the following 
excerpt about exchanging unwanted gifts: 

Alison and Brian received two toasters at their 
engagement party, so they took one back to the 
shop. 

To interpret this we need to know about toasters and 
why, under normal circumstances, one wouldn’t want 
two; we also need to know about shops and their normal 
exchange policies. In addition, we need to know about 
engagements and the tradition of giving gifts on such 
occasions. But the situation is more complicated than 
it appears. If instead of toasters Alison and Brian had 
received two gift vouchers, two books or two £20 notes, 
they would not have needed to exchange them. So 
the rule that one doesn’t want two of something only 
applies to certain items. Such information is not specific 
to engagements: the same would be true of birthday 
presents, wedding presents or Christmas presents. So in 
which script do we store such information? 
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This is indicative of a basic problem of AI, which is 
how to provide the computer with the general, interpre-
tative knowledge that we glean from our experience, as 
well as the specific factual knowledge about a particular 
domain. We will consider this problem in the next sec-
tion. 

Scripts are designed for representing knowledge in a 
particular context. Within this context the method is ex-
pressive and effective, except as we have seen in repre-
senting general knowledge, but it is limited in wider ap-
plication. Similarly, it provides an efficient and explicit 
mechanism for capturing complex structured informa-
tion within its limited domain. 

2.9 GENERAL KNOWLEDGE 
Most knowledge-based systems are effective in a 
restricted domain only because they do not have access 
to the deep, common knowledge that we use daily to 
interpret our world. Few AI projects have attempted to 
provide such general knowledge, the CYC project begun 
at MCC, Texas, by Doug Lenat [164], being a notable 
exception. 

The CYC project aimed to build a knowledge base con-
taining the millions of pieces of common knowledge that 
humans possess. It was originally envisaged as a ten-year 
project involving many people, meticulously encoding 
the type of facts that are “obvious” to us, facts at the level 
of “all men are people” and “children are always younger 
than their parents”. To us, expressing such facts seems 
ludicrous; for the computer they need to be represented 
explicitly. 

The project set out to investigate whether it is possible 
to represent such common-sense knowledge effectively 
in a knowledge base and also considers the problems 
of building and maintaining large-scale knowledge 
bases. Its critics claimed that it would be a waste of 
time and money, since such knowledge can only be 
gained by experience, for example the experiences 
children have through play. However, CYC can derive 
new knowledge from the facts provided, effectively 
learning and generalising from its, albeit artificial, 
experience. 

Although the original 10-year timescale was mas-
sively optimistic, CYC has confounded its critics, 
and the open and research versions (OpenCYC and 
ResearchCYC) have been widely used [68]. Furthermore 
other projects have picked up aspects of this including 

the YAGO/YAGO2 project that draws knowledge 
from a variety of sources including DBpedia [136]. 
Another ambitious project was FreeBase, which was 
crowdsourced collection of interlinked data based on 
standard ontologies and relationships and provided 
a publicly available API. The original startup was 
acquired by Google and used to pump-prime its own 
KnowledgeGraph used for the information boxes 
attached to many web searches, but sadly closed the 
original service. Happily, the FreeBase data was made 
available in various forms including to the WikiData 
project [219]. 

We will see in Chapters 8 and 17 how the availability 
of large data sources, especially on the web, has allowed 
alternative ways to acquire (apparent) knowledge based 
on text mining. It is likely that ongoing and future ini-
tiatives will leverage the large curated resources such as 
OpenCyc alongside data mining techniques. 

2.10 THE FRAME PROBLEM 
Throughout this chapter we have been looking at knowl-
edge representation schemes that allow us to represent a 
problem at a particular point in time: a particular state. 
However, as we will see in subsequent chapters, repre-
sentation schemes have to be able to represent sequences 
of problem states for use in search and planning. Imag-
ine the problem of moving an automatic fork lift truck 
around a factory floor. In order to do this we need to rep-
resent knowledge about the layout of the factory and the 
position of the truck, together with information dictat-
ing how the truck can move (perhaps it can only move if 
its forks are raised above the ground). However, as soon 
as the truck makes one movement, the knowledge has 
changed and a new state has to be represented. Of course, 
not all the knowledge has changed; some facts, such as 
the position of the factory walls, are likely to remain the 
same. The problem of representing the facts that alter 
from state to state as well as those that remain the same 
is the essence of the frame problem [185]. 

In some situations, where keeping track of the 
sequence of states is important, it is infeasible to simply 
store the whole state each time – doing so will soon 
use up memory. So it is necessary to store information 
about what does and does not change from state to state. 
In some situations even deciding what changes is not an 
easy problem. In our factory we may describe bricks as 
being on a pallet which in turn is by the door: 
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on(pallet, bricks) 
by(door, pallet) 

If we move the pallet, then we infer that the bricks also 
move but that the door does not. So in this case at least 
the relationship on implies no change, but by does imply 
a change (the pallet is no longer by the door). 

A number of solutions have been proposed to the 
frame problem. One approach is to include specific 
frame axioms which describe the parts that do not 
change when an operator is applied to move from state 
to state. So, for example, the system above would include 
the axiom 

on(x, y, s1) ∧ move(x, s1, s2) → on(x, y, s2) 

to specify that when an object, y, is on object x in state s1, 
then if the operation move is applied to move x to state s2, 
then object y is still on object x in the new state. Frame 
axioms are a useful way of making change explicit but 
become extremely unwieldy in complex domains. 

An alternative solution is to describe the initial state 
and then change the state description as rules are ap-
plied. This means that the representation is always up-
to-date. Such a solution is fine until the system needs 
to backtrack in order to explore another solution. Then 
there is nothing to indicate what should be done to undo 
the changes. Instead we could maintain the initial de-
scription but store changes each time an operator is ap-
plied. This makes backtracking easy since information as 
to what has been changed is immediately available, but it 
is again a complex solution. A compromise solution is to 
change the initial state description but also store infor-
mation as to how to undo the change. 

There is no ideal solution to the frame problem, but 
these issues should be considered both in selecting 
a knowledge representation scheme and in choosing 
appropriate search strategies. We will look at search in 
more detail in Chapter 4. 

2.11 KNOWLEDGE ELICITATION 
All knowledge representation depends upon knowledge 
elicitation to get the appropriate information from 
the source (often human) to the knowledge base. 
Knowledge elicitation is the bottleneck of knowledge-
based technology. It is difficult, time consuming and 
imprecise. This is because it depends upon the expert 
providing the right information, without missing 
anything out. This in turn often depends upon the 

person trying to elicit the knowledge (the knowledge 
engineer) asking the expert the right questions in an 
area that he or she may know little about. 

To illustrate the magnitude of the knowledge elicita-
tion problem, think of a subject that you know something 
about (perhaps a hobby, a sport, a form of art or liter-
ature, a skill). Try to write down everything you know 
about the subject. Even more enlightening, get a friend 
who is not expert in the subject to question you about it, 
and provide answers to the questions. You will soon find 
that it is difficult to be precise and exhaustive in this type 
of activity. 

A number of techniques have been proposed to help 
alleviate the problem of knowledge elicitation. These 
include structured interview techniques, knowledge elic-
itation tools and the use of machine-learning techniques 
that learn concepts from examples. The latter can be used 
to identify key features in examples which characterise 
a concept. We will look in more detail at knowl-
edge elicitation when we consider expert systems in 
Chapter 18. 

2.12 SUMMARY 
In this chapter we have seen the importance of an appro-
priate knowledge representation scheme and how we can 
assess potential schemes according to their expressive-
ness, effectiveness, efficiency and explicitness. We have 
considered four key representation schemes – logic, pro-
duction rules, network representations and structured 
representations – looking at examples of each and their 
strengths and weaknesses. We have looked at the prob-
lems of representing general knowledge and changing 
knowledge. Finally, we have touched on the problem of 
knowledge elicitation, which we will return to in Chap-
ter 18. 

2.1 UK law forbids marriage between certain relatives 
(e.g. parents and children, brothers and sisters) 
but allows it between others (e.g. first cousins). 
Use a logic formalism to represent your knowl-
edge about UK (or your own country’s) marriage 
laws. 

2.2 A pet shop would like to implement an expert 
system to advise customers on suitable pets for 
their circumstances. Write a production system to 
incorporate the following information (your sys-
tem should elicit the information it needs from 
the customer). 
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A budgie is suitable for small homes (including city 
flats) where all the members of the family are out 
during the day. It is not appropriate for those with 
a fear of birds or who have a cat. 
A guinea pig is suitable for homes with a small gar-
den where the occupants are out all day. It is par-
ticularly appropriate for children. However, it will 
require regular cleaning of the cage. 
A cat is suitable for most homes except high-rise 
flats, although the house should not be on a main 
road. It does not require exercise. Some people are 
allergic to cats. 
A dog is suitable for homes with a garden or a park 
nearby. It is not suitable if all occupants are out all 
day. It will require regular exercise and grooming. 

2.3 Construct a script for a train journey. (You can use 
a natural language representation but you should 
clearly indicate the script elements.) 

2.4 Working in pairs, one of you should take the role 
of expert, the other of knowledge engineer. The 
expert should suggest a topic in which he or she 
is expert and the knowledge engineer should ask 
questions of the expert to elicit information on 
this topic. The expert should answer as precisely as 
possible. The knowledge engineer should record 

all the answers given. When enough information 
has been gathered, choose an appropriate repre-
sentation scheme and formalise this knowledge. 

FURTHER READING 
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G. A. Ringland and D. A. Duce. Approaches to knowledge repre-
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computing.org.uk/inf/pdfs/knowledge_representation.pdf 

R. J. Brachman, H. J. Levesque, and R. Retier, editors. Knowl-
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for symbolic reasoning. 
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3 CHAP T ER 

Reasoning 

3.1 OVERVIEW 
Reasoning is the ability to use knowledge to draw new 
conclusions about the world. Without it we are simply 
recalling stored information. There are a number of dif-
ferent types of reasoning, including induction, abduction 
and deduction. In this chapter we consider methods for 
reasoning when our knowledge is unreliable or incom-
plete. We also look at how we can use previous experience 
to reason about current problems. 

3.2 WHAT IS REASONING? 
Mention of reasoning probably brings to mind logic puz-
zles or “whodunit” thrillers, but it is something that we 
do every day of our lives. Reasoning is the process by 
which we use the knowledge we have to draw conclusions 
or infer something new about a domain of interest. It is a 
necessary part of what we call “intelligence”: without the 
ability to reason we are doing little more than a lookup 
when we use information. In fact this is the difference 
between a standard database system and a knowledge-
based or expert system. Both have information that can 
be accessed in various ways, but the database, unlike the 
expert system, has no reasoning facilities and can there-
fore answer only limited, specific questions. 

Think for a moment about the types of reasoning you 
use. How do you know what to expect when you go on 
a train journey? What do you think when your friend is 
annoyed with you? How do you know what will happen 
if your car has a flat battery? Whether you are aware of 

it or not, you will use a number of different methods of 
reasoning depending on the problem you are considering 
and the information that you have before you. 

The three everyday situations mentioned above illus-
trate three key types of reasoning that we use. In the first 
case you know what to expect on a train journey because 
of your experience of numerous other train journeys: you 
infer that the new journey will share common features 
with the examples you are aware of. This is induction, 
which can be summarised as generalisation from cases 
seen to infer information about cases unseen. We use it 
frequently in learning about the world around us. For 
example, every crow we see is black; therefore we infer 
that all crows are black. If you think about it, such rea-
soning is unreliable: we can never prove our inferences 
to be true, we can only prove them to be false. Take the 
crows again. To prove that all crows are black we would 
have to confirm that all crows that exist, have existed or 
will exist are black. This is obviously not possible. How-
ever, to disprove the statement, all we need is to produce 
a single crow that is white or pink. So at best we can amass 
evidence to support our belief that all crows are black. In 
spite of its unreliability, inductive reasoning is very use-
ful and is the basis of much of our learning. It is used 
particularly in machine learning, which we will meet in 
Chapter 5. 

The second example we suggested was working out 
why a friend is annoyed with you, in other words try-
ing to find an explanation for your friend’s behaviour. It 
may be that this particular friend is a stickler for punctu-
ality and you are a few minutes late to your rendezvous. 
You may therefore infer that your friend’s anger is caused 
by your lateness. This uses abduction, the process of rea-
soning back from something to the state or event that 
caused it. Of course this too is unreliable; it may be that 
your friend is angry for another reason (perhaps you had 
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promised to telephone but had forgotten). Abduction can 
be used in cases where the knowledge is incomplete, for 
example where it is not possible to use deductive reason-
ing (see below). Abduction can provide a “best guess” 
given the evidence available. 

The third problem is usually solved by deduction: you 
have knowledge about cars such as “if the battery is flat 
the headlights won’t work”; you know the battery is flat 
so you can infer that the lights won’t work. This is the 
reasoning of standard logic. Indeed, we could express our 
car problem in terms of logic: given that 

a = the battery is flat 
b = the lights won’t work 

and the axioms 

∀x ∶ a(x) → b(x) 
a(my car) 

we can deduce b(my car). Note, however, that we cannot 
deduce the inverse: that is, if we know b(my car) we can-
not deduce a(my car). This is not permitted in standard 
logic but is of course another example of abduction. If 
our lights don’t work, we may use abduction to derive 
this explanation. However, it could be wrong; there may 
be another explanation for the light failure (e.g. a bulb 
may have blown). 

Deduction is probably the most familiar form of ex-
plicit reasoning. Most of us at some point have been tried 
with syllogisms about Aristotle’s mortality and the like. 
It can be defined as the process of deriving the logically 
necessary conclusion for the initial premises. So, for ex-
ample, 

Elephants are bigger than dogs 
Dogs are bigger than mice 

Therefore 

Elephants are bigger than mice. 

However, it should be noted that deduction is concerned 
with logical validity, not actual truth. Consider the fol-
lowing example; given the facts, can we reach the con-
clusion by deduction? 

Some dogs are greyhounds 
Some greyhounds run fast 
Therefore 

Some dogs run fast. 

The answer is no. We cannot make this deduction 
because we do not know that all greyhounds are dogs. 
The fast greyhounds may therefore be the greyhounds 
that are not dogs. This of course is nonsensical in terms 
of what we know (or more accurately have induced) 
about the real world, but it is perfectly valid based on 
the premises given. You should therefore be aware that 
deduction does not always correspond to natural human 
reasoning. 

3.3 FORWARD AND BACKWARD 
REASONING 

As well as coming in different “flavours”, reasoning can 
progress in one of two directions: forwards to the goal or 
backwards from the goal. Both are used in AI in differ-
ent circumstances. Forward reasoning (also referred to 
as forward chaining, data-driven reasoning, bottom-up 
or antecedent-driven) begins with known facts and at-
tempts to move towards the desired goal. Backward rea-
soning (backward chaining, goal-driven reasoning, top-
down, consequent-driven or hypothesis-driven) begins 
with the goal and sets up subgoals which must be solved 
in order to solve the main goal. 

Imagine you hear that a man bearing your family name 
died intestate a hundred years ago and that solicitors are 
looking for descendants. There are two ways in which 
you could determine if you are related to the dead man. 
First, follow through your family tree from yourself to see 
if he appears. Secondly, trace his family tree to see if it in-
cludes you. The first is an example of forward reasoning, 
the second backward reasoning. In order to decide which 
method to use, we need to consider the number of start 
and goal states (move from the smaller to the larger – the 
more states there are, the easier it is to find one) and the 
number of possibilities that need to be considered at each 
stage (the fewer the better). In the above example there is 
one start state and one goal state (unless you are related 
to the dead man more than once), so this does not help 
us. However, if you use forward reasoning, there will be 
two possibilities to consider from each node (each per-
son will have two parents), whereas with backward rea-
soning there may be many more (even today the average 
number of children is 2.4; at the beginning of the century 
it was far more). 

In general, backward reasoning is most applicable in 
situations where a goal or hypothesis can be easily gener-
ated (e.g. in mathematics or medicine), and where prob-
lem data must be acquired by the solver (e.g. a doctor 
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asking for vital signs information in order to prove or 
disprove a hypothesis). Forward reasoning, on the other 
hand, is useful where most of the data is given in the 
problem statement but where the goal is unknown or 
where there are a large number of possible goals. For ex-
ample, a system which analyses geological data in order 
to determine which minerals are present falls into this 
category. 

3.4 REASONING WITH UNCERTAINTY 
In Chapter 2 we looked at knowledge and considered 
how different knowledge representation schemes allow 
us to reason. Recall, for example, that standard logics al-
low us to infer new information from the facts and rules 
that we have. 

Such reasoning is useful in that it allows us to 
store and utilise information efficiently (we do not 
have to store everything). However, such reasoning 
assumes that the knowledge available is complete (or 
can be inferred) and correct and that it is consistent. 
Knowledge added to such systems never makes previous 
knowledge invalid. Each new piece of information 
simply adds to the knowledge. This is called monotonic 
reasoning. Monotonic reasoning can be useful in 
complex knowledge bases since it is not necessary 
to check consistency when adding knowledge or to 
store information relating to the truth of knowledge. It 
therefore saves time and storage. 

However, if knowledge is incomplete or changing, 
an alternative reasoning system is required. There are 
a number of ways of dealing with uncertainty. We will 
consider four of them briefly: 

• non-monotonic reasoning 

• probabilistic reasoning 

• reasoning with certainty factors 

• fuzzy reasoning 

3.4.1 Non-monotonic Reasoning 

In a non-monotonic reasoning system new information 
can be added that will cause the deletion or alteration 
of existing knowledge. For example, imagine you have 
invited someone round for dinner. In the absence of any 
other information you may make an assumption that 
your guest eats meat and will like chicken. Later you 
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discover that the guest is in fact a vegetarian and the 
inference that your guest likes chicken becomes invalid. 

We have already met two non-monotonic reasoning 
systems: abduction and property inheritance (see 
Chap. 2). Recall that abduction involves inferring 
some information on the basis of current evidence. 
This may be changed if new evidence comes to light, 
which is a characteristic of non-monotonic reasoning. 
So, for example, we might infer that a child who has 
spots has measles. However, if evidence comes to 
light to refute this assumption (e.g. that the spots are 
yellow and not red), then we replace the inference with 
another. 

Property inheritance is also non-monotonic. An 
instance or subclass will inherit the characteristics of 
the parent class, unless it has alternative or conflicting 
values for that characteristic. So, as we saw in Chapter 2, 
we know that dogs bark and that Rottweilers and 
Basenjis are dogs. However, we also know that Basenjis 
don’t bark. We can therefore infer that Rottweilers bark 
(since they are dogs and we have no evidence to think 
otherwise), but we cannot infer that Basenjis do, since 
the evidence refutes it. 

A third non-monotonic reasoning system is the truth 
maintenance system or TMS [92]. In a TMS the truth or 
falsity of all facts is maintained. Each piece of knowledge 
is given a support list (SL) of other items that support (or 
refute) belief in it. Each piece of knowledge is labelled for 
reference, and an item can be supported either by another 
item being true (+) or being false (-). Take, for example, 
a simple system to determine the weather conditions: 

(1) It is winter (SL ()()) 

(2) It is cold (SL (1+)(3-)) 

(3) It is warm 

Statement (1) does not depend on anything else: it is a 
fact. Statement (2) depends on statement (1) being true 
and statement (3) being false. It is not known at this point 
what statement (3) depends on. It has no support list. 
Therefore we could assume that “it is cold” since we know 
that “it is winter” is true (it is a fact) and we have no 
information to suggest that it is warm (we can therefore 
assume that this is false). However, if “it is warm” be-
comes true, then “it is cold” will become false. In this 
way the TMS maintains the validity and currency of the 
information held. 
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3.4.2 Probabilistic Reasoning 

Probabilistic reasoning is required to deal with incom-
plete data. In many situations we need to make decisions 
based on the likelihood of particular events, given the 
knowledge we have. We can use probability to determine 
the most likely cause. 

Simple probability deals with independent events. 
If we know the probability of event A occurring (call 
it p(A)) and the probability of event B occurring 
(p(B)), the probability that both will occur (p(AB)) 
is calculated as p(A) ∗ p(B). For example, consider 
an ordinary pack of 52 playing cards, shuffled well. 
If I select a card at random, what is the likelihood of 
it being the king of diamonds? If we take event A to 
be the card being a diamond and event B to be the 
card being a king, we can calculate the probability as 
follows: 

13 p(A) = 
52 
= 0.25 

(there are 13 diamonds) 
4 p(B) = 
52 
= 0.077 

(there are four kings) 
p(AB) = 

52 = 
1 = 0.0192

2704 52 

(there is one king of diamonds) 

However, if two events are interdependent and the out-
come of one affects the outcome of the other, then we 
need to consider conditional probability. Given the prob-
ability of event A (p(A)) and that of a second event B 
which depends on it, p(B|A) (B given A), the probabil-
ity of both occurring is p(A) ∗ p(B|A). So, returning to 
our pack of cards, imagine I take two cards. What is the 
probability that they are both diamonds? Again, event A 
is the first card being a diamond, but this time event B is 
the second card also being a diamond: 

p(A) = 
13 = 0.25
52 

(there are 13 diamonds) 
p(B|A) = 

12 = 0.235
51 

(there are 12 diamonds left and 51 cards)
156 p(AB) = 
2652 

= 0.058 

This is the basis of Bayes theorem and several probabilis-
tic reasoning systems. Bayes theorem calculates the prob-
abilities of particular “causes” given observed “effects”. 

The theorem is as follows: 

p(e|hi)p(hi)p(hi|e) = 
∑n

j=1 p(e|hj)p(hj) 

where 

p(hi|e) is the probability that the hypothesis hi 
is true given the evidence e 
p(hi) is the probability that hi in the absence of 
specific evidence 

p(e|hi) is the probability that evidence e will be 
observed if hypothesis hi is true 

n is the number of hypotheses being consid-
ered. 

For example, a doctor wants to determine the likelihood 
of particular causes, based on the evidence that a patient 
has a headache. The doctor has two hypotheses, a com-
mon cold (h1) and meningitis (h2), and one piece of ev-
idence, the headache (e), and wants to know the proba-
bility of the patient having a cold. 

Suppose the probability of the doctor seeing a patient 
with a cold, p(h1), is 0.2 and the probability of seeing 
someone with meningitis, p(h2), is 0.000 001. Suppose 
also that the probability of a patient having a headache 
with a cold, p(e|h2), is 0.8 and the probability of a 
patient having a headache with meningitis, p(e|h2), 
is 0.9. 

Using Bayes theorem we can see that the probability 
that the patient has a cold is very high: 

0.8 × 0.2 p(h1) = (0.8 × 0.2) + (0.9 × 0.000 001)
0.16= = 0.990.16 + 0.000 000 9 

In reality, of course, the cost of misdiagnosis of menin-
gitis is also very high, and therefore many more factors 
would have to be taken into account. 

Bayes theorem was used in the early expert system, 
PROSPECTOR [95], to find mineral deposits. The 
aim was to determine the likelihood of finding a 
specific mineral by observing the geological fea-
tures of an area. PROSPECTOR was used to find 
several commercially significant mineral deposits. 
Bayesian reasoning especially in the form of Bayesian 
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networks (Section 3.5), is heavily used in many 
AI applications, for example in medical diagnosis 
[177, 254]. 

In spite of such successful uses, Bayes theorem makes 
certain assumptions that make it intractable in many do-
mains. First, it assumes that statistical data on the rela-
tionships between evidence and hypotheses are known, 
which is often not the case. Secondly, it assumes that the 
relationships between evidence and hypotheses are all in-
dependent. In spite of these limitations Bayes theorem 
has been used as the base for a number of probabilistic 
reasoning systems, including certainty factors, which we 
will consider next. 

3.4.3 Certainty Factors 

As we have seen, Bayesian reasoning assumes informa-
tion is available regarding the statistical probabilities of 
certain events occurring. This makes it difficult to op-
erate in many domains. Certainty factors are a compro-
mise on pure Bayesian reasoning. The approach has been 
used successfully, most notably in the early expert sys-
tem MYCIN [258]. MYCIN was a medical diagnosis sys-
tem that diagnosed bacterial infections of the blood and 
prescribes drugs for treatment. Its knowledge was repre-
sented in rule form and each rule has an associated cer-
tainty factor. 

For example, a MYCIN rule looks something like this: 

If (a) the gram stain of the organism is gram 
negative and 

(b) the morphology of the organism is rod and 

(c) the aerobicity of the organism is anaerobic 

then there is suggestive evidence (0.5) that 
identity of the organism is Bacteroides 

In this system, each hypothesis is given a certainty 
factor (CF) by the expert providing the rules, based 
on his or her assessment of the evidence. A CF takes 
a value between 1 and −1, where values approaching 
−1 indicate that the evidence against the hypothesis is 
strong, and those approaching 1 show that the evidence 
for the hypothesis is strong. A value of 0 indicates 
that no evidence for or against the hypothesis is 
available. 

A CF is calculated as the amount of belief in a hypoth-
esis given the evidence (MB(h|e)) minus the amount of 
disbelief (MD(h|e)). The measures are assigned to each 
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rule by the experts providing the knowledge for the sys-
tem as an indication of the reliability of the rule. Mea-
sures of belief and disbelief take values between 0 and 
1. Certainty factors can be combined in various ways if 
there are several pieces of evidence. For example, evi-
dence from two sources can be combined to produce a 
CF as follows: 

CF(h|e1, e2) = MB(h|e1, e2) − MD(h|e1, e2) 

where 

MB(h|e1, e2) = MB(h|e1)
+{MB(h|e2)[1 − MB(h|e1)]} 

(or 0 if MD(h|e1, e2) = 1) 

and 

MD(h|e1, e2) = MD(h|e1)
+{MD(h|e2)[1 − MD(h|e1)]} 

(or 0 if MB(h|e1, e2) = 1) 

The easiest way to understand how this works is to 
consider a simple example. Imagine that we observe the 
fact that the air feels moist (e1). There may be a number 
of reasons for this (rain, snow, fog). We may hypothesise 
that it is foggy, with a measure of belief (MB(h|e1)) in 
this being the correct hypothesis of 0.4. Our disbelief in 
the hypothesis given the evidence (MD(h|e1)) will be low, 
say 0.1 (it may be dry and foggy, but it is unlikely). The 
certainty factor for this hypothesis is then calculated as 

CF(h|e1) = MB(h|e1) − MD(h|e1) 
= 0.5 − 0.1 = 0.4 

We then make a second observation, e2, that visibility 
is poor, which confirms our hypothesis that it is foggy, 
with MB(h|e2) of 0.7. Our disbelief in the hypothesis 
given this new evidence is 0.0 (poor visibility is a 
characteristic of fog). The certainty factor for it being 
foggy given this evidence is 

CF(h|e2) = MB(h|e2) − MD(h|e2) 
= 0.7 − 0.0 = 0.7 

However, if we combine these two pieces of evidence, 
we get an increase in the overall certainty factor: 

MB(h|e1, e2) = 0.5 + (0.7 ∗ 0.5) = 0.85 

MD(h|e1, e2) = 0.1 + (0.0 ∗ 0.9) = 0.1 

CF(h|e1, e2) = 0.85 − 0.1 = 0.75 
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Certainty factors provide a mechanism for reasoning 
with uncertainty that does not require probabilities. 
Measures of belief and disbelief reflect the expert’s 
assessment of the evidence rather than statistical values. 
This makes the certainty factors method more tractable 
as a method of reasoning. Its use in MYCIN shows that 
it can be successful, at least within a clearly defined 
domain. However, in practice, despite some advantages, 
more direct Bayesian methods are more heavily used 
today. 

3.4.4 Fuzzy Reasoning 

Probabilistic reasoning and reasoning with certainty fac-
tors deal with uncertainty using principles from proba-
bility to extend the scope of standard logics. An alterna-
tive approach is to change the properties of logic itself. 
Fuzzy sets and fuzzy logic do just that. 

In classical set theory an item, say a, is either a mem-
ber of set A or it is not. So a meal at a restaurant is either 
expensive or not expensive and a value must be provided 
to delimit set membership. Clearly, however, this is not 
the way we think in real life. While some sets are clearly 
defined (a piece of fruit is either an orange or not an 
orange), many sets are not. Qualities such as size, speed 
and price are relative. We talk of things being very ex-
pensive or quite small. 

Fuzzy set theory extends classical set theory to include 
the notion of degree of set membership. Each item is as-
sociated with a value between 0 and 1, where 0 indicates 
that it is not a member of the set and 1 that it is definitely 
a member. Values in between indicate a certain degree of 
set membership. 

For example, although you may agree with the inclu-
sion of Porsche and BMW in the set FastCar, you may 
wish to indicate that one is faster than the other. This is 
possible in fuzzy set theory: 

(Porsche 944, 0.9), 
FastCar = { (BMW 316, 0.5), }

(Vauxhall Nova 1.2, 0.1) 

Here the second value in each pair is the degree of set 
membership. 

Fuzzy logic is similar in that it attaches a measure of 
truth to facts. A predicate, P, is given a value between 0 
and 1 (as in fuzzy sets). So, taking an element from our 
fuzzy set, we may have a predicate 

fastcar(Porsche 944) = 0.9 

Standard logic operators, such as and, or and not, can 
be applied in fuzzy logic and are interpreted as follows: 

P ∧ Q = min(P, Q) 
P ∨ Q = max(P, Q) 
not P = 1 − P 

So, for example, we can combine predicates and get new 
measures: 

fastcar(Porsche 944) = 0.9 
pretentiouscar(Porsche 944) = 0.6 
fastcar(Porsche 944) ∧ 

pretentiouscar(Porsche 944) 
= 0.6 

3.4.5 Reasoning by Analogy 

Analogy is a common tool in human reasoning [123]. 
Given a novel problem, we might compare it with a fa-
miliar problem and note the similarities. We might then 
apply our knowledge of the old problem to solving the 
new. This approach is effective if the problems are com-
parable and the solutions transferable. 

Analogy has been applied in AI in two ways: trans-
formational analogy and derivational analogy. Transfor-
mational analogy involves using the solution to an old 
problem to find a solution to a new. Reasoning can be 
viewed as a state space search where the old solution is 
the start state and operators are used (employing means– 
ends analysis, for example) to transform this solution 
into a new solution. 

An alternative to this is derivational analogy, where 
not only the old solution but the process of reaching it 
is considered in solving the new problem. A history of 
the problem-solving process is used. Where a step in the 
procedure is valid for the new problem, it is retained; 
otherwise it is discarded. The solution is therefore not a 
copy of the previous solution but a variation of it. 

3.4.6 Case-based Reasoning 

A method of reasoning which exploits the principle of 
analogy is case-based reasoning (CBR). All the exam-
ples (called cases in CBR) are remembered in a case base. 
When a new situation is encountered, it is compared with 
all the known cases and the best match is found. If the 
match is exact, then the system can perform exactly the 
response suggested by the example. If the match is not 
exact, the differences between the actual situation and 
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FIGURE 3.1 Case-based reasoning. 

the case are used to derive a suitable response (see Fig-
ure 3.1). 

Where there is an exact match, the CBR acts as a rote 
learning system, but where there is no exact match, the 
combination of case selection and comparison is a form 
of generalisation. The simplest form of CBR system may 
just classify the new situation, a form of concept learning. 
In this case, the performance of the system is determined 
solely by the case selection algorithm. In a more compli-
cated system, the response may be some form of desired 
action depending on the encountered situation. The case 
base consists of examples of stimulus–action pairs, and 
the comparison stage then has to decide how to modify 
the action stored with the selected case. This step may 
involve various forms of reasoning. 

Imagine we have the following situation: 

situation: buy(fishmonger,cod), 
owner(fishmonger,Fred), 
cost(cod,£3) 

The case base selects the following best match case: 

stimulus: buy(postoffice,stamp), 
owner(postoffice,Dilys), 
cost(stamp,25p) 

action: pay(Dilys,25p) 

The comparison yields the following differences: 

fishmonger → postoffice, cod → stamp, 
Fred → Dilys, £3 → 25p 

The action is then modified correspondingly to give 
“pay(Fred,£3)”. 

In this example, the comparison and associated mod-
ification are based on simple substitution of correspond-
ing values. However, the appropriate action may not be 
so simple. For example, consider a blocks-world CBR 
(Figure 3.2). The situation is: 

situation: blue(A), pyramid(A), on(A,table), 
green(B), cube(B), on(B,table), 
blue(C), ball(C), on(C,B), 

The CBR has retrieved the following case: 

stimulus: blue(X), pyramid(X), on(X,table), 
green(Y), cube(Y), on(Y,table), 
blue(Z), cube(Z), on(Z,table), 

action: move(X,Y) 

A simple pattern match would see that the action only 
involves the first two objects, X and Y, and the situation 
concerning these two objects is virtually identical. So, the 
obvious response is “move(A,B)”. However, a more de-
tailed analysis would show that moving the blue pyramid 
onto the green cube is not possible because, in the cur-
rent situation, the blue ball is on it. A more sophisticated 
difference procedure could infer that a more appropriate 
response would be: move(C,table), move(A,B). 

Note how the comparison must be able to distinguish 
irrelevant differences such as ball(C) vs. cube(Z) from 
significant ones such as on(C,B) vs. on(Z,table). This is 
also a problem for the selection algorithm. In practice 
there may be many attributes describing a situation, 
only a few of which are really important. If selection 
is based on a simple measure such as “least number 
of different attributes”, then the system may choose 
“best match” cases where all the irrelevant attributes 
match, but none of the relevant ones! At the very 
least some sort of weighting is needed, similar to 
salience in human attention. For example, if one were 
developing a fault diagnosis system for a photocopier, 
the attributes would include the error code displayed, the 
number of copies required, the paper type, whether the 
automatic feeder was being used and so on. However, 
one would probably give the error code a higher 
weighting than the rest of the attributes. Where the 
comparison yields differences which invalidate the 
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FIGURE 3.2 Modifying cases. 

response given in the case and no repair is possible, 
the CBR can try another close match case. So, a good 
selection mechanism is important, but some poor 
matches can be corrected. 

Case-based reasoning has some important advan-
tages. The most important is that it has an obvious and 
clear explanation for the user: “the current situation is 
similar to this given case and so I did a similar response”. 
Indeed, one option is to do no comparison at all, simply 
to present the user with similar cases and allow the user 
to do the comparison between the current situation and 
the selected cases. Arguably, because the human does 
the “intelligent” part, this is not really CBR but simply a 
case memory, a sort of database. 

Another advantage of CBR is that it is not difficult to 
incorporate partial descriptions, in both the cases and 
the presented situations. This is because it is fairly easy 
to generalise measures of similarity to cases where some 
of the attributes are missing or unknown. For example, 
we could score +1 for each matching attribute, −1 for 
each non-match and 0 for any attributes that are missing 
from either the case or situation (weighted of course!). 
This is an important feature of CBR, as it is often the 
case that records are incomplete. For example, if we start 
to build a CBR based on past medical records, we will 
find that many symptoms are unrecorded – the doctor 
would not have taken the heart rate of someone with a 
skin complaint. Other reasoning methods can deal with 
such problems, but not so simply as CBR. 

3.5 REASONING OVER NETWORKS 
In Chapter 2, we saw that various forms of networks 
either arise naturally or can be ways of representing 
knowledge. 

Some forms of reasoning over networks are about ‘link 
chasing’, following connections, perhaps of a particular 
kind, or through nodes that satisfy certain characteris-
tics, until all nodes of a particular kind are found. For 
example, you might look in a social network for all 
friends, friends of friends, friends of friends of friends, 
etc., who all have snakes as pets. This would mean 
that when you organise a trip to the reptile house, you 
wouldn’t leave anyone out. This is a form of search, and 
we’ll look at this more in Chapter 4. 

Networks can also be considered in terms of more 
complex patterns of links. For example, Figure 3.3 shows 
a simple pattern of four nodes representing four people 
where persons C and D are step-siblings. It consists of 
an undirected link ‘married’ connecting nodes A and 
B, and two directed links ‘parent’ connecting nodes 
C to node A and node D to node B, respectively. In 
addition the pattern describes links that shouldn’t exist 
‘NOT parent’. This might be used to simply locate all 
step-siblings in a larger genealogical graph, or as part 
of a larger query or reasoning process. For example, 
one might create additional inferred ‘step-sibling’ links 
between all nodes that match in positions C and D in 
the graph. 

Often graph algorithms involve more numerical 
weights or activations on links or nodes. You are likely 
to have used at least one such system. The PageRank 
algorithm [32], which is the basis of Google search, 
starts out by assigning a measure of importance to each 
page and then effectively ‘shares’ the importance of a 
web page to all the pages it is connected to links. The idea 
is that pages that are linked to from lots of important 
pages, or those that link to lots of quality pages, must 
themselves be important. 
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FIGURE 3.3 Graph pattern. 

PageRank can be regarded as a form of spreading 
activation algorithm. These are based on parallels with 
the brain where if a particular concept is activated 
(say by showing a picture or speaking a word), other 
related ones clearly get some of this attention too, as 
you will react more quickly to them or spontaneously 
bring them to mind. Figure 3.4 shows an example of 
spreading activation between a collection of people 
and places. The node Vivi is initially activated (maybe 
the name appears in an email) and then some of this 
activation spreads to immediately connected nodes 
Costas and UoA, activation from UoA to Athens 
and then from Athens to Greece, but gets weaker 
with each additional step. There is also some spread 
back from Greece to Tripolis but spread through 
1-to-m links (Greece has many cities) is weaker 
than along m-to-1 links (a person is usually in one 
university). 

Bayesian methods and fuzzy reasoning have also 
been used as the basis of reasoning and learning 
networks. The former are particularly popular in the 
form of Bayesian networks with applications including 
medical diagnosis [267] and analysing gene expression 
[107, 295] 

In a Bayesian network each node represents some 
feature or observable phenomenon and directed arrows 
represent causal links. Figure 3.5 shows a small example 
where the causal links are denoted as arrows between 
the nodes: being sunny influences whether you are likely 
to wear a coat; whether you feel hot will depend on 
both the weather and if you have a coat on; and finally 
whether you choose to eat ice cream will be based on 
if you feel hot and if it is sunny. Each node also has a 
probability table giving the conditional probability of 
the node being true depending on the causal nodes. 
Only the table for the ‘feel hot’ node is shown, showing 
that, for example, the conditional probability that you 
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feel hot if you are not wearing a coat and it is sunny is 
0.7. 

The network can be run ‘forward’ so that, for example, 
if you know it is sunny, you can work out the probabil-
ity of eating ice cream. It can also be worked backwards 
using Bayes theorem, for example if we spot someone 
with a coat to work out the probability that is sunny. 
It can even be used in a mixed mode by fixing known 
nodes and then using the conditional probabilities for-
ward where we know all the causal factors and backwards 
with Bayes theorem to fill gaps; for example if you know 
someone is eating ice cream (and some prior probabili-
ties for everything else), you can work out the probability 
that they are wearing a coat. 

The networks illustrated here and in Chapter 2 have 
all been small, but networks can also be very large – the 
web, social networks and neural networks may all con-
tain billions of nodes. Chapter 8 will discuss some of the 
additional issues that arise when dealing with these very 
large networks. 

3.6 CHANGING REPRESENTATIONS 
As we saw in the four knights puzzle in Section 2.3, the 
choice of knowledge representation can make a huge dif-
ference to the ease of solving a particular problem. Some-
times there will be a single best solution, but at other 
times it may be necessary to use multiple representa-
tions as part of the same system. For example, the PageR-
ank algorithm effectively uses a graph representation of 
the web in order to calculate the importance metric, but 
then this value is stored as a value for the page in a more 
database-record-like representation which is used when 
performing searches for content. 

Changing representation can be expensive, especially 
for large datasets as it may involve complex manipula-
tion of every data element. One solution is to maintain 
several representations of the same underlying data with 
some way to connect the two, for example, using shared 
identifiers. This means that reasoning algorithms can 
work on the representation that is most appropriate. 
However, if the underlying data changes, care is needed 
to keep the different representations consistent with one 
another. 

Alternatively, there may be a single underlying repre-
sentation, with ways in which it can be viewed as though 
it were different. Indeed, this is just what the PageRank 
algorithm does in practice, conceptually it is performing 
a spreading of page importance through the network, but 
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FIGURE 3.4 Spreading activation (from [89]). 

FIGURE 3.5 Bayesian network. 

it achieves this through a series of passes through a more 
linear record structure in computer memory. 

3.7 SUMMARY 
In this chapter we have considered a number of differ-
ent types of reasoning, including induction, abduction 
and deduction. We have seen that the knowledge that 
we are reasoning about is often incomplete and therefore 
demands reasoning methods that can deal with uncer-
tainty. We have considered four approaches to reasoning 
with uncertainty: non-monotonic reasoning, probabilis-
tic reasoning, reasoning with certainty factors and fuzzy 
reasoning. We have also considered analogical reason-
ing, case-based reasoning and reasoning over networks. 

3.1 Distinguish between deductive, inductive and ab-
ductive reasoning, giving an example of the appro-
priate use of each. 

3.2 Alison is trying to determine the cause of over-
heating in Brian’s car. She has two theories: a leak 

in the radiator or a broken thermostat. She knows 
that leaky radiators are more common than bro-
ken thermostats: she estimates that 10% of cars 
have a leaky radiator while 2% have a faulty ther-
mostat. However, 90% of cars with a broken ther-
mostat overheat whereas only 30% overheat with 
a leaky radiator. Use Bayes theorem to advise Al-
ison of the most likely cause of the problem. 

3.3 Alison then checks the water level in Brian’s car 
and notices it is normal. She knows that a car with 
a leaky radiator is very unlikely not to lose water 
(perhaps 1% chance), whereas water loss is not 
seen in 95% of cases of faulty thermostats. How 
would this new evidence affect your advice to 
Alison? (Use Bayes theorem again and assume 
for simplicity that all evidence is independent.) 
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4 CHAP T ER 

Search 

4.1 INTRODUCTION 
When we want to solve a problem, we consider various 
alternatives, some of which fail to solve the problem. Of 
those that succeed, we may want to find the best solution 
or the easiest to perform. The act of enumerating possi-
bilities and deciding between them is search. AI systems 
must search through sets of possible actions or solutions, 
and this chapter discusses some of the algorithms that are 
used. Before we go on to consider specific algorithms, we 
need to look at the sorts of problems that we are likely to 
face, as the appropriate algorithm depends on the form 
of the problem. The set of possible solutions is not just 
an amorphous bag but typically has some structure. This 
structure also influences the choice of search algorithm. 

4.1.1 Types of Problem 

State and Path 

In some problems we are only interested in the state rep-
resenting the solution, whereas in other cases we also 
want to know how we got to the solution – the path. A 
crossword puzzle is an example of the former: the impor-
tant thing is that the crossword is eventually completed; 
the order in which the clues were solved is only of interest 
to the real crossword fanatic. The eight queens problem 
and solving magic squares are similar problems (see Fig-
ure 4.1). Typically with pure state-finding problems the 
goal state is described by some properties. In the case of 
the magic square, the states are the set of all 3×3 squares 

filled in with numbers between 1 and 9, and the property 
is that each row, column and diagonal adds up to 15. 

Mathematical theorem proving has been a major driv-
ing force in AI. If we consider this, we see that it is not 
only important that we solve the required theorem but 
that the steps we take are recorded – that is, the proof. 
Other path problems include various finding route prob-
lems, puzzles such as the Towers of Hanoi (Figure 4.2) 
and algorithms for planning actions such as means–ends 
analysis (Chap. 15). In all these problems we know pre-
cisely what the goal state is to be; it is only the means of 
getting there that is required. The solution to such prob-
lems must include not just a single goal state, but instead 
a sequence of states visited and the moves made between 
them. In some problems the moves are implicit from the 
sequence of states visited and can hence be omitted. 

In fact, some route problems do not specify their goal 
state in advance. For example, we may want to find the 
fastest route from Zuata, Venezuela, to any international 
airport with direct flights to Sydney, Australia. In this 
case we want to find a route (sequence of places) where 
the goal state is a city that satisfies the property. 

P(s) = “s has an international airport 
with direct flights to Sydney” 

The travelling salesman problem is more complex 
again. Imagine a salesman has to visit a number of 
towns. They must plan a route that visits each town 
exactly once and that begins and ends at their home 
town. They want the route to be as short as possible. 
Although the final state is given (the same as the start 
state), the important property is one of the whole path, 
namely that each place is visited exactly once. It would 
be no good to find a route which reached the goal state 
by going nowhere at all! The last chapter was all about 
the importance of the choice of representation. In this 
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FIGURE 4.1 Magic squares and the eight queens problem. 

example, it may well be best to regard the travelling 
salesman problem as a state problem where the state is a 
path! 

Any Solution or Best Solution 

When finding a proof to a theorem (path problem), or 
solving the magic square or eight queens problem (state 
problems), all we are interested in is finding some solu-
tion – any one will do so long as it satisfies the required 
conditions (although some proofs may be more elegant 
than others). 

However, if we consider the travelling salesman prob-
lem, we now want to find the shortest route. Similarly, we 
may want to choose a colouring for a map that uses the 
fewest colours (to reduce the costs of printing) or sim-

ply be looking for the shortest path between two places. 
In each of these examples, we are not only interested in 
finding a solution that satisfies some property, we are 
after the best solution – that is, search is an optimisation 
problem. The definition of best depends on the problem. 
It may mean making some measure as big as possible (e.g. 
profit) or making something as small as possible (e.g. 
costs). As profits can be seen as negative costs (or vice 
versa), we can choose whichever direction is easiest or 
whichever is normal for a particular problem type. 

For a state problem such as map colouring, the costs 
are associated with the solution obtained, whereas in a 
path problem it is a combination of the “goodness” of the 
final solution and the cost of the path: 

total cost = cost(route) − benefit(goal state) 
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FIGURE 4.2 Towers of Hanoi. 

However, one finds that for many path problems there 
is no second term; that is, all goal states are considered 
equally good. 

In general, the specification of a problem includes 
both a property (or constraints), which must be satisfied 
by the goal state (and path), and some cost measure. 
A state (and path) that satisfies the constraints is said 
to be feasible, and a feasible state that has the least 
cost is optimal. That is, real problems are a mixture of 
finding any solution (feasibility) and finding the best 
(optimality). However, for simplicity, the examples 
within this chapter fall into one camp or the other. 
Where constraints exist in optimisation problems, they 
are often satisfied “by construction”. For example, a 
constraint on map-colouring problems is that adjacent 
countries have different colours. Rather than construct-
ing a colouring and then checking this condition, one 
can simply ensure as one adds each colour that the 
constraint is met. 

Deterministic vs. Adversarial 

All the problems considered so far have been determinis-
tic, that is totally under the control of the problem solver. 
However, some of the driving problems of AI have been 
to do with game playing: chess, backgammon and even 
simple noughts and crosses (tic-tac-toe). The presence of 
an adversary radically changes the search problem: as the 
solver tries to get to the best solution (i.e. win), the ad-
versary is trying to stop it! Most games are state based: 
although it is interesting to look back over the history of 
a game, it is the state of the chess board now that matters. 
However, there are some path-oriented games as well, for 
example bridge or poker, where the player needs to re-
member all past moves, both of other players and their 
own, in order to choose the next move. 

Interaction with the physical environment can be seen 
as a form of game playing also. As the solver attempts 
to perform actions in the real world, new knowledge is 
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found and circumstances may occur to help or hinder. If 
one takes a pessimistic viewpoint, one can think of the 
world as an adversary which, in the worst case, plays to 
one’s downfall. (Readers of Thomas Hardy will be famil-
iar with this world view!) 

A further feature in both game playing and real-world 
interaction is chance. Whereas chess depends solely on 
the abilities of the two players, a game like backgammon 
also depends on the chance outcome of the throwing of 
dice. Similarly, we may know that certain real-world phe-
nomena are very unlikely and should not be given too 
great a prominence in our decision making. 

This chapter will only deal with deterministic search. 
Chapter 11 will deal with game playing and adversarial 
search. 

Perfect vs. Good Enough 

Finally, we must consider whether our problem demands 
the absolutely best solution or whether we can make do 
with a “good enough” solution. If we are looking for 
the best route from Cape Town to Addis Ababa, we are 
unlikely to quibble about the odd few miles. This 
behaviour is typical of human problem solving and is 
called satisficing. Satisficing can significantly reduce 
the resources needed to solve a problem, and when the 
problem size grows may be the only way of getting a 
solution at all. 

There is a parallel to satisficing when we are simply 
seeking any solution. In such cases, we may be satisfied 
with a system that replies 

YES – here is your solution 
NO – there is no solution 
SORRY – I’m not sure 

In practice theorem provers are like this. In most do-
mains, not only is it very expensive to find proofs for 
all theorems, it may be fundamentally impossible. (Basi-
cally, Gödel showed that in sufficiently powerful systems 
(like the numbers) there are always things that are true 
yet which can never be proved to be true [153].) 

4.1.2 Structuring the Search Space 

Generate and Test – Combinatorial Explosion 

The simplest form of search is generate and test. You list 
each possible candidate solution in turn and check to see 
if it satisfies the constraints. You can either stop when you 

reach an acceptable goal state or, if you are after the best 
solution, keep track of the best so far until you get to the 
end. 

Figure 4.3 shows this algorithm applied to the 3 × 3 
magic square. However, this is an extremely inefficient 
way to look for a solution. If one examines the solutions 
in the lexicographic order (as in the figure), the first 
solution is found only after rejecting 75 231 candidates. 
In fact, the whole search space consists of 9! = 362 880 
possible squares of which only eight satisfy the goal 
conditions – and that is after we have been careful not 
to generate squares with repeated digits! This problem 
is called combinatorial explosion and occurs whenever 
there are a large number of nearly independent 
parameters. 

In practice, only the most ill-structured problems 
require this sledge-hammer treatment. One can 
structure most problems to make the search space far 
more tractable. 

Trees 

The first square in Figure 4.3 fails because 1+2+3 ≠ 15. 
So does the second square, the third ... in fact the first 720 
squares all fail for exactly the same reason. Then the next 
720 fail because 1 + 2 + 4 ≠ 15, etc. In each case, you 
do not need to look at the full square: the partial state is 
sufficient to fail it. 

The space of potential magic squares can be organised 
into a tree, where the leaf nodes are completed squares 
(all 362 880 of them), and the internal nodes are par-
tial solutions starting off at the top left-hand corner. Fig-
ure 4.4 shows part of this search tree. The advantage of 
such a representation is that one can instantly ignore all 
nodes under the one starting 123, as all of these will fail. 
There are 504 possible first lines, 

1 5 
of which only 52 add 

up to 15 (the first being 9 ). That is, of 504 partial 
solutions we only need to consider 52 of them further – 
an instant reduction by a factor of 10. Of course, each of 
the subtrees under those 52 will be able to be similarly 
pruned – the gains compound. 

There are many ways to organise the tree. Instead 
of doing it in reading order, we could have filled out 
the first column first, or the bottom right, and so on. 
However, some organisations are better than others. 
Imagine we had built the tree so that the third level 
of partial solution got us to partial solutions like the 
following: 
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FIGURE 4.3 Generate and test – finding solutions to the magic square. 

FIGURE 4.4 Magic square – search tree of potential solutions. 

? 2 ?

1 ? ?

? ? 3

Clearly, we would not be able to prune the tree so rapidly. 
Choosing the best organisation for a particular problem 
is somewhat of an art, but there are general guidelines. In 
particular, you want to be able to test constraints as soon 
as possible. 

Branching Factor and Depth 

We can roughly characterise a tree by the number of 
children each node has – the branching factor – and the 

distance from the root of the tree to the leaves (bottom 
nodes) – the depth. The tree for magic squares has a 
branching factor of 9 at the root (corresponding to the 
nine possible entries at the top left), and a depth of 9 
(the number of entries in the square). However, the 
branching factor reduces as one goes down the tree: at 
the second level it is 8, at the third level 7 and so on. 
For a game of chess, the branching factor is 20 for the 
first move (two possibilities for each pawn and four 
knight moves). For Go, played on a 19 × 19 board, 
the branching factor is 361! For a uniform tree, if the 
branching factor is b, there are bn nodes at level n. That 
is, over 10 billion possibilities for the first four moves in 
Go – you can see why it took so long for AI Go-playing 
to be cracked! 
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FIGURE 4.5 Towers of Hanoi: graph of possible states and moves. 

Graphs 

When one considers a problem consisting of states with 
moves between them, it is often the case that several 
move sequences get one from a particular start state 
to the same final state. That is, the collection of moves 
and states can be best thought of as a directed graph, 
where the nodes of the graph are the states and the 
arcs between nodes are the moves. Figure 4.5 shows the 
complete graph of states of the Towers of Hanoi (with 
only two rings!). Notice how even such a simple puzzle 
has a reasonably complex graph. 

With the Towers of Hanoi, each arc is bidirectional, 
because each move between two states can be undone 
by a move in the reverse direction. This is not always so, 
for example when a piece is taken in chess; if the nodes 
represented states while making a cake, there would be 
no move backwards once the cake was cooked. When 
the arcs are directional, we can distinguish between the 
forward branching factor – the number of arcs coming 
from a node – and the backward branching factor – the 
number of arcs going to a node. If the backward factor is 
smaller than the forward factor, it suggests that searching 

backwards from the goal state towards the start state may 
be more efficient than searching forwards. 

Some algorithms search this graph directly. However, 
they will usually keep track of the path travelled through 
the graph as this will be part of the solution. For exam-
ple, in the Towers of Hanoi puzzle, the path represents 
the moves to solve the puzzle. Similarly, Figure 4.6 shows 
a graph of states in a proof system. The states are addi-
tion formulae involving three variables, and the arcs are 
rewrites of the formulae using the associative (A) and 
commutative (C) laws of addition: 

A: L + (M + N) = (L + M) + N 
C: M + N = N + M 

(Note that the commutative law is only applied to the 
outermost (unbracketed) addition in order to simplify 
the graph.) 

If we wanted to prove, for instance, that 

x + (y + z) = y + (z + x) 

we could trace a path through the graph going clockwise. 
We begin at the start state x + (y + z), apply first the 
commutative law getting us to state (y + z) + x and then 
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FIGURE 4.6 Addition proof graph. 

the associative law getting us to the goal state y +(z + x). 
The two steps (commutative law followed by associative 
law) constitute the proof of the equality. 

Notice that there are several paths to the same goal 
state – we could have followed the graph anti-clockwise 
(ACAC). If we want to distinguish the paths more 
clearly, we can represent the graph by a tree. Figure 4.7 
shows a portion of the proof tree for the same expression. 
The root is the start state and the children are those 
expressions that can be reached by applying one or other 
of the laws. The ellipses in the tree represent nodes where 
the tree “stutters”: that is, the child node is the same as 
its parent. The figure stops expanding the tree when the 
goal state is reached, but in a sense the full tree reaches 
out below, as one could continue to apply arithmetic 
laws. 

Note that in the tree representation, the goal state 
appears twice – once for each path to it. In fact, if one 
continued to expand the “stuttering” nodes one would 
uncover more goal states corresponding to “wasteful” 
proofs such as CCCA. 

Adding Information 

We have already seen that the way we organised the 
magic square search affected our ability to rule out 
nodes. This ability to detect that searching down certain 
paths of the tree is fruitless is a particularly simple (but 
very useful) form of heuristics. (Although arguably it is 
not a heuristic, as the information it provides is exact.) 
Heuristics are information that tells us something about 

the future of our search, before we have investigated a 
path fully. Heuristics may tell us about the likelihood 
of finding a solution down a path, about how far we 
may have to search or how good the solution is likely 
to be. Heuristics are usually approximations – they give 
some indication but are not guaranteed to be right. 
Obviously the more accurate the heuristic and the more 
we know about its accuracy, the better it can inform our 
search. Section 4.3 is all about searching using heuristic 
information. 

There are two major types of heuristic: those that tell 
us about a node – whether it is worth investigating fur-
ther – and those which, when we are considering a node, 
suggest an order in which to search its children. Obvi-
ously information of the former category can be used to 
order the children, but only when the heuristic informa-
tion for each child has been calculated. As this is some-
times expensive to do in its own right, or there may be an 
infinite number of children, a separate way of ordering 
the children may be required. The majority of the search 
algorithms in this chapter concentrate on the first type of 
heuristic. Furthermore these algorithms will simply use a 
heuristic evaluation function, a single number calculated 
for each node, which says how good or bad it is likely 
to be. Such heuristics are rather simple but can be sur-
prisingly powerful. In Section 4.4 we will discuss more 
complex heuristics. 

Virtual Trees and Real Trees 

It is important to note that the trees and graphs that we 
have been discussing are not necessarily real. That is, 
they will not in general be constructed in the computer’s 
memory. Indeed, given the size of the spaces (often 
infinite) they would be impossible to construct. Instead, 
they represent the space of possible solutions of which 
a system may only investigate a part. For example, 
we can imagine the graph of all chess games linked 
by possible moves. However, if we play chess, we 
do not by any means “construct” this graph in our 
heads and play using it. Neither will the algorithms we 
consider here! 

4.2 EXHAUSTIVE SEARCH AND SIMPLE 
PRUNING 

In this section we consider simple search algorithms that 
do not use heuristic information. 
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FIGURE 4.7 Addition proof tree. 

4.2.1 Depth and Breadth First Search 

Consider the following simple logic problem: 

find x, y, z such that 
(¬x ∧ y) ∨ (x ∧¬y ∧¬z) is true 

that is: (not x and y) 
or (x and not y and not z) 

Figure 4.8 shows a complete search tree for the prob-
lem based on choosing the variables in order. The tree 
is slightly ragged as the formula is true when x is false 
and y is true irrespective of the value of z. Note also that 
there are two solutions, marked with ticks. 

We now consider two algorithms for searching this 
space of potential solutions: depth first and breadth 
first. Depth first search starts off at the root of the 
tree (the empty solution) and then works down the 
left-hand branch considering the partial solutions until 
it gets to a leaf. If this is not a goal state, it backs up 
and tries the next path down. That is, the algorithm 
tries to get as deep as possible as fast as possible, hence 
its name. Figure 4.9 shows the order in which this 
algorithm visits the nodes of the graph. In terms of 
the logic variables, one is considering them in the 
following order: 

a: x = true – ? 
c: x = true y = true – ? 
g: x = true y = true z = true – NO 
h: x = true y = true z = false – NO 
d: x = true y = false – ? 
i: x = true y = false z = true – NO 
j: x = true y = false z = false – YES 

In contrast, breadth first search moves back and forth 
through the search tree, only looking at the children of a 
node when all other nodes at a level have been examined. 
Figure 4.10 shows the order in which this algorithm visits 
the nodes, and the search progresses as follows: 

a: x = true – ? 
b: x = false – ? 
c: x = true y = true – ? 
d: x = true y = false – ? 
e: x = false y = true – YES 

4.2.2 Comparing Depth and Breadth First Searches 

Note that the two searches encounter a different goal 
state first. Often, one stops at the first goal state found – 
in this case, depth first and breadth first searches would 
return different solutions to the problem. Depth first al-
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FIGURE 4.8 Tree of potential solutions for logic problem. 

ways finds the first solution, reading the tree left to right, 
whereas breadth first finds the shallowest solution. 

If we consider human problem solving, it is usually 
a mixture of depth first (looking at individual detailed 
options) and breadth first (considering the complete 
range of options at an abstract level). If anything, the 
tendency is towards depth first examination of a small 
part of the possible space, but this is combined with 
an almost uncanny ability to spot the right portion of 
the state space to explore. To some extent this ability is 
guided by heuristics, which enable us to make suitable 
choices. Algorithms that mimic this will be dealt with in 
Section 4.3. 

To some extent depth first is the computationally eas-
ier method. However, breadth first searching has several 
advantages. First of all, it finds the shallowest solution. 
Often the depth in the tree is related to the complexity 
of the solution and hence shallowest is, in a sense, best. 
This is true, for example, of mathematical proofs, where 
a short proof is usually considered superior to a long one. 

Even ignoring the issue of which solution is best, there 
are disadvantages to using depth first search. Consider 
the proof tree in Figure 4.7: the nodes represented by 
ellipses were those that stuttered; that is, the move re-
versed the effect of the previous move. If this were not 
detected, it would lead to an infinite search, for example 
continuously applying the commutativity axiom, and so 
moving back and forth for ever between the expressions
(x + y) + z and x + (y + z). Figure 4.11 shows a similar 
tree for the Towers of Hanoi problem. In this case there 

are nodes that stutter (marked with asterisks ***) but, in 
addition, paths that go on forever without repeating. For 
example, if we performed the moves 1–2, 1–3, 2–3, we 
would get to the state where all the rings are on the third 
column; another sequence of moves would return us to 
the initial state. One can avoid this terminal problem by 
keeping track of the states visited along the current path 
and backtracking whenever the current state is found on 
the path. In a more complex domain, infinite paths may 
exist that never repeat and, even where there are no infi-
nite paths, the leftmost branch of the search tree could be 
immoderately large, making depth first search impracti-
cal. 

4.2.3 Programming and Space Costs 

From the previous discussion it would seem that breadth 
first search was a hands-down winner, except in the case 
where we were definitely seeking the leftmost solution 
in the search space. However, when we consider ease of 
programming and space costs, the situation is reversed. 

To see this we will look at a simple implementation of 
the depth and breadth first algorithms. Both search algo-
rithms must keep track of which nodes need to be exam-
ined next. This collection of nodes is known as the open 
list. The open list starts off containing only the root node. 
To search the tree the algorithm selects a node from the 
open list. The node is checked to see if it is a goal state: 
if it is, we have succeeded; if not, we add the children of 
the node to the open list and start again. The algorithm 
stops when the open list is exhausted. At that point the 
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FIGURE 4.9 Depth first search – order of visiting nodes. 

entire tree has been searched and therefore the algorithm 
reports failure. 

The pseudocode for the algorithm is in Figure 4.12. 
(Note that this version of the algorithm does not check 
for repeated states.) The difference between depth and 
breadth first search is in the line marked **. If we add 
the children to the front of the open list (a stack), we get 
depth first search; if we add them to the end (a queue), 
we get breadth first search. It is truly amazing that such 
a small difference to the algorithm makes such a big dif-
ference to the order of the search. 

Consider now a tree of depth d and branching factor 
b, and the largest open lists that can accumulate in the 
two algorithms. For depth first, the worst case is when it 
reaches the leftmost leaf node. At this point the open list 
contains the b − 1 siblings at each of the d levels. That 
is, the open list can contain up to (b − 1) × d nodes. The 
worst case for breadth first is when the algorithm is about 
to start looking at the leaf nodes. At this point all bd leaf 
nodes will be in the open list – the space is exponential in 
the depth of the tree. So, space usage would discourage 
one from using breadth first search. 

We turn now to ease of programming. In depth first 
search, the open list is a stack. By using recursion, either 
in procedural languages or in Prolog, we can effectively 
use the language’s own run-time stack to give us depth 
first search almost for free. Indeed, Prolog’s execution 
can be seen as a search process that is itself depth first 
(with consequent problems of infinite regress!). 

4.2.4 Iterative Deepening and Broadening 

We have seen that breadth first search may give an answer 
far faster if the search tree has some solutions closer to 
the root. However, breadth first search uses far more 
space, so much that searching large spaces will become 
prohibitive. One way to avoid this is an algorithm called 
iterative deepening. This is basically depth first search 
except with a maximum depth cut-off. The search is 
repeated with the depth increasing at each pass until a 
solution is found. If the depth is increased by one on 
each pass, the solution found will be precisely the same 
as that found by breadth first search. Like breadth first 
search it is immune to infinitely deep branches and 
hence is guaranteed to find a solution if one exists. 

It seems as if iterative deepening would do a great 
deal of work, as it keeps searching the tree again and 
again. However, because of the exponential growth in 
the number of nodes at each level in the search tree, 
most of the work is done at the deepest level. Repeating 
work at higher levels has very little effect on the cost. 

The worst case is when the tree is of constant depth. 
In this case, for a tree with branching factor b the extra 
work is only 1/(b − 1) of the normal breadth first time. 
For example, if b = 6, iterative deepening only takes 20 
per cent longer. In contrast, if the tree has any infinite or 
very deep branches, the saving can be enormous. 

Iterative deepening avoids the problems associated 
with very deep, or infinitely deep, branches. However, 
sometimes there is an infinite branching factor. For 
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FIGURE 4.10 Breadth first search – order of visiting nodes. 

example, we may want to find a positive integer solution 
to the equation x2 + y2 = z2 . As with the logic example 
at the start of this section, we could look at all the 
possibilities for x: 1, 2, 3, …– it might take some time! A 
second variation, iterative broadening, can deal with this 
problem by putting a bound on the number of children 
that are examined on each pass. Iterative broadening 
can be used on its own in conjunction with depth 
first or breadth first search, or combined with iterative 
deepening. In the latter case, one has to decide at each 
pass how much to increase both depth and branching 
cut-offs. 

4.2.5 Finding the Best Solution – Branch and Bound 

So far, we have only been concerned with finding the 
first solution. Now consider the case when we have cost 
associated with solutions. We cannot stop when we have 
found the first solution; instead we must keep track of the 
solution and its cost and then continue the search in case 
there is a better solution further on. We have to continue 
until the whole space is exhausted, all the time keeping 
track of the best solution encountered so far. This process 
could be combined with any of the search strategies we 
have encountered. However, every node must eventually 
be examined, so there is no advantage to using it with 
anything but depth first search. 

If the cost function is associated solely with the final 
state, we can make no improvement to the algorithm 

without further heuristic guidance. However, if the path 
also has a cost, we can do somewhat better. We assume 
that the cost always increases with path length, as we shall 
do with all path costs. Examples of such costs include 
the distance travelled along a route, the time taken to 
perform actions between states, or a simple count of the 
moves taken. In fact all these costs are also additive and 
are the sum of the costs of each move; however, this is 
not necessary for the algorithm to work. 

Imagine we have found a solution g with cost c(g). We 
go on to look for a further solution and are about to ex-
amine a node at the end of a path p from the root of the 
tree. Now n and any state below n will have cost at least 
c(p), so if c(p) > c(g), it is not worth pursuing this path 
further – all nodes below it will exceed the current best 
cost. The algorithm resulting from this insight is called 
branch and bound. Figure 4.13 shows a search tree with 
costs associated with each path. Node d is optimal with 
path cost 3 + 1 = 4. Assuming it is visited first, nodes 
below e and c need not be examined, as their partial path 
costs are 3 + 3 = 6 and 5, respectively. Thus only the 
circled nodes are examined. 

There are again variants of branch and bound 
associated with depth first, breadth first and iterative 
deepening. For the latter, the cut-offs can be based 
on the cost of the path rather than the depth. So 
long as the costs of the path increase suitably with 
path length, this will still be safe from infinitely deep 
branches. 
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FIGURE 4.11 Towers of Hanoi – search tree. 

4.2.6 Graph Search 

Several of the example trees we have been searching have 
been trees of graph nodes, for example the arithmetic 
proof tree. Indeed, the problem of repeated states arose 
directly because of their graph-related nature. A tree gen-
erated from partial solutions, such as the magic square 
tree in Figure 4.4 or the logic problem in Figure 4.8, can-
not have repeated states down a branch. 

Notice also that, when a graph is considered as a tree, 
nodes can be repeated along different branches. This 
is seen in the Towers of Hanoi tree in Figure 4.11. It 
is not as serious a problem as repeats down a single 
branch, since it does not lead to infinite work. However, 
if the same node is repeated on different branches, 
time is wasted examining nodes that have already been 
searched. 

To avoid infinite branches we checked that the 
new node was not already in the current path. A 
similar technique can be used with graph searching. 
In addition to the open list, we also keep a closed list, 
keeping track of all those nodes that have already been 
examined. If a node is in this list, it will not be examined 
again. 

One can use branch and bound on graphs as well, sim-
ply by adding the cost check. However, a second visit to 
a node might be via a cheaper path. One therefore has to 
compare the new cost with the old one and, if cheaper, 

remove the node from the closed list and add it again to 
the open. 

Depending on where we add the children, we can 
search the graph in a depth or breadth first fashion. 
However, we cannot now avoid space costs as the closed 
list will expand until it includes the whole space. In 
addition to the space cost, this means that the lookup 
to see whether a state has been visited previously gets 
progressively more expensive. One option is to limit the 
size of the closed list, discarding some entries when it 
gets full. This will certainly reduce the space and time 
costs but leaves the possibility of repeated work and 
infinite loops. 

4.3 HEURISTIC SEARCH 
Recall from Section 4.1.2 that heuristics give us some 
information from a node part-way through a search 
about the nodes that lie beyond. Strictly, a heuristic 
could be any information but is most usually a simple 
number representing how good or bad that path is likely 
to be. In a state problem, the evaluation will usually only 
depend on the node itself ev(n), but in a path problem it 
must also depend on the path to the node ev(n, p). 

Figure 4.14 shows the search tree for finding the 
way through a maze. This is a state problem, as we 
are not interested in the shortest way through, just 
any way. The start is marked with a bullet and the exit 

https://alandix.com/glossary/aibook/search tree
https://alandix.com/glossary/aibook/magic square
https://alandix.com/glossary/aibook/logic
https://alandix.com/glossary/aibook/Towers of Hanoi
https://alandix.com/glossary/aibook/open list
https://alandix.com/glossary/aibook/closed list
https://alandix.com/glossary/aibook/branch and bound
https://alandix.com/glossary/aibook/closed list
https://alandix.com/glossary/aibook/breadth first
https://alandix.com/glossary/aibook/closed list
https://alandix.com/glossary/aibook/closed list
https://alandix.com/glossary/aibook/closed list
https://alandix.com/glossary/aibook/heuristics
https://alandix.com/glossary/aibook/search tree


48 ■ Artificial Intelligence 

FIGURE 4.12 Depth/breadth first search – generic algorithm. 

FIGURE 4.13 Search tree with path costs. 

(goal state) is marked g. The rest of the letters mark 
the choice points in the maze. The figures in square 
brackets show the heuristic evaluation for each node. 
The evaluation function chosen is the distance from the 
node to the goal measured using the Manhattan block 
distance. (That is, the sum of the distances in the x and y 
directions.) 

Notice the following about the maze search tree: 

• misleading directions – At node a, it at first 
appears that b is the most promising direction. 
Unfortunately, it leads to a dead end. 

• local minima – From node b nowhere looks any bet-
ter; whatever path you take you appear (in terms of 
the heuristic) to get further from the goal. Hence 

b is called a local minimum. A simple search might 
stop at b and never reach g, which is the global min-
imum. 

• plateaux – The heuristic evaluation does not change 
between c and d; there is no sense of progress. In 
more complex problems there may be whole areas 
of the search space with no change of heuristic. 
When this happens, the heuristic ceases to give any 
guidance about possible direction. 

• getting worse to get better – In order to progress 
towards the goal one has to get temporarily further 
away from it. 

To be fair, a maze is designed to be hard to get through, 
and hence it is no wonder that a simple distance measure 
(or indeed any measure) is unhelpful. However, all these 
problems do occur in real scenarios and must be faced 
by any efficient search algorithm. 

4.3.1 Hill Climbing and Best First – Goal-directed 
Search 

We can use heuristic evaluation functions to improve 
basic depth first and breadth first searches. Both algo-
rithms search the children of nodes in a left-to-right fash-
ion. If instead we search for the child with the largest 
heuristic value first, we get hill climbing with backtrack-
ing and best first search. The difference between the two 
is that once hill climbing has chosen to follow a node it 
continues to do so in a depth first fashion, even if the 
heuristic value of the node’s children is higher than the 
value for previously visited nodes. In contrast, best first 
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FIGURE 4.14 Maze search tree. 

will consider all previously visited nodes at each stage, 
choosing the best so far. 

Hill climbing is named after those situations where the 
biggest number is best (benefit rather than cost), and so 
the algorithm is constantly following the direction that 
gives the fastest rate of increase – a rather keen climber 
who always chooses the steepest path! (Perhaps in sit-
uations where lowest is best, we ought to use a down-
hill skier analogy?) However, the algorithm is prepared 
to back up and try a different path if the steepest ascent 
leads to a dead end, hence the addition “with backtrack-
ing”. Because best first search considers the whole open 
list at each stage, it doesn’t need to backtrack but con-
sequently has to remember more nodes and to consider 
more possibilities at each step. 

In the case of the maze tree, both algorithms would 
search the space in the same order, but this will not 
always be the case. Consider the tree in Figure 4.15. Like 
the maze tree, it represents some sort of goal-seeking 
search, where the heuristic is an estimated distance to 
a goal. The non-goal leaves are given an evaluation of 
99 to represent the fact that they are no good at all! 
The heuristic evaluation function is rather better this 
time, especially as one gets closer to the goal nodes. 
This is typical of real-world examples. However, just 
as in the real world, it is not perfect – indeed, node f 
has quite a good evaluation, but no goal state is found 
beneath it. 

Notice that the two algorithms reach different goal 
states. In fact, both algorithms are guaranteed to reach 
a goal state if one is there, as in the end they will both 
search the entire space. However, one hopes that the 
heuristic will so guide the search that a goal state is 
found when only a small portion of the space has been 
examined. 

4.3.2 Finding the Best Solution – The A ∗ Algorithm 

Given good enough heuristics, hill climbing and best 
first searches can find a solution faster than exhaustive 
searches. However, when a solution is found, they 
cannot tell whether it is the best one. Consider the 
tree in Figure 4.15. The heuristic on the goal nodes 
represents how good they are. We see that the hill 
climbing algorithm gets to a suboptimal solution, l. In 
this case, best first does manage to find the optimal 
solution h, but this will not always be the case. If the 
heuristic had been a little less helpful and node d had 
had value 4, then best first would have found node e – 
again suboptimal. 

The problem is that given a goal state and an open 
list, we cannot determine whether there are as yet unseen 
nodes with lower cost. The heuristic guides us to the good 
nodes but does not give enough information to guarantee 
we have found the optimum. Recall from Section 4.2.5 
that branch and bound search did far better. It was able 
to prune whole areas of the search tree as unfruitful. This 
is because the cost of the path to a node serves as a lower 
bound on the cost of the nodes below it. If we have a 
heuristic function ev(n, p) that has this property, we can 
have algorithms that guarantee an optimal solution. 

A method of search that does this is the A∗ algorithm, 
which is effectively a modified form of best first. It is used 
especially on path problems where the cost of a path is the 
sum of the costs of the moves. However, it is not limited 
to such situations. 

Rather than looking at the algorithm in detail, we shall 
simply consider the way it works in the case of real route 
finding on roads or around obstacles. We know that the 
shortest distance between two places must be at least 
as long as the straight-line distance. It may be longer if 
there is an obstacle in the way or if the roads are not 
straight, but, excluding cosmic worm-holes, it cannot be 
shorter. 

Imagine we are looking for routes between Appleth-
waite and Gilby (see Figure 4.16). We have already found 
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FIGURE 4.15 Trace of hill climbing and best first searches. 

a route via Barton that is 62 miles long. We then go on 
to look for further routes. We find the shortest path from 
Applethwaite to Cardale is 17 miles, but we see that the 
straight-line distance from Cardale to Gilby is 50 miles. 
So, any route from Applethwaite to Gilby via Cardale 
must be at least 67 miles. As this is longer than the route 
we have already found, we can stop looking for routes 
via Cardale. That is, we have pruned the search tree at 
Cardale. 

Using this sort of reasoning the A∗ algorithm can 
prune many fruitless paths but still guarantee to find the 
best solution. 

Unfortunately, being a variant of breadth first, the A∗ 

algorithm inherits its storage problems for the open list. 

However, there are depth first and iterative deepening 
versions of the algorithm that can be used to overcome 
the problem. 

4.3.3 Inexact Search 

Hill Climbing Revisited 

As we noted in Section 4.1.1, we are often content with a 
good enough solution rather than the best. We saw that 
this would be the case if we used the first solution from 
best first or hill climbing. Furthermore, if all leaf nodes 
are feasible (although some are better than others), hill 
climbing will not need to do any backtracking. Thus we 
can use forgetful hill climbing; that is, we need only keep 
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FIGURE 4.16 Using the A∗ algorithm. 

FIGURE 4.17 Graph of possible career moves. 

track of the current node and forget where we have been 
– no open list, no stack. 

As the search space becomes very large, exhaustive 
search, even when guided by a heuristic, becomes 
impractical, and so this sort of inexact method is ac-
ceptable. Recall, however, the problems of hill climbing, 
plateaux and local minima (or maxima depending on the 
definition of best), making it hard to determine which 
direction to follow. Indeed, at a local minimum, one 
cannot even know if it is the best solution or not. 
Consider the career graph in Figure 4.17; the hill 
climbing school leaver would not get far! 

In order to make progress in such domains (including 
running mazes), one needs to be prepared to accept some 

downhill movement. One way to proceed is periodically 
to make random moves, or to start at several random 
positions and compare the outcome of hill climbing from 
each start position. 

An advantage of hill climbing over the exact 
techniques discussed earlier is that it can be used in 
continuous as well as discrete domains. An example of 
this would be driving a car. The parameters to control 
include both discrete values (gear selected, choke on) 
and continuous ones (depression of accelerator, steering 
wheel position). Choosing continuous parameters, is 
beyond the scope of tree-searching techniques. On the 
other hand, traditional mathematical optimisation tech-
niques deal only with continuous variables. However, 
hill climbing can be used with these rather difficult 
hybrid problems. 

To apply hill climbing to the continuous part of the 
problem, one must choose some small step and look at 
the change in cost, or alternatively use the derivative of 
the cost function in that parameter. When one considers 
continuous parameters, a new phenomenon is encoun-
tered: the ridge. This is, like a real rocky ridge, a direc-
tion where the system is slowly moving uphill, but where 
it drops sharply downhill on either side. The problem is 
that if you are slightly off the ridge, the uphill direction 
is not to move along the ridge, but to ascend nearly di-
rectly up it. Unfortunately, the need to take discrete steps 
means that one frequently overshoots, leading to a waste-
ful zig-zag up the ridge, potentially missing it entirely. 
The equivalent problem where it occurs in discrete sys-
tems leads to a sequence of local minima occurring along 
the line of the ridge. 

Simulated Annealing 

A slightly more systematic approach is simulated 
annealing. At each step one considers a random move. 
If the move is uphill, one always follows that direction. 
However, even if the move is downhill, it is sometimes 
followed, with a probability that diminishes as the 
distance downhill increases. Slight downhill movements 
are likely, large ones less likely. As the process proceeds, 
the system is “cooled” – that is, it is made gradually 
less likely that a downhill step is taken. Basically when 
the system is hot the behaviour is almost a random 
walk; when it is cold, it is simple hill climbing. Note 
that although the discussion here compares it with hill 
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climbing, the algorithm is usually described with the 
best state having the lowest value, or “energy”. 

Simulated annealing is not guaranteed to find the 
global minimum but usually gets somewhere close. It 
can be made somewhat more systematic by keeping 
track of a fixed number of good past states. If the search 
seems to get stuck in the “lowlands” it can be restarted 
from one of these positions. You’ll read more about this 
fitness ‘landscape’ in Chapter 9. 

Simulated annealing has proved to be a very robust 
and flexible technique for solving problems that seem 
particularly intractable (e.g. timetabling), yet is very sim-
ple to program. However, one may feel uncomfortable 
using such a “random” algorithm for any critical appli-
cation, such as medical diagnosis. In these cases it would 
need to be surrounded by firewalls to prevent mistakes. 

Like hill climbing, simulated annealing is particularly 
powerful in hybrid problems where continuous and dis-
crete parameters are mixed. The change in a continu-
ous parameter can be chosen randomly, and the size of 
change can be arranged to reduce as the system is cooled, 
leading to smaller jumps and fine adjustment. 

Genetic Algorithms 

As the name suggests, genetic algorithms are based on 
an analogy with biotic genetics and natural selection. 
The problem state is coded into separate parameters 
(the genes). A random set of states (individuals) is then 
allocated. The system then goes through a series of 
generations. In each generation, some of the individuals 
die, some breed and occasionally some mutate: 

• death – Some of the individuals are randomly killed 
(removed from the set). In order to simulate natu-
ral selection, those individuals that are considered 
good, as measured by the relevant cost function on 
the state, have a greater probability of survival. 

• breeding – Pairs of individuals are chosen and a new 
individual formed by mixing the genes of its par-
ents. The exact nature of this mixing will depend on 
the particular parametrisation chosen for the prob-
lem. 

• mutation – As the original “gene pool” is not 
necessarily complete (or genes may be lost through 
deaths), occasionally parts of an individual’s state 
may randomly change. 

The idea is that the individuals that survive will 
gradually become better, as measured by the same 
costs that drive the natural selection. This algorithm 
has again proved fruitful in many domains where 
traditional techniques have found great difficulty. 
However, its success depends crucially on the choice 
of representation. To work the mixing of the genes 
from two good parents should lead (at least some of 
the time) to a good child. This is true where a problem 
consists of several almost independent parts. A good 
example of this is a crossword puzzle. Given a complete 
(but not necessarily correct) puzzle, we can measure 
goodness by the number of words that are in the English 
language. If one puzzle has good words in its top left and 
another good words in its bottom right, then combining 
the two is likely to lead to a reasonably promising 
solution. The parts of the puzzle are almost independent 
but not entirely so (as some words will cross between 
the two). 

The particular advantage of genetic algorithms is that 
work spent on making one part right is not thrown away 
because another part is wrong. In a simple tree-based 
search, only the decisions near the root are re-used. 
Those near the leaves are constantly being discarded, 
even where different parts of the space have similar 
structure. 

The language of genetics is helpful in discussing the 
general problem of search. The genotype is the internal 
description – in the case of search, the parameters in the 
state description. The phenotype is the external attribute 
– the goodness measure or cost of the state. Systematic 
progress can only be made in a search if the phenotype 
and genotype have a reasonably simple mapping. For 
example, simulated annealing and hill climbing rely 
on the fact that small changes in the genotype (state) 
will normally result in small changes in the phenotype 
(goodness measure). In addition, genetic algorithms 
rely on that mapping having reasonably good structural 
properties. 

4.4 KNOWLEDGE-RICH SEARCH 
The different algorithms that have been presented so far 
have depended upon the general type of problem (opti-
misation, game playing, etc.) but have been domain in-
dependent. They could be applied to solving crossword 
puzzles or controlling a chemical factory. Of course, the 
algorithms would not work equally well in all cases, but 
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they are not intrinsically designed for a particular situa-
tion. 

However, for many problems more domain knowledge 
is required, and the general algorithms must be tuned to 
the specific problem. There are obviously as many fine 
tunings as there are problems, so this section will briefly 
discuss two of the more general classes of problem: con-
straint satisfaction and means–ends analysis. 

We have already explicitly assumed the use of 
domain knowledge in the heuristic evaluation function. 
Although this does in a sense embody knowledge 
about the domain, it is quite crude – a single number. 
Furthermore, it may be difficult to code knowledge 
about the goodness of a state into a number. We may be 
able to look at two states and say that one is better or 
more interesting than the other, but not be able to put 
a number to it. Note too that the word heuristic means 
more than just this evaluation function, but indeed any 
knowledge used to guide search. 

In addition to the evaluation function, there have been 
several places where we have implicitly assumed that do-
main knowledge would or could be used: 

• ordering children – In depth or breadth first search, 
we assumed that there was some ordering of the 
children of a node. A good choice of this ordering 
makes an enormous difference to the search effi-
ciency. In minimax search, examining the best child 
first can double the depth to which it is possible to 
search in a given time. Even where an evaluation 
is being used, we may need extra guidance where 
there are many plateaux. 

• ordering the tree – That is, choosing which decisions 
to make first in producing the tree. This is applicable 
to trees where the states represent partial solutions, 
and we have already seen in Section 4.1.2 how the 
order in which we expand the magic square search 
tree makes a big difference to our ability to prune 
impossible solutions. 

In addition, in Chapter 11, we will consider the 
minimax algorithm for searching game tree searches. 
An important parameter in the minimax algorithm is 
the search horizon, which determines how deep the 
search looks down the game tree. The choice of search 
horizon will vary for different parts of the tree and 
embody a great deal of the knowledge of the particular 
game. 

In this section, we will look at constraint satisfaction 
and see how a good order of search can be determined 
dynamically. In Chapter 15, we will see examples of 
knowledge-rich search algorithms for planning and 
route finding. 

4.4.1 Constraint Satisfaction 

Consider again the magic square tree shown in 
Figure 4.4. In fact, the magic square is an example of 
a constraint satisfaction problem. The goal is to have a 
state described by parameters m11 … m33, corresponding 
to the positions in the square: 

m 11 m 12m 13

m 21 m 22m 23

m 31 m 32m 33

These parameters are to be different integers in the range 
1 to 9 and must satisfy the following constraints: 

1. m11 + m12 + m13 = 15 
2. m21 + m22 + m23 = 15 
3. m31 + m32 + m33 = 15 
4. m11 + m21 + m31 = 15 
5. m12 + m22 + m32 = 15 
6. m13 + m23 + m33 = 15 
7. m11 + m22 + m33 = 15 
8. m13 + m22 + m31 = 15 

Constraints 1–3 say that the rows add up to 15; 4–6 say 
the same for the columns and 7 and 8 for the diagonals. 

These constraints are arithmetic equalities, but con-
straints can also be inequalities or logical formulae. The 
logic problem in Section 4.2.1 is an example of the latter. 

We can use the constraints to: 

• check the correctness of a partial solution and hence 
prune fruitless branches. 

• calculate some parameters from others. For exam-
ple, once we know m11 and m12 we can calculate that 

m13 = 15 − m11 + m12 

• choose which parameter to fix next. 

In keeping with the idiom, the fixing of a parameter 
value can be thought of as adding a new (albeit simple) 
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constraint. However, we must remember to distinguish 
those constraints that are given as part of the problem 
and those that are guesses and may thus be changed later 
(backtracking). 

The first of these, checking, reduces the effective 
breadth of the tree, as it means some branches need 
not be examined. The second, calculation, reduces 
the effective depth as some choices are made “for 
free”. These two can be accomplished using a gen-
eral software method called constraint propagation. 
However, it is the third choice that is ultimately most 
powerful. 

Recall how the particular order in which the magic 
square was searched led to rapid pruning of unfruitful 
paths, whereas an expansion that led to partial solutions 
of the form 

? 2 ?

1 ? ?

? ? 3

was clearly unsuitable. The reason for this is 
that the chosen order filled in the parameters 
of constraints that could then be checked (in 
fact the third choice could have been made by 
calculation). 

A general heuristics is to choose to fix parameters that 
will complete constraints. So, for example, once we have 
chosen to fix m11 = 1, there are only two more param-
eters required on constraints 1, 4 and 7. This suggests 
that we next choose to fix one of the other parameters in 
these constraints, say m12 (as in the tree) or m22. A gen-
eral heuristic is thus to choose a parameter that is in the 
constraint with the fewest free slots. Where this heuris-
tic yields several possible parameters, we can choose one 
that reduces most other constraints. For example, this 
would suggest that for the first parameter we ought to 
choose m22, as this is in four constraints as opposed to 
only three for m11. 

As one focuses on more specific problems, these gen-
eral heuristics are also honed. In particular, we find that 
the choice of order can no longer be made statically. All 
the arguments we have used for the magic tree could be 
made without looking at a single node. We can look at 
the constraints and choose a search order (not square!) 
such as the following: 

2 6 4

8 1 9

5 7 3

In other problems it may not be clear what order 
to choose until one has explicit information. This is 
particularly true where the constraints are complex 
logical formulae such as 

(a ∧ b ∧ c ∧ d ∧ e ∧ f) ∨ (g ∧ h) 

Initially this has a lot of parameters in it and would be 
far down our list of interesting constraints. However, as 
soon as we begin to examine the branch with a = false, 
the whole left-hand side of the constraint becomes false 
and it reduces to (g ∧ h), suggesting that we next fix g or 
h. 

4.5 SUMMARY 
Search problems can be classified in a number of ways: 

• state or path based 

• any or best solution 

• deterministic or adversarial 

• perfect solution or just good enough 

Search spaces can be structured as trees or graphs. In 
some problems the interior nodes of a search tree may 
represent partial solutions. Trees can be characterised by 
their branching factor and their depth, either of which 
may be infinite. 

Search can be guided by heuristic evaluation functions 
or by domain knowledge or can be virtually unguided. 

Blind search algorithms include depth first search, 
breadth first search, iterative broadening, iterative 
deepening and branch and bound. Depth first search is 
simple to program and uses relatively little space com-
pared with breadth first search but has problems with 
very deep branches. Iterative deepening and iterative 
broadening algorithms deal with problems of very (or 
infinitely) deep and very broad trees respectively. Where 
costs are associated with moves, branch and bound can 
reduce the number of nodes searched by pruning nodes 
of the search tree. But it is still guaranteed to find the 
best solution. 
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Heuristic evaluation functions can guide search. Hill 
climbing with backtracking and best first search use the 
heuristic value to choose the order to investigate nodes. 
But both must search the entire tree to be sure of find-
ing the best solution. If the heuristic evaluation function 
gives a lower bound on the final term, the A∗ algorithm 
can prune nodes and so avoid searching all the tree, but 
still will get the best solution. 

Exact methods are often impractical. Forgetful hill 
climbing can often find good solutions but suffers from 
problems caused by local mimima and plateaux in 
the search space. Genetic algorithms and simulated 
annealing use randomness in different ways to search 
complex spaces including problems with some discrete 
and some continuous parameters. They often find 
near-optimal solutions. 

However, more knowledge is needed to tune algo-
rithms for specific problem domains. Algorithms that 
include such knowledge include constraint satisfaction, 
as well as specialist algorithms discussed in later 
chapters. 

4.1 In Section 4.1.1, it was said that for many path 
problems the cost was a function of the route only 
and not the goal state reached. Think of an exam-
ple of a problem where both the goodness of the 
goal state and the cost of the path are important. 

4.2 In Section 4.3.3 it was suggested that a genetic 
algorithm was a possible way to solve crossword 
puzzles. Find an online dictionary and extract all 
words of four letters. You are trying to produce 
4×4 acrostics. That is, four lines of four characters 
so that each row and each column forms a word. 
The states will be lists of 16 characters, and good-
ness can be measured by the number of four-letter 
words (8 is perfect). For example, take the (incor-
rect) acrostic 

P I N S 
A M E O 
I Q A N 
L O T S 

It has five correct words (pins, lots, pail, neat and 
sons) and three incorrect (ameo, iqan and imqo). 
Its goodness is therefore 5. Choose a method to 
combine two acrostics and use a genetic algorithm 
on it. 

4.3 Mini-Sudoku only uses the numbers 1 to 4 on a 
4 × 4 square where each row, each column, and 
each of the four corner squares has exactly one 
each of the digits 1 to 4. As with Sudoku, you are 
given a partially filled square and have to complete 
it. Here is your start square: 

1 
4 

3 2 
4 

a. Draw a search tree that starts off by choosing 
values for the free squares beginning at the 
top left (so row 1 column 2 is the first blank 
to fill). 

b. Now do a depth first search, but starting with 
the blank squares that are most constrained 
(have the most filled-in squares in the same 
column/row or small square). 
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5 CHAP T ER 

Machine Learning 

5.1 OVERVIEW 
In this chapter, we will see that machine learning is an 
important and necessary part of artificial intelligence. 
We will also discuss the general pattern of machine 
learning and some of the issues that arise. Several 
specific machine learning methods will be described: 
deductive learning, inductive learning and explanation-
based learning. Most of the chapter will concentrate 
on two specific inductive learning algorithms: the 
version-space method and ID3. We will conclude with a 
description of an experimental system that uses machine 
learning in an intelligent database interface. 

The techniques, algorithms and examples in this chap-
ter focus on more traditional symbolic machine learning, 
and in this respect it is a bridge from Part I. However, 
when many people hear ‘machine learning’, they now im-
mediately think of neural networks. We will deal with 
neural networks and deep learning separately in Chap-
ters 6 and 8. However, they share many aspects with more 
traditional machine learning techniques, and in Chap-
ter 9 we will return to some of the broader issues of ma-
chine learning. 

5.2 WHY DO WE WANT MACHINE 
LEARNING? 

One response to the idea of artificial intelligence is to 
say that computers can never think because they only 
do what their programmers tell them to do. Of course, 

it is not always easy to tell what a particular program 
will do (!), but at least given the same inputs and condi-
tions it will do the same things – dependable if not pre-
dictable. If the program gets something right once, it will 
always get it right. If it makes a mistake once, it always 
makes the same mistake. In contrast, people tend to learn 
from their mistakes; attempt to work out why things went 
wrong; try alternatives. Also, we are able to notice simi-
larities between things and so generate new ideas about 
the world we live in. An intelligence, however artificial 
or alien, that did not learn would not be much of an in-
telligence. So, machine learning is a prerequisite for any 
mature programme of artificial intelligence. 

Of course, many practical applications of AI do not 
make use of machine learning. The relevant knowledge 
is built in at the start. Although perhaps fundamentally 
limited, such systems are useful and do their job. How-
ever, even where we do not require a system to learn “on 
the job”, machine learning has a part to play. One of the 
most difficult problems in the building of expert system 
is capturing the knowledge from the experts. There are 
many knowledge elicitation techniques to aid this pro-
cess (see Chap. 18), but the fundamental problem re-
mains: things that are normally implicit, inside the ex-
pert’s head, must be externalised and made explicit (Fig-
ure 5.1). 

Using machine learning this problem can be eased. Ex-
perts may find it hard to say what rules they use to as-
sess a situation, but they can usually tell you what factors 
they take into account. A machine learning program can 
take descriptions of situations couched in terms of these 
factors and then infer rules that match the expert’s be-
haviour. The expert can then critique these rules and ver-
ify that they seem reasonable (it is easier to recognise cor-
rect rules than to generate them). If the rules are wrong, 
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FIGURE 5.1 The knowledge elicitation bottleneck. 

the expert may be able to suggest counter-examples that 
can guide further learning (Figure 5.2). 

In addition there are many situations for which there 
is no expert knowledge. For example, Deep Mind used 
machine learning to control plasma within the Tokamak 
fusion reactor [262]. Although the scientists and engi-
neers understand the basic physics, they could not them-
selves control the flow of plasma. Here the goal of ma-
chine learning is not to capture human knowledge but 
to generate new knowledge (or at least rules) based on 
examples or experience. 

5.3 HOW MACHINES LEARN 
In previous chapters we have discussed reasoning, 
knowledge representation and search. All are important 
for machine learning. In addition, there are various 
other factors that influence the choice and efficacy of 
a learning system, for example the amount of domain 
knowledge used by the system. 

In this section we will look at several of these issues, 
which will be important when we look at particular 
learning algorithms later in this chapter. It will give 
a context to these algorithms, and we shall mention 
them where appropriate. We suggest that you revisit this 
section after reading the rest of the chapter. We’ll start 
by looking at the phases in a typical machine learning 
system (Figure 5.3). The different issues will then be 
discussed in relation to the data and processes involved. 

5.3.1 Phases of Machine Learning 

Machine learning typically follows three phases: 

training – A training set of examples of correct 
behaviour is analysed and some representation of 
the newly learnt knowledge is stored. This is often 
some form of rules. 

validation – The rules are checked and, if necessary, ad-
ditional training is given. Sometimes additional test 
data are used, but instead a human expert may val-
idate the rules (as in Figure 5.2), or some other au-
tomatic knowledge-based component may be used. 
The role of the tester is often called the critic. 

application – The rules are used in responding to some 
new situation. 

These phases may not be distinct. Often there is no 
explicit validation phase; instead the learning algorithm 
guarantees some form of correctness. Also, in some 
circumstances, systems learn “on the job” – that is, the 
training and application phases overlap. 

Obviously the training stage is the most important. It 
falls into two main types: 

supervised learning – Here the training data comes 
pre-labelled with some form of classification or 
expected response. For example, this might be a 
set of images with a tag that says if it is urban or 
rural, or a collection of board position with the 
best next move to play. The aim of the machine 
learning algorithm in such cases is to emulate this 
behaviour to assign the correct tags or decisions to 
unseen inputs based on the examples. 

unsupervised learning – Here the data is unlabelled 
and the machine learning algorithm creates its own 
labels or structure, for example clustering the data 
into groups. 

In this chapter most of the examples will be supervised, 
but in the coming chapters we will see examples of unsu-
pervised techniques including self-organising maps and 
clustering. 
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FIGURE 5.2 Machine learning avoids the bottleneck. 

Some people add a third category reinforcement 
learning, which occurs when the learning has to happen 
while interacting with some kind of environment: real 
or virtual, such as playing a game or controlling a robot. 
This is often classed as a special case of unsupervised 
learning, but we shall see when we discuss reinforcement 
learning in more detail in Chapter 16, it also has elements 
of supervised learning. 

In the rest of this section, we will look in turn at the in-
puts to training (the training set and existing background 
knowledge) and the outputs (the new knowledge learnt). 
First, however, we’ll look at how rote learning fits into 
this picture. 

5.3.2 Rote Learning and the Importance of 
Generalisation 

The simplest kind of learning is rote learning. In this 
case examples of correct behaviour are stored, and when 
a new situation is encountered, it is matched with the 
learnt examples. If one of the examples matches, the rele-
vant response is given. In this kind of learning there is no 
prior knowledge. Training consists simply of memorisa-
tion, and the output of training is just the stored training 
set. For example, the system may be given the following 
set of stimulus–response pairs: 

24∘C – 75∘F 
−3∘C – 26∘F 
176∘F – 80∘C 
17∘C – 62∘F 
41∘F – 5∘C 
89∘F – 32∘C 
0∘C – 32∘F 

From these it might be able to respond to a stimulus 
“41∘F” and give the response “5∘C”. However, it would 
not be able to respond to an unseen stimulus such as 

“15∘C”. Rote learning is clearly a very limited form of 
learning and is arguably not “real” learning at all. 

Real learning involves some form of generalisation. 
We would like a system to infer that when a stimulus of 
the form “<a number>∘C” is received, it should mul-
tiply the number by 9/5 and add 32. Note how this is 
not a simple arithmetic rule. The system would have to 
learn that different formulae should be used depending 
on whether the stimulus included “∘C” or “∘F”. In fact, in 
most of the learning algorithms we will discuss, the rules 
learnt will be symbolic rather than numeric. 

However, one should not underestimate the impor-
tance of rote learning. After all, the ability to remem-
ber vast amounts of information is one of the advantages 
of using a computer, and it is especially powerful when 
combined with other techniques. For example, heuris-
tic evaluation functions are often expensive to compute; 
during a search the same node in the search tree may be 
visited several times and the heuristic evaluation waste-
fully recomputed. Where sufficient memory is available 
a rote learning technique called memorising can help. 
The first time a node is visited the computed value can 
be remembered. When the node is revisited, this value 
is used instead of recomputing the function. Thus the 
search proceeds faster, and therefore more complex (and 
costly) evaluation functions can be used. 

5.3.3 Inputs to Training 

In Figure 5.3, we identified two inputs to the training 
process: the training set and existing knowledge. Most 
of the learning algorithms we will describe are heavily 
example based; however, pure deductive learning (Sec-
tion 5.4) uses no examples and only makes use of ex-
isting knowledge. There is a continuum (Figure 5.4) be-
tween knowledge-rich methods that use extensive do-
main knowledge and those that use only simple domain-
independent knowledge. The latter is often implicit in the 
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FIGURE 5.3 Phases of machine learning. 

FIGURE 5.4 Knowledge continuum. 

algorithms; for example, inductive learning is based on 
the knowledge that if something happens a lot, it is likely 
to be generally true. 

Where examples are being used it is important to 
know what the source is. The examples may be simply 
measurements from the world, for example transcripts of 
grandmaster chess tournaments. If so, do they represent 
“typical” sets of behaviour or have they been filtered to 
be “representative”? If the former is true, then we can 
infer information about the relative probability from 
the frequency in the training set. However, unfiltered 
data may also be noisy, have errors, etc., and examples 

from the world may not be complete, since infrequent 
situations may simply not be in the training set. 

Alternatively, the examples may have been generated 
by a teacher. In this case we can assume that they are a 
helpful set, covering all the important cases and includ-
ing near miss examples. Also, one can assume that the 
teacher will not be deliberately ambiguous or misleading. 
For example, a helpful teacher trying to teach a relation-
ship between numbers would not give the example (2, 2, 
4), as this might be multiplication or addition. 

Finally, the system itself may be able to generate 
examples by performing experiments on the world (for 
robots), asking an expert, or using an internal model of 
the world. 

We also have to decide on a representation for the 
examples. This may be partly determined by the context, 
but often we will have some choice. Often the choice 
of representation embodies quite a lot of the domain 
knowledge. 

A common representation is as a set of attribute values. 
For example, in Section 5.5.1, we will describe children’s 

https://alandix.com/glossary/aibook/inductive learning


play tiles using four attributes: shape, colour, size and 
material. A particular example could be: triangle, blue, 
large, wood. In vision applications (see Chap. 12), the 
representation is often even cruder – simply a bitmap. 
On the other hand, more knowledge-rich learning often 
uses more expressive descriptions of the structure of the 
examples, using predicate logic or semantic networks. 

5.3.4 Outputs of Training 

To a large extent the outputs of learning are determined 
by the application. What is it we want to do with our new 
knowledge? Many machine learning systems are classi-
fiers. The examples they are given are from two or more 
classes, and the purpose of learning is to determine the 
common features in each class. When a new unseen ex-
ample is presented, the system then uses the common 
features to determine in which class the new example be-
longs. The new knowledge is thus effectively in the form 
of rules such as 

if example satisfies condition 
then assign it to class X 

In machine learning, this job of concept classification 
is often called concept learning (see Section 5.5.1). The 
simplest case is when there are only two classes, of which 
one is seen as the desired “concept” to be learnt and the 
other is everything else. In this case we talk about positive 
and negative examples of the concept. The “then” part of 
the rules is then always the same and so the learnt rule is 
simply a predicate describing the concept. 

The form of this predicate, or of the condition part of 
a more complex rule, varies between machine learning 
algorithms. In some it is an arbitrary logical predicate, 
but more commonly its form is much simpler. In Sec-
tion 5.5.1 we will consider predicates that are of the form 

attribute1 = value1 and attribute2 = value2 
and … 

That is, conjunctions of simple tests on attributes. In Sec-
tion 5.5.2 more complex predicates in the form of deci-
sion trees will be considered. We will see that there is a 
trade-off between the allowable set of rules and the com-
plexity of the learning process. The desire for simple rules 
is determined partly by computational tractability but 
also by the application of Occam’s razor – always prefer 
simpler explanations: they are more likely to be right and 
more likely to generalise. 
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Not all learning is simple classification. In applications 
such as robotics one wants to learn appropriate actions. 
In this case, the knowledge may be in terms of produc-
tion rules or some similar representation. More complex 
rules also arise in theorem provers and planning systems. 

An important consideration for both the content 
and representation of learnt knowledge is the extent to 
which explanation may be required for future actions. 
In some cases the application is a black-box. For 
example, in speech recognition, one would not ask for 
an explanation of why the system recognises a particular 
word or not, one just wants it to work! However, as 
we shall see in Chapters 18 and 21, many applications 
require that the system can give a justification for 
decisions. Imagine you asked an expert system “is my 
aircraft design safe” and it said “yes”. Would you be 
happy? Probably not. Even worse, imagine you asked 
it to generate a design – it might do a very good job, 
but unless it could justify its decisions would you be 
happy? Because of this, the learnt rules must often be 
restricted to a form that is comprehensible to humans. 
This is another reason for having a bias towards simple 
rules. 

5.3.5 The Training Process 

As we noted, real learning involves some generalisation 
from past experience and usually some coding of mem-
ories into a more compact form. Achieving this gener-
alisation requires some form of reasoning. In Chapter 3, 
we discussed the difference between deductive reason-
ing and inductive reasoning. This is often used as the pri-
mary distinction between machine learning algorithms. 
Deductive learning works on existing facts and knowl-
edge and deduces new knowledge from the old. In con-
trast, inductive learning uses examples and generates hy-
potheses based on similarities between them. In addi-
tion, abductive reasoning may be used and also reason-
ing by analogy (see Chap. 3). 

Imagine we are analysing road accidents. One 
report states that conditions were foggy, another that 
visibility was poor. With no deductive reasoning it 
would be impossible to see the similarity between these 
cases. However, a bit of deduction based on weather 
knowledge would enable us to reason that in both cases 
visibility was poor. Indeed, abductive reasoning would 
suggest that visibility being poor probably means that 
it was foggy anyway, so the two descriptions are in 
fact identical. However, using this sort of reasoning 
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is expensive both during learning and because it is 
dependent on having coded much of the background 
knowledge. If learning is being used to reduce the costs 
of knowledge elicitation, this is not acceptable. For this 
reason many machine learning systems depend largely 
on inductive reasoning based on simple attribute–value 
examples. 

One way of looking at the learning process is as 
search. One has a set of examples and a set of possible 
rules. The job of the learning algorithm is to find suitable 
rules that are correct with respect to the examples and 
existing knowledge. If the set of possible rules is finite, 
one could in principle exhaustively search to find the 
best rule. We will see later in this chapter that the sizes 
of the search spaces make this infeasible. We could use 
some of the generic search methods from Chapter 4. For 
example, genetic algorithms have been used for rule 
learning. In practice, the structure of rules suggests 
particular forms of the algorithms. For example, the 
version-space method (Section 5.5.1) can be seen as 
a special case of a branch and bound search. This 
exhaustive search works because the rules used by 
version spaces are very limited. Where the rule set 
is larger exhaustive search is not possible and the 
search must be extensively heuristic driven with little 
backtracking. For example, the inductive learning 
algorithm ID3 discussed in Section 5.5.2 will use an 
entropy-based heuristic. 

5.4 DEDUCTIVE LEARNING 
Deductive Learning works on existing facts and 
knowledge and deduces new knowledge from the old. 
For example, assume you know that Alison is taller than 
Clarise and that Brian is taller than Alison. If asked 
whether Brian is taller than Clarise, you can use your 
knowledge to reason that he is. Now, if you remember 
this new fact and are asked again, you will not have to 
reason it out a second time, you will know it – you have 
learnt. 

Arguably, deductive learning does not generate “new” 
knowledge at all, it simply memorises the logical con-
sequences of what you know already. However, by this 
argument virtually all of mathematical research would 
not be classed as learning “new” things. Note that, 
whether or not you regard this as new knowledge, it 
certainly can make a reasoning system more efficient. If 
there are many rules and facts, the search process to find 
out whether a given consequence is true or not can be 

very extensive. Memorisng previous results can save this 
time. 

Of course, simple memorisation of past results would 
be a very crude form of learning, and real learning also 
includes generalisation. A proof system has been asked 
to prove that 3 + 3 = 2 × 3. It reasons as follows: 

3 + 3 = 1 × 3 + 1 × 3 
(because for any number n, 1 × n = n) 
= (1 + 1) × 3 
(distributivity of ×) 
= 2 × 3 

Although this looks trivial, a real proof system might find 
it quite difficult. The step that uses the fact that 3 can be 
replaced by 1 × 3 is hardly an obvious one to use! Rather 
than simply remembering this result, the proof system 
can review the proof and try to generalise. One way to 
do this is simply to attempt to replace constants in the 
proof by variables. Replacing all the occurrences of “3” 
by a variable a gives the following proof: 

a + a = 1 × a + 1 × a 
(because for any number a, 1 × a = a) 
= (1 + 1) × a 
(distributivity of ×) 
= 2 × a 

The proof did not depend on the particular value of 3; 
hence the system has learnt that in general a + a = 2 × 
a. The system might try other variables. For example, 
it might try replacing 2 with a variable to get 3 + 3 = 
b × 3 but would discover that for this generalisation the 
proof fails. Hence, by studying the way it has used par-
ticular parts of a situation, the system can learn general 
rules. We will see further examples of deductive learn-
ing in Chapter 15, when we consider planning, and in 
Chapter 22, in the SOAR architecture. In this chapter, we 
will not look further at pure deductive learning, although 
explanation-based learning (Section 5.6) and case-based 
reasoning (Chap. 3) both involve elements of deductive 
learning. 

5.5 INDUCTIVE LEARNING 
Rather than starting with existing knowledge, inductive 
learning takes examples and generalises. For example, 
having seen many cats, all of which have tails, one 
might conclude that all cats have tails. This is of course a 
potentially unsound step of reasoning, and indeed Manx 
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cats have no tails. However, it would be impossible 
to function without using induction to some extent. 
Indeed, in many areas it is an explicit assumption. 
Geologists talk about the “principle of uniformity” 
(things in the past work the same as they do now), and 
cosmologists assume that the same laws of physics apply 
throughout the universe. Without such assumptions it is 
never possible to move beyond one’s initial knowledge – 
deductive learning can go a long way (as in mathematics) 
but is fundamentally limited. So, despite its potential 
for error, inductive reasoning is a useful technique 
and has been used as the basis of several successful 
systems. 

One major subclass of inductive learning is concept 
learning. This takes examples of a concept, say exam-
ples of fish, and tries to build a general description of the 
concept. Often the examples are described using simple 
attribute–value pairs. For example, consider the fish and 
non-fish in Table 5.1. 

TABLE 5.1 Fish and Non-fish. 
swims has fins flies has lungs is fish 

herring yes yes no no 
cat no no no yes 
pigeon no no yes yes 
flying fish yes yes yes no 
otter yes no no yes 
cod yes yes no no 
whale yes yes no yes 

There are various ways we can generalise from these 
examples of fish and non-fish. The simplest description 
(from the examples) is that a fish is something that does 
not have lungs. No other single attribute would serve to 
differentiate the fish. However, it is dangerous to opt for 
too simple a classification. From the first four examples 
we might have been tempted to say that a fish was some-
thing that swims, but the otter shows that this is too gen-
eral a description. Alternatively, we might use a more 
specific description. A fish is something that swims, has 
fins and has no lungs. However, being too specific also 
has its dangers. If we had not seen the example of the 
flying fish, we might have been tempted to say that a fish 
also did not fly. This trade-off between learning an over-
general or overspecific concept is inherent in the prob-
lem. 

Notice also the importance of the choice of attributes. 
If the “has lungs” attribute were missing, it would be im-
possible to tell that a whale was not a fish. 
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The two inductive learning algorithms described in 
detail in this section – version spaces and ID3 – are 
examples of concept learning. However, inductive 
learning can also be used to learn plans and heuristics. 
The final part of this section will look at some of the 
problems of rule induction. 

5.5.1 Version Spaces 

When considering the fish, we used our common sense 
to find the rule from the examples. In an AI setting we 
need an algorithm. This should take a set of examples 
such as those above and generate a rule to classify new 
unseen examples. We will look first at concept learning 
using version spaces, which uses examples to home in on 
a particular rule [199]. 

Consider again Table 5.1. Imagine we have only seen 
the first four examples so far. There are many different 
rules that could be used to classify the fish. A simple class 
of rules are those that consist of conjunctions of tests of 
attributes: 

if attribute1 = value1 
and attribute2 = value2 … 

then is a fish 

Even if we restrict ourselves to these, there are seven dif-
ferent rules that correctly classify the fish in the first four 
examples: 

R1. if swims = yes 
then is a fish 

R2. if has fins = yes 
then is a fish 

R3. if has lungs = no 
then is a fish 

R4. if swims = yes and has fins = yes 
then is a fish 

R5. if swims = yes and has lungs = no 
then is a fish 

R6. if has fins = yes and has lungs = no 
then is a fish 

R7. if swims = yes and has fins = yes 
and has lungs = no 

then is a fish 

If we only had the first four examples, what rule should 
we use? Notice how rules R1 and R2 are more general 
than rule R4, which is in turn more general than R7. (By 
more general, one means that the rule is true more often.) 
One option is to choose the most specific rule that covers 
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FIGURE 5.5 Rule lattice. 

all the positive examples, in this case R7. Alternatively, 
we could look for the most general rule. Unfortunately, 
there is no single most general rule. The three rules R1, 
R2 and R3 are all “most” general in that there is no cor-
rect rule more general than them, but they are all “most” 
general in different ways. Figure 5.5 shows these rules as 
a lattice with the most general rules at the top and the 
most specific at the bottom. 

Further examples may restrict this set of possible rules 
further. If one takes the next example, the otter, it swims, 
but is not a fish. Therefore rule R1 can be removed from 
the set of candidate rules. This gives rise to an algorithm: 

1. start off with the set of all rules 
2. for each positive example p 

2.1. remove any rules which p doesn’t satisfy 
3. for each negative example n 

3.1. remove any rules which n does satisfy 
4. if there are no rules left FAIL 
5. when there is one rule left it is the result 

The only problem with this algorithm is that you have 
to keep track of all rules. If there are n attributes with m 
values each, then there are (m + 1)n rules! Clearly this is 
infeasible for any realistic problem. 

Version spaces reduce this number by only keeping 
track of the most specific and most general rules: all 
the other possible rules lie somewhere between these. 
Positive examples change the set of most specific rules, 
forcing them to become more general in order to 
include the new examples. Negative examples change 
the set of the most general rules, forcing them to 
become more specific in order to exclude the new 
examples. 

In addition, because we are looking for a single final 
rule we can further prune the two sets. After a positive 
example we examine the set of most general rules (G) and 
remove any that are not above (more general than) any of 

those in the set of most specific examples (S). Similarly, 
after a negative example we can prune S to remove any 
which are not below some rule in G. 

An Example 

Let’s see how this would work when given the examples 
of tiles in Table 5.2. As a shorthand, rules will be rep-
resented by a tuple of the attributes they select. For ex-
ample, the rule “if colour = blue and material = wood” 
is represented by the tuple (?,blue,?,wood). The question 
marks denote attributes which the rule doesn’t test. The 
most general rule is (?,?,?,?), which doesn’t care about any 
of the attributes. 

TABLE 5.2 Example Tiles. 

shape colour size material 
ex1 triangle blue large wood 
ex2 square blue small wood 
ex3 triangle blue small plastic 
ex4 triangle green large plastic 

After seeing the first example, the most specific rule is 
(triangle,blue,large,wood), which only matches ex1. The 
most general rule is (?,?,?,?), which matches anything. 
This is because we have not seen any negative examples 
yet and so cannot rule out anything. The state of the al-
gorithm can thus be summarised: 

set of most specific rules (S) 
= { (triangle,blue,large,wood) } 

set of most general rules (G) 
= { (?,?,?,?) } 

The second example is negative and so the set of most 
general rules must be modified to exclude it. However, 
the new most general rules should not contradict the pre-
vious examples, and so only those that are more general 
than all those in S are allowed. This gives rise to a new 
state: 

set of most specific rules (S) 
= { (triangle,blue,large,wood) } 

set of most general rules (G) 
= { (triangle,?,?,?), (?,?,large,?), 

(?,?,?,wood) } 

The third example is positive. It does not satisfy (trian-
gle,blue,large,wood), so S is generalised (again consistent 
with G): 



set of most specific rules (S) 
= { (triangle,blue,?,?) } 

However, at this stage we can also use the pruning rules 
to remove the second two rules from (G), as neither is 
more general than (triangle,blue,?,?): 

set of most general rules (G) 
= { (triangle,?,?,?) } 

Finally, we look at the fourth example, which is nega-
tive. It satisfies (triangle,?,?,?), so we must make G more 
specific. The only rule that is more specific than (trian-
gle,?,?,?), but that is also more general than those in S, is 
(triangle,blue,?,?). Thus this becomes the new G. The set 
S is not changed by this new example. 

set of most specific rules (S) 
= { (triangle,blue,?,?) } 

set of most general rules (G) 
= { (triangle,blue,?,?) } 

At this point S = G, and so we can finish successfully – 
which is just as well as we have reached the end of our 
examples! 

Different Kinds of Rules – Bias 

The version-space algorithm depends on being able to 
generate rules that are just a little more or less specific 
than a given rule. In fact, any class of rules which have a 
method of making them slightly more or less specific can 
be used, not just the simple conjunctions that we have 
dealt with so far. So, if an attribute has values that them-
selves have some form of generalisation hierarchy, then 
this can be used in the algorithm. For example, assume 
the shape attribute has a hierarchy as in Figure 5.6. We 
can then generalise from two rules (circle,?,small,?) (el-
lipse,?,small,?) to get (rounded?,small,?). 

The rules can get even more complicated. With full 
boolean predicates generalisation can be achieved by 
adding disjunctions or turning constants into variables; 
specialisation by adding conjunctions or turning 
variables into constants. This sounds like a very general 
learning mechanism – but wait. If we allow more 
complicated rules, then the number of examples needed 
to learn those rules increases. If we are not careful, we 
end up with rules like 

if new example = ex1 or new example = ex2 
or … 

Machine Learning ■ 67 

FIGURE 5.6 Shape taxonomy. 

These are not only difficult to learn but fairly useless – 
rote learning again. This problem is called overfitting, 
when the rules seem to reflect accidental aspects of the 
training data rather than generalisable features. 

A learning algorithm must have some bias – a ten-
dency to choose certain types of rules rather than oth-
ers. This reduces the set of possible rules, and in so doing 
makes the learning task both tractable and useful. Re-
stricting the rules in the version-space method to con-
junctions introduced just such a bias and so enabled the 
algorithm to learn. However, the downside of a bias is 
that it means that some sorts of rule cannot be learnt. In 
this case, we would not be able to learn rules of the form 

if shape = triangle or colour = blue 

Noise and Other Problems 

The version-space method has several problems. It is 
very sensitive to noise – if any wrong examples are given, 
the algorithm will fail completely. It also demands a 
complete set of examples, in the sense that there must 
be exactly one rule that classifies them all. Finally, it is 
not well suited to multi-way classification (e.g. sorting 
animals into fish/bird/mammal). One must effectively 
treat these as several yes/no distinctions. 

5.5.2 Decision Trees 

Decision trees are another way of representing rules. For 
example, Figure 5.7 shows a decision tree for selecting all 
blue triangles. Imagine a tile coming in at the top of the 
tree. If it satisfies the condition at the top node, it passes 
down the yes (Y) branch; if it doesn’t, it passes down the 
no (N) branch. It is passed down node by node until it 
comes to one of the leaves, which then classifies the tile. 

Several algorithms learn by building decision trees in a 
top-down fashion. The most well known is the ID3 [226] 
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FIGURE 5.7 Decision tree. 
FIGURE 5.9 Completed tree. 

FIGURE 5.8 Starting to build a decision tree. 

and its successor C4.5 [228], which use information en-
tropy measures to choose the best decision at each stage. 
The example that follows uses the ID3 process. 

5.5.2.1 Building a Binary Tree 

Consider again the tiles in Table 5.2. We start off 
with the four examples and choose some condition to 
be the root of the tree, say “shape = triangle”. Three 
of the tiles (ex1, ex3 and ex4) satisfy this, and one 
doesn’t (ex2). The N branch has all negative examples, 
and so no further action is taken on that branch. 
The Y branch has a mixture of positive and negative 
examples, and so the same procedure is taken recursively 
(Figure 5.8). 

We now choose another condition for this branch, say 
“colour = blue”. The three examples are sorted by this 
condition and now both branches have examples of one 
type. At this point we stop and label the leaves in the ob-
vious manner (Figure 5.9). 

A different choice of condition at the root would lead 
to a different tree. For example, if we had instead cho-
sen “material = wood”, we would get to the stage in Fig-
ure 5.10. This time both branches have mixed examples, 
and we must build subtrees at each. 

FIGURE 5.10 Starting a different tree. 

FIGURE 5.11 A different decision tree. 

If we chose the same condition “size = large” for each 
branch, we would end up with the decision tree in Fig-
ure 5.11. 

Note that this not only is a different tree from Fig-
ure 5.9 but also represents a completely different rule: 

if material = wood and size = large 
or material ≠ wood and size ≠ large 

as opposed to the original rule 

if shape = triangle and colour = blue 

How do we choose between these? 
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FIGURE 5.12 Contingency tables for different choices. 

Well, one way would be to find the smallest tree (or 
at least one of the smallest). Unfortunately, the number 
of trees is huge and so an exhaustive search would be 
impractical. Instead, the algorithms are careful about the 
choice of condition at each node and use a condition that 
looks as though it will lead to a good tree (but might 
not). This decision is usually based on the numbers of 
positive and negative examples that are sent to the Y and 
N branches. 

In Figure 5.12 these are tabulated for the two top-level 
conditions “shape = triangle” and “material = wood”. In 
the first table, we see that the Y branch has two positive 
examples and one negative example giving three in total. 
The N branch has no positive examples and one negative 
example. In comparison the “material = wood” condi-
tion is very even handed with one positive and one neg-
ative example down each branch. 

Of the two, the first is a more promising candidate as it 
makes the branches more uneven. Unevenness is impor-
tant because we want the final tree to be very uneven – 
leaves must be either totally positive or totally negative. 
Indeed, one would expect a totally irrelevant attribute to 
give rise to an even split, as in the second table. Algo-
rithms use different measures of this unevenness and use 
this to choose which condition to use at the node. 

ID3 uses an entropy-based measure. The entropy of a 
collection of probabilities pi is given by 

entropy = −∑ pi log2(pi) 

We calculate the entropy of each branch and then the 
average entropy (weighted by the number of examples 
sent down each branch). For example, take the “shape = 
triangle” table. The Y branch has entropy 

−[ 2/3 × log2(2/3) + 1/3 × log2(1/3) ] = 0.918 

The N branch has entropy 

−[ 0 × log2(0) + 1 × log2(1) ] = 0 

The average entropy is thus 

3/4 × 0.918 + 1/4 × 0 = 0.689 

(NB: When calculating entropy one assumes that 0 × 
log2(0) = 0. This usually has to be treated as a special 
case to avoid an overflow error when calculating log2(0).) 

In contrast, the entropy of the “material = wood” de-
cision is: 

2/4 × −[0.5 × log2(0.5) + 0.5 × log2(0.5)] 
+2/4 × −[0.5 × log2(0.5) + 0.5 × log2(0.5)] 

= − log2(0.5) = 1 

Small values of entropy correspond to greatest disorder; 
hence the first decision would be chosen. 

5.5.2.2 More Complex Trees 

The original ID3 algorithm did not use simple yes/no 
conditions at nodes; instead it chose an attribute and gen-
erated a branch for each possible value of the attribute. 
However, it was discovered that the entropy measure has 
a bias towards attributes with large numbers of values. 
Because of this, some subsequent systems used binary 
conditions at the nodes (as in the above examples). How-
ever, it is also possible to modify the entropy measure to 
reduce the bias. Other systems use completely different 
measures of unevenness similar to the 𝜒2 statistical test. 
In fact, the performance of decision tree inductive learn-
ing has been found to be remarkably independent of the 
actual choice of measure. 

As with the version-space method, decision tree build-
ing is susceptible to noise. If wrongly classified examples 
are given in training, then the tree will have spurious 
branches and leaves to classify these. Two methods have 
been proposed to deal with this. The first is to stop the 
tree growing when no condition yields a suitable level of 
unevenness. The alternative is to grow a large tree that 
completely classifies the training set, and then to prune 
the tree, removing nodes that appear to be spurious. The 
second option has several advantages, as it allows one to 
use properties of the whole tree to assess a suitable cut-off 
point, and is the preferred option in most modern tree-
building systems. 

The original ID3 algorithm only allowed splits based 
on attribute values. Subsequent algorithms have used a 
variety of conditions at the nodes, including tests of nu-
merical attributes and set membership tests for attribute 
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values. However, as the number of possible conditions 
increases, one again begins to hit computational prob-
lems in choosing even a single node condition. Set mem-
bership tests are particularly bad, as an attribute with m 
values gives rise to 2m−1 different possible set tests! The 
Query-by-Browsing example later in this chapter allows 
comparisons between attributes, which again increases 
the number of potential conditions. 

While Quinlan’s C4.5 algorithm and its variants are 
widely used, there are also alternative ways to create de-
cision trees. For example, the decision tree can be con-
structed using a genetic algorithm rather than top-down, 
especially useful if the choices at each stage become com-
plex. An increasingly popular alternative is forms of ran-
dom decision forests [31, 134] where large numbers of 
trees are constructed using random subsets of attributes 
and the results combined. 

5.5.3 Rule Induction and Credit Assignment 

In both the version-space method and decision tree 
induction, the rules that are learnt are of the form “if 
condition then classify”. The training can see whether 
a rule works simply by seeing whether the response it 
gives matches the desired response – that is, it classifies 
correctly. However, in more complicated domains it is 
not so easy to see whether a particular rule is correct. 
A classic example is pole balancing (Figure 5.13). The 
task is to move the railway carriage so that the upright 
pole does not fall over and so that the carriage stays 
between the buffers. At each moment, the system must 
choose whether to move the carriage to the right or left 
depending on its position and the position and velocity 
of the pole. However, if the pole falls over, which rule 
is held “responsible” – the last rule applied? In fact, in 
such tasks the mistake often happened much earlier, 
and subsequent rules might be good ones. 

This problem is called the credit assignment problem. 
It arises in many domains. For example, in computer 
chess – if the computer won, which moves were the 
good ones? If it lost, which should be blamed? A 
human expert might be needed at this stage to analyse 
the game in order to tell the computer what went 
wrong. 

There is no simple solution to this problem. The hu-
man expert will be useful in some circumstances, but of-
ten the nature of the problem makes this undesirable or 
impractical – for example a human expert would find it 

FIGURE 5.13 Pole balancing. 

hard to assign credit in the pole-balancing problem. If 
the problem domain is internal to the computer, it may 
be able to backtrack to each decision point and try alter-
natives. However, this approach will often be computa-
tionally infeasible. Sometimes there are special solutions 
dependent on the domain. For example, LEX, a theorem-
proving program, searches for minimal proofs of mathe-
matical propositions. All the heuristics that give rise to a 
minimal proof are deemed “good” – LEX assigns credit 
uniformly. 

Humans can be equally bad at this, and one source of 
superstition is when we link an irrelevant thing we have 
done to a subsequent good or bad outcome. However, 
we do have means that help us including the way that 
events that are unusual or have obvious connection to 
the outcomes are more salient and more likely to be 
included in both conscious or unconscious learning. 
We will return to the lessons of human cognition for AI 
in Chapter 22 including the way regret can help focus 
learning. 

5.6 EXPLANATION-BASED LEARNING 
Algorithms for inductive learning usually require a very 
large number of examples in order to ensure that the 
rules learnt are reliable. Explanation-based learning ad-
dresses this problem by taking a single example and at-
tempting to use detailed domain knowledge in order to 
explain the example. Those attributes which are required 
in the explanation are thus taken as defining the concept. 

Imagine you are shown a hammer for the first time. 
You notice that it has a long wooden handle with a heavy 
metal bit at the end. The metal end has one flat surface 
and one round one. You are told that the purpose of a 
hammer is to knock in nails. You explain the example as 
follows. The handle is there so that it can be held in the 
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hand. It is long so that the head can be swung at speed 
to hit the nail. One surface of the hammer must be flat to 
hit the nail with. So, the essential features extracted are: a 
long handle of a substance that is easy to hold, and a head 
with at least one flat surface, made of a substance hard 
enough to hit nails without damage. A couple of years 
ago, one of the authors bought a tool in Finland. It was 
made of steel with rubber covering the handle. The head 
had one flat surface and one flat sharp edge (for cutting 
wood, a form of adze). Despite the strange shape and not 
having a wooden handle it is recognisably a hammer. 

Notice how explanation-based learning makes up for 
the small number (one!) of examples by using extensive 
domain knowledge: how people hold things; the hard-
ness of nails; the way long handles can allow one to swing 
the end at speed. If the explanation is complete, then 
one can guarantee that the description is correct (or at 
least not overinclusive). Of course, with all that domain 
knowledge, a machine could, in theory, generate a design 
for a tool to knock in nails without ever seeing an ex-
ample of a hammer. However, this suffers both from the 
search cost problem and because the concepts deduced 
in isolation may not correspond to those used by people 
(but it might be an interesting tool!). 

In addition, explanations may use reasoning steps that 
are not sound. Where gaps are found in the explanation 
an EBL system may use abduction or induction to fill 
them. Both forms of reasoning are made more reliable 
by being part of an explanation. 

Consider abduction first. Imagine one knows that hit-
ting a nail with a large object will knock it into wood. 
If we have not been shown the hammer in use, merely 
told its function, we will have to use an abductive step to 
reason that the heavy metal head is used to knock in the 
nail. However, the match between features of the exam-
ple and the possible cause makes it far more likely that 
the abductive step is correct than if we looked at causes 
in general (e.g. that the nail is driven into the wood by 
drilling a hole and then pushing it gently home). 

Similarly, the inductive steps can be made with greater 
certainty if they are part of an explanation. Often sev-
eral examples with very different attributes require the 
same assumption in order to explain them. One may thus 
make the inductive inference that this assumption is true 
in general. 

Even if no non-deductive steps are made, explanation-
based learning gives an important boost to deductive 
learning – it suggests useful things to learn. This is 
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especially true if the explanation is based on a low-level, 
perhaps physical, model. The process of looking at 
examples of phenomena and then explaining them can 
turn this physical knowledge into higher-level heuristics. 
For example, given the example of someone slipping on 
ice, an explanation based on physical knowledge could 
deduce that the pressure of the person melted the ice 
and that the presence of the resulting thin layer of water 
allowed the foot to move relative to the ice. An analysis 
of this explanation would reveal, among other things, 
that thin layers of fluid allow things to move more easily 
– the principle of lubrication. 

5.7 EXAMPLE: QUERY-BY-BROWSING 
As an example of the use of machine learning techniques 
we will look briefly at Query-by-Browsing (QbB). This is 
an experimental “intelligent” interface for database that 
uses an extension of ID3 to generate queries for the user. 
This means that the user need only be able to recognise 
the right query, not actually produce it. 

5.7.1 What the User Sees 

Initially Query-by-Browsing shows the user a list of all 
the records in the database. The user browses through the 
list, marking each record either with a tick if it is wanted 
or a cross if it is not (see Figure 5.14). After a while the 
system guesses what sort of records the user wants, high-
lights them and generates a query (in SQL or an appro-
priate query method). The query is shown in a separate 
window so that the user can use the combination of the 
selected records and the textual form of the query to de-
cide whether it is right (Figure 5.15). 

Whereas so-called Query-by-Example works by mak-
ing the user design a sort of answer template, Query-by-
Browsing is really “by example” – the user works from 
examples of the desired output. 

5.7.2 How It Works 

The form of examples used by ID3, attribute–value 
tuples, is almost exactly the same as that of the records 
found in a relational database. It is thus an easy job 
to take the positive and negative examples of records 
selected by the user and feed them into the ID3 
algorithm. The output of ID3, a decision tree, is also 
reasonably easy to translate into a standard database 
query. 
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FIGURE 5.14 Query-by-Browsing – user ticks interesting records. 

FIGURE 5.15 Query-by-Browsing – system highlights inferred selection. 

In fact, QbB uses a variant of the standard ID3 
algorithm in that it also allows branches based on 
cross-attribute tests (e.g. “overdraft > overdraft-limit”) 
as these are deemed important for effective queries. 
Otherwise the implementation of the basic system is 
really as simple as it sounds. 

5.7.3 Problems 

Even a very simple implementation of QbB works very 
well – when the system gets it right. When it doesn’t, 
things are rather more complicated. First of all the 
algorithm produces some decision tree which correctly 
classifies the records. However, there are typically many 
such trees. Sometimes the system produces a “sensible” 
answer, sometimes not. Although the answers are always 
“correct”, they are not always the sort a reasonable 
human expert would produce. When QbB gets the 

wrong answer, the user can tell it and give more 
examples to help clarify the desired result. At some 
point the system generates a new query. However, the 
algorithm used starts from scratch each time, and so 
there may be no obvious relationship between the first 
attempt and subsequent guesses. Although the earlier 
queries were wrong, the resulting behaviour can appear 
odd and reduce one’s confidence in the system. 

The above problems can be tackled by modifying the 
algorithm in various ways, but the lesson they give us is 
that applications of machine learning must do more than 
work, they must work in a way that is comprehensible 
to those who use them. Sometimes the machine intel-
ligence can be hidden away in a “black-box”, where the 
mechanisms are invisible and hence don’t matter, but 
more often than not someone will have to understand 
what is going on. This is a point we shall return to in 
Chapter 21. 

https://alandix.com/glossary/aibook/QbB
https://alandix.com/glossary/aibook/decision tree


5.8 SUMMARY 
In this chapter, we have discussed the importance of 
machine learning, its general pattern and some of the 
issues that arise. Several specific machine learning 
methods have been described, including deductive 
learning, inductive learning and explanation-based 
learning. In particular we have examined two inductive 
learning algorithms: the version-space method and 
ID3. We ended the chapter with a discussion of an 
experimental system that uses machine learning in an 
intelligent database interface. 

5.1 Apply the version spaces algorithm in Sec-
tion 5.5.1 to the ‘Fish and non-fish’ training data 
in Table 5.1. 

5.2 Consider the following vignette. 
“The cook book said to use a whisk to beat egg 
white in a bowl until it is fluffy. I didn’t have whisk, 
but the book had a picture of one alongside other 
tools. I could see it was similar in length to table 
cutlery. One end is tightly wrapped in wire, and 
looked easiest to hold. The other has wire loops 
with gaps. I guessed that you hold the tight end 
and then use your wrist to move the end with the 
loops quickly so that it mixes the egg white and 
gets air into it. Although I hadn’t got a whisk, a 
fork looks a similar size and has gaps between the 
prongs, so I used that instead.” 
Identify the explanation-based learning applied 
in the vignette and the sources of background 
knowledge being applied. 
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5.3 In this exercise you will build decision tables using 
the ‘Fish and non-fish’ training data in Table 5.1. 

a. First use the different column criteria in the 
order they appear: ‘swims’ for the top level de-
cision, ‘has fins’ for the next, etc. 

b. Now calculate the contingency table for each 
column and use this to choose the top-level 
decision. 

c. Which gives the better tree? 
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6 CHAP T ER 

Neural Networks 

6.1 OVERVIEW 
The earliest forms of AI focused on higher level human 
thinking, such as problem solving and tasks such as chess 
playing or mathematical proofs, which were thought to 
embody the highest forms of human intelligence. Some 
would still reserve the term AI for this kind of system. 
However, from the late 1980s and early 1990s a new form 
of AI took shape, based on a connectionist model of cog-
nition and known as neural networks. These are now so 
common that for many people they are the first thought 
when the term “AI” is mentioned. 

Rather than attempting to model the cognitive archi-
tecture and processing of the human mind, these systems 
use the physical architecture of the brain as inspiration. 
Supporters of this approach argue that we do not under-
stand enough about cognitive processes to model them 
effectively. However, we do know how the brain oper-
ates at this lower, physical level. The idea is that if we 
can simulate the way the human brain operates, we may 
achieve some of its power in complex problem solving. 
Whether or not they faithfully emulate the way the brain 
actually works, neural nets have certainly proved effec-
tive in practical applications. 

There are many kinds of neural network. In this chap-
ter we will consider four early models: the multi-layer 
perceptron, associative memory, Boltzmann machines 
and Kohonen’s self-organising network. These form the 
basic units of more complex networks. In Chapter 8 we 
will look at deep learning, which has, in large part, been 

the technology which has established the idea of AI as an 
almost universal solution. 

6.2 WHY USE NEURAL NETWORKS? 
The brain consists of billions of small, basic processing 
units, called neurones. Each is connected to thousands of 
others, forming a rich network. The basic operations per-
formed by each neurone are simple: summing the inputs 
received in some way and “reacting” if these exceed a cer-
tain level. The connections between neurons can adapt to 
reinforce those that are successful and to degrade those 
that are not. The power of the brain, therefore, is not in 
complex processing units but in the parallel operation of 
billions of simple units and the ability to adapt the config-
uration of these. Neural networks attempt to model this 
brain architecture, although current networks comprise 
hundreds rather than billions of neurons. 

Connectionist models account for aspects of human 
thinking such as parallelism, the ability to do more than 
one thing at once, and graceful degradation, where the 
mind is able to operate even if impaired by fatigue or 
damage. Like the brain, a neural network consists of a 
network of simple processing units, all interconnected. 
Learning occurs through changes in the connections, 
and the configuration of connections constitutes the 
knowledge of the system. Because this knowledge is 
distributed among the units, the network is fault tolerant 
and performance degrades only gradually with damage. 

6.3 THE PERCEPTRON 
The roots of neural networks date back to 1960s when 
early neuroscience was beginning to piece together 
the behaviour of neurons and realise that they had 
parallels with electronic computers [112]. This lead 
to the idea of a perceptron (a single artificial neuron) 
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as in Figure 6.1 [198]. Each input is multiplied by the 
weight on its connection, which is set randomly to start 
with. The weighted inputs are summed by the neuron 
and compared with a threshold value. The simplest 
thresholding function is the step function where the 
response is “on” if the threshold is exceeded and “off” 
otherwise. The perceptron learns by adjusting the 
weights to reinforce a correct decision and discourage 
an incorrect one. 

However, the single perceptron has major limitations 
and can only solve very simple problems. To illustrate 
this, imagine you have a group of dogs, some of which 
work as rescue dogs, some as sheep dogs. Your job 
is to assign them to the correct “class”. Thinking 
about the characteristics of these two groups, you may 
decide that weight and speed are suitable measures 
to distinguish them, given that rescue dogs, often St 
Bernards and Newfoundlands, tend to be larger and 
slower than sheep dogs (assume that you do not have 
information about the dogs’ breeds). You could plot 
the weight and speed of each dog on a graph as in 
Figure 6.2. 

Looking at this graph, you can see two definite clusters 
(which you assume represent your two classes). You can 
in fact draw a straight line between these clusters and 
say that any point on one side of the line represents a 
sheep dog and every point on the other a rescue dog (as 
in Figure 6.3). The problem is linearly separable (see also 
Chap 7). 

Unfortunately life is rarely as simple as that. In reality 
our pattern space is unlikely to be so neat and ordered. 
We may find when we ask our dogs’ owners to identify 
their dogs’ occupations that some of those we identified 
as sheep dogs are in fact rescue dogs (perhaps search and 
rescue collies). Similarly, some we thought were rescue 
dogs may in fact work as flock protection sheep dogs and 
so be on the larger side. So our graph may really look like 
Figure 6.4. 

It is no longer possible to draw a straight line between 
the two groups; the problem has become linearly insepa-
rable. Our simple perceptron can solve problems that are 
linearly separable but not those which are linearly insep-
arable, by far the more significant group. 

6.3.1 The XOR Problem 

One problem that is linearly inseparable is the exclusive 
OR or XOR function. Given two inputs (X and Y), which 

can be true or false, the XOR function returns true if 
either of the inputs is true, but false if both are true or 
both are false. 

X Y Output 
True True False 
True False True 
False True True 
False False False 

If we plot this on a graph, we will quickly see that it is lin-
early inseparable. In the graph in Figure 6.5 we represent 
true as 1 and false as 0. 

Because this captures such a basic limitation of the 
perceptron, the so-called ‘XOR problem’ stalled further 
work on artificial neurons as a computational mecha-
nism for many years. 

6.4 THE MULTI-LAYER PERCEPTRON 
The renaissance of neural networks came more than 
20 years later in the 1980s with the development of the 
multi-layer perceptron [186] and the backpropagation 
learning algorithm. 

The solution is two-fold: (i) link perceptrons together 
in layers so that different units can solve small parts of 
the problem, and (ii) combine the results and use a non-
linear thresholding function where the neuron’s value is 
not just 1 or 0 but can take values within a range. The 
resulting model is the multi-layer perceptron. 

The standard multi-layer perceptron model has three 
layers: an input layer, an output layer and a single hidden 
layer that is not directly connected to inputs or outputs 
(see Figure 6.6). In the simplest case every input node is 
connected to every hidden node, and every hidden node 
is connected to every output node (fully connected), but 
there are alternatives with sparse connections. 

The output and hidden layer units act like perceptrons 
(but with a new thresholding function); the input layer 
distributes the inputs through the network and so does 
not threshold. This implementation is able to solve lin-
early inseparable problems. 

Crucially a multi-layer perceptron can solve the XOR 
problem. A simple network which does this is shown in 
Figure 6.7. It has two input units (for the two inputs X 
and Y) and one output unit (the output is either 0 or 1). 
The network also has two hidden units. Work through 
the network by hand and convince yourself that it does 
indeed solve the XOR problem (in this case the weights 
are multiplicative and the threshold function is a simple 
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FIGURE 6.1 A single perceptron. 

FIGURE 6.2 Sheep dogs or rescue dogs? 

step function – if the sum is greater than the threshold 
output 1, otherwise output 0). 

An early application was NETtalk [251] which used 
a multi-layer perceptron to pronounce English text. The 
network had 203 input units, 80 hidden units and 26 out-
put units. The output units represented phonemes, the 
basic sound unit of the language. The network was pre-
sented with text in blocks of seven letters and learnt to 
pronounce the middle letter. It used the surrounding let-
ters as context to distinguish between different sounds 
for the same letter. During the training phase the system 
appeared to mimic the speech sounds of young children. 
When the weights are random, the sounds are mean-
ingless babble. As the network learnt it first produced 
the main sounds of English, finally producing intelligi-
ble speech. Listening to a tape recording of NETtalk in 
training is not unlike listening to a child learning to talk 
– speeded up of course! 

In some ways modern language models, such as 
OpenAI’s GPT-3 [34], are merely bigger versions of this, 

albeit vastly larger both in numbers of network units 
(175 billion parameters for GPT-3 compared with about 
20,000 for NETtalk). However, the crucial difference is 
that language models now include many hidden layers 
(96 for GPT-3 compared with a single hidden layer); 
that is they are deep neural networks. 

6.5 BACKPROPAGATION 
We said there were two aspects that enabled the multi-
layer perceptron to work effectively. The first was the hid-
den layer(s) that enabled more complex problems to be 
solved. The other was the non-linear threshold function, 
this enabled the creation of an effective learning algorithm 
– backpropagation (often abbreviated as backprop). 

Figure 6.8 shows on the left a simple step threshold 
function; if the input is below a certain value, it is zero, 
if it is higher, it is one. On the right is a sigmoid activa-
tion function that rises smoothly from zero to one, more 
steeply towards the centre, but without any discontinu-
ous steps. The term ‘sigmoid’ comes because it is vaguely 
like a squashed ‘S’. 

This particular sigmoid is a logistic function, given by 
the equation: 

1S(x) = 1 + e−x 

However, there are other variants. They are usually ro-
tationally symmetric S(x) = −S(−x) but critically have 
the following properties: 

monotonic – rise from a lower to an upper bound, for 
neural networks usually zero to one. 

asymptotic – become flat for large positive or negative 
inputs. This means that even quite substantial 
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FIGURE 6.3 A linearly separable problem. 

FIGURE 6.4 The actual pattern space. 

FIGURE 6.5 XOR problem (diagram after Beale & Jackson (1990)). 



78 ■ Artificial Intelligence 

FIGURE 6.6 A multi-layer perceptron architecture. 

FIGURE 6.7 A simple multi-layer perceptron to solve the 
XOR problem. 

changes in the inputs make little difference when 
they are at one or other extreme. 

linear centre – have a steep but near-linear region 
towards the centre, creating a ‘soft’ threshold. In 
this region changes in the input make proportionate 
differences to the output. 

continuity – have no sharp step changes. 

Backpropagation is a supervised learning algorithm, 
which uses these properties to train the network given 
examples of input and desired outputs. 

6.5.1 Basic Principle 

Initially the weights are randomly assigned and the 
network is trained through repeated presentations of 
expected input and output. It learns by adapting the 
weights on the inputs to reinforce connections that 

result in the correct output, until all the outputs are 
correct. The weights then remain stable, and the network 
is able to work on unseen input. 

Each time an example input–output pair is presented 
to the network, the algorithm compares the actual 
output of the network from the given inputs with the 
desired output and calculates the difference (the error 
or delta). This says how much we’d have liked each 
output node to have been different and thus gives the 
information to start to change the weights. This is fairly 
straightforward for the final output layer but more 
complicated for hidden layers. To make this tractable 
backpropagation first works out the weight changes 
needed at the output layer but also calculates how the 
outputs of the layer below should change. The process is 
then repeated for each layer, at each stage propagating 
the error and desired change backward through the 
network. 

Note that backpropagation is a form of hill climbing 
algorithm where one is trying to make small adjustments 
in the best direction to improve the results (get higher on 
the hill). 

6.5.2 Backprop for a Single Layer Network 

Let’s look first at a single node with weights Wk, inputs 
Ik and desired output Target. The difference between the 
desired and actual output (the error or delta) is 

𝛿 = Target − S(∑ WkIk ) 
Ideally we would like 𝛿 to be zero, and in order to make 
it smaller we adjust each of the weights a small amount 
Ŵ k to reduce it. However, given the sigmoid activation 
function S is flatter at the extremes, we need to make 
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FIGURE 6.8 Different threshold functions. 

bigger adjustments at those ends. To do this we calculate 
the slope (in mathematical terms differential) of S and 
then use this to work out how much each weight should 
change: 

𝜆 × 𝛿 Ŵ k = 
slope × Ik 

Note that the change is bigger if 𝛿 is larger, because we 
want to make a bigger change in the output. However, 
it is smaller when the slope is larger, that is when we 
are close to the threshold and smaller changes make 
a greater difference. The change in the weight is also 
smaller when its associated input, Ik, is larger as this 
again means small differences in the weight have a larger 
impact. 

The value 𝜆 is known as a relaxation term. It is usu-
ally quite small and determines how fast we change the 
weights. If we change them too slowly, we need to present 
the same examples many, many times before the network 
learns. However, if we set it too large, there is a danger 
that the weights may overshoot and the network bounce 
around and never settle down (converge) to a stable set 
of weights. 

For a single-layer neural network this can be applied 
to every node. 

6.5.3 Backprop for hidden layers 

The above method works for the output layer, but what 
about the hidden layer? 

Note that the single-layer step worked by comparing 
the desired output with the actual output to give a desired 
change. The outputs for the hidden layer are the inputs to 
the output layer. 

We can use the same method that we used for calcu-
lating the change in the weights to see how much we’d 

like the inputs to the output layer to change in order to 
reduce the final error. 

𝛿 Ik̂ = 
slope × Wk 

Of course a single hidden layer node may be the 
input to many (or all) of the output layers, some of 
which might like it larger, some smaller. The above 
values are summed for the node to give an overall 
desired direction of travel (using the hill-climbing 
analogy) for the hidden layer’s output. This is then used 
as the ‘delta’ value for the hidden nodes. 

If there are multiple hidden layers, this process can be 
repeated again. However, for early networks it was rare 
to have more than one hidden layer, unless the other lay-
ers used different forms of algorithm for training. One 
reason for this is obvious, each layer adds more nodes 
and more weights, thus increasing computational cost. 
More critically, as the layers get ‘further’ from the input 
and output, they are typically less stable and less likely to 
converge to a final value. This is partly because the hid-
den layers are often underdetermined, there are many 
different ways in which the hidden layer weights could 
be assigned that give equally good answers; in particular 
for a fully connected network any shuffling of the hidden 
layer nodes is as good as any other. One can think of this a 
bit like moving furniture with a friend. When you move 
the bookshelf, it may be heavy but is easy to manoeu-
vre, but when moving the mattress, it is all floppy in the 
middle. 

It is possible to adjust for this by using a very small 
value of the relaxation constant, or vary this dependent 
on the layer or dynamically during training. However, 
this then means you need many more presentations of 
the training data or very big data sets. 
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6.6 ASSOCIATIVE MEMORIES 
Association of ideas is a familiar concept to us. We may 
associate a particular piece of music with a person or 
event, or we may associate a person with an activity. 
There are many examples in everyday life where we 
use association to remember things. Indeed, it is 
fundamental to models of human memory such as 
semantic networks. 

An associative memory is a neural network that mod-
els the associative nature of human memory, by which 
a particular stimulus triggers a particular response [4, 
155]. In the associative memory model, an input is stored 
with the required output, in such a way that when this 
input (or an incomplete version of it) is presented to the 
memory, the appropriate output is recovered. 

There are two types of associative memory: heteroas-
sociative memory, where input is associated with a 
different output pattern; and autoassociative memory, 
where the input is associated with itself. 

In a heteroassociative memory, the input pattern is 
associated with a different output pattern, for example 
a class identifier. In this case, when the input pattern is 
encountered again, the class with which it is associated is 
returned, allowing the network to perform effectively in 
classification problems. 

An autoassociative memory can be used to filter 
and “clean up” distortion in images, the latter for 
classification problems. In an autoassociative memory, 
the network is trained with the same pattern as both 
input and expected output. When this pattern (or a 
partial version of it) is presented to the memory, the 
stored pattern is retrieved. This allows the memory to 
deal with noise and distortion in patterns, as in Figure 6.9 
below. 

In more recent literature, especially concerning 
deep neural networks, an autoassociative memory is 
also called an autoencoder and these have become a 
central part of several practical technologies. If the 
autoencoder has some sort of layer or set of neurons 
that is smaller than the input space, then it can be used 
as a form of compressed representation of the input. 
This is often useful as an input to other layers of a 
network. 

The ability to regenerate images from partial images is 
also a key part of deep fakes, both in the negative sense of 
fraudulent or exploitative imagery (see Chapter 20), but 
also legitimate uses in entertainment to allow dead actors 
to be ‘brought back to life’ in new films. 

6.6.1 Boltzmann Machines 

Boltzmann machines are an early form of neural net-
work that is often used as an autoencoder [1]. They are 
important analytically because of their strong mathe-
matical basis related to the spin glass models in physics, 
theoretically because of their mapping to plausible brain 
mechanisms, and practically because they are often used 
as a first stage of multi-layer neural networks. 

In a Boltzmann machine nodes are normally binary 
valued (0/1) and are split into two classes: 

visible – this includes both inputs and outputs, or in 
autoencoder mode, an image to be remembered. 

hidden – used as part of the process of reconstructing 
the visible nodes during recall. 

In the simplest Boltzmann machine, the visible and hid-
den nodes are all fully connected to each other (see Fig-
ure 6.10), not arranged in layers like a multi-layer neural 
network. The connections each carry a weight, and this is 
effectively the memory of the neural network. These are 
initially randomly assigned. 

Training consists of two phases. 
In the first phase the visible nodes are clamped to an 

example input and the hidden nodes modified so that 
the network settles into a ‘lowest energy’ state. After this 
phase, when a visible node and a hidden node are both 
active (value = 1), this is treated as a positive association 
between the nodes. 

In the second phase both visible and hidden nodes are 
allowed to alter, again settling into a ‘lowest energy’ state. 
This can be repeated with different random initial val-
ues for the nodes. After this phase if a visible and hidden 
node are both active, this is regarded as a negative asso-
ciation. 

The ‘lowest energy’ state is related to the analogy with 
physical systems including the way magnetic poles par-
tially align when a ferrous metal is cooled quickly; how-
ever, there is also a neural analogy. If the sum of weighted 
inputs to a neuron is higher than a certain threshold, then 
it (is likely to) change to an active state, thus influencing 
the inputs of others. With some additional mechanisms 
to ensure convergence, the system settles into a steady 
state. 

After these phases have been applied to one or more 
examples, the weights are updated, incrementing them 
where there is positive association and decrementing 
them where there is negative association. The former 
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FIGURE 6.9 Associative memory. 

has an obvious biological analogy to Pavlovian learning 
– neurons that fire together stay together. The latter is 
often regarded as a kind of sleeping, where the mind is 
free to meander without sensory input [2, 225]. If nodes 
are associating based on random inputs, they are not 
storing ‘useful’ information, so their relationship should 
be weakened. 

After the Boltzmann machine has been trained, it can 
be used to reconstruct partial inputs (often images) by 
clamping the known visible units to the known part of 
the input and letting the remaining visible units settle 
into reconstructed values using the same energy minimi-
sation process as used in training. 

If there are fewer hidden nodes than visible nodes, 
the values of the hidden nodes when the visible nodes 
are clamped can be regarded as a compressed or more 
abstract representation of the visible nodes. 

A restricted Boltzmann machine (RBM) is identical 
except that the nodes are not fully connected [132, 133]. 
Instead, just the visible nodes are fully connected to the 
hidden nodes (see Figure 6.11), but there are no inter-
nal connections within the visible nodes, nor between 
the hidden nodes. This at first appears similar to a multi-
layer perceptron, but in the RBM, the connections are 
two way. This does not matter during the phase when 
the visible nodes are clamped to the inputs but makes 

a difference during the sleeping phase or during recon-
struction. 

The layered structure means that RBMs can be stacked 
with the hidden nodes of one layer forming the visible 
nodes of the next layer. These can be used to create lay-
ers of abstraction. However, an RBM can also be used 
as the input layer to other forms of neural network or 
machine learning, notably as the first stage of a deep neu-
ral network (Chap. 8). 

6.6.2 Kohonen Self-organising Networks 

The previous methods we have encountered are all forms 
of supervised learning, because they are trained with 
an input and its desired output. In contrast, Kohonen 
networks are a form of unsupervised learning. Kohonen 
networks cluster the inputs into classes, according to 
common features [155] without any need to pre-label the 
inputs. This is often called a self-organising map or self-
organising network. The idea is to emulate the ability of 
the human mind to make sense of unknown situations. 

In a Kohonen network, neurons are not arranged in 
layers but in a flat grid (Figure 6.12), and all inputs are 
effectively connected to all nodes. The aim is that areas 
of the network form local neighbourhoods that act as 
feature classifiers (clusters or classifications) for the input 
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FIGURE 6.10 Boltzmann machine. 

FIGURE 6.11 Restricted Boltzmann machine. 

data and that close classes tend to end up close on the 2D 
grid. 

At the start of training the network is initialised, usu-
ally with random weight vectors. During training each 
training example is compared with the weight vector at 
each of the nodes and the closest match ‘wins’. A ‘match’ 
here can be that the vectors are close to one another or 
it may use an indirect measure such as a similarity ma-
trix. The weight vector at the winning node is moved 
closer to the training example, and also neighbours are 
moved closer but by a lesser amount. The exact spread 
among neighbouring nodes may have a classic Mexican 
hat shape, growing smaller further away, and may some-
times have negative weights, that is close but not im-
mediate neighbours may be moved further away to help 
reinforce distinctions. As training progresses the diam-
eter of the neighbourhood may also be reduced so that 
early learning is quite vague and fuzzy but becomes more 
precise as the training progresses. 

An early application of Kohonen’s self-organising net-
work was to perform speech recognition, in the form 
of a phonetic typewriter, a typewriter that could pro-
duce text from dictation. The network was used to cluster 
the phonemes into similar sounds, which could then be 
manually labelled. The phonetic typewriter is an example 
of an application that uses both neural and more con-
ventional knowledge-based techniques, the neural net-
work being used to preprocess the input to facilitate use 
of the knowledge base. This demonstrates an important 
point about connectionist models: although they were 
proposed as models of cognition, like production sys-
tems they can also be used for practical AI problem solv-
ing. 

6.7 LOWER-LEVEL MODELS 
Neural networks take inspiration from the function 
of human and other brains but typically simplify or 
ignore certain details. For example, it was found that to 
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FIGURE 6.12 Kohonen self-organising network. 

model the function of a single cortical neurone a deep 
neural network was required with 5–8 layers and many 
thousands of artificial neurons – clearly a real neurone is 
more complicated than the simple sum-then-threshold 
perceptron. 

Those interested in modelling actual brain function 
will often employ models that do involve greater levels 
of neural fidelity, and also these can sometimes be used 
to inspire variations in practical neural networks. We’ll 
take a quick look at a few of these features. 

6.7.1 Cortical Layers 

When you look at the surface of the brain, it has a deeply 
folded structure. This is because the outer part, the cere-
bral cortex, is effectively a large sheet of neurons, a bit like 
a deflated balloon. The sheet of neurons is arranged in 
six rough layers, with different kinds of neurons in each 
layer. The majority of the neurone cell bodies in the brain 
(grey matter) are found within these layers. 

At first this biological arrangement seems to justify 
multi-layer neural models and especially deep neural 
networks, which we’ll see more of in Chapter 8. 
However, the patterns of connection are both more 
structured and more complicated than those usually 
found in artificial neural networks. 

Within the cortex the cells have a column-like struc-
ture, where the connections are relatively local either up 
and down the columns or side-to-side, but the former 
are not limited to connecting to the ‘next’ layer. Fur-
thermore as well as connections within this grey matter, 
there is a mass of nerve fibres deeper inside the brain, the 

white matter, which enables long distance connectivity 
between regions of the brain. 

There are ongoing attempts to map and understand 
these rich patterns of interconnections and fMRI scans 
are revealing some of the complexity of cortical layering 
[160]. There are also attempts to model this computa-
tionally, in particular the large EU-funded Human Brain 
Project [183]. Crucially as the second edition of this book 
is being written, the first exascale computers have come 
online. This is the computational power that in principle 
would allow the real-time modelling of a complete hu-
man brain. 

At a smaller scale, others have attempted to emulate 
the column-like structure both as a general purpose 
neural-network architecture [26] and for specific 
purposes including visual object recognition [125]. 

6.7.2 Inhibition 

In most multi-layer neural networks the weights between 
layers can be negative, leading to a level of inhibition, 
where the firing of one neuron prevents the firing of 
another. The (fully connected) Boltzmann machine 
has potentially negatively weighted connections within 
a layer which allows a level of lateral inhibition as 
does the shape of the reinforcement function in a 
Kohonen network. However, by and large, rich con-
nections within layers in general and lateral inhibition 
within a layer in particular are rare in many artificial 
neural networks, largely because of the complexity of 
learning. 

However, it has long been known in neural science 
that inhibition structures are critical for many aspects 
of human motor control and perception [113]. Crucially 
patterns of neurons with mutual inhibition can give rise 
to spontaneous oscillations that are crucial for internal 
functions such as heart beat and external activity includ-
ing locomotion and muscle control. Lateral inhibition is 
also central in efforts to use neural networks to under-
stand the human visual system [39]. 

If we think back to the network reasoning structures 
in Chapter 3, there are negative associations between 
concepts. Furthermore, when we are attempting 
to disambiguate meanings of words or identify an 
object, it is important that alternative meanings 
compete with one another. That is, for the structures 
we need for semantic meaning mutual inhibition 
is key. 
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6.7.3 Spiking Neural Networks 

The behaviour of a single perceptron and the connec-
tions between neurons on neural networks emulate the 
way that if a neuron has sufficient stimulus, it ‘fires’, 
triggering or inhibiting other neurons. In most artificial 
networks this firing is in lock-step with all neurons 
effectively firing simultaneously, and furthermore 
the firing is given a continuous value representing its 
strength. 

The reality is a lot more messy! When a neuron is 
sufficiently excited, it does start to fire across a synapse to 
another neuron, but this is not a single coordinated value, 
rather a series of bursts of ionic activity, or spikes. It is 
the rate of these spikes which determines the amount 
of activation being transferred from one neuron to 
another. Furthermore there are often temporal dynam-
ics, for instance hysteresis effects whereby if a spike is 
delivered across a synapse for a while it is easier for the 
next burst of activation to transfer, and then over slightly 
longer timescales chemicals deplete so it becomes harder 
to transmit for a while. 

Spiking neural networks attempt to capture some 
of this complexity by emulating the dynamic spiking 
activity between neurons. The area was particularly 
active in the mid-2000s in the hiatus before deep neural 
networks began to deliver results, and so alternative 
forms of neural networks were being investigated. 
However, work in the area has continued at a lower but 
more sustained level. We will see in Chapter 22 that 
spiking neural networks alongside mutual inhibition 
may hold promise for disambiguation in rich semantic 
networks. 

6.8 HYBRID ARCHITECTURES 
Sometimes a single form of machine learning is used for a 
problem, but more often for practical uses a combination 
of techniques are used. Some parts may involve machine 
learning, others may be rule-based. Most often these 
hybrid architectures (or hybrid systems) involve 
some form of neural network, though not necessarily 
so. 

Note the term hybrid simply means a combination 
of two things and so has other uses even within AI. 
Crucially data that includes a combination of discrete 
and continuous values may also be referred to as hybrid. 
However, the full term hybrid architecture should be 
unambiguous within AI. 

6.8.1 Hybrid Layers 

Often systems are organised as layers or a pipeline where 
the outputs of one layer feed into the next. The layers may 
use very different forms of AI or other algorithms. 

In some cases the first layer acts as a form of data trans-
formation. The lower layer adds additional richness to 
each data item in terms of non-linear combinations of 
the features. This means that a machine learning layer 
above can be relatively simple in terms of the kinds of 
things it can do. In Chapter 7, we will see examples of 
this, where both support vector machines (SVM) and 
reservoir computing use two layers with very different 
computational properties; in these cases, it is fundamen-
tal to the respective paradigms, as the lower layer does 
not in itself learn. 

Another frequent form of hybrid architecture is to use 
some form of self-organising map (SOM), clustering or 
unsupervised learning at a lower level that acts as a kind 
of data reduction. This is particularly useful for datasets 
where each item is very large, such as an image or, as 
in the example below, a finely sampled time series. The 
resulting classes (e.g. in the case of clustering) or vector of 
values (e.g. for Kohonen nets) are then fed into an algo-
rithm that works well with smaller numbers of features, 
such as a decision tree. 

We saw how an early example of the use of Kohonen 
nets was to reduce sound sequences to phonemes. Fig-
ure 6.13 shows the main stages of processing and data at 
each level. There are a few things to note from this exam-
ple that are common in hybrid architectures: 

1. The input to the Kohonen network was not raw 
sound but transformed into a form of frequency 
space (using a variant of Fourier analysis) – that 
is there may be multiple layers of different com-
plexity. 

2. The phoneme labelling for the Kohonen network 
was added by hand, so that the vector output was 
reduced to a classification. This need not be the 
case and the whole process may be automatic, 
but this mixed machine–human training process 
(hybrid in a different sense of the word) is very 
common. 

3. The low-level transformation (into frequency 
space) and the high-level recognition (phoneme 
sequences to words) are also hand-crafted rather 
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FIGURE 6.13 Example of a hybrid architecture. 

FIGURE 6.14 Does this network solve the XOR problem? 

than using machine learning. The final system is 
fully automated, but many of the choices in the 
learning are human. 

Even if the process is fully automated at the level of 
learning (no additional human labelling of intermediate 
representations), it will often be the case that the 
lowest level of transformation is predetermined (e.g. 
SVM, frequency space), the mid level is generating 
some sort of Gestalt understanding of the input as a 
whole, rather like the way we see a scene and recognise 
people’s faces without consciously being aware of it, 
and the higher levels are using methods that are more 
comprehensible (e.g. decision trees, simple rule-systems 
or linear discriminant). 

6.8.2 Neurosymbolic AI 

Neurosymbolic AI is the general term used when 
symbolic and sub-symbolic aspects are combined in the 

same system. This may include systems, such as those 
described above, where there are layers or modules 
interacting loosely, but usually suggests much deeper 
integration. There are several styles including: 

data transformation – In the example of hybrid layers 
above, a neural net can be used as a form of data 
reduction layer for symbolic AI. 

sub-symbolic heuristic – We have seen in Chapter 4 
how heuristics can guide search. A neural net can 
be trained to do this, for example to help a math-
ematical theorem prover to choose which axioms 
or lemmas to use next in generating a proof. We 
will also see in Chapter 11 that heuristics are very 
important for game playing and how AlphaGo 
[260] used neural networks as heuristics to guide 
Monte Carlo search. 

symbolic guide – The symbolic AI may be used to guide 
the training of a neural network, for example an 
expert system to help decide on network parame-
ters such as number or kinds of layers. In Chap-
ter 22 we will see how a computational form of re-
gret can use high-level counterfactual reasoning in 
order to guide the training of a sub-symbolic ‘emo-
tion’ module. 

symbolic learning – Sub-symbolic methods are also 
being used to reproduce aspects of reasoning that 
would normally be associated with symbolic AI, 
for example logical implication. This may use a 
symbolic representation, for example using genetic 
programming or similar techniques to create 
logical expression, but may also involve ‘vanilla’ or 
specially designed neural networks trained on lots 
of logical formulae. 
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FIGURE 6.15 Does this network work? 

It is likely that this area will grow substantially in the 
coming years, and it is a crucial next step for AI if it is to 
address the next level of challenging problems. 

6.9 SUMMARY 
In this chapter we have seen how neural networks emu-
late the physical properties of the brain to provide par-
allelism and fault tolerance. We have seen several types 
of neural network, which in many ways are similar with 
nodes and connections between those nodes. However, 
they differ (i) architecturally in terms of the pattern of 
connections and (ii) algorithmically in terms of the ways 
in which node values and weights on connections are 
updated. These apparently subtle differences affect the 
kinds of applications for which they are suitable. Differ-
ent kinds of neural network can be combined together or 
with other forms of AI in hybrid architectures. 

Simple neural networks are particularly suited to clas-
sification and pattern recognition tasks. They have also 
been used in many applications where their ability to 
learn from examples and generalise to new cases is ben-
eficial. However, their disadvantages should also be ac-
knowledged: they can take a long time to learn, be dif-
ficult to update quickly, and, perhaps most important, 
there is no explicit representation of the decision mech-
anism and therefore no explanation facility. The former 
can be addressed by using greater computing power (al-
beit with financial and environmental costs), and this has 
made possible the very large and deep networks that have 
transformed AI and will be discussed in Chapter 8. The 

latter, the need for explanation and interpretation, is a 
more fundamental problem which we shall return to in 
Chapter 21. 

6.1 Does the network in Figure 6.14 solve the XOR 
problem? Show the outputs of the network to sup-
port your answer. 

6.2 In the UK dogs are classified into six groups 
according to breed. Each group contains a 
number of different breeds. Given two breeds of 
dog the neural network in Figure 6.15 is required 
to indicate whether or not they belong to the 
same group. The two breeds of interest at any 
time are indicated by setting their input nodes 
to 1. All other input nodes are set to 0. Note 
that Maremma, Bernese and Border Collie are 
all members of the working group; Flat Coat 
Retriever, Pointer and Field Spaniel all belong to 
the gundog group. 

a. Does the network classify the dogs correctly? 

b. If not, how might you fix it? 

c. How do weights, thresholds and hidden units 
operate in this problem solution? 

6.3 A student decides to create flash cards to help 
revise their knowledge of neural networks. They 
make a board with areas labelled by different 
kinds of neural network: 
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• perceptron 

• multi-layer perceptron 

• Boltzmann machine 

• restricted Boltzmann machine 

• Kohonen self-organising map 

They then make cards for each area listing 
the qualities of each network, so that they 
can test themselves by placing the cards into 
the areas. Unfortunately they shuffle the cards 
before making a note of which card goes with 
which network. Here is what is written on each 
card: 

• 2D layout 

• auto-associative 

• backpropagation training 

• bi-directional connections between layers 

• can solve XOR problem 

• can’t solve XOR problem 

• form of clustering 

• fully connected 

• hard threshold 

• hidden layer 

• inspired by physics of spin glass 

• modelled on single human neurone 

• no connections within layers 

• no connections within layers (two cards) 

• one-way connections between layers 

• sleeping phase 

• two layers 

• uses sigmoid 

• winner takes all during training 

Can you match the cards to the networks? 

FURTHER READING 

C. Aggarwal. Neural networks and deep learning. Springer, 
Cham, 2018. 
Most recent version of classic textbook on neural networks. 

R. Beale and T. Jackson. An introduction to neural computing. 
Adam Hilger Bristol, 1990. 
An early book, but still in print. A readable in-
troduction to neural networks which provides details 
and algorithms for most major classes of connectionist 
models. 
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7 CHAP T ER 

Statistical and Numerical Techniques 

7.1 OVERVIEW 
By its nature advanced AI often includes aspects of a 
numerical or mathematical nature. In this book, we 
have tried to minimise more mathematical aspects as we 
are aware many find this difficult or even frightening. 
However, some techniques that are either used on 
their own or in conjunction with other forms of AI or 
ML have a statistical or mathematical nature, so this 
chapter attempts to introduce them without assuming a 
mathematical background. 

7.2 LINEAR REGRESSION 
One of the most common techniques for simple data 
analysis is linear regression. At its simplest this is about 
drawing a best fit line between points. For example, Fig-
ure 7.1 shows the time taken for afternoon walks of dif-
ferent lengths as recorded on a fitness tracker. Each point 
represents a single walk, for example the point marked 
A denotes a walk of 2.7 miles that took 71 minutes. The 
dots are quite scattered with walks of different lengths. 
The line through the middle is at 25 minutes per mile. 
Some walks are above the line, taking longer than this, 
perhaps more strenuous countryside, or just taken more 
leisurely, some are below representing faster walks. The 
solid line is a ‘best fit’ and can allow us to predict how 
long it might take for, say, a 3-mile walk (1 hour and 15 
mins) or how many miles one might walk in 2 hours (4.8 

miles). By looking at the typical spread above and below 
the line, one can also obtain a measure of uncertainty. 

Note that one point lies well above the line and far 
away from the rest of the data. These extreme values 
are called outliers and can often skew the best fit line 
depending on the method used to calculate it. In this 
case it could represent a ‘true’ value where the walk was 
simply very difficult and slow, but might be where the 
user forgot to tell the fitness tracker the walk was over. 

Mathematically the regression line is of the form: 

y = mx + c 

where (by convention) the y axis is the vertical axis, 
in this case time taken, and x is the horizontal axis, dis-
tance walked. The number m is the slope of the line, in 
this case miles per minute, and c is the intercept where 
the line crosses the y axis, the value of y when x is zero. 
Here the intercept, c, represents the time taken to walk 
no miles at all, which feels as though it should be zero, 
but perhaps represents the time it takes after the fitness 
tracker is turned on to put on boots, lock the house or 
car, etc. 

The normal way to calculate this best fit is using the 
formula: 

∑(yi − ̄ ̄y) × (xi − x)
m = ∑(xi − x̄)2 

c = y ̄ − mx̄ 

where x̄ and y ̄ are the average value of the x and y 
coordinates respectively and the sums are taken over all 
of the points. 

This formula minimises the sum of the squares of the 
residuals, that is the distances between the points and the 
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FIGURE 7.1 Linear regression for short walks: solid line ignoring the outlier, dotted line including all data. 

line. In general, these least-squares methods are used fre-
quently in various forms of statistical data analysis and 
model fitting. They work particularly well with data that 
fits the Normal distribution but also tend to have easy 
mathematical treatments. However, they tend to be sen-
sitive to outliers and so sometimes extreme values are 
removed from the data prior to applying linear regres-
sion. Note that in Figure 7.1, the solid line is the regres-
sion having removed the outlier. The dotted line shows 
the regression line including the outlier. See how this dis-
torts the line, meaning it no longer fits the rest of the data 
very well at all. Ideally outlier removal should be based on 
predetermined rules, to avoid simply removing elements 
until the data fits one’s preconceived ideas. 

This is a simple case where there is a single indepen-
dent variable, the thing you know (in this case the length 
of the walk) and a single dependent variable, the thing 
that is measured or to be predicted (in this case how long 
it takes). 

In general, you may want to predict several things, that 
is several dependent variables, perhaps both time taken 
and average heart rate while walking. This is a simple 
extension, you just create a separate best fit line for each 
thing you want to predict. 

A more complex case is when you have more than one 
independent variable, for example you know both the 
distance and average gradient of a route and use both of 
these to predict the time taken. That is you attempt to 
obtain a prediction equation of the form: 

y = mx + nz + c 

where, in this case, x is the time taken and z the 
gradient. Note that this is a plane in 3D space that for 
any x, z values (distance, gradient) gives the time taken. 
This is called multi-linear regression, and it is possible to 
work out the general formula for this for any number of 
independent variables, but we omit this here (see web 
resources for more details). 

Figure 7.1 was for short walks only. Figure 7.2 is 
extended to also include longer walks. However, now 
note that the single best fit line (solid) is a poor fit 
for the overall data. The two dashed lines are separate 
regressions, one for the shorter walks and a second one 
for the longer walks. Clearly the two short lines fit the 
data better than the single long one. 

Thinking about actual walks, the reason is obvious. 
For longer walks one often stops for a lunch break, 
and indeed the short and long walks have nearly 
the same slope, but the long-walk intercept is larger, 
corresponding to around a one-hour lunch! In practice 
this is quite common, many phenomena are locally 
linear, that is linear models fit well so long as you restrict 
yourself to a small area, or a single cluster. One can 
often create piecewise linear models that fit the data 
well, even for curves if the patches are chosen small 
enough. 

Note too the importance of visualising data. It would 
be easy to take the numerical data from Figure 7.2 and fit 
the single regression line, without ever looking at it. The 
single line would have been a predictor of the data but 
clearly misses a critical aspect of the data that allows the 
far better piecewise linear fit. 
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FIGURE 7.2 Piecewise-linear regression – longer walks. 

7.3 VECTORS AND MATRICES 
In physics, vectors represent things that have both a 
value and a direction, for example a moving car has both 
a speed and a direction it is moving in. Vectors in 2D can 
be represented as a direction angle and length (called 
radial coordinates), but more generally as a series of 
two or three numbers representing components in each 
direction, for example a northwards and eastwards speed 
for a car. The same representation is used for Cartesian 
coordinates in space, such as latitude/longitude on a map 
(ignoring for the moment the curvature of the earth). 
Both can be two-dimensional (as in the lat/long, or car’s 
velocity) or three-dimensional (aircraft lat/long+height). 
In computing the word ‘vector’ is often used simply for a 
list or array of numbers. For example, in a recommender 
system for a media streaming platform, we might have 
an array MT where MT[person_id] is the number 
of movies each person has watched on a streaming 
platform. This corresponds roughly to the generalisation 
mathematicians make when talking about vectors with 
very large numbers of dimensions, not just two or three. 
In the movie example, the dimension of this vector is 
the number of people, which could be enormous. 

Sometimes it can be useful to think about the geomet-
ric analogy between data arrays and vectors in physics, 
and we will use diagrams that follow this analogy. How-
ever, there are limitations to this as both the diagrams 
and our ability to conceptualise vectors are usually lim-
ited to three dimensions, and there are also sometimes 
crucial differences in behaviour for larger dimensions. 

If you do not find this physical analogy helpful, you can 
think of these structures purely algorithmically. 

Of course, a movie platform has many people (say 
26952) and many movies (say 13575), and we may 
be interested in data about each movie. For this we 
might use a data structure M[person_id][movie_id] 
(see Figure 7.3). Mathematically this is regarded as a 
26952 × 13575 matrix. 

If you encountered matrices in school, they are likely 
to have been 2×2 or 3×3 matrices representing transfor-
mations of coordinates in 2D or 3D space. For example, 
the following matrix represents a clockwise rotation of 
about 37 degrees. 

(0.8 −0.6 
0.6 0.8 

) 

Given an (x,y) coordinate pair each row of the matrix 
is multiplied by the corresponding coordinate values 
and added up to give new coordinates. In this case the 
new x is 0.8x − 0.6y, and the new y is 0.6x + 0.8y, so that 
(3,1) is transformed to (1.8,2.6). These 2×2 matrices can 
be added, subtracted and multiplied (and in some cases 
divided), somewhat like ordinary numbers. The same is 
true of more general N×M matrices (like our movies– 
people one), and many complex algorithms that involve 
embedded loops can be represented more concisely 
in this ‘matrix algebra’ form, albeit with care to make 
dimensions match up. Furthermore, we can exploit lots 
of known mathematical properties of matrices in order 
to both create algorithms and analyse their properties. 
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FIGURE 7.3 Matrix representing number of times a specific movie has been seen by each person. 

Note too that in 2 × 2 rotation matrix, both rows and 
columns correspond in a sense to the same x–y space. 
In contrast in the people–movies matrix, the rows and 
columns are indexed by different things. Matrices that 
have the same number of dimensions in both directions 
are called square matrices (for obvious reasons). Square 
matrices (say people × people, or movie × movie) 
have particularly powerful mathematical properties, 
and so it is quite common to manipulate data to create 
square matrices even if the original data is not square. 
For example, we might start with a people × movies 
matrix, L[person_id,movie_id] that has a positive 
number if the person has watched and liked it, a 
negative number if the person watched and disliked 
it, and zero if the person hasn’t watched it at all. We 
might then transform this into a measure of similarity 
between people S[person_id1,person_id2] by 
summing the product of likes and dislikes for shared 
movies: 

for p_id1 = 1 to nos_people 
for p_id2 = 1 to nos_people 
sum = 0 
for m_id = 1 to nos_movies 
sum = sum + L[P_id1][m_id] 

* L[P_id2][m_id] 
S[p_id1][p_id1] = S[p_id1][p_id1] + sum 

Note that if both users dislike the same film, the prod-
uct is positive, so adding to their similarity. If one likes it 
and the other doesn’t, it is negative hence reducing their 
similarity (maybe making it negative, a dissimilarity). If 
either of the people has not watched the film, then the 
product is zero, so has no effect on the similarity mea-
sure. In matrix algebra terms this can be written as: 

S = L × LT 

where LT is the transpose of L, the same as L 
with rows and columns swapped and ‘×’ is matrix 
multiplication. See how much more succinct it is! 
Note that this similarity matrix is symmetric, that is 
L[p1][p2] = L[p2][p1]. Symmetric matrices have 
yet more useful properties. 

7.4 EIGENVALUES AND PRINCIPAL 
COMPONENTS 

In the case of 2 × 2 rotation matrices, every vector 
(location as pair of coordinates), except (0,0), is 
moved to a new direction. However, for some forms 
of transformations vectors retain their direction and 
simply get longer or shorter. For example, the following 
matrix represents a shearing and stretching of 2D 
shapes. 

(3 
2 

1 
2) 

Consider the vector (1,1), it is transformed to (4,4), 
similarly any multiple of (1,1) is transformed to a vector 
precisely four times as big (e.g. (3,3) becomes (12,12)). 
If we now look at the vector (1,-2), it is transformed to 
itself, as are multiples of (1,-2) such as (7,-14). 

These vectors (1,1) and (1,-2) that preserve their direc-
tion are called eigenvectors, and the multipliers (4 and 1) 
are called the corresponding eigenvalues. Crucially it is 
possible (with certain conditions) to transform the orig-
inal data and represent it in terms of these eigenvectors.

2For example, (1,0) is (1, 1) + 
1 (1, −2).

3 3 
For symmetric matrices these eigenvectors are also 

orthogonal (at 90 degrees) to one another, which makes 
it particularly easy to re-represent the original data items 
in terms of eigenvectors. 

The 2 × 2 matrix had two eigenvectors and in general 
(with some caveats) an N × N matrix has N eigenvectors, 
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although occasionally some of the eigenvalues for these 
may be identical. For matrices that represent some form 
of correlation or similarity measure, the large eigenvalues 
represent directions where there is a lot of change or dif-
ference. If one selects the eigenvectors corresponding to 
the largest few eigenvalues, then these in some way rep-
resent the aspects of the data that are potentially most 
important (as in vary a lot). These are called principal 
components. 

In statistical analysis, principal components analysis 
is based on the correlation matrix between features/-
columns. The validity depends on aspects of the data, 
notably the mean of each data item is deducted and only 
residuals multiplied to give the correlation. Also if the 
level of variation of features is not consistent, some sort 
of normalisation may be performed. 

For example, for the matrix of people × movie likes, 
some people may have watched a lot more movies, some 
may tend to be very positive and some very negative. We 
might pre-whiten the data by, for example, subtracting 
the mean score for the person from each rating and then 
dividing by their average or total ratings, so that everyone 
ends up with scores in a similar range. For very large 
datasets this kind of thing may sometimes be omitted as 
things ‘average out’, but it is worth checking whether this 
seems valid for a particular dataset, either analytically or 
by trying out normalised and unnormalised data analysis 
on test datasets. 

The principal components can simply be used to 
help think about the data. In the movies and people 
example, a principal component might represent aspects 
of the dataset such as “people who love/hate thrillers”. 
However, not all principal components can be easily 
described. 

In addition, if you choose the top P principal compo-
nents, these can be used to reduce the people dimension 
of your dataset so that instead of having a like score for 
every person for a given movie, you end up with P num-
bers for each movie, for example, the extent to which 
people on the “loves/hates thrillers” dimension like this 
film. This reduced data can then be used in other ma-
chine learning techniques, such as clustering (to create 
emergent movie genres) or neural networks (see Chap. 8 
for more details). 

Note we could have instead created a movies × movies 
similarity matrix and then used that to create reduced 
representations for each user and then, for example, cre-
ated clusters of users which could be used for recommen-

dations or even suggested new contacts in a movie social 
network. 

7.5 CLUSTERING AND K-MEANS 
Look at Figure 7.5. It is easy to see that there are two clus-
ters of points. Furthermore it is possible to simply draw 
a line that separates them (more generally in two dimen-
sions this might be a plane and in higher dimensions 
a hyperplane). Where this is the case, there are various 
algorithms to find the lines that separate clusters. How-
ever, if we have principal components, then it is often 
the case that a hyperplane orthogonal to the first prin-
cipal component (the one with the largest eigenvalue) is 
a good separation between clusters. In general, finding 
such a separating line is called linear discriminant anal-
ysis. 

However, things are rarely that simple! Figure 7.6 
shows a more complex set of points, which again we 
can see by eye are in a number of clusters, but where no 
simple straight line can be used to make the distinction 
(they are not linearly separable) and there are even 
places where clear clusters slightly overlap. We have 
seen these issues of linear separability before when we 
discussed the move from perceptrons to multi-layer 
neural networks (Chap. 6). 

There are more complex variants of linear separation 
using multiple hyperplanes, but also other techniques, 
that have fewer assumptions about the statistical prop-
erties of the data and can deal with non-numeric data. 

One of the most common forms of clustering is to use 
variants of the k-means algorithm. The idea is fairly sim-
ple. 

1 (humanly) choose how many clusters you’d like to 
identify; that is the value for ‘k’. 

2 (algorithmically) choose k of the data points at 
random, to act as ‘seeds’, and for each: 

2.1 create an initial cluster with its ‘centre’ at the 
random data point 

3 For each data point d 

3.1 find the closest cluster to d, call it c 
3.2 add d to c 
3.3 recalculate the centre of c – for numeric data 

this is the average point (centroid), but for 
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FIGURE 7.4 Principal components showing directions of maximum variation in the dataset. Adapted from Nicoguaro, CC BY 
4.0, via Wikimedia Commons. 

FIGURE 7.5 Linearly separable clusters. 
non-numeric data alternatives can be used 
such as the data element that is most central 
in the cluster 

4 Potentially, iterate 3 retaining the centre from the 
previous round, but re-allocating the data points. 

Choosing k (step 1) can be critical. Sometimes there is 
an obvious value based on the details of the situation, but 
more commonly it is something we need to find out. If k 
is too large, we may end with lots of small and irrelevant 
clusters; if it is too small, we may not make important 
distinctions. Often the process is repeated with different 
values of k and the best chosen based on the tightness of 
the clusters. Of course, this choice process can itself be 
automated. 

An alternative way to more inductively determine sen-
sible numbers of clusters is to operate hierarchically. A 
clustering algorithm, such as k-means or linear separa-
tion, is used to find a small number of large initial clusters 
(possibly a binary split into two clusters). The data points 
allocated to each cluster are then clustered themselves, 

creating a tree of smaller and smaller clusters. The recur-
sive process stops when clusters fail to be sufficiently dis-
tinct. 

7.6 RANDOMNESS 
In data analysis we often have to deal with data that 
has random or statistical properties, including noise. In 
addition, many algorithms also explicitly or implicitly 
use randomness to make them work. 

7.6.1 Simple Statistics 

Advanced statistical techniques are used in a number of 
areas, especially in machine learning. However, it is also 
common to see quite simple methods used, especially in 
early data preparation and in evaluation of models. You 
will almost certainly have encountered measures such as 
the mean, median and standard deviation. Here we’ll just 
recap these common measures of centrality and spread. 

The term ‘average’ is often seen in both media and 
technical reports but has two principal meanings, which 
are often substantially different: 

https://alandix.com/glossary/aibook/clusters
https://alandix.com/glossary/aibook/clusters
https://alandix.com/glossary/aibook/clusters
https://alandix.com/glossary/aibook/clustering algorithm
https://alandix.com/glossary/aibook/k-means
https://alandix.com/glossary/aibook/clusters
https://alandix.com/glossary/aibook/clusters
https://alandix.com/glossary/aibook/clusters
https://alandix.com/glossary/aibook/clusters
https://alandix.com/glossary/aibook/statistical techniques
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/standard deviation


94 ■ Artificial Intelligence 

FIGURE 7.6 More complex clusters. 

mean – the sum of the data items divided by the number 
of items. This is sometimes referred to as the arith-
metic mean and often written as 𝜇 (Greek mu). 

median – the ‘half way’ value where 50% of the items 
are smaller than the value and 50% bigger. 

In general, if you hear the term ‘average’ be alert to the 
two meanings. Note too that, despite the ambiguity, if you 
use a spreadsheet, the function called AVERAGE is usually 
the arithmetic mean. 

For some kinds of data, for example heights of people, 
the two are effectively the same, but for other kinds of 
data, especially ‘long tail’ data (see below), there can be a 
substantial difference. Most commonly when they differ, 
the mean is bigger than the median, but not always. 

Figure 7.7 shows the distribution of weekly incomes in 
the UK for the financial year 2011/12. The mean income 
for the year is £528 per week, but the median income is 
£427. Usually when incomes are mentioned in the press 
or government statistics, the ‘average income’ is the me-
dian as this makes more sense practically – half of people 
earn more, half earn less. 

Note also that the peak (smoothing out the bumpiness 
of the distribution) is around £300 per week. This value 
is called the mode, but distributions can have more than 
one peak, especially if there is a mix of two sources of 
data with different distributions – imagine the incomes 
of people working in a Wall Street or City of London 
office; there will be one peak at the lower end for cleaners 
and security staff and another at the upper end for the 
bankers. 

The median is usually a more stable measure and bet-
ter to use, but the mean has better mathematical proper-
ties. The means ‘add up’ in the sense that if you have sev-
eral groups of data items and know the mean and num-
ber of items in each (𝜇g, ng), you can work out the overall 
mean as the ‘weighted average’: 

∑ 𝜇g × ngg=𝜇overall ∑g ng 

There is no equivalent easy way to obtain an overall 
median from the parts. 

As well as hearing about ‘average’ income, you 
will often hear about the top 5% or bottom 10%. 
These are called percentiles and a special case are 
the quarter way points, the bottom and top 25%, 
which are called the lower and upper quartile, 
respectively. 

In addition, you will encounter the term residual in 
data analysis. Indeed, we have already seen this used 
when discussing linear regression earlier in this chapter. 
In general the residual is the difference between a data 
item and some sort of model or fitted value. In the case 
of linear regression this was the difference between the 
data points and the line, but it can be used more widely. 
Often as a first stage of data analysis one works out 
the mean and then subtracts this from every data item 
leaving ‘residuals’. 

As well as these measures of the middle, or ‘central 
tendency’, there are equivalent measures of spread or 
variability: 
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FIGURE 7.7 UK income distribution 2011/12. Source: Office of National Statistics [216]. 

standard deviation – This is the square root of the vari-
ance (below) and is typically written as 𝜎 (Greek 
sigma). 

variance – The arithmetic average of the sum of the 
squares of the residuals, often written as 𝜇2 . 

interquartile range – This is the difference between the 
upper and lower quartile, that is the range from the 
bottom 25% to top 25%. 

In more detail for the variance, one first of all works 
out the difference between each data item and the mean, 
then squares those values and then works out the arith-
metic mean of those squares. If there are N data items xi, 
the formula is 

∑i (xi − 𝜇)2 

𝜎2 = N 
As with mean and median, the interquartile range is 

the more stable measure, but the variance ‘adds up’. As 
with the means, if we have several groups of data items 
with mean, variance and number of items in each group 
(𝜇g, 𝜎g, ng), the overall variance is given by: 

∑ 𝜎2 × nggg𝜎2 = overall ∑ ngg 

Although it is the variances that add up, we most 
commonly quote the standard deviation as a measure 
as the variance is in square units. For example, if we 
look at males or females (not the mixed distribution), 
the standard deviation of each is around 6cm; however, 
the variance is 36 square cm – not very meaningful! Of 
course it is easy to move back and forth between the 
two. 

7.6.2 Distributions and Long-tail Data 

Most readers will be familiar with the bell shape of 
the Normal distribution (also called the Gaussian 
distribution), which is common in many natural 
phenomena, such as human heights, and often also areas 
such as exam marks. It shows that values are clustered 
around the mean value (𝜇) but spread symmetrically 
in both directions, with about 70% of the data within a 
single standard deviation (𝜎) either side and more than 
95% of the values within two standard deviations. 

The Normal distribution is a continuous distribution, 
in that it shows the probability (strictly probability den-
sity) for any value (Figure 7.8). You may also encounter 
discrete distributions where the variable you are consid-
ering only takes on discrete values. For example, the dis-
tribution of number of goals scored by a football team: 
in what proportion of games does it score nil, one, two, 
etc. 

However, even discrete distributions start to look like 
the Normal distribution, especially if they are based on 
the sum or average of lots of small things. In particu-
lar, if you look at the arithmetic means of many kinds 
of things, they will be nearly Normal. Indeed, the Nor-
mal distribution is so ubiquitous, at least for means, that 
a large proportion of statistical techniques assume an ap-
proximately Normal distribution, and you will see many 
machine learning algorithms described in terms of Gaus-
sian assumptions. 

However, not every distribution is like this. Recall the 
income distribution by in Figure 7.7. It is clearly not Nor-
mal itself, as it is asymmetric, but worse than that even if 
you take the mean income of large groups of people, the 
result is not approximately Normal either. This is because 
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FIGURE 7.8 Normal distribution. Source: By Ainali–Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.ph 
p?curid=3141713. 

it is a long-tail distribution. While the Normal distribu-
tion does allow values very far from the mean, these are 
so exceedingly unlikely they have little impact on most 
calculations. In contrast, the small number of extremely 
large incomes do have an impact on incomes. 

Figure 7.9 expands the income distribution by 
looking at larger and more extreme examples. Each 
line zooms into the graph by an order of magnitude 
(×10). In 2011/12 the income of the average company 
director was around £100,000 per annum, the Prime 
Minister £142,500 per annum (£2000 and £2800 per 
week respectively). A few years after (when UK salaries 
were still relatively similar) there was considerable 
publicity about the salary of the Vice Chancellor of the 
University of Bath, which was around three times the 
Prime Minister’s salary, and in the bottom line (300 
times expanded from the original Figure 7.7), we see the 
highest paid footballer at the time. Of course, this graph 
doesn’t include hedge-fund managers, CEOs of large 
companies, let alone the Royal Family. 

These small numbers of large incomes can make a sig-
nificant difference when we sample, leading to appar-
ent outliers, but in particular make a huge difference to 
the variance, indeed for many practical purposes income 
distributions have no well defined variance. 

This is not an isolated example, as many phenomena 
where there are complex feedback effects end up with 
long-tail distributions. This includes natural phenomena 
such as the sizes of earthquakes but also network phe-
nomena such as friendship groups in social media or 
page links on the web [35, 202]. 

This is really important if the technique you are 
planning to use (e.g. linear regression or principal 
components) assumes a Normal or otherwise ‘well-

behaved’ distribution. It is possible to transform the 
data to make it more Normal-like, for example simply 
capping large values or transforming data into percentile 
values. It is crucial, however, that one is aware that some 
adaptation may be necessary whenever long-tail data is 
encountered. 

7.6.3 Least Squares 

We’ve already mentioned that linear regression is a 
least-squares method; that is it minimises the sum 
of the squares of the difference between the actual 
values and the fitted values. Many algorithms either 
explicitly or implicitly follow this rule, for example 
the variant of gradient descent that is embodied in 
the backpropagation learning algorithm for neural 
networks is effectively minimising the average square 
difference during training between the current outputs 
of the net and the outputs expected in the training 
set. 

Least squares methods are common because: 

• just like the arithmetic mean and variance, they 
have nice mathematical properties, which make 
them easy to calculate and analyse 

• they are closely related to the Normal distribution 

• they often arise almost accidentally, as with back-
propagation 

Sometimes there can be more than one way to calcu-
late least squares depending on what you take to be the 
gap between the fitted value and actual value. For linear 
regression, it is assumed that the x values are precise and 
all the noise or error is in the y value. It then minimises 
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FIGURE 7.9 Long tail of large incomes. Source: Statistics for HCI [83], adapted from Office of National Statistics [216]. 

the sum of squares of the y error. You can do it the other 
way round, working out the regression line for: 

′ x = m ′ x + c 

This minimises the sum of squares of the x distances and 
so gives a slightly different fit line (see Figure 7.10), which 
can be confusing as both are in a sense ‘best fits’. The 
difference is due to what you count as ‘error’. 

We noted when discussing principal components that 
often the top P components can be used to reduce the 
dimensionality of the data (see also Chap. 8). The hy-
perspace spanned by these is the best in the sense that if 
points are projected into the hyperplane the square of the 
component orthogonal to the hyperplane is minimised. 
If P-dimensional hyperplanes are a little hard to imag-
ine, consider the case of the single top principal compo-
nent in 2D space (a line). The first principal component 
is based on the shortest distance between the points and 
the line (rather than x or y difference alone), and it typi-
cally lies between the two regression lines in Figure 7.10. 

7.6.4 Monte Carlo Techniques 

In the description of k-means we need to choose ran-
dom data points to start with. This is because data often 
comes to you part-ordered, so that if you chose the first 
k data points, they might all naturally belong in the same 
cluster. In fact for k-means and many machine learning 
algorithms, it is a good idea to mix up data items by ran-
domising the order before presenting them to the algo-
rithms. 

Various random features such as this are often essen-
tial to ensure that algorithms do not encounter Byzan-

tine conditions, that is particular orders of data items that 
cause poor behaviour. Of course, a random order of data 
items might just, by sheer chance, have all of the items 
that belong to a particular cluster or are similar in some 
other way together, but it is exceedingly unlikely. In con-
trast, the natural data order is far more likely to exhibit 
patterns that can be problematic. 

Randomness can be used even more centrally in AI 
algorithms, either to make them more resilient, gener-
alisable or efficient. For example, simulated annealing 
(Chap. 5) depends on making semi-random choices at 
each step, effectively a sort of drunkards walk across the 
space of possible solutions. Also in certain circumstances 
random vectors have been shown to perform nearly as 
well as principal components for data reduction. 

At an extreme, we can have an algorithm that simply 
chooses values at random until one ‘works’. For example, 
if you are trying to find the set of parameters that give the 
highest value for a function F, you simply choose lots of 
random parameters, p, work out F(p) for each one and 
keep track of the best so far. If the search space is rela-
tively small, or F is very complex, this may even be an 
efficient algorithm, but it is usually combined with other 
algorithms. 

We saw an example of this with hill climbing in Chap-
ter 4. A key problem of hill climbing is that it gets stuck at 
local maxima, small peaks rather than the overall maxi-
mum. One way to address this is hill-climbing with ran-
dom start points. For this, you start at an initial point 
and hill climb from there; you then choose another start 
point at random and redo the hill climb, and so on. At 
each step you record the best result so far and then stop 
when you seem to be making little further progress or 
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FIGURE 7.10 Linear regression as least squares – different ways to do it. 

when you run out of time. If you think of the geographic 
analogy, your first start point may be in the middle of a 
large plain and so you end up on a tiny hill, but sooner or 
later a random start point will put you somewhere in the 
Himalayas and you’ll get to the top of a big mountain. 

Another application is in Monte Carlo tree search [55], 
which has been used especially for board games includ-
ing Go. The search methods described in Chapter 4 and 
those we will see for games in Chapter 11 are deter-
ministic, following fixed paths through the tree, guided 
potentially by heuristics. However, if the breadth of the 
tree is very large, it becomes impossible to follow more 
than a few paths. Monte Carlo tree search efficiently 
chooses lots of random paths and then uses this to create 
a probabilistic heuristic. 

7.7 NON-LINEAR FUNCTIONS FOR 
MACHINE LEARNING 

K-means and other forms of clustering explicitly 
break the data space into parts, but often we want less 
discrete non-linear behaviour. For example, the curve 
in Figure 7.11 has been approximated by linear patches, 
but we might wish for methods that can account for the 
curvature more directly. 

To some extent deep neural networks (Chap. 8) can 
create quite complex non-linearities by simply having 
sufficient layers, but each stage of complexity requires 
more training data, so other methods are often used, 
sometimes as part of hybrid architectures. 

FIGURE 7.11 Piecewise linear fit, where non-linear function 
would be better. 

7.7.1 Support Vector Machines 

Support vector machines (SVM) achieve non-linear 
learning by applying a large number of fixed non-linear 
functions to the original inputs and then using these as 
the input to other forms of simpler machine learning. 
The idea is that with sufficient non-linearity to start 
with, any actual function between input and output can 
be approximated by the system. 

Thinking back to the linear regression earlier in 
the chapter, one can imagine that instead of simply 
fitting y = mx + x, one could include x2 , x3 terms, etc. 
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However, just as with piecewise linear fitting, more 
patch-like matching works better. For example, for 
image data, the patches are often based on ‘Mexican 
hat’-like functions, rather like wavelets, that create a 
weighted sum with a lot at the centre and with smaller 
and smaller values moving outwards, rather like viewing 
the raw image, but also blurred with different scales of 
blurring. 

The family of non-linear patches are often chosen so 
that they form what is known as a kernel, which allows 
detailed mathematical analysis and sometimes proofs of 
optimality under certain conditions. 

More pragmatically, the crucial thing is to add lots 
of derived data based on many non-linear transforma-
tions of selections of the features. The formal use of an 
SVM kernel ensures a good spread and avoids redun-
dant derived features, but other methods can also work 
especially where the non-linear derived data is in some 
way cheap to evaluate. For example, some early machine 
learning algorithms for black-and-white image analysis 
applied address decoders to random selections of pix-
els, basically turning 011 into 00001000 (8 bits with bit 
3 turned on). As this could be done in hardware with 
decoders and FPGAs, it was very efficient compared to 
more exact methods. 

7.7.2 Reservoir Computing 

The idea of using hardware-derived non-linearity has 
resurfaced in the form of reservoir computing. 

The fundamental idea is quite simple. You choose 
some sort of biological or physical system (the reservoir) 
where the relationship between input and output is 
complex and non-linear. The reservoir itself is then 
surrounded by relatively simple input and output 
transformation layers, the former is usually a minimal 
transformation of the overall inputs into a form 
suitable for the reservoir (e.g. maybe applying multiple 
thresholds if the reservoir requires binary input). The 
output transformation (the readout) employs some 
sort of machine learning, for example a simple 2- or 
3-layer neural network. It is trained so that when a 
training input value is applied, the raw reservoir output 
is transformed into desired training set output. 

The hope is that if the reservoir’s internal processes 
are sufficiently rich, among the outputs are combinations 
of values that can relatively simply match any desired 
non-linear function. Virtual reservoirs, that is random 
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mappings implemented in software, can be used, but for 
many the goal is to use hardware or biological processes 
that can rapidly react in a massively parallel way faster, 
cheaper or more energy efficiently than software alone. 

One example of a hardware reservoir uses tiny 
nanoparticles deposited on a wafer [148]. After a while 
the nanoparticles start to connect and create patches or 
routes across the medium. If the deposition continues 
too long, then the wafer simply becomes a conductor, 
but at a critical point, just before that, there are no fully 
connected paths, but instead lots of near-connections. At 
this critical point a combination of quantum tunnelling 
and diffusion of atoms due to potential differences can 
create complex patterns of partial conductance. 

These nanoparticle-based systems are not only non-
linear but also have a level of time dependence as ar-
eas where there has been conductance in the past can be 
more likely to conduct in the future, a form of memris-
tor [50]. Where this is the case the readout transforma-
tion needs to be a form of machine learning that can work 
on time series data (Chap. 14). 

7.7.3 Kolmogorov-Arnold Networks 

Kolmogorov-Arnold Networks (KAN) can be thought of 
as a variation of a multi-layer perceptron. However, in-
stead of a fixed sigmoid activation function and trained 
weights, the KAN adjusts and learns the shape of the acti-
vation function itself (which is typically not a sigmoid). It 
is based on the Kolmogorov-Arnold representation the-
orem which says that any non-linear function of multiple 
variables (including the output of any neural network no 
matter how deep) can be constructed using two layers of 
sums of non-linear functions of single variables. Further-
more the hidden layer needs at most 2N +1 nodes where 
N is the number of inputs. 

While theoretically interesting, the actual non-linear 
functions can be discontinuous and so complex that they 
are effectively unlearnable; so for many years this was 
merely an interesting theoretical result. However, work 
being published as this edition was being completed has 
changed this picture, proposing the KAN as a potentially 
practical machine learning method [172]. This is partly 
by using more than the absolute minimum number of 
nodes, and further by using B-splines, a restricted class 
of non-linear functions. B-splines glue together several 
polynomials to create an approximation of a continu-
ous non-linear function; rather like an generalisation of 
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FIGURE 7.12 Reservoir computing – main stages. 

a piecewise linear approximation. B-splines are used ex-
tensively in graphics. Because they are parameterised, 
they can be trained as part of a KAN. 

At the time of writing, Kolmogorov-Arnold Networks 
have proved successful on smaller data, but struggle 
with scale. However, research is very active and may 
have changed considerably by the time you read this. 

7.8 SUMMARY 
This chapter has covered several statistical techniques 
that you are likely to encounter in AI algorithms. Linear 
regression, principal components and eigenvectors 
are particularly likely to occur in the description of 
how other algorithms work, emphasising the need 
for a basic understanding of matrices. Variants of 
the k-means algorithm are widely used, but also it is 
a good introduction to the concepts in other more 
complex clustering algorithms. We have discussed 
probabilities in earlier chapters of the book, and some 
level of uncertainty is often inherent in training data 
or in the environment in which AI is deployed. Data 
corresponding to the Normal distribution is especially 
common, leading in particular to the popularity of 
least-squares methods. But it is also important to be 
aware that many forms of computational data, including 
social network connections and web page links, have 
long-tail distributions, where a small number of very 
extreme values can skew results unless care is taken. 
However, we can also make use of randomness; many 
of the algorithms we use in AI have some stochastic 
elements and even purely Monte Carlo techniques can 
be surprisingly effective. We can also ‘mix up’ input data 

using non-linear functions including carefully crafted 
mathematical functions in support vector machines; 
near-random physical or biological effects in reservoir 
computing; or B-splines in Kolmogorov-Arnold 
Networks. 

7.1 Consider the following, treating all three columns 
as a single x,y dataset. 

x y x y x y 

0.434 12.093 5.427 13.621 15.927 4.927 
0.933 8.339 6.631 16.523 16.111 28.064 
1.525 6.206 7.818 10.234 17.948 38.146 
1.933 10.257 9.197 16.603 20.392 28.586 
2.718 6.38 10.727 15.408 22.977 26.639 
3.684 15.637 12.14 20.464 25.868 37.821 
4.294 24.493 13.998 17.66 

a. Plot the data (by hand or digitally) 

b. Using the formulae in Section 7.2, calculate m 
and c for the regression line y = mx + c 

c. Draw the line on your data plot. Are there any 
outliers? 

d. Repeat steps (b) and (c), but this time comput-
ing the regression the other way round, that is 
swapping the x,y values. Note that when you 
plot the line, you will need to be careful to plot 
the right x and y coordinates! 

7.2 Consider the following matrix: 

( 9 2 
−2 6) 
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a. Try to find an eigenvector by hand (you can 
look up methods for this, or just use trial and 
error). 

b. What is its eigenvalue? 

c. As this is a symmetric matrix, the other eigen-
vector is orthogonal to the one you have found, 
so if your eigenvector is (a,b), the other eigen-
vector is (b,−a). What is the eigenvalue of this 
second eigenvector? 

d. Which is the principal eigenvector? 

7.3 Consider the following matrix. 

(3 1 
2 2) 

You already know from Section 7.4 that its eigen-
vectors are (1,1) and (1,-2), but use the following 
iterative method to find the first eigenvector. You 
can do this by hand or with a calculator, but it will 
be easier if you either code it or use a spreadsheet 
with successive calculations flowing from row to 
row. 

1. Start with any seed vector 
2. Multiply the vector by the matrix 
3. Normalise the resulting vector (x,y) 

by dividing it by sqrt( x*x + y*y ) 
4. Repeat 2 and 3 until the vector 

doesn't change much (or use a fixed 
number of iterations, such as 10) 

If you are doing this by hand, you might find it 
easier to normalise by dividing by |x| + |y| at step 
(3); this will mean you’ll end up with a slightly 

different multiple of the same vector as the algo-
rithm. 

a. Try this with the following seed vectors: (1,0), 
(1,0), (1,1), (1,-2), (1.1,1), (1.1,-2). Document 
your results. 

b. Does this always give the principal eigenvec-
tor? 

FURTHER READING 

Alan Dix. Statistics for HCI: Making sense of quantitative data. 
Morgan & Claypool, 2020. https://alandix.com/statistics 
/book/ 
This book deals with the things that aren’t in a standard 
statistical textbook. It focuses on what statistical concepts 
and terms mean rather than how to calculate them. 

Christopher M. Bishop. Pattern recognition and machine learn-
ing. Springer, New York, 2006. ISBN:0-387-31073-8 

Mathematical treatment of statistical machine learning al-
gorithms coming from an engineering perspective. 

G. James, D. Witten, T. Hastie, and R. Tibshirani. An introduc-
tion to statistical learning. New York, NY: Springer STS 
112, 2013. 
As well as offering a detailed overview of statistical ma-
chine learning techniques from regression to SVM, the book 
has code examples with variants of the book for R and 
Python. The book’s website https://www.statlearning.com/ 
includes links to downloadable PDF versions of the books. 

William H. Press, Saul A. Teukolsky, William T. Vetterling, 
and Brian P. Flannery. Numerical recipes 3rd edition: The 
art of scientific computing. Cambridge University Press, 
Cambridge, 2007. 
The Numerical Recipes series is the definitive reference 
for implementing numeric methods such as matrix algo-
rithms. 
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8 CHAP T ER 

Going Large: Deep Learning and Big 
Data 

8.1 OVERVIEW 
As we discussed in the introduction, the inflection 
point, during the 2010s, in the widespread adoption of 
AI was due in large part to the growing availability of 
large datasets (big data) and cloud computation. This 
has allowed various forms of large-scale processing, 
including the recommender systems that are widespread 
in internet shopping and social media. However, 
perhaps most well-known has been deep learning, 
which uses vast amounts of computational power 
(leading to environmental concerns) in order to train 
networks with billions of connections. 

Deep learning requires lots of data, so sometimes it is 
necessary to grow the dataset; this can include generat-
ing data or using adversarial techniques so that networks 
learn from each other. More often we actually have too 
much data and so need various forms of data reduction, 
either in terms of the size of each data item or the number 
of data items we choose to process. 

Even though computation is fast, often large numbers 
of processors are needed, and so it is important to be 
able to process data in parallel across lots of machines. 
Some forms of data are particularly difficult to process 
in volume; this includes data that has some sort of 
internal structure, notably graphs and temporal data, 
and also real-time data where the volume of sensed data 

may mean that it is impossible to store all of the data for 
later processing. 

8.2 DEEP LEARNING 
One of the drivers of the resurgence of AI since the late 
2010s has been deep learning. It is a term that is not 
just known in academic and technical circles but in the 
popular press too. Crucially, one of the most well-known 
early deep learning systems, AlphaGo, achieved one of 
the milestones of AI in 2016 when it defeated the Go 
world champion Lee Sedol. In some ways this paralleled 
the success of IBM’s Deep Blue in 1996 when it beat 
Garry Kasparov at chess. However, while much of Deep 
Blue’s success came through brute force, evaluating vast 
numbers of possible moves, this was impossible for Go. 
A game of Go may take hundreds of moves each of 
which has hundreds of possibilities, the search space is 
enormous. 

While AlphaGo brought deep learning to popular 
attention, fundamentally deep learning was not a 
new technological breakthrough in the sense that 
backpropagation allowed the move from single-layer 
perceptrons to multi-layer neural networks. Indeed, all 
deep learning means is a neural network with many 
layers. 

In principle this was possible for many years as back-
propagation algorithms do not have a fundamental limit 
on the number of layers. However, in practice computa-
tional power limited the number of layers that was pos-
sible, especially for larger problems such as image recog-
nition. 

Things have changed, the combination of faster 
processors and cloud computing have transformed this 
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picture, allowing networks with many layers. Figure 8.1 
shows an example of a five-layer network taking image 
pixels as input and producing some form of classification 
as output. 

As is evident even from this image, there are many 
choices in terms of the number of layers, number 
of nodes at each layer and the way in which weights 
between the nodes are arranged. However, before 
looking at these choices, it is worth considering why 
deep networks were so computationally expensive in the 
first place, as this helps guide architectural choices and 
potential use. 

8.2.1 Why Are Many Layers so Difficult? 

To some extent it is obvious that if there are more layers, 
there are more nodes, so it is harder. 

Suppose you have the simplest three-layer network 
with input–hidden–output. If all the layers have N 
nodes and the network is fully connected, then there are 
N(N − 1)/2 weights for the first layer and N(N − 1)/2 
weights for the second layer, N(N − 1) weights in 
total. However, if there are M layers, then there are 
(M − 1)N(N − 1)/2 weights in total. This sounds as if it 
only grows linearly with M, but in practice if you have 
twice as many nodes, algorithms take more than twice 
as long, so it may get worse far faster than the number of 
layers at first suggests. 

In fact, there are more fundamental problems than 
simple number of weights, as we saw when we first 
encountered multi-layer perceptrons in Chapter 6. 

First, the weights for the inner layers are under-
determined, that is there are many configurations of 
weights that will give equivalent results. This is true 
even of a three-layer network, any permutation of 
the inner nodes will be equally good. However, the 
range of possibilities grows with the depth, not just the 
number. 

This can lead to over-fitting; more weights mean more 
likelihood you will just be matching ‘accidents’ of the 
training dataset rather than creating generalisable solu-
tions. This means that more training data is needed, that 
takes longer to process. 

Even more problematic the inner layers of deep net-
works are poorly constrained. During training in a three-
layer network, the input and output layers have known 
values, so each middle node is only one step away from 
a known fixed or target value. In contrast in a four-layer 
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network, the inner layers only have one known side, the 
other is being learnt, and for deeper networks the inner-
most layers are trying to train themselves when the lay-
ers, either side are themselves in flux. 

If the rate of training is too great, this will lead to 
instabilities, the inner layers ‘flopping about’, rather like 
carrying a flexible mattress. This means that the training 
rate parameters have to be set very low leading to slower 
learning and more iterations of the training data. 

These problems could potentially be solved by throw-
ing more computation and data at the training; however, 
the greater capabilities of deep learning also mean that 
more complex problems become tractable: more com-
plex games such as Go, larger images or video. Under-
standing the fundamental computational issues behind 
deep learning can help guide more effective solutions to 
these tough challenges. 

8.2.2 Architecture of the Layers 

Let’s look again at Figure 8.1. The very first layer is con-
nected to the inputs; in the case of an image, this will 
be the pixels, but for other examples, such as the Go 
board position, some encoding of the data is needed. 
The output may be some form of single classification or 
score (e.g. the emotion of a face), a slightly more complex 
decision or move (as in Go), or even a complete image. 
The last is a special case, so we’ll assume initially that the 
output layer is relatively small. 

There are many choices in a deep learning network 
including: 

the number of layers – Usually relatively small, 
although there are ‘very deep’ networks with tens 
to hundreds of layers. 

the number of nodes in each layer – This is typically 
not uniform, with some layers having fewer 
than others; these pinch points can be critical 
architecturally. 

the connections between layers – The simplest choice 
is to fully connect, but other choices such as a 
smaller number of random connections or local 
connections may be used (see Figure 8.2). 

the learning rule – The simplest choice is to use back-
propagation everywhere, but other forms are possi-
ble, including forms of unsupervised learning. 
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FIGURE 8.1 Deep learning architecture – multiple layers, with varying connection topologies. 

FIGURE 8.2 Different kinds of connection patterns between 
layers. 

the order of learning – Again the simple choice is sim-
ply to start it all randomly and let rip, but where 
there are unsupervised learning layers, these may be 
trained first, or the network may be built up succes-
sively adding layers/nodes. 

Together these choices comprise the architecture of the 
network. The choice of these can be quite principled, or 
more a matter of trial and error. Those working with a 
particular type of data or in a particular domain can be-
come expert at choosing an appropriate architecture but 

may not be able to fully justify every decision. Sometimes 
another layer of AI, such as a genetic algorithm, is used 
to choose the best parameters for the network. 

In the end this is a bit of an art, not an exact science. 
However, there are some general principles that can help 
understand existing networks and also help you design 
your own. Even when the layers are all using the same 
learning rules, the different layers often achieve different 
parts of the machine learning task. This is very like our 
brains, where individual neurons are relatively similar, 
but the way they are interconnected leads to parts of the 
brain having specialised purposes. 

Early Layers – Data Transformation 

When the input is quite large, such as an image, the first 
few layers are often performing a level of dimension 
reduction. In particular the first two layers often form 
a restricted Boltzmann machine (Chap. 6). This has the 
property that it can be run backwards to reconstruct 
(closely) the input, so that the second layer is effectively 
a compressed coding of the input. This can reduce 
the number of nodes without substantially losing 
information. 

These early layers may also implicitly create non-linear 
combinations of inputs, rather like support vector ma-
chines (Chap. 7). Alternatively, some form of kernel such 
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as radial basis functions or recoding such as a wavelet 
transformation (Chap. 14) may be explicitly included. 

In some ways the early layers perform a similar 
function to hand-coded data preparation and trans-
formation, and it can be possible to solve problems 
by just ‘adding more layers’. However, sometimes 
more bespoke pre-processing can be helpful. This may 
use non-linear transformations (Chap. 7), dimension 
reduction (Section 8.4.1), or the media specific methods 
we’ll see in Part III. 

Middle Layers – Feature Identification 

The middle layer in Figure 8.1 is shown with a smaller 
number of nodes. This hourglass shape is in fact quite 
a common choice. These intermediate nodes often em-
body a form of feature space. For example, in images of 
landscapes are they sunny days or cloudy, mountains or 
seascapes, have people in or none? It is not that individ-
ual nodes represent these features, the representation is 
likely to be distributed across the nodes, but more that 
the important features of the images are being captured. 

If the pinch-point is too small, there may not be 
enough dimensionality to encode all of the information 
needed to produce the output. This will typically lead 
to poor learning, especially for smaller classes. On the 
other hand, if there are too many nodes at this point, the 
opposite may occur with too much ‘freedom’ leading to 
over-training and poor generalisation. 

Later Layers – Feature Combination and Higher-Level 
Features 

The later layers between the pinch point and the out-
put are then sufficient to create a final decision based on 
non-linear combinations of the features. This is again 
very like a support vector machine with the penultimate 
layer creating the non-linear combinations of features 
and the final layer the discrimination surfaces. 

Of course when we look at a picture or consider a 
problem, we may build concepts on top of concepts: see 
eyes and mouths to make faces, see many faces to see a 
crowd. 

For these deeper networks it is common to see a sort of 
rippling shape, with a few wider layers punctuated with 
pinch points. Sometimes the strict layers may be bro-
ken by copying the lower level ‘features’ further along the 
pipeline (see Figure 8.3). 

But Really Just Lots of Nodes 

Thinking of the deep network in terms of functions at 
different levels can be helpful, in particular this can help 
one decide where to vary the number of nodes in a layer. 
However, if the deep net were simply performing known 
predetermined functions at each layer, it would proba-
bly be best to swap the layer for one that is specifically 
designed for the purpose. One of the strengths of deep 
networks is that they ‘sort of ’ do the jobs above but also 
can do the unexpected. This is particularly the case with 
deeper networks. 

8.3 GROWING THE DATA 
Deep learning has lots of weights to learn, that is many 
degrees of freedom. In order to avoid overfitting and 
ensure generalisation it therefore needs lots of data on 
which to train. 

Sometimes this is not a problem, for example social 
media companies have massive numbers of profile pic-
tures and other shared pictures, many with tags to say 
who is who. However, there is not always enough real 
data. Furthermore as trained models get bigger and big-
ger there is a worry that even all the world’s texts will not 
be sufficient for adequate training [289]. 

Happily, it may be possible to fill gaps in solid data by 
generating synthetic data. There are different ways to do 
this, although all require a substantial amount of domain 
knowledge and carry the risk of training a system on un-
real data. 

8.3.1 Modifying Real Data 

Sometimes we can work out ways in which data could 
have been a little different, small tweaks we can make to 
real data that are plausible but different. 

The simplest case is to add a little noise, for ex-
ample, given numerical data, we might simply add 
a small amount to each reading. For images we can 
take a high-resolution high-quality image and then 
add noise in different ways, perhaps blurring it or 
adding small optical distortions. It is important to 
understand the algorithm you are using when adding 
noise; for example, adding noise to the training 
data of many kinds of neural network can improve 
generalisation, but adding linear noise before linear 
regression reduces the accuracy without any gain in 
generalisation. 
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FIGURE 8.3 Combining high- and low-level features in deep learning. 

We might also be able to use knowledge about the do-
main to create slight variants. For example, with ECG 
data (heart monitoring), we might detect the gaps be-
tween beats and then slightly shift the beats, or slightly 
stretch a single beat. For images, we might crop the im-
age in slightly different ways or slightly magnify or shrink 
it. In all these cases, there is a danger that the modifica-
tions might affect the underlying data in ways that in-
terfere with the things for which we are trying to train 
the network. Moving the image is fine if the aim is to be 
able to identify the person, as shifting an image doesn’t 
change who the person is. However, if a heart condition 
is marked by irregular rhythms, shifting the beats may 
interfere with training. 

8.3.2 Virtual Worlds 

We might be able to go further and create data. For ex-
ample, if we have a model of how the heart works, we can 
simulate different kinds of anomalies and then generate 
ECG traces from the model. 

This technique has been used for training robots and 
also self-driving cars. Gathering data for either takes a 
long time and also can run safety risks to the equipment 
or the environment in which they are being trained. Fur-
thermore, we may want to train for situations that are 
rare and hazardous. 

For example, for the autonomous car, we would 
like to train the car how to behave if a child runs 
into the road. Happily this does not occur often, but 
if it does we do not want to use this as a ‘training 
opportunity’. Training and testing the guidance software 

in a virtual world means we can try out these difficult 
situations. 

In addition, when we run a simulation, we can 
generate simulated video and run recognition or 
guidance software with that as input. However, we also 
know ‘ground truth’, what is ‘really’ in the simulated 
video, hence we can more easily use supervised learning. 

8.3.3 Self-Learning 

When the designers of AlphaGo wanted to train their 
deep learning network, there was only a limited amount 
of training data available. It could be fed all the records 
of major Go tournaments, and for a human reader this 
would seem like a lot of data (around 30 million moves), 
but for the deep network, it was not nearly enough. 

To supplement the training from real games, versions 
of AlphaGo were pitted against each other (see Chap. 11). 
That is the same underlying code but trained with slightly 
different random perturbations in their training. Each 
variant tried to outwit the other, training themselves on 
the games they played. Effectively the ML was in an arms 
race against itself. Each variant getting better but against 
an opponent that was also improving. There can be far 
more computer–computer games than have ever been 
played in human tournaments. 

While this appears to be only suited for games, in 
fact the same principle of adversarial learning is used 
elsewhere. In particular, image generation networks 
are trained by having one network attempt to create 
realistic images and a second, ‘playing against’ it, 
that is trying to distinguish the fake images from real 
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images. This internal arms race between generation and 
discrimination networks, called generative adversarial 
networks (GAN), leads to better and better image 
generation [116]. 

8.4 DATA REDUCTION 
The great thing about big data is that there is a lot of it, 
so it is easy to use it to find patterns and learn rules. The 
difficult thing about big data is that there is a lot of it, 
so it is hard to run algorithms over it all. One of the first 
stages of any big data analysis is often data reduction, that 
is in various ways reducing the total size of the dataset we 
are going to deal with. This might reduce it to a size that 
can be managed on a single computer. However, even if 
we still need to break the problem up so that it can be 
executed in parallel on lots of machines, at least there will 
be less of it. 

Stated like this, data reduction sounds like a necessary 
evil; however, sometimes it can actually make things bet-
ter. Having smaller data for machine learning can some-
times lead to more comprehensible and more general-
isable rules. Precise methods of data reduction vary for 
different kinds of data such as graph data, event streams 
and image sets. However, general rules apply reducing 
the number of items you need to consider by some form 
of selection or abstraction and reducing the complexity 
of the data about each item. 

We’ll primarily consider a large table with N record-
s/rows (perhaps records representing users or web 
pages) and C columns of features/properties of them. 
Both are typically large, but we’ll assume N, the number 
of rows/records, is extremely large, several millions or 
even billions, and C, the number of columns, is at least 
in the thousands. 

There are a number of options for this: 

1. reduce the complexity of the information consid-
ered for each item (reduce C) – often called di-
mensionality reduction 

2. reduce the total number of data items we consider 
(reduce N) 

3. reduce the number of data items considered by 
one processor at one time 

Even when we have massive computation available, we 
may still use the two strategies, especially (1), as this 
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makes each computation more effective. Also note that 
while option (3) is primarily used to allow parallelism 
(working with lots of processors at the same time), it can 
also be used sequentially on a single machine as a means 
to ensure that it can have all data in memory. 

We’ll look at a few options for each in turn. 

8.4.1 Dimension Reduction 

When data is numeric, the C data features can be thought 
of as coordinates in a C dimensional space ℝC . The term 
dimension reduction is about trying to find a smaller set 
of features, so that the space has a smaller number of 
dimensions. However, the term may also be used when 
the features are non-numeric. 

8.4.1.1 Vector Space Techniques 

When the features are numeric, we can apply statistical 
techniques to find a smaller dimensional space that re-
tains as much as possible of the variation of the origi-
nal data. Commonly one looks for a collection of B ‘basis 
vectors’ b1, b2, ..., bB, in the same C-dimensional vector 
space as the item features, where B is a lot smaller than C, 
the original number of dimensions. For each data item d, 
we construct B new features f1, f2, ..., fB using the vector 
dot product: 

fi = bi • d 

The features fi are then used as the new B-dimensional 
representation of the data item. Mathematically this is 
projecting the C-dimensional space into the smaller 
space that is spanned by the vectors bi. 

One way of choosing the basis vectors (and hence 
the C-dimensional subspace) is by choosing the first B 
principal components. These are the directions in which 
the data varies most (see Chap. 7). They can be derived 
by calculating the eigenvectors and eigenvalues of the 
correlation matrix between the original C features. This 
gives the optimal space in the sense that the data loss 
is smallest in terms of ‘least squares’, the sum of the 
squares of the distance of the points from the chosen 
subspace. 

Thinking in terms of B-dimensional subspaces of C-
dimensional feature spaces when C may be many thou-
sands and B still dozens of dimensions can be a bit mind 
blowing, so Figure 8.4 shows this in two dimensions, with 
a 1-dimensional subspace being chosen. See how the first 
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FIGURE 8.4 Projecting into subspace defined by principal 
components. Adapted from Nicoguaro – CC BY 4.0, https:// 
commons.wikimedia.org/wiki/File:GaussianScatterPCA.svg. 

principal component points along the direction where 
the data varies most. 

Calculating principal components when the vector 
space is very large can be computationally expensive as 
the correlation matrix is C × C, so typically contains 
many millions of elements. Although the principal 
components are optimal, choosing a few more ‘good 
enough’ vectors can work nearly as well. Indeed, even 
completely random vectors may be sufficient. 

Another possibility is to calculate principal compo-
nents for smaller collections of features that are in some 
way linked, for example working on the engine charac-
teristics of a car separately to the appearance and internal 
comfort features. Because the algorithms use scale with 
powers of C, doing, say, 3 lots of C/3 features typically is 
substantially less time consuming than dealing with all C 
together. 

Finally, the calculation of principal components relies 
on each individual feature having roughly similar vari-
ability. Sometimes the library functions you use will deal 
with this, but if not, you may need to scale features before 
performing the analysis. 

8.4.1.2 Non-numeric Features 

Some forms of non-numerical data can be used in vector-
based approaches by taking simple 0/1 indicator vari-
ables for categorical data or other transformations. How-
ever, this is not always possible. In such cases one can 
take subsets of features and use some form of unsuper-
vised clustering or similar technique to reduce several 
features into one or more categories. 

If you did this for all of the data at the same time, 
you would hit the same learning problems that you are 
trying to avoid by using data reduction, but operating on 
small groups of features can make this manageable. In 
addition, some techniques, notably multi-dimensional 
scaling (MDS) can transform similarity data into 
two-dimensional (or other) spaces preserving distance. 
Using an algorithm such as this can mean a group of 
non-numerical features can be transformed into two or 
more numeric fields. 

8.4.2 Reduce Total Number of Data Items 

8.4.2.1 Sampling 

A simple way to reduce the number of data items 
is to sample. When the data does not start digital, 
this is common practice: except for an occasional 
census or tax return, one rarely gathers information 
about every person in a country, but academic or 
market researchers will interview a sample of people 
and then use these to estimate figures for the overall 
population. 

When the data is digital, it almost feels wrong to ignore 
some of it, but you can use a similar process. For exam-
ple, you could randomly choose 20,000 records from the 
complete dataset and perform a machine learning algo-
rithm on these. So long as the sample size is large and the 
sampling does not create any bias (don’t just pick the first 
20,000!), this may give good results, certainly for more 
general characteristics. 

The downside of this approach is that it may not work 
so well if there are relatively small parts of the dataset 
with special characteristics. For example, if the data 
is based on users of a sporting website, sampling may 
give good results for popular pastimes such as football, 
but less so for more niche ones such as cockroach 
racing. One way to deal with this problem is to use a 
form of boosting. You first train on a (relatively) small 
sample, then check this against a larger sample. You 
then select some of the examples on which it behaves 
less well, add these to the training set and try again (see 
Figure 8.5). 

Alternatively the records that are poorly matched 
could be taken as the basis of a completely different 
machine learning phase, training rules specifically for 
them. This is a form of segmentation, which we’ll look 
at in more detail below. 
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FIGURE 8.5 Pseudocode for boosting niche record sets. 

8.4.2.2 Aggregation 

Rather than ignoring some records, we can collect to-
gether records that have some form of common charac-
teristic and create one or more summary records. This 
can be done using some pre-existing criterion, or exam-
ple geographic region for people or genre for music, or it 
can be derived from the data, such as the poorly matched 
records above, or a clustering algorithm. 

For numeric data the summary for the aggregate may 
be the sum or average value (mean or median), maybe 
with some measure of spread such as min/max quartiles 
or standard deviation. For example, we may have global 
geographic data with data for many small regions which 
we are collecting to give a single record for each country. 
The summary might have the sum of the region popula-
tion figures, but the average rainfall (maybe weighted by 
region area). 

For non-numeric data it is often less clear how to form 
a summary. In such cases the many individual records 
could be replaced by a small number of records chosen 
to be ‘typical’ of the group as a whole. This is often a 
good choice for text or image data where, for example, 
an ‘average’ image may just be a grey smudge. 

8.4.3 Segmentation 

One way to reduce the number of records is through seg-
mentation, that is simply dividing the large dataset D into 
a number of smaller datasets and then working on them 
all, but separately. This does not reduce the total amount 
of data but means that it can more easily be processed 

in parallel. In addition some of the techniques make it 
possible to incrementally add batches of data (time of 
availability acting as the segmentation rule) rather than 
completely re-training when new data becomes available. 

As with sampling, some of the segmentation meth-
ods rely on each segment of the data being in some way 
representative of the dataset as a whole. Where this is 
the case, random segmentation may be sufficient, but 
with the same limitations we saw for sampling when the 
dataset is unbalanced. 

8.4.3.1 Class Segmentation 

One way to divide the data is if it falls into natural classes. 
As with aggregation, this can use a pre-existing criterion, 
or be derived from the data, through some form of unsu-
pervised learning. Machine learning can then be applied 
to each of the segments yielding rules for each. When we 
want to deal with a fresh input, the same criterion is ap-
plied to choose the appropriate rule set (see Figure 8.6). 

8.4.3.2 Result Recombination 

Some algorithms can process parts of the data and 
then combine the results. This is particularly the case 
for several kinds of statistical processing including 
calculating minima, maxima, sums, and averages 
(below), and a similar technique can be used for more 
complex calculations creating correlations between 
fields and n-grams (multi-word word frequencies in 
text). 

1. split dataset D into N segments D_1 ... D_N 
2. for each D_i 

https://alandix.com/glossary/aibook/boosting
https://alandix.com/glossary/aibook/clustering algorithm
https://alandix.com/glossary/aibook/quartiles
https://alandix.com/glossary/aibook/standard deviation
https://alandix.com/glossary/aibook/segmentation
https://alandix.com/glossary/aibook/segmentation
https://alandix.com/glossary/aibook/segmentation rule
https://alandix.com/glossary/aibook/segmentation
https://alandix.com/glossary/aibook/random segmentation
https://alandix.com/glossary/aibook/unsupervised learning
https://alandix.com/glossary/aibook/unsupervised learning
https://alandix.com/glossary/aibook/Machine learning


110 ■ Artificial Intelligence 

FIGURE 8.6 Segmentation of training set into classes to allow dedicated classifiers for each. 

2.1 calculate the minimum, maximum, 
sum and count of items 

2.2 store these as mn_i, mx_i, s_i 
and ct_i respectively 

3. take the stored results and calculate: 
3.1 D_min = minimum of the mn_i 
3.2 D_max = minimum of the mx_i 
3.3 D_sum = sum of the s_i 
3.4 D_ct = sum of the ct_i 
3.5 D_avg = D_sum / D_ct 

Some ensemble algorithms including random forests 
deliberately segment the dataset in order to create 
diversity (see Chap. 16). Here the combination rule is 
part of the fundamental algorithm. For example, for 
random forests each segment creates a single decision 
tree, and these are simply gathered together into a forest. 

Both this and class-based segmentation are particu-
larly appropriate for processing by MapReduce (see Sec-
tion 8.5.3 below). 

8.4.3.3 Weakly Communicating Partial Analysis 

Other algorithms lend themselves to parallel execution 
on parts of the dataset but with some low-volume inter-
actions. A good example is genetic algorithms. Subsets 
of data, perhaps selected randomly, are sent to different 
processors which individually use a GA to work out rules 
for their sample of the data. Occasionally the processors 
share a few of their top ranked rules with each other and 
swap some of their data sample for fresh data. 

You can think of this a bit like animals breeding in 
small valleys, with natural selection happening locally 
in each. Occasionally a few of the stronger individuals 
make it over into neighbouring valleys and so spread 
good genes in the global gene pool. 

8.5 PROCESSING BIG DATA 

8.5.1 Why It Is Hard – Distributed Storage and 
Computation 

When we looked at recommender systems in Chapter 7, 
we discussed a simple way of constructing product– 
product scores from the matrix M of user–product 
engagement scores (films liked by each user). This was 
effectively computed by multiplying an N × P matrix by 
its own transpose, where N is the number of users and P 
is the number of products. The pseudocode for this is: 

score(product A, product B) 
sum = 0 
foreach user u 
sum = sum + M(u,A) * M(u,B) 

return sum 

When we are looking at web data, N, the number of 
users could be anything from a few million to billions, 
and P, the number of products, could be from tens 
of thousands to millions. That is the matrix M may 
range from 10s of billions to more than a quadrillion 
(1,000,000,000,000,000) entries; that is from about a 
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hundred gigabytes to more than a petabyte of data. The 
simple algorithm above would take around P × P × N 
iterations of its inner loop to calculate every product– 
product entry, that is 100s of trillions of times even for 
the smaller end. 

It is clear that 

1. The data needs to be stored in ways that take ad-
vantage that it is sparse (most entries are zero) 

2. Even when reduced, the data still needs to be split 
over many data stores (disks/memory) – often 
called sharding 

3. The computation needs to be divided among 
many processors 

4. The computation needs to be organised so that it 
accesses the data in efficient ways 

If each user engages with on average E products, maybe 
a few hundred, then a sparse representation of M (point 
1) could take space proportional to N × E, that is ‘only’ 
billions to trillions of entries. At the lower end, we might 
just fit into a single machine, but if not, (2) is essential. 

Storage for the sparse matrix will tend to either group 
all the product entries for a single user together on a sin-
gle disk, or all the user entries for a given product. If they 
are stored the first way round, it is easy to do something 
to all the product entries for a given user but hard to 
find all users that have engaged with a particular prod-
uct. Whichever way round it is done, the code above will 
be very slow and involve a lot of network traffic shunting 
small packets of data around. 

If there are more users than products, it is most likely 
that the entries for a single user are clumped together. 
Given this, it is more efficient to organise the code by first 
of all looping over all users: 

S = PxP matrix // product-product score 
foreach user u 
foreach pair of product A, B 
add M(u,A) * M(u,B) to S(A,B) 

If each user’s entries are together on the same disk, then 
this is efficient grabbing all the entries for a single user 
and working on them at once. That is the code is local – 
accessing data that is stored physically close to one an-
other. 
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Notice that this code does something to lots of 
entries about the same user and then adds up results. 
Furthermore the order of adding up doesn’t matter, 
making it easy to combine results of smaller calculations. 
That is we can create a separate product–product score 
for each shard (portion of the dataset stored on a single 
device), and then add up the S(A,B) value from each 
individual shard to give an overall product–product 
score. 

This is a fairly common pattern. For example, n-gram 
calculation can be performed by computing all the 
n-gram frequencies for a group of web pages and then 
pooling the results. 

This pattern has led to a particular style of cloud com-
puting called MapReduce [71]. 

8.5.2 Principles behind MapReduce 

MapReduce is based on two concepts that themselves 
have their origins in the AI language LISP and later func-
tional programming languages (see Figure 8.7). 

In LISP map is a higher-order function, it takes a func-
tion and a list of values and applies the function to each 
item in the list returning a new list: 

map( f, [ a, b, c, d, ..., z] ) 
= [ f(a), f(b), f(c), f(d), ..., f(z) ] 

For example: 

function square(x) return x * x; 

map ( square, [1, 2, 7, 42, 6 ] ) 
= [ 1, 4, 49, 1764, 36 ] 

Notice how this ‘does the same thing’ to lots of dif-
ferent entries, just as we needed to process each user’s 
entries. 

The other part of MapReduce is based on another 
higher-order function, reduce, which is a generalisation 
of operations such as ‘sum’ that add up all the entries in 
a list. It takes a function that can combine two values and 
then applies it successively to create a sort of running 
total: 

reduce( g, init, [ a, b, c, d, ..., z] ) 
= g( z, g(... 

g(d,g(c,g(b,g( a,init)))) 
...) ) 
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FIGURE 8.7 Pseudocode for map and reduce in functional programming. 

For example: 

reduce ( '+', 0, [1, 2, 7, 42, 6 ] ) 
= 6 + 42 + 7 + 2 + 1 + 0 

Many operations can be accomplished by combining 
the two, for example to compute the sum of squares: 

sum_of_squares( entries) 
= reduce ( '+', 0, map( square, entries) ) 

8.5.3 MapReduce for the Cloud 

The versions of map and reduce for cloud computing are 
different but borrow loosely from this pattern. The key 
difference is that instead of operating in sequences or 
lists, they operate using hashes. The hash of a value is a 
way of mapping values to near unique, shorter versions 
that are effectively randomly spread. One example for a 
string of letters would be to take their numeric values, 
add them together and then take the last two digits. This 
would map every text string, no matter how long, onto a 
number between 0 and 99. Real hashes ‘shuffle’ the values 
up a little more. 

The reason for using hashes in large-scale data pro-
cessing is that if, for example, you use the actual val-
ues and these have some pattern (perhaps lots of names 
start with ‘A’), then the data is spread unevenly leading 
to bottlenecks. Let’s assume that the data in M is ini-
tially stored collected in a field called pscore in user 
records and these records are stored in lots of different 
data stores. We first define a function (Figure 8.8.i) that 

is executed on whatever processor is convenient, possi-
bly the user records are sent in batches to processors, or 
perhaps the code is sent to a processor that is attached to 
the data store of the user records. Crucially this code can 
run in parallel by different processors on different user 
records. 

The output consists of a hash code plus a data packet. 
The hash codes are allocated arbitrarily to a number of 
processing units for the reduce stage. Say we have de-
cided to use 37 processors for this stage, we would simply 
send all the packets with hash code h to processor h mod 
37. Because the hash function is designed to mix up the 
values, we can be confident that this will create a fairly 
even balance between processors. 

The data packets with the same hash code are then col-
lected together and passed to a task-specific reduce func-
tion (Figure 8.8.ii), which combines all of the individual 
user results for a particular product pair. Because each 
data packet for a pair A, B goes to the same hash, they 
will all end up in the same processor, and so there will be 
only one processor generating a particular A–B value as 
output. 

The outputs from this stage can be used as input for 
further MapReduce phases, or can be collected together, 
as they would in this example to generate the product– 
product scores matrix. 

8.5.4 If It Can Go Wrong – Resilience for Big 
Processing 

Figure 8.9 summarises the main steps in MapReduce. 
There are two innovative and essential aspects of 
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FIGURE 8.8 Pseudocode for map and reduce in cloud computing framework. 

MapReduce cloud computing framework over and 
above the Lisp/functional programming foundations in 
Section 8.5.2. The first, which we’ve already discussed, 
is the use of the hash to enable balanced distribution 
over processors. The second is that both Google’s own 
implementation and alternatives, such as the Apache 
Hadoop framework, are built to be robust to failure. 

When you write code, you probably assume the com-
puter will do what you ask it to. You will of course have 
bugs or parts of your code with behaviour you don’t quite 
understand, but you will normally assume that the com-
puter works reliably. 

Indeed, if your computer does develop a fault, it is 
most likely to show up in the failure of one of the other 
programs that are executing such as the operating system 
or web browser, before you notice a problem in your own 
code. If something does go wrong with your computer, 
you send it for repairs and restart a failed computation 
from scratch (when it is fixed). In other words you treat 
your computer as though it is always perfectly correct, 
or completely broken, and happily the latter is rare and 
exceptional. 

However, a data centre may have tens of thousands of 
computers and a single computation may be executing 
on large numbers of them. At this scale, failure isn’t 
an exception but normal. It will typically be the 
case that some processors in the data centre have a 
fault. 

Happily MapReduce lends itself well to fault-tolerant 
computing. There is no communication between proces-
sors within each stage, and so if a processor fails, its cal-
culations can simply be repeated. If the partial results 
have already been distributed, the framework keeps track 
of this and re-executes any knock-on reduce or gathering 
stages as necessary. 

Dealing with this kind of failure is complex, and one 
of the reasons for the success of MapReduce is that it 
deals with all of this for you. Of course you have to be 
able to transform your chosen algorithm into an equiv-
alent MapReduce form, and this might mean modify-
ing it slightly. However, where possible it can be a rel-
atively rapid way to create systems that can be deployed 
at scale. 

8.6 DATA AND ALGORITHMS AT SCALE 

8.6.1 Big Graphs 

A lot of web data is in the form of graphs: the links be-
tween pages, friendship connections in social media, the 
triples of RDF and the Semantic Web (Chap. 17). Most 
web graphs, and indeed many large graphs, have two key 
properties: 

Long–tail distribution – Some web pages have vast 
numbers of links inwards, or outwards, but the vast 
majority have few; similarly in a social network 

https://alandix.com/glossary/aibook/MapReduce
https://alandix.com/glossary/aibook/Apache Hadoop
https://alandix.com/glossary/aibook/Apache Hadoop
https://alandix.com/glossary/aibook/robust to failure
https://alandix.com/glossary/aibook/MapReduce
https://alandix.com/glossary/aibook/fault-tolerant
https://alandix.com/glossary/aibook/MapReduce
https://alandix.com/glossary/aibook/MapReduce
https://alandix.com/glossary/aibook/social media
https://alandix.com/glossary/aibook/RDF
https://alandix.com/glossary/aibook/Semantic Web
https://alandix.com/glossary/aibook/Long--tail distribution


114 ■ Artificial Intelligence 

FIGURE 8.9 MapReduce distributed computation pipeline. 

a small number of people have vast numbers of 
contacts, where most have few. 

Small world – You may have heard of ‘six degrees of 
separation’, everyone you meet in the world is typ-
ically linked by a chain of six or more friends of 
friends; social networks naturally then follow this 
pattern. Web pages are the same with any pair of 
pages connected by a relatively small number of link 
hops. 

The first of these means that you have to be very care-
ful of algorithms that work with averages or samples, as 
the small number of exceptional pages/people can skew 
results. It also means that one has to be careful that algo-
rithms do not fail when they hit these highly connected 
individuals, especially when thinking about load balanc-
ing over processors. 

The second means that any form of ‘local crawl’, start-
ing at an individual and then looking at friends, friends-
of-friends, etc. will grow very rapidly. Effectively they 
have poor locality, with links rapidly cross-cutting be-
tween regions of the web. 

In addition, all forms of graph processing have an ad-
ditional problem: 

Combinatorial explosion – The number of possible 
links between nodes increases with the square of 
the size of the graph, the number of paths between 
nodes, even faster. For example, a graph of size 10 

has 90 possible directed links, while one of size 
1000 has nearly a million. 

Because of this, graph theorists in mathematics joke (yes 
mathematicians do have a sense of humour!) that prob-
lems on graphs with less than four nodes are trivial, those 
with four or five nodes are challenging and those with 
six or more impossible. Of course, we may be looking at 
graphs with millions or billions of nodes! 

Processing big graphs therefore poses equally big chal-
lenges. MapReduce allows massive-scale processing be-
cause the data can be broken up and processed separately 
– it exploits locality, but because graphs have links every-
where, some problems we’d like to address are inherently 
non-local. 

Happily, there are exceptions and important ones, no-
tably the PageRank algorithm [32] used by Google has a 
MapReduce implementation. Indeed this was one of the 
reasons for developing MapReduce in the first place. 

For smaller graphs there are special systems for storing 
the data, such as triple stores, discussed in Chapter 17. 
Typically these make it easy to do ‘link chasing’ algo-
rithms, for example finding all the friends of a person, 
and some support forms of reasoning, such as under-
standing that ‘descendant of ’ is transitive so that if A is 
a descendant of B and B is a descendant of C, then A is 
also a descendant of C. 

Truly scalable graph processing frameworks are 
harder as they inevitably have to deal with non-locality, 
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but can help, for example with fault tolerance, and 
packaging up messages between vertices. Some are built 
as specialised systems from the ground up, others built 
over existing big-data frameworks such as MapReduce. 

Sometimes the uneven, clumpy nature of graphs can 
be an advantage and used to create an abstraction of the 
overall graph. It may be possible to cluster nodes and 
then look at the graph of clusters, for example looking 
at the graph of websites rather than web pages. These 
clusters may be based on predetermined features, such 
as the domain name of a URL or geographic location of 
a person, but clustering algorithms can be used to detect 
cliques. Alternatively in a social network it may be pos-
sible to focus on the highly connected individuals that 
arise because of the long tail nature of networks. 

Local patterns can be used as features for non-
graph algorithms. For example, the number of friends 
(connectedness), how many of those friends are friends 
of each other (cliquiness). Of course, these properties 
themselves can recursively be used, for example is 
someone friends with lots of highly connected people. 
Although more sophisticated than this, social networks 
largely use this form of local processing as it is impossible 
to perform complete analysis of graphs of billions of 
nodes. 

8.6.2 Time Series and Event Streams 

There are special issues and algorithms when dealing 
with time series or event stream data (see Chap. 14). 
Some techniques are based on windowing (working on 
sections of the data stream) and so are naturally parallel 
algorithms, but others depend on processing data 
serially and are thus hard to deal with using multiple 
processors. 

8.6.2.1 Multi-scale with Mega-windows 

In some cases, even if the underlying algorithms need to 
process the data in a serial fashion, it may be possible to 
break the data into large windows, process each serially 
and then bring the different parts together in some way. 
In particular, parallel algorithms can be used as the first 
part of a multi-stage/scale algorithm (see Chap. 14). For 
example, millisecond sample data can be split into large 
windows, say an hour for each window. Each hour’s data 
is used by an unsupervised algorithm to build classifiers 
for short, say one minute, sections. It is usually easier to 
test a classifier than build it, so the resulting rules can 
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be shared with other processors and the most successful 
overall used by each processor to classify their data into 
one-minute regions. The classified one-minute chunks 
then form a much smaller sequence that can be collected 
together and processed using small-data techniques. 

8.6.2.2 Untangling Streams 

Event streams often have some natural form of source or 
topic that can be used to disentangle the single stream 
into multiple smaller streams. For example, separating a 
Twitter (X) stream based on people or tags. Alternatively, 
some form of classifier can be used to classify each event 
into streams. Note that this fits well into a MapReduce 
framework. The input event stream is split into chunks 
or randomly routed to multiple servers. Each performs a 
map operation (the classification) assigning a hash based 
on the class or topic. The reduce stage collects together 
the events for a single topic, sorts them based on time of 
arrival and then processes the event stream using stan-
dard techniques. 

8.6.2.3 Real-time Processing 

A pinch point in gathering any form of time-series 
big-data is the initial arrival of data. Sometimes this will 
mean some very fast data reduction simply to make it of 
a scale that can be stored. For example, the detectors in 
the particle accelerator at CERN have to deal with 600 
million events per second, with substantial data for each 
event [42]. Dedicated processors use fast hand-written 
algorithms to discard uninteresting events and reduce 
this to about 100,000 events per second. Second stage 
algorithms then further process this and reduce this to a 
few hundred events per second. It is only then that data 
is stored and passed on for higher-level processing. 

8.7 SUMMARY 
We have seen that while in some ways deep learning is 
just about neural networks with lots of nodes and lots 
of layers, it is also evident that the behaviour of these 
networks has a distinct nature and feels as though it is 
not just more but also different. We can see how the vari-
ous layers in the network may embody levels of abstrac-
tion and that we can tune this for various applications 
by making appropriate architectural choices as to sizes, 
connectivity and learning rules of each layer. 

We saw a similar story for other forms of big data anal-
ysis, at some point a change in quantity can lead to a 
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change in the qualitative nature of results produced in-
cluding apparently intelligent behaviour from simple sta-
tistical techniques. 

Sometimes the data is insufficient for certain forms of 
deep learning, so we need to use ways to grow the dataset. 
Adversarial techniques have proved particularly useful 
in a number of applications, not least game playing. More 
often we need to look for ways to reduce the volume of 
data that we have to consider in total or by any single 
processor. We have seen in particular that MapReduce 
has proved powerful in allowing robust large-scale 
computation of data that is far too big for a single 
computer. 

Some forms of big data have particular problems; 
notably graphs, such as social network data, do not 
have good locality making it hard to divide over 
processors. Time-based data can also be complicated, 
especially large quantities of real-time data that 
may need to perform data reduction close to the 
source. 

8.1 A large dataset contains school records for every 
pupil in the country over several years. As well as 
basic demographics and subject-by-subject exam 
results, it also includes social data such as lists of 
friends. The data is proving too large to process as 
a unit, so several strategies are being considered: 

(i) Take all the pupils in a school class and aver-
age the values for exam results and other ap-
propriate fields, resulting in one record per 
class. 

(ii) Process the data from each region of the 
country separately. 

(iii) choose 5000 pupils at random and perform 
the analysis only on their records. 

a. For each of the above identify the kind 
of data reduction being employed. 

b. Can you think of advantages or disad-
vantages to any of these options, maybe 
for particular kinds of analysis? 

8.2 School records include exam data for each pupil 
in the form subject:score in the first and second 
semesters: 

semester_1: { maths:53, history: 67, 
geography: 63, ... } 

semester_2: { maths:82, history: 71, 
geography: 59, ... } 

Following the pattern in Figure 8.8, write 
MapReduce pseudocode to calculate the average 
improvement for each subject between semesters 
1 and 2 over all pupils. (That is the semester 2 
score minus the semester 1 score for the subject.) 

8.3 It is hypothesised that friends will tend to 
improve in the same subjects. Consider how 
you might process the very large school dataset 
to investigate this. Which aspects are easy and 
which are difficult? If you think of a suitable 
strategy, write pseudocode for your solution. 
Note, this may be a good exercise to work on in a 
pair or small group. 

FURTHER READING 
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This includes both more statistical approaches and also 
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ral networks, which we’ll encounter in later chapters. 

J. Luengo, D. García-Gil, S. Ramírez-Gallego, S. García, and F. 
Herrera. Big data preprocessing. Springer, Cham, 2020. 
This book covers in depth many of the issues in this chapter 
including data reduction and the use of processing frame-
works such as MapReduce and Hadoop. 

M. Nielsen. Neural networks and deep learning, 2019. http://ne 
uralnetworksanddeeplearning.com/ 
A short free online book that offers an accessible overview 
of neural networks and deep learning including examples 
in Python. 

J. Dean and S. Ghemawat. MapReduce: Simplified data pro-
cessing on large clusters. Communications of the ACM, 
51(1):07–113, 2008. 
This is the definitive paper on MapReduce. The paper not 
only explains the framework but is written by developers 
who had extensive experience building distributed algo-
rithms and therefore can attest to the value of the infras-
tructure. 
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9 CHAP T ER 

Making Sense of Machine Learning 

9.1 OVERVIEW 
We’ve seen various examples of machine learning 
techniques including classic knowledge-rich methods 
(Chap. 5), neural networks (Chap. 6) and statistical 
techniques (Chap. 7). In this chapter we’ll reflect on 
some of the broader issues that cut across many of 
these techniques. The chapter starts with a recap of the 
main stages of machine learning: training, validation 
and application, looking at general principles and 
issues for each. It then looks at properties of the fitness 
landscape and how understanding this can both help 
choose an appropriate algorithm and then guide its 
application. Finally we will look at some of the potential 
complexities and pitfalls you may encounter in using 
machine learning. 

9.2 THE MACHINE LEARNING PROCESS 
In Chapter 5 we saw that machine learning has three 
main phases (Figure 5.3): 

training – Building some sort of collection rules or 
other representation based on a training set of 
examples. 

validation – In some way check that the rules generated 
are operating satisfactorily. 

application – Using the rules to address new situations 
or data beyond those in the training set. 

FIGURE 9.1 Training phase of machine learning. 

We’ll first look at these in more detail before exploring 
other issues. 

9.2.1 Training Phase 

The training phase (Figure 9.1) usually starts on some set 
of existing data, the training set. In Chapter 5, we saw 
that there were two main classes of algorithm, supervised 
and unsupervised learning, depending on whether the 
data has some sort of pre-existing label. We have seen 
examples of each: 

supervised learning – When the training set comes 
pre-labelled with some form of classification or 
expected response. Examples we’ve seen include 
version spaces, decision trees and, of course, many 
kinds of neural networks. 

unsupervised learning – When the data is unlabelled 
and the algorithm creates its own labels or structure. 
Examples we’ve seen include Kohonen nets, princi-
pal components and k-means. 
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The learning algorithm also usually needs some form 
of fitness function (sometimes called an objective 
function), that says how well the algorithm is doing. For 
supervised learning this is usually how close the algo-
rithm is to giving the right answer. For a binary yes/no 
categorisation this may simply be a count of how many 
times the algorithm gets the right answer. However, 
in other cases the fitness function needs to capture a 
measure of “how close am I?”. For unsupervised learning 
the fitness is more about the coherence of the grouping 
or classification, for example, if there is some measure of 
similarity between items in the training set, this might 
compare the average similarity of items put in the same 
category to the average similarity of those in different 
categories. 

The fitness function may not be explicit, but there 
is usually something that the algorithm is trying to 
be good at. Sometimes you may need to provide this 
directly yourself, or sometimes things that contribute to 
it (e.g. a similarity measure). In addition, you may often 
need to provide additional configuration parameters for 
the algorithm, such as the number of nodes in a neural 
network. 

The output of the learning phase is usually some form 
of rule set. These may be very clearly ‘rules’, for exam-
ple IF–THEN rules, or a decision tree, but may also be 
represented more abstractly, for example as weights in a 
neural network. 

9.2.2 Application Phase 

During the application phase (Figure 9.2) the rules are 
used to classify or process unseen examples, for example 
images to be classified, or board positions in the middle 
of a game. A recognition algorithm takes the rule set and 
the unseen example and allocates the class label or de-
cides the next move. 

In the case of supervised learning, this will be from 
the original set of labels used during training, in 
the case of unsupervised learning the categories, or 
other representation created by the learning algorithm 
itself. 

In some cases, for example in many neural networks, 
the training and recognition algorithms look very simi-
lar, but this need not be the case. For example, a genetic 
algorithm may be used to create a set of IF–THEN rules, 
which are later converted into raw code to run on a tar-
get platform. The learning algorithm must in some sense 

FIGURE 9.2 Application phase of machine learning. 

know about the eventual recognition algorithm as it is 
creating the rules for it, but this can be relatively indirect. 

9.2.3 Validation Phase 

In Chapter 5, we noted that this stage may be omitted 
or not explicitly present. This is especially the case when 
further learning is taking place after deployment, for 
example the speech recognition in a home assistant 
that is constantly adapting to the voices of the home 
occupants. There are two different reasons one may 
want to validate a system: 

Evaluation – checking how successful the learning has 
been 

Interpretation – making sense of the rules generated 

We will look at evaluation in more detail below (Sec-
tion 9.3). 

In the case of supervised learning, we might simply 
be happy with the evaluation, it does what it should. 
However, sometimes we want to understand in more 
detail. This can be trivial, for example a small set of 
IF–THEN rules, or apparently impossible, for example 
a billion weights in a large neural network. Even if we 
understand the rules, making sense of how they came 
about, the learning process, may be important. This 
issue of explainable AI is a topic in itself and we will 
return to it in Chapter 21. 

For unsupervised learning, there are three broad ways 
the output may be used (see Figure 9.3). 

Visualisation and understanding – Here the end 
point is to help a user make sense of the data. 
There may never be a further application phase. 
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The techniques for this are similar to those for 
explainable AI when the output is also used in an 
application (see Chap. 21). 

Expert labelling – In some cases, the machine learning 
algorithm is used to allocate the data into groups/-
clusters or perhaps create a representation in terms 
of a small number of features. An expert then looks 
at these and labels them (see also Chap 18). Later, 
when a new data item is seen it can be allocated 
the expert label. For example, suppose patients 
have been grouped by ML based on symptoms, a 
doctor then looks at the groups and labels each 
group by potential ailments. Later when a new 
patient arrives, the recognition algorithm allocates 
the patient to one of the learnt groups, and then 
this is used to associate them with the relevant 
ailment. 

Pre-processing – The second way unsupervised 
machine learning is used is as a pre-processor for 
data that is then passed into another supervised 
machine learning algorithm. Revisiting the medical 
example, we may actually have a diagnosis for each 
patient in the training set, but initially ignore this 
to perform unsupervised learning. The label for 
each patient is then re-attached to the reduced 
representation created by the unsupervised 
algorithm and this is fed into another learning 
algorithm. This sounds a little indirect, but the 
unsupervised algorithm is effectively simplifying 
the data. 

9.3 EVALUATION 
For supervised learning we want to know whether the 
machine learning has been successful. There are two sep-
arate questions: 

1. How well does it do on the training set? 

2. How well does it do on unseen examples? 

Sometimes you will see both figures quoted. However, 
we would normally expect better response on the train-
ing set than on unseen examples, so it is the latter that 
is most critical as this tells us how well our learnt rules 
generalise. 
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FIGURE 9.3 Three ways of using the output of unsupervised 
learning. 

9.3.1 Measures of Effectiveness 

The most obvious measure is accuracy, how often the 
predicted classification or label is correct. However, this 
may be a very poor measure, particularly if the base rate 
of the thing you are interested in is low. For example, just 
under 10% of people worldwide have diabetes (the base 
rate). If a diagnostic test for diabetes always says “No” it 
will be 90% accurate ...but utterly useless. For Fabry dis-
ease affecting about 1 in 40,000 the simple “No” answer 
will be 99.975% accurate, so whenever you see an accu-
racy figure on its own, think base rate! 

For a simple binary classification such as “Has diabetes 
Yes/No?”, there are four numbers which between them 
define the effectiveness of the learning. 
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True positives (TP) – the test says “yes” and this is right 

False positives (FP) – the test says yes, but it is wrong 
(in statistics called a Type I error) 

False negatives (FN) – the test says “no”, but it should 
have said “yes” (in statistics called a Type II error) 

True negatives (TN) – the test says “no” and it is right! 

Ideally FP and FN are both zero, but of course that is 
rarely the case. The simple accuracy measure is (TP + 
TN)/Total, but as we saw this is a poor measure if there 
is a large discrepancy between the number of people/data 
items in the two classes. 

Two measures that are often quoted are: 

Precision – the proportion of times that a data item with 
a positive test result really is positive 
= TP/(TP+FP) 

Recall – the proportion of times that a data item that 
really is positive has a positive test result 
= TP/(TP+FN) 

In the diabetes example, precision is addressing the ques-
tion “if the ML system says someone has diabetes, how 
likely is it to be right”, whereas recall addresses the ques-
tion “if someone has diabetes, how likely is it the ML sys-
tem will diagnose them?”. 

Sometimes these are combined into a single measure, 
the F score: 

F = 2PR/(P + R) 
This F score can be useful as a quick summary, but while 
this is better than the simplistic accuracy measure, do 
always look at the details, not just the single score. 

9.3.2 Precision–Recall Trade-off 

Often you can make choices that trade-off precision 
against recall. The simplest example is when the learning 
system outputs an “evidence for diabetes” score rather 
than a simple “yes/no”. This can be converted into a 
“yes/no” by using a threshold. If the threshold is high, 
you reduce false positives, so precision is high, but also 
increase false negatives, so recall goes down. You may 
get similar effects by varying parameters for the learning 
system, such as the number of nodes in hidden layers of 
a neural network. 

FIGURE 9.4 ROC curve – trade-off between false positive and 
false negative rates. 

As you vary the threshold, or other parameter, you 
can plot precision vs recall on a graph and see a curve, 
called the Receiver Operating Characteristic (ROC) 
curve, where increasing precision reduces recall and 
vice versa. Figure 9.4 shows an example ROC curve. 
Note that the axes in a ROC curve are usually shown as 
true positive rate (same as recall) on the y-axis and ‘false 
negative rate’ (one minus the precision) on the x-axis. 
That is a small value on the x-axis is best and a large 
value on the y-axis is best. 

Ideally we would have 100% precision (no false 
positives) and 100% recall, but that is rarely the case! 
The ROC curve can be used to answer questions such as 
“if I want precision to be at least 90% what is the best 
recall”, or to make cost–benefit trade-offs. The curve in 
Figure 9.4 is typical, choosing a high value for precision 
means recall is low and vice versa. Often we choose a 
point somewhere on the middle of the ROC curve. 

The ROC curve can also be used to compare different 
machine learning algorithms, say A and B. If you just test 
with a single threshold for each, it can be hard to com-
pare the different precision and recall as neither may be 
better on both, but if you plot the ROC curve for them 
(Figure 9.5) and the A curve lies above the B one, you 
know that whatever parameter values you chose for B, 
there will be a choice of A parameter that will beat it on 
both criteria. As A is uniformly better than B, it would 
be the best choice between the two. Often things are not 
so easy. Suppose we want to choose between classifiers B 
and C; B is better than C if we require high recall, but 
it is worse when we want high precision. In addition, 
other considerations need to be taken into account, such 
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FIGURE 9.5 ROC curve – choosing between classifiers. 

as computational cost of the classifiers and the relative 
harms of false positives and false negatives. 

Sometimes the area under the curve on a ROC 
diagram is used as an overall measure of how well an 
algorithm is performing. Note that a completely 
random classifier that tossed a coin or rolled a dice to 
choose between the options would have an equal true 
positive and true negative rate. By choosing a different 
probability we can shift recall and precision, but they are 
exactly trading off one another. This random classifier 
has an area under the curve of a half, so an algorithm 
should be a lot better than that. 

9.3.3 Data for Evaluation 

In order to evaluate the output of a machine learning sys-
tem, we need something to evaluate it against, that is data 
with a known label. It is tempting to use all your labelled 
data on training, especially if your dataset is not large. 
However, this means you have nothing left for evalua-
tion and you can’t tell if the algorithm can generalise to 
unseen examples. 

To address this you normally ‘hold out’ some data for 
evaluation. A typical value is 10% of your data. You then 
train on the remaining 90% and evaluate on the hold out 
data items. 

A slightly more complex variation on this is cross-
validation. You split the data into ten random subsets, 
D1, D2, ..., D10 (or in general k subsets, known as k-fold 
cross-validation). You start by holding out D1 and train-
ing on the other 90% of the data (D2, D3, ..., D10) and 
evaluate the learnt model against D1. However, you then 
do the same for the other nine subsets in turn, holding 
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out D2, and training on (D1, D3, ..., D10); then holding 
out D3 and so on. By the time you have finished you have 
run the algorithm 10 times against different subsets of 
the data and evaluated it against every data item. 

Of course with cross-validation you end up with 10 
different rule sets. It is really more about evaluating the 
algorithm itself rather than a specific rule set. 

9.3.4 Multi-stage Evaluation 

A little extra care needs to be taken when dealing with 
‘meta’ algorithms, high-level algorithms that apply mul-
tiple techniques, or the same technique with different 
tuning parameters. For example, in a multi-layer neu-
ral network, one might apply a higher level algorithm 
to choose the number of nodes at each layer. Similarly, 
a random forest algorithm might evaluate each of the 
individual decision trees in the forest to work out a best 
weighting between them. 

The high-level algorithm is likely to use some vari-
ant of k-fold cross-validation to do its internal optimi-
sation, and so it can be tempting to think this is good 
enough. However, this can be susceptible to the same is-
sues of overfitting and lack of generalisation as the lower-
level base algorithms on which it is working. You must 
apply the same principles to the high-level meta algo-
rithm, holding back a portion of the training set for eval-
uation, even though you know the algorithm will do the 
same to the reduced set when it works with the lower-
level algorithms. 

9.4 THE FITNESS LANDSCAPE 
The fitness function says how well the learning algorithm 
is doing. It is usually the sum or average of the individual 
fit of each data item, that is how close the algorithm is 
to correctly predicting the class label. Sometimes this is 
arranged so that larger values are better, but sometimes 
the other way round particularly when some sort of error 
is measured so that zero is the perfect score. 

This is often visualised in terms of a landscape, ei-
ther an energy landscape when the goal is to minimise 
error/energy or a fitness landscape when the goal is to 
maximise fitness. The coordinates of the landscape are 
the parameter values that are being learnt (e.g. weights in 
a neural network) and the height/depth is the fitness or 
error. When the parameters are two numbers, this looks 
just like a physical landscape with high mountains (opti-
mal values) and deep valleys (low fitness). In reality there 
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are typically large numbers of parameters, and these may 
be discrete, binary or even structured like a decision tree, 
so the image breaks down at that point, but if you think 
of the physical landscape you can obtain some useful 
insights. 

In these terms learning is simply an optimisation task, 
find the parameters (weights, rules) so that the fitness is 
maximised (or error minimised). That is, find the highest 
point in the fitness landscape. 

All algorithms make some implicit assumptions about 
the structure of the landscape. If there were no structure, 
then no algorithm could perform better than a Monte 
Carlo search, simply choosing parameters at random 
and selecting the best guess. Many algorithms assume 
some sort of locality, if one choice of parameters is good, 
then small changes in the parameters are also likely to be 
good; that is they assume that the landscape is relatively 
smooth, with few discontinuities 

9.4.1 Hill-Climbing and Gradient Descent/Ascent 

When you examine the internal mechanism of many 
algorithms, they are in part doing a form of ‘hill 
climbing’, looking for small changes from the current 
location that are better. You can explicitly choose to 
use hill climbing, but often this is implicit, for example 
mutation in genetic algorithms or the backpropagation 
rules in neural networks. 

We need to work out the best direction to take. On a 
hill this is the direction that gives the most rapid height 
gain. Sometimes this direction is approximated by eval-
uating a number of possible small steps and choosing the 
one that gives the best result – imagine feeling with your 
foot in dense fog to work out which direction is best. 
However, if the fitness function has suitable properties, 
it can be calculated exactly by differentiating (finding the 
slope of) the fitness function with respect to the various 
parameters. Using this optimal direction is called gradi-
ent descent (or gradient ascent for maximising). 

Backpropagation is just such a gradient-descent algo-
rithm that is seeking to minimise the sum of squares of 
the differences between the actual and desired outputs. 
The multi-layer neural network can be seen as a series 
of function applications where each layer is a function of 
the previous layer and the weights of connections. Dif-
ferentiating this gives precisely the chains of backpropa-
gated errors in the algorithm. Strictly the exact gradient 
descent would work out the small weight changes due 

FIGURE 9.6 Hill climbing may get stuck at local maximum. 

to the entire training set and apply them together. The 
incremental algorithm that updates the weights for each 
training example can be seen as an approximation to the 
optimal direction if the changes are all very small. 

9.4.2 Local Maxima and Minima 

A common problem in any optimisation is getting stuck 
in local minima/maxima as we saw when we first dis-
cussed hill climbing in Chapter 4. You want to get to the 
top of the highest mountain on a foggy day, you keep 
climbing upward until you get to the summit of what 
appears to be the highest point, but it is really just a small 
hill in the middle of a plain (Figure 9.6). If you look at a 
map, or the fog clears, it is obvious that the real mountain 
top is on the horizon. Sometimes to get higher you have 
to initially go downhill, but locally it is impossible to tell. 

The learning algorithm can have exactly the same 
problem. It finds a selection of parameter values, a 
location in the fitness landscape, that performs better 
than any close location. If it is working by small 
increments, then nothing it tries is better, so it thinks 
it has got the best solution. You can think of the search 
problem as being in two main parts: 

global search – finding a good overall region (Hi-
malayas rather than the Netherlands); 

local search – finding the best point within the region. 

Algorithms get around this in different ways. For exam-
ple, some have lots of attempts from different random 
starting points. In some cases this needs to be explicitly 
considered and parameters carefully chosen, but in some 
algorithms this happens almost as an accident of the na-
ture of the algorithm. 
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In particular, the overall average effect of all the 
backpropagation steps in neural net training is a pure 
hill climb, but the fact that these are performed incre-
mentally for each training item means the algorithm is 
taking a slightly wiggly path rather than directly down-
hill (to minimise error). In fact, this slightly wiggly path 
can be beneficial as it is adding an element of noise and 
makes it less likely that the network gets stuck in a local 
minima. 

One algorithm that makes explicit use of these effects 
is simulated annealing (Chap. 4), which effectively tries 
random steps, and probabilistically decides whether to 
proceed based on how much better or worse the new po-
sition is; it is more likely to choose the better position 
but may also choose a worse one. The algorithm has a 
‘temperature’ setting that determines how likely it is to 
take a step even if the new position is worse. The sys-
tem starts off hot, so it is more likely to move near ran-
domly around the landscape, but spending more time in 
the ‘better’ parts (global search). Over time the temper-
ature is reduced, meaning it is less likely to take these 
speculative moves and instead ends up taking small steps 
more like a simple hill-climb (local search). 

Genetic algorithms can similarly be seen as a form 
of gradient descent. Mutations effectively take small 
steps and the best individuals survive, but rather than 
following a single route, they are effectively trying 
multiple paths in parallel and with a lot of random 
choices. In addition, the inter-breeding in genetic 
algorithms allow sharing of partial knowledge of the 
fitness landscape (see Section 9.4.4). 

9.4.3 Plateau and Ridge Effects 

A related problem is plateaux, large areas of the fitness 
landscape where there is little if any improvement. That 
is, configurations of the parameters being learnt where 
no small local changes make any improvement at all. 

A plateau often happens at poor points where certain 
combinations of parameters are so bad they make the 
whole solution poor. For example, a particular set of hat, 
coat, scarf and gloves where every colour clashes with 
every other colour, no small change makes it any bet-
ter! There can also be ridges, where some small changes 
do make things much worse (stepping sideways off the 
ridge), but among the changes that don’t make it worse, 
there is no clear direction. This may happen when the 
model’s degrees of freedom are too large, so that lots of 

different model parameters all lead to reasonably good 
solutions. 

In both cases, the problem is there is no clear direc-
tion. It might be that you simply end up with one of 
many ‘good enough’ solutions, but in fact it might be that 
beyond the plateau or at one or other end of the ridge, 
there are higher regions; it is just impossible to tell how 
to get there. The impact of the plateau or ridge in the fit-
ness landscape is a corresponding plateau in the learning 
rate; you will see a long period of time with no overall 
improvement. 

Furthermore it is possible that given the lack of clear 
global direction, the algorithm locally optimises to some 
irrelevant pattern (a local maxima); such patterns can of-
ten be a spurious feature of the training sets (overfitting). 

It may be possible to automatically identify these 
issues arising within an algorithm, for example if the 
‘best so far’ doesn’t improve for a while, it may be 
possible to ‘kick’ the algorithm, increase mutation rate 
in a genetic algorithm or temperature for simulated 
annealing. Alternatively you might simply restart the 
algorithm entirely. The algorithm can always keep track 
of the ‘best seen’, so that if the radical move does not 
make any improvement, it can still return the solution 
in the plateau. 

In addition, as this can be a sign of overfitting, it can 
be a clue that the architecture of the model needs to be 
changed, perhaps reducing the number of nodes in a 
layer of a neural network. 

9.4.4 Local Structure 

Genetic algorithms in addition make use of the fact that 
the ‘shape’ of the landscape is similar in different places so 
that if a subset of parameters are optimised for particular 
values of the rest of the parameters, they may well still 
be a good choice if one or more of the other parameters 
changes. This typically occurs when some of the choices 
are only weakly dependent on others. 

For example, imagine trying to work out the best set 
of clothes to wear. If a particular choice of hat, scarf and 
gloves work together with one pair of boots, then even if 
you change your mind and wear a different pair of boots, 
the effort of working out that the hat, scarf and gloves 
look good together is not wasted. Of course, it might 
sometimes be that the boot colour clashes with the scarf, 
so you have to rethink, but for many boot choices, the 
rest of the outfit works. 
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9.4.5 Approximating the Landscape 

Many algorithms do not use this local structure, in 
which case it may not matter if the landscape is in a 
sense slightly smoothed or fuzzy. When you choose 
your mountain climbing holiday, you may initially use 
a small-scale map, where the whole mountain region 
simply appears as a clump, but as you start to climb a 
specific mountain you will use a large-scale map that 
shows individual peaks and paths. 

One variant of this is to use a small sample from the 
training dataset in early stages of learning and then use 
more of the data later for fine tuning – here using fewer 
training data items initially is giving a less precise fitness 
landscape. Some image processing algorithms start off 
using lower resolution copies of the image and gradually 
move to higher resolution – here it is the accuracy of the 
individual training data items that is being manipulated. 

If the training data is provided by a simulation, as in 
some Industry 4.0 applications, then there may be choice 
in the simulation that can make it more or less accu-
rate. For example, many simulations are themselves it-
erative, so taking fewer iterations gives a less precise an-
swer, which can save time in the early stages of learning. 

In each case, the smoothing of the fitness landscape 
due to the poorer quality of the early training data 
not only makes this faster and more efficient but 
may also, paradoxically, make the global search stage 
better, more likely to end up with robust generalisable 
solutions. 

9.4.6 Forms of Fitness Function 

As noted, most commonly the fitness function can be 
seen as the sum or average of the accuracy of each data 
item: 

fitness(params) = ∑ diff(v, algparams(d))
(d,v)∈Training set 

Here the difference function, diff, may take various 
forms depending on the algorithm and data. In the case 
of classification algorithms, it may simply be a binary 
1 for matches, 0 for doesn’t match. For more numeric 
outputs, it could be the absolute difference or, very 
commonly, the squared distance. 

The fact that the fitness function is effectively the sum 
of lots of little per-data-item costs is crucial for many 
machine learning algorithms that present the training set 
item by item and modify the parameters slightly for each 

item. The net effect is similar to a single gradient descent 
over the landscape as a whole. 

However, the fitness function does not always split into 
lots of per-data-item costs but may also involve aspects 
that relate to the algorithm or dataset as a whole: 

algorithm metrics – Often there are measures of com-
plexity of the rules or structures generated by the 
training. We may want to penalise more complex 
cases (e.g. a very large decision tree) in order to 
improve generalisation and explanation. 

cohort metrics – In some cases we may want to take 
into account the joint outputs of multiple data 
points. This is particularly the case for unsuper-
vised algorithms, for example, the coherence of the 
clusters. Alternatively we may want to ensure that 
the algorithm behaves fairly for different classes 
of people, for example working equally well for 
women and men. 

Some learning algorithms, for example k-means, effec-
tively build this into their normal operations. However, 
others may need modification. For example, in the ID3 
algorithm it is hard to modify the entropy-based learning 
steps for the decision tree, so additional pruning stages 
are often added after initial training to simplify the tree. 
Alternatively one might more radically change the learn-
ing mechanism, for example retain decision trees as the 
outcome, but use genetic programming to create suitable 
trees as it is easy to add extra factors in the genetic algo-
rithms fitness function. 

9.5 DEALING WITH COMPLEXITY 
Many factors can increase the complexity of the machine 
learning process. Some are specific to particular algo-
rithms, but we’ll look at a few of the more common fac-
tors here. 

9.5.1 Degrees of Freedom and Dimension 
Reduction 

Do you remember school geometry? Euclid’s first postu-
late is that a straight line can be drawn between any two 
points. 

Imagine you have been collecting data on butterfly 
numbers every day for three years. You have over 
a thousand points, and they run close to a straight 
line; you can reasonably believe that you have found 

https://alandix.com/glossary/aibook/fitness landscape
https://alandix.com/glossary/aibook/fitness landscape
https://alandix.com/glossary/aibook/accuracy
https://alandix.com/glossary/aibook/Industry 4.0
https://alandix.com/glossary/aibook/smoothing
https://alandix.com/glossary/aibook/fitness landscape
https://alandix.com/glossary/aibook/global search
https://alandix.com/glossary/aibook/fitness function
https://alandix.com/glossary/aibook/accuracy
https://alandix.com/glossary/aibook/fitness function
https://alandix.com/glossary/aibook/gradient descent
https://alandix.com/glossary/aibook/fitness function
https://alandix.com/glossary/aibook/decision tree
https://alandix.com/glossary/aibook/generalisation
https://alandix.com/glossary/aibook/unsupervised algorithms
https://alandix.com/glossary/aibook/unsupervised algorithms
https://alandix.com/glossary/aibook/coherence of clusters
https://alandix.com/glossary/aibook/clusters
https://alandix.com/glossary/aibook/k-means
https://alandix.com/glossary/aibook/ID3
https://alandix.com/glossary/aibook/entropy
https://alandix.com/glossary/aibook/decision tree
https://alandix.com/glossary/aibook/pruning
https://alandix.com/glossary/aibook/decision trees
https://alandix.com/glossary/aibook/genetic programming
https://alandix.com/glossary/aibook/genetic algorithms
https://alandix.com/glossary/aibook/genetic algorithms
https://alandix.com/glossary/aibook/fitness function


a pattern. Even if you collect three or four days’ data 
and they lie exactly on a line, you might feel this is 
suggestive. However, if you have just two days’ data, it is 
not interesting at all that they are connected by a line; it 
is bound to be the case. 

Looking at this in terms of numbers, if you have two 
observations on day 1 and day 2, that is just two num-
bers. The equation of a line is y = mx + a, it has two 
parameters: m – the slope and a – the intercept. You have 
two numbers in your data and two parameters to adjust, 
hardly surprising you can make them fit. 

Roughly speaking, if you have N parameters you can 
exactly fit data with N independent numbers. However, 
this rarely represents anything interesting, an extreme 
form of overfitting. An interesting generalisable pattern 
needs to have a lot more data than the number of param-
eters being fitted. 

In statistics the term for the number of independent 
things that are being fitted in the data is the degrees 
of freedom. If this is not substantially larger than the 
degrees of freedom in the model being fitted, then you 
are likely to get overfitting. This is when the model 
is not creating a general pattern but simply matching 
potentially arbitrary aspects of the particular training 
set. 

For example, if we have N items in the training dataset 
d1, d2, ..., dN with a classification c1, c2, ..., cN, respectively, 
then we could create the rule set: 

Classify(x) 
IF x = 
IF x = 

d1 
d2 

THEN 
THEN 

c1 
c2 

... 
IF x = dN THEN cN 

Totally accurate on the training dataset but unlikely to be 
useful for later use. 

For machine learning models it is very easy to have lots 
of parameters being fitted. For example, if you have a fully 
connected neural net with 3 layers: 10 inputs, 10 outputs 
and 20 nodes in a hidden layer, this will have 400 weights 
to be fitted. In this case, and often, the number of weights 
grows with the square of the size of the input. This means 
that typically you need to have a lot more training items 
than the number of fields or columns in each data item. 

At first this may not seem too daunting, but it is easy to 
exceed these numbers. Imagine you are doing interviews 
for medical research – you may have dozens of questions 
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for each person and interview several hundred people. 
That sounds fine. However, maybe only 10% of people 
have ailments that you are interested in with perhaps 5%, 
4% and 1% with three different variants of the disease. 
The data looks good for distinguishing ill/well, but once 
you look at the finer distinctions between the variants of 
the illnesses you have too few people to avoid overfitting. 

This is even worse when data is gathered auto-
matically. In the UK, the Met Office has 200 weather 
stations gathering data including “air temperature; 
atmospheric pressure; rainfall; wind speed and direction, 
humidity; cloud height and visibility”. That is at least 1600 
readings. These are gathered every minute, but there 
will be a high correlation between subsequent readings; 
so, in terms of new data, maybe an equivalent of about 
50 independent readings a day. At least a month’s data 
is needed before one can start to have any confidence in 
fitting of the data. 

If you are dealing with image data, then there are 
millions of pixels in a medium resolution image and 8K 
TV at 60Hz frame rate is about 3.5 billion RGB channel 
values in a minute of video. You would need a lot of 
training data for that! In practice there are ways to reduce 
this, crucially in those 3.5 billion RGB values neighbour-
ing pixels and successive frames won’t be so different. 
We looked at ways to harness this through dimension 
reduction in more detail in Chapter 8. However, this 
does explain why unsupervised machine learning is 
sometimes used as a pre-processing stage to simplify 
data. 

9.5.2 Constraints and Dependent Features 

A complication we have seen in some applications is that 
there are constraints – not all parameter values are pos-
sible. For example, imagine you are using a genetic algo-
rithm to design a kitchen, and each appliance is allocated 
a position in the kitchen. We might need the sink to be 
within a metre of the water connections, and an electric 
cooker to be at least a certain distance from the sink. 

We’ve seen that machine learning can be seen as an 
optimisation problem, finding the highest point on the 
fitness landscape. In this context one often talks about 
solutions in terms of feasibility and optimality: 

Feasibility – Does the proposed solution satisfy the 
constraints? 

Optimality – Is the proposed solution the best among 
those that satisfy the constraints? 
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In some application areas, such as timetabling, the 
core requirement is finding any feasible solution. Indeed, 
constraint satisfaction is a whole area of study with its 
own specialised algorithms (see Chap. 4). However, it is 
also a potential application of some forms of AI: recall 
that genetic algorithms are able to make use of repeated 
or similar structures within the problem space, which is 
precisely a feature of constraint satisfaction problems. 

Assuming you have found a feasible solution, an 
obvious approach is to look for close solutions that are 
also feasible. However, this suffers a similar problem to 
local maxima. If one thinks of the fitness landscape, but 
with areas covered with water representing the infeasible 
solutions, the areas of feasible solutions may well form 
separate islands. If you only perform local search within 
these islands, but the best solution is in a different 
island, you are stuck. The author is writing this in Wales, 
and the highest point reachable from here without 
crossing the sea is Ben Nevis in Scotland at a height of 
1,345 metres, somewhat short of Mount Everest at 8,849 
metres. 

There are various ways around this problem. 
Sometimes the constraints can be removed by repa-

rameterising the problem. For example, a financial plan-
ning application might include the constraint that a bank 
balance always exceeds the overdraft limits: 

balance >= limit 

This is a constraint between the two variables. 
However, we could instead represent these as a limit 

plus available cash, that is: 

available = balance - limit 

The original limit can be recreated if needed (balance 
= limit + available), so no information is lost, but 
this reparameterisation no longer has any constraints 
between parameters, available can be any non-negative 
number. Another way is to treat solutions that break 
constraints as bad but not completely off limits. We do 
this by incorporating the constraints into the fitness 
function. Imagine the original fitness function is fit(x), 
this takes a potential solution x and says how good it is. 
However, in addition there are N constraints c1(x), c2(x), 
..., cN(x) that all have to be true. We create a modified 
fitness function: 

fitnew(x) = sig(fit(x)) + number of ci(x) that are true 

where sig(z) is a sigmoid function that maps the original 
fitness function to the range (0,1). 

This modified function has the properties that 

1. reducing the number of broken constraints always 
increases fitnew(x), irrespective of fit(x) 

2. for the same number of violated constraints, im-
proving fit(x) improves fitnew(x). 

The first means that an optimal solution always satisfies 
as many constraints as possible. The second means 
that it gets the best possible value of fit(x). So if this 
modified fitness function is given to a machine learning 
algorithm, it will seek a solution that is both feasible and 
optimal. 

A special kind of constraint is a dependent feature, 
where some field of a data record only exists, or is only 
relevant, when other fields have particular values. For 
example, one project used various forms of constraint 
solving and optimisation for early submarine design. The 
overall layout of the submarine depends critically on the 
chosen fuel source. If it is diesel, then there need to be 
fuel and air tanks and the means to exhaust gasses. If nu-
clear, then there needs to be extensive shielding between 
the reactor and crew quarters. If the data-representation 
of each data record is flat, then some of the fields are irrel-
evant, rather like junk DNA; this is in one sense wasteful, 
especially if the volume of data is large, but for certain 
algorithms can be a positive feature. 

Various algorithms were used including a commercial 
constraint solving system, modified hill-climbing and 
(most successful) a genetic algorithm. In the latter 
the dependent fields for diesel (tank size, placement, 
etc.) were present even when the nuclear option 
was active and similarly fields pertaining to nuclear 
power (shielding thickness, placement) were in the 
representation when diesel was selected. This meant 
that work optimising the dependent options for one fuel 
type was not ‘lost’ from the gene pool even if the fuel 
type switched and so was still there if the reverse switch 
happened later. 

Note that for a genetic algorithm both constraints and 
dependent features can be used as a guide to have more 
efficient breeding rules. Often when two individuals are 
combined in a genetic algorithm, the new artificial genes 
are randomly chosen from the ‘parents’. However, in real 
genetics the chromosomes break and recombine at a few 
specific points (cross-over). Over many millennia genes 
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that code for highly related features have migrated to be 
close on the chromosome and thus are more likely to be 
inherited as a single unit. Genes that work together breed 
together. 

In the case of the submarine example, if two individu-
als have the same fuel type, then the fuel specific features 
can be inter-mingled, but all of the ‘junk’ fields for the 
unselected fuel type should be taken as a unit from one 
parent or the other. If they differ in the fuel type, then the 
dependent fields of the relevant parent would normally 
be copied intact. For constraints a similar principle can 
be applied. Fields that are closely related via constraints 
can be biased so that they are most often inherited as a 
unit from one or other parent, with only occasional mix-
ing. 

9.5.3 Continuity and Learning 

Note how encoding constraints into the fitness function 
changes a binary “feasible vs not feasible”, into a softer 
“more or fewer constraints”. This can make it easier for 
machine learning algorithms to work, incrementally 
improving initially infeasible solutions towards ones 
where all the constraints are satisfied. 

It is rather like the child’s game of “hunt the thimble”. 
The parent hides a thimble and the child starts to look: 
“cold”, says the adult as the thimble is far away, and then 
as the child hunts further “warmer”, “warmer”, “colder”, 
“warmer”, “hot”, “you’ve found it!”. Imagine instead that 
the adult simply says, “no”, “no”, “no” unless the child 
is exactly where the thimble is hidden. It would not be 
much of a fun game and also it would be a lot harder to 
play. In general, whether in human or machine learning, 
continuity helps, if there are shades between “not right” 
and “got it”, it is easier to find the right direction to im-
prove. 

Another very successful example of this is the sigmoid 
activation functions used in backpropagation in neural 
networks (see Figure 6.8). Early perceptrons simply had 
a hard threshold. If the inputs exceeded the threshold 
the artificial neuron ‘fired’, otherwise nothing happened. 
There was no difference except at the exact point when 
the input passed the threshold. The sigmoid function still 
has a roughly similar shape, but slightly softened. If the 
inputs are nearly at the threshold, the node fires a little, if 
they are only just over, it fires slightly less than when it is 
fully on. When the backpropagation learning step works 
out the differential (slope) of the sigmoid function, it is 
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effectively saying “what is the impact of a small change”, 
and this is used to shift the weights towards a better 
solution. 

Look out for these effects in different algorithms. 
Sometimes hard edges are softened by the shape of 
functions, as in the sigmoid, sometimes by adding 
probabilities: each toss of a coin is either a head or a tail, 
but over time the probabilities can shift continuously. 
If you are creating your own algorithms, think about 
whether it is possible to deliberately introduce these soft 
boundaries. 

If you are using a pre-packaged algorithm, you may 
not be able to change the algorithm’s internal behaviour, 
but, as with the constraint satisfaction example, you may 
be able to choose a fitness function that is better for learn-
ing. 

If we revisit the fitnew function for constraint satisfac-
tion, there are still quite hard boundaries at the point 
when each constraint changes from not satisfied to satis-
fied. In some cases this can be further softened by adding 
levels of ‘nearly satisfied’. For example, the sink has to be 
within 1 metre of the water, so we give a score of 1 for 
this, but maybe we can give a score of 0.5 if it is 1.1 metres 
away, and possibly even give it slightly less than a full 1 
out of 1, if it is just at the limit, say 99cm away. In the end 
we want all of the constraints to be fully satisfied, but by 
softening the constraints it is easier to find the solution. 

Note that if soft constraints like these are used, the first 
of the properties is no longer true for fitnew as given, but 
there are ways of dealing with this, the simplest is simply 
to make the overall fitness function a weighted sum of the 
constraint satisfaction score (css(x)) of each item x: 

overall fitness(x) 
= fit(x) + penalty * css(x) 

The penalty can be gradually increased during learning, 
so that the algorithm is initially quite relaxed about a few 
broken constraints but gets more strict as it gets closer to 
a chosen solution. 

9.5.4 Multi-objective Optimisation 

The problem we faced with the precision–recall trade-off 
is that both are important. Depending on where we set 
the threshold, we might make one better but the other 
worse. In fact this is also often an issue with the problems 
we are solving with AI algorithms. Consider a company 
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FIGURE 9.7 Potential solutions in multi-objective optimisa-
tion. 

trying to optimise productivity while minimising envi-
ronmental impact, or a country trying to offer the best 
healthcare and education while keeping taxes low. 

These are called multi-objective optimisation 
problems. Instead of a single fitness function, we have 
several, one for each aspect we want to optimise. 
Typically improving one may reduce another. We 
have already seen a special case of this in the ROC 
curve where precision and recall are two competing 
optimisation criteria. 

Figure 9.7 shows multiple potential solutions of 
a multi-objective optimisation problem with two 
objectives A and B. Solution S1 is better than S2 on all 
objectives, so there is no problem choosing between 
them. Similarly, S4 is better than S3 on every objective, 
so we would not choose S3. When choosing between S1 
and S4 (or between S2 and S3), things are far less clear. 
S1 is better than S4 on objective A, but worse than S4 on 
objective B. 

Looking more closely there is no solution that is uni-
formly better than S1 and similarly no solution that is 
uniformly better than S4. Solutions S5 and S6 also share 
this property. We call such solutions Pareto-optimal after 
the Italian economist Vilfredo Pareto who first identified 
the issue in the 19th century. It is clear that we would pre-
fer to have a Pareto-optimal solution as any of the others 
can be improved upon for all objectives. However, the 
choice between Pareto-optimal solutions is far less clear. 

Sometimes there is a clear hierarchy, for example in 
Figure 9.7 we may decide objective A is most important 
in which case S1 is the chosen solution. In the case of 
constraints, we needed to ensure that as many constraints 
as possible are satisfied before worrying about optimising 
the target metric. The function fitnew(x) captured this, but 

this is only possible because the number of constraints 
satisfied is discrete. If the primary objective is continu-
ous, then there may be never-ending tiny improvements 
one can make to the primary objective, so that one never 
worries about the other at all. For example, if objective B 
were the primary criterion in Figure 9.7, then we would 
choose solution S6; yet it makes a very small improve-
ment for objective B compared with S5, while being only 
half as good at objective A – is this really what we want? 

Another approach is to add a weight to each objec-
tive and create the overall fitness function as a weighted 
sum of the fitness of each one. This effectively gives a 
value to the level of preference between the objectives. 
The dashed line in Figure 9.7 shows a 2:1 trade-off where 
objective A is given twice the weight of objective B. With 
this weighting S4 comes out best. 

There are also algorithms that seek to find all Pareto-
optimal solutions (the Pareto frontier), especially if they 
can then be visualised as an aid to human decision mak-
ing. 

9.5.5 Partially Labelled Data 

We have seen that algorithms are normally divided into 
supervised and unsupervised learning, depending on 
whether the training data is or is not labelled with classes 
or intended outputs. However, sometimes we may need 
to perform semi-supervised learning when the dataset 
is only partially labelled. 

If there are only a few unlabelled items, then we 
may simply discard these and use a fully supervised 
technique. Similarly if the labelled data is too small, 
we might simply ignore the labels and use a full 
unsupervised technique. However, where we have some 
form of partial labelling it may seem wasteful either to 
discard the unlabelled data or to discard the labels from 
the rest. Ideally we use all the available data. 

There are two forms of partially labelled data: 

partial outcome labelling – Here we have the desired 
output labelled for some of the data. For example, 
we might have some ECG traces that have been 
labelled by a heart specialist as in danger of 
imminent heart attack, or as less critical, but also 
have a large bank of unlabelled ECG traces from 
elsewhere. 

intermediate value labelling – Here we may have par-
tial or complete labelling of some derived features 
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that are deemed to be of interest for the final out-
come as well as (complete or incomplete) labelling 
of outcomes. For example, some or all of the ECG 
traces might be labelled as having different forms of 
arrhythmia. 

In the former case, partially labelled outcomes, we can 
adopt a two-phase approach. First use an unsupervised 
approach on the large unlabelled dataset in order to cre-
ate some form of data reduction, perhaps clusters or prin-
cipal components. Then use this to reduce the dimen-
sionality of the labelled data provided as input to a su-
pervised algorithm. 

Alternatively, we may be able to modify the algorithm 
itself. For example, with k-means we can initially seed the 
clusters with both an initial central data item and a clas-
sification. Unlabelled data items are simply added to the 
nearest cluster. For a labelled item, if the closest cluster 
has the right label, it is also simply added in. However, 
if the closest cluster has the wrong label, its centroid is 
‘pushed away’ from the data item and the item is added 
instead to the closest matching cluster. 

The case of intermediate labels can likewise be 
approached in different ways. 

One approach is two-stage. First some form of super-
vised or semi-supervised learning builds a classifier for 
the intermediate feature based on the raw inputs. Then 
a second classifier is built for the final outcome where 
the intermediate feature is added as an additional input 
(maybe more heavily weighted). 

Alternatively, we may seek to embed the intermediate 
labelling into an existing algorithm. For example, 
assume we are using some form of deep learning 
with a pinch-point layer. We can choose an arbitrary 
node in that layer and ‘clamp’ it to the value of the 
label (or for more complicated values choose a small 
collection of nodes). That is, downstream (between 
pinch point and output) it is treated as though that was 
the value of the node(s) for generating the output and 
subsequent backpropagation, and upstream (between 
pinch point and input) it is treated as the target output 
for the node(s) for backpropagation. When the label 
is not present the node functions as normal in the 
backpropagation learning process. 

9.6 SUMMARY 
In this chapter we’ve taken a high-level view of machine 
learning, complementing the more specific approaches 
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discussed in earlier chapters and drawing out general is-
sues. Some of this, such as the supervised–unsupervised 
distinction, has acted as a principled recap of material 
presented previously in a piecemeal fashion. Other mate-
rial has been new including the in-depth analysis of accu-
racy metrics and trade-offs using the ROC curve. The fit-
ness landscape is a crucial part of the conceptual under-
standing of machine learning. It can be used as a vocabu-
lary to discuss issues arising during practical application, 
as a way to suggest criteria for algorithm selection and 
as an inspiration for the development of new techniques. 
We have also looked at a number of issues that can be par-
ticularly difficult in applying machine learning including 
dealing with excess dimensionality, constraints, continu-
ity, multiple optimisation criteria and partially labelled 
data. 

9.1 A new early test has been developed for tantili-
tis, a condition which is not usually diagnosed un-
til symptoms appear. In order to validate the test, 
10,000 volunteers were administered the new test. 
Of these one hundred tested positive and of these 
80% went on to develop the condition. Of those 
who tested negative, the vast majority (95%) were 
indeed disease free. Calculate: 

a. The numbers who were true positive (TP), 
false positive (FP), false negative (FN), and 
true negative (TN). 

b. The Precision and Recall. 

c. The F score. 

9.2 Eight employees are being considered for a new 
post of head of design. They have each been eval-
uated against three criteria: diligence, efficiency 
and creativity. The scores are as follows: 

Diligence Efficiency Creativity 

Anderson 90 60 50 
Brown 70 70 40 
Clark 40 30 50 
Davies 20 90 20 
Evans 80 60 20 
Fraser 30 30 90 
Gordon 10 60 90 
Hughes 60 50 40 

a. Which employees would be Pareto-optimal 
choices for the position? 
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FIGURE 9.8 Pinch-point node clamped to intermediate label in semi-supervised learning. 

FIGURE 9.9 ROC curve for Exercise 9.3. 

b. To resolve the choice one suggestion is to sim-
ply sum the scores. Given this, which candi-
date is optimal? 

c. Because of the nature of the job, there is an ar-
gument to weight the criteria in the ratio 1:2:3. 
Which is the optimal choice given this weight-
ing? 

9.3 Three diagnostic tests (A, B and C) are being con-
sidered for early screening for tantilitis. Each is 
capable of giving a strength reading, so can be 

adjusted for sensitivity. Figure 9.9 shows the ROC 
curves for each diagnostic test. 

a. Your colleague suggests diagnostic B as it 
seems more consistent – what do you think? 

b. Another colleague suggests using area under 
the curve. If you follow this advice, which test 
would you choose? 

c. Assume that the vast majority of people do not 
have tantilitis, and the follow-up tests to ver-
ify a potential diagnosis are very unpleasant 
and costly. Given this which test would you 
choose and how would you adjust its sensitiv-
ity threshold? 

d. Assume instead that follow-up tests are cheap 
and easy but that the health consequence of 
missing a diagnosis is very severe. Given this 
which test would you choose, and how would 
you adjust its sensitivity threshold? 

Although the concepts introduced in this chapter are fa-
miliar vocabulary for those working in machine learning 
and neural networks, it is hard to find detailed works fo-
cused on these topics. 
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S. Sinai and E. Kelsic. A primer on model-guided explo-
ration of fitness landscapes for biological sequence de-
sign. arXiv:2010.10614, 2020. 
Although targeted at those working in biological science, 
this is an accessible article that has lessons for anyone want-
ing to apply machine learning in practice. It systematically 
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covers ways to make informed choices about appropriate 
methods using a fitness-landscape-oriented approach. 

K. Traoré A. Camero and X. Zhu. Fitness landscape footprint: 
A framework to compare neural architecture search 
problems. arXiv:2111.01584, 2021. 
A more mathematical treatment of the fitness landscape. 



CHAP T ER 1 0 

Data Preparation 

10.1 OVERVIEW 
In this book we normally use examples crafted for the 
particular representation or algorithm being presented. 
This is of course designed to be helpful for you to learn 
about each, but the real world is often somewhat more 
complicated. Data is rarely in exactly the right place or 
form that is needed for a particular algorithm, there is 
almost always some form of manipulation required, 
sometimes fairly systematic, others more ‘hacking’. This 
manipulation is often called data wrangling. 

In this chapter we’ll look at some of the typical stages 
and processes used. 

10.2 STAGES OF DATA PREPARATION 
Figure 10.1 shows some typical stages in preparing data 
for machine learning or another form of AI algorithm. 
However, each dataset has its own quirks, and so the pro-
cesses needed and the order in which they apply will vary 
substantially. In some ways it is better to think about a 
data preparation toolkit, a set of tools, techniques and 
heuristics to use at various points and not necessarily in 
the same order for any particular datasets. 

Raw data is found in various places: sometimes it is 
relatively well processed for algorithmic manipulation in 
existing data files or feeds, but often it is more raw or 
unstructured, gathered from web pages or data streams. 

Once the data is extracted from its sources and 
gathered together there will be various stages of 
normalisation, transformation and data cleaning, some 

dealing with errors or omissions in the data and some 
changing it into formats and types that are suitable for 
subsequent processing. 

Problems with the data may not be apparent at once, 
and so there is often a degree of iteration, where sanity 
checks or data validation at a later stage may highlight 
changes to earlier processing. This may highlight prob-
lems or properties of the initial data, but it is also impor-
tant to make sure that data transformations are appropri-
ate and correct. It is too easy to apply automated trans-
formations without fully understanding their impact. 

10.3 CREATING A DATASET 
Sometimes you are given a well-described and well-
managed dataset to analyse, or you may have control 
of the initial collection yourself. However, often you 
need to bring the data together from multiple sources, 
of varying quality. 

10.3.1 Extraction and Gathering of Data 

If you are fortunate, data will be in a semi-structured 
form such as CSV, tab-separated files or even a database. 
Care may still be needed, for example to convert dates to 
a standard format. Names and addresses also often have 
very different storage formats – for example a single field 
vs. separate given and family name fields. You may find 
examples where several things are encoded in the same 
field, perhaps a list of hobbies delimited by commas or 
semicolons. 

Often some form of data cleaning is necessary as data 
may have been mis-entered or even entered using dif-
ferent character encodings. Some may be impossible to 
detect except by going back to original sources; how-
ever, often it is possible to create validation rules. This 
can include simple face-validity or sanity checks, such as 
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FIGURE 10.1 Typical data preparation stages. 

checking that the date is in the right format, but may also 
include deeper semantic integrity, for example in histor-
ical records checking that the date of birth precedes the 
death date and that the age is not more than 150 years (to 
catch century digit errors). 

In other cases the raw data is in free text or semi-
structured text such as web pages. The experienced data 
wrangler becomes expert at a range of Python or similar 
scripts to process text looking for patterns; these typically 
include a combination of: 

Known structure – for example, CSS classes on web 
pages, or row/column location on an old 80x25 
screen-based system. 

Keyword matching – for example, “Bibliography” to 
mark the beginning of the references section of an 
academic paper, or “ISBN” before the 10 or 13 digit 
ISBN of a book. 

Regular expressions – for example, the following regu-
lar expression to find possible names: 
/[A-Z][a-z]+ [A-Z][a-z]+/ 

Hand crafted parsers – for example, looking for a line 
containing a number and a street word such as 
‘Road’, ‘Street’ or ‘Avenue’. 

The semi-structured data may be obtained from human-
readable output of a legacy data-based system targeted at 

the web or old-style terminals. In such cases one usually 
refers to this process as web scraping or screen scraping. 

This process may also itself use AI or machine learn-
ing, for example there are parsers for academic citation 
lists based on string-learning models. 

Special care is needed when a single output dataset is 
composed from several different sources as there may 
be differences in collection style. For example, historic 
climate data is based on a variety of instruments, 
and so care is needed to ensure that this does not 
give rise to anomalies. In some cases there is overlap 
between datasets, which can be used for automatic 
cross-calibration, but in other cases this will need to be 
hand-coded. 

10.3.2 Entity Reconciliation and Linking 

If data comes from a single source and has been carefully 
constructed, there will be some form of unique identi-
fier for each object in the data. However, real data may 
come from a variety of sources each of which may refer 
to the same thing in a different way. For example, the 
author is @alanjohndix on X/Twitter, “Alan Dix” on 
most academic papers and “Alan John Dix” on his birth 
certificate. In addition, at the time of writing, there is an 
Alan Dix who is a governor of the Leeds Playhouse, so 
the same apparent identifier in two different datasources 
may refer to different people or things. Matching enti-
ties between different datasources is thus a critical part 
of many data gathering exercises. 
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Having the same entity linked across datasources 
is an important first step for many large-scale AI or 
ML processes. However, AI may also be used as part 
of the process. Typically, there is a combination of 
coded rules, and weighted similarity metrics. These may 
be hand-crafted or use a machine learning algorithm 
either to create matching rules or choose weights of 
hand-crafted features. 

The process will often be iterative, with rules used to 
match parts of the dataset, which are then checked by 
hand either by sampling or focusing on those where the 
algorithm has low confidence. This will identify misiden-
tification and lead to either fresh hand-crafted rules or 
feedback to an ML algorithm. 

Case Study: SAIL Databank 

Swansea University is home to the SAIL Databank, which 
stores archives of health histories of nearly every per-
son in Wales linked via a pseudonymised unique iden-
tifier for each person [104]. The databank is heavily used 
(with extensive privacy preserving protocols) for health 
and social research and policy purposes. This data has 
been collected over a period of more than 15 years us-
ing a wide variety of health-related datasets from differ-
ent health services and government sources across Wales. 
That is, it is coming from heterogeneous sources and thus 
requires substantial work to connect the records. 

Each individual has a unique health service number 
and National Insurance number, but few people know 
these in the UK; so if someone visits a hospital, the record 
will have a combination of name, address and their nor-
mal doctor’s surgery ... again if known. Of course ad-
dresses change, postcodes may be entered incorrectly, 
and in general linking these records to the same person is 
not trivial. The expertise and algorithms to do this link-
ing have become one of the core capabilities of the centre 
and one of the reasons it has become a world leader in the 
area [180]. 

10.3.3 Exception Sets 

Crucial to many early data preparation tasks are excep-
tion sets. These are sets of specific examples where the 
rules do not apply. For example, matching datasets of 
18th- and 19th-century concert venues in London was 
complex because Almack’s Assembly Room had changed 
its name to Willis’ Rooms [85, 86]. No amount of AI or 
human intelligence could guess this, so it is entered as a 

special case. Other examples would be whether a name 
has been misspelt in a record, or unusual formats such 
as the postcode for the former Girobank in the UK “GIR 
0AA”, which doesn’t obey the normal rules for a UK post-
code. 

If the exception set gets too large, one might seek more 
generic rules for some of the items, so that the exception 
set may shrink as well as grow. For example, when look-
ing for valid names in a UK/US context, one might start 
looking for pairs of words, each starting with a capital. 
After a time, one might start to build exceptions such as 
“Leonardo da Vinci”. If there are enough of them, one 
might change the rule to include family name prefixes 
such as ‘da’, ‘de la’ or ‘van’. The exception set entries for 
these can then be pruned. However, later still exceptions 
such as “Henry VIII” might start to proliferate and a new 
rule for Queen/King names might be added. 

10.4 MANIPULATION AND 
TRANSFORMATION OF DATA 

Often the values that you have for features of your 
data are not of the kind needed by an algorithm, so 
various forms of transformation are needed. You may 
also need to make decisions about missing values 
(where there is simply no value collected/stored for the 
feature) or outliers (data values that seem in some way 
extreme). 

10.4.1 Types of Data Value 

First of all, get to know the data you are working with, do 
not just ‘throw’ it at an algorithm and hope for the best. 

Typical kinds of data you might encounter include: 

Binary – Where there are exactly two possible values; 
e.g. true/false, 0/1, adult/child; 

Categorical/enumerated – Where the data comes 
from a finite set of known values; e.g. blood type 
O/A/B/AB, class of employment; 

Integer – Whole numbers: e.g. 0, 1, 2, 3, -42; 

Continuous – Where the data takes on any numeric 
value: e.g. 3.142; 

String – Where the data is alphanumeric, but relatively 
short: e.g. names; 

Text – Longer alphanumeric data, sometimes in known 
meaningful language; e.g. the text of this section; 
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Rich text – HTML, RTF or other formats include fonts, 
character styles (such as bold) and possibly sections 
which can be used to help parse the text; 

Hierarchical categorisation – Some form of class/sub-
class, part-whole, or taxonomic categorisation, for 
example the Dewey decimal code in a library, or a 
file path; 

Images/media – These may be static such as a picture or 
time varying such as audio or video; 

Temporal data – For example an ECG trace, climate 
data or sampled audio (see Chap. 14); 

External links – Identifiers of other data items; e.g. 
URIs in linked data, external keys in a relational 
database; 

Structured data – A single value might contain 
structured data such as XML or JSON encoded as a 
string; 

Special formats – For example medical equipment or 
geographic information systems have their own 
data formats. 

In addition, numeric data may be bounded, for example 
positive or in a particular range such as [0,1] for probabil-
ities, and string data may be in particular formats, such as 
dates or ISBNs. Also data may be coded numerically but 
may really be categorical (e.g. multiple choice options). 

This looks like a relatively easy distinction to make, 
but an integer might represent a number, time stamp or 
database identifier. Consult documentation (if there is 
any!) or talk to the people who collected the data or gave 
it to you so that you understand how the values you are 
seeing relate to the real-world things they encode. 

For numeric data plot the values. Are there large num-
bers of zeros? If so, does this really mean zero, or a miss-
ing value indicator? If the numbers are integers and they 
are exactly or almost continuous over a range, then this 
is a good clue that they represent a database id or se-
quence number. For string fields, try sorting by the field 
and/or calculating counts for each value. This may help 
you see whether they are unique (and maybe an identifier 
field), only take on a small number of values (in which 
case they might be categorical) or have a small number 
of very frequent values, which may be a special code (e.g. 
‘unknown’ in an address field). 

10.4.2 Transforming to the Right Kind of Data 

The particular algorithm you want to use, or the 
implementation of it that is easily available, may 
require a particular kind of data. For example, some 
genetic algorithms need binary data, statistical analysis 
usually requires numeric data. Typically, you will find 
yourself making data that is in some ways smaller 
or more constrained, for example turning string 
data into categorical data, or continuous data into 
binary. 

Sometimes the algorithm you are using will perform 
transformations itself. For example, decision trees 
(Section 5.5.2) are usually based on binary decisions at 
each branch point. The algorithm will accept categorical 
or continuous data but create binary decisions based on 
these (e.g. “salary > 5, 000”). If this is the case, it is still 
helpful to understand these processes in order to make 
sense of outputs (e.g. sharp changes in behaviour at a 
salary of 5,000). Other times you will need to perform 
data conversions yourself. Here are some common 
things you may need to do: 

Numeric to binary – Choose a threshold T and use x ≤ 
T vs x > T 

Integer to categorical – If the integer values are 
bounded (say 1 to 7), simply treat each number 
as a category label: 1 → cat_1, 4 → cat_4, etc. If 
the values are unbounded, then you may need to 
have catch-all categories for those bigger than some 
maximum value (another threshold choice). 

Continuous to integer – Round to the closest whole 
number or use ‘floor’ to get the integer part of 
the value, for example 3.142 → 3. More generally, 
choose multiple thresholds that split the data into 
a small number ranges; e.g. if the thresholds are 
0,1,2,4,8,16,32,64..., then 42 → 6. 

String, text or link to categorical – Use some sort of 
clustering algorithm on the values or a pre-existing 
classification (e.g. language of text). 

Categorical to binary – One option is to generate indi-
cator variables: an “is it in category A” variable for 
each category A. This technique is used by many 
traditional statistical packages. Another option is 
subset-based where the variables are “is it one of 
{A,B,C}” for some subset of categories. 
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FIGURE 10.2 Bimodal distribution with natural break point 
(adapted from Qwfp at English Wikipedia, CC BY-SA 3.0, ht 
tps://commons.wikimedia.org/wiki/File:BimodalAnts.png). 

Sometimes there may be domain knowledge that can 
help, for example in weather data known temperature 
ranges that are better or worse for plant growth. 
Alternately if you examine the data, there may be clear 
patterns. For example, Figure 10.2 shows a bimodal 
distribution; if we need binary data, it seems sensible 
to choose a threshold in the gap between the peaks. 
Effectively we are doing clustering by eye. 

Similarly, when you are transforming categorical data 
into binary using subsets, it is always possible to create a 
minimal representation of a set of n items as log2n subset 
indicator variables. However, not all subsets are equally 
meaningful. You may have some idea that some cate-
gories are more similar than others, so it is more sen-
sible to group these into a single variable. Even if you 
are going to push this into a very general machine learn-
ing algorithm, it does no harm to ‘help’ the algorithm, 
although you might need to be careful about building 
in your own prejudices (see Chapter 20). Furthermore, 
if the initial coding is more meaningful, it is more likely 
that the eventual output of the algorithm will also be eas-
ier to interpret. 

10.5 NUMERICAL TRANSFORMATIONS 

10.5.1 Information 

Many data transformations lose information. This is 
common, indeed the essence of much of learning is 
precisely discarding the irrelevant or unnecessary in 
order to concentrate on the important features. Of 

FIGURE 10.3 Normally distributed data split into four equally 
probable categories at upper and lower quartiles and median. 

course, the danger is that some of the information 
you lose is precisely the relevant parts! This is where 
it is important to know your data. Often algorithms 
work better when there are roughly similar amounts 
of data in each category, or 50:50 for binary data. This 
can be used as a guide for choosing thresholds. If you 
choose the median, then 50% of the data is below and 
50% above. Similarly, if you want N categories, you 
choose thresholds so that approximately 1/N of the 
data is in each range; for example Figure 10.3 shows 
the Normal distribution split into four equally probable 
categories. 

This equal split also minimises information loss 
as measured by entropy. Entropy, as an information 
measure, is defined as: 

−∑ pi × log2pi 

This is at its largest (most information) when all the pi 
are equal. 

A similar technique can be used for categorical data 
that is part of a hierarchy or tree, for example taxonomic 
categories of animals, or files on a disk. If you need a flat 
set of categories for the algorithm, an obvious choice is 
to chop off at some level, either just the top-level cate-
gorisation or some fixed depth. However, a better choice 
may be to keep on subdividing the larger categories, so 
that you end up with approximately equal sized bins as 
shown in Figure 10.4. 

10.5.2 Normalising Data 

The use of balanced thresholds is a form of pre-
whitening, transforming the data so that it is in a form 
that is statistically better for future processing steps. 
It is especially important for data with a few extreme 
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FIGURE 10.4 Taxonomy of animals in pet shop with cut-off 
nodes chosen to have (very) roughly similar sizes. 

but important values such as power-law data, or where 
the data is clustered very tightly, as a simple choice 
of thresholds or even passing the raw data into an 
algorithm may lead to poor results. The equally spaced 
thresholds effectively make the data more like a uniform 
distribution (one where the probability of all outcomes 
is equal), but you may also want to transform the data to 
make it look more like a Normal distribution, especially 
where statistical algorithms are going to be used; for 
example a logarithmic transform is often used for data 
such as delay times as this is often closer to a Normal 
distribution. 

For numerical data you may also want to scale the 
data. Imagine if you have one field representing monthly 
income and another representing height in metres; the 
income figure will typically be hundreds of times bigger 
than the height figure. For some algorithms this may 
not matter, but for others this may effectively make the 
income figure count much more than height in learning 
rules. This is particularly true for algorithms that use 
statistical methods, such as principal components 
analysis. 

For data that is reasonably well spread over a finite 
range, you can simply scale each value so that the range 
of each is the same, say [0,1]. Figure 10.5 shows this, first 
calculating the minimum and maximum value of each 
column/facet and then using this to translate and scale 
the data values X[i,j]. For more spread data, such as Nor-
mally distributed values, you can translate the data to 
make the average zero and fixed variance. Figure 10.6 
shows this, at first calculating the mean and standard de-
viation of each data facet/column and then using this to 
transform the data. 
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10.5.3 Missing Values – Filling the Gaps 

Missing values can occur when data is collected, but not 
recorded, because of a fault (e.g. a sensor failed), or be-
cause in an interview or similar process someone forgets 
to ask a question. We can think of these as true miss-
ing values. They may also occur because the data is be-
ing re-used and the original process did not need the 
particular feature. For example, the record of one hospi-
tal visit may include the value of a particular blood test, 
whereas for other visits this was not necessary. Similarly 
one might only have French exam results for pupils who 
sat the French exam. These are perhaps better regarded 
as optional values, rather than true missing values, but 
for many purposes behave the same: (i) they are equally 
not available for processing, but (ii) there is probably a 
potential value that we simply do not know – what the 
blood test would have been, what the person would have 
got in the French exam. 

It is important to distinguish these missing values 
from a zero or null value. A user’s profile might have 
an empty list of interests meaning they have none, or 
they may simply never have filled in the field (say if 
they are a new user). The first is definitive knowledge 
about lack of interests, the latter is lack of knowledge 
about interests. Ideally “no interests” should be recorded 
differently from “not filled in”, or perhaps even “don’t 
want to say”, but often they are all represented as a blank 
field. In these situations, there is no easy answer, so it is 
important that early data cleaning or reading does not 
accidentally conflate these. 

When you encounter a missing value, there are three 
main alternatives: 

1. Leave it as a missing value if the algorithm you 
want to use deals with them itself. 

2. Skip the record entirely, especially during learning 
phases. 

3. Attempt to fill in the value using the average or 
default value for the feature, or attempt to fill it in 
from the others using a statistical or ML process. 

The first of these is the preferred option where 
possible, but unfortunately many algorithms cannot deal 
with data that is at all ‘messy’. Some machine learning 
algorithms may not be able to cope with missing values 
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FIGURE 10.5 Normalising data to a fixed range. 

FIGURE 10.6 Normalising data to a fixed variance. 

during learning but are able to use them when the rules 
are applied. 

The last of these feels like a bit of a kludge ... and it is, 
but sometimes it is all that is possible. For some types 
of algorithms, it is possible to use this in a bootstrap 
fashion. For example, some auto-associative neural net-
works, in particular restricted Boltzmann machines, can 
be used to recreate inputs from partial outputs (Chap. 6). 
In these one can use a simple filling in, such as a default 
value, for a first pass of the learning algorithm, then use 
the rules produced to fill in values and use this revised 
data for a second pass, and so on. For some statistical al-
gorithms this iterative algorithm turns out to be the least 
squares estimate of the missing value, so is theoretically 
satisfying as well as practically useful. 

Note that the implicit assumption underlying most 
ways of dealing with missing values is that the fact that a 
value is missing is not correlated in any way with items 
of interest. However, this may not always be the case. 
For example, medical records of rough sleepers may 
well have more missing values than those of professional 
workers. That is missing values can lead to a form of 
sampling bias. The counter to this is that in such cases 
it may be possible to use the fact that a value is missing 
as a feature in its own right; for example, the fact that a 
blood test has not been ordered indicates that a doctor 

had deemed it unnecessary. That is the presence or 
absence of the test is an implicit record of a clinical 
judgement. 

Missing values are often viewed as exceptional cases 
that can largely be ignored, and many algorithms will 
only work with complete data. However, there are many 
domains, not least medical records, when missing values 
may be the norm rather than the exception. Indeed, for 
medical records, you may not even know that an event 
is missing, for example if someone visits a hospital while 
abroad on holiday and this does not get entered in their 
local doctor’s records. 

So, if you are ever creating your own novel algorithms 
for AI or ML, do think about whether it is possible to 
account for missing values. 

10.5.4 Outliers – Dealing with Extremes 

Outliers are values which are in some way unusual or 
extreme, such as the very slow walk in Figure 7.1 when 
we discussed linear regression in Chapter 7. If you are 
eyeballing data, this may simply be something that sticks 
out from the rest of the values, but in automated algo-
rithms some rule is used, for example a data value that 
is more than three standard deviations away from the 
mean. 
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Outliers are normally associated with numeric data, 
but it is also possible to have extreme forms of other 
data. For example, a black and white image among 
colour ones, a person’s name that isn’t in two parts such 
as ‘Madonna’, or a place name that is very long such as 
“Llanfairpwllgwyngyllgogerychwyrndrobwllllantysilio-
gogogoch”. 

Outliers occur for two main reasons: 

1. Some form of fault or failure, for example a sensor 
that is misbehaving or an overflow in numerical 
processing. 

2. A real value that is just unusual, such as Llanfairp-
wll station above or Robert Wadlow who was 2.72 
metres tall. 

The former clearly need dealing with as they are false 
data. Sometimes they are particularly obvious, especially 
when due to numerical overflow as they may then be 
orders of magnitude larger than real data. However, it 
is important to realise that not all faults show up in this 
way; if a sensor is stuck or sluggish, the values may look 
normal but still be wrong. 

The latter, unusual real values are typically less ex-
treme and do represent the true data. However, often one 
has to manipulate these both because they may not be 
distinguishable from faulty data and because some nu-
merical algorithms behave badly when there are extreme 
values. 

Algorithms that use some form of averaging can react 
particularly badly especially when given completely er-
roneous data. For example, many time-series algorithms 
use some form of moving average to smooth data prior 
to other forms of processing, these effectively average the 
data over a time period before (see Chap. 14). If there is a 
really massive spike, this can affect processing for a long 
time afterwards, known as infinite impulse response. 

It is also easy to make assumptions about the sizes of 
inputs, especially when optimising code for constrained 
computation such as on IoT devices or mobile phones. 
The impact of unexpectedly large values can be dramatic. 
In 1996 the Ariadne 5 rocket exploded less than a minute 
after take-off. The cause turned out to be a horizontal 
velocity that was too big for a 16 bit integer [171]. 

Extreme values can also be problematic as part 
of a learning set, even if they are true values. Many 
algorithms implicitly treat the training set as though it 
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FIGURE 10.7 Sigmoid function smoothly limits extreme val-
ues. 

is a typical sample, so a single extreme value could skew 
the rules, which are then applied in perpetuity. 

There are several ways of dealing with extreme values: 

1. Treat it as a missing value, this is particularly 
appropriate when the missing value is assumed 
to be a fault. 

2. Cap the value in some way. For example, for 
numerical data with an acceptable range [-
500,500] a value of -3792 is turned into -500. 

3. Use a bounding function that retains difference 
but restricts the range. For example the sigmoid 
functions that are heavily used in neural networks 
are linear in their middle ranges, but cap the size 
of very large values in a smooth fashion (see Fig-
ure 10.7). 

4. Leave the value as it is, but mark it in some way 
for the algorithm. For example, it may be possible 
to allocate it a lower weighting. 

In some kinds of data extreme values can be normal, in 
particular long-tail distributions as found in social net-
works (Chap. 7). In such cases the problem for machine 
learning may not be having unwanted extreme values 
but that a random sample may have none. This is not 
just a web issue but happens in medical data. Most peo-
ple are well or have common ailments, rare diseases may 
each only affect a very small number of people, even 
though between them they are very important. In such 
cases it may be important to deliberately look for data 
items with extreme values, but then to be able to tell the 
algorithm their expected prevalence. Not all algorithms 
allow this, especially generic implementations found in 
machine learning libraries. 
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10.6 NON-NUMERIC TRANSFORMATIONS 

10.6.1 Media Data 

When dealing with image or video data you may need 
to transform the colour space. Although monitors use 
RGB, a transformation to HSV may often be more ef-
fective as shape information is often available in the grey 
levels. If you are dealing with any sort of library functions 
designed for images, they may deal with this themselves 
or may suggest the best format to use. 

The image may be just a single feature among many 
others, for example the profile picture among other 
elements on a social media profile such as interests, 
number of friends or age. In such cases treating the 
image pixels as values alongside the rest of the features 
will not work well as the image data will swamp the rest, 
and algorithms or neural networks for images tend to 
be specialised. In such cases it may be best to process 
the images first, perhaps using some form of clustering 
or other unsupervised learning mechanisms, to reduce 
the image to a small number of category labels and then 
use this smaller feature set as part of the overall profile 
data. 

Images of printed text can also be turned into text 
using optical character recognition (OCR). However, 
this may need additional human processing to deal with 
difficult cases. Often forms of crowdsourcing or human 
computation are used for this, that is large numbers of 
people perform relatively small parts of the overall task 
(see Chapter 17 for more details). Handwriting can also 
sometimes be recognised and turned into text, especially 
if there is substantial writing by the same hand, or if the 
writer is deliberately trying to be clear, for example digits 
on cheques. Historical handwriting and old fonts can 
add to challenges, especially as spellings and grammar 
may be different from modern text. Furthermore, for 
languages with fewer speakers and especially those with 
non-Latin scripts, OCR can be poor or non-existent. 

Audio data can also be processed either as 
an audio stream, as discussed in more detail 
in Chapter 14, or through automated or human 
transcription. 

Note for both audio and image transcription it is not 
always important that recognition is 100% accurate. 
If there is sufficient data, it may be more effective 
to use imperfect automated transcription for vast 
quantities of data compared to relatively small volumes 
of hand-transcribed data. 

10.6.2 Text 

Some algorithms treat text as a raw character stream, 
but for others the text has to be reduced to something 
with more structure, or even reduced to numeric values. 
Sometimes this may involve bespoke pattern matching 
as described in Section 10.3, or natural language process-
ing, which we’ll deal with in more detail in Chapter 13. 

Often string or text data may need some form 
of normalisation, for example if different character 
encodings are used or if one data file uses all-caps for 
names whereas another uses mixed case (e.g. ‘ALAN 
DIX’ vs. ‘Alan Dix’). Ideally one should retain the 
maximum information (e.g. initial caps tell us more 
than all upper or all lower case), but often it is easier to 
simply reduce everything to lower case for subsequent 
processing. Special care is often needed if text has been 
prepared for human reading, for example the text may 
include ligatures such as ‘ff ’ as a single character that 
needs to be broken into separate characters. 

Care may also be needed if text has had line breaks 
inserted. For example, a frequent early tidying operation 
is to remove leading and trailing spaces from strings, but 
in RTF trailing spaces at the end of lines are significant as 
they denote a word break, whereas lines without a trail-
ing space need to be joined without a space. Hyphens 
at line ends can also be problematic as sometimes it de-
notes hyphenation inserted to break a long word at the 
line end, whereas at other times it may be a real hyphen 
that should be retained. 

Many techniques for reducing text to some sort 
of signature or metric require comparison of words 
and phrases in the text with typical frequencies in the 
corpus in order to identify the more unusual ones. 
This may even include applying some sort of statistical 
or neural network to a corpus to create a reduced 
representation. If there is sufficient data, this can be 
done relative to the text in the dataset itself. This is 
because, say, a phrase such as ‘principal components’ 
will be less unusual in texts about machine learning 
than in day-to-day language. However, this does require 
substantial quantities of text, and so often comparisons 
have to be made largely against generic corpora, or using 
pre-produced lists of word frequencies. 

A special case of this form of processing is simply 
removing the most common words, known as stop 
words, from the text before further processing. Exam-
ples of typical stop words include ‘a’, ‘the’, ‘and’ and ‘or’, 
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although these of course depend on the language of the 
text. 

Sometimes reduced forms of the text are used directly 
by subsequent algorithms, but often text fields are used 
to create similarity measures between corresponding text 
fields in different data records. Two common ways to do 
this are Jaccard similarity and cosine similarity. 

Jaccard similarity uses the bag of words in each text, 
that is the set of words ignoring their frequency (call 
them words1 and words2 respectively). It then looks at 
the relative proportion of shared words by dividing the 
size of the intersection (number of common words) by 
the size of the union (total words in either text): 

| words1 ∩ words2 |Jaccard_similarity(doc1, doc2) = | words1 ∪ words2 | 

Note that in set theory |S| means cardinality of the set S, 
that is the number of items in the set. 

If the documents A and B have no words in common, 
the Jaccard similarity is zero. In contrast if they have ex-
actly the same words, it is one, so intuitively this is a 
sensible measure. Note however that by random chance 
larger documents end up with larger Jaccard similarity. 
Also, as it ignores the frequency, two short documents 
that both mention an obscure word such as ‘accipiter’ 
multiple times would be treated as no more similar due 
to it than two large documents that each used it once. 

Cosine similarity treats the frequency of words within 
the two texts as if it were a very large dimensional vec-
tor (call them f1 and f2 respectively) and then calculates 
the cosine of the angle between the vectors using the dot 
product (•). 

∑i f1i • f2icosine_similarity(doc1, doc2) = |f1| • |f2| 

Here |v| is used in its vector theory sense of the length of 
the vector: 

|v| = ∑ v2 
i

√ i 

Note that both set theory and vector theory use |A| to 
mean the ‘size’ of A, but in different senses. 

Arguably while Jaccard similarity does not take multi-
ple occurrences of words into account, cosine similarity 
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may be swayed too strongly by a few very frequent words. 
Sometimes variants are used, such as the cosine metric 
applied to logarithms of the counts rather than the raw 
frequencies (typically log(1 + count) to avoid log 0). This 
means that two occurrences of a word count more than 
one, but less than twice as much. 

Frequently both metrics may be modified by removing 
stop words first and/or weighting by overall corpus fre-
quencies. Choosing these metrics is a bit of an art rather 
than an exact science as what appears to be the ‘opti-
mal’ mathematical metrics often end up slightly fragile 
in practice. 

10.6.3 Structure Transformation 

As well as transforming individual fields, it may 
be necessary to look at transformations involving 
multiple fields in the same data record, or even 
more radical transformations of the structure of the 
dataset. 

An example of the former, which we’ve already dis-
cussed, is where two fields are the given name and family 
name of the same person and so need to be treated as a 
unit for name lookups. Similarly latitude–longitude may 
be two fields but represent a single entity. We may also 
want to introduce additional fields based on calculations, 
such as the available cash as the difference between bank 
balance and overdraft limit in Chapter 9. This might just 
be a boolean indicator such as is_overdrawn. While 
some algorithms may be able to find these things out for 
themselves given sufficient data, others may need a little 
help. 

More radical transformations may look across 
data items. For example, the text similarity measures 
mentioned above could be used to transform table-
like data into a network with similarity measures on 
each network connection. This can then be used in 
similar ways to those discussed for recommender 
systems in Chapter 8. Alternatively given a network, 
it is possible to work out local metrics on the network 
nodes, for example the number of friends in a social 
network, or, for a web page, the words used as the 
anchor text on hyperlinks pointing to it. This can 
then be used to create a more tabular representation 
which is more suitable for large-scale cloud processing 
(Chap. 8). 
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10.7 AUTOMATION AND 
DOCUMENTATION 

It is easy to get lost in the process of data analysis and 
forget what one has done to get to the cleaned data. How-
ever, it is important to keep track of this for two reasons. 

documentation – You may need to tell others what you 
have done, whether in an internal report or for ex-
ternal publication. This may have important legal 
consequences if, for example, the data is later used 
as part of personal information processing (see also 
Chap. 20). 

repeatability – You may need to re-run the analysis on 
the new data or re-run the processing on the same 
data. 

The last of these, the need to repeat steps on the same 
data, is less obvious than new data or documentation for 
reporting. However, it is very common. 

We already discussed validation rules and sanity 
checks for early data gathering and extraction from raw 
sources. However, there may be additional checks that 
may need to be carried out that were impossible earlier 
as they depend on the analysis and transformations. 

For example, as part of processing the OCR of an old 
gazetteer, one stage identified the names of places start-
ing each entry, based partly on capitalisation. After this 
stage the alphabetic order of the entries was checked. 
Sometimes this was wrong because the original editor 
has misordered the entries, sometimes because there was 
an error in the OCR of the entry and sometimes because 
some capitalisation or OCR errors in the middle of an 
entry made the entry-detection algorithm think a new 
entry was starting. The different forms of misorder re-
quired different kinds of changes; some, such as correct-
ing the OCR, entailed re-running the entire processing 
pipeline. 

In addition, processing may accidentally introduce er-
rors. A classic form of this is when global substitutions 
capture unintended strings. For example, in a historic 
text one might encounter the name ‘Henry the FifthIII’ – 
not because it was in the original text but because a global 
substitution to transform ‘Henry V’ to ‘Henry the Fifth’ 
accidentally matched ‘Henry VIII’. The substitution rule 
can easily be corrected to only begin and end at word 
breaks, but if this is only noticed later in the process, the 
analysis pipeline may need to be re-run from when the 
substitution was performed. 

FIGURE 10.8 Jupyter Notebook showing replayable Python 
code (Image: Andrey Yakimchik – CC BY 4.0, https://comm 
ons.wikimedia.org/w/index.php?curid=97158987). 

In some cases tools you are using can help this process. 
You may be able to use a notebook-style interface, such as 
Jupyter (Figure 10.8), which automatically records your 
actions and allows you to edit and replay [154]. Alterna-
tively, if you are using some form of command-line shell 
(Unix or DOS), you can make sure you save the transcript 
after every session. Interactive tools can make this more 
difficult as many do not have easy ways to record the ac-
tions you have performed let alone to replay them. 

Even when you have recorded and can replay by hand 
or automatically what you have done, it is important to 
ensure you are able to recreate the environment. If the 
datafiles or online data have changed since you originally 
processed the data, then the outputs will be different. 
This may not matter, if you simply want the most up-to-
date results, but can be a problem if you want to be able 
to reproduce previous analysis. Where possible it can be 
useful to make time-stamped copies of critical datafiles, 
or make zip archives of folders of data, although this may 
not be possible for very large datafiles and various forms 
of deltas (files recording differences) may be needed. 

When heavy computation is needed, it may also be 
worth making copies of intermediate files to avoid com-
pletely re-running processing pipelines but with care to 
recompute them if anything has changed on earlier stages 
of processing. If you are not using an environment that 
supports this for you, you should create your own pro-
cesses, file naming conventions, etc. and document the 
main steps you are following. 

If you create bespoke analysis code, you should 
consider using a version control system such as GitHub 

https://alandix.com/glossary/aibook/information processing
https://alandix.com/glossary/aibook/validation rules
https://alandix.com/glossary/aibook/sanity checks
https://alandix.com/glossary/aibook/sanity checks
https://alandix.com/glossary/aibook/OCR
https://alandix.com/glossary/aibook/OCR
https://alandix.com/glossary/aibook/OCR
https://alandix.com/glossary/aibook/OCR
https://commons.wikimedia.org/w/index.php?curid=97158987
https://commons.wikimedia.org/w/index.php?curid=97158987
https://alandix.com/glossary/aibook/deltas


Data Preparation ■ 143 

TABLE 10.1 Data Used in Exercise 10.2. 

mountain height source 
Everest 8,850 meters https://education.nationalgeographic.org/resource/mount-everest/ 
Yr Wyddfa 3,560 feet https://www.britannica.com/place/Snowdon 
Agiocochook 6,288.3 ft https://en.wikipedia.org/wiki/Mount_Washington 
Kilimanjaro 5895 m https://www.statista.com/statistics/1237791/highest-mountains-in-africa/ 

so that changes made to the code are recorded, and 
maybe factoring the code into a core execution engine 
(that changes rarely) plus rules (that change more 
often). If you are making an interactive tool, then 
make sure there is some way to save the actions and/or 
configuration of the system so that it can be replayed! 

File systems are good at storing datafiles, but poor at 
the meta-information about the files. Do make sure you 
use a system to record data documentation such as the 
format of different datafiles and what the columns mean 
in a CSV file, and also the provenance including which 
program created it, what versions of input data were 
used, and parameters supplied. This all seems obvious at 
the time but can be obscure even a few weeks later. 

10.8 SUMMARY 
This has been a chapter about the messy side of AI, with 
lots of practical advice as well as more overarching meth-
ods and processes. We have looked at the main stages 
of preparing data for use in AI and machine learning. 
This started with extracting and gathering the data, po-
tentially from separate sources including cleaning and 
validating it. This is then followed by various forms of 
data transformation and manipulation to put it in a form 
suitable for the chosen algorithm. This can be relatively 
straightforward, for example transforming data values 
from continuous to discrete values, but may require sub-
stantial structural changes to the dataset. We saw various 
places where AI may itself be used during this data prepa-
ration, including entity recognition and data reduction 
of media resources. 

10.1 Place the following into the data type categories in 
Section 10.4.1: 

a. “Hello World!” 
b. a photo of Everest 
c. 42 
d. {mountain:"Everest";height:8849} 
e. false 

f. https://alandix.com/ 

10.2 In the data fragment { mountain:"Everest"; 
height:8849 } the height is given in metres. 
How might you preprocess data with mixed units 
such as in Table 10.1. 

10.3 Consider the following data – ignore the three 
columns: treat it as a single x–y dataset. This data 
is also available in the chapter web resources. 

x y x y x y 

82.092 2.480 65.875 2.691 35.956 4.989 
24.601 4.521 64.667 2.010 34.963 4.971 
8.120 5.065 76.328 2.493 73.086 2.508 
72.420 7.975 80.725 8.000 56.624 2.219 
15.439 4.589 58.251 2.268 28.790 4.418 
21.561 4.488 30.578 5.115 86.419 7.521 
72.306 2.715 67.602 1.347 23.260 3.865 
65.517 7.597 36.831 5.433 82.545 7.707 

Using a spreadsheet, code or by hand: 

a. Calculate the minimum, maximum, mean and 
standard deviation for x and y 

b. Use the min-max to normalise by range 

c. Use the mean-std’dev to normalise by standard 
deviation 

d. Use quartiles to create an information-
oriented classification of x and y into four 
categories (i.e. code 1 for lower quartile, 2 
for lower quartile to median, 3 for median 
to upper quartile and 4 for larger than upper 
quartile) 

e. Calculate contingency tables for x quartile vs 
y quartile 

f. Plot a histogram for x and y and look for nat-
ural breakpoints in each 

https://education.nationalgeographic.org/resource/mount-everest/
https://www.britannica.com/place/Snowdon
https://en.wikipedia.org/wiki/Mount_Washington
https://www.statista.com/statistics/1237791/highest-mountains-in-africa/
https://alandix.com/glossary/aibook/data documentation
https://alandix.com/glossary/aibook/provenance
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/entity recognition
https://alandix.com/glossary/aibook/data reduction
https://alandix.com


144 ■ Artificial Intelligence 

g. Using the natural breakpoint for x, create a 
Low-High class for the x values and create a 
contingency table for x-breakpoint vs y quar-
tiles 

h. Do you spot any patterns in (e) or (g)? 

FURTHER READING 

Although there is lots of scattered information on the web, 
it is hard to find a coherent text in this area. 

R. Mitchell. Web scraping with Python: Data extraction from the 
modern web. O’Reilly, Sebastopol, CA, 2015. 
Latest edition of this popular O’Reilly title, offering practi-
cal methods for dealing with web data. 

A. Doan, A. Halevy, and Z. Ives. Principles of data integration. 
Elsevier, Waltham, MA, 2012. 
The book is rooted in an organisational database context 
of how to integrate the mass of unstructured web data with 
structured databases. However, the methods and issues 
covered are just the same as those needed when preparing 
data for AI use. 

J. D. Kelleher, B. Mac Namee, and A. D’arcy. Fundamentals 
of machine learning for predictive data analytics: Algo-
rithms, worked examples, and case studies. MIT Press, 
Cambridge, MA, 2020. 
This book is in part a general overview of machine learning 
techniques, but a particular strength is the practical focus 
through concrete examples and case studies including dis-
cussions of issues such as data quality and data prepara-
tion. 
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CHAP T ER 1 1 

Game Playing 

11.1 OVERVIEW 
Game playing has been an important part of the history 
of AI. The techniques for game playing can also be ap-
plied to other situations where factors are unknown but 
will be discovered only after action is taken. This chap-
ter will consider algorithms for playing standard games 
(non-probabilistic, open, two-person, turn-taking, zero-
sum games). Such games include chess, draughts, tic-tac-
toe and Go. In particular, we will look at minimax search 
techniques and alpha–beta pruning. This builds on the 
search techniques studied in Chapter 4. The chapter will 
also consider other types of game where co-operation is 
important, where players can take simultaneous moves 
and where random events happen (such as the throw of 
a die). We will see in Chapter 15 that acting in the pres-
ence of uncertainty is essential for robotics and other 
practical planning tasks, and this chapter will show how 
game-playing algorithms can be used to tackle such non-
gaming problems. Neural networks have been success-
fully used alongside other game-playing algorithms to 
tackle some problems that were previously thought to be 
nearly impossible for machines. 

11.2 INTRODUCTION 
Game playing has always been an important part of AI. 
Indeed, the earliest attempts at game-playing computer 
programs predate the field. Even Babbage considered 
programming his Analytical Engine to play chess. 

Games have been seen as a good testing ground for 
two reasons. First, because the mixture of reasoning and 
creative flair seems to epitomise the best of human in-
telligence. Secondly, because the constrained environ-
ment of play with clearly formulated rules is far more 
conducive to computation than the confused and open 
problems of everyday life. This advantage is also a weak-
ness of game playing as a measure of intelligence. Instead 
human intelligence is regarded as being more thoroughly 
expressed in the complexity of open problems and the 
subtlety of social relationships. Arguably the brute force 
approaches that were so effective for chess are no longer 
mainstream AI. 

This critique of game playing should not detract from 
its own successes and its enormous importance in the 
development of the field of AI. When chess programs 
were still struggling at club level, they were regarded as a 
challenge to AI; now they compete at grandmaster level. 
Game-playing programs have also led to the develop-
ment of general purpose AI algorithms; for example, it-
erative deepening (discussed in Chap. 4) was first used 
in CHESS 4.5 [261]. Game playing has also been a fertile 
ground for experiments in machine learning, in partic-
ular adversarial learning which has been adopted across 
other areas of AI. 

The single problem that has received most attention from 
the artificial intelligence community is the playing of 
chess, a game whose whole attraction is that it runs to 
precise rules within which billions of games are possible. 
As Stephen Rose, the British brain biologist, says, getting 
a computer to do this is not too great a wonder. Get one 
to play a decent game of poker, he says, and he might be 
more impressed. 

Martin Ince, THES (1994) 
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Most interesting games defy pure brute force 
approaches because of the sheer size of their branching 
factor. In chess there are typically around 30 legal moves 
at any time (although only a few “sensible” ones), and 
it is estimated around 1075 legal chess games. We say 
“legal” games, as few would be sensible games. In order 
to deal with this enormous search space the computer 
player must be able to recognise which of the legal moves 
are sensible and which of the reachable board positions 
are desirable. Search must be heuristic driven, and the 
formulation of these heuristics means that the programs 
must capture, to some extent, the strategy of a game. 

These factors are exemplified by the game of Go. Its 
branching factor is nearly 400, with as many moves. 
Furthermore, the tactics of the game involve both local 
and global assessment of the board position, making 
heuristics very difficult to formulate. However, effective 
heuristics are essential to the game. The moves made in 
the early part of the game are critical for the final stages; 
effectively one needs to plan for the end game, hundreds 
of moves later. But the huge branching factor clearly 
makes it impossible to plan for the precise end game; in-
stead one makes moves to produce the right kind of end 
game. 

Applying machine learning and neural networks to Go 
also encounters problems as the tactical advantage of a 
move is partly determined by its absolute position on 
the board (easy to match) but partly also by the local 
configuration of pieces. We will see in Chapter 12 that 
position independence is a major problem for pattern 
matching, and so this is not a parochial problem for game 
playing. 

For these reasons the success of AlphaGo in 2016, al-
ready discussed in the introduction (Chap. 1), was not 
just surprising but shocking to many. Crucially, this suc-
cess was not just about brute force. Although the deep 
learning networks were very large, they were not large 
enough to encode every game play but were clearly en-
coding some form of strategy and tactics, even though of 
a different form to a human player. 

Perhaps even more surprising have been games that 
require a level of understanding of human players includ-
ing poker [200] and web-based Diplomacy [140]. For the 
latter natural language models were combined with game 
playing as a critical part of the game is chat-based nego-
tiations. The AI is even capable of levels of deceit, with-
holding critical information. 

11.3 CHARACTERISTICS OF GAME PLAYING 
Game playing has an obvious difference from the 
searches in Chapter 4: while you are doing your best to 
find the best solution, your adversary is trying to stop 
you! One consequence of this is that the distinction 
between planning and acting is stronger in game play. 
When working out how to fill out a magic square, 
one could always backtrack and choose a different 
solution path. However, once one has made a choice 
in a game there is no going back. Of course, you can 
look ahead, guessing what your opponent’s moves will 
be and planning your responses, but it remains a guess 
until you have made your move and your opponent has 
responded – it is then too late to change your mind. 

The above description of game playing is in fact only 
of a particular sort of game: a non-probabilistic, open, 
two-person, turn-taking, zero-sum game. 

• non-probabilistic – no dice, cards or any other ran-
dom effects. 

• open – each player has complete knowledge of 
the current state of play, as opposed to games like 
“battleships” where different players have different 
knowledge. 

• two-person – no third adversary and no team play-
ing on your side, as opposed to say bridge or foot-
ball. 

• turn-taking – the players get alternate moves, as 
opposed to a game where they can take multiple 
moves, perhaps based on their speed of play. 

• zero-sum – what one player wins, the other loses. 

In addition, the games considered by AI are normally 
non-physical, but there are also game-playing robots, in-
cluding an annual RoboCup for robotic football. With 
a bit of effort one can think of games that have alterna-
tives to all the above, but the “standard” style of game has 
been most heavily studied, with the occasional addition 
of some randomness (e.g. backgammon). 

As with deterministic search, we can organise the 
possible game states into trees or graphs, with the 
nodes linked by moves. However, we must also label 
the branches with the player who can make the choice 
between them. In a game tree alternate layers will be 
controlled by different players. 
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Like deterministic search problems, the game trees can 
be very big and typically have large branching factors. 
Indeed, if a game tree is not complex, the game is likely to 
be boring. Even a trivial game like noughts and crosses 
(tic-tac-toe) has a game tree far too big to demonstrate 
here. Because of the game tree’s size it is usually only 
possible to examine a portion of the total space. 

Two implications can be drawn from the complexity of 
game trees. First, heuristics are important – they are of-
ten the only way to judge whether a move is good or bad, 
as one cannot search as far as the actual winning or los-
ing state. Secondly, the choice of which nodes to expand 
is critical. A human chess player only examines a small 
number of the many possible moves but is able to identify 
those moves that are “interesting”. This process of choos-
ing directions to search is knowledge rich and therefore 
expensive. More time spent examining each node means 
fewer nodes examined – in fact, the most successful chess 
programs have relatively simple heuristics but examine 
vast numbers of moves. They attain grandmaster level 
and are clearly “intelligent”, but the intelligence is cer-
tainly “artificial”. In contrast, AlphaGo, which leans more 
heavily on complex learnt heuristics, is perhaps more 
human-like, although still plays very differently from a 
human player. 

11.4 STANDARD GAMES 

11.4.1 A Simple Game Tree 

In order to demonstrate a complete game tree, we con-
sider the (rather boring) game of “placing dominoes”. 
Take a squared board such as a chess board. Each player 
in turn places a domino that covers exactly two squares. 
One player always places pieces right to left, the other 
always places them top to bottom. The player who can-
not place a piece loses. The complete game tree for this 
when played on a 3× 3 board is shown in Figure 11.1. In 
fact, even this tree has been simplified to fit it onto the 
page, and some states that are equivalent to others have 
not been drawn. For example, there are two states similar 
to b and four similar to c. 

The adversaries are called Alison and Brian. Alison 
plays first and places her pieces left to right. Consider 
board position j. This is a win for Alison, as it is Brian’s 
turn to play, and there is no way to play a piece top to 
bottom. On the other hand, position s is a win for Brian, 
as although neither player can place a piece, it is Alison’s 
turn to play. 

We can see some of the important features of game 
search by looking at this tree. The leaves of the tree are 
given scores of +1 (win for Alison) or −1 (win for Brian 
– Alison loses). This scoring would of course be replaced 
by a heuristic value where the search is incomplete. The 
left-hand branch is quite simple – if Alison makes this 
move, Brian has only one move (apart from equivalent 
ones) and from there anything Alison does will win. The 
right branch is rather more interesting. Consider node m: 
Brian has only one possible move, but this leads to a win 
for him (and a loss for Alison). Thus position m should 
be regarded as a win for Brian and could be labelled “−1”. 
So, from position e Alison has two choices, either to play 
to l – a win – or to play to m – a loss. If Alison is sensible, 
she will play to l. Using this sort of argument, we can 
move up the tree marking nodes as win or lose for Alison. 

In a win–lose game either there will be a way that the 
first player can always win, or alternatively the second 
player will always be able to force a win. This game is a 
first-player win game; Alison is a winner! If draws are 
also allowed, then there is the third alternative that two 
good players should always be able to prevent each other 
from winning – all games are draws. This is the case for 
noughts and crosses, and it is suspected that the same is 
true in chess. The reason that chess is more interesting to 
play than noughts and crosses is that no one knows, and 
even if it were true that in theory the first player would 
always win, the limited ability to look ahead means that 
this does not happen in practice. 

11.4.2 Heuristics and Minimax Search 

In the dominoes game we were able to assign each leaf 
node as a definite win either for Alison or for Brian. By 
tracing back we were able to assign a similar value for 
each intermediate board position. As we have discussed, 
we will not usually have this complete information and 
will have to rely instead on heuristic evaluation. As with 
deterministic search, the form of this will depend on the 
problem. Examples are 

• chess – One can use the standard scoring system 
where a pawn counts as 1, a knight as 3 and so on. 

• noughts and crosses – One can use a sum based on 
the value of each square where the middle counts 
most, the corners less and the sides least of all. You 
add up the squares under the crosses and subtract 
those under the noughts. 
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FIGURE 11.1 Game tree for “placing dominoes”. 

Note that these heuristics may give values outside the 
range 1 to −1, so one must either suitably scale them 
or choose large enough values to represent winning and 
losing positions. 

Figure 11.2 shows an example termgame tree with 
heuristic values for each position. The heuristic values 
are the unbracketed numbers (ignore those in brackets 
for the moment). Alison’s moves are shown as solid 
lines, and Brian’s moves are dashed. This is not the 
whole game tree, which would extend beyond the nodes 
shown. We will also ignore for now the difficult issue of 
how we decided to search this far in the tree and not, for 
example, to look at the children of node k. The portion 
of the tree that we have examined is called the search 
horizon. 

It is Alison’s move. There are obviously some good po-
sitions for her (with scores 5 and 7) and some very bad 
ones (−10). But she cannot just decide to take the path 
to the best position, node j, as some of the decisions are 
not hers to make. If she moves to position c, then Brian 
might choose to move to position g rather than to f. How 
can she predict what Brian will do and also make her own 
decision? 

We can proceed up the tree rather as we did with 
the dominoes game. Consider position i. It is Brian’s 

move, and he will obviously move to the best position 
for him, that is the child with the minimum score, n. 
Thus, although the heuristic value at node i was 2, by 
looking ahead at Brian’s move we can predict that the 
actual score resulting from that move will be −3. This 
number is shown in brackets. Look next at node d. It is 
Alison’s move. If she has predicted Brian’s move (using 
the argument above), her two possible moves are to h 
with score −2 or to i with score −3. She will want the 
best move for her, that is the maximum score. Thus the 
move made would be to h and position d can be given 
the revised score of −2. This process has been repeated 
for the whole tree. The numbers in brackets show the 
revised scores for each node, and the solid lines show 
the chosen moves from each position. 

With this process one alternately chooses the mini-
mum (for the adversary’s move) and the maximum (for 
one’s own move). The procedure is thus called minimax 
search. Pseudocode for minimax is shown in Figure 11.3. 

Note that the numbers on the positions are the worst 
score that you can get assuming you always take the in-
dicated decisions. Of course you may do better if your 
adversary makes a mistake. For example, if Alison moves 
to c and Brian moves to f, Alison will be able to respond 
with a move to j, giving a score of 7 rather than the worst 
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FIGURE 11.2 Minimax search on a game tree. 

FIGURE 11.3 Minimax pseudocode. 

case score of 1. However, if you don’t take the indicated 
moves, a good opponent will fight down your score to 
below the minimax figure. Minimax is thus a risk averse 
search. 

11.4.3 Horizon Problems 

It is important to remember that the portion of tree 
examined in determining the next move is not the whole 
tree. So although minimax gives the worst case score 
given the nodes that have been examined, the actual score 
may be better or worse as the game proceeds, and one 
gets to previously unconsidered positions. For example, 
imagine that Alison looks ahead only two moves, to the 
level d–g. A minimax search at this level gives scores of 
5 to b and −7 to c, so Alison will move to b, whereas by 
looking further ahead we know that c would be better. 

FIGURE 11.4 Horizon effect – simple heuristics can be wrong! 

Looking even further ahead, our choice might change 
again. These rapid changes in fortune are a constant 
problem in determining when to stop in examining the 
game tree. Figure 11.4 shows a particularly dramatic 
example. The white draught is crowned, so it can jump in 
any direction, and it is white’s move. A simple heuristic 
would suggest that black is unassailable, but looking 
one move further we find that white jumps all black’s 
draughts and wins the game! 

Look again at Figure 11.2. Positions a, b, d and e all 
have the same heuristic score. That is, they form a plateau 
rather like we saw in hill climbing. While we only look at 
the positions within a plateau, minimax can tell us noth-
ing. In the example tree, the search horizon went beyond 
the plateau, and so we were able to get a better estimate 
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of the score for each position. In fact, if you examine the 
suggested chess heuristic, this only changes when a piece 
is taken. There are likely to be long play sequences with 
no takes, and hence plateaux in the game tree. 

Plateaux cause two problems. First, as already noted, 
minimax cannot give us a good score. Secondly, and 
perhaps more critically, it gives us no clue as to which 
nodes to examine further. If we have no other knowledge 
to guide our search, the best we can do is examine the 
tree around a plateau in a breadth first manner. In fact, 
one rule for examining nodes is to look precisely at 
those where there is a lot of change – that is, ignore the 
plateaux. This is based on the observation that rapid 
changes in the heuristic evaluation function represent 
interesting parts of the game. 

11.4.4 Alpha–beta Pruning 

The minimax search can be speeded up by using branch 
and bound techniques. Look again at Figure 11.2. Imag-
ine we are considering moves from d. We find that h has 
score −2. We then go on to look at node i – its child n 
has score −3. So, before we look at o, we know that the 
minimax score for i will be no more than −3, as Brian will 
be minimising. Thus Alison would be foolish to choose 
i, as h is going to be better than i whatever score o has. 

We can see similar savings on the dominoes game tree 
(Figure 11.1). Imagine we are trying to find the move 
from position c. We have evaluated e and its children and 
f, and are about to look at the children of nodes g and h. 
From Brian’s point of view (minimisation), f is best so 
far. Now as soon as we look at node n we can see that 
the minimax score for g will be at least 1 (as Alison will 
play to maximise), so there is no reason to examine node 
o. Similarly, having seen node f, nodes p and q can be 
skipped. In fact, if we look a bit further up, we can see that 
even less search is required. Position b has a minimax 
score of 1. As soon as we have seen that node f has score 
“−1” we know that Brian could choose this path and that 
the minimax score of c is at most −1. Thus nodes g and h 
can be ignored completely. This process is called alpha– 
beta pruning and depends on carrying around a best-so-
far (𝛼) value for Alison’s choices and a worst-so-far (𝛽) 
for Brian’s choices. 

11.4.5 The Imperfect Opponent 

Minimax and alpha–beta search both assume that the 
opponent is a rational player using the same sort of 

reasoning as the algorithm. Imagine two computers, 
AYE and BEE, playing against one another. AYE is 
much more powerful than BEE and is to move first. 
There are two possible moves. If one move is taken, 
then a draw is inevitable. If the other move is taken, 
then, by looking ahead 20-ply, AYE can see that BEE 
can force a win. However, all other paths lead to a win 
for AYE. If AYE knows that BEE can only look ahead 
10-ply, then AYE should probably play the slightly 
risky move in the knowledge that BEE will not know 
the correct moves to make and so almost certainly 
lose. 

For a computer to play the same trick on a hu-
man player is far more risky. Even though human 
players can consider nowhere near as many moves 
as computers, they may look very far ahead down 
promising lines of moves (actually computers do so 
too). Because AYE knew that BEE’s search horizon 
was fixed, it could effectively use probabilistic rea-
soning. The problem with human opponents, or less 
predictable computer ones, is that they might pick 
exactly the right path. Assuming random moves from 
your opponent under such circumstances is clearly 
foolhardy, but minimax seems somewhat unadven-
turous. In preventing the worst, it throws away golden 
opportunities. 

11.5 NON-ZERO-SUM GAMES AND 
SIMULTANEOUS PLAY 

In this section we will relax some of the assumptions 
of the standard game. If we have a non-zero-sum game, 
there is no longer a single score for each position. Instead, 
we have two values representing how good the position is 
for each player. Depending on the rules of play, different 
players control different choice points, and they seek to 
maximise their own score. This formulation allows one 
to consider not only competitive but also co-operative 
situations, where the choices are made independently, 
but where the players’ ideas of “good” agree with one an-
other. This leads into the area of distributed AI, where one 
considers, for example shop-floor robots co-operating in 
the building of a motor car (see Chap. 16). However, 
there we will consider the opposite extreme, where all 
parties share a common goal. In this section we will con-
sider the in-between stage when the players’ goals need 
not agree but may do so. We will also examine simul-
taneous play, that is when both parties make a move in 
ignorance of each other’s choice. 
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FIGURE 11.5 The prisoner’s dilemma. 

11.5.1 The Prisoner’s Dilemma 

A classic problem in game theory is the prisoner’s 
dilemma. There are several versions of this. The one 
discussed in Section 11.5.4 is the most common, 
but we will deal with a more tractable version first! 
This comes in several guises, and the most common 
is as follows. Imagine two bank-robbers have been 
arrested by the police and are being questioned 
individually. The police have no evidence against them, 
and can only prosecute if one or the other decides to 
confess. 

Before they were arrested, the criminals made a pact 
to say nothing. Each now has the choice either to re-
main silent – and trust their colleague will do the same 
– or to renege on their promise. Is there honour among 
thieves? 

If neither confesses, then the police will eventually 
have to let them go. If both confess, then they will each 
get a long, five-year sentence. However, the longest 
sentence will be for a prisoner who doesn’t confess when 
the other does. If the first prisoner confesses, then the 
other prisoner will get a ten-year sentence, whereas 
the first prisoner will only be given a short, one-year 
sentence. Similarly, if the second prisoner confesses and 
the first does not, the first will get the ten-year sentence. 
The situation is summarised in Figure 11.5. In each 
square the first prisoner’s sentence is in the upper right 
and the second in the lower left. 

Let’s consider the first prisoner’s options. If he trusts 
his colleague, but she reneges, then he will be in prison 
for ten years. However, if he confesses, reneging on his 
promise, then the worst that can happen to him is a five-
year sentence. A minimax strategy would suggest reneg-
ing. The second prisoner will reason in exactly the same 
way – so both confess. 

FIGURE 11.6 Game tree for prisoner’s dilemma. 

11.5.2 Searching the Game Tree 

The above problem was drawn as a matrix rather than a 
tree, because neither prisoner knew the other’s moves. 
If instead the two ‘played’ in turn, then the situation 
would be far better. In this case we can draw the 
prisoner’s dilemma as a game tree (see Figure 11.6). At 
each terminal node we put the two values and use a 
minimax-like algorithm on the tree. 

Imagine the first prisoner has decided not to confess, 
and the second prisoner knows this. Her options are then 
to remain silent also and stay out of prison, or to renege 
and have a one-year sentence. Her choice is clear. On the 
other hand, if the first prisoner has already reneged, then 
it is clear that she should also do so (honour aside!). Her 
choices are indicated by bold lines, and the middle nodes 
have been given pairs of scores based on her decisions. 

Assuming the first prisoner can predict his partner’s 
reasoning, he now knows the scores for each of his op-
tions. If he reneges, he gets five years; if he stays silent, he 
walks away free – no problem! 

Notice that although this is like the minimax algo-
rithm, it differs when we consider the second prisoner’s 
moves. She does not seek to minimse the first prisoner’s 
score, but to maximise her own. More of a maximax al-
gorithm? 

So, the game leads to a satisfactory conclusion (for the 
prisoners) if the moves are open, but not if they are se-
cret (which is why the police question them separately). 
In real-life decision making, for example many business 
and diplomatic negotiations, some of the choices are se-
cret. For example, the Cuban missile crisis can be cast in 
a similar form to the prisoner’s dilemma. The “renege” 
option here would be to take pre-emptive nuclear action. 
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Happily, the range of options and the level of communi-
cation were substantially higher. 

Although there are obvious differences, running 
computer simulations of such games can be used to give 
some insight into these complex real-world decisions. In 
the iterated prisoner’s dilemma, the same pair of players 
are constantly faced with the same secret decisions. 
Although in any one game they have no knowledge 
of the other’s moves, they can observe their partner’s 
previous behaviour. A successful strategy for the iterated 
prisoner’s dilemma is tit-for-tat, where the player “pays 
back” the other player for reneging. So long as there 
is some tendency for the players occasionally to take a 
risk, the play is likely to end up in extended periods of 
mutual trust. 

11.5.3 No Alpha–Beta Pruning 

Although the slightly modified version of the minimax 
algorithm works fine on non-zero-sum games, alpha– 
beta pruning cannot be used. Consider again the game 
tree in Figure 11.6. Imagine this time that you consider 
the nodes from right to left. That is, you consider each 
renege choice before the corresponding trust choice. The 
third and fourth terminal nodes are considered as be-
fore, and the node above them scored. Thus the first pris-
oner knows that reneging will result in five years in jail. 
We now move on to the second terminal node. It has a 
penalty of ten years for the first prisoner. If he applied 
alpha–beta pruning, he would see that this is worse than 
the reneging option and so not bother to consider the 
first node at all. 

Why does alpha–beta fail? The reason is that it de-
pends on the fact that in zero-sum games the best move 
for one player is the worst for the other. This holds in 
the right-hand branch of the game tree but not in the 
left-hand branch. When the first prisoner has kept silent, 
then the penalties for both are minimised when the sec-
ond prisoner also remains silent. What’s good for one is 
good for both. 

11.5.4 Pareto-optimality 

In the form of the prisoner’s dilemma discussed above, 
the option when both remain silent was best for both. 
However, when there is more than one goal, it is not 
always possible to find a uniformly best alternative. 
Consider the form of the prisoner’s dilemma in 
Figure 11.7. This might arise if the police have evidence 

FIGURE 11.7 Modified prisoner’s dilemma. 

FIGURE 11.8 Non-Pareto-optimal solution. 

of a lesser crime, perhaps possession of stolen goods, 
so that if neither prisoner confesses they will still both 
be imprisoned for two years. However, if only one 
confesses, that prisoner has been promised a lenient 
sentence on both charges. 

This time, there is no uniformly optimal solution. 
Neither prisoner will like the renege–renege choice, and 
the trust–trust one is better for both. However, it is not 
best overall as each prisoner would prefer the situation 
when only they confess. The trust–trust situation is 
called Pareto-optimal. This means that there is no other 
situation that is uniformly better. In general, there may 
be several different Pareto-optimal situations favouring 
one or other party. 

Now see what happens when the prisoners make their 
choices. The first prisoner wonders what the second pris-
oner might do. If she reneges, then he certainly ought to 
as well. But if she stays silent, it is still better for him to 
renege as this will reduce his sentence from two years to 
one. The second prisoner reasons similarly and so they 
end up in the renege–renege situation. 

This time, having an open, turn-taking game does not 
help. Figure 11.8 shows the game tree for this version 
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of the dilemma, which also leads to the renege–renege 
option. Even though both prisoners would prefer the 
Pareto-optimal trust–trust option to the renege–renege 
one, the latter is still chosen. Furthermore, if they both 
did decide to stay silent, but were later given the option 
of changing their decision, both would do so. The 
Pareto-optimal decision is, in this case, unstable. 

The lesson is that, in order to get along, both comput-
ers and people have to negotiate and be able to trust one 
another. It is thus crucial for some applications that soft-
ware agents (see Chap. 16) have an idea of trust. 

11.5.5 Multi-party Competition and Co-operation 

The above can easily be extended to the case of multiple 
players. Instead of two scores, one gets a tuple of scores, 
one for each player. The modified minimax algorithm 
can again be used. At each point, as we move up the tree, 
we assume each player will maximise their own part of 
the tuple. The same problems arise with secret moves and 
non-Pareto-optimal results. 

11.6 THE ADVERSARY IS LIFE! 
Game playing is similar to interacting with the physical 
environment – as you act, new knowledge is found, or 
circumstances change to help or hinder you. In such cir-
cumstances the minimax algorithm can be used where 
the adversary is replaced by events from the environ-
ment. This effectively assumes that the worst thing will 
always happen. 

Consider the following coin-weighing problem: 
King Alabonzo of Arbicora has nine golden coins. He 

knows that one is a counterfeit (but not which one). He 
also knows that fake coins are slightly lighter than true 
ones. The local magician Berzicaan has a large and accu-
rate balance but demands payment in advance for each 
weighing required. How many weighings should the king 
ask for and how should he proceed? 

Figure 11.9 shows the search space, expanded to one 
level. The numbers in bags represent the size of the pile 
that has the heavier coin in it. This starts off as size 9. 
The king can weigh two coins (one on each side of the 
balance), four, six or eight. If the balance is equal, the coin 
must be in the remaining pile; if unequal, he can confine 
his search to the heavier pile. 

For example, imagine the king chose to weigh four 
coins. If the balance was unequal, he would know that 
the lighter side had the fake coin in it; hence the pile to 
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test would now consist of only two coins. If, on the other 
hand, the balance had been equal, the king would know 
that the fake coin was among the five unweighed coins. 
Thus if we look at the figure, the choice to weigh four 
coins has two branches, the “=” branch leading to a five-
coin bag and the “≠” branch leading to a two-coin bag. 

The balance acts as the adversary, and we assume it 
“chooses” to weigh equal or unequal to make things as 
bad as possible for King Alabonzo! Alabonzo wants the 
pile as small as possible, so he acts as minimiser, while 
the balance acts as maximiser. Based on this, the inter-
mediate nodes have been marked with their minimax 
values. We can see that, from this level of look-ahead, the 
best option appears to be weighing six coins first. In fact, 
this is the best option, and, in this case, the number of 
coins remaining acts as a very good heuristic to guide us 
quickly to the shallowest solution. 

11.7 PROBABILITY 
Many games contain some element of randomness, per-
haps the toss of a coin or the roll of a die. Some of the 
choice points are replaced by branches with probabilities 
attached. This may be done both for simple search trees 
and for game trees. There are various ways to proceed. 
The simplest is to take the expected value at each point 
and then continue much as before. 

In the example of Alabonzo’s coins we deliberately 
avoided probabilities by saying he had to pay in advance 
for the number of weighings, so only the worst case 
mattered. If instead he paid per weighing when required, 
he might choose to minimise the expected cost. This 
wouldn’t necessarily give the same answer as minimax. 
Figure 11.10 shows part of the tree starting with five 
coins. The lower branches have been labelled with the 
probability that they will occur. For example, if two 
coins are weighed, then there is a probability of 2/5 
that one of them will be the counterfeit and 3/5 that it 
will be one of the three remaining coins. At the bottom 
of the figure, the numbers in square brackets are the 
expected number of further weighings needed to find 
the coin. In the case of one coin remaining, that must 
be the counterfeit and so the number is zero. In the 
cases of two or three coins, one further weighing is 
sufficient. 

With five coins the king can choose to weigh either 
two or four coins. The average number of weighings for 
each has been calculated. For example, when weighing 
two coins, there is that weighing, and if the scales are 
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FIGURE 11.9 Minimax search for King Alabonzo’s counterfeit coin. 

equal (with a probability of 0.6), then a further weighing 
is required, giving an average number of 1.6. 

See how the average number of weighings required is 
1.6 when two coins are weighed and 1.8 when four are 
weighed. So, it is better to weigh two. However, if the 
number of coins in the piles is used as a heuristic, the 
minimax score is better for four weighings. In general the 
two methods will not give the same answer, as minimax 
will concentrate on the worst outcome no matter how 
unlikely its occurrence. 

One problem with calculating the average pay-off is 
that it leads to a rapid increase in the search tree. For 
example, in a two-dice game, like backgammon, one has 
to investigate game situations for all 21 different pairs of 
die faces (or 13 sums). One way to control this is by using 
a probability-based cut-off for the search. It is not worth 
spending a lot of effort on something that is very unlikely 
to happen. 

Averages are not the only way to proceed. One might 
prefer a choice with a lower average pay-off (or higher 
cost), if it has less variability – that is, a strategy of risk 
avoidance. On the other hand, a gambler might prefer a 
small chance of a big win. This may not be wise against a 
shrewd opponent with no randomness but may be per-
fectly reasonable where luck is involved. 

FIGURE 11.10 Probabilistic game tree for King Alabonzo’s 
counterfeit coin. 
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Because of the problem with calculating probabilities, 
game-playing programs usually use complex heuristics 
rather than deep searches. So, a backgammon program 
will play more like a human than a chess program. 
However, there are some games where the calculation 
of probabilities can make a computer a far better player 
than a person. In casinos, the margin towards the house 
is quite narrow (otherwise people would lose their 
money too quickly!), so a little bit of knowledge can 
turn a slow loss into a steady win. In card games, the 
probability of particular cards occurring changes as the 
pack is used up. If you can remember every card that 
has been played, then you can take advantage of this 
and win. But don’t try it! Counting (as this is called) is 
outlawed. If the management suspects, it will change 
the card packs, and anyone found in the casino using a 
pocket computer will find themselves in the local police 
station – if not wearing new shoes at the bottom of the 
river! 

11.8 NEURAL NETWORKS FOR GAMES 
Neural networks have been applied to games for many 
years [47, 223, 270]; however, as mentioned previously, 
it was the application of deep learning in AlphaGo that 
gave a new impetus not only to games applications but 
to deep learning in general. The success of AlphaGo was 
based on classic techniques, including game searches and 
Monte Carlo tree search, combined with multiple neural 
networks and adversarial techniques [260] 

We will use AlphaGo as the running example, but the 
techniques are general. 

11.8.1 Where to Use a Neural Network 

The most obvious use of a neural network in games 
is to ask the question, “what move do I make next”, or 
perhaps more broadly, given the board position, “which 
moves seem most promising?” However, game search 
algorithms effectively answer this question by looking 
ahead in the game tree. Effectively this means thinking 
about each potential move and then asking two subse-
quent questions “what move do I think my opponent 
will make?” and when one has reached a particular 
depth of lookahead “how good or bad is the board 
state”. 

AlphaGo tackled these questions by training two 
deep neural networks on different kinds of heuristics 
(Figure 11.11): 
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FIGURE 11.11 Policy and value networks to guide search in 
the game tree. 

policy network – given a board position with the oppo-
nent to move, estimate the probability of what move 
the opponent will make next. 

value network – given a board position and which 
player is next to move, estimate the probability that 
the game will end up as a win. 

Given these two networks it is fairly straightforward to 
apply Monte Carlo tree search using minimax criteria, 
as shown in Figure 11.12. There are variants for this, 
for example one can apply the value network to the 
board position after step 2.1 to decide whether to 
just use the heuristic itself or to expand the search in 
step 2.2. 

Note too that similar techniques can be used in other 
domains. For example, in a mathematical proof, the 
valid steps are well defined (like moves in a game), 
making it relatively easy to check a proof. Normally 
the human mathematician chooses which valid rule to 
attempt at any point in time; however, a neural network 
can be trained to generate heuristics in a similar way 
[174]. 

Note that both the policy network and the value 
network can be trained on examples of games played to 
completion so that the final outcome is known. However, 
the value network can also be trained inductively. If 
one has an existing heuristic (say the value network 
from a previous iteration), then for any board position 
a one-step or two-step minimax lookahead can be used 
to create a revised heuristic value for the board (in a 
similar way to Figure 11.12). This can then be used 
as training data for the next generation of the value 
network. 
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FIGURE 11.12 Pseudocode for Monte Carlo tree search using policy and value networks. 

11.8.2 Training Data and Self Play 

Initially the deep neural networks that powered AlphaGo 
were bootstrapped using datasets of large numbers of hu-
man tournaments. However, there have been too few hu-
man games to train sufficiently large networks. 

To deal with this, self play techniques were used to ex-
pand training data as described in Chapter 8. Variants of 
the AlphaGo network were played against one another, 
each learning from the matches they played and each 
getting better and better (Figure 11.13). With sufficient 
computer resources far more computer–computer tour-
naments can be generated than have ever been played in 
the history of human Go. In AlphaGo, this started based 
on human tournaments, but AlphaGo Zero did not use 
any human games but learnt entirely from the rules of Go 
and lots of adversarial learning. 

Lee Sedol eventually retired as a Go player because AI 
“cannot be defeated” [19]. However, it is worth noting 
that Lee Sedol learnt his Go based on a tiny fraction of 
the games that AlphaGo played virtually against itself. 
While the AI defeated Lee Sedol, the way in which it did 
so is very different, and in many ways far less efficient, 
than the human grandmaster, an issue we will return to 
in Chapter 22. 

11.9 SUMMARY 
In this chapter we have looked at algorithms for playing 
standard games (non-probabilistic, open, two-person, 
turn-taking, zero-sum games). Such games include 

FIGURE 11.13 Self play. 

chess, draughts, tic-tac-toe and Go. We considered 
minimax search techniques and alpha–beta pruning, 
which relate to the search techniques studied in 
Chapter 4. We also discussed games where co-operation 
is important, where players can take simultaneous 
moves and where random events happen (such as the 
throw of a die). Finally, we have seen how deep learning 
has transformed the level of computer game playing 
but still makes use of the fundamentals. We will see in 
Chapter 15 that acting in the presence of uncertainty is 
essential for robotics and other practical planning tasks, 
and that chapter will show how game-playing algorithms 
can be used to tackle such non-gaming problems. 

11.1 Consider the alternatives to the “standard” 
game (the non-probabilistic, open, two-person, 
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FIGURE 11.14 Hex-lines. 

turn-taking, zero-sum game). Confining yourself 
to turn-taking games, consider all possible 
combinations of game types, and attempt to find 
a game to fit in each category. Only worry about 
the “zero-sum” property for two-person games; 
this means you should have 12 categories in all. 
For example, find a game that is probabilistic, 
open and not two person. 

11.2 Consider the three-person game hex-lines, a 
variant of “placing dominoes”. A piece of paper 
is marked with dots in a triangular pattern. 
Different sizes and shapes of playing area give 
rise to different games. Each person in turn 
connects two adjacent points. However, they 
are only allowed to use points that have not yet 
been used. The players each have a direction and 
are only allowed to draw lines parallel to their 
direction. We’ll assume that the first player draws 
lines sloping up (/), the second horizontal (—) 
and the third sloping down (\). If players cannot 
draw their direction of line, then they are out of 
the game. When no player can draw a line, the 
lines for each player are counted, giving the final 
score. 
Consider an example game on a small hexago-
nal playing area. The board positions through the 
game are shown in Figure 11.14. The initial con-
figuration is (i). 

a. First player draws sloping up (ii). 

b. Second player draws horizontal (iii). 

c. Third player cannot play and is out. 

d. First player cannot play either and is out. 

e. Second player draws again giving (iv). 

The final score is thus [1,2,0] (1 for the first player, 
2 for the second and 0 for the third). 
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Taking the same initial configuration draw the 
complete game tree. Could the first player have 
done better? 

11.3 In the game of Nim there are a number of piles 
of stones. Each player takes turns to choose a pile 
and take as many stones from the pile as they like. 
The winner is the person who takes the last stone. 

a. Draw a game tree for the game of Nim starting 
with three piles one with two stones in and 
the other two piles with just one stone each, 
You could write this “(2,1,1)”. Think carefully 
about symmetries. This will reduce the size of 
your game tree considerably as was the case for 
‘placing dominoes’ in Figure 11.1. 

b. Calculate the minimax values for each state, 
scoring +1 for a win by the first player (say A) 
and −1 for a win by the second player (say B). 

c. Is there a winning move for the first player? 

d. Repeat the minimax, but instead using the 
difference in the number of stones taken by 
each player as the score. That is, if player A 
has taken three stones and player B one stone, 
the score is 2 in favour of A. 

e. Does this change player A’s strategy? 

11.4 Repeat the above exercise, but this time assume 
the second player, player B, is entirely random in 
the sense that among all possible next moves, they 
choose randomly between them. Instead of mini-
max, use expected scores. 

FURTHER READING 

G. Yannakakis and J. Togelius. Artificial intelligence and games. 
Springer, Cham, 2018. 
An entire book dedicated to the use of AI in games. The 
earlier parts cover broad algorithms including both clas-
sic algorithms such as minimax and stochastic tree search 
and also the use of genetic algorithms and neural networks. 
The book has a website https://gameaibook.org/ with ad-
ditional resources. 

J. Pearl. Heuristics: Intelligent search strategies for computer 
problem solving. Addison-Wesley, Reading, MA, 1984. 
Part 3 of this book concentrates on game-playing strategies 
and heuristics. 
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CHAP T ER 1 2 

Computer Vision 

12.1 OVERVIEW 
Computer vision is one way for a computer system to 
reach beyond the data it is given and find out about the 
real world. There are many important applications, from 
robotics to airport security. However, it is a difficult 
process. This chapter starts with an overview of the typi-
cal phases of processing in computer vision. Subsequent 
sections (12.3–12.9) then follow through these phases in 
turn. At each point deeper knowledge is inferred from 
the raw image. Neural networks are used extensively 
in computer vision, augmenting or replacing some of 
these stages, although often using specialised networks 
based on understanding from the more algorithmic 
techniques. Finally, in Section 12.11, we look at the spe-
cial problems and opportunities that arise when we have 
moving images or input from several cameras or moving 
images. 

In this chapter we shall assume that the cameras are 
passive – we interpret what we are given. In Chapter 15 
we shall look at active vision, where the camera can move 
or adjust itself to improve its understanding of a scene. 

12.2 INTRODUCTION 

12.2.1 Why Computer Vision Is Difficult 

The human visual system makes scene interpretation 
seem easy. We can look out of a window and can make 
sense of what is in fact a very complex scene. This 
process is very difficult for a machine. As with natural 

language interpretation, it is a problem of ambiguity. 
The orientation and position of an object changes its 
appearance, as does different lighting or colour. In 
addition, objects are often partially hidden by other 
objects. 

In order to interpret an image, we need both low-level 
information, such as texture and shading, and high-level 
information, such as context and world knowledge. The 
former allows us to identify the object, the latter to inter-
pret it according to our expectations. 

12.2.2 Phases of Computer Vision 

Because of these multiple levels of conformation, most 
traditional computer vision is based on a hierarchy of 
processes, starting with the raw image and working 
towards a high-level model of the world. Each stage 
builds on the features extracted at the stage below. 
Typical stages are (see Figure 12.1): 

• digitisation: either the image is captured digitally or 
an analogue image is converted into a digital image 

• signal processing: low-level processing of the digital 
image in order to enhance significant features 

• edge and region detection: finding low-level features 
in the digital image 

• three-dimensional or two-dimensional object recog-
nition: building lines and regions into objects 

• image understanding: making sufficient sense of the 
image to use it 

Note, however, that not all applications go through all 
the stages. The higher levels of processing are more com-
plicated and time consuming. In any real situation one 
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FIGURE 12.1 Phases of computer vision. 

would want to get away with as low a level of processing 
as possible. Neural networks may be used for different 
parts of this pipeline. 

The rest of this chapter will follow these levels of pro-
cessing, and we will note where applications exist at each 
level. 

12.3 DIGITISATION AND SIGNAL 
PROCESSING 

The aim of computer vision is to understand some scene 
in the outside world. This may be captured using a video 
camera but may come from a scanner (e.g. optical char-
acter recognition). Indeed, for experimenting with com-
puter vision it will be easier to use digital photographs 
than to work with real-time video. Also, it is not neces-
sary that images come from visible light. For example, 
satellite data may use infrared sensing. For the purposes 
of exposition, we will assume that we are capturing a vis-
ible image with a video camera. This image will need to 
be digitised so that it can be processed by a computer 
and also “cleaned up” by signal processing software. The 
next section will discuss signal processing further in the 
context of edge detection. 

12.3.1 Digitising Images 

For use in computer vision, the image must be repre-
sented in a form that the machine can read. The analogue 
image is converted into a digital image. For born-digital 
media this may happen within the camera as the image 
is focused onto a CCD array; however, for older paper 
or film media, this may be performed separately by some 
form of scanner or video digitiser. The digital image is 
basically a stream of numbers, each corresponding to a 
small region of the image, a pixel. In the case of ‘black 
and white’ (really grey) images there is a single number 
for each pixel, which measures the light intensity at the 
pixel, the grey level. The range of possible grey levels is 
called a grey-scale (hence grey-scale images). If the grey 
scale consists of just two levels (really black or white), the 
image is a binary image. 

Figure 12.2 shows an image (ii) and its digitised form 
(i). There are ten grey levels from 0–white to 9–black. 
More typically there will be 256 or more grey levels rather 
than ten and often 0 is black (no light). However, the 
digits 0–9 fit better into the picture. Also, in order to print 
it, the image (ii) is already digitised and we are simply 
looking at a coarser level of digitisation. 
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FIGURE 12.2 Digitised image. 

Most of the algorithms used in computer vision 
work on simple grey-scale images. However, some-
times colour images are used. In this case, there are 
usually three or four values stored for each pixel, 
corresponding to either primary colours (red, blue 
and green) or some other colour representation 
system. 

Look again at Figure 12.2. Notice how the right-hand 
edge of the black rectangle translates into a series of 
medium grey levels. This is because the pixels each 
include some of the black rectangle and some of the 
white background. What was a sharp edge has become 
fuzzy. 

As well as this blurring of edges, other effects conspire 
to make the grey-scale image inaccurate. Some cameras 
may not generate parallel lines of pixels, the pixels may 
be rectangular rather than square (the aspect ratio) or the 
relationship between darkness and grey scale recorded 
may not be linear. However, the most persistent problem 
is noise: inaccurate readings of individual pixels due to 
electronic fluctuations, dust on the lens or even a foggy 
day! 

12.3.2 Thresholding 

Given a grey-scale image, the simplest thing we can do is 
to threshold it; that is, select all pixels whose greyness ex-
ceed some value. This may select key significant features 
from the image. 

In Figure 12.3, we see an image (i) thresholded at three 
different levels of greyness. The first (ii) has the lowest 
threshold, accepting anything that is not pure white. The 
pixels of all the objects in the image are selected with 
this threshold. The next threshold (iii) accepts only the 
darker grey of the circle and the black of the rectangle. 
Finally, the highest threshold (iv) accepts only pure black 

FIGURE 12.3 Thresholding. 

pixels and hence only those of the obscured rectangle are 
selected. 

This can be used as a simple way to recognise objects. 
For example, [175] shows how faults in electrical plugs 
can be detected using multiple threshold levels. At some 
levels the wires are selected, allowing one to check that 
the wiring is correct; at others the presence of the fuse 
can be verified. In an industrial setting one may be able 
to select lighting levels carefully in order to make this 
possible. 

One can also use thresholding to obtain a simple 
edge detection. One simply follows round the edge of 
a thresholded image. One can do this without actually 
performing the thresholding as one can simply follow 
pixels where the grey changes from the desired value. 
This is called contour following. 

However, more generally, images resist this level of in-
terpretation. Consider Figure 12.4. To the human eye, 
this also consists of three objects. However, see what two 
levels of thresholding, (ii) and (iii), do to the image. The 
combination of light and shadows means that the regions 
picked out by thresholding show areas of individual ob-
jects instead of distinguishing the objects. Indeed, even 
to the human eye, the only way we know that the sphere 
is not connected to the black rectangular area is because 
of the intervening pyramid. 

Contour following would give the boundary of one of 
these images – not really a good start for image under-
standing. The more robust approaches in the next section 
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FIGURE 12.4 A difficult image to threshold. 

will instead use the rate of change in intensity – slope 
rather than height – to detect edges. However, even that 
will struggle on this image. The last image (iv) in Fig-
ure 12.4 shows edges obtained by looking for sharp con-
trasts in greyness. See how the dark side of the sphere has 
merged into the black rectangle, and how the light shin-
ing on the pyramid has lost part of its boundary. There is 
even a little blob in the middle where the light side of the 
pyramid meets the dark at the point. 

In fact, as a human rather than a machine, you will 
have inferred quite a lot from the image. You will see it 
as a three-dimensional image where the sphere is above 
the pyramid and both lie above a dark rectangle. You will 
recognise that the light is shining somewhere from the 
top left. You will also notice from the shape of the fig-
ures and the nature of the shading that this is no pho-
tograph, but a generated image. The algorithms we will 
discuss later in this chapter will get significantly beyond 
thresholding, but still nowhere near your level of sophis-
tication! 

12.3.3 Digital Filters 

We have noted some of the problems of noise, blurring 
and lighting effects that make image interpretation diffi-
cult. Various signal processing techniques can be applied 
to the image in order to remove some of the effects of 
noise or enhance other features, such as edges. The ap-
plication of such techniques is also called digital filter-

ing. This is by analogy with physical filters, which enable 
you to remove unwanted materials, or to find desired 
material. Thresholding is a simple form of digital filter, 
but whereas thresholding processes each pixel indepen-
dently, more sophisticated filters also use neighbouring 
pixels. Some filters go beyond this and potentially each 
pixel’s filtered value is dependent on the whole image. 
However, all the filters we will consider operate on a fi-
nite window – a fixed-size group of pixels surrounding 
the current pixel. 

12.3.3.1 Linear Filters 

Many filters are linear. These work by having a series of 
weights for each pixel in the window. For any point in the 
image, the surrounding pixels are multiplied by the rele-
vant weights and added together to give the final filtered 
pixel value. 

In Figure 12.5 we see the effect of applying a filter with 
a 3 × 3 window. The filter weights are shown at the top 
right. The initial image grey levels are at the top left. For 
a particular pixel the nine pixel values in the window are 
extracted. These are then multiplied by the correspond-
ing weights, giving in this case the new value 1. This value 
is placed in the appropriate position in the new filtered 
image (bottom left). 

The pixels around the edge of the filtered image have 
been left blank. This is because one cannot position 
a window of pixels 3 × 3 centred on the edge pixels. 
So, either the filtered image must be smaller than the 
initial image, or some special action is taken at the 
edges. 

Notice also that some of the filtered pixels have 
negative values associated with them. Obviously this 
can only arise if some of the weights are negative. This 
is not a problem for subsequent computer processing, 
but the values after this particular filter cannot easily be 
interpreted as grey levels. 

A related problem is that the values in the final image 
may be bigger than the original range of values. For ex-
ample, with the above weights, a zero pixel surrounded 
by nines would give rise to a filtered value of 36. Again, 
this is not too great a problem, but if the result is too large 
or too small (negative), then it may be too large to store – 
an overflow problem. Usually, the weights will be scaled 
to avoid this. So, in the example above, the result of ap-
plying the filter would be divided by 8 in order to bring 
the output values within a similar range to the input grey 
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FIGURE 12.5 Applying a digital filter. 

scales. The coefficients are often chosen to add up to a 
power of 2, as dividing can then be achieved using bit 
shifts, which are far faster. 

12.3.3.2 Smoothing 

The simplest type of filter is for smoothing an image. That 
is, surrounding pixels are averaged to give the new value 
of a pixel. Figure 12.6 shows a simple 2 × 2 smoothing 
filter applied to an image. The filter window is drawn in 
the middle, and its pivot cell (the one which overlays the 
pixel to which the window is applied) is at the top left. The 
filter values are all ones, and so it simply adds the pixel 
and its three neighbours to the left and below and aver-
ages the four (note the ÷4). The image clearly consists 
of two regions, one to the left with high (7 or 8) grey-
scale values and one to the right with low (0 or 1) values. 
However, the image also has some noise in it. Two of the 
pixels on the left have low values and one on the right a 
high value. Applying the filter has all but removed these 
anomalies, leaving the two regions far more uniform, and 
hence suitable for thresholding or other further analysis. 

Because only a few pixels are averaged with the 2 × 2 
filter, it is still susceptible to noise. Applying the filter 
would only reduce the magnitude by a factor of 4. Larger 
windows are used if there is more noise, or if later analy-
sis requires a cleaner image. A larger filter will often have 
an uneven distribution of weights, giving more impor-
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tance to pixels near the chosen one and less to those far 
away. 

There are disadvantages to smoothing, especially 
when using large filters. Notice in Figure 12.6 that the 
boundary between the two regions has become blurred. 
There is a line of pixels that are at an average value 
between the high and low regions. Thus, the edge can 
become harder to trace. Furthermore, fine features such 
as thin lines may disappear altogether. There is no easy 
answer to this problem – the desire to remove noise 
is in conflict with the desire to retain sharp images. In 
the end, how do you distinguish a small but significant 
feature from noise? 

12.3.3.3 Gaussian Filters 

The Gaussian filter is a special smoothing filter based 
on the bell-shaped Gaussian curve, well known in 
statistics as the “Normal” distribution (Chap. 7). One 
imagines a window of infinite size, where the weight, 
w(x, y), assigned to the pixel at position x, y from the 
centre is 

w(x, y) = 1 2 + y2)/2𝜎2]
2𝜋𝜎2 

exp[−(x 

The constant 𝜎 is a measure of the spread of the 
window – how much the image will be smeared by the 
filter. A small value of 𝜎 will mean that the weights 
in the filter will be small for distant pixels, whereas 
a large value allows more distant pixels to affect the 
new value of the current pixel. If noise affects groups 
of pixels together, then one would choose a large 
value of 𝜎. 

Although the window for a Gaussian filter is theoret-
ically infinite, the weights become small rapidly, and so, 
depending on the value of 𝜎, one can ignore those outside 
a certain area and so make a finite windowed version. 
For example, Figure 12.7 shows a Gaussian filter with a 
5 × 5 window. Notice how it is symmetric and how the 
weights decrease towards the edge. This filter has weights 
totalling 256, but this took some effort! The theoretical 
weights are not integers, and the rounding errors mean 
that in general the sum of weights will not be a nice num-
ber. 

One big advantage of Gaussian filters is that the 
parameter 𝜎 can be set to any value yielding finer or 
coarser smoothing. Simple smoothing methods tend 
only to have versions getting “bigger” at fixed intervals 
(3 × 3, 5 × 5, etc.). The Gaussian with 𝜎 = 0.7 would 
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FIGURE 12.6 Applying a 2 × 2 smoothing filter. 

FIGURE 12.7 Gaussian filter with 𝜎 = 0.8. 

also fit on a 5 × 5 window but would be weighted more 
towards the centre (less smoothing). 

12.3.3.4 Practical Considerations 

We have already discussed problems of overflow when 
computing filtered images, and in general there are var-
ious computational factors that influence the choice of 
filter. Indeed, the cost of image processing can be so high 
that it is often better to use a simple method rather than 
an optimal one. It’s no good an industrial robot recognis-
ing a nut ten seconds after it has passed by on the con-
veyor belt. 

Images are large. Even a small 512 × 512 image with 
256 grey levels consumes 256 kilobytes of memory. This 
is expensive in terms of storage, but also those 262 144 
pixels take a long time to process one by one. A linear 
filter with a 2 × 2 window takes four multiplications per 
pixel, a 3 × 3 window takes nine and 5 × 5 takes 25! 
Also, a simple filter with coefficients of ±1 or powers of 
2 can be calculated by simple adds and shifts, further 
reducing the cost. So, the simple 2 × 2 smoothing filter 
in Figure 12.6, although crude, only takes 1 million 

additions, whereas the Gaussian filter in Figure 12.7 
takes over 6 million multiplications. A higher resolution 
colour image, say 4K x 2K pixels, takes 24 million 
bytes to store and correspondingly more operations to 
process. 

One solution is to use special hardware, DSP (Digital 
Signal Processing) chips or parallel processing, or to use 
the Graphics Processing Unit (GPU) found in most desk-
top computers. Indeed, your brain works in something 
like this fashion, with large areas committed to specific 
tasks such as line detection. It processes the whole image 
at once, rather than sequentially point by point. Whether 
or not this is available, care in the choice of processing 
method is essential. 

The large amounts of storage required make it imper-
ative that algorithms do not generate lots of intermedi-
ate images (unless you have masses of memory!). One 
way to achieve this is to overwrite the original image as 
it is filtered. But beware – look again at the 3 × 3 filter 
in Figure 12.5. If the image is processed from the top left 
downwards, then by the time a pixel is processed those 
pixels above and to the left of it will have been overwrit-
ten. With some very simple filters (such as the averaging 
filter in Figure 12.6) this is not a problem, but in general 
one must be careful to avoid overwriting pixels that will 
be needed. It is possible with care! An alternative way to 
avoid intermediate storage is to work out the effects of 
multiple steps and to compute them in one step. We see 
an example of this in the next section, in the calculation 
of the Laplacian-of-Gaussian filter. 

12.4 EDGE DETECTION 
Edge detection is central to most computer vision. There 
is also substantial evidence that edges form a key part of 
human visual understanding. An obvious example is the 

https://alandix.com/glossary/aibook/smoothing
https://alandix.com/glossary/aibook/linear filter
https://alandix.com/glossary/aibook/linear filter
https://alandix.com/glossary/aibook/smoothing filter
https://alandix.com/glossary/aibook/Gaussian filter
https://alandix.com/glossary/aibook/DSP
https://alandix.com/glossary/aibook/Digital Signal Processing
https://alandix.com/glossary/aibook/Digital Signal Processing
https://alandix.com/glossary/aibook/parallel processing
https://alandix.com/glossary/aibook/Graphics Processing Unit
https://alandix.com/glossary/aibook/GPU
https://alandix.com/glossary/aibook/Laplacian-of-Gaussian filter
https://alandix.com/glossary/aibook/Edge detection


FIGURE 12.8 Different gradient filters. 

ease with which people can recognise sketches and car-
toons. A few lines are able to invoke the full two- or three-
dimensional image. Edge detection consists of two sub-
processes. First of all, potential edge pixels are identified 
by looking at their grey level compared with surround-
ing pixels. Then these individual edge pixels are traced to 
form the edge lines. Some of the edges may form closed 
curves, while others will terminate or form a junction 
with another edge. Some of the pixels detected by the 
first stage may not be able to join up with others to form 
true edges. These may correspond to features too small 
to recognise properly or simply be the result of noise. 

12.4.1 Identifying Edge Pixels 

The grey-level image is an array of numbers (grey levels) 
representing the intensity value of the pixels. It can be 
viewed as a description of a hilly landscape where the 
numbers are altitudes. So a high number represents a 
peak and a low number a valley. Edge detection involves 
identifying ridges, valleys and cliffs. These are the edges 
in the image. We can use gradient operators to perform 
edge detection by identifying areas with high gradients. 
A high gradient i.e. a sudden change in intensity) indi-
cates an edge. There are a number of different gradient 
operators in use. 

12.4.1.1 Gradient Operators 

If you subtract a pixel’s grey level from the one immedi-
ately to its right, you get a simple measure of the horizon-
tal gradient of the image. This two-point filter is shown 
in Figure 12.8(i), together with two alternatives: a four-
point filter (ii), which uses a 2×2 window, and a six-point 
filter (iii), which uses a 3×3 window. The vertical version 
of the six-point filter is also shown (iv). 

The effects of the six-point filters are shown in Fig-
ure 12.9. The image shows the corner of a rectangular 
region in the bottom right-hand corner. Notice how the 
horizontal gradient operator picks out the left edge of the 
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region and the vertical operator picks out the upper edge. 
Both operators would detect a diagonal edge, but less ef-
ficiently than one in their preferred direction. So, in Fig-
ure 12.10, the pixel values are large, but the filtered values 
at the edge are smaller and more smeared. 

These operators can be useful if edges at a particular 
orientation are important, in which case one can simply 
threshold the filtered image and treat pixels with large 
gradients as edges. However, neither operator on its own 
detects both horizontal and vertical edges. 

12.4.1.2 Robert’s Operator 

Robert’s operator uses a 2 × 2 window. For each position 
(x, y), a gradient function, G(x, y), is calculated by 

G(x, y) = |f(x, y) − f(x + 1, y − 1)|
+ |f(x + 1, y) − f(x, y − 1)| 

where f(x, y) is the intensity of the pixel at that position. 
Notice that this is not a simple linear filter, as it involves 
calculating the absolute value of the difference between 
diagonally opposite pixels. This is necessary in order to 
detect lines in all directions. 

The results of the gradient function can be compared 
with a predetermined threshold to detect a local edge. 
Consider the various examples in Figure 12.11(i–iv): 

(i) G = |3 − 3| + |3 − 3| 
= |0| + |0| = 0 

(ii) G = |7 − 2| + |3 − 8| 
= |5| + |−5| = 10 

(iii) G = |5 − 6| + |7 − 1| 
= |−1| + |6| = 7 

(iv) G = |7 − 8| + |1 − 2| 
= |−1| + |−1| = 2 

A threshold of 5 would detect (ii) and (iii) as edges, but 
not (i) or (iv). Let’s look at each example. The first is a 
constant grey level: there are no edges, and none are de-
tected whatever threshold is chosen. The second is a very 
clear edge running up the image, and it gets the highest 
gradient of the four examples. The third example also has 
quite a strong gradient. It appears to represent an edge 
running diagonally across the image. The final example 
has dramatic changes in intensity but a low gradient. This 
is because there is little overall slope in the image. It rep-
resents a sort of ridge going across the picture. This might 
be a line a single pixel wide but not an edge between re-
gions. 
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FIGURE 12.9 Applying gradient filters. 

FIGURE 12.10 Gradient filter on a diagonal edge. 

FIGURE 12.11 Robert’s operator. 

Robert’s operator has the advantage of simplicity but 
suffers from being very localised and therefore easily 
affected by noise. For example, (ii) got a high gradient 
reading and would have been detected as a potential 
edge, but this is largely based on the bottom right pixel. 
If this one pixel were wrong, perhaps as a result of 
random noise, a spurious edge would be detected. 

12.4.1.3 Sobel’s Operator 

Sobel’s operator uses a slightly larger 3×3 window, which 
makes it somewhat less affected by noise. Figure 12.12 la-
bels the grey levels of the nine pixels. The gradient func-
tion is calculated as 
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FIGURE 12.12 Sobel’s operator. 

G = |(c + 2f + i) − (a + 2d + g)|
+ |(g + 2h + i) − (a + 2b + c)| 

Again, this can be thresholded to give potential edge 
points. 

Notice that the grey level at the pixel itself, e, is not 
used: the surrounding pixels give all the information. We 
can see the operator as composed of two terms, a hori-
zontal and a vertical gradient: 

H = (c + 2f + i) − (a + 2d + g) 
V = (g + 2h + i) − (a + 2b + c) 
G = |H| + |V| 

The first term, H, compares the three pixels to the right 
of e with those to the left. The second, V, compares those 
below the pixel with those above. In fact, if you look back 
at the six-point gradient filters in Figure 12.8, you will see 
that V and H are precisely the absolute values of the out-
puts of those filters. An edge running across the image 
will have a large value of V, one running up the image 
a large value of H. So, once we have decided that a pixel 
represents an edge point, we can give the edge an orienta-
tion using the ratio between H and V. Although we could 
follow edges simply by looking for adjacent edge pixels, 
it is better to use edge directions (as we shall see later). 

Note that it is also possible to give an orientation with 
Robert’s operator, as the two terms in it correspond to 
a northwesterly and northeasterly gradient respectively. 
However, this estimate of direction would be even more 
subject to noise. 

Note also that Sobel’s operator uses each pixel value 
twice, either multiplying it by two (the side pixels: f, d, h 
and b) or including it in both terms (the corner pixels: a, 
c, g and i). However, an error in one of the corner pixels 
might cancel out, whereas one in the side pixels would 
always affect the result. For this reason, some prefer a 
modified version of Sobel’s operator: 

FIGURE 12.13 Approximations to the Laplacian. 

G = |(c + f + i) − (a + d + g)|
+ |(g + h + i) − (a + b + c)| 

On the other hand, there are theoretical reasons for pre-
ferring the original operator, so the choice of operator in 
a particular application is rather a matter of taste! 

12.4.1.4 Laplacian Operator 

An alternative to measuring the gradient is to use the 
Laplacian operator. This is a mathematical measure 
(written ▽) of the change in gradient. Its mathematical 
definition is in terms of the second differential in the 
x and y direction (where the first differential is the 
gradient): 

d2f + 
d2▽f = 

dy2 dy2 

However, for digital image processing, linear filters are 
used which approximate to the true Laplacian. Approxi-
mations are shown in Figure 12.13 for a 2 × 2 grid and a 
3 × 3 grid. 

To see how they work, we will use a one-dimensional 
equivalent to the Laplacian which filters a one-
dimensional series of grey levels using the weights 
(1,−2,1). The effect of this is shown in Figure 12.14. 
Notice how the edge between the nines and ones is 
converted into little peaks and troughs. The actual edge 
detection then involves looking for zero crossings, places 
where the Laplacian’s values change between positive 
and negative. 

Notice that in Figure 12.14 the boundary between the 
nines and the ones is a 5. The one-dimensional image is 
slightly blurred. When Robert’s or Sobel’s operators en-
counter such an edge, they are likely to register several 
possible edge pixels either side of the actual edge. The 
Laplacian will register a single pixel in the middle of the 
blurred edge. 
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FIGURE 12.14 Using the Laplacian. 

The Laplacian also has the advantage that it is a linear 
filter and can thus be easily manipulated with other fil-
ters. A frequent combination is to use a Gaussian filter to 
smooth the image, and then follow this with a Laplacian. 
Because both are linear filters, they can be combined into 
a single filter called the Laplacian-of-Gaussian (LOG) fil-
ter. 

Note that the Laplacian does not give any indication 
of orientation. If this is required, then some additional 
method must be used once an edge has been detected. 

12.4.1.5 Successive Refinement and Marr’s Primal 
Sketch 

We saw earlier that images are very large and hence cal-
culations over the whole image take a long time. One way 
to avoid this is to operate initially on coarse versions of 
the image and then successively use more detailed images 
to examine potentially interesting features. For example, 
we could divide a 512 × 512 image into 8 × 8 cells and 
then calculate the average grey level over the cell. Treat-
ing each cell as a big “pixel”, we get a much smaller 64×64 
image. Edge detection is then applied to this image using 
one of the methods suggested above. If one of the cells is 
registered as an edge, then the pixels comprising it are in-
vestigated individually. Assuming that only a small pro-
portion of the cells are potential edges then the savings 
in computation are enormous – the only time we have to 
visit all the pixels is when the cell averages are computed. 
This method of successive refinement can be applied to 
other parts of the image processing process, such as edge 
following and region detection (discussed later). 

One representation of images, Marr’s primal sketch 
[184], uses similar methods to detect features at different 
levels of detail, but for a very different reason. Instead 

of averaging over cells, Laplacian-of-Gaussian filters are 
used with different standard deviations, where small 
standard deviations correspond to fine detail. Recall that 
Gaussians use large windows, so this is definitely not 
a cost-cutting route to image processing! The concept 
of different levels of detail is central to the model. The 
primal sketch is divided into edges, terminations (ends 
of edges), bars (regions between parallel edges) and 
blobs (small isolated regions). In particular, blobs are 
regions of pixels that register as edges (zero crossings of 
the Laplacian) at fine resolution but disappear at high 
resolution. Look at the room and then screw up your 
eyes. If you can see it when your eyes are open, but not 
when they are screwed up, then it is a blob. 

12.4.2 Edge Following 

We have now identified pixels that may lie on the edges 
of objects. We are not there yet! The next step is to string 
those pixels together to make lines, that is to identify 
which groups of pixels make up particular edges. The ba-
sic rule of thumb is that if two suspected edges are con-
nected, then they form a single line. However, this needs 
to be modified slightly for three reasons: 

• because of noise, shadows and so on, some edges 
will contain gaps 

• noise may cause spurious pixels to be candidate 
edges 

• edges may end at junctions with other lines. 

The first means that we may have to look more than one 
pixel ahead to find the next edge point. The other two 
mean that we have to use the edge orientation informa-
tion in order to reject spurious edges or detect junctions. 

A basic edge-following algorithm is then as follows: 

1. Choose any suspected edge pixel that has not al-
ready been used. 

2. Choose one direction to follow first. 

3. Look for an adjoining pixel in the right general 
direction. 

4. If the orientation of the pixel is not too different, 
then accept it. 
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FIGURE 12.15 Following edges. 

5. If there is no adjoining pixel, scan those one or 
two pixels away. 

6. If an acceptable pixel has been found, repeat from 
3. 

7. If no acceptable pixel is found, repeat the process 
for the other direction. 

The pixels found during a pass of this algorithm are re-
garded as forming a single edge. The whole process is re-
peated until all edge pixels have been considered. 

A few of the steps in this algorithm need unpacking 
slightly. First, in step 2, a line has two ends, so one has 
to choose which to follow first. As both will eventually 
be traced, the choice is unimportant and some default, 
say towards the right, can be chosen. Remember, though, 
that the orientation of the edge is at 90∘ to the line of max-
imum slope. At step 3, one only bothers to look for pixels 
that are in the general direction of the edge. For exam-
ple, if the orientation is northeast, one would look at the 
pixels to the top right, right and top. Similarly at step 5, 
one only looks slightly further in the relevant directions. 
Figure 12.15 shows a typical order in which pixels are 
scanned. You have to look at quite a wide swath of pixels, 
as even a straight line is quite jagged when digitised and 
also the edge may bend. Note that the figure includes the 
additional pixels searched at step 5. The threshold used 
to decide whether two edge pixels have a “close enough” 
orientation will depend somewhat on the sort of images, 
noise levels and so on. However, a typical rule might be 
to accept if the orientations lie within 60∘of one another. 

The output of this algorithm is a collection of edges, 
each of which consists of a set of pixels. The end points 
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of each edge segment will also have been detected at step 
7. If the end point is isolated, then it is a termination; 
if several lie together, or if it lies on another edge, then 
the end point is at a junction. This resulting set of edges 
and junctions will be used by Waltz’s algorithm in the 
next section to infer three-dimensional properties of the 
image. 

However, before passing these data on to more 
knowledge-rich parts of the process, some additional 
cleaning up is possible. For example, very short edges 
may be discarded as they are likely either to be noise 
or to be unimportant in the final image (e.g. texture 
effects). Also, one can look for edges that terminate close 
to one another. If they are collinear and there are no 
intervening edges, then one may join them up to form a 
longer edge. Also, if two edges with different orientation 
terminate close together, or an edge terminates near 
the middle of another edge, then this can be regarded 
as a junction. One problem with too much guessing 
at lower levels is that it may confuse higher levels (the 
source of optical illusions in humans). One solution is 
to annotate edges and junctions with certainty figures. 
Higher levels of processing can then use Bayesian-style 
inferencing and accept or reject these guesses depending 
on higher-level semantic information. However, for the 
purposes of exposition, we will assume that the output 
of this level of analysis is perfect. 

12.5 REGION DETECTION 
In the previous section we likened edge detection to 
understanding a cartoon. In contrast, an oil painting 
will not have lines drawn at the edges but will consist 
of areas of different colours. An alternative to edge 
detection is to concentrate on the regions composing 
the image. We considered this briefly when we discussed 
thresholding but will now look at a more sophisticated 
algorithm. 

12.5.1 Region Growing 

A region can be regarded as a connected group of pix-
els whose intensity is almost the same. Region detection 
(or segmentation) aims to identify the main shapes in an 
image. This can be done by identifying clusters of similar 
intensities. The main process is as follows: 

• group identical pixels into regions 
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FIGURE 12.16 Region merging. 

• examine the boundaries between these regions – if 
the difference is lower than a threshold, merge the 
regions. 

The result is the main regions of the image. 
This process is demonstrated in Figure 12.16. The 

first image (i) shows the original grey levels. Identical 
pixels are merged giving the initial regions in (ii). The 
boundaries between these are examined and in (iii) 
those where the intensity is less than 3 are marked for 
merging. The remainder, those where the difference in 
intensity is more than 2, are retained, giving the final 
regions in (i). 

12.5.2 The Problem of Texture 

Texture can cause problems with all types of image 
analysis, but region growing has some special problems. 

If the image is unprocessed, then a textured surface will 
have pixels of many different intensities. This may lead 
to many small island regions within each large region. 
Alternatively, the texture may “feather” the edges of 
the regions so that different regions get merged. The 
obvious response is to smooth the image so that textures 
become greys. However, if the feathering is bad, then 
sufficient smoothing to remove the texture will also blur 
the edge sufficiently that the regions will be merged 
anyway. In a controlled environment, where lighting 
levels can be adjusted, one may be able to adjust the 
various parameters (level of smoothing, threshold for 
merging) so that recognition is possible, but where such 
control is not easily possible region merging may fail 
completely. 
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12.5.3 Representing Regions – Quadtrees 

In the previous section we represented regions by sim-
ply drawing lines round them on the page. In a com-
puter program it is not that straightforward! The sim-
plest representation would be to keep a list of all the pix-
els in each region. However, this would take an enor-
mous amount of storage. There are various alternatives 
to reduce this overhead. One popular representation is 
quadtrees. These make use of the fact that images often 
have large areas with the same value – precisely the case 
with regions. We will describe the algorithm in terms of 
storing a binary image and then show how it can be used 
for recording regions. 

Start off with a square image where the width in pix-
els is some power of 2. Examine the image. Is it all black 
or white? If so, stop. If not, then divide the image into 
four quarters and look at each quarter. If any quarter is 
all black or white, then leave it alone, but if any quarter 
is mixed, then split it into quarters. This continues un-
til either each region is of one colour, or else one gets 
to individual pixels – which must be one colour by def-
inition. This process is illustrated in Figure 12.17. The 
first part (i) shows the original image, perhaps part of 
a black circle. This is then divided and subdivided into 
quarters in (ii). Finally, in (iii) we see how this can be 
stored in the computer as a tree data structure. See how 
the 64 pixels of the image are stored in five tree nodes. Of 
course the tree nodes are more complicated than simple 
bitmaps and so for this size of image a quadtree is a lit-
tle over the top, but for larger images the saving can be 
enormous. 

This can be used to record regions in two ways. Each 
region can be stored as a quadtree where a black means 
that the pixel is part of the region. Alternatively, one can 
use a multi-coloured version of a quadtree where each re-
gion is coded as a different colour. In either case, regions 
can easily be merged using the quadtree representation. 

Variants of quadtrees are also used in geographic 
information systems (GIS) to store spatial information, 
and 3D equivalents, octrees, can be used for voxel data, 
for example to store the output of an ultrasound scan. 

12.5.4 Computational Problems 

Region growing is very computationally expensive, in-
volving many passes over the digitised image. Operat-
ing on reduced representations such as quadtrees can 
reduce the number of operations, but at the expense of 
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more complicated data structures. For this reason, [288] 
suggests that region growing is not generally applicable 
in industrial contexts. Instead, edge detection methods 
are preferred. The contrast is easy to see – a 100 × 100 
pixel square has 10 000 interior pixels, but only 400 on 
the boundary! However, against this one should note that 
region growing is easily amenable to parallel process-
ing and so the balance between different techniques may 
change. 

12.6 RECONSTRUCTING OBJECTS 

12.6.1 Inferring Three-Dimensional Features 

Edge and region detection identify parts of an image. We 
need to establish the objects that the parts depict. We can 
use constraint satisfaction algorithms to determine what 
possible objects can be constructed from the lines given. 
First, we need to label the lines in the image to distin-
guish between concave edges, convex edges and obscur-
ing edges. An obscuring edge occurs where a part of one 
object lies in front of another object or in front of a differ-
ent part of the same object. The convention is to use a “+” 
to label a convex edge, a “−” for a concave edge and an 
arrow for an obscuring edge. The object that the edge is 
”attached” to lies to the right of the arrow; the obscured 
object lies to its left. Figure 12.18 shows an object with 
the lines in the image suitably labelled. 

How do we decide which labels to use for each line? 
Lines meet each other at vertices. If we assume that cer-
tain degenerate cases do not occur, then we need only 
worry about trihedral vertices (in which exactly three 
lines meet at a vertex). There are four types of such ver-
tices, called L, T, fork (or Y) and arrow (or W). There are 
208 possible labellings using the four labels available, but 
happily only 18 of these are physically possible (see Fig-
ure 12.19). We can therefore use these to constrain our 
line labelling. Waltz proposed a method for line labelling 
using these constraints. 

Waltz’s Algorithm 

Waltz’s algorithm [294] basically starts at the outside 
edges of the objects and works inward using the 
constraints. The outside edges must always be obscuring 
edges (where it is the background that is obscured). 
Therefore, these can always be labelled with clockwise 
arrows. The algorithm has the following stages: 

1. Label the lines at the boundary of the scene. 
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FIGURE 12.17 Quadtree representation of image. 

FIGURE 12.18 Scene with edges labelled. 

FIGURE 12.19 Possible trihedral vertices – T junctions (T1– 
T4), arrows (A1–A3), forks (F1–F5) and L junctions (L1–L6). 

2. Find vertices where the currently labelled lines are 
sufficient to determine the type of the vertex. 

3. Label the rest of the lines from those vertices ac-
cordingly. 

Steps 2 and 3 are repeated either until there are no un-
labelled lines (success) or until there are no remaining 
vertices which are completely determined (failure). 

We will follow through the steps of this algorithm at-
tempting to label the object in Figure 12.18. We start 
by naming the vertices and labelling the boundary lines. 
This gives the labelling in Figure 12.20(i). 

We now perform the first pass of steps 2 and 3. No-
tice how a, c , f and h are arrow vertices with the two 
side arms labelled as boundaries (“>”). Only type A6 

matches this, so the remaining line attached to each of 
these vertices must be convex (“+”). Similarly, the T ver-
tex d must be of type T4; hence the line d–k is a bound-
ary. Vertices e and i are already fully labelled, so add 
no new information. The results of this pass are shown 
in (ii). 

On the second pass of steps 2 and 3 we concentrate on 
vertices j, k and l. Unfortunately, vertex k is not deter-
mined yet; it might be of type L1 or L5 and we have to 
wait until we have more information. However, vertices 
j and l are more helpful: they are forks with one concave 
line. We see that if one line to a fork is concave, it must be 
of type F1 and so all the lines from it are concave. These 
are marked in (iii). 
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FIGURE 12.20 Applying Waltz’s algorithm. 

As we start the third pass, we see that k is still not 
determined, but m is an arrow with two concave arms. It 
is therefore of type A3 and the remaining edge is concave. 
This also finally determines that k is of type L5. The fully 
labelled object (iv) now agrees with the original labelling 
in Figure 12.18. 

12.6.1.1 Problems with Labelling 

Waltz’s algorithm will always find the unique correct 
line labelling if one exists. However, there are scenes 
for which there are multiple labellings, or for which 
no labelling can be found. Figure 12.21 shows a scene 
with an ambiguous line labelling. The first labelling 
corresponds to the upper block being attached to the 
lower one. In the second labelling the upper block is 
“floating” above the lower one. If there were a third block 
between the other two, we would be able to distinguish 
the two, but with no further information we cannot do 

so. With this scene, Waltz’s algorithm would come to 
an impasse at stage 2, when it would have unlabelled 
vertices remaining, but none that are determined from 
the labelled edges. At this stage, you could make a guess 
about edge labelling, but whereas the straightforward 
algorithm never needs to backtrack, you might need 
to change your guesses as you search for a consistent 
labelling. 

Figure 12.22(i) shows the other problem, a scene that 
cannot be labelled consistently. In this case Waltz’s algo-
rithm would get stuck at step 3. Two different vertices 
would each try to label the same edge differently. The 
problem edge is the central diagonal. Reasoning from the 
lower arm, the algorithm thinks it is convex, but reason-
ing from the other two arms it thinks it is concave. To 
be fair, the algorithm is having exactly the same prob-
lem as you have with this image. It is locally sensible, 
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FIGURE 12.21 Scene with ambiguous labelling. 

FIGURE 12.22 Improper scene. 

but there is no reasonable interpretation of the whole 
scene. 

Given only the set of vertex labellings from Fig-
ure 12.19, there are also sensible scenes that cannot be 
labelled. A pyramid that has four faces meeting at the 
top cannot be labelled using trihedral vertices. Even 
worse, a piece of folded cloth may have a cusp, where a 
fold line disappears completely. These problems can be 
solved by extending the set of vertex types, but as one 
takes into account more complex vertices and edges, the 
number of cases does increase dramatically. 

Note also that the algorithm starts with the premise 
that lines and vertices have been identified correctly. 
Given what you know about edge detection, you will see 
that this is not necessarily a very robust assumption. If 
the edge detection is not perfect, then one might need 
to use uncertain reasoning while building up objects. 
Consider Figure 12.22 (ii) – a valid scene that can be 
labelled consistently. However, if the image is slightly 
noisy at the top right vertex, it might be uncertain 
whether it is a T, an arrow or a Y vertex. If it chose 
the last of these, it would have the same problems as 
with the first, inconsistent Figure If the edge detection 
algorithm instead gave probabilities, one could use 
these with Bayesian reasoning to get the most likely line 
labelling. 

FIGURE 12.23 Two objects or three? 

However, the search process would be somewhat more 
complicated than Waltz’s algorithm! 

12.6.2 Using Properties of Regions 

Edge detection simply uses lines of rapid change but 
discards the properties of the regions between the lines. 
However, there is a lot of information in these regions 
that can be used to understand the image or to identify 
objects in the image. For example, in Figure 12.23, it 
is likely that the regions labelled A and B are part of 
the same object partly obscured by the darker object. 
We might have guessed this from the alignment of the 
two regions, but the fact that they are the same colour 
reinforces this conclusion. 

Also, the position and nature of highlights and shad-
ows can help to determine the position and orientation of 
objects. If we have concluded that an edge joins two parts 
of the same object, then we can use the relative brightness 
of the two faces to determine which is facing the light. Of 
course, this depends on the assumption that the faces are 
all of similar colour and shade. Such heuristics are often 
right but can sometimes lead us to misinterpret an image 
– which is precisely why we can see a two-dimensional 
picture as if it had depth. 

Once we know the position of the light source (or 
sources), we can work out which regions represent 
possible shadows of other objects and hence connect 
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FIGURE 12.24 Shadows and highlights. 

them to the face to which they belong. For example, in 
Figure 12.24, we can see from the different shadings that 
the light is coming from above, behind and slightly to 
the left. It is then obvious that the black region is the 
shadow of the upper box and so is part of the top face of 
the lower box. 

Shadows and lighting can also help us to disambiguate 
images. If one object casts a shadow on another, then it 
must lie between that object and the light. Also, the shape 
of a shadow may be able to tell us about the distance of 
objects from one another and whether they are touch-
ing. Recall in Figure 12.21 how the edges had no unam-
biguous line labelling. However, looking at the shadow 
in Figure 12.24 it is clear that the upper box is in contact 
with the lower one. 

Lighting effects can also help us to interpret curved 
objects. For example, in Figure 12.4 at the beginning of 
this chapter, the sphere gets darker and darker until it be-
comes indistinguishable from the black rectangle in the 
background. However, we have no trouble identifying it 
as a sphere as we infer a boundary based on the rate of 
change of colour. A similar rule can be built into an im-
age analysis program. 

12.7 IDENTIFYING OBJECTS 
Finally, having extracted various features from an image, 
we need to establish what the various objects are. The 
output of this will be some sort of symbolic representa-
tion at the semantic level. We will discuss three ways of 
doing this that operate on different sorts of lower-level 
representation. 

12.7.1 Using Bitmaps 

The simplest form of object identification is just to take 
the bitmap, suitably thresholded, and match it against 

FIGURE 12.25 Simple template matching. 

various templates of known objects. One can simply 
count the number of pixels that disagree and use this as 
a measure of fit. The best match is chosen, and so long 
as its match exceeds a certain threshold it is accepted. 

This form of matching can work well where one can 
be sure that shapes are not occluded and where lighting 
levels can be chosen to ensure clean thresholded images. 
However, in many situations the match will be partial, 
either because of noise, or because the object is partly ob-
scured by another object. Simply reducing the threshold 
for acceptability will not work. Consider the two images 
in Figure 12.25. They have a similar amount of pixels in 
common, but the first is clearly a triangle like the tem-
plate whereas the latter is not. 

If a neural network is trained using noisy as well as 
perfect images, it may be able to deal with noisy pat-
tern matching. After training, when the network is pre-
sented with an image, it identifies the object it thinks it 
matches, sometimes with an indication of certainty. Neu-
ral networks can often give accurate results even when 
there is a large amount of noise, but without some of 
the unacceptable spurious matches from crude template 
matching. One reason for this is that many nets effec-
tively match significant features (such as the corners and 
edges of the triangle). This is not because they have any 
particular knowledge built in but simply because of the 
low-level way that they learn. We’ll look at the use of neu-
ral networks for image processing in more detail in Sec-
tion 12.9. 

One problem with both template matching and neural 
networks is that they are looking for the object at a par-
ticular place in the image. They have problems when the 
object is at a different location or orientation than the ex-
amples with which they are taught. One solution is to use 
lots of examples at different orientations. For template 
matching this increases the cost dramatically (one test for 
each orientation). For neural nets, the way in which the 
patterns are stored reduces this cost to some extent, but if 
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too many patterns are taught without increasing the size 
of the network, the accuracy will eventually decay. 

An alternative approach is to move the object so that 
it is in the expected location. In an industrial situation 
this can often be achieved by using arrangements of 
chutes and barriers that force the object into a particular 
position and orientation. Where this is not possible, 
an equivalent process can be carried out on the image. 
If one is able to identify which region of the image 
represents an object, then this can be moved so that it 
lies at the bottom left-hand corner of the image, and 
then matched in this standard position. This process is 
called normalisation. A few stray pixels at the bottom or 
left of the object can upset this process, but alternative 
normalisation methods are less susceptible to noise, for 
example moving the centre of gravity of the object to the 
centre of the image. 

Similar methods can be used to standardise the orien-
tation and size of the object (the size may be different if it 
is closer or farther away than the examples). The general 
idea is to find a co-ordinate system relative to the object 
and then use this to transform the object into the stan-
dard co-ordinate system used for the matching. A typical 
algorithm works like this: 

1. Select a standard point on the object (say its centre 
of gravity). 

2. Choose the direction in which the object is 
“widest”; make this the x-axis. 

3. Take the axis orthogonal to the x-axis as the y-axis. 

4. Scale the two axes so that the object “fits” within 
the unit square. 

The definitions of “widest” and also “fits” from steps 
2 and 4 can use the simple extent of the object, but are 
more often based on measures which are less noise sensi-
tive. The process is illustrated in Figure 12.26. The result-
ing x and y axes are called an object-centred co-ordinate 
system. Obviously all the example images must be trans-
formed in a similar fashion so that they match! 

12.7.2 Using Summary Statistics 

An even simpler approach than template matching is to 
use simple statistics about the objects in the image, such 
as the length and width of the object (possibly in the 

FIGURE 12.26 Choosing an object-centred co-ordinate sys-
tem. 

object-centred system), the number of pixels with vari-
ous values and so on. For example, if one were trying to 
separate nuts and bolts on a production line, then those 
objects with an aspect ratio (ratio of length to width) 
greater than some critical value would be classified as 
nuts. Another example would be a line producing wash-
ers where you are trying to reject those that have not had 
their centres properly removed. Those objects with too 
many pixels would be rejected as defects. 

12.7.3 Using Outlines 

We saw when discussing template matching that issues 
of location, orientation and size independence cause 
some problems. These get far worse when we have to 
consider three-dimensional rotations. At this point 
techniques using higher-level features, such as those 
generated by Waltz’s algorithm, become very attractive. 
In essence one is still template matching, but now the 
templates are descriptions of the connectivity of various 
edges. Of course, the same object will have different 
edges visible depending on its orientation. However, one 
can generate a small set of representative orientations 
whereby any object matches one or other after a certain 
amount of deformation. 

Figure 12.27 shows some of the representative orienta-
tions of a simple geometric object. The example set of all 
possible orientations can be generated by hand, or (ide-
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FIGURE 12.27 Different orientations of an object. 

FIGURE 12.28 Matching an object. 

ally) automatically using a three-dimensional geometric 
model of the object. The number of orientations can be 
reduced dramatically if one can make any assumptions, 
say that the object’s base stays on the ground, or that the 
camera position is within certain bounds. 

When an object is to be recognised, it is matched 
against the representatives of all known objects. 
Each vertex and edge in the image object is matched 
with a corresponding one in the example. If such a 
correspondence can be found, then the match succeeds. 
The exact positions of the vertices and edges don’t 
matter, but the relative geometric constraints must 
match. For example, in Figure 12.28, image (ii) matches 
the template (i). However, (iii) doesn’t because vertex d 
is a fork-type junction rather than an arrow. 

The matching process can be more or less precise. As 
well as the types of junctions, it may use information such 
as whether certain lines are parallel or vertical. However, 
adding constraints tends to mean that there are more 
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cases to consider when producing the set of all represen-
tative orientations. 

Note that this type of method can be used to match 
more complicated objects. If an object consists of vari-
ous pieces, then the pieces can be individually identified 
by the above method and then a description of the con-
nectivity of the pieces within the object can be matched 
against the known objects. This allows one to detect ob-
jects which change their shape, such as people. 

12.7.4 Using Paths 

Finally in this section we look at the special case of hand-
writing and gesture recognition. Reading human hand-
writing has been a long-term aim of AI (as well as many 
of the authors’ friends) and is now commonplace, albeit 
not perfect. Pen-based systems recognise both charac-
ters (to enter data) and gestures (such as a scribble to 
mean “delete”). These systems either demand that the 
writer uses very stylised letters or that new writers spend 
some time training the system. Even when the system 
is trained, the writer must write each character individ-
ually. Reliable and flexible writer-independent recogni-
tion of connected writing is not yet with us. 

One way to approach handwritten text is to take the 
bitmap generated by the path of the pen and then process 
it. Some applications demand this approach, for example 
if you want to interpret proof corrections written onto 
paper copies and then scan these in, or if you want to 
transcribe historic hand-written correspondence. How-
ever, for an interactive system this throws away too much 
useful information. If we trace the path of the pen, we 
not only have the lines already separated from the back-
ground (why bother to detect them again!), but we also 
know the direction of the strokes and the order in which 
they were written. 

These path data differ from the grey-scale or bitmap 
images we have considered so far. Instead of a set of in-
tensities at positions, we have a set of positions of the pen 
at various times. We can match the strokes in the im-
age against those learnt for the particular writer. How-
ever, handwritten letters and gestures are never exactly 
the same and so we must accept some variation. There 
are various approaches to this. 

One way is to look for characteristic shapes of strokes: 
lines, curves, circles and so on. Characters and gestures 
are then described using this “vocabulary”. A letter “a” 
might be described as either “a circle with a line con-
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FIGURE 12.29 Handwriting recognition – warping the sam-
ple. 

nected to the right” or “a semi-closed curve with a line 
closing it to the right”. 

An alternative is to try and match the strokes against 
examples stored during training. However, not only may 
the written characters vary but also the points at which 
the pen is sampled may differ between the training ex-
ample and the one to be recognised. One therefore has 
to “warp” the points on the path and find intermediate 
points that match most closely the example. The idea is 
to choose points that were not in the sample, but might 
have been! 

The process is illustrated in Figure 12.29. The sample 
points on the original template and the character that 
needs to be matched are shown in (i) and (ii). The tem-
plate sample points are overlaid as closely as possible (iii), 
and then intermediate points (the warp points) are cho-
sen on the lines connecting the sample points. These are 
chosen so as to be as close to the template points as pos-
sible. At the ends of the stroke the warp points must be 
chosen on the extrapolation of the last lines. Now the 
warped points are used rather than the originals in de-
ciding whether or not the character really matches the 
template. 

12.8 FACIAL AND BODY RECOGNITION 
Facial recognition is found in many applications: to label 
family and friends in your photo album, as a way to un-
lock phones, and by police to find suspects in CCTV im-
ages. Similarly body and pose recognition is used widely 
in game controllers to allow full-body movement digital 
sports, in the film industry to blend human action and 
CGI and by airport security to detect suspicious activity. 
As is evident, the applications range from the frivolous 
to some that are very worrying from a privacy point of 
view – we will return to these issues in Chapter 23. 

In some cases the applications use standard pipelines 
of video processing or use large quantities of images to 
train neural networks. However, often both facial and 
body pose recognition use some form of model of the 
human face or body in order to create more knowledge-
informed systems. 

Facial recognition can be used for various purposes: 

identification – Whose face is this? 

authentication – Is this your face? 

attention – Where is this person looking? 

emotion – What are they feeling? 

The first two are about matching a face to a person, 
the last two about understanding the facial expression 
irrespective of who it is, something humans can do with 
strangers as well as friends. 

For matching, the number of faces you want to match 
to makes the job easier or harder. The Chinese govern-
ment’s Skynet Project matches people from tens of thou-
sands of CCTV cameras with a database of hundreds of 
thousands of police suspects – a small false positive rate 
of even a few per cent would lead to thousands of false 
identifications every day. In contrast you may have hun-
dreds of friends to be matched against the photographs 
in your album, and just you for your mobile to authenti-
cate and unlock the phone (or more often not!). Clearly 
the last is easiest. 

Often face-based systems work by identifying key fea-
tures: eyes, mouth, nose, cheeks, and then either mor-
phing the image to match other images or using metrics 
such as nose-to-mouth or eye-to-eye distance. Identifi-
cation and authentication applications simply use these 
to match known faces. Facial expression recognition will 
look in more detail at fine features such as micro-muscle 
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movements. In fact exactly the things that facial recog-
nition wants to ignore as it is still the same face whether 
happy or sad, looking left or right. 

Oddly, computer emotion recognition can be better 
in some ways than humans as there are certain muscles 
that are involuntary, so a computer system may be able 
to distinguish a false smile (deliberately formed) from a 
real one. However, a level of complicit deceit is part of 
the normal patterns of human intercourse; it is often a 
bad idea if the person asking ‘how do I look today’ can 
tell if the answer is honest. So some emotions are best left 
undetected, even when detection is possible. 

For film production actors may wear special suits 
with either reflective dots or miniature radio-location 
devices to record movements which can later be used to 
render false bodies. Similarly sports players may wear 
such devices in order to gather data for research or for 
coaches to help them improve their performance. This 
special equipment generates precise 3D coordinates for 
each limb position. 

However, often an equivalent job is needed without 
the person wearing special clothes or devices, for exam-
ple, when playing virtual sports games. For this vision 
systems use combinations of plain and depth cameras. 
Sometimes, structured light may also be used; that is pat-
terns of infra-red light projected on the scene to allow 
easy 3D depth detection. 

These systems detect key features such as the head 
or elbows. This is combined with models of the human 
body both to help eliminate impossible interpretations 
(the neck is not connected to the ankle), and, once 
disambiguated, to make an accurate 3D virtual skeleton 
including arm and leg positions and head angle. Often 
such systems use a hybrid architecture (Chap. 6) 
combining multiple types of AI approach; for example 
a system might use statistical signal processing at a low 
level, neural networks for key feature identification and 
model-based approaches with Bayesian reasoning to 
create the final skeleton. 

12.9 NEURAL NETWORKS FOR IMAGES 
Neural networks have been used for various forms of 
image categorisation or reconstruction since the earliest 
days and many of the neural net examples in this book in-
volve images. The classical image processing techniques 
presented in this chapter are quite complex, but when we 
look at a scene or a face we just ‘get it’, we have some 
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immediate impression or recognition. We don’t feel as 
though we are going through many stages because the 
processing is unconscious and virtually instantaneous. 

The knowledge-rich techniques described already are 
of course all performed unconsciously in our brains, and 
many are based on psychological experiments that seek 
to unpack these conscious processes. However, much of 
what is going on in our own brains is still not understood. 
Neural networks have therefore always been an obvious 
approach, especially for those hard to codify aspects – 
you just know a photo is a 1950s city scene rather than 
contemporary, but it may be hard to pin that down to 
lines, shapes or textures. 

For many applications generic networks are simply ap-
plied to an image, setting the pixels as input and some 
classification as output. This may be preceded by some 
form of image-specific pre-processing such as threshold-
ing, or a wavelet transform (Chap. 14), but otherwise is a 
straightforward application of a generic algorithm. 

However, there are some algorithms that have been 
specifically designed for images or have been particu-
larly closely connected. We will discuss two, convolu-
tional neural networks and autoencoders. 

12.9.1 Convolutional Neural Networks 

Many of the techniques we’ve seen in this chapter in-
volve doing the same thing across every pixel position in 
an image. Some of them look at a single pixel at a time, 
notably thresholding, but others look at a region around 
the pixel. These include simple smoothing and Gaussian 
filters, and also gradient filters and Sobel’s operator for 
edge detection. In mathematical terms these are called 
convolutions and are also applied to linear data such as 
time series. 

The strength of convolutions is that they operate uni-
formly, no particular area of an image is any different 
to any other. In contrast a ‘vanilla’ application of neu-
ral networks to an image regards every pixel as com-
pletely different. This may mean that a car is only de-
tected if it lies in exactly the same spot as in an exam-
ple image. There are some aspects of images where this 
may be appropriate, for example landscape pictures have 
sky at the top, passport photos have a face in the middle. 
However, typically we want more position independent 
recognition. 

Convolutional neural networks achieve this by adopt-
ing the same techniques as convolutional filters. The im-
age is divided up into potentially overlapping patches 
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FIGURE 12.30 Convolutional neural network. 

(called the receptive field) and the same (relatively small) 
neural network is applied to every patch. This is then 
used as the input layer of a deep neural network (see Fig-
ure 12.30). 

The training of the convolutional part can still use the 
error values fed back from a standard backpropagation 
algorithm, but as the same weights are used in multiple 
places, the change in each weight is an average of all the 
changes generated at each patch independently. 

In some implementations this is achieved by replicat-
ing the initial network, once for each patch, to create the 
first layer(s) of processing, but then ‘clamping’ the corre-
sponding weights together. Here backpropagation would 
be applied as normal, but at the end of each cycle of learn-
ing each weight in the convolution layer would be set to 
the average of all its corresponding weights. 

While this technique is especially used for images, it 
can also be applied to other forms of 2D data or indeed 
1D data such as time series data or more complex 3D 
or forms of graph data that have some sort of regular 
structure. 

12.9.2 Autoencoders 

Recall from Chapter 6, an autoencoder is a form of au-
toassociative memory where the input and output are the 
same. Some of the early connectionist systems, in partic-
ular Hopfield networks and Boltzmann machines, func-
tioned as autoassociative memory and have been used for 
image construction, but the term ‘autoencoder’ is most 
often used where there is a clear internal encoding that 
is much smaller than the original images, as can be the 

FIGURE 12.31 Autoencoder. 

case with a restricted Boltzmann machine when there are 
fewer hidden units than visible units. 

As with all AI there are many variations, but typically 
an autoencoder is a deep neural network where: 

1. The input and output layers are intended to be the 
same image (or other form of data), 

2. There is a narrow hidden layer that acts as the en-
coding, 

3. Where there are additional layers, the architecture 
is often symmetric. 

Figure 12.31 shows these features. In the simplest case 
the network is trained by simply presenting the same ex-
ample image in both input and output during standard 
training. However, one of the uses is to ‘clean up’ noisy 
data or to fill in where there is a gap in an image. To 
achieve this as well as training the net on exact matching 
pairs, the input may have noise added so that the network 
learns how to associate a noisy image with its clean equiv-
alent and thus with enough training examples learns in 
general how to remove noise. 

In its basic form this is unsupervised learning and so is 
especially useful when large numbers of untagged images 
are available, as is the case with many images on the web. 
However, after unsupervised training, the encoding layer 
can also be used as a reduced dimension version of the 
image for other kinds of learning. 

For example, if a small proportion of the images have 
some form of human tagging, the encoded version of 
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each together with the tag can be used as input–output 
pairs to train a classifier. As the encoded layer is a lot 
smaller than the original image, this is possible to do 
robustly with far fewer tagged examples than would be 
needed with the raw image data. Once trained in this 
way, the classifier can be applied to the encoded form of 
unseen images. 

Other uses include using random values for the encod-
ing or perturbing it and then letting the decoding part of 
the network generate realistic images. The ability of this 
and more sophisticated forms of autoencoder to generate 
or clean up images can also be potentially problematic 
in the generation of deep fakes. For example, if the face 
of a politician is placed over the body of someone doing 
something illegal and then this image is presented as in-
put to an autoencoder, the join between face and body 
would be ‘tidied up’ so that it might look as though it 
were a real photograph of the politician. 

12.10 GENERATIVE ADVERSARIAL 
NETWORKS 

Autoencoders can generate very realistic images but 
also ones that are manifestly unreal, for example placing 
facial features in unnatural positions. One approach to 
deal with this is to use generative adversarial networks 
(GANs). This takes inspiration from game playing, 
in particular the idea of a zero-sum game where one 
player’s gains are the other player’s loss. For image 
generation one AI acts as generator and is trained to 
create artificial images that mimic as closely as possible 
the properties of real ones; another AI acts as critic and 
is trained to distinguish real images from those that are 
artificially generated. The AI generator ‘wins’ if it fools 
the AI critic and vice versa. The process of generation 
and testing leads to vast numbers of training examples, 
and so machine learning can be used to improve both 
the generator and the critic, a form of artificial arms 
race. 

This is a general machine learning technique that can 
be used for different kinds of data and problems but is 
most widely known for its applications in image genera-
tion. 

12.10.1 Generated Data 

In Chapter 8 we saw that deep neural networks may need 
generated or virtual data in order to have sufficient ex-
amples from which to learn. This is particularly true for 
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FIGURE 12.32 Training a diffusion model. 

machine learning on image or video data. The problem 
is typically not about getting sufficient data – for exam-
ple Google have thousands of hours of street-mapping 
video, but about getting sufficient labelled data. Crowd-
sourcing techniques can help, but often there are limits, 
particularly when dealing with rare or dangerous situa-
tions, such as potential accidents for autonomous cars. 

We have already mentioned adding noise to data as a 
way to grow the labelled dataset – every time we have an 
image labelled ‘Eiffel Tower’ we can generate hundreds 
more: shifted, resized, rotated or with noise added. 

In addition engines designed for virtual reality or im-
mersive games create high fidelity images of their virtual 
worlds. These are based on models of the world, so that 
effectively they have ground truth. We know precisely 
where each person, building and car is positioned in the 
environment, and so can train vision systems to recreate 
the model world from the generated image. 

12.10.2 Diffusion Models 

Diffusion models use this technique as a primary mech-
anism [61]. Instead of simply using noise to expand the 
datasets, they are trained to gradually remove noise from 
images. Crucially they do not try to remove the noise in 
a single step, but rather reduce the noise step by step by 
modifying each pixel of the noisy image in a way that 
moves it in the direction most likely to be a real image 
(Figure 12.32). This is a form of gradient descent as dis-
cussed in Chapter 9 (Section 9.4.1). 

The system can then be presented with an image con-
sisting of nothing but noise and is asked to remove the 
noise first assuming very high amounts of noise, and then 

https://alandix.com/glossary/aibook/autoencoder
https://alandix.com/glossary/aibook/deep fakes
https://alandix.com/glossary/aibook/autoencoder
https://alandix.com/glossary/aibook/Autoencoders
https://alandix.com/glossary/aibook/generative adversarial networks
https://alandix.com/glossary/aibook/GAN
https://alandix.com/glossary/aibook/game playing
https://alandix.com/glossary/aibook/zero-sum game
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/deep neural networks
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/Google
https://alandix.com/glossary/aibook/Crowdsourcing
https://alandix.com/glossary/aibook/Crowdsourcing
https://alandix.com/glossary/aibook/ground truth
https://alandix.com/glossary/aibook/Diffusion models
https://alandix.com/glossary/aibook/gradient descent


184 ■ Artificial Intelligence 

FIGURE 12.33 Using a diffusion model to generate images 
from prompts. 

assuming smaller and smaller amounts of noise. In the 
early steps large-scale structures start to emerge, say a 
face or tree, and then in later steps these get refined (de-
tails of eyes or leaves). 

This kind of image can be trained on a particular class 
of image, say landscapes, and then run to produce com-
pletely new images that appear to come from the original 
class. However, their full power is exploited when the dif-
fusion model is trained on all possible images, class-free, 
so that it is a general purpose de-noising process. Left to 
its own devices, this would produce plausible images but 
they could be of anything. Instead, the step-wise process 
of image re-construction can be guided using a classifier 
nudging towards images that have that particular clas-
sification (Figure 12.33). Furthermore, the classifier do-
ing the guiding can use descriptions that combine several 
simple classes that are maybe never found together in a 
training image, such as ‘teddies’ and ‘technology’. 

It is this process that caught public attention in systems 
such as OpenAI’s Dall-E, which are able to create realistic 
images based on text descriptions, even in the style of a 
particular artist [229, 230]. 

12.10.3 Bottom-up and Top-down Processing 

Note that while this chapter is principally about process-
ing and understanding visual images as input, diffusion 
models create images as output. In traditional computing 
terms this is perhaps more the domain of graphics, but in 
AI the two start to come together. This is not altogether 
surprising as this is exactly what happens in the human 
visual system when we try to imagine something or when 
we dream. ‘Seeing’ in a dream or in our mind’s eye is not 
the same as seeing with our real eyes, indeed many peo-
ple cannot conjure up a clear mental image at will, but 

brain scans do show that our visual cortex is activated in 
a very similar way when imagining a scene as when we 
actually see it. These top-down processes are important 
also when we are awake and alert as they help our per-
ception to rapidly make sense of otherwise ambiguous or 
partial senses. 

Most of the techniques we have described are bottom-
up, moving from sensation (raw sensory input) to 
perception (meaning attached to images). However, one 
of the general lessons of both human perception and 
AI, in many areas including text and speech as well as 
vision, is that bottom-up processes are usually mixed 
with top-down processes ... we already know what we 
expect to see or read and this guides our lower-level 
processes. 

12.11 MULTIPLE IMAGES 
So far, we have looked at single images. This may be all 
we have to work on, for example a single photograph of a 
scene. However, in some circumstances we have several 
images, which together can be used to interpret a scene. 
On the one hand, this can make life more difficult (lots of 
images to process!). On the other hand, we may be able 
to extract information from the combined images that is 
not in any single image alone. These multiple images may 
arise from various sources: 

1. Different sensors may be viewing the same scene. 

2. Two cameras may be used simultaneously to give 
stereo vision. 

3. We may have continuous video of a changing 
scene. 

4. A fixed camera may be panning (and possibly 
zooming) over a scene. 

5. The camera may be on a moving vehicle or 
mounting. 

The first of these, the combination of different sorts of 
data (e.g. infrared and normal cameras), is called data fu-
sion. It is especially important for remote sensing appli-
cations, such as reconstructing images from satellite data. 
Different sensors may show up different features; hence 
edges and regions in the two images may not correspond 
in a one-to-one fashion. If the registration between the 

https://alandix.com/glossary/aibook/diffusion models
https://alandix.com/glossary/aibook/diffusion models
https://alandix.com/glossary/aibook/human perception
https://alandix.com/glossary/aibook/human perception
https://alandix.com/glossary/aibook/sensation
https://alandix.com/glossary/aibook/perception
https://alandix.com/glossary/aibook/human perception
https://alandix.com/glossary/aibook/multiple images
https://alandix.com/glossary/aibook/stereo vision
https://alandix.com/glossary/aibook/data fusion
https://alandix.com/glossary/aibook/data fusion


Computer Vision ■ 185 

FIGURE 12.34 Stereo vision. 

sensors is known (i.e. one knows how they overlap), then 
the images can simply be overlaid and the information 
from each combined. Often this registration process is 
the most difficult part and the high-level data may be 
used to aid this process. For example, terrain-following 
cruise missiles rely on the matching of ground features 
with digital maps to calculate their course and position. 

The last three sources of multiple images have some-
what different characteristics but are similar enough to 
discuss together. We will therefore look at stereo vision 
(Figure 12.34) and moving images in more detail. 

12.11.1 Stereo Vision 

Look out into the room and hold a finger in front of your 
face. Now close each eye in turn. Your finger appears to 
move back and forth across the room. Because your eyes 
are at different positions they see slightly different views 
of the world. This is especially important in determin-
ing depth. If you have not tried it before, here’s another 
simple experiment. Hold a pencil in one hand and try 
to touch the tip of the finger of your other hand with 
the point of the pencil. No problem? Try it with one eye 
closed. The properties of stereo vision are one of the clues 
our eyes use to determine how far away things are. 

One way to determine depth is to use triangulation in 
a similar way to a surveyor. Assuming you have been able 
to identify the same feature in both images, you can work 
out the angle between the two and hence the distance 

FIGURE 12.35 Triangulation. 

from the camera (see Figure 12.35). To use this method 
to give exact distances, you need very accurate calibra-
tion of the cameras. However, even without such accu-
racy, one can use this method to obtain relative distances 
(which is probably what your eye is doing with the pen 
and finger). 

In fact, it is not necessary to do any explicit calcu-
lations in order to obtain qualitative estimates of rela-
tive distance. Notice in Figure 12.34 how the cone moves 
back and forth relative to the cube. This effect is called 
parallax. If the amount of movement between the two 
views is great, then we know there is a considerable dis-
tance between the two objects. 

So far we have assumed that we know which objects 
are the same in each image. However, this matching 
of objects between images is a difficult problem in 
itself. One can attack it at various levels. On the one 
hand, we can simply look for patterns of pixels that 
match one another in the grey-scale image. To do this, 
we work out the correlation (a measure of similarity) 
between groups of pixels in the two images at small 
offsets from one another. Where the correlation is large, 
we assume that there is some feature in common. The 
size of the offset then tells us the disparity in angle 
between the two images. Note that this will usually 
highlight the boundaries of objects, as the faces often 
have near constant intensity. Alternatively, one can wait 
until objects have been identified in each image and 
then match the objects. The low-level approach has the 
advantage that the information from both images can be 
used for subsequent analysis. For example, parallax can 
allow us to label lines ready for Waltz’s algorithm and, 
indeed, is a very good edge indicator in its own right. 
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12.11.2 Moving Pictures 

Recall that we listed three types of movement: objects 
may move in the scene, the camera may pan or zoom, and 
the camera may be mounted on a moving vehicle. These 
all lead to similar but slightly different effects. For exam-
ple, an object moving towards the camera will have a sim-
ilar effect to zooming the camera, or moving the camera 
closer to the object. Of course, several or all of the above 
effects may occur and we may even have stereo cameras 
and multiple sensors! To simplify the discussion, we will 
consider principally the case of a single stationary cam-
era. 

One special advantage of a stationary camera is that it 
may be possible to calibrate the camera when the scene 
is “empty”. For example, if the camera is used for surveil-
lance in an airport departure lounge, we can take an im-
age when the lounge is empty. This will contain the fixed 
furniture, pillars and so on. Then, when we look at an im-
age of the lounge in use, we will be able to match it with 
the fixed image and so identify the additional objects. In 
fact, it is not quite so easy! Changes in lighting levels, or 
indeed automatic light level controls in the camera, mean 
that one has to perform some adjustment to remove the 
fixed background. 

Whether or not one has removed part of the image, 
some parts of the image change more rapidly than others. 
It is these regions of change that correspond to the mov-
ing objects. As with stereo vision, one can use local cor-
relation to determine where groups of pixels in the im-
age correspond to the same feature. This optical flow can 
be performed at a high level, matching whole objects, or 
at a low level, similar to edge detection, yielding a pixel-
level flow pattern. With stereo vision we need only look 
for change in one direction, parallel to the separation of 
the “eyes”; however, in contrast, the objects in video may 
move in any direction. Furthermore, when an object gets 
closer or further away, the edges of the object move in 
different directions as the image of the object expands 
or contracts. Note also that we can usually only calculate 
the direction of movement orthogonal to the edge. Any 
movement parallel to the edge is (at least locally) invisi-
ble. Again, in the stereo case, this is only a problem when 
a long flat object is being viewed. 

This all sounds quite complicated. Happily some 
things are easier! Because we have many images in 
sequence we can trace known objects. That is, once 
we have identified an object moving in a particular 
direction, we have a pretty good idea where to find it 

in the next image. Furthermore, the optical flow field 
can be used as an additional level of input for other 
bottom-up algorithms such as edge detection, or as 
input to neural networks. 

It is worth noting for both moving images and stereo 
vision the magnitude of change that is likely between im-
ages. Imagine we are tracking someone walking across 
the airport lounge. Assume that the person is 10 me-
tres from the camera and walking at a brisk 1.5 m/s. At 
15 frames per second the person will move through an 
angle of 0.01 of a radian (about half a degree) between 
frames. If the camera has a 60∘viewing angle and we are 
capturing it at a low resolution of 512 × 512 pixels, the 
person will move five pixels between frames. So, we have 
to do comparisons at one, two, three, four and five pixel 
offsets to be able to detect such movements – calculated 
all over the image 15 times per second! Even then, what 
about someone moving closer to the camera or a high-
resolution image? Clearly, one has to design the algo-
rithms carefully in order to save some of this work. 

12.12 SUMMARY 
The processing in a typical computer vision system con-
sists of several phases: 

• digitisation and signal processing 

• edge and region detection 

• object recognition 

• image understanding 

Not all will be present in any one system, as often accept-
able results may be obtained with fewer levels of process-
ing. 

The raw image is usually digitised into pixels and may 
often be thresholded to give a simple black and white 
image. The image may be affected by noise. Digital fil-
ters can be used to smooth the image, which reduces 
noise, but can also blur edges. Different filters, includ-
ing Robert’s, Sobel’s and the Laplacian, can be used to 
emphasise edges. Large digital filters can be expensive to 
apply, and so the simplest filter that gives acceptable re-
sults is used. 

Having identified potential edge pixels, an edge-
following algorithm must be used to collect them into 
lines. Some pixels may at this stage be discarded as noise 
if they fail to fit into any line. Alternatively, similar pixels 
can be collected together to form regions. Representing 
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FIGURE 12.36 For exercise 4. 

regions can use a lot of space, and quadtrees are one way 
of efficiently storing regions. 

Waltz’s algorithm labels edges and vertices in a con-
sistent manner, allowing lines to be built up into objects. 
However, some images are difficult to label unambigu-
ously or may have one object split by an occluding ob-
ject. Additional knowledge such as the use of shadows 
can help to resolve such ambiguity. 

Identifying objects can be difficult because objects 
may be partly occluded, viewed at different angles or be 
in different positions from their templates. Techniques 
based on fuzzy matching of bitmaps, including the 
use of neural networks, can identify partially obscured 
objects, and the use of an object-centred co-ordinate 
system can help to reduce the effects of positioning. In 
some situations crude identification based on summary 
statistics may be sufficient. For more complex shapes 
matching of edges can be used to accommodate different 
viewing angles, but for paths without obvious vertices, 
such as handwriting, warping must be used to allow 
matching. For others, including face and body pose 
recognition, more model-based techniques can be 
used that use knowledge of human anatomy to guide 
algorithms. 

Neural networks are also heavily used in vision-based 
systems. Sometimes vanilla networks are used, but sev-
eral neural techniques are especially designed for or use-
ful for images, notably autoencoders and convolutional 
neural networks. Multiple images from moving cameras 
or stereo vision can be used to obtain more information 
but can involve more processing time. Stereo vision can 
be used to calculate the relative distance of objects. Also, 
by tracking objects between frames of a moving image 
the object’s speed can be calculated. 

12.1 Take the digitised image in Figure 12.3(i). Thresh-
old it at each of the following levels: 1, 5 and 8. 
Record your results on squared or graph paper, 
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marking each square that exceeds the threshold. 
In fact, the threshold values above are not ran-
dom. What does the picture look like thresholded 
at 6? 

12.2 Again using Figure 12.3(i), apply Sobel’s operator 
and then, choosing an appropriate threshold plot, 
draw the results. 

12.3 Filters often lose information. To see this 
experiment with any popular image manipu-
lation application such as Adobe Photoshop. 
These allow you to apply different kinds of 
smoothing and sharpening filters to captured 
images. Unfortunately you are not usually told 
the exact mathematical filter being applied, 
but they can give you a good feel for the 
possibilities of filtering. Compare the results of 
different filters. Try repeatedly applying smooth-
ing and then sharpening filters to the same 
image. 

12.4 Apply Waltz’s algorithm to the image in Fig-
ure 12.36(i). Does it give the line labelling you 
would expect? What happens if you apply Waltz’s 
algorithm to Figure 12.36(ii). Do you have any 
problems interpreting it? 

FURTHER READING 

R. Szeliski. Computer vision: Algorithms and applications. 
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A comprehensive textbook that includes state-of-the-art 
techniques in computer vision. 

D. Andina, A. Voulodimos, N. Doulamis, A. Doulamis, 
and E. Protopapadakis. Deep learning for com-
puter vision: A brief review. Computational In-
telligence and Neuroscience, 2018:7068349, 2018. 
DOI: 10.1155/2018/7068349 

A short review article that also acts an introductory primer 
for some of the major steps in the application of neural 
networks in computer vision. 

D. Vernon. Machine vision: Automated visual inspection 
and robot vision. Prentice Hall, Hemel Hempstead, 
1991. https://homepages.inf.ed.ac.uk/rbf/BOOKS/VER 
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CHAP T ER 1 3 

Natural Language Understanding 

13.1 OVERVIEW 
Natural language understanding is one of the most 
popular applications of artificial intelligence portrayed 
in fiction and the media. The idea of being able to control 
computers by talking to them in our own language is 
very attractive. Today this kind of speech control is 
no longer science fiction, but in everyday items from 
home automation controls to mobile phones; text-based 
understanding of language is common in chatbots as well 
as a key part of knowledge mining on the web. However, 
human language is ambiguous, which makes natural lan-
guage 
understanding particularly difficult. In this chapter 
we examine the major stages of natural language 
understanding – syntactic analysis, semantic analysis 
and pragmatic analysis – and some of the techniques 
that are used to make sense of this ambiguity. Big data 
and large-language models have had a major impact on 
many practical applications and appear to bypass some 
of this stepwise process, particularly at lower-levels. 

13.2 WHAT IS NATURAL LANGUAGE 
UNDERSTANDING? 

Whenever computers are represented in science fiction, 
futuristic literature or film, they invariably have the 
ability to communicate with their human users in 
natural language. By “natural language”, we mean a 
language for human communication such as English, 

French, Swahili or Urdu, as opposed to a formal 
“created” language (e.g. a programming language 
or Morse code). Unlike computers in films, which 
understand spoken language, we will concern ourselves 
primarily with understanding written language, rather 
than speech, and on analysis rather than language 
generation. As we shall see, this will present enough 
challenges for one chapter! Understanding speech shares 
the same difficulties but has additional problems with 
deciphering the sound signal and identifying word 
parts. 

13.3 WHY DO WE NEED NATURAL 
LANGUAGE UNDERSTANDING? 

Before we consider how natural language understanding 
can be achieved, we should be clear about the benefits 
that it can bring. There are a number of areas that 
can be helped by the use of natural language. The 
first is human–computer interaction, by the provision 
of interfaces for the user. This allows the user to 
communicate with computer applications in their own 
language, rather than in a command language or using 
menus. There are advantages and disadvantages to this: 
it is a natural form of communication that requires 
no specialised training, but it is inefficient for expert 
users and less precise than a command language. It 
may certainly be helpful in applications that are used 
by casual users (e.g. tourist information) or for novice 
users, and also for circumstances where hands free 
interactions are required, either through necessity (e.g. 
while driving a car) or preference (e.g. while sitting on a 
sofa). 

A second area is information management, where nat-
ural language processing enables automatic management 
and processing of information, by interpreting its con-
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tent. If the system understands the meaning of a docu-
ment, it can, for example, store it with other similar doc-
uments. 

A third possibility is to provide an intuitive means 
of database access. At present most databases can be 
accessed through a query language. Some of these are 
very complex, demanding considerable expertise to 
generate even relatively common queries. Others are 
based on forms and menus, providing a simpler access 
mechanism. However, these still require the user to have 
some understanding of the structure of the database. 
The user, on the other hand, is usually more familiar 
with the content of the database or at least its domain. 
By allowing the user to ask for information using natural 
language, queries can be framed in terms of the content 
and domain rather than the structure. We will look 
at a simple example of database query using natural 
language later in the chapter. 

13.4 WHY IS NATURAL LANGUAGE 
UNDERSTANDING DIFFICULT? 

The primary problem with natural language processing 
is the ambiguity of language. There are a number of lev-
els at which ambiguity may occur in natural language (of 
course a single sentence may include several of these lev-
els). First, a sentence or phrase may be ambiguous at a 
syntactic level. Syntax relates to the structure of the lan-
guage, the way the words are put together. Some word se-
quences make valid sentences in a given language, some 
do not. However, some sentence structures have more 
than one correct interpretation. These are syntactically 
ambiguous. Secondly, a sentence may be ambiguous at a 
lexical level. The lexical level is the word level, and am-
biguity here occurs when a word can have more than 
one meaning. Thirdly, a sentence may be ambiguous at 
a referential level. This is concerned with what the sen-
tence (or a part of the sentence) refers to. Ambiguity oc-
curs when it is not clear what the sentence is referring 
to or where it may legally refer to more than one thing. 
Fourthly, a sentence can be ambiguous at a semantic level, 
that is at the point of the meaning of the sentence. Some-
times a sentence is ambiguous at this level: it has two dif-
ferent meanings. Indeed this characteristic is exploited 
in humour, with the use of double entendre and innu-
endo. Finally, a sentence may be ambiguous at a prag-
matic level, that is at the level of interpretation within 
its context. The same word or phrase may have different 
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interpretations depending on the context in which it oc-
curs. To make things even more complicated some sen-
tences involve ambiguity at more than one of these levels. 
Consider the following sentences; how many of them are 
ambiguous and how? 

1. I hit the man with the hammer. 

2. I went to the bank. 

3. He saw her duck. 

4. Fred hit Joe because he liked Harry. 

5. I went to the doctor yesterday. 

6. I waited for a long time at the bank. 

7. There is a drought because it hasn’t rained for a 
long time. 

8. Dinosaurs have been extinct for a long time. 

How did you do? In fact all the sentences above have 
some form of ambiguity. Let’s look at them more closely. 

• I hit the man with the hammer. 
Was the hammer the weapon used or was it in the 
hand of the victim? This sentence contains syntactic 
ambiguity: there are two perfectly legitimate ways of 
interpreting the sentence structure. 

• I went to the bank. 
Did I visit a financial institution or go to the river 
bank? This sentence is ambiguous at a lexical level: 
the word “bank” has two meanings, either of which 
fits in this sentence. 

• He saw her duck. 
Did he see her dip down to avoid something or 
the web-footed bird owned by her? This one is 
ambiguous at a lexical and a semantic level. The 
word “duck” has two meanings and the sentence 
can be interpreted in two completely different 
ways. 

• Fred hit Joe because he liked Harry. 
Who is it that likes Harry? This is an example of 
referential ambiguity. Who does the pronoun “he” 
refer to, Fred or Joe? It is not clear from this sentence 
structure. 
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• I went to the doctor yesterday. 
When exactly was yesterday? This demonstrates 
pragmatic ambiguity. In some situations this 
may be clear but not in all. Does yesterday refer 
literally to the day preceding today or does it refer 
to another yesterday (imagine I am reading this 
sentence a week after it was written, for example). 
The meaning depends on the context. 

• I waited for a long time at the bank. 
There is a drought because it hasn’t rained for a long 
time. 
Dinosaurs have been extinct for a long time. 
The last three sentences can be considered together. 
What does the phrase for a long time mean? In 
each sentence it clearly refers to a different 
amount of time. This again is pragmatic ambiguity. 
We can only interpret the phrase through our 
understanding of the sentence context. 

In addition to these major sources of ambiguity, language 
is problematic because it is imprecise, incomplete, inac-
curate and continually changing. Think about the con-
versations you have with your friends. The words you 
use may not always be quite right to express the mean-
ing you intend, you may not always finish a sentence, 
you may use analogies and comparisons to express ideas. 
As humans we are adept at coping with these things, to 
the extent that we can usually understand each other if 
we speak the same language, even if words are missed 
out or misused. We usually have enough knowledge in 
common to disambiguate the words and interpret them 
correctly in context. We can also cope quickly with new 
words. This is borne out by the speed with which slang 
and street words can be incorporated into everyday us-
age. All of this presents an extremely difficult problem 
for the computer. 

13.5 AN EARLY ATTEMPT AT NATURAL 
LANGUAGE UNDERSTANDING: 
SHRDLU 

We met SHRDLU briefly in the Introduction. If you re-
call, SHRDLU is the natural language processing system 
developed by Winograd at MIT in the early 1970s [301]. 
It is used for controlling a robot in a restricted “blocks” 
domain. The robot’s world consists of a number of blocks 
of various shapes, sizes and colours, which it can ma-
nipulate as instructed or answer questions about. All in-
structions and questions are given in natural language, 

and even though the robot’s domain is so limited, it still 
encounters the problems we have mentioned. Consider 
for example the following instructions: 

Find a block that is taller than the one you are 
holding and place it in the box 

How many blocks are on top of the green 
block? 
Put the red pyramid on the block in the box 

Does the shortest thing the tallest pyramid’s 
support supports support anything green? 

What problems did you spot? Again each instruction 
contains ambiguity of some kind. We’ll leave it to you to 
figure them out! (The answers are given at the end of the 
chapter in case you get stuck.) 

However, SHRDLU was successful because it could be 
given complete knowledge about its world and ambigu-
ity could be reduced (it only recognises one meaning of 
“block” for instance and there is no need for contextual 
understanding since the context is given). It is therefore 
no use as a general natural language processor. However, 
it did provide insight into how syntactic and semantic 
processing can be achieved. We will look at techniques 
for this and the other stages of natural language under-
standing next. 

13.6 HOW DOES NATURAL LANGUAGE 
UNDERSTANDING WORK? 

So given that, unlike SHRDLU, we are not able to 
provide complete world knowledge to our natural 
language processor, how can we go about interpreting 
language? There are three primary stages in natural 
language processing: syntactic analysis, semantic 
analysis and pragmatic analysis. Sentences can be 
well-formed or ill-formed syntactically, semantically 
and pragmatically. Take the following responses to the 
question: Do you know where the park is? 

• The park is across the road. This is syntactically, 
semantically and pragmatically well-formed, that 
is it is a correctly structured, meaningful sentence 
which is an appropriate response to the question. 

• The park is across the elephant. This is syntactically 
well-formed but semantically ill-formed. The sen-
tence is correctly structured, but our knowledge of 
parks and elephants and their characteristics shows 
it is meaningless. 
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• The park across the road is. This is syntactically ill-
formed. It is not a legal sentence structure. 

• Yes. This is pragmatically ill-formed: it misses the 
intention of the questioner. 

At each stage in processing, the system will determine 
whether a sentence is well-formed. These three stages are 
not necessarily always separate or sequential. However, it 
is convenient to consider them as such. 

Syntactic analysis determines whether the sentence is 
a legal sentence of the language, or generates legal sen-
tences, using a grammar and lexicon, and, if so, returns a 
parse tree for the sentence (representing its structure). 
This is the process of parsing. Take a simple sentence, 
“The dog sat on the rug.” It has a number of constituent 
parts: nouns (“dog” and “rug”), a verb (“sat”), determin-
ers (“the”) and a preposition (“on”). We can also see that 
it has a definite structure: noun followed by verb followed 
by preposition followed by noun (with a determiner as-
sociated with each noun). We could formalise this obser-
vation: 

sentence = determiner noun verb preposition 
determiner noun 

Such a definition could then be tested on other sentences. 
What about “The man ran over the hill.”? This too fits our 
definition of a sentence. Looking at these two sentences, 
we can see certain patterns emerging. For instance, the 
determiner “the” always seems to be attached to a noun. 
We could therefore simplify our definition of a sentence 
by defining a sentence component called noun_phrase. 

noun_phrase = determiner noun 

Our sentence definition would then become 

sentence = noun_phrase verb preposition 
noun_phrase 

This is the principle of syntactic grammars. The 
grammar is built up by examining legal sentence 
structures and a lexicon is produced identifying the 
constituent type of each word. In our case our lexicon 
would include 

dog : noun 

the : determiner 
rug : noun 

sat : verb 

and so on. If a legal sentence is not parsed by the 
grammar, then the grammar must be extended to 
include that sentence definition as well. Although 
our grammar looks much like a standard English 
grammar, it is not. Rather, we create a grammar that 
exactly specifies legal constructions of our language. 
In practice such grammars do bear some resemblance 
to conventional grammar, in that the symbols that are 
chosen to represent sentence constituents often reflect 
conventional word types but do not confuse this with 
any grammar you learned at school! 

Semantic analysis takes the parse tree for the sentence 
and interprets it according to the possible meanings of 
its constituent parts. A representation of semantics may 
include information about different meanings of words 
and their characteristics. For example, take the sentence 
“The necklace has a diamond on it.” Our syntactic anal-
ysis of this would require another definition of sentence 
than the one we gave above: 

sentence = noun_phrase verb noun_phrase 
prepositional_phrase 

prepositional_phrase = preposition pronoun 

This gives us the structure of the sentence, but the mean-
ing is still unclear. This is because the word diamond has 
a number of meanings. It can refer to a precious stone, a 
geometric shape, even a baseball field. The semantic anal-
ysis would consider each meaning and match the most 
appropriate one according to its characteristics. A neck-
lace is jewellery and the first meaning is the one most 
closely associated with jewellery, so it is the most likely 
interpretation. 

Finally, in pragmatic analysis, the sentence is inter-
preted in terms of its context and intention. 

For example, a sentence may have meanings provided 
by its context or social expectations that are over and 
above the semantic meaning. In order to understand the 
intention of sentences it is important to consider these. 
To illustrate, consider the sentence “He gave her a di-
amond ring.” Semantically this means that a male per-
son passed possession of a piece of hand jewellery made 
with precious stones over to a female person. However, 
there are additional likely implications of this sentence. 
Diamond rings are often (though of course not exclu-
sively) given to indicate engagement, for example, so the 
sentence could mean the couple got engaged. Such ad-
ditional, hidden meanings are the domain of pragmatic 
analysis. 
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13.7 SYNTACTIC ANALYSIS 
Syntactic analysis is concerned with the structure of the 
sentence. Its role is to verify whether a given sentence is 
a valid construction within the language, and to provide 
a representation of its structure, or to generate legal sen-
tences. There are a number of ways in which this can be 
done. 

Perhaps the simplest option is to use some form 
of pattern matching. Templates of possible sen-
tence patterns are stored, with variables to allow 
matching to specific sentences. For example, the 
template 

< the ** rides ** > 

(where ** matches anything) fits lots of different 
sentences, such as the show-jumper rides a clear round 
or the girl rides her mountain bike. These sentences have 
similar syntax (both are basically noun_phrase verb 
noun_phrase), so does this mean that template matching 
works? Not really. What about the sentence the theme 
park rides are terrifying? This also matches the template 
but is clearly a very different sentence structure to the 
first two. For a start, in the first two sentences “rides” 
is a verb, whereas here it is a noun. This highlights 
the fundamental flaw in template matching. It has no 
representation of word types, which essentially means it 
cannot ensure that words are correctly sequenced and 
put together. 

Template matching is the method used in ELIZA 
[299], which, as we saw in the Introduction, fails to cope 
with ambiguity and so can accept (and generate) garbage. 
These are problems inherent in the approach: it is too 
simplistic to deal with a language of any complexity. 
However, it is a simple approach that has proved useful 
in constrained environments (whether such a restricted 
use of language could be called “natural” is another 
issue). 

A more viable approach to syntactic analysis is 
sentence parsing. Here the input sentence is con-
verted into a hierarchical structure indicating the 
sentence constituents. Parsing systems have two main 
components: 

1. a grammar: a declarative representation of the 
syntactic facts about the language 

2. a parser: a procedure to compare the input sen-
tence with the grammar. 

Parsing may be top-down, in which case it starts with the 
symbol for a sentence and tries to map possible rules 
to the input (or target) sentence, or bottom-up, where 
it starts with the input sentence and works towards the 
sentence symbol, considering all the possible represen-
tations of the input sentence. The choice of which type of 
parsing to use is similar to that for top-down or bottom-
up reasoning; it depends on factors such as the amount of 
branching each will require and the availability of heuris-
tics for evaluating progress. In practice, a combination is 
sometimes used. There are a number of parsing methods. 
These include grammars, transition networks, context-
sensitive grammars and augmented transition networks. 
As we shall see, each has its benefits and drawbacks. 

13.7.1 Grammars 

We have already met grammar informally. A grammar is 
a specification of the legal structures of a language. It is 
essentially a set of rewrite rules that allow any element 
matching the left-hand side of the rule to be replaced by 
the right-hand side. So for example, 

A → B 

allows the string XAX to be rewritten XBX. Unlike tem-
plate matching, it explicitly shows how words of different 
types can be combined and defines the type of any given 
word. In this section we will examine grammars more 
closely and demonstrate how they work through an ex-
ample. 

A grammar has three basic components: terminal 
symbols, non-terminal symbols and rules. Terminal 
symbols are the actual words that make up the language 
(this part of the grammar is called the lexicon). So 
“cat”, “dog” and “chase” are all terminal symbols. 
Non-terminal symbols are special symbols designating 
structures of the language. There are three types: 

• lexical categories, which are the grammatical cate-
gories of words, such as noun or verb 

• syntactic categories, which are the permissible 
combinations of lexical categories, for instance 
“noun_phrase”, “verb_phrase” 

• a special symbol representing a sentence (the 
start_symbol). 

The third component of the grammar is the rules, which 
govern the valid combinations of the words in the lan-
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guage. Rules are sometimes called phrase structure rules. 
A rule is usually of the form 

S → NP VP 

where S represents the sentence, NP a noun_phrase and 
VP a verb_phrase. This rule states that a noun_phrase 
followed by a verb_phrase is a valid sentence. 

The grammar can generate all syntactically valid sen-
tences in the language and can be implemented in a num-
ber of ways, for example as a production system imple-
mented in Prolog. We will look at how a grammar is gen-
erated and how it parses sentences by considering a de-
tailed example. 

13.7.2 An Example: Generating a Grammar 
Fragment 

Imagine we want to produce a grammar for database 
queries on an employee database. We have examples of 
possible queries. We can generate a grammar fragment 
by analysing each query sentence. If the sentence can 
be parsed by the grammar we have, we do nothing. If 
it can’t, we can add rules and words to the grammar 
to deal with the new sentence. For example, take the 
queries: 

Who belongs to a union? 
Does Sam Smith work in the IT Department? 

In the case of the first sentence, Who belongs to a union?, 
we would start with the sentence symbol (S) and generate 
a rule to match the sentence in the example. To do this 
we need to identify the sentence constituents (the non-
terminal symbols). Remember that the choice of these 
does not depend on any grammar of English we may have 
learned at school. We can choose any symbols, as long 
as they are used consistently. We designate the symbol 
RelP to indicate a relative pronoun, such as “who”, “what” 
(a lexical category) and the symbol VP to designate a 
verb_phrase (a syntactic category). We then require rules 
to show how our lexical categories can be constructed. 
In this case VP has the structure V (verb) PP (preposi-
tional phrase), which can be further decomposed as P, 
a preposition, followed by NP, a noun_phrase. Finally 
the NP category is defined as Det (determiner) followed 
by N (noun). The terminal symbols are associated with 
a lexical category to show how they can fit together in a 
sentence. We end up with the grammar fragment in Fig-
ure 13.1. 
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FIGURE 13.1 Initial grammar fragment. 

FIGURE 13.2 Parse tree for the first sentence. 

This will successfully parse our sentence, as shown in 
the parse tree in Figure 13.2, which represents the hierar-
chical breakdown of the sentence. The root of the tree is 
the sentence symbol. Each branch of the tree represents 
a non-terminal symbol, either a syntactic category or a 
lexical category. The leaves of the tree are the terminal 
symbols. 

However, our grammar is still very limited. To extend 
the grammar, we need to analyse many sentences in this 
way, until we end up with a very large grammar and lex-
icon. As we analyse more sentences, the grammar be-
comes more complete and, we hope, less work is involved 
in adding to it. 

We will analyse just one more sentence. Our second 
query was Does Sam Smith work in the IT Department? 
First, we check whether our grammar can parse this sen-
tence successfully. If you recall, our only definition of a 
sentence so far is 

S → RelP VP 

Taking the VP part first, work in the IT Department does 
meet our definition of a word phrase, if we interpret IT 
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FIGURE 13.3 Further grammar rules. 

FIGURE 13.4 Parse tree for the second sentence. 

Department loosely as a noun. However, Does Sam Smith 
is certainly not a RelP. We therefore need another defini-
tion of a sentence. In this case a sentence is an auxiliary 
verb (AuxV) followed by an NP followed by a VP. Since 
Sam Smith is a proper noun we also need an additional 
definition of NP, and for good measure we will call IT 
Department a proper noun as well, giving us a third def-
inition of NP. The additional grammar rules are shown 
in Figure 13.3. 

Note that we do not need to add a rule to define VP 
since our previous rule fits the structure of this sentence 
as well. A parse tree for this sentence using this grammar 
is shown in Figure 13.4. 

Grammars such as this are powerful tools for natural 
language understanding. They can also be used to gen-
erate legal sentences, constructing them from the sen-
tence symbol down, using appropriate terminal symbols 
from the lexicon. Of course, sentence generation is not 
solely a matter of syntax; it is important that the sentence 
also makes sense. Therefore semantic analysis is also im-
portant. We shall consider this shortly. First we will look 
briefly at another method of parsing, the transition net-
work. 

FIGURE 13.5 Transition network. 

13.7.3 Transition Networks 

The transition network is a method of parsing that repre-
sents the grammar as a set of finite state machines. A fi-
nite state machine is a model of computational behaviour 
where each node represents an internal state of the sys-
tem and the arcs are the means of moving between the 
states. In the case of parsing natural language, the arcs 
in the networks represent either a terminal or a non-
terminal symbol. Rules in the grammar correspond to 
a path through a network. Each non-terminal is repre-
sented by a different network. To illustrate this we will 
represent the grammar fragment that we created earlier 
using transition network. All rules are represented but 
to save space only some lexical categories are included. 
Others would be represented in the same way. 

In Figure 13.5 each network represents the rules for 
one non-terminal as paths from the initial state (I) to 
the final state (F). So, whereas we had three rules for 
NP in our grammar, here we have a single transition 
network, with three possible paths through it represent-
ing the three rules. To move from one state to the next 
through the network the parser tests the label on the arc. 
If it is a terminal symbol, the parser will check whether 
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FIGURE 13.6 Navigation through transition network. 

it matches the next word in the input sentence. If it is a 
non-terminal symbol, the parser moves to the network 
for that symbol and attempts to find a path through that. 
If it finds a path through that network, it returns to the 
higher-level network and continues. If the parser fails 
to find a path at any point, it backtracks and attempts 
another path. If it succeeds in finding a path, the sen-
tence is a valid one. So to parse our sentence Who be-
longs to a union? the parser would start at the sentence 
network and find that the first part of a sentence is RelP. 
It would therefore go to the RelP network and test the 
first word in the input sentence “who” against the ter-
minal symbol on the arc. These match, so that network 
has been traversed successfully and the parser returns to 
the sentence network able to cross the arc RelP. Parsing 
of the sentence continues in this fashion until the top-
level sentence network is successfully traversed. The full 
navigation of the network for this sentence is shown in 
Figure 13.6. 

The transition network allows each non-terminal to 
be represented in a single network rather than by nu-
merous rules, making this approach more concise than 
grammars. However, as you can see from the network 
for just two sentences, the approach is not really tenable 
for large languages since the networks would become un-
workable. Another disadvantage over grammars is that 
the transition network does not produce a parse tree for 
sentences and tracing the path through the network can 
be unclear for complex sentences. However, the transi-
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tion network is an example of a simple parsing algorithm 
that forms the basis of more powerful tools, such as aug-
mented transition networks, which we will consider in 
Section 13.7.6. 

13.7.4 Context-sensitive Grammars 

The grammars considered so far are context-free gram-
mars. They allow a single non-terminal on the left-hand 
side of the rule. The rule may be applied to any instance 
of that symbol, regardless of context. So the rule 

A → B 

will match an occurrence of A whether it occurs in the 
string ABC or in ZAB. The context-free grammar cannot 
restrict this to only instances where A occurs surrounded 
by Z and B. In order to interpret the symbol in context, a 
context-sensitive grammar is required. This allows more 
than one symbol on the left-hand side and insists that the 
right-hand side is at least as long as the left-hand side. So 
in a context-sensitive grammar, we can have rules of the 
form 

ZAB → ZBB 

Context-free grammars are not sufficient to represent 
natural language syntax. For example, they cannot dis-
tinguish between plural and singular nouns or verbs. So 
in a context-free grammar, if we have a set of simple def-
initions 

S → NP VP 

NP → Det N 

VP → V 

and the following lexicon 

dog : N 

guide : V 

the : Det 
dogs : N 

guides : V 

a : Det 

we would be able to generate the sentences the dog guides 
and the dogs guide, both legal English sentences. How-
ever, we would also be able to generate sentences such as 
a dogs guides, which is clearly not an acceptable sentence. 
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FIGURE 13.7 Grammar fragment for context-sensitive gram-
mar. 

By incorporating the context of agreement into the 
left-hand side of the rule we can provide a grammar 
which can resolve this kind of problem. 

An example is shown in Figure 13.7. 
The use of the symbols “Sing” and “Plur”, to indicate 

agreement, does not allow generation of sentences that 
violate consistency rules. For example, using the gram-
mar in Figure 13.7 we can derive the sentence “a dog 
guides” but not “a dogs guides”. The derivation of the for-
mer is shown using the following substitutions: 

S 

NP VP 

Det AGR N VP 

Det Sing N VP 

a Sing N VP 

a dog Sing VP 

a dog Sing V 

a dog guides 

Unfortunately context sensitivity increases the size of the 
grammar considerably, making it a complex method for 
a language of any size. Feature sets and augmented tran-
sition networks are alternative approaches to solving the 
context problem. 

13.7.5 Feature Sets 

Another approach to incorporating context in syntactic 
processing is the use of feature sets. Feature sets provide a 
mechanism for subclassifying syntactic categories (noun, 

verb, etc.) in terms of contextual properties such as num-
ber agreement and verb tense. The descriptions of the 
syntactic categories are framed in terms of constraints. 
There are many variations of feature sets, but here we 
shall use one approach to illustrate the general princi-
ple – that of Pereira and Warren’s Definite Clause Gram-
mar [222]. In this grammar each syntactic category has 
an associated feature set, together with constraints that 
indicate what context is allowable. So, for example, 

S → NP (agreement = ?a) 
VP (agreement = ?b): a = b 

Feature sets are a relatively efficient mechanism for 
representing syntactic context. However, we have still 
not progressed to understanding any semantics of the 
sentence. Augmented transition networks provide an 
approach that begins to bridge the gap between syntactic 
and semantic processing. 

13.7.6 Augmented Transition Networks 

The augmented transition network provides context 
without an unacceptable increase in complexity [302]. 
It is a transition network that allows procedures to 
be attached to arcs to test for matching context. All 
terminals and non-terminals have frame-like structures 
associated with them that contain their contextual 
information. To traverse an arc, the parser tests 
whatever contextual features are required against these 
stored attributes. For example, a test on the V arc may be 
to check number (i.e. plural or singular). The structure 
for the word guides would contain, among other things, 
an indication that the word is singular. The sentence is 
only parsed successfully if all the contextual checks are 
consistent. Augmented transition networks can be used 
to provide semantic information as well as syntactic, 
since information about meaning can also be stored 
in the structures. They are therefore a bridge between 
syntactic analysis and the next stage in the process, 
semantic analysis. 

13.7.7 Taggers 

We saw earlier that words can be ambiguous in terms 
of what they refer to “bank” as a financial institution or 
edge of a river. However, we also saw words that can be 
different parts of speech: “duck” can be the bird, a noun, 
or the act of dropping down, a verb. Indeed “bank” can 
also be used as a verb: “I’ll bank the cheque”. 
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This can get even more complicated, consider the sen-
tence, “I’ll base my travel plans on the weather, either take 
a helicopter from the air base or climb from base camp.” 
The first use of the word “base” is as a verb, the second as 
a noun and the third as an adjective. 

When all the meanings are of the same syntactic 
category, disambiguation can be left to later stages 
of analysis, but if the same word has multiple pos-
sible syntactic categories, then ideally this level of 
disambiguation needs to happen at the syntactic 
stage. 

Some forms of syntactic analysis can deal with this 
ambiguity as part of their normal functioning, but for 
others this is made easier or possible by prior use of a 
part-of-speech tagger, which allocates a POS (part-of-
speech) category to each word. These often start with 
large digital dictionaries, such as WordNet [193, 194], 
which has multiple meanings of the word including the 
syntactic category of each. This provides a set of initial 
possible part-of-speech tags for each word. Figure 13.8 
shows some of the meanings of the word “base” in Word-
Net; it can be a noun, verb or adjective, with sub-classes 
of each (e.g. ‘noun.artifact’). 

These initial classifications may be augmented by word 
frequencies taken from large corpora to establish initial 
likelihoods for each meaning. This is followed by the use 
of techniques that can include partial semantic analysis, 
but also more sequence-of-words methods such as hid-
den Markov models, discussed in more detail in Chap-
ter 14. 

Figure 13.9 shows an example output of the CLAWS 
web tagger [232] on the (mistyped) sentence, “I’ll base by 
travel plans on the weather, either take a helicopter from 
the air base or climb from base camp”. Note how the first 
use of “base” is tagged “base_VVI” (infinitive of lexical 
verb) and the second “base_NN1” (singular noun). The 
third use of “base” is either tagged “base_SENT” or 
“base_NN1” depending on whether a full stop is added 
after the word “camp”, but not “base_AJ0” (adjective); 
indeed CLAWS appears to struggle with most of the 
adjectival versions of “base” listed in WordNet. This 
is partly a matter of interpretation, note that “air” in 
“air base” is also tagged as a noun as it is effectively 
a noun used as adjective like “fish” in “fish market” 
... even linguists disagree sometimes – the important 
thing is that the grammar and POS tagger use the same 
tagset. 
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FIGURE 13.8 Sample entries for the word “base” in WordNet. 

FIGURE 13.9 Example output of CLAWS WWW tagger with 
three meanings for ‘base’. Note that the tagger copes with the 
typing error ‘by’. 

13.8 SEMANTIC ANALYSIS 
Syntactic analysis shows us that a sentence is correctly 
constructed according to the rules of the language. How-
ever, it does not check whether the sentence is mean-
ingful, or give information about its meaning. For this 
we need to perform semantic analysis. Semantic analy-
sis enables us to determine the meaning of the sentence, 
which may vary depending on context. So, for example, 
a system for understanding children’s stories and a nat-
ural language interface may assign different meanings to 
the same words. Take the word “run”, for example. In a 
children’s story this is likely to refer to quick movement, 
while in a natural language interface it is more likely to be 
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an instruction to execute a program. There are two levels 
at which semantic analysis can operate: the lexical level 
and the sentence level. 

Lexical processing involves looking up the meaning 
of the word in the lexicon. However, many words have 
several meanings within the same lexical category (e.g. 
the noun “square” may refer to a geometrical shape 
or an area of a town). In addition, the same word 
may have further meanings under different lexical 
categories: “square” can also be an adjective meaning 
“not trendy”, or a verb meaning “reconcile”. The latter 
cases can be disambiguated syntactically but the former 
rely on reference to known properties of the different 
meanings. Ultimately, words are understood in the 
context of the sentences in which they occur. Therefore 
lexical processing alone is inadequate. Sentence-level 
processing on the other hand does take context into 
account. There are a number of approaches to sentence-
level processing. We will look briefly at two: semantic 
grammars and case grammars. 

13.8.1 Semantic Grammars 

As we have seen, syntactic grammars enable us to parse 
sentences according to their structure and, in the case of 
context-sensitive grammar, such attributes as number 
and tense. However, syntactic grammars provide no 
representation of the meaning of the sentence, so it 
is still possible to parse nonsense if it is written in 
correctly constructed sentences. In a semantic grammar 
[37], the symbols and rules have semantic as well as 
syntactic significance. Semantic actions can also be 
associated with a rule, so that a grammar can be used to 
translate a natural language sentence into a command 
or query. Let us take another look at our database query 
system. 

13.8.1.1 An Example: A Database Query Interpreter 
Revisited 

Recall the problem we are trying to address. We want to 
produce a natural language database query system for an 
employee database that understands questions such as 
Who belongs to a union? and Does Sam Smith work in the 
IT Department? We have already seen how to generate a 
syntactic grammar to deal with these sentences, but we 
really need to derive a grammar that takes into account 
not only the syntax of the sentences but their meaning. In 
the context of a query interpreter, meaning is related to 

the form of the query that we will make to the database 
in response to the question. So what we would like is a 
grammar that will not only parse our sentence but in-
terpret its meaning and convert it into a database query. 
This is exactly what we can do with a semantic grammar. 

In the following grammar, a query is built up as part 
of the semantic analysis of the sentence: when a rule is 
matched, the query template associated with it (shown 
in square brackets) is instantiated. The grammar is gen-
erated as follows. First, sentence structures are identified. 
Our sentences represent two types of question: the first is 
looking for information (names of union members), the 
second for a yes/no answer. So we define two legal sen-
tence structures, the first seeking information and pre-
ceded by the word “who”, the second seeking a yes/no 
response, preceded by the word “does”. The action asso-
ciated with these rules is to set up a query which will be 
whatever is the result of parsing the INFO or YN struc-
tures. Having done this we need to determine the struc-
ture of the main query parts. We will concentrate on the 
INFO category to simplify matters but the YN category 
is generated in the same way. Words are categorised in 
terms of their meaning to the query (rather than, for 
example, their syntactic category). Therefore, the words 
“belong to” and “work in” are semantically equivalent, 
because they require the same query (but with different 
information) to answer. Both are concerned with who 
is in what organisation. Similarly, “union” and “depart-
ment” are also classed as semantically equivalent: they 
are both examples of a type of organisation. Obviously, 
such an interpretation is context dependent. If, instead of 
a query interpreter, we wanted our natural language pro-
cessing system to understand a political manifesto, then 
the semantic categories would be very different. INFO 
is therefore a structure that consists of an AFFIL_VB 
(another category) followed by an ORG. Its associated 
action is to return the query that results from parsing 
AFFIL_VB. The rest of the grammar is built up in the 
same way down to the terminals, which return the val-
ues matched from the input sentence. The full grammar 
is shown in Figure 13.10. 

Using this grammar we can get the parses 

query: is_in(PERSON, org(NAME, union)) 
query: is_in(Sam Smith, org(IT, Department)) 

for the above sentences respectively. Parse trees for these 
sentences are shown in Figures 13.11 and 13.12. These 
show how the query is built up at every stage in the parse. 

https://alandix.com/glossary/aibook/semantic analysis
https://alandix.com/glossary/aibook/Lexical processing
https://alandix.com/glossary/aibook/lexicon
https://alandix.com/glossary/aibook/lexical processing
https://alandix.com/glossary/aibook/Sentence-level processing
https://alandix.com/glossary/aibook/Sentence-level processing
https://alandix.com/glossary/aibook/sentence-level processing
https://alandix.com/glossary/aibook/sentence-level processing
https://alandix.com/glossary/aibook/semantic grammars
https://alandix.com/glossary/aibook/semantic grammars
https://alandix.com/glossary/aibook/case grammars
https://alandix.com/glossary/aibook/syntactic grammars
https://alandix.com/glossary/aibook/context-sensitive grammar
https://alandix.com/glossary/aibook/syntactic grammars
https://alandix.com/glossary/aibook/semantic grammar
https://alandix.com/glossary/aibook/grammar
https://alandix.com/glossary/aibook/database
https://alandix.com/glossary/aibook/natural language database query
https://alandix.com/glossary/aibook/database
https://alandix.com/glossary/aibook/syntactic grammar
https://alandix.com/glossary/aibook/grammar
https://alandix.com/glossary/aibook/query interpreter
https://alandix.com/glossary/aibook/database
https://alandix.com/glossary/aibook/database query
https://alandix.com/glossary/aibook/semantic grammar
https://alandix.com/glossary/aibook/grammar
https://alandix.com/glossary/aibook/semantic analysis
https://alandix.com/glossary/aibook/grammar
https://alandix.com/glossary/aibook/query interpreter
https://alandix.com/glossary/aibook/grammar


Natural Language Understanding ■ 199 

FIGURE 13.10 Semantic grammar fragment. 

FIGURE 13.11 Parse tree for the first sentence. 

Instantiation of the query components works from the 
bottom of the tree and moves up. 

13.8.2 Case Grammars 

Semantic grammars are designed to give a structural and 
semantic parse of the sentence. Grammars can get very 
big as a result. Case grammars represent the semantics in 
the first instance, ignoring the syntactic, so reducing the 
size of the grammar [102]. For example, a sentence such 
as Joe wrote the letter would be represented as 

wrote (agent(Joe), object(letter)) 

FIGURE 13.12 Parse tree for the second sentence. 
This indicates that Joe was the active participant, the 
agent, who performed the action “wrote” on the object 
“letter”. The passive version The letter was written by 
Joe would be represented in the same way, since the 
meaning of the sentences is identical. 

Case grammars rely on cases, which describe 
relationships between verbs and their arguments. A 
number of cases are available to build case grammar 
representations. The following list is not exhaustive. Can 
you think of other cases? 

• Agent – the person or thing performing the action. 

• Object – the person or thing to which something is 
done. 

• Instrument – the person or thing which allows an 
agent to perform an action. 

• Time – the time at which an action occurs. 

• Beneficiary – the person or thing benefiting from an 
action. 

• Goal – the place reached by the action. 

So, for example, the sentence At 1 pm, Paul hit the gong 
with the hammer for lunch would be parsed as 

hit( time(1pm), agent(Paul), object(gong), 
instrument(hammer), 
goal(lunch) ) 

If we changed the sentence to At 1 pm, Paul hit the gong 
with the hammer for his father, the case representation 
would be 
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hit( time(1pm), agent(Paul), object(gong), 
instrument(hammer), 
beneficiary(his father) ) 

The case structures can be used to derive syntactic 
structures, by using rules to map from the seman-
tic components that are present to the syntactic 
structures that are expected to contain these com-
ponents. However, case grammars do not provide 
a full semantic representation, since the resulting 
parse will still contain English words that must be 
understood. 

13.9 PRAGMATIC ANALYSIS 
The third stage in understanding natural language is 
pragmatic analysis. As we saw earlier, language can often 
only be interpreted in context. The context that must be 
taken into account may include both the surrounding 
sentences (to allow the correct understanding of 
ambiguous words and references) and the receiver’s 
expectations, so that the sentence is appropriate for 
the situation in which it occurs. There are many 
relationships that can exist between sentences and 
phrases that have to be taken into account in pragmatic 
analysis. For example: 

• A pronoun may refer back to a noun in a previous 
sentence that relates to the same object. John had an 
ice cream. Joe wanted to share it. 

• A phrase may reference something that is a compo-
nent of an object referred to previously. She looked 
at the house. The front door was open. 

• A phrase may refer to something that is a compo-
nent of an activity referred to previously. Jo went on 
holiday. She took the early train. 

• A phrase may refer to agents who were involved in 
an action referred to previously. My car was stolen 
yesterday. They abandoned it two miles away. 

• A phrase may refer to a result of an event referred to 
previously. There have been serious floods. The army 
was called out today. 

• A phrase may refer to a subgoal of a plan referred to 
previously. She wanted a new car. She decided to get 
a new job. 

• A phrase may implicitly intend some action. This 
room is cold (expects an action to warm the room). 

One approach to performing this pragmatic analysis is 
the use of scripts [243]. We met in Chapter 2. In scripts, 
the expectations of a particular event or situation are 
recorded and can be used to fill in gaps and help to 
interpret stories. The main problem with scripts is that 
much of the information that we use in understanding 
the context of language is not specific to a particular 
situation but generally applicable. However, scripts have 
proved useful in interpreting simple stories. 

13.9.1 Speech Acts 

When we use language, our intention is often to achieve 
a specific goal that is reached by a set of actions. The 
acts that we perform with language are called speech acts 
[249]. Sentences can be classified by type. For example, 
the statement “I am cold” is a declarative sentence. It 
states a fact. On the other hand, the sentence “Are you 
cold?” is interrogative: it asks a question. A third sen-
tence category is the imperative: “Shut the window”. This 
makes a demand. One way to use speech acts in prag-
matic analysis is to assume that the sentence type indi-
cates the intention of the sentence. Therefore, a declar-
ative sentence makes an assertion, an interrogative sen-
tence asks a question and an imperative sentence issues 
a command. 

This is a simplistic approach, which fails in situations 
where the desired action is implied. For example, the sen-
tence “I am hungry” may be simply an assertion or it 
may be a request to hurry up with the dinner. Similarly, 
many commands are phrased as questions (“Can you tell 
me what time it is?”). However, most commercial natural 
language processing systems ignore such complexity and 
use speech acts in the manner described above. 

Such an approach can be useful in natural language in-
terfaces since assertions, questions and commands map 
clearly onto system actions. So if I am interacting with a 
database, an assertion results in the updating of the data 
held, a question results in a search and a command re-
sults in some operation being performed. 

13.10 GRAMMAR-FREE APPROACHES 
Sometimes it is possible to perform natural-language 
processing without the use of a formal grammar. 
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13.10.1 Template Matching 

We noted earlier that the template matching used in 
ELIZA [299] has limitations in both accepted input 
language (it will attempt to interpret gibberish) and 
output. However, despite this minimal grammar these 
template matching algorithms have proved remarkably 
powerful, especially in chatbots which are widely used 
on the web. 

In fact, both spoken language and instant-message-
style conversations not only often include utterances 
which are formally ‘ungrammatical’, but this is the 
norm. Our own parsing of the things we hear and 
read is based partly on formal grammar but also many 
other mechanisms. Indeed, some orally based language 
teaching programmes, such as the “SaySomethingin” 
courses [263], make heavy use of small patterns that can 
be used with simple substitutions. 

Various open source and commercial chatbots are 
available and allow you to both add to generic templates 
with domain-specific terms and phrases and also create 
structured conversations where needed. 

Some systems force a restricted language, for example 
text-based chatbots may only allow you to create phrases 
using canned expressions, such as “I want to know 
about”. Here the user is doing all of the work, and 
there is no real AI behind the language comprehension. 
However, even when the system has true AI behind 
it, for example in speech-based home automation 
systems such as Alexa, users soon learn the acceptable 
language and, often without realising, modify their 
speech patterns to suite the capabilities of the system ... 
just as we do when speaking with a small child. 

13.10.2 Keyword Matching 

At an even more basic level, simple keyword matching 
can be used to trigger actions or at least start more 
directed dialogues. One very early system for pre-
consultation health discussions used an off-the-shelf 
chatbot but augmented it with a simple topic model. 
Keywords were used to determine what topics the patient 
had talked about and then, when there was a natural 
break in the conversation, the chatbot introduced topics 
that were still to be covered [218]. 

More complex versions of keyword matching can in-
clude LEGO-style language, where words have linked ca-
pabilities. For example if you hear “bone dog ate”, you 
have no difficulty in recognising that it is the dog not the 
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bone that is doing the eating. This is effectively a prag-
matic level of understanding: a dog is a thing that does 
eating and a bone something that can be eaten. If you are 
a home automation system and hear someone say a series 
of words including “light” and “on”, then (in the absence 
of obvious negatives) this would be interpreted as “turn 
the light on” where the light in question would be the 
one closest to the person unless there is an obvious room 
word such as “kitchen”. 

In some ways this is far more primitive language than 
full grammars – perhaps the way early humans first de-
veloped linguistic communication. However, in terms of 
the levels of language this is actually closer to pragmatics 
– the relatively simple keyword and association match-
ing is understanding the user’s intent, what they want 
to achieve. Ultimately language is about getting things 
done, not perfect grammar. 

13.10.3 Predictive Methods 

Other chapters deal with large-scale text processing and 
web search (Chaps. 8 and 17). Traditionally areas such as 
this were regarded as not real AI as they applied statistical 
techniques. However, these techniques have been found 
to be surprisingly powerful in some cases as alternatives 
to more semantically rich NLP or to supplement it. We 
have already seen this in the way that word frequency 
data can be used to help drive word disambiguation in 
POS taggers. 

Many email systems and other forms of text entry offer 
suggestions of the next few words you might want to en-
ter. These are often uncannily accurate and yet based on a 
very simple principle, the n-gram. A large corpus is anal-
ysed and frequencies calculated for every single word, ev-
ery word pair (2-gram), every triple (3-gram) and maybe 
larger groups too. Then when you type “I want” the sug-
gested ext word might be “a”, “to” or “the” as the 3-grams 
“I want a”, “I want to” and “I want the” are very frequent. 

Large-language models such as GPT-3 [34] can be 
thought of as more sophisticated versions of the same 
thing. Rather than simply n-gram frequency a large 
sliding window (discussed in more detail in Chapter 14) 
is used to train a deep neural network that can then 
predict the next word. By iterating this the next 2, 3 or 
more words can be predicted or even running text. 

These models are trained on vastly big corpora, but 
are also designed so that they are foundation models, 
that is the generic network can be used to generate more 
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bespoke or domain specific models by a (relatively) 
small amount of additional training. This is possible 
because the set of network weights have in some way 
learnt general properties of language, not simply the 
specific word they have been exposed to. It appears that 
concepts such as parts of speech, and grammar, while 
not explicitly coded are, in some way, present as the text 
that is created is, on the whole, well-formed grammar. 

There is ongoing debate as to whether larger and 
larger models with more and more parameters will 
be able to emulate all aspects of natural language 
understanding or whether there are fundamental limits 
at which more knowledge-rich methods will always be 
required. Possibly the answer is somewhere between 
with low-level network architectures that are in some 
way pre-programmed not with specific language rules, 
but with structures that are tuned to be particularly 
capable for different kinds of linguistic purpose. 

These more statistical and data-driven machine learn-
ing techniques can certainly be used as part of more be-
spoke language systems, for example one could train a 
neural network to do POS tagging. In addition parts of 
neural-based language or text models can be used. 

13.10.4 Statistical Methods 

We have seen in other chapters the way principal 
components can be used to create reduced dimensional 
representations for recommender systems. A similar 
technique can be used for texts. A text is initially 
represented as a vector of word frequencies, possibly 
weighted by overall corpus frequency, as discussed in 
Chapter 10. Principal components or a similar method 
is used to create a lower-dimensional vector that acts a 
signature for the text, a process called latent semantic 
analysis [96]. The reduced dimensional space no longer 
represents words as such but in some way captures 
overall meanings, where documents that refer to similar 
topics lie closer in the latent space. 

For document retrieval this is then used to help match 
search terms to documents based not on whether they di-
rectly contain the word, but more on the closeness of the 
overall gist of the query and document. More generally, 
this can be used for topic analysis, for example taking a 
500-word sliding window over a document and creating 
a signature vector for each window in the latent space. 
Rapid movement in the latent space then corresponds to 
topic shifts in the text. 

A similar technique, word2vec uses an internal layer 
of a neural network that has been trained to predict the 
close co-occurrence of words in a corpus [191]. This in-
ternal layer can be treated as a form of latent space (often 
called a word vector), that in a sense captures the mean-
ing of a word. Crucially relationships are often main-
tained, so that the vector difference between Madrid and 
Spain is similar to that between Paris and France. These 
word vectors can be used instead of the original word as 
part of other language processing techniques. 

13.11 SUMMARY 
In this chapter we have looked at the issue of ambigu-
ity, which makes natural language understanding so dif-
ficult. We have considered the key stages of natural lan-
guage understanding: syntactic analysis, semantic anal-
ysis and pragmatic analysis. We have looked at gram-
mars and transition networks as techniques for syntac-
tic analysis; semantic and case grammars for semantic 
analysis; and scripts and speech acts for pragmatic anal-
ysis. We have also seen how levels of apparent language 
understanding can be achieved without the user of for-
mal grammars using simple template and word matching 
or more complex large-language models and statistical 
methods. 

13.1 For each of the sentences below generate the fol-
lowing: 

• a syntactic grammar and parse tree 

• a transition network 

• a semantic grammar and parse tree 

• a case grammar 

What additional features would you represent if 
you were generating context-sensitive grammars 
for these sentences? 

• My program was deleted by Brian 

• I need a print-out of my program file 

• The system administrator removed my files 

• I want to create a new document file 

13.2 Identify the ambiguity in each of the following 
sentences and indicate how it could be resolved. 
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• She was not sure if she had taken the drink 

• Joe broke his glasses 

• I saw the boy with the telescope 

• They left to go on holiday this morning 

13.3 Devise a script for visiting the doctor, and indicate 
how this would be used to interpret the statement: 
“Alison went to the surgery. After seeing the doc-
tor she left.” 

FURTHER READING 

N. Indurkhya and F. Damerau, editor. Handbook of natural 
language processing. CRC Press, Boca Raton, FL, 2010. 
An edited handbook covering the complete process of NLP 
with experts in each area contributing the relevant chap-
ters. It was published before the emergence of effective big 
data and deep learning techniques but is an in-depth and 
comprehensive view of traditional approaches to NLP. 

D. Jurafsky and J. Martin. Speech and language processing (3rd 
edition, 2024 draft). (Update of 2nd edition, pub. Prentice 
Hall 2008). https://web.stanford.edu/ jurafsky/slp3/ 
This popular textbook has been updated to include lat-
est developments including large-language models. The up-
dated material is available through the authors’ website. 

T. Winograd and F. Flores. Understanding computers and cog-
nition. Addison-Wesley, Ablex Corporation Norwood, 
NJ, 1987. 
Includes a discussion of speech act theory and other aspects 
of natural language understanding from a more philosoph-
ical standpoint. 

13.12 SOLUTION TO SHRDLU PROBLEM 
1. Find a block that is taller than the one you are 

holding and place it in the box. This is referential 
ambiguity. What does the word “it” refer to? 

2. How many blocks are on top of the green block? 
This is perhaps more tricky, but it involves seman-
tic ambiguity. Does ‘‘on top of” mean directly on 
top of or above (i.e. it could be on top of a block 
that is on top of the green block)? 

3. Put the red pyramid on the block in the box. This 
is syntactic ambiguity. Is it the block that is in the 
box or the red pyramid that is being put into the 
box? 

4. Does the shortest thing the tallest pyramid’s 
support supports support anything green? 
This is lexical: there are two uses of the word 
“support”! 
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CHAP T ER 1 4 

Time Series and Sequential Data 

14.1 OVERVIEW 
The moves in a game of chess, annual Arctic ice extent 
since the beginning of the industrial era, words in a 
sentence, finger and hand positions during a mid-air 
gesture, hospital admissions reports for a patient – 
there are many types of data where it is not only the 
values of data items that matter but also the order in 
which they occur. Often, but not always, the sequence 
order reflects an underlying time order. Thinking of 
time order we’ll often use the term ‘event’ for one of 
the sequential items, but this should be interpreted 
liberally to include, for example a word in written 
text. 

There are some specific techniques used for particular 
domains, for example speech processing or games, but 
also some common features and techniques that can be 
applied across a number of domains. 

In this chapter we look first at some of the general 
properties of temporal and sequential data and then 
at three main classes of algorithm: probability-based 
methods; grammar or pattern matching; neural 
networks and statistical methods. Grammars are, by 
their nature, specific to sequential data; however, we 
will see specialised techniques in all of these classes. 
Finally, we will see that data may often be viewed 
at multiple granularities (e.g. raw audio, phonemes, 
words), and different methods may be applied at each 
level. 

14.2 GENERAL PROPERTIES 

14.2.1 Kinds of Temporal and Sequential Data 

Often more critical than the application domain are the 
characteristics of the data. 

First we can look at the timing or sequence order of 
each data item, it may be: 

Discrete events – for example hospital admissions, or 
words spoken. These may have times or periods in 
which they occurred, but there may also be gaps 
when nothing happens. 

Samples of continuous time – for example hourly air 
temperature readings, where the air has a temper-
ature between readings. 

For discrete events, we may have a complete record of 
every event (e.g. each word in text) or may have an in-
complete record with missing events, such as hospital vis-
its that for some reason were not recorded. Note that 
in the latter case we may not even know that they are 
missing. 

For sampled data we may have a uniform sampling 
rate, every second, hour or day, or the samples may be 
sporadic, perhaps only when some other event happens 
that triggers a reading. Missing vales are often more ob-
vious but still cause problems with analysis. 

If we look at the values associated with each event, 
these may be: 

Homogeneous – Each event has the same type of data. 
For example, a word or a temperature reading. 

Heterogeneous – Some events have different data 
associated with them than others. For example, 
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there may be different test results taken at different 
hospital visits. 

In many scientific, engineering and economic appli-
cations one has homogeneous numeric data collected at 
a uniform sample rate, and there is a rich set of statistical 
and signal processing techniques targeted at these. In 
some cases, AI and ML algorithms offer alternatives for 
these, but in others the two work alongside each other, 
often with some form of numerical pre-processing of 
data. 

Often data can be mixed, with different kinds of data 
in the same application, for example, in sales forecasting 
the daily or weekly sales of products form a uniform nu-
merical time series, which is analysed using relatively ba-
sic statistical techniques. However, there are also unusual 
points, for example where there has been an advertising 
campaign. Here the analysts make adjustments based on 
their experience [9] – an obvious point also where a hy-
brid AI/statistical system could be useful. 

14.2.2 Looking through Time 

As with any form of data, one should always spend some 
time getting to know temporal data. Here are some be-
haviours you might notice: 

Stationarity – Although the precise values change, the 
kinds of behaviour are relatively similar at any time. 

Trends – Things get bigger or smaller over time, for ex-
ample long-term inflation. 

Periodicity – Some aspect of a process that repeats (pos-
sibly with small variation/noise) at fixed intervals, 
for example seasonal variations in ice cream sales. 

Quasi-periodicity – Where changes have a nearly fixed 
timescale of change, but not tied to a precise ‘tick’ 
time. The 11-year sunspot ‘cycle’ is like this, and it is 
often the sign of a dynamic system with feedback. 

Discontinuities – Points of sudden or unusual change, 
the cause of which may or may not be known. For 
example, a known or expected change would be the 
impact of an advertising campaign on sales, whereas 
an unexpected one would be the 1987 stock market 
crash (see Figure 14.1). 

Phase changes – Points where the characteristics of 
the process change. For example, in finance it is 

relatively easy to predict future stock values during 
either bull or bear markets, but the transitions 
between bull and bear are where fortunes are made 
and lost. 

Substructure – Portions of the signal may have charac-
teristics of their own. For example, ECG data con-
sists of a time series of electrical signals sampled at 
from 50Hz to 5kHz depending on the apparatus. 
However, within that it is the roughly once a second 
heart rate signal that is of most interest, and also the 
shape of this, as different shapes can reveal particu-
lar heart problems. 

In addition, if you look at the same data at different 
timescales you might see different forms of activity. For 
example, if you look at stock values during a bull market 
they may appear to have an upwards trend, but if you 
look at a larger timeframe you will see flips between bull 
and bear markets. Similarly, if you look at ice cream 
sales from August through to October, you might detect 
a downward trend, but zooming out to view several 
years’ sales you begin to see annual periodicity. 

Although any actual dataset is finite, often what 
you have represents a portion of a longer, possibly 
indefinitely long series. For example, you might be 
processing a 20-minute ECG trace from a patient, who 
hopefully lives a lot longer. However, sometimes the 
underlying phenomenon has finite length, for example 
the stroke making up a character in handwriting 
recognition. 

14.2.3 Processing Temporal Data 

In the following sections we will look at algorithms of 
very different kinds but with underlying similarities. In 
the end all are trying to transform the indefinite sequence 
into a collection of finite data problems. The goal is usu-
ally to either predict the next data item from what came 
before or to classify the whole or part of the time series. 
Typically, they use one of two general techniques: 

windowing – splitting the data into sub-sequences of a 
fixed length 

hidden state – processing is more event-to-event, but 
assuming some underlying unobservable state 

In addition, for certain sorts of data, particularly audio, 
the data may be transformed from time domain (event-
by-event data points) into frequency domain (signal 
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FIGURE 14.1 Stock market leading up to and after Black Monday, 19th October 1987 (adapted from https://commons.wikime 
dia.org/wiki/File:Black_Monday_Dow_Jones.svg). 

strength at different frequencies). We’ll look at each of 
these in more detail. 

14.2.3.1 Windowing 

The sequence is broken into a number of short pieces 
of fixed length. These can then, in principle, be fed into 
pretty much any algorithm. 

Some algorithms will use non-overlapping windows, 
for example chopping the data sequence into one-hour 
segments. However, more common is to use moving 
windows, that is the last N items. For example, Covid 
case data was often presented as a 7-day moving average, 
which basically means take the last 7 days’ figures and 
show the average of these. 

Effectively algorithms using this technique are trying 
to work out: 

last N steps ⇒ output 
(classification / prediction of next step) 

Occasionally the windows may be centred over regions 
of interest. For example, with ECG data, one might 
attempt to detect the peaks and centre the window over 
them. Also there may be start and end adjustments 
to prevent anomalies; for example a short linear ramp 
in/out. 

Algorithms based on windowing have what is called 
finite impulse response (FIR), that is the effects of any 
sample point, no matter how extreme, only affect out-
puts for the next N steps. However, note that N can be 
extremely large; for example ChatGPT4 has a 128K token 
window and Google Gemini up to one million tokens – 
finite but for many practical purposes unbounded. 

14.2.3.2 Hidden State 

The algorithm assumes there is some additional state that 
is not immediately apparent in the observed data but 
which affects its behaviour. For example, the tempera-
ture and heart rate (observed data) of a patient will de-
pend on the progress of the infection (hidden state). 

Algorithms using hidden state are effectively trying to 
work out a function of the form: 

current step × hidden state 
→ output × new hidden state 

In general, it is a lot harder for machine learning algo-
rithms to learn this function as it depends on the hidden 
state, which, by definition, is not known! 

In principle, it is sufficient to only use one step at a 
time as input – anything the algorithm ‘wants’ to remem-
ber can be stored in hidden state. However, as it is hard 
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to learn the hidden state, it may sometimes be better to 
combine it with windowing, effectively finding a func-
tion of the form: 

last N steps × hidden state 
→ output × new hidden state 

The hidden state can be simpler as it only has to ‘remem-
ber’ long-term things beyond the window’s time frame. 

Hidden-state techniques usually have an infinite 
impulse response (IIR), that is the effect of a single 
data item can last an indefinitely long time, albeit often 
typically becoming less significant the longer you wait. 
This is often what you want, as you are trying to account 
for long-lasting effects, but does mean that any sporadic 
mis-reading or extreme reading can affect performance 
for a long time to come. 

14.2.3.3 Non-time Domain Transformations 

Sequences of the form: data at t = 0, data at t = 1, 
... where the index of the data values is a time value, is 
called time domain data and some algorithms work best 
on this form of data. However, sometimes the data is bet-
ter transformed to replace or augment the raw data as an 
aid to subsequent processing. 

There are many ways to do this, but the two most com-
mon are Fourier and wavelet transforms. 

Fourier transforms are a more detailed version of what 
you see in the little bars on a high-quality sound system 
equaliser showing the bass and treble response in differ-
ent ranges. The Fourier transform takes a signal and splits 
it into frequency components based on the power in par-
ticular frequency ranges. For example, a low-frequency 
Fourier transform might give 16 outputs: one average 
(0Hz); two at each of 1Hz power, 2Hz power, ... 7 Hz 
power; one at 8Hz. Note there are two components at 
each of the intermediate levels corresponding to cos and 
sin components, or, equivalently, the fact that a wave has 
a phase (where it starts) as well as a wavelength (how 
wide it is). 

A Fourier transform can be calculated for a complete 
time series, but more commonly windows are used, 
usually having 2M items for some choice of M as the fast 
Fourier transform (FFT) algorithm works best with a 
power of two length. 

Figure 14.2 shows an example of a voice spectrogram, 
which is often used as the first stage of speech recognition 
systems. Here small windows of a fraction of a second are 
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divided into 32 frequency bands from 0Hz to 10Hz. The 
gaps between words are very clear as are differences in 
the frequency characteristics of the various syllables. 

Wavelet transforms also have a frequency element 
creating some outputs that are about the large-
scale/slow structure. However, while the high-frequency 
components of a Fourier transform are about the 
whole of a time series, or window, the high-frequency 
components of Wavelet transforms are about short 
snippets of the signal. Basically, a signal is broken into 
a few slow-changing parts that capture the large-scale 
structure, plus a larger number of small short-timescale 
parts. 

Figure 14.3 shows a family of wavelets, called the Haar 
wavelets, first proposed over a hundred years ago by Al-
fréd Haar [120]. It is easy to see that a discrete signal 
of length 8 can be broken into a constant part plus a 
sum of the wavelets. However, wavelets do not have to 
have sharp edges, and smoother wavelets are more often 
used as they have better mathematical properties but also 
more complex mathematical formulae. 

14.3 PROBABILITY MODELS 
One way to look at a time series is as a probabilistic pro-
cess, where the probability of the next thing that happens 
depends on what has gone before. These are used particu-
larly when the data values are discrete and finite, notably 
for text, and most common approaches are based around 
variants of Markov models. 

14.3.1 Markov Model 

The original Markov model, named after the Russian 
mathematician Andrey Andreyevich Markov, is specifi-
cally for systems with no memory, where the probability 
of the next item in a sequence is purely determined by 
the current item. 

Here’s a sequence of letters from the restricted alpha-
bet A,B,C. 

AAACCACCCCABBABBACAAAAACCACACACAACACAB 

These were generated by the transition probabilities in 
Table 14.1. Reading through this table, row by row: if the 
current state is A, then there is a 1 in 2 chance it will stay 
as an A, and a 1 in 4 chance that the next will be a B and 
a 1 in 4 that it will be a C; if the current state is B, there is 
a 1 in 2 chance it will go back to an A and a 1 in 2 chance 
it will stay as B; finally if the current state is C, then there 
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FIGURE 14.2 Digitally produced spectrogram of a male voice saying ‘nineteenth century’ (https://commons.wikimedia.org/wi 
ki/File:Spectrogram-19thC.png). 

is a 1 in 2 chance it will go to A and a 1 in 2 chance it will 
stay as C. 

TABLE 14.1 Markov Model (upper) Transition Probability 
Table; (lower) Drawn as a Network. 

Next letter 
Current letter A B C 

A 0.5 0.25 0.25 
B 0.5 0.5 0 
C 0.5 0 0.5 

You can imagine building similar rules for the 
weather. Indeed a popular saying in Britain is “Rain 
before seven shine before eleven”, which basically says 
that if you take four-hourly measurements the weather 
is likely to change! 

Generating the sequence from the rules is easy (toss 
a coin!), but we need to first be able to learn the rules 
from the data. Happily this is simple for a Markov Model. 

First you just count how often each pair appears in the 
sequence. 

Raw frequencies Totals 
AA: 7 AB: 3 AC: 9 start with A: 19 
BA: 2 BB: 2 BC: 0 start with B: 4 
CA: 9 CB: 0 CC: 5 start with C: 14 

These are then converted into estimated transition 
probabilities by dividing by the frequency it is in the 
relevant start state. For example, there were 19 times 
the sequence was an A in the current state and of these 
9 times the next step was C (AC frequency), so the 
estimated transition probability is 9/19 (= 0.474). In 
full this gives us the estimated transition probabilities in 
Table 14.2. 

TABLE 14.2 Estimated Transition Probabilities Based on Ob-
served Transition Frequencies. 

Next letter 
Current letter A B C 

A 0.368 0.158 0.474 
B 0.500 0.500 0.000 
C 0.643 0.000 0.357 

Note how this is not exactly the same as the actual 
transition probabilities that were used to generate the se-
quence. These are random rules, so short sequences can 
vary markedly. A far longer sequence is required to give 
robust probability estimates. 
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FIGURE 14.3 A simple family of wavelets – the Haar Wavelet. 

Of course, the restriction of having no memory at all is 
a little unrealistic for many applications, indeed even the 
British weather is not that variable! 

14.3.2 Higher-order Markov Model 

Higher order Markov models allow one to peek slightly 
further back. Here’s another sequence of letters, this time 
just As and Bs: 

ABBAAAABBAAAABBABBABAAABBAAA 
BABAAAABBAAAAABBABABBABABABA 

The transition probabilities that generated this are in Ta-
ble 14.3. Note that this time the last two letters are used to 
generate the probability of the next letter. This is rather 
like using yesterday’s weather as well as today’s to pre-
dict the weather tomorrow, or if you are reading text, the 
words “it is” are likely to be followed by an adjective or 
gerund (‘-ing’ form of verb). 

TABLE 14.3 Markov Model Transition Probability Based on 
Previous Two Letters. 

Next letter 
Last 2 letters A B 

AA 0.75 0.25 
AB 0.5 0.5 
BA 0.25 0.75 
BB 1 0 

You can use the same methods to learn the two-step 
transitions, first of all counting the 3-grams: 

Raw frequencies Totals 
AAA: 11 AAB: 6 starting with AA: 17 
ABA: 7 ABB: 8 starting with AB: 15 
BAA: 6 BAB: 8 starting with BA: 14 
BBA: 8 BBB: 0 starting with BB: 8 

Then these are used to generate the estimate of the 
probabilities in Table 14.4. Note that again the estimates 
are in several cases well away from the actual values used 
to generate the sequence. 

TABLE 14.4 Observed Transition Probabilities for Order 2 
Markov Model. 

Next letter 
Last 2 letters A B 

AA 0.647 0.353 
AB 0.467 0.533 
BA 0.429 0.571 
BB 1.000 0.000 

For language comprehension a two-step version like 
this is unlikely to be very useful, but you can grow the 
number of previous steps you take into account. Indeed, 
Google’s text suggestions are based on models rather like 
this. 

When you start growing the window, the number of 
entries in the transition table increases rapidly. In Ta-
ble 14.3, we have an alphabet size (the number of values 
in each state) of two and a window size of two (in Markov 
model terms this is called the ‘order’ of the model). This 
led to eight (23) probabilities. In general, with an alpha-
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bet size of N and a window size of W, we have NW+1 prob-
ability entries in the table. Unless you are dealing with 
massive corpora, it becomes increasingly hard to have 
sufficient data to estimate the probabilities with any de-
gree of accuracy. 

Variable-order Markov models deal with this by hav-
ing a window size that varies depending on the previ-
ous items. This is especially helpful if some items are 
a lot more frequent than others. In English text ‘is’ is 
a very common word, so one might have a simple ta-
ble of one-step transitions for every word pair like in 
Table 14.1. However, in addition, there may additional 
probabilities for two-step sequences ending with ‘is’, for 
example. 

‘on’ p = 0.3⎧⎪‘purring’ p = 0.2
‘cat is’ → ⎨‘eating’ p = 0.2⎪

⎩‘sleeping’ p = 0.3 

Sometimes there is some kind of classification of the al-
phabet; for example in language the part of speech of a 
word (verb, noun, etc.). In such cases it may be possible 
to build a Markov model at the abstract level of the clas-
sifications: for example how likely it is that a verb is fol-
lowed by a noun, this can then be supplemented by more 
detailed rules for more common words. Note that these 
are all window-based variations of the Markov Model 
and so have finite impulse response; that is there is no 
long-term memory. 

14.3.3 Hidden Markov Model 

The hidden Markov model allows longer term memory 
by adding a hidden state. This is an additional state that 
is assumed to be present but not visible in the observed 
items. 

As an example, Table 14.5 shows a simple model of 
weather in a British summer. The observable weather is 
either Sun or Rain, but in addition the weather has gen-
eral tendency to be Changeable or Wet that affects the 
current weather. Try generating some weather sequences 
from this ... although do be warned they are likely to be 
depressingly wet! 

Although it is just as easy to generate sequences 
from this kind of probability transition table, the 
fact that the Changeable/Wet state is hidden makes 
it harder to learn. As you don’t know the state, you 

TABLE 14.5 Hidden Markov Model for British Summer 
Weather – Hidden State in Brackets (Changeable/Wet). 

Tomorrows weather 
Current weather Sun Rain Sun Rain 

(Changeable) (Changeable) (Wet) (Wet) 
Sun (Changeable) 0.3 0.4 0.1 0.2 
Rain (Changeable) 0.3 0.3 0 0.4 

Sun (Wet) 0.2 0.1 0.1 0.6 
Rain (Wet) 0 0.1 0 0.9 

cannot create transition frequencies for the obser-
vations. In general, you don’t even know how many 
hidden states you need. There are various specialised 
algorithms for learning mostly based on iterative 
techniques. 

Even when you know the model, applying it to ob-
served data is also a little more complicated as you have 
to both work out the hidden state and use it to predict 
the future observations. However, it is often precisely this 
hidden state that is the most important thing. For exam-
ple, from observations of a patient’s day-to-day symp-
toms inferring whether or not their underlying ailment 
is improving. 

14.4 GRAMMAR AND PATTERN-BASED 
APPROACHES 

Instead of working out probabilities of various se-
quences, we may simply want to work out what is 
possible, the pattern or grammar underlying the 
sequence. 

14.4.1 Regular Expressions 

Look at the following (familiar) sequence: 

AAACCACCCCABBABBACAAAAACCACACACAACACAB 

Based on this alone, it looks like there are just As, Bs and 
Cs, and that while there can be various length runs of 
each, a C never follows a B, nor vice versa. Expressed as 
a regular expression (and assuming starting with an A), 
this is: 

(A+(B+|C+))*A* 

This says “one or more As, followed by either one or more 
Bs or one or more Cs; repeat that any number of times 
and then possibly some As at the end”. Note, in a regu-
lar expression ‘+’ after any item means ‘one or more’, ‘*’ 
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means zero or more, brackets group and vertical bar ‘|’ 
designates alternatives. 

In real applications, one would look at many such 
sequences, or for a single ongoing data stream a much 
longer sequence. It may be that in a longer sequence 
there are occasions with BC or CB, and also in the short 
sequence there are never more than 2 Bs in a row – is 
this part of the pattern or just accident? 

Regular expressions are one of the simplest forms of 
grammar; yet it is still impossible to know for certain 
from a finite number of examples whether you have 
found exactly the regular expression that generated 
the examples. However, it is possible to infer relatively 
simple regular expressions that are consistent with 
available data. 

The difficulty is finding a sensible point between a reg-
ular expression that is clearly too specific: 

AAACCACCCCABBABBACAAAAACCACACACAACACAB 

and one that is clearly too general: 

(A|B|C)* 

Every regular expression can be expressed as a finite 
state machine, rather like the hidden Markov model 
(HMM) but where there are no transition probabilities, 
merely possibilities: can it happen or not. 

S0 => <A,S1> 
# at least one A at start 

S1 => <A,S1> | <B,S2> | <C,S3> 
# anything 

S2 => <A,S1> | <B,S2> 
# B followed by B or A 

S3 => <A,S1> | <C,S3> 
# C followed by C or A 

As with learning Markov models, one can start with 
the n-grams (Chap. 13), only here the question is 
about what is possible, so all one cares about is which 
sequences occur, and which never do. The aim is then to 
find the simplest possible state machine that can, from 
some state, generate every observed n-gram and never 
generate those that are absent. Although in many ways 
less complicated than a HMM, this is still not an easy 
task. 

In some cases there are only positive examples. Non-
presence is the only way to infer bad examples, but this 
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becomes more difficult if the vocabulary grows as it be-
comes more likely that a particular sequence has never 
occurred by chance. In other applications there might be 
explicit negative examples, which can help a learning al-
gorithm. 

In text processing tasks there are often classes of sym-
bols that are known to usually behave similarly such as 
letters and digits. Ideally the regular expression gener-
ated should use these when possible. For example, imag-
ine you are given lots of names such as Jane, or Keith, 
but where none of them start with a ‘Z’. Even though 
([A-Y][a-z]+) might be a reasonable regular expres-
sion that matches every example, it would not match the 
name Zoe. The more general ([A-Z][a-z]+) should be 
preferred so long as there are no counter examples. 

In some ways this bias towards ‘sensible’ regular ex-
pressions can make things more complicated, but it can 
easily be built into the fitness function of some ML algo-
rithms. Also, it can help with the problems when there 
is insufficient learning data, as an example such as Jane 
is effectively treated as equivalent to all four-letter se-
quences of letters starting with a capital. 

14.4.2 More Complex Grammars 

Regular expressions are powerful and can match many 
kinds of data, such as email addresses or many kinds 
of identification codes. However, they cannot represent 
more complex linguistic structures such as nested 
classes, not even those found in programming languages 
or expression, such as matching brackets, which are 
often described with grammars such as this: 

expr ::= number | expr ‘+' expr 
| expr ‘-' expr | ‘(' expr ‘)' 

number ::= digit | digit number 

The extra expressive power of these hierarchical gram-
mars makes them more powerful but correspondingly 
even harder to learn from examples. 

One way is to operate bottom-up. A first pass looks 
for several relatively simple rules (such as regular expres-
sions or simpler) where each rule matches multiple por-
tions of the data sequence. A rule is deemed good if it 
is: 

• reasonably simple 

• matches reasonably long sequences 

• matches many sub-sequences 

https://alandix.com/glossary/aibook/Regular expressions
https://alandix.com/glossary/aibook/grammar
https://alandix.com/glossary/aibook/regular expression
https://alandix.com/glossary/aibook/regular expression
https://alandix.com/glossary/aibook/regular expression
https://alandix.com/glossary/aibook/finite state machine
https://alandix.com/glossary/aibook/finite state machine
https://alandix.com/glossary/aibook/hidden Markov model
https://alandix.com/glossary/aibook/HMM
https://alandix.com/glossary/aibook/n-gram
https://alandix.com/glossary/aibook/HMM
https://alandix.com/glossary/aibook/regular expression
https://alandix.com/glossary/aibook/regular expression
https://alandix.com/glossary/aibook/regular expression
https://alandix.com/glossary/aibook/bias
https://alandix.com/glossary/aibook/regular expressions
https://alandix.com/glossary/aibook/regular expressions
https://alandix.com/glossary/aibook/fitness function
https://alandix.com/glossary/aibook/Regular expressions
https://alandix.com/glossary/aibook/grammars
https://alandix.com/glossary/aibook/hierarchical grammars
https://alandix.com/glossary/aibook/hierarchical grammars
https://alandix.com/glossary/aibook/bottom-up algorithm
https://alandix.com/glossary/aibook/regular expressions
https://alandix.com/glossary/aibook/regular expressions


212 ■ Artificial Intelligence 

• and doesn’t overlap with other rules (or there is a 
precedence). 

Once a good rule set has been developed, each rule is 
given a name, and portions of the data matching the rules 
are replaced with a single symbol based on the name. The 
process is then repeated on this abstracted sequence. 

On its own this will generate multiple rules for each 
level: 

expr4 ::= expr3 | expr3 ‘+' expr3 
| expr3 ‘-' expr3 
| ‘(' expr3 ‘)' 

expr3 ::= expr2 | expr2 ‘+' expr2 
| expr2 ‘-' expr2 
| ‘(' expr2 ‘)' 

expr2 ::= expr1 | expr1 ‘+' expr1 
| expr1 ‘-' expr1 
| ‘(' expr1 ‘)' 

expr1 ::= numb | numb ‘+' numb 
| numb ‘-' numb 
| ‘(' numb ‘)' 

numb ::= digit | digit number 

So, some form of matching phase is then needed to 
generalise these rules. This would see that expr1, expr2, 
expr3 and expr4 all have similar expansions and merge 
them into a single non-terminal expr. Another approach 
is to use genetic programming. This is a form of genetic 
algorithm, but instead of simple ‘gene’ sequences, the 
individuals have program code, often represented as a 
tree. There are many variants of this. Typically, mutation 
may prune a whole subtree or take a node and expand 
it. Cross-over of two parent trees would take a subtree of 
one parent and use it to replace a subtree of the other. 
The fitness function will typically involve some form of 
simplicity as well as accuracy. One advantage of genetic 
approaches is that it is easy to incorporate known infor-
mation such as the letter classes for regular expressions, 
or previous common patterns that can then be used as 
potential things to incorporate during mutation stages. 

14.5 NEURAL NETWORKS 

14.5.1 Window-based Methods 

The simplest approach to using neural networks for tem-
poral or sequential data is through windowing. The data 
is split into fixed or sliding windows and the resulting 
data used as input to a neural network. 

If the aim is future predictions, then the output of the 
network needs to be the next item in the sequence. In 
other words, if the data sequence is d1, d2, … , dt, … , dN 

and the window size is W, the sequence is treated as if 
it were the following N−W training examples: 

input output 
d1, d2, … , dW dW+1 

d2, d3, … , dW+1 dW+2 

... 
dt−W, dt−W+1, … , dt−1 dt 
... 
dN−W, dN−W+1, … , dN−1 dN 

For numeric data the input may be pre-processed us-
ing Fourier or wavelet transformation, but this may be 
omitted in deep neural networks depending on the struc-
ture of early layers. Classification for sequential data has 
some extra complications. 

If the aim is to identify particular subsequences, 
for example instances of names in text, then we may 
use a binary classification labelling a window as “ends 
in a name” or not. Alternately we may simply have 
a label “contains a name”. The former would be a 
more natural choice if you are using a sliding window 
as this will not only find parts of the sequence that 
contain names but pinpoint their exact location (see 
Figure 14.4). 

If the classification is more diffuse, for example “po-
etic language” for text or “walking” for human activity 
data, there are likely to be portions of the data that are 
clearly labelled, and also portions that are in-between 
or perhaps bridging two kinds of classification (see Fig-
ure 14.5). Windows where the classification is less clear 
may either be omitted from the training set entirely or 
given a special ‘transition’ label. As we’ll discuss later, 
these points of transition may be the most important as-
pect of a data stream. 

These classifications can be given as part of supervised 
training, but classification algorithms may also learn in 
an unsupervised manner, looking for patterns in the 
data. 

14.5.2 Recurrent Neural Networks 

There are also forms of neural networks specifically de-
signed for temporal data usually including some element 
of additional hidden state. These are collectively termed 
recurrent neural networks (RNN). 

https://alandix.com/glossary/aibook/genetic programming
https://alandix.com/glossary/aibook/genetic algorithm
https://alandix.com/glossary/aibook/genetic algorithm
https://alandix.com/glossary/aibook/fitness function
https://alandix.com/glossary/aibook/accuracy
https://alandix.com/glossary/aibook/regular expressions
https://alandix.com/glossary/aibook/neural networks
https://alandix.com/glossary/aibook/windowing
https://alandix.com/glossary/aibook/neural network
https://alandix.com/glossary/aibook/wavelet transformation
https://alandix.com/glossary/aibook/deep neural networks
https://alandix.com/glossary/aibook/supervised
https://alandix.com/glossary/aibook/unsupervised
https://alandix.com/glossary/aibook/neural networks
https://alandix.com/glossary/aibook/hidden state
https://alandix.com/glossary/aibook/recurrent neural networks
https://alandix.com/glossary/aibook/RNN


Time Series and Sequential Data ■ 213 

FIGURE 14.4 Locating sub-sequences in longer sequence. 

FIGURE 14.5 Diffuse classification of regions. 

The simplest form of this simply takes the value of 
some output nodes at one time step and feeds these back 
into the input for the next time step. On the left of Fig-
ure 14.6 is a standard neural network, with inputs that 
feed into some sort of network of nodes and produce out-
puts. On the right is the recurrent neural network. The 
same number of extra input and output nodes are added 
and then the extra output nodes are fed back into the in-
puts. These extra nodes effectively form a state for the 
network. 

Figure 14.7 illustrates this process once the RNN has 
been trained. We’ll assume a starting state s0. The data 
items for each time step are read from the input stream 
one at a time. The first item d1 along with the initial state 
s0 is fed as input to the network. This yields an output for 
this step o1 and also a value for the ‘state’ output nodes 
s1. The process is then repeated with d2 and s1 giving o2 

and s2 and the process continues. 
The state output at each time step becomes the state 

input for the next. 
As with hidden Markov models, adding this state 

makes learning a lot more difficult as it is not known 
up front. The state can be initialised randomly or the 
net can be bootstrapped by starting with a windowed 

neural network and then gradually replacing the 
oldest data items with state nodes. Learning can be 
performed one step at a time, or by looking at several 
steps simultaneously, effectively pushing error terms 
backwards through time. 

Note that as this is a state-based method it has infinite 
impulse response. In principle the effects of data items 
can be recalled indefinitely. 

14.5.3 Long-term Short-term Memory Networks 

Having some level of history in a neural network can 
significantly improve performance on time series. 
However, there are times when it is useful to forget and 
start again, for example, when there is a change in the 
stock market from bull to bear or some major event (see 
Figure 14.1). 

Long-term short-term memory networks (LTSM) get 
round this problem by having special memory nodes that 
as well as an input and output also have a ‘forget’ in-
put that resets the node. The neural analogy for this is 
long-term potentiation, chemical changes in cells that 
last from minutes to hours. They are longer lasting than 
the moment-to-moment flux of electrical activity but less 
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FIGURE 14.6 Recurrent neural network (RNN). 

FIGURE 14.7 Running a recurrent neural network on data stream d1, d2, d3, … 

so than true long-term memory encoded physically in 
synapse weights. 

14.5.4 Transformer Models 

Recall the LEGO-style matching for language described 
in Chapter 13; as a human reading text we are partly 
influenced by the last few words, but also parts of the 
text from much further back if they connect in mean-
ing, like matching LEGO blocks, to the thing we are cur-
rently reading. For example, if we read the words “ate the 
bone”, the immediately preceding text may be a very long 
subordinate clause, but our attention skips the clause and 
connects to the words “the dog” even though they are far 
back in the sentence. 

Attention mechanisms try to emulate this by matching 
tokens to previous tokens, often at lower levels in a layer 
architecture. Each token has a ‘key’ and ‘query’ attached 
to it, where the key captures some aspect of the meaning 
of the token and the query the kind of things it wants 
to attach to. Both keys and queries are represented as 
vectors so the matching is imprecise. 

Attention mechanisms can be combined with other 
sequence learning algorithms such as recurrent neural 
networks. However, transformer models, built almost 
solely using these attentional mechanisms, have proved 
both powerful and efficient [287] on language trans-
lation tasks. While originally developed for language 
processing, variants of transformer models have been 
used in other domains where there is sequential 
structure including predicting folding structures of 
proteins in AlphaFold2 [30]. 

14.6 STATISTICAL AND NUMERICAL 
TECHNIQUES 

There are a wide range of highly successful statistical and 
numerical techniques used in time series analysis and 
signal processing. Often these are alternatives to AI and 
ML techniques and may be better for pure numerical 
data. However, in addition they may be used alongside 
AI-based techniques, for example as pre-processing 
stages as we’ve already discussed with Fourier and 
Wavelet transforms. 
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14.6.1 Simple Data Cleaning Techniques 

Often raw time series data looks very noisy, sometimes 
due to random effects, sometimes more systematic ones. 
Figure 14.8 shows daily reported Covid-19 in the UK 
during 2020. Often weekend deaths did not get officially 
reported until sometime in the following week, leading 
to very noisy data. However, the solid line is a seven-day 
moving average. This is simply taking the last seven days’ 
raw data and averaging that. The trends and patterns are 
immediately far more evident. It is the simplest example 
of a smoothing function. 

Other examples of simple transformations are 
seasonal adjustment and trend removal. 

Seasonal adjustments are applied when there is some 
form of fixed period often over a year, or week, that af-
fects the data. For example, differing business district 
coffee sales between weekdays and weekends or woolly 
hat sales between summer and winter. We’ll think of this 
in terms of monthly differences over the year, but a sim-
ilar technique can be applied for any period. 

To adjust for these one can take long-term averages 
over many years comparing each month with the 
overall year average. This month effect can then be 
subtracted from the observed data to remove the 
seasonal effect. It is then easier to see the impact of 
other changes, for example, if there is a September sales 
promotion on woolly hats, are increases in sales due to 
the promotion or just what you’d expect at that time of 
year? 

Trend adjustments or de-trending are used when there 
is a long-term upwards or downward trend in the data. 
The aim is to in some way separate out the overall trend 
from finer-grain changes. One way to deal with this is to 
fit the line using linear regression and then remove this 
to leave the fluctuations from the trend. This works well 
in some circumstances but can suffer from sensitivity to 
outliers and effectively assumes the same trend lasts for-
ever. Although, by definition, a trend is a long-term phe-
nomenon, that may not mean forever. There are ways to 
update trend estimates incrementally and also to reduce 
the impact of outliers. 

Often a simpler way to de-trend a time series is to focus 
instead on the difference between successive data items 
(first-order difference), how much it has increased or de-
creased. That is, you turn the data series d1, d2, … , dt, … 
into d2− d1, d3−d2, … , dt+1 − dt, …. The linearly growing 
part is effectively cancelled out. 
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Sometimes this difference data still has a trend, for ex-
ample when a car is accelerating, the velocity (change in 
position) is itself increasing. The differencing process can 
be repeated to yield second- or third-order differences, 
and many series that start off looking complex can be 
tamed this way. Indeed, this is precisely the principle be-
hind Charles Babbage’s Difference Engine! 

14.6.2 Logarithmic Transformations and 
Exponential Growth 

Many processes exhibit exponential growth or expo-
nential decay, for example infections during the early 
stages of an epidemic, economic growth or feedback in 
a sound system. For these processes taking any order of 
differences still yields an exponential process. This is be-
cause they are fundamentally multiplicative rather than 
additive processes. The rate of growth is proportional to 
the level of disease, size of the economy or volume of 
noise. 

It is possible to explicitly model the exponential 
part and remove it, similar to de-trending or seasonal 
adjustment. However, an easier approach and often 
more suited to pre-processing for other ML tech-
niques is to perform a logarithmic transformation of 
the data. That is turn the series d1, d2, … , dt, … into 
log(d1), log(d3), ..., log(dt), … 

The choice of base of the logarithm (common values 
2,e,10) does not really matter as the logarithms are all just 
multiples of one another, and this scale factor is usually 
‘dealt with’ by later stages of processing. In some cases 
a type of data suggests the most meaningful transforma-
tion: base 2 for computer-related data such as storage ca-
pacity, natural logarithm (base e) for biological processes 
and base 10 for acoustic data where the decibel (ten times 
log10) is a common measure. 

After a logarithmic transformation, exponential 
growth or decay becomes a simple linear upward or 
downward trend and so additional de-trending (and 
possibly seasonality adjustments) can be applied. The 
first-order difference of a logarithmic transformation is 
effectively proportional to a percentage increase figure, 
like a inflation figure. 

Even where there is no clear exponential trend, it can 
often be the case that the variability in data is propor-
tional to the size. For example, fluctuations in an adult’s 
weight of a few pounds over holiday periods are quite 
common, but if a new-born baby were to vary by a similar 
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FIGURE 14.8 Covid-19 deaths for UK in 2020 – daily data is very noisy, but a 7-day moving average is far more stable (adapted 
from: https://coronavirus.data.gov.uk/details/deaths). 

amount, one might be worried. This might also suggest a 
logarithmic transformation. 

In both cases of exponential processes and scale-
related variability, an alternative to a full loga-
rithmic transformation is to actually work out a 
proportionate increase/decrease at each step, that 
is transform the data series d1, d2, … , dt, … into 
d2/d1 − 1, d3/d2 − 1, … , dt+1/dt − 1, …. If the changes 
are relatively small, this is effectively equivalent to the 
first-order differences of logarithmic data but may be 
easier to interpret. 

14.6.3 ARMA Models 

One of the most common types of standard statistical 
modelling is auto-regressive moving average (ARMA) 
models. There are lots of variations, but the basic 
assumption is that given an observed data series, the 
current value is determined by a combination of 

• recent past states of the observed series. For exam-
ple, your bank balance today is related to your bank 
balance yesterday. 

• an unobserved series of random fluctuations. For 
example, all of those midnight internet purchases. 

Following convention, we’ll call the unobserved (hid-
den) series 𝜖1, 𝜖2, … , 𝜖t, … and these are assumed to be 
independent of each other and typically Normally dis-
tributed (Chap. 7). 

This leads to two types of model, which can be com-
bined to give the full ARMA model. 

Moving average models assume that the data we see is 
a weighted average of the last M items of the unobserved 
series. That is: 

dt = w1𝜖t + w2𝜖t−1 + ..., +wM𝜖t−(M−1) 

Because this is a finite window, the impact of a sin-
gle unusually large or small 𝜖t only persists for M time 
steps, that is the process generated by this has finite im-
pulse response. The types of data produced by this kind of 
model therefore have local structure but no longer term 
behaviour. 

Auto-regressive models assume that the data we see 
is a linear combination of the previous N items plus 
a single error/noise term from the unobserved series. 
That is: 

dt = a1dt−1 + a2dt−2 + ..., +aNdt−N + 𝜖t 
In this case although the term 𝜖t appears to only 

influence the current dt, this in turn is fed back 
into dt, which in turn influences dt+1. The impact 
tends to decay exponentially, but has no fixed end, 
it is an infinite impulse response process. Auto-
regressive models often create processes with larger 
scale pattern-like properties including quasi-periodic 
data. 

Note that in both cases these are models of how the 
data is produced rather than how we process it to create 
predictions. In particular, the moving average model is a 
moving average of the unobserved series, so it is different 
from calculating a moving average of observed data in 
order to smooth it. 
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FIGURE 14.9 Using statistical processing as pre-processor for 
other AI techniques. 

Auto-regressive models are easy to fit using a window-
ing technique, you simply take a training series, split it 
into windows of size N+1 and then apply standard lin-
ear modelling to find the coefficients ai. Although they 
seem simpler, moving average models are a little more 
complicated as they involve the unseen series 𝜖t. How-
ever, there are ways to calculate these too and also mixed 
ARMA models. 

Two final things to note. First the values for N and 
M in an ARMA model are often relatively small com-
pared to the windows we are likely to use for many neu-
ral network or other machine-learning algorithms. Sec-
ond these models are often fitted after seasonality adjust-
ments and trend removal. 

14.6.4 Mixed Statistics/ML Models 

As noted a common use of statistical methods in AI is 
as pre-processing for other ML algorithms (Figure 14.9). 
There are three reasons for this, one, two or all of which 
may apply to a given application: 

clearer – They are often easier to interpret than a series 
of weights in a neural network. By restricting AI-
based ML techniques to aspects where they are most 
needed, we can end up with more explainable AI 
(see also Chapter 21). 

better – If the transformations applied are based on 
real understanding of the data, they effectively feed 
knowledge into the ML process leading to more 
accurate and generalisable results. 

faster – Sufficiently complex deep neural networks may 
well be able to learn for themselves the equivalent 
of the transformations produced by statistical 
techniques. However, appropriate pre-processing 

FIGURE 14.10 Using ML to choose parameters for statistical 
processing. 

can reduce the complexity and hence learning 
time. 

There are also downsides, they need more expert 
knowledge up front and also may run the risk of biasing 
the ML towards standard ways of viewing the data. 
The latter is mitigated if the transformations applied 
are information preserving; for example, if you sum 
first-order differences, you retrieve the original data 
series. 

Another way to combine ML with statistical tech-
niques is where the data is intrinsically well suited to 
traditional statistics, but where some form of choices 
are needed that usually require a statistical expert’s 
judgement, or some form of trial and error. For example, 
in ARMA models the choice of N and M is critical 
in creating a good model but is a combination of 
experience, art and pure guesswork. 

In these cases, an AI system can be used to make those 
choices, effectively functioning as a surrogate expert 
(Figure 14.10). This may be an expert system based on 
heuristics and rules of thumb derived from professional 
statisticians or can use machine learning tuned to a 
particular application area. This might include changing 
these parameters or switching models for different 
portions of the data (see below). 

14.7 MULTI-STAGE/MULTI-SCALE 
We’ve noted that data may have structure at different 
scales. This is true of numerical data, for example, the 
bull/bear market phases in Figure 14.1 and the heart 
beats in Figure 14.11, but also for textual data, for 
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example the words in this sentence, the topic of the 
paragraph and the way these fit into the overall structure 
of the book. 

It is possible to simply throw this kind of data into a 
complex enough machine learning algorithm. Some are 
designed to seek this form of multi-scale structure, but 
if not they may either struggle to work at all or be need-
lessly large with correspondingly long learning times. 

Often a slightly more curated approach is adopted, or 
automated based on high-level heuristics. Let’s look at 
the ECG data in Figure 14.11 and consider one way to 
process it. 

1. We write custom code to identify the peaks in the 
signals 

2. The time difference between this and the previous 
peak gives an inter-beat time for each 

3. A moving average of the inter-beat is calculated to 
give a heart rate 

4. Fixed-sized windows are extracted around each 
peak 

5. These windows are treated as independent data 
items for training an unsupervised classifier 

6. The classifier is then applied to every beat yielding 
a beat ‘type’ 

7. The time difference, ‘beat’ and heart rate then 
form a new data sequence where each data item 
represents a single labelled heartbeat in order 

8. This new time series is fed into one of the other 
techniques we’ve dealt with (e.g. HMM, RNN) 

Note a few things about this process: 

• It combines some expert knowledge such as the way 
the peak identifies a beat, the use of a moving av-
erage as peak-to-peak times can be quite variable, 
being affected by breathing or movement. 

• It also allows the AI/ML to seek its own patterns at 
steps 5 and 8. 

• It has turned fine-grained (kHz) samples of contin-
uous time data into coarser (∼1Hz) sequential dis-
crete events which are more suitable input for many 
kinds of network. 

Think of your own variations on this: for example, 
could an expert be brought in at step 5 to label the types 
identified or maybe some database of unusual heart pat-
terns used? 

Of course this process can be repeated, the ML algo-
rithm at step 8 might identify different kinds of periods, 
some representing normal activity of different kinds (re-
laxed, strenuous exercise), but some abnormal, such as 
periods of arrhythmia. Applying this to time series data 
could reduce it further into even coarser sequential data 
such as in Table 14.6. 

TABLE 14.6 High-level Classification of Periods of Data as a 
Coarse-grained Time Series. 
D-723 high-rate, normal pattern (strenuous ac- – 15 mins 

tivity) 
D-724 low-heart rate (rest) – 30 mins 

D-725 tachycardia (problem) – 2 mins 

... 

Another layer of ML could then identify patterns in 
this, for example whether there are particular combina-
tions of activity that are more or less likely to lead to ar-
rhythmia. 

This is an example of a bottom-up process with low-
level data being used to create higher-level abstractions. 
There can also be top-down processes. 

Imagine we have trained a stock market predictor A 
that works well during bull markets and a predictor B 
that works well on bear markets. We can use these predic-
tors as (retrospective) classifiers by keeping track of how 
well each would predict the current market state based on 
previous days. If over a period A is better, we are proba-
bly in a bull market, if B is better, we are likely in a bear 
market. So far this is a bottom-up process, but it has given 
us a classification of the current market condition, which 
we can then use to choose which of the predictors A or 
B to use to estimate the next day’s stock prices and so 
inform investment decisions. 

Similar bottom-up and top-down approaches can be 
used in other sequential data such as text processing. 
Here’s an example of such a process: 

1. The origin of a document (e.g. web page domain) 
gives a default language and location 
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FIGURE 14.11 Extract of ECG trace (adapted from Ptrump16 – Own work, CC BY-SA 4.0, https://commons.wikimedia.org/ 
w/index.php?curid=77817932). 

2. This is used to select a dictionary, date and num-
ber formats, and maybe specialised lookups such 
as common names (top-down processing) 

3. Text is split into ‘word’ units at spaces and punc-
tuation 

4. Units that are all alphabetic (probable words) are 
looked up in a dictionary 

5. Units are matched against text patterns such as ‘all 
letters’, ‘initial capitals’ and also patterns such as 
dates or telephone numbers. 

6. The resulting units are then coded: in/not in dic-
tionary; all lower case/all caps/initial caps/mixed; 
etc. (coarser scale data series) 

7. Higher level pattern recognisers (hand-coded or 
automatic) are applied, for example, initial caps 
words not in a dictionary suggest names, lists of 
names with dates and other words with initial cap-
itals might be an article citation. (bottom-up pro-
cessing) 

Again, you might think of variants of this, for example 
using high-level items recognised at step 7 to feed back 
into revised context. 

14.8 SUMMARY 
We have looked at methods of analysing and predicting 
temporal and sequential data based on probability 
theory, in particular variants of Markov models; various 
forms of grammar; the use of generic and specialised 
neural networks, including recurrent and long-term 

short-term networks; and also statistical methods for 
more numeric data. Some of these are very specific, 
but there are also common aspects such as the use of 
windowing or hidden state. Crucially these methods 
are often combined, including different methods and 
different levels of abstraction in an event stream. 

14.1 Generate weather sequences based on a hidden 
Markov model of the British weather as suggested 
in Section 14.3.3. If you are using a six-sided 
die, you can use the transition probabilities 
in Table 14.7, which has been modified from 
Table 14.5 so that the probabilities are multiples 
of 1/6 to make it easier. 

TABLE 14.7 Weather Transition Probabilities for Use in Exer-
cise 14.1 

Tomorrow’s weather 
Current weather Sun Rain Sun Rain 

(Changeable) (Changeable) (Wet) (Wet) 
Sun (Changeable) 1/3 1/3 1/6 1/6 
Rain (Changeable) 1/3 1/3 0 1/3 
Sun (Wet) 1/6 1/6 1/6 1/2 
Rain (Wet) 0 1/6 0 5/6 

14.2 Given the following sequences 

(i) AAACCA 

(ii) AAACCAB 

(iii) AAACCBA 

(iv) AAACCACCCCABBABBBACAAAAA 

CCACACCACAAACCACCAB 
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(v) AAACCACCCCABBABBBACAAAAC 

CACACCACAAACCACCAB 

(vi) AAACCACCCCABBABBBACCAAAA 

ACCACACCACAAACCACCAB 

Which of the following regular expressions match 
them all? 

a. (A+(B+|C+))*A* 
b. (A+(C+(B+|A+))*B 
c. (A+(B+|C+))*A* 
d. (A+B+C+))*B 
e. ((AA)*A+(B+|C+))* 
f. ((AA)*A+(B+|(CC)+))* 

Don’t just use an online regular expression 
matcher! Try to understand why. 

14.3 For this exercise use the sequence (iv) of As, Bs 
and Cs from Exercise 14.2. 

a. Calculate the Markov model current-
letter–next-letter probabilities similar to 
Table 14.1 using the technique described in 
Section 14.3.1. 

b. Using an online random number app, spread-
sheet or code, generate a sequence based on 
the measured probabilities. 

c. Recalculate Markov model probabilities based 
on your generated sequence. How similar is 
this to step (a)? 

14.4 As in the previous exercise, use the sequence (iv) 
of As, Bs and Cs from Exercise 14.2. 

a. This time calculate the higher-order Markov 
model with a window of size two. That is pre-
vious two letters to next letter probabilities as 
in Table 14.3.2 in Section 14.4. 

b. Were there any problems calculating this? 

c. How confident would you be in the probabili-
ties? 

d. Repeat this using your generated sequence 
from Exercise 14.3, step (b). 

e. Do things look different, and if so why? 

FURTHER READING 
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B. Lim and S. Zohren. Time-series forecasting with deep learn-
ing: A survey. Philosophical Transactions of the Royal So-
ciety A, 379(2194):20200209, 2021. 
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CHAP T ER 1 5 

Planning and Robotics 

15.1 OVERVIEW 
In order to act in the world, we need to plan what 
to do. The same is true for computers and robots. 
Planning has long been an important part of artificial 
intelligence, and this chapter initially looks at two main 
aspects: planning actions and planning movements. 
Planning usually involves manipulating a model of the 
world in order to decide what actions will bring about the 
desired effects. However, in the real world we cannot 
model all the outcomes of our actions, either because the 
world is too complex, or because of external events over 
which we have no control, or both. We have already seen 
aspects of this when discussing games. Local planning 
deals with those situations where we can only plan so far 
ahead but must then respond to the circumstances we 
observe and the events that occur. In the next chapter 
we will look at software agents that act in the electronic 
world where planning is also necessary. However, 
designing robots that act in the physical world means 
we have to live within the limitations of reality. We will 
discuss some of the implications of this for cybernetics 
research and industrial robotics. 

15.2 INTRODUCTION 

15.2.1 Friend or Foe? 

Robots have intrigued people since before the word 
existed. Plans were produced for clockwork and 

steam-powered humanoids, while moving manikins 
and automata adorn both fairgrounds and cathedral 
clock towers. The word “robot” means worker (or even 
‘serf ’ or forced labourer) and indeed they have become a 
major part of modern factory production. 

However, popular images of robots are not so prosaic. 
Humanoid robots hold a particular fascination, with 
the promise of tireless service and even, like Data in 
Star Trek or R2D2 in Star Wars, friendship. However, 
there is a dark side as well, and in science fiction robots 
are often the mortal enemy of humankind (with the 
added frisson of not being mortal!). It is interesting to 
note that the most dreaded enemies have been those 
that are only partly robot: Frankenstein’s creation in 
Mary Shelley’s novel was constructed from dead flesh 
and the Daleks have something slimy within. In Karel 
Čapek’s play “R.U.R.”, in which the term ‘robot’ was 
coined, the robots were android slaves, and ended up 
rebelling against their human overlords [40]. Strangely 
enough, artificial life (albeit mostly virtual) has become 
a respectable area of AI! 

For the foreseeable future there is little danger from 
independently malevolent robots; although much 
research in robotics has military funding, and 
semi-autonomous drones and battlefield robots are 
increasingly common. Outside a human war zone, 
for most of us, accidents and misadventure are a far 
more likely danger. Isaac Asimov foresaw this with his 
Laws of Robotics, setting limits on robots’ freedom to 
act [10]. Although real-life robots do not wield ray guns, 
they often have lasers, and an encounter with a ton 
of industrial robot, whether “armed” or not, could be 
unfortunate. In fact, it is likely that the less intelligent 
the robot, the greater the danger – it will not be able to 
tell the difference between drilling a hole in an engine 
block or in your head! 
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15.2.2 Different Kinds of Robots 

The simplest industrial robots obey a pre-programmed 
sequence of commands. They have no intelligence 
whatsoever – although AI might be used in planning 
their movements. An example of this is spray painting of 
cars. An operator initially trains the robot by moving an 
instrumented robot arm to perform the task. The 
movements are recorded and then the production line 
robot repeats the movements indefinitely – rote learning. 
The lack of intelligence becomes obvious when there is 
any change in the circumstances. If there is a gap in the 
production line, the robot will happily spray thin air! 
Although such robots do not include any intelligence, 
they are very important in industrial applications. 

A slightly more complex example would be a drilling 
machine. The machine needs to detect when a drill bit 
breaks in order to report the damage to a human opera-
tor (as there may be a part-drilled hole or a piece of drill 
bit left on the work piece) and load a new bit. This be-
haviour is pre-programmed but may involve some plan-
ning – perhaps using a different drilling machine when 
one goes offline. 

Finally, we get to robots where the need for AI is 
obvious. These may be stationary: for example, on 
a production line where parts come in different 
orientations (vision needed), perhaps piled on top of 
one another, and the robot needs to select parts to 
assemble. Alternatively, they may need to move around 
in their environment: for example, an automated forklift 
moving things around a factory, a smart vacuum cleaner 
in the home, or an autonomous car on the road. 

In the first edition, the reviewers thought the authors 
at very best quaint for suggesting that readers might 
be inside a robot (referring to a lift) before they met 
one. However, now while lifts still have the autonomous 
quality of a moving robot (albeit restricted), examples 
of robots that surround us are far more common: some 
moving, autonomous road vehicles as well as lifts and 
auto-piloted planes; or stationary, smart buildings and 
cities. On the latter HAL, the AI in 2001 Space Odyssey, 
was controlling the whole space ship or perhaps was the 
whole space ship. At present while you talk to a home 
automation system such as Alexa, and ask it to do things 
for you, it is normally seen as an actor external to the 
devices themselves, so more a software agent as will be 
discussed in Chapter 16. However, as more parts of your 
home are automated and sensed, and the relationships 

FIGURE 15.1 Blocks world. 

between them become more complicated, at what point 
does it feel more as if the whole house is an intelligent 
entity? 

15.3 GLOBAL PLANNING 

15.3.1 Planning Actions – Means–Ends Analysis 

When we have considered state space search with moves 
between states, we have simply assumed that there is 
some oracle that gives us the set of possible moves 
from a given state. In fact, many problems are far more 
structured than that. 

One general class of problems can be attacked by a 
technique called means–ends analysis. This is based on 
operators that transform the state of the world. Given a 
description of the desired state of the world (the end) it 
works backwards working out operators that will achieve 
it (the means). This is not done as a single step, but in-
stead works incrementally: in order to apply operators 
which would achieve the goal state, conditions must ap-
ply to the previous state and so the algorithm is applied 
recursively. Note that this is a special sort of knowledge-
rich search as discussed in Chapter 4. 

States are described in some structured way (e.g. by 
predicates), and moves are performed by the operators. 
Each operator has a precondition, which constrains the 
states it can be used in, and a postcondition, which says 
what will be true when it has finished. In a state described 
by predicates the postcondition must say both what is 
additionally true and what ceases to be true in the new 
state. 

As an example, consider a blocks world similar to that 
used as the domain of the historic natural language AI 
program SHRDLU [301]. This world consists of blocks 
of different shapes and colours, which can be piled on 
top of one another or placed on a table top. An imagi-
nary robot inhabits this world and can pick up and move 
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blocks to try and get to any desired state. The states can 
be displayed graphically (Figure 15.1) or described using 
predicates. Our world has two kinds of shapes, pyramids 
and boxes, in various colours. 

on_table(blue_pyramid) 
on_top(red_pyramid,green_box) 
on_top(blue_box,red_box) 
on_table(green_box) 
on_table(red_box) 

The predicate “on_top(A,B)” says that block A is on 
top of block B and “on_table(A)” is self-explanatory. We 
also require another predicate “in_hand(A)” which says 
that A is in the robot’s (single) hand. There are four op-
erators with the pre- and postconditions shown in Ta-
ble 15.1. 

TABLE 15.1 Blocks World Operations. 

operation precondition postcondition 

pick_up(A) on_table(A) 
∧¬ on_top(C,A) 
∧¬ in_hand(X) 

in_hand(A) 
∧¬ on_table(A) 

put_down(A) in_hand(A) on_table(A)
∧¬ in_hand(A) 

pick_off(A,B) on_top(A,B) 
∧¬ on_top(C,A) 
∧¬in_hand(X) 

in_hand(A) 
∧¬ on_top(A,B) 

put_on(A,B) in_hand(A) 
∧¬ on_top(C,B) 

on_top(A,B) 
∧¬ in_hand(A) 

As an example, we can read the first rule as saying: 

In order to pick up the block A, it must be on 
the table, must have nothing on top of it and 
there must be nothing in the robot’s hand. 
When it has been picked up, the block A is in 
the robot’s hand and no longer on the table. 

Notice how the first operator (pick_up(A)) makes 
some things true that weren’t before (in_hand(A)), 
and some things false that were previously true 
(on_table(A)). These are called the add list and the 
delete list, respectively. 

In order to simplify the rules, there are two operators 
to pick things up, one to pick up things from the table 
“pick_up” and one from other blocks “pick_off ”. 

Now imagine that our goal is to have a pile on the table 
consisting of the blue triangle on top of the red box. We 
don’t care about any of the other blocks: 
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on_top(blue_triangle,red_box) ∧ on_table(red_box) 

Now the operator information could be used to do a 
simple depth or breadth first search for this goal state. 
From the start state we could generate all operators 
whose precondition was true of the current state, and 
then search the children in the manner determined 
by the search. However, this does not effectively use 
the structural knowledge in this representation. For 
example, we would examine useless moves like moving 
the red triangle off the green box. 

Means–ends analysis does use this knowledge. It looks 
at the current state and the goal state and works out the 
difference between them – not just a numeric measure 
of distance as used in heuristic search, but an analysis of 
which things need to be changed. Consider the current 
state. We see that “on_table(red_box)” is already true, so 
the difference from the goal state is 

on_top(blue_triangle,red_box) 

We can then match this difference against the 
postconditions and look for an operator that reduces 
the difference. In the example this can be achieved 
by “put_on(blue_triangle,red_box)”. We check its 
preconditions against the current state. Unfortunately, 
they are not met. So we make these preconditions a new 
goal state, calculate the difference and look for a new 
operator. 

This movement from the goal state towards the current 
state is called backward chaining. In this example, it is 
more efficient than moving from the current state to the 
goal (forward chaining), as the forward branching factor 
is much larger than the backward branching factor. 

If we look at the next stage in this means–ends analy-
sis, we find there are two terms in the new goal state: 

in_hand(blue_triangle) ∧¬ on_top(C,red_box) 

We can either work on both simultaneously or 
instead work out a way to get to each part separately. 
For example, we could first work out a way to achieve 
“in_hand(blue_triangle)”: 

pick_up(blue_triangle) 

and then seek to achieve “¬ on_top(C,red_box)” by 

pick_off(blue_box,red_box) 
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FIGURE 15.2 Navigation challenge for a robot. 

Unfortunately in this case we cannot simply combine 
these plans, as they interfere with one another. This will 
not always be the case, and splitting up a problem into 
subproblems (divide and conquer) is a powerful solution 
technique. Even where interference is found, it is often 
more efficient to produce two interfering subplans and 
then modify them than to work on the whole problem at 
once. 

The process of finding a single sequence of operators 
that follow one after the other is called linear planning. In 
contrast, non-linear planning builds a partially ordered 
collection of actions. The actions are each application of 
operators, and dependencies are recorded between ac-
tions. This reduces the amount of backtracking required 
while searching for a plan. However, in the end even non-
linear plans must be reduced to a linear sequence of op-
erators to be performed. This is done by finding a linear 
ordering that is consistent with the dependencies in the 
plan. 

15.3.2 Planning Routes – Configuration Spaces 

Suppose the little triangular robot in Figure 15.2 wants 
to get across the room from the place marked start to 
the one marked finish. In the room are two obstacles. A 
straight-line path between the two points will not work 
– the robot will collide with the obstacles. One cannot 
simply find a line that avoids the obstacles because the 
robot is wide and may not be able to squeeze through 
every gap. When we plan a path through the obstacles, we 
must take into account the size and shape of the robot at 
each point. This makes the planning task quite difficult. 

One way to tackle this is using a configuration space. 
Recall how in Chapter 2 we saw how a change in repre-
sentation can make a hard problem easier. The configu-
ration space is just such a change of representation. Each 

FIGURE 15.3 Using a configuration space to plan a route. 

object is expanded so that we can regard the robot as a 
single point and then we can find a simple path across 
the room. 

Figure 15.3 shows the stages of route planning using a 
configuration space. First, a reference point is chosen on 
the robot (i). We then imagine moving the robot around 
each object tracing the path of the reference point. This 
is shown for a single object in (i). We then regard these 
paths as being the boundaries of the expanded objects (ii) 
and plan a path past these. The shortest path must graze 
past some of the objects and hence must pass through 
a series of vertices of the expanded objects. Three such 
routes are shown in (iii), and some search algorithm, 
such as A∗ (Chap. 4), can be used to select the shortest 
route. 
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FIGURE 15.4 Circle-based configuration space. 

The above algorithm depends on the robot maintain-
ing its orientation. This can lead to it being both opti-
mistic and pessimistic in its chosen paths. We all know 
that twisting an object round can make it easier to get 
through an opening. However, some robots may only be 
able to move forward. The configuration space solution 
might include the robot moving sideways, crab-like, and 
so be impossible. The first problem, finding out whether 
some combination of movements and rotations can get 
an object past obstacles, is very difficult. However, we 
can tackle the second by modifying the configuration 
space. 

In Figure 15.4, we see a configuration space based on 
a circumscribed circle drawn around the robot. The cen-
tre of the circle has been chosen so as to make it as small 
as possible. If the robot can only turn about a particular 
point, then this should be chosen instead. The circle is 
then used to generate the expanded obstacles and new 
paths can be chosen round these. One of these paths is 
drawn in (ii). Notice how the path between the two ob-
jects is not possible in this configuration space. This is 
because the gap was wide enough for the triangle to nav-
igate sideways, but not point first. The circle-based space 
is conservative. If you find a path through it, you can def-

FIGURE 15.5 Corridors and rooms between obstacles. 

initely do it, but it may disallow some paths that are pos-
sible. For example, if the robot were long and narrow, like 
a truck, it would say that corridors (roads) need to be as 
wide as the length of the truck! 

One way to get round this is to examine the paths 
based on circles and those based on unexpanded objects. 
The former is very pessimistic, the latter optimistic. If a 
promising path exists in the latter, but not the former, 
one can use more sophisticated methods to check 
whether the route is possible or not given the particular 
movements available to the robot. 

A similar approach is to generate possible paths based 
on the narrowest points between obstacles; that is, to 
concentrate on the gaps rather than the obstructions. 
Some of these gaps will be so small that they can’t 
possibly be navigated: they can effectively be “filled 
in” and ignored. Other gaps will be narrow enough 
that care is needed (say, narrower than the diameter 
of the circumscribed circle). Finally, some gaps will be 
so large that they can be considered as rooms – large 
enough that free movement is possible. The meetings 
between these gaps can be thought of as doors between 
the corridors and rooms. Possible routes criss-cross 
the rooms going from door to door. One can work out 
which are navigable and which turns are possible and 
then use a search algorithm to choose a route. This 
has the advantage that paths can be constructed to 
run as far as possible from obstacles and so avoid near 
misses. It also means that we can use different heuristics 
for navigating across rooms and down corridors 
(Figure 15.5). 
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15.4 LOCAL PLANNING 

15.4.1 Local Planning and Obstacle Avoidance 

Get up and walk across the room. Did you use one of the 
algorithms above? Probably not! Your behaviour will be 
more like the following: 

• Determine approximate direction to take. 

• Walk in that direction. 

• If an obstacle is encountered, walk around it. 

Notice how this sort of route planning has two phases: 
global planning – when you determine the approximate 
route – and local planning – overcoming obstacles as 
they occur. The same sort of thing happens at other lev-
els. If you are planning a mountain walk, you may plan 
the route using maps and guides, but you still have to 
watch where you are going. 

In real life, one does not preplan all one’s activities. In-
stead there is a hierarchy of plans at different levels rang-
ing from overall goals of life to automatic reactions. The 
global level of planning has to know what is reasonable 
to expect at the local level but does not have to plan the 
low-level details. However, there has to be some sort of 
monitoring to revise global plans should problems occur 
at the lower level. For example, when hill walking you 
might find that a path has been washed away and have to 
replan your route to avoid the unforeseen obstacle. 

Planning at multiple levels has computational advan-
tages (several small problems rather than one large one) 
and is also far more flexible, especially if the environment 
changes. It is not only useful in route finding but also in 
other problems such as assembly tasks. 

One way to handle local planning is to give a robot a 
desired direction of travel and a set of avoidance rules for 
obstacles. For example, a rule could be: 

1. where possible move towards target 
2. if you encounter an obstacle: 

2.1. move back 1 unit 
2.2. move sideways for 5 units 
2.3. resume preferred direction 

By “back” and “sideways” we mean that the robot de-
termines (with sensors) in which direction the obstruct-
ing object lies and moves first directly away from it (back) 
and then at 90∘ to it (sideways). Such a path is illustrated 
in Figure 15.6. 

FIGURE 15.6 Local planning to avoid obstacles. 

Notice how this algorithm could get stuck in a deep 
alcove. If it entered an alcove (concavity), the backward 
movement at step 2.1 might not be enough to get it out, 
and so the robot would never escape. It is precisely this 
behaviour that would have to be detected in order to 
restart global planning. 

In the above example, the robot only noticed the ob-
stacle when it hit it. This may be sufficient in some appli-
cations, but more generally some remote sensing would 
be employed, perhaps vision or sonar. This is particularly 
important if the obstacles are not stationary. It is no good 
avoiding a bus after it has hit you! In fact, local avoidance 
algorithms can be adapted quite easily to handle moving 
objects. The exact form of the algorithm will depend on 
the sensors available. Let’s assume that the robot can de-
tect objects that are within a certain distance of it and 
can determine their speed and direction. An avoidance 
algorithm could be: 

1. where possible move towards target 
2. when an object is detected and a collision 

is imminent 
2.1 either (i) move directly away from it 

(escaping) 
or (ii) move normal to it 

(dodging) 
2.2 when the collision has been avoided 

resume preferred direction 

First of all, when an object is detected, the robot must 
determine whether a collision is likely. This depends on 
the velocity of the object and the current velocity of the 
robot. It may be that the object will not cross the robot’s 
path or that the robot can move in front of the object 
before the object arrives. One way to perform this calcu-
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FIGURE 15.7 Avoiding moving objects. 
lation is to use configuration space techniques to expand 
the object and then to subtract the two velocities to give 
the velocity of the robot relative to the object. If the line in 
the direction of the relative velocity meets the expanded 
object, then a collision would occur. The distance to the 
meeting and the magnitude of the velocity (speed) allow 
one to work out how soon the collision will occur. There 
may be several potential collisions, so rule 2.1 is applied 
to the most imminent. 

At step 2.1, two alternative avoidance mechanisms are 
suggested. These are illustrated in Figure 15.7. The first 
tries to get away from the oncoming object as fast as pos-
sible. It may not be optimal, but it is generally a good ap-
proximation to the fastest escape. The second is less dras-
tic: avoiding the path of the oncoming object rather than 
running away. The second is more like stepping back 
onto the pavement when you see a bus coming rather 
than running down the road in front of it. It is suggested 
[8] that (i) is better when a collision is imminent whereas 
(ii) is better when the collision is some way off (and hence 
one has more time to avoid it). 

Notice how these local algorithms are all more 
approximate than the global ones (which themselves 
were inexact). They are reactive and rely on heuristics 
rather than using prepared plans based on models of 
the world. The local algorithms must typically execute 
in real time; hence the need for simplicity. Also these 
vague algorithms are more likely to be robust when the 
assumptions they are based on are violated. 

15.4.2 Finding Out about the World 

Global planning algorithms depend on a model of the 
world. Local algorithms do not build a global model, but 
they react to local information. However, consider what 
happens when the local algorithm reaches an impasse, 

FIGURE 15.8 The real world and the model world. 

say if the robot enters an alcove. At this stage some more 
model-based planning is again required. However, it 
must make use of the additional information gained 
during the robot’s movements. Thus we see that the 
robot’s model of the world is not static but changes as 
it encounters and senses the environment. This sensing 
could be deliberate (looking around) or a side effect of 
locally planned movement. 

The robot’s knowledge of the world grows as it senses 
but is constantly getting out of date. Things move or 
change, and so objects sensed some time ago may not 
be where they were or even exist at all. The model is 
therefore uncertain as well as incomplete. We can see 
these two processes are constantly working against 
one another: knowledge increases through sensing and 
decays through ageing. 
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In Figure 15.8 we see these processes in action. The 
robot in (i) initially can only see the two moving spheres 
and the cubes. Its model of the world in (ii) is thus in-
complete. The robot then rotates to its right and the cone 
comes into view. The robot’s model of the world is up-
dated accordingly. However, the spheres are moving and 
so a few moments later the situation is as depicted in (iv). 
Both spheres have moved and hence the robot’s model 
of the world is now incorrect. Furthermore, one of the 
spheres has just moved into the robot’s range of vision. Is 
it the same sphere as before? 

Obviously the robot’s model of the world must include 
not only the objects’ positions but also their speeds and 
some estimate as to whether these are likely to stay 
constant. If watching a game of snooker, the table is 
likely to stay where it is, the balls will keep moving in the 
same direction until they hit something, but the players 
may change their positions and speeds erratically. For a 
mobile factory floor robot, information about the floor 
layout and other fixtures (shelves, etc.) can be explicitly 
given and amended when necessary. However, other 
environments are less predictable. One use of robots is 
in hazardous environments, perhaps after some nuclear 
or chemical accident. In such a situation, floor plans are 
at best tentative: walls or even the floor itself may have 
collapsed! 

The representation within the robot’s memory is 
clearly far more complex than when the environment 
is fixed and known. The exact choice of representation 
will depend on a variety of factors, not only the internal 
AI-related ones (reasoning style, search algorithms, etc.) 
but also external factors (the types of objects in the envi-
ronment, the nature and accuracy of sensors). However, 
we can consider two broad classes of representation: 
historical and current state. 

A historical representation will keep track of what has 
been observed and when, together with the accuracy of 
sensor. At any moment, the robot can estimate the cur-
rent positions of any objects based on their known past 
locations. For example, the model of the world at step 
(iv) in Figure 15.8 could be represented as a collection 
of location and velocity data for each object, as shown in 
Table 15.2. 

Notice how the position and velocity of each object 
have accuracy measures. In this case, the error in velocity 
is greater for most objects, presumably because the sen-
sor is less accurate at measuring velocity. Both the box 
and the cone have a measured velocity of zero, but the 

TABLE 15.2 Object Location and Velocity Data. (Note error 
values also recorded for each.) 
time object id type position velocity 

(x,y) error (x,y) error 
1 #317 ball (3.3,3.2) 0.1 (−0.5,1.0) 0.2 
1 #318 ball (2.8,2.0) 0.1 (0,−0.5) 0.2 
1 #319 box (3.7,1.7) 0.1 — 0.0 
2 #320 cone (1.5,0.5) 0.1 (0,0) 0.2 
3 #321 ball (2.7,0.7) 0.1 (0.1,−0.8) 0.2 

box’s error figure for velocity is zero because (in this en-
vironment) it is known that boxes never move, whereas 
the cone is a potentially mobile object that just happens 
to be (sensed as) stationary. 

In the alternative, current state representation, the 
robot would keep similar information, but at each time 
step, it would update the current position of each object 
based on its last known velocity. 

For example, at time 2, the state of ball #318 would be 
recorded as: 

id type position velocity 
(x,y) error (x,y) error 

#318 ball (2.8,1.5) 0.3 (0,−0.5) 0.2 

See how the position of the object has been updated 
by adding the velocity. However, its error figure has also 
been increased as the velocity itself is uncertain. Notice 
that the representation does not keep track of the time 
the object was observed. This is unnecessary as the pas-
sage of time is recorded implicitly in the updated po-
sition. The updates in estimated position and velocity 
might be more complicated. For example, some objects 
(such as people or other robots) are likely to change ve-
locity spontaneously and for such objects the uncertainty 
in velocity would increase accordingly. 

With the historical representation, one is never com-
mitted permanently to an interpretation of the evidence. 
If at time 3 the robot decided that balls #318 and #321 
were the same object, it could still change its mind when 
at time 4 another ball (even more similar to #318) ap-
peared in view. In contrast, a single model of the world 
constantly commits the robot to particular interpreta-
tions. Once it had decided that the new ball was the same 
as #318, it would simply update ball #318’s position and 
velocity to reflect the new observation. All memory of 
the original two observations would be lost. 

However, the historical representation is very ineffi-
cient. It requires the robot constantly to recalculate the 
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same projections from past data. Also, at some point it 
will need to forget past observations. The current state 
representation has some pruning problems in that it can’t 
track every object it has ever seen but it is clearly far eas-
ier and more efficient to manage. 

In practice, a system might involve a combination of 
a model of the current state for rapid real-time response 
together with some limited historical information in case 
it needs to reconsider past judgements. What about you? 
Which representation do you use as you walk in a busy 
street or drive a car? 

15.5 LIMBS, LEGS AND EYES 
We have discussed how robots plan how to perform tasks 
involving picking up and moving objects, how they plan 
how to move about in the world and how they look at 
different parts of the world in order to build up their 
knowledge. Each of these activities involves the control 
of physical transponders and sensors. The construction 
of these is a significant engineering problem, especially 
where the robot is expected to operate in a hostile envi-
ronment. However, this is general robotics and beyond 
AI, so we will just consider the issues of control. 

15.5.1 Limb Control 

Consider a simple robot arm as illustrated in Figure 15.9. 
This has three main degrees of freedom: the arm is 
mounted on a rotating section of the robot which can be 
set to any angle 𝜃, the arm can move up and down by an 
angle 𝜙 and can extend by moving the smaller cylinder 
in and out of the larger by a distance b. In addition, the 
“hand” at the end can open and close. Other important 
dimensions are marked on the diagram: the radius 
of the centre section r, the length of the unextended 
arm a and the height h of the centre section from the 
floor. 

In order to pick up an object we need to move it to 
a particular position in space. We can calculate the co-
ordinates of the end of the arm using trigonometry: 

x = [ r + (a + b) cos 𝜙 ] sin 𝜃 
y = [ r + (a + b) cos 𝜙 ] cos 𝜃 
z = h + (a + b) sin 𝜙 

Thus, if we have a particular position we want to move 
to, we can solve these equations to find the right values 
of 𝜃, 𝜙 and b. This is messy but not too difficult: 
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FIGURE 15.9 Calculating limb positions. 

𝜃 = arctan(x/y) 

𝜙 = arctan[(z − h)/(√x2 + y2 − r)] 

b = √(√x2 + y2 − r)2 + (z − h)2 − a 

Unfortunately, it gets worse. This is the very simplest 
an arm can be; you need at least three degrees of 
freedom to have any chance of reaching within a 
three-dimensional world. In addition, one often needs 
some control of the orientation of the hand at the end 
– some kind of wrist. Let’s assume we add some more 
movement at the wrist. Say we want to pick up a suitcase. 
The hand must be pointing directly down and opened 
so that the “fingers” close on the handle. However, it is 
no good simply turning the wrist at 90∘ to the arm. We 
need to take into account the angle 𝜙 of the arm. Also, 
the robot on which this diagram is based has two arms, 
offset from one another (see Figure 15.10), each with a 
full ball joint instead of just up and down movement. 
To make matters worse, the robot will move about and 
change its orientation. 

Working out the final position and orientation of the 
hand, given all these movements, is a nightmare. Revers-
ing the process to work out the desired movements to get 
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FIGURE 15.10 Robot with two limbs. 

to any position is even worse! The problem can be simpli-
fied by breaking the process down into steps using differ-
ent co-ordinate systems. You start with a position in the 
world’s co-ordinate system. You then take into account 
the position and orientation of the robot to work out the 
desired position relative to the robot. If the robot has sev-
eral joints, you translate the position into co-ordinates 
relative to each joint in turn, eventually getting the po-
sition relative to the hand. Similarly, you can reverse the 
process to work out the position of the hand in the world. 
There are special languages for programming industrial 
robots that include particular constructs for moving be-
tween different co-ordinate systems. 

Translation between co-ordinate systems does not 
solve the problem entirely. The equations for calculating 
the relevant joint angles and extensions for any desired 
position are still complicated. However, even if one 
solves the equations exactly the results may not be 
perfect. Joints have play in them, limbs may flex under 
strain. When people pick things up, they rely not so 
much on accurate calculation but on feedback. We are 
constantly monitoring and correcting our behaviour. 
Preplanning everything is called open-loop control, 
whereas relying on feedback is called closed-loop 
control. If the environment is very controlled and 
predictable, say on some production line robots, open-
loop control can be effective. However, in general, 
closed-loop control is far more robust. 

For a robot, there are two kinds of feedback: local 
feedback on a particular joint, which can be used to 
ensure that the joint is positioned as you want; and 
global feedback, perhaps through visual sensors, of 
the relative position of the hand and the target. Local 
feedback is effectively giving you a more accurate and 
reliable motor, so does not dramatically affect the style 
of planning. Global feedback, however, allows more 
goal-directed behaviour. It is often easier to solve the 
reverse equations for small movements, and so one 

FIGURE 15.11 Compliant motion. 

can incrementally move the hand towards the desired 
position. 

Of special importance is the pressure feedback 
when the hand grasps an object or when a held object 
is being placed. Imagine picking up an egg without 
such feedback! If such sensors are too expensive, or 
impractical because of the environment, the robot’s 
hands must be padded or sprung to avoid damage 
to itself or the work piece. Effective use of this feed-
back can make positioning of objects far easier. For 
example, to place a peg in a hole, one can push the 
peg along the surface until it catches in the hole (see 
Figure 15.11), and then rotate it until it slides in. 
Without pressure feedback the robot would gouge the 
peg into the surface! This use of feedback to allow 
things to be naturally slid into place is called compliant 
motion. 

15.5.2 Walking – On One, Two or More Legs 

The robot featured in Figures 15.8–15.10 moves around 
skimming the ground using electrostatic levitation. 
Other robots use wheels or tracks. However, all have 
a distinct problem with stairs, and there has long 
been an interest in various designs of robots with legs. 
Pragmatically, this allows the robot to manage in very 
rough terrain, but also the study of robots with large 
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numbers of legs has given some insight into the way 
lower animals function. One can identify four styles of 
robot by counting legs: 

one leg – good for trying out ideas but not very practical 

two legs – for humanoid robots and animations 

four to eight – practical robots for difficult terrain 

lots of legs – study of lower animals and distributed 
control 

The earliest attempts at walking robots used detailed 
physical models of the robots’ dynamics. If one knows 
the masses of all the components that make up the robot 
and can control the forces that it exerts on the floor, then 
it is possible to predict how a particular movement of the 
legs will move the robot as a whole and hence work out 
which forces on which joints will make the robot walk in 
a particular direction. Of course, as in the case of limbs, 
this involves co-ordinate translations based on all the 
joint angles and lots of trigonometry. 

The robots usually fell over. 
In fact humans fall over too, but we are expecting it 

and can catch ourselves before we go too far. Indeed, one 
way of thinking about walking is that you are constantly 
standing on one leg and falling over in the right direction, 
and then moving the other leg forward to catch yourself 
before you fall too far. This form of reactive movement 
is based again on feedback and closed-loop control and 
is thus far more robust than the use of detailed dynamic 
models. 

The trouble is that even if a model is entirely accurate, 
it is expensive to calculate in real time (if you don’t do 
the calculations fast enough, you fall over!) and is diffi-
cult to adapt to changing circumstances. Consider what 
happens when you pick up a heavy object, move your 
arms so that your centre of gravity moves or walk out of 
a building into a high wind. In each case, the dynamics 
of your body have changed which, for a model, would 
require extensive recalculations. 

In contrast, reactive motion is based on fuzzy rules. 
For example, some of the rules for standing still might 
be: 

• if you are falling forwards, slowly push down on the 
front of your feet 
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• if you are falling sideways, take a step in the relevant 
direction. 

The rules are not designed to stop you from moving at 
all (equilibrium) but to keep you constantly moving back 
towards the desired position (homeostasis). 

Detailed physical models still have a part to play in 
robotic movement. Building robots is expensive and 
time consuming. Furthermore, trying out new control 
algorithms on possibly fragile experimental robots is 
not to be recommended. A detailed model of a robot’s 
dynamics can be used to simulate different designs of 
robot and the effects of different control algorithms. 
Indeed, sometimes the simulation is all that is required, 
for example early work in this area was developed to 
address the need for lifelike animations in CGI movies 
[135]. However, simulations can also be used to train 
algorithms which will eventually be used in physical 
robots. For example, the AIs in the robots that compete 
in the annual RoboCup football tournament are usually 
initially trained on simulated football matches [109]. 

This approach is also used for training autonomous 
vehicles. The vision systems for these are trained using 
many thousands of hours of actual in-vehicle video, but 
infrequent yet critical incidents, notably accidents, are by 
their nature, and desirably, rare. Simulations based on 
games and VR engines can be used to augment the train-
ing, especially for these critical incidents. This example 
brings up several issues for any such simulation-based 
training of robots or autonomous vehicles: 

ground truth – The world in the simulation is generated 
and thus known perfectly. This is in some ways bet-
ter than real-world training, where a large volume 
of material is unlabelled. 

sensing – While the simulator knows everything, it is 
important that the robot in the simulation does not. 
The simulation must therefore emulate the sensing 
capabilities of the robot, including inaccuracy and 
noise. For the case of autonomous cars this is usually 
the video view, which VR and games engines are 
designed to do anyway for the human player. 

other agents – The other agents in the environment 
must not only look real but behave in realistic ways 
so that the training is appropriate. For example, 
someone crossing the road and then noticing a car 
approaching may freeze or take a step back. If the 
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FIGURE 15.12 Resolving ambiguity. 

simulated person simply continued at a fixed pace, 
the in-vehicle system could learn behaviours (such 
as cutting close behind the pedestrian) that would 
be dangerous in real life. We will return to this issue 
in Chapter 16. 

15.5.3 Active Vision 

Computer vision is discussed in detail in Chapter 12. 
However, the discussion is focused on algorithms to in-
terpret an image or set of images that were presented to 
them – a fait accompli. However, where the camera or 
cameras are fitted on a moving robot, the movements 
can be planned deliberately to aid the vision process, for 
example to peek around corners. Similarly, even when 
cameras are fixed, there may be some control of their di-
rection, zoom and focus. 

In Chapter 12 we saw how some scenes were difficult 
to interpret. In Figure 15.12 we see one such scene. The 
original image on the left is ambiguous. There is no obvi-
ous three-dimensional interpretation of the scene. How-
ever, if the camera is moved slightly to the left, the result-
ing image is far more easily understood. The confusing 
cross-junction in the middle has been resolved into two 
separate fork junctions. 

This disambiguation may occur naturally as the re-
sult of stereo vision or pre-programmed camera move-
ment, but if the vision system can control the camera, it 
can deliberately seek the necessary evidence. In fact, Fig-
ure 15.12 is rather like those intriguing photographs of 
everyday objects taken from strange angles. In ordinary 
life one rarely encounters such effects, as when they oc-
cur one automatically moves slightly to obtain a better 
perspective. 

Recall that in Figure 15.8(ii), the robot moved its per-
spective in the world and was thus able to build more 
complete model of the world. This change in perspec-
tive might be an accident of actions that the robot is do-
ing anyway, but might be a deliberate attempt to find out 
more about the world, just like the human moving their 

head. In ecological psychology this is called epistemic ac-
tion, actions in order to gain information. This might be 
as simple as moving your head but might include mov-
ing around the environment to find out more. Often in 
algorithms, both physical and virtual, one makes choices 
between exploration and exploitation. 

The scenario above used horizontal movement of the 
camera. Camera heads may allow control over several 
other degrees of freedom: 

• fixation – the point at which the camera is “looking” 

• vergence – the horizontal angle between two cam-
eras in a stereo head, which allows both cameras to 
fixate on one object 

• cyclotorsion – the ability to rotate the camera and 
thus the horizon 

• zoom – increasing the size of distant images 

• focus – the distance at which objects are sharp im-
ages 

• aperture – controls the amount of light entering the 
camera and also the depth of field (what is in focus 
simultaneously). 

All of these can be used to give additional information 
for image processing, or to make the raw image more eas-
ily processed. Controlling the point of fixation allows one 
to track a moving object, which might otherwise move 
out of view. This is especially important when it is not 
easily matched, say a human figure that changes shape 
as it walks. The angle of vergence when two cameras are 
fixated on the same object allows easy calculation of dis-
tance by triangulation. The matching of objects in the 
two stereo images is important for this and other stereo-
scopic effects. However, if the cameras are not perfectly 
horizontally aligned, this can be very difficult. Cyclotor-
sion allows the cameras to compensate for inaccuracies 
and any flexing in their supports in order to align the 
horizon in the two images. 

The remaining three effects allow one to examine par-
ticular objects in detail. Use of zoom can allow one ei-
ther to scan a large area at low resolution or to examine 
a particular object in detail, as a small part of the im-
age is spread over all the pixels in the image. Controlling 
the focus especially allows one to sharpen up the edges 
in an object of interest and even obtain an estimate of 
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depth from monocular vision. By adjusting the thresh-
olds for edge detection, the blurred edges will not be reg-
istered, hence aiding the separation of an object from 
its background (called figure–ground separation). This 
is enhanced if the aperture can be adjusted. Once the ob-
ject is in focus, the aperture can be opened up to make 
all other objects more blurred. However, the aperture is 
probably more important for level control, ensuring that 
neither too little nor too much light gets to the camera. In 
many cameras this is automatic, but if the aperture can be 
controlled by the vision system, then it can be adjusted 
to favour interesting parts of the scene. (NB: Our eyes do 
not allow this degree of high-level control.) 

Most camera heads do not have all of these degrees 
of freedom, but many mobile phones have multiple 
cameras, game controllers often have stereo cameras 
for depth perception and security cameras are often 
motorised to allow panning. 

15.6 PRACTICAL ROBOTICS 
The leading edge of robotics research is designing vehi-
cles that guide themselves over the surface of Mars or 
micro-robots to travel through human arteries scraping 
and cleaning, but the majority of robots are far more pro-
saic. Rather than designing general purpose robots that 
can operate in unforeseen environments, it is usually bet-
ter to aim for specific jobs and to control the environ-
ment. Indeed, as we have seen, real robots may not look 
like robots at all. Autonomous cars are designed to work 
in the (relatively) constrained environment of a road sys-
tems, including using lane markings and other features 
designed for human-controlled cars. They are pushing 
the limits of AI, but you would not expect a car to wash 
the dishes. 

15.6.1 Controlling the Environment 

We have already discussed in Chapter 12 how control of 
light levels and object positioning can make industrial 
vision easier and more cost effective. The same applies 
to other areas of robotics. Suppose you want a robot to 
move materials around in a warehouse. First of all, you 
are unlikely to choose a robot with two arms and two legs. 
A wheeled robot with a forklift is a much more practical 
arrangement. 

What about navigation? A general purpose route plan-
ner with sophisticated visual input seems like a neat idea, 
but why not simply paint white lines on the floor that a 
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FIGURE 15.13 Designing for easy assembly. 

trivial image processing system can follow. The only real 
disadvantage of such a system is that the lines get dirty, 
but there are various electronic alternatives. 

There is a similar tale for manipulation tasks. Just as 
with manual assembly, a simple redesign of a compo-
nent may make assembly tasks far easier. For example, 
consider screwing a bolt into a threaded hole. If the hole 
is simply drilled into the metal, the screw has to be po-
sitioned very accurately in order to ensure it fits prop-
erly; a slight inaccuracy to either side will mean that the 
screw simply spins against the surface of the metal. How-
ever, taper the end of the screw slightly and counter-
sink the hole and suddenly the accuracy required reduces 
dramatically (see Figure 15.13). Basically, one is design-
ing the system so that compliant motion is successful. 
The greater margin for error means higher reliability and 
cheaper robots. 

There is of course a trade-off between flexibility and 
economy. It is usually the case that a specialised tool 
costs less than a general purpose one. But whereas 
at one stage production lines involved many highly 
specialised tools, now the move is towards more flexible 
manufacture. Tools are still specialised, but far more 
flexible and easily reprogrammed. Successful industrial 
robotics requires robots that are just general enough to 
do the range of tasks that they are likely to encounter. 
However, as more general purpose robots become 
cheaper and more reliable, the balance of economics 
may swing even further along the path of generality. 

15.6.2 Safety and Hierarchical Control 

Industrial robots, like all industrial equipment, are dan-
gerous. They can hurt people, damage their workplace 
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or themselves. However, they act within controlled en-
vironments where the issues of safety are at least well es-
tablished if not universally adhered to. As we begin to 
consider mobile robots working among other workers, 
perhaps even in the outside world, the issues of safety 
become central. 

First of all, this re-emphasises the importance of 
feedback rather than open-loop control. Dangerous 
situations are most likely to arise when the environment 
changes in an unforeseen way. Furthermore, such 
situations often require rapid responses; possibly 
the normal planning cycles may be too slow. We 
may not even trust the planning totally. As we have 
seen, the best algorithms usually involve a mixture of 
heuristics and uncertain reasoning. They do not always 
guarantee correct behaviour even when programmed 
correctly, and who really trusts several thousand lines 
of LISP code, let alone a billion weights in a neural 
network. 

One solution is to establish a software ring-fence 
around the normal planning activities. When a danger-
ous situation is detected, a high-level control process 
takes over and performs some special action. This may 
be some form of avoidance behaviour or most likely 
stopping the machine dead. The safety sensors may be 
based on proximity sensors or based on unexpected 
resistance to movement. You will almost certainly have 
encountered such sensors built into lift doors (another 
robot to get inside of!). The important thing is that 
the higher levels of control are simple and reliable. We 
can afford to use clever algorithms at the lower levels 
so long as we know that we are protected from their 
malfunction. 

15.7 SUMMARY 
Real robots do not usually walk about on two legs and fire 
rayguns. Most are in fixed positions on assembly lines, or 
moving along marked tracks in warehouses. Many have 
little “intelligence”, but obey pre-programmed actions. 

Global planning operates by having a complete model 
of the world, planning what to do, and only then doing 
it. Means–ends analysis can be used to plan sequences of 
actions to achieve a desired end state. This can include 
knowledge about the positions of objects and physical 
constraints. Configuration spaces can be used to plan 
routes where obstacles block the way. 

Local planning is more opportunistic. The robot has 
a general goal and tries to move towards it reacting to 

problems as they arise. Routes can be found past obsta-
cles by having a desired direction and then simply chang-
ing direction when an obstacle is encountered. Avoid-
ance rules can be added to allow for moving obstacles. 
While a robot moves about, it can find out more about 
the world (sensing), but also its model of the world may 
become inaccurate as objects move about (ageing). 

Controlling a robot’s limbs is not intrinsically difficult 
but typically involves a complicated series of translations 
between co-ordinate systems. Feedback can be used to 
compensate for slackness and inaccuracy and also facil-
itate local planning. It allows closed-loop control, which 
is more robust than preplanned open-loop control. Pres-
sure feedback is especially useful, as it allows compli-
ant motion to be used to position objects. Many mo-
bile robots use wheels or tracks, but some walk on one, 
two or more legs. Again, it is usually best not to preplan 
movements but instead constantly start to fall over and 
recover. Active vision uses the movement of the robot 
or camera adjustments to give more information about a 
scene and resolve ambiguities. 

In practical situations it is often better to design a suit-
able environment for a simple robot than to use a more 
complicated one. Simpler robots are usually cheaper but 
will be less flexible. Industrial robots can be dangerous, 
and several levels of control may be necessary. 

15.1 Produce an operator table for the Towers of 
Hanoi problem similar to the blocks world one 
in Table 15.1. To make it similar to the blocks 
world think of it as the Tables of Hanoi problem 
with three tables rather than three towers. Use 
the same two operations as in Table 15.1, but the 
“on_table” predicate will have an extra parameter: 
“on_table(T,R)” where “T” will be a particular 
table and “R” a ring. You will also need a predicate 
“bigger_than(R1,R2)” to record which rings are 
bigger and will have to ensure that you do not put 
more than one object on top of another. 

15.2 Use your operator table and means–ends analysis 
to solve the three ring problem given the starting 
state 

on_table(1,big) ∧ on_top(small,middle) ∧ 
on_top(middle,big)
∧ bigger_than(big,middle) ∧ big-
ger_than(middle,small)
∧ bigger_than(big,small) 
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FIGURE 15.14 For exercise 3. 

and goal state 

on_table(2,big) ∧ on_top(small,middle) ∧ 
on_top(middle,big) 

15.3 Consider the shaded rectangle in Figure 15.14. 
Draw configuration spaces for each of the robot 
shapes to the right of the rectangle. 

15.4 Collect different everyday items, screws, bolts, 
plugs, lids. Do they exhibit good design for 
compliant motion – like the screw in the lower 
illustration of Figure 9.12 or are they more like in 
the top pictures! (Good class exercise) 

FURTHER READING 

B. Siciliano O. Khatib and T. Kröger, editor. Springer handbook 
of robotics. Springer SHB:200, Berlin, 2008. 
Definitive edited collection in the area, the first part 
‘Robotics Foundations’ offers greater detail on the topics 
covered here while succeeding parts look at more advanced 

Planning and Robotics ■ 235 

topics such as soft-robotics, specialised application areas 
and human–robot interaction. 

Newell and H. A. Simon. GPS: A program that simulates hu-
man thought. In E. A. Feigenbaum & J. Fieldman, edi-
tors, Computers and thought, pages 279–293. McGraw-
Hill, New York, 1963. 

A. Newell and H. A. Simon. Human problem solving. Prentice-
Hall, Englewood Cliffs, NJ, 1972. 
GPS, the General Problem Solver, was an early model that 
used means–ends analysis to emulate aspects of human 
planning. 

R. E. Fikes and N. J. Nilsson. STRIPS: A new approach to the 
application of theorem proving to problem solving. Arti-
ficial Intelligence, 2: 189–208, 1971. 
STRIPS applied techniques developed in GPS to planning 
in the blocks world as described in this chapter. 

T. Lozano-Pérez. Spatial planning: A configuration-space ap-
proach. IEEE Transactions on Computers, 32(2), 108– 
120, 1983. 
Original work on configuration space. 

H. I. Christensen, K. W. Bowyer, and H. Bunke, editors. Active 
robot vision: Camera heads, model based navigation and 
reactive control. World Scientific Singapore, 1993. 
An early collection of articles that deal with both move-
ment (local planning and obstacle avoidance) and vision 
(the problems and also the leverage that can be obtained 
by using active vision). 

Rodney A. Brooks. Cambrian intelligence: The 
early history of the new AI. MIT Press, 1990. 
DOI:10.7551/mitpress/1716.001.0001 

An alternative view of AI from a robotic perspective, in 
particular considering machines that behave intelligently 
without explicit internal representations. 

https://alandix.com/glossary/aibook/goal state
https://alandix.com/glossary/aibook/compliant motion
https://alandix.com/glossary/aibook/soft-robotics
https://alandix.com/glossary/aibook/means--ends analysis
https://alandix.com/glossary/aibook/configuration space
https://alandix.com/glossary/aibook/local planning
https://alandix.com/glossary/aibook/obstacle avoidance
https://alandix.com/glossary/aibook/computer vision
https://alandix.com/glossary/aibook/active vision


CHAP T ER 1 6 

Agents 

16.1 OVERVIEW 
In the previous chapter, we considered individual robots 
planning and acting in the real world. In this chapter, we 
look at three related areas. 

Software agents are autonomous entities that inhabit 
and act on the electronic world on our behalf. Obviously 
route planning is not usually necessary for such agents, 
although they do need some means to choose their ac-
tions. The examples we shall consider use a mixture of 
ad hoc rules and machine learning techniques. 

Agents often need to be able to function in new envi-
ronments, physical and digital, by experimentation. We 
shall see how reinforcement learning intersperses action 
and learning. 

In the last part of the chapter, we shall look at what 
happens when agents (whether electronic or physical) act 
together. We shall see that they are more than the sum of 
their parts and can work together to achieve co-operative 
purposes. 

16.2 SOFTWARE AGENTS 
The word robot means worker. As well as working 
for us in the real world, AI can be used to develop 
independent entities that work for us in the virtual 
world of information spaces. These are often called 
software agents, or simply agents (although the word 
agent is rather overloaded in AI). The term robotic 
process automation is also used in commercial systems. 
These agents can be used to sort your (electronic) 

mail, perform repetitive tasks, search databases for 
interesting information or manage your diary. These are 
all applications where the agent is “visible” to the user of 
a system, a sort of helper. The word agent is also often 
used where a system is split into several co-operating 
subprograms or agents. We will discuss this case, where 
the agents are co-operating with one another, later 
in this chapter. In this section we’ll confine ourselves 
to agents that interact with and work on behalf of a 
computer user. 

The simplest agents are not really intelligent at all. 
Imagine you perform the same routine every week 
to back up your computer files to an optical disk. So, 
instead of performing the same actions again and 
again, you write a script that is automatically invoked 
at the same time each week. This is the simplest kind 
of software agent. The ability to write such scripts has 
been around since the earliest operating-system macro 
languages and is available in various scripting systems 
such as automator for MacOS. More end-user web 
automation is also possible through tools such as IFTTT 
(If This Then That) [141, 285], and the proliferation 
of internet-connected devices (IoT – the internet 
of things) will drive the need for the equivalent for 
home-automation. 

In the rest of this section we will consider the 
reasons for the interest in agents and the different 
sorts of events that trigger agents to act. We will 
then look at email filtering agents as an example of 
learning, and agents for searching large information 
spaces. 

16.2.1 The Rise of the Agent 

Is the use of the word “agent” just a buzzword or sales 
gimmick? In fact, there are some recent developments 
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that make the connotations of the word agent appropri-
ate: 

• End-user orientation – Whereas the writing 
of scripts in traditional operating systems was 
confined to the system gurus, the emphasis is now 
on the ordinary user. The user’s control may be 
exercised using simple scripting languages or by 
direct demonstration. 

• Embodiment – Most graphical interfaces project a 
very passive model. The user acts upon objects in 
the interface. When the application does anything, 
it is as a “tool”. However, complex and repetitive 
tasks do not really fit into this model of the world. 
It is thus natural to inhabit this virtual world with 
agents to perform these tasks. In principle, to fit 
within the model-world paradigm, these agents 
should be visible. Indeed, over the years there 
have been attempts to make this explicit including 
Hewlett-Packard’s NewWave interface where agents 
were presented as icons designed to look like a 
secret agent; Microsoft’s Clippy [16] and the helpful 
cat in the early programming-by-demonstration 
system Eager [64]. However, none of these are still 
used and successful systems seem to have textual 
or graphical manifestations. 

• Lostness – Most people only use and understand a 
fraction of the functionality of a modern applica-
tion, and even where they know about features it is 
often far from clear how to combine them to ob-
tain a particular effect. Hence the use of Wizards in 
many products to guide and help the user, especially 
for installation and set-up tasks. Similar trends can 
be seen in information spaces. Even early hyper-
text systems, with relatively small numbers of doc-
uments, had problems with users getting lost, and 
so some incorporated various forms of “guide” to 
show you round. The problem is far worse on the 
web and other internet information sources where 
there are billions of web pages – where do you go to 
find the information you want? Ask an agent. 

• Intelligence – The scripting languages used for 
programming agents are sometimes more like 
code, sometimes more template/form-like and 
sometimes more like natural language (although 
the same was said of COBOL in the 1960s). 

However, agents are also learning what to do in 
more intelligent ways. The user may explicitly 
demonstrate the required behaviour which the 
agent later copies. Alternatively, the agent may 
watch the user and learn the user’s habits and 
preferences. It may then use this knowledge when 
asked to perform a task, or even volunteer help. 

Agents that address one or more of these issues are seen 
by the users of a system to have some level of indepen-
dence. They are not just part of the system but act in and 
on the system on behalf of the user. Where the sense of 
embodiment is low but aspects of independent activity 
and/or intelligence are apparent, it is perhaps better to 
regard the system as exhibiting agency. For example, the 
word processor being used for this chapter periodically 
suggests saving the work so far. Another example is in 
range selection in the Microsoft Excel spreadsheet. When 
the user invokes the sum operator, the system suggests 
(in the form of a highlighted selection) the range it thinks 
the user wants. This is based on simple heuristics but has 
the appearance of intelligent behaviour. 

16.2.2 Triggering Actions 

One key difference between a program or macro and an 
agent is that the former only acts when told to, whereas 
the latter acts independently. Another way of looking at 
this is that a program is characterised by what it does, 
whereas an agent is characterised by both what it does 
and when it does it. 

In addition, because agents have some form of con-
tinued existence over time, they usually have a persis-
tent state. Because of the similarities with object-oriented 
programming, the scripts for actions that an agent per-
forms are often called methods, and the communications 
between agents are called messages. 

A typical life-cycle for an agent will be as follows. It 
remains in a quiescent state until some event triggers it 
into action. Depending on the nature of the event it then 
performs one of its methods. This method will update 
the internal state of the agent, and also possibly change 
the state of other things, send messages to other agents 
or interact with the user. 

The event that triggers the method may be caused by 
various things: 

• User events – The user may explicitly ask the agent 
to perform some task. This may result in some 
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instant action on the part of the agent (e.g. 
searching a database) or may simply change the 
internal state of the agent (e.g. setting criteria for 
sorting incoming mail). Alternatively, the user may 
engage in some action that the agent is monitoring. 
For example, an intelligent tutor may notice that 
a pupil has performed a task in an inefficient or 
incorrect fashion and suggest alternatives. 

• System events – Other events may occur that are not 
directly caused by the user. For example, email may 
arrive that the agent sorts into folders. Another 
example would be where the user has initiated a 
long-running computation (perhaps running a 
large AI program!). When the execution is finished, 
the agent examines its output and informs the user 
if it is not as expected. 

• Changes in status – The agent may constantly mon-
itor parts of the rest of the system and act when 
certain changes occur. For example, if free disk 
space falls below a certain level, an agent may com-
press infrequently used files. In a factory setting, 
an agent may monitor various processes and warn 
the operator if the values fall outside acceptable 
limits. 

• Timed events – The agent may perform repetitive 
actions at regular intervals or at particular times. 
For example, an agent may monitor your diary and 
download necessary files to your laptop computer 
for the next day’s meetings. Timed events may also 
be used to trigger monitoring activities, such as 
those discussed under the previous heading. This 
polling activity should be distinguished from true 
timed activity. 

In addition to triggered actions, an agent may act con-
tinuously to gather information. This information may 
come from the user or from the rest of the system. For ex-
ample, an agent may monitor the user’s interaction with 
the system and notice frequently repeated actions. Later, 
when the agent detects the user beginning a complex ac-
tion sequence, it can offer to complete the task for the 
user. 

16.2.3 Watching and Learning 

We’ll look now at email filtering agents as an example that 
you are likely to have encountered yourself. Studies of the 

early introduction of email into institutions found that 
there is little reduction in other forms of communication 
but a continued growth in email messages. This is partly 
because of the ease of replication. The photocopier and 
the word processor each made their contribution to junk 
mail, but neither so effectively as email! It is simply too 
easy to include a large number of names when sending 
an email or to mail to a distribution list of hundreds or 
thousands of individuals. Sifting through the email each 
morning is a major task, and that is even before looking 
at numerous forms of messaging applications and social 
media. 

Just the job for an agent! 
Most email systems allow the user to set up filters. 

The email message has specific fields (“To:”, “From:”, 
“Subject:”, etc.) and the user fills in a template, which 
is then matched against incoming messages. If the tem-
plate matches, then whatever action the user has speci-
fied (say filing the mail in a particular folder) is carried 
out. For example, a colleague of the authors got fed up 
with receiving seminar announcements and so set up a 
filter to delete all incoming messages that contained the 
word “seminar”. Unfortunately, the agenda of an impor-
tant meeting included “seminars” as one of its items. The 
announcement was discarded and the meeting missed! 

Filtering may also be carried out by fixed rules. An 
early research email system at Stirling University organ-
ised all mail messages into conversations – linked, often 
branching, streams of messages [53]. If enough people 
had had compatible mailers, these could have been used 
to ensure that when a message was sent, it was added to 
the appropriate conversation at the recipient’s end. How-
ever, email comes from so many disparate sources that 
this was considered an over-restrictive method. Instead, 
the system used simple rules to sort incoming messages 
into conversations. An example rule was 

if the new message (N) is ‘From:’ person A 
and the last message (M) sent to person A 

is in conversation C 
then add N to conversation C linked after 

message M 

There were also rules concerning multiple recipients 
so that messages from the same person to different 
distribution lists could be filed successfully. Although 
the rules were simple, they worked most of the time, and 
the cost of a misclassified message was low (it was easy 
to track all recent messages). Note that this is a general 
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rule – intelligent agents will not always be right, so make 
sure it doesn’t matter when they are wrong (see also 
Chap. 19). 

Simpler versions of this kind of rule are used in Gmail 
to group messages into threads, although looking at the 
gap between the early work in this area and when it was 
adopted in Gmail is an interesting story of the rate at 
which new ideas are adopted, even in the digital world. 

So, we’ve seen examples of agents that are told what to 
do by the user and by the system’s designer. A more am-
bitious kind are those that attempt to work out what to do 
themselves. Many email systems do this to help sort mail 
into urgency categories. These are often seeded by fixed 
rules, for example favouring mails with fewer recipients, 
but over time they learn the user’s own preferences. 

The user interacts with the mail system as normal. 
Each mail message (or at least its header!) is read, 
and the user performs some action to it, files it in 
a particular folder, deletes it or possibly marks it as 
urgent (if the system supports marking of messages). 
The agent watches. After a while the system has a 
collection of examples of the form: message⇒action. 
This is ideal input for machine learning algorithm. The 
agent can learn patterns in the user’s actions and then 
automatically sort the mail – intelligent filtering 

Of course, it’s not quite that simple! First, it is very im-
portant that the user retains a sense of control, especially 
when the action is to delete a message! There are various 
ways to achieve this. One way is for the agent to construct 
filter templates and present these to the user for approval. 
That is, the job of the learning agent is to simplify the task 
of creating templates for the agent that does the actual 
filtering. Another option is for the agent not actually to 
perform the actions on the messages as they arrive but 
simply to add a classification and offer a simple means 
for the user to accept or reject the agent’s offered choice. 
These issues of control and grace of interaction between 
agent and user are common to any system that involves 
learning user actions. 

Another problem with learning filtering rules is 
that the data within email fields are quite complicated. 
The algorithm needs to be quite knowledgeable about 
email addresses, since two different addresses may 
refer to the same person (e.g. alan@hcibook.com and 
alanjohndix@gmail.com). Also some of the fields may 
contain lists of addresses or email distribution lists. 
A simple application of machine learning would give 
poor results without some of this information being 
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taken into account. Furthermore, the most important 
information is all in free text fields requiring complex 
text matching algorithms. These are discussed in the 
next section. 

In practice these limitations mean that intelligent fil-
tering is still fairly limited, for example Gmail has four 
fixed categories and Outlook only two (in addition to 
spam filtering, which is managed differently). There is a 
cost–benefit calculation here, missing important mails is 
often worse than scanning a small number of less rele-
vant ones, so if you occasionally scan the less urgent cat-
egories, the cost of categorisation mistakes are low. Social 
media filtering and ordering is much more aggressive as 
the cost of failure, missing one among hundreds of posts 
by contacts, is low ... until the day you miss a critical post 
by a close friend. 

16.2.4 Searching for Information 

The amount of information available online is enormous. 
The problem is finding what you want without wasting 
time on the even more enormous amount of dross. 
Agents have been posed as a solution to this problem, 
and you may use these yourself, for example Google 
alerts for interesting web content, job notifications from 
employment sites or research articles recommended by 
academia.edu. The remit of such agents is simple – find 
interesting information and tell me about it. Satisfying 
this is less straightforward. Agents can help in three 
ways: 

1. They can find where suitable documents are 
stored. 

2. They can mediate between the user and different 
information sources. 

3. They can choose appropriate documents from a 
large document set. 

The first step is necessary as there are too many infor-
mation sites to search them all in detail. An agent may 
find sites by consulting a simple preferences file, perhaps 
created by hand or built up as a record of sites that the 
user has visited. A more sophisticated agent may consult 
a directory of information sites. It will need to match the 
description of what the sites contain with the interests of 
the user. This process is similar to the document match-
ing in step 3. Finally, the agent may find sites by following 
a trail. 
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Consider a bibliographic search for articles on 
intelligent agents. The agent looks first at the Journal of 
Artificial Intelligence. It finds some articles of interest 
(using step 3) and then looks at the articles cited 
in their reference lists. This will yield potentially 
interesting articles but also the journals and conferences 
where those articles are found are good candidates 
for searching. A similar process can be followed on 
the World Wide Web. If you know that a particular 
document is of interest, the agent can look at the 
links from that document and search the sites where 
those documents are found. Indeed, this is precisely 
what Google effectively pre-processes in the PageRank 
algorithm to build its web indices. 

Another sort of trail is one based on usage. Suppose 
that each document server keeps track of who looks at 
what. Your information agent notices that many of the 
documents that you read have also been read by another 
user, so your agent asks the other user’s agent about other 
sites it visits. These are then candidate sites for interesting 
documents. You are effectively following the other user’s 
path through information space. Although the details are 
proprietary, it is likely that many search engines use this 
form of algorithm, and certainly it is common for adver-
tising trackers and recommendations in internet shop-
ping. 

There are of course privacy problems here. In the first 
edition of this book we wrote, “it is rather like browsing 
someone else’s bookshelf ”, an interesting analogy before 
this became common in Amazon and then later Spotify 
and other media sites. We’ll see later that there are meth-
ods to try to gain the advantages of collaborative learn-
ing without the privacy concerns. However, you could 
turn the personal element to your advantage: your agent 
could negotiate with advertising sites to get good deals in 
exchange for your information, or ‘talk’ with other users’ 
agents and introduce you – computer dating? 

Note that following a trail may lead to both interesting 
sites and also specific documents. However, once you 
find an information source you are faced with under-
standing and navigating a new interface. One of the 
reasons for the success of the World Wide Web is the 
common interface to all information. However, this is 
not shared with other services, and online bibliographic 
databases are particularly renowned for their obtuse 
user interfaces. Agents can help you here too. You 
ask the agent for what you want, and it converts this 
into the required commands for different information 

services. This is often viewed in terms of multiple 
agents, one for each type of information service, and 
these communicate with a single user interface agent. 
For example, IFTTT has many hundreds of plugins to 
integrate with different web services but offers a single 
interface to the user. 

There are problems of control, for example if an online 
service has charging, you need to decide whether you 
want to incur the costs. Also an automated agent may 
not be able to understand all of your requirements, or be 
able to assess the quality of a source, for example it can 
be very difficult to find a hotel’s own website on search 
engines among the hundreds of booking sites. 

Finally, we have found an information source and can 
communicate with it, but it contains thousands of docu-
ments. How can an agent work out which ones will be of 
interest? Assume that the agent has access to some col-
lection of documents which you have previously found 
interesting. One way to use these is to use some form of 
concept learning and generate a rule for interesting files. 
This would typically be based on key words or other sum-
mary information. For example, the agent might decide 
that you are interested in all documents with “agent” and 
“intelligent” in the key word list. However, this sort of 
precise rule is often not suitable for handling imprecise 
ideas such as “interesting”. For these more fuzzy forms of 
matching are often preferred based on statistical meth-
ods, such as those discussed in Chapters 7 and 8. These 
are often based on the complete set of words in the ab-
stract of an article or on the whole article itself. The aim is 
to have some measure of closeness between documents. 
Then a document is deemed interesting if it is close to one 
or more of the documents you have previously found in-
teresting. Other measures of similarity may use semantic 
features of the documents; for example, citations in com-
mon for articles, or links between objects in a hypertext. 

Let’s look at one measure of closeness in detail. Take 
two documents d1 and d2 and generate the complete list 
of words in each, w1 and w2. Let the number of words in 
each document be n1 and n2 and the number that are in 
both n12. That is, n1 is the size of w1 and n12 is the size of 
w1 ∩ w2. Then a measure of similarity is: 

similarity(d1, d2) = 
n12 

n1 + n2 − n12 

This formula has a value of 1 when the documents 
have exactly the same words and 0 when they have none 
in common. Similar, but more complicated, measures 
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FIGURE 16.1 Simple reinforcement learning – single action-
learning step, repeated many times. 

take into account various factors. Common words such 
as “the” and “it” may be ignored or given a low weight 
in the match; on the other hand, words that occur fre-
quently in both documents may count more highly. Also 
the word lists may be processed to reduce words to their 
simplest forms (e.g. simplest → simple) – called stem-
ming – or to equate different words for the same thing 
using a thesaurus. 

16.3 REINFORCEMENT LEARNING 
When faced with a new situation, we sometimes have to 
act without knowing in advance the best thing to do. As 
we try things we gradually learn what does or does not 
work well and hence learn. We can do the same with an 
AI system. This may occur in a purely simulated envi-
ronment, such as playing a computer game, or in the real 
world, such as a robot in a factory. The AI agent needs to 
act based on the state of the world and its current rules 
and then learn from the consequences of its actions; this 
is called reinforcement learning, and we’ve seen an ex-
ample already with the pole balancing task in Chapter 5. 

16.3.1 Single Step Learning 

Figure 16.1 illustrates a single step of reinforcement 
learning. The AI agent has a current rule set and observes 
the state of its environment. This observation may be 
perfect and complete or may in some way be partial or 
noisy. Based on the observation and the current rules, 
it acts. The action affects the environment and creates 
some sort of reward or incurs a cost. The agent uses this 
reward or cost to update its rules, reinforcing rules that 
led to positive consequences and inhibiting those that 
led to negative consequences. This single step is repeated 
many times, with the rule set improving with each cycle. 
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Reinforcement learning is often seen as a special case 
of unsupervised learning as there is no prior set of classi-
fied examples on which to base the learning. However, in 
pure unsupervised learning, such as the self-organising 
map in Chapter 6, there is no feedback at all apart from 
an internal measure of a good model. In contrast, rein-
forcement learning has an external reward (continual or 
intermittent), so could be considered a form of super-
vised learning. In practice, reinforcement learning sys-
tems may use a combination of supervised and unsuper-
vised learning algorithms internally, maybe using unsu-
pervised learning methods to simplify observations, and 
supervised algorithms to update the action rule set. 

Note too that this is different from the email learn-
ing discussed in Section 16.2.3, which is normally based 
on observing user actions and learning rules to emulate 
those, so is closer to pure supervised learning. Of course, 
in practice there may be a mixture of learning by obser-
vation and more experimental actions. 

A very simple reinforcement learner could keep a list 
of observations and actions with a weight that is incre-
mented when the response is positive and decremented 
when it is negative. Here is such a table for behaviour at 
traffic lights – in a virtual environment; experimentation 
at real traffic lights is not recommended. We assume it 
has been learning for some time and that getting across 
faster is rewarded, but accidents or near-misses are pun-
ished. 

observation action weight 
green wait -1 
green drive 10 
amber wait -1 
amber drive -4 
red wait -1 
red drive -23 

Note that driving on green gets a positive reward for 
speed, while waiting slows the journey, so is negative. Of 
course we know that waiting on green is at best unneces-
sary and at worst annoys the car behind you, but the AI 
system doesn’t know this until it has experimented. Dur-
ing training, waiting on either amber or red lights would 
be given a negative weight as this slows the journey; how-
ever, the negative weight for driving on amber and red 
would be greater due to the increased risk of accidents. 

Note that in deterministic environments with a fixed 
consequence, the table above simply needs to be filled 
in with known consequences after each trial. However, 

https://alandix.com/glossary/aibook/stemming
https://alandix.com/glossary/aibook/stemming
https://alandix.com/glossary/aibook/agents!action
https://alandix.com/glossary/aibook/reinforcement learning
https://alandix.com/glossary/aibook/pole balancing
https://alandix.com/glossary/aibook/reinforcement learning
https://alandix.com/glossary/aibook/reinforcement learning
https://alandix.com/glossary/aibook/Reinforcement learning
https://alandix.com/glossary/aibook/unsupervised learning
https://alandix.com/glossary/aibook/unsupervised learning
https://alandix.com/glossary/aibook/self-organising map
https://alandix.com/glossary/aibook/self-organising map
https://alandix.com/glossary/aibook/reinforcement learning
https://alandix.com/glossary/aibook/reinforcement learning
https://alandix.com/glossary/aibook/supervised learning
https://alandix.com/glossary/aibook/supervised learning
https://alandix.com/glossary/aibook/reinforcement learning
https://alandix.com/glossary/aibook/supervised
https://alandix.com/glossary/aibook/unsupervised learning
https://alandix.com/glossary/aibook/unsupervised learning
https://alandix.com/glossary/aibook/unsupervised learning
https://alandix.com/glossary/aibook/unsupervised learning
https://alandix.com/glossary/aibook/supervised
https://alandix.com/glossary/aibook/supervised learning
https://alandix.com/glossary/aibook/reinforcement learner
https://alandix.com/glossary/aibook/deterministic


242 ■ Artificial Intelligence 

more often the consequences themselves are stochastic 
or depend on hidden aspects of the environment, so 
the observation–action mapping is about probabilities 
and likely effects. Because of this, sometimes Bayesian 
methods (Chap. 3) are used to work out the probable 
responses based on the evidence at each stage. 

16.3.2 Choices during Learning 

When the environment is fully learnt, the AI agent sim-
ply needs to choose the action that has the best expected 
outcome. However, earlier in learning, or when learning 
in a changing environment, the agent may be faced with 
more difficult decisions: 

novel situations – Sometimes the situation in the 
environment is completely or partially new, there 
is little or no past experience on which rules are 
based. Gaps may be filled at this point in different 
ways. Unknown observation–action slots can be 
filled with random or default values, or some 
form of similarity to known results might be used 
to generalise from previous situations. In some 
forms of learning system, such as neural networks 
(Chap. 6), the representation is more diffuse and 
the network may be initialised with random values 
before learning cycles start. 

exploration vs. exploitation – When the agent has 
encountered a situation previously with a positive 
consequence, why would it ever try anything else? 
Or if it has once had a negative consequence for an 
action, it might avoid it ever after – a form of local 
maxima. Because of this, reinforcement learning 
systems may sometimes exploit past experience 
by taking the best choice action, but sometimes 
might instead explore, try something new or retry 
something that did not previously give a good 
result. 

Managing the exploration–exploitation trade-off is 
one of the key problems in reinforcement learning and 
depends a lot on the criticality of the choice – simulated 
environments offer opportunities to try and fail, but 
physical environments, such as driving on real roads, 
typically require a more risk-averse strategy. In fact there 
is always a cost of action, this may be in terms of fuel and 
risk on the road, or computational time in a simulation. 
Choosing the best opportunities for experimentation is 

thus critical, for example one might deliberately choose 
to experiment in situations that maximise information 
learnt compared with potential cost. Of course, deciding 
this itself involves knowledge of the environment, which 
potentially needs to be learnt. 

The observation–action mapping has no understand-
ing of the system; it is based on the very simplest forms 
of animal reinforcement learning in experiments such 
as Pavlov’s dogs or Skinner’s pigeons. If one has some 
knowledge, richer learning methods may be used, such 
as those described in Chapter 5. In Chapter 22, we will 
see how emulating human regret can harness complex 
counterfactual reasoning to guide lower-level reinforce-
ment learning and in so doing guide the exploration– 
exploitation trade-off and avoid local maxima. 

16.3.3 Intermittent Rewards and Credit Assignment 

The reinforcement learning process illustrated in 
Figure 16.1 assumes that the reward or cost happens 
immediately and is directly related to the last action 
taken. In animal reinforcement learning, delays between 
action and reward severely reduce the ability to learn, 
and this is even true of humans, hence a dashboard fuel 
consumption monitor is more effective at encouraging 
eco-friendly driving than the weekly shock of the bill 
when filling the tank. 

Figure 16.2 illustrates the more realistic situation 
where successive actions have an impact on the world, 
but only intermittently create rewards or costs. The 
reward at any point may not only be stochastic but is 
determined by any one or a combination of past actions. 
As noted in the pole balancing task in Chapter 5, 
credit assignment is difficult – which actions should 
be reinforced or inhibited. Typically AI agents in such 
environments need some internal memory of past ob-
servations and actions, and ideally a richer model of the 
environment to help connect rewards with the possible 
cause. 

16.4 CO-OPERATING AGENTS AND 
DISTRIBUTED AI 

In the previous section we talked about agents communi-
cating with one another. Also, when we discussed route 
planning in Chapter 15, we noted that some of the ob-
jects one robot might encounter may be other robots. The 
communication and interaction between agents is an ex-
citing area offering several interrelated benefits: 
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FIGURE 16.2 Reinforcement learning with intermittent rewards. 

• Structuring an intelligent system into several 
communicating but largely independent parts 
can reduce development costs, increase run-time 
efficiency and ease maintenance. 

• Different parts of the system may reside in physi-
cally distinct places. It may be impractical or impos-
sible to perform totally central planning. 

• Maintaining separate agents may be important to 
preserve personal privacy or protect commercial 
data. 

• The interactions between agents can give insight 
into the social interactions between people or 
between animals. There are also theories of 
individual cognition which stress the co-operation 
between semi-independent “agents” within our 
own minds [197]. 

The study of interacting intelligent components is 
called distributed artificial intelligence. When the aim is 
understanding living creatures, it is even called artificial 
life, although this term also includes other aspects of 
computer-generated life forms. 

16.4.1 Blackboard Architectures 

The use of multiple semi-independent knowledge bases 
is not new and predates the now ubiquitous use of the 
word “agent”. As we noted, this has obvious software 
engineering benefits. Each knowledge base can be built, 
tested and updated individually. Furthermore, when 
tackling a problem in a particular area, only the relevant 

knowledge for that area is used. Each knowledge base 
contains only the knowledge needed for its purpose and 
may employ representations and reasoning methods 
appropriate for its particular domain. 

However, to solve a common problem, the knowledge 
bases have to communicate. In an object-oriented archi-
tecture this is likely to be via message passing. When a 
knowledge base/object/agent needs information it sends 
a message to another to ask for it. When the other one 
has found the answer, it sends a message in reply. This 
approach can be very powerful, as can be seen in the 
information-seeking agents described in the last section. 
However, it has the disadvantage that each object needs 
to know which other one has the required information 
or knowledge. 

A traditional form of co-operation that avoids this 
problem is the blackboard architecture. The object-
oriented architecture is similar to lots of people working 
in separate rooms occasionally sending memos to one 
another. In contrast, the blackboard architecture is 
rather like a group of people in the same room who 
are jotting down ideas on a blackboard. As one person 
writes something down another sees it, perhaps in 
conjunction with other items on the blackboard, thinks 
about it and then writes a new idea based on it. 

As well as ideas (or solutions), the computer 
blackboard will also contain unsolved problems. When 
an agent sees a problem that it can tackle, it solves 
it and then removes the original problem, posting 
up the solution. If in trying to solve the problem the 
agent hits an impasse, it can post up a subproblem 
on the blackboard in the hope that another agent will 
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see the problem and be able to tackle it. Unlike the 
object-oriented architecture, it does not have to know 
which agent can solve the subproblem, merely post it 
to the board. When an agent sees that the subproblem 
has been solved, it can continue to tackle the original 
problem. 

Figure 16.3 shows an example of a blackboard 
architecture in action. The problem concerns adding up 
using counting blocks. There are two kinds of blocks, 
ten-blocks and one-blocks. We have three agents. One 
agent, the reader, can read numbers and convert them 
into blocks and vice versa. The second, the grouper, 
knows how to add up blocks by simply pushing the piles 
of blocks together. The third, the swapper, knows how to 
swap a ten-block for ten one-blocks and back again. The 
initial problem is posed in terms of numbers, “add 13 to 
8”, and the answer is also required as a written number. 
The initial representation is shown in the first frame of 
the figure. The three agents then solve the problem in 
the following steps: 

1. The reader converts the numbers 13 and 8 into the 
equivalent blocks. 

2. The pusher clumps the two together to give an an-
swer in blocks – one ten-block and 11 one-blocks. 
At this stage the reader might try to convert the 
answer back into digits but would fail as there are 
more than ten one-blocks. 

3. However, the swapper can work on the blocks and 
change ten of the one-blocks into one ten-block, 
giving two ten-blocks and one one-block. 

4. Finally, the reader has a pile of blocks that can be 
converted into a number, 21, which is the final 
answer. 

Notice how no agent needs to know what the other 
agents can or can’t do. However, it is important that there 
is a common representation on the blackboard so that the 
outputs of one agent can be recognised byanother. 

One disadvantage of a pure blackboard architecture 
is that there is no central control whatsoever. This can 
lead to problems. For example, after stage 1, the reader 
might have looked at the blackboard and thought “Ah, 
piles of blocks, I’ll change them into digits”. The system 
could easily have thrashed about indefinitely changing 
things back and forth. As a model of cognition this is not 

FIGURE 16.3 Blackboard architecture. 

too far from the truth: a frequent error in mathematical 
proofs is to use a series of equalities, but end up where 
you began. However, when one becomes practised in a 
domain, one uses higher-level heuristics. So, for adding 
with blocks one would learn always to apply the agents 
in the following order: reader, pusher, swapper and then 
reader again. A half-way approach between pure black-
board and totally centralised control is to have some sort 
of co-ordinator agent that activates different agents at 
different times. The co-ordinator does not need to under-
stand everything on the blackboard but simply a high-
level plan of when to do what. 

16.4.2 Distributed Control 

A production line is producing cream cakes. As the cakes 
go past, a machine squirts a dollop of cream onto each 
one. For a few minutes there is a problem on the line and 
the supply of cakes stops. However, the machine goes on 
placing a dollop of cream on the line where each cake 
should have been. This is perfectly understandable, the 
way machines work. However, if the cream was being put 
on by a human, the supervisor would be very annoyed 
to see a hundred dollops of cream on the conveyor belt. 
People are supposed to use some common sense even in 
the most repetitive jobs. In a more enlightened factory, 
the employees may be given more autonomy. Perhaps a 
group of workers is given targets for the productivity of 
its particular subprocess and is free to organise its work 
in whatever fashion it chooses so long as its goals are 
achieved. Similarly, in an army the commanders make 
strategic decisions about the deployment of troops and 
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the lines of attack; lower levels of command make tactical 
decisions; but it is ultimately each soldier who decides 
precisely when to pull the trigger. 

The models of planning we presented in Chapter 15 
were largely monolithic. Ultimately the planner knew ev-
erything. However, in a large factory such control be-
comes impractical. Attempting to preplan each machine 
tool and robot will lead to problems like the cream on 
the belt. Instead, the central planner must give orders to 
each tool or robot that it will obey using its own plan-
ning systems. This is similar to the issues of hierarchi-
cal control we discussed in the context of a single robot, 
but here we are thinking of many robots co-operating 
together under some central co-ordinator. Also, unlike 
the agents co-operating under the blackboard architec-
ture, the major interactions here are physical rather than 
electronic. 

The problem with this form of decentralised control 
is that the central planner needs to be able to predict 
global properties from the local properties of agents. 
Imagine a factory has just two processes: baking and 
dolloping. Both baker and dolloper have an average 
throughput of 1800 cakes per hour. So, if both are 
placed on the same production line, can one assume 
that the line can produce 1800 cakes per hour? Only 
if both baker and dolloper can promise a continuous 
and reliable rate of one cake every two seconds. If 
the machines sometimes work faster, but sometimes 
have to pause to refill, then we end up with either 
the line stopped for a proportion of the time or more 
dollops on the conveyor belt. Clearly, the central 
planner would need to have more information about 
the individual machines. However, it would not need 
to know about the precise details of each machine. 
For example, the dolloper might use sophisticated 
image processing to determine the positions of the 
cakes on the line, followed by a planning algorithm to 
decide the order in which to place a dollop onto the 
cakes. The planner need know none of this, simply 
that the machine is capable of putting a dollop on each 
cake. 

16.5 LARGER COLLECTIVES 
Most of the agents we have discussed so far have been 
relatively sophisticated. In addition there are methods 
which depend on the collective behaviour of large num-
bers of quite simple agents. 

16.5.1 Emergent Behaviour 

In the example of the blackboard architecture, where was 
the knowledge of adding up? Similarly, in the factory, 
where was the knowledge of how to make a cream cake? 
In neither case can we point to any particular agent and 
say “that one knows”. The knowledge and ability are dis-
tributed between the agents. So, no one of the adding 
agents can add up, but together they can. This is called 
emergent behaviour. 

Emergent behaviour is not just a feature of the elec-
tronic world but is present in nature at many levels of 
life. Consider a swarm of bees building a hive. There is 
no architect, no plan to follow, but the individual actions 
of each bee together create a purposeful activity. Simi-
larly, when disease infects your body, there is no cen-
tral control which says “fight that organism”; instead the 
various cells and chemical messengers within your body 
each perform individually in a way that fulfils a common 
purpose. 

The same sort of emergent behaviour is found in hu-
mans. This can be seen at a gross level in crowd move-
ments, or in the flow of traffic along a road – lots of 
individual decisions together giving rise to a global be-
haviour. On a smaller scale, there is a growing accep-
tance that the thinking of individuals and groups cannot 
be isolated in their heads but is instead distributed be-
tween the people and even their environment. This ap-
proach is called distributed cognition [139]. It is similar 
to the adding up example. In the building of a skyscraper, 
where are the thought processes that lead to its construc-
tion? In the architect, the engineer, the financier? The 
answer is in none individually, but in them as a group, 
and not solely in the people but also in the representa-
tions they use, plans, models, even the building itself. In 
the adding example, the blackboard itself is crucial in the 
adding task. 

16.5.2 Cellular Automata 

Some computational models are built purely to study 
these emergent behaviours. Groups of agents each 
act out their own individual, and often very simple, 
behaviours, but together give rise to complex patterns 
in the large. Possibly the simplest example is Conway’s 
Game of Life. In Life, the world consists of a rectangular 
matrix of cells (Figure 16.4). We consider each cell to be 
either populated or not. At each step we consider the 
neighbours of a cell. If an empty cell has three or four 
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FIGURE 16.4 Game of Life. 

of its neighbours populated, then the cell is colonised. 
However, if a populated cell has more than five of its 
neighbours populated, it “dies” through competition. 
It also dies if fewer than three of its neighbours are 
populated – loneliness! Most readers will have seen 
this game animated. Some initial configurations die out 
completely, others seem to go on indefinitely changing. 
Some become stable, and others, the gliders, swoop 
across the screen. These patterns are not coded explicitly 
into the rules but emerge from the conjoint behaviour 
of all the individual cells. 

Life is a simple example of a general class of models 
called cellular automata. In general, the state of each 
cell can be more complicated, not just populated 
or not, as can the rules. Also the cells need not be 
in a rectangular mesh but may have some other 
topology. 

16.5.3 Artificial Life 

The rules used in cellular automata are usually quite sim-
ple and not very intelligent. However, there are other 
models that give each agent more complex rules, often 
based on social phenomena. For example, one model has 
agents wandering over a rectangular playing field, meet-
ing other agents. When they meet, the agents engage in 
a “prisoner’s dilemma”-style interaction. Each agent has 
a different disposition to “trust” other agents and may 
reinforce that trust or reduce it depending on the result 
of the interaction. If the agents are able to choose where 
to go, there is a tendency for trusting agents to group 
together, building up mutual trust – societies in micro-
cosm. 

Another system models robots in a physical environ-
ment with obstructions and also simulated locomotion 
(they are pogoing robots). The individual robots all have 
a desired direction to travel but also have rules to avoid 

bumping into each other or getting too far apart. The 
robots exhibit flocking behaviour rather like birds. The 
flock moves in the general direction of travel but occa-
sionally sweeps one way or another, or a small group may 
temporarily break away from the main flock. When an 
obstacle is encountered, the flock divides around it and 
then, when past the obstacle, the two streams criss-cross 
and intermingle before merging fully. 

These models are not just of theoretical interest. Mod-
els of traffic flow on motorways can improve the safety 
and efficiency of roads and cars. Also, models can tell us 
about phenomena that cannot be observed directly, for 
example models of crowd movements in burning build-
ings. Models have even been formulated of the move-
ments and social structures of hunter-gatherers in pre-
historic France, hoping to explain some of the phenom-
ena during the change from nomadic to settled existence. 
This form of simulation has been called Artificial Society. 

16.5.4 Swarm Computing 

We have already mentioned swarms of bees as an exam-
ple of emergent behaviour in the natural world. In fact 
bees, ants and other simple animals that exhibit appar-
ently intelligent behaviour have proven a fertile ground 
for many artificial algorithms. These have several defin-
ing features: 

1. Large numbers of relatively simple and similar 
agents. 

2. Semi-independent and (initially) highly random 
individual behaviour. 

3. Some ability to communicate weakly with others 
as to the quality of places/states they have visited. 

4. Modification of individual behaviour to favour 
paths/places that others have found fruitful. 

Think of ants initially foraging widely and largely 
randomly. One ant finds a boiled sweet, gathers a tiny 
piece itself and then heads back to its nest, leaving a 
this-was-good pheromone trail on the way back. Other 
ants pursue their own semi-random paths, but if they 
encounter the pheromone trail, may choose to follow it. 
If they in turn encounter the boiled sweet, they add to 
the pheromone trail on their own way back to the nest. 

For bees the communication step 3 is via waggle 
dances as they fly rather than crawl, but a similar 
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principle applies. In both cases the initial explorations 
(step 2) may be guided by scents of vegetation in the air 
or other factors, so are not entirely random. 

It is important that step 4 is not about an ant always 
following others to the most favoured spots, but some-
times going to and fro between good but less optimal 
ones. This continued exploration means that if the envi-
ronment changes, or the best source of food is exhausted, 
there are secondary sites waiting to be exploited. 

Artificial versions of this, effectively following steps 1– 
4 as pseudocode, have been used in applications such as 
network routing. Note in this case the optimal route is the 
critical feature – finding the path through the network 
with least latency and best quality. The network is flooded 
with small packets that follow random paths. Those that 
get to their target node retrace their steps leaving a ‘trail’ 
on the way back. 

As well as methods based on animals, lower-level bi-
ological processes have learning-like behaviours. In par-
ticular the immune system learns in order to distinguish 
the many types of cells that are part of your own body 
from those that shouldn’t be there – that is infections. 
There are multiple mechanisms, some of which work by 
building up responses after infection has started, these 
are the kind that vaccines target to give them a head start 
and they effectively react to examples of bad organisms 
in the body and learn to attack them. However, we also 
have a base immune response that works the other way 
round. 

The full immune system is complex, but a simplified 
version is as follows. When you are born your bone mar-
row starts off in a learning mode and generates a form of 
exploratory immune cells with each programmed to de-
tect a wide variety of different surface proteins. As they 
circulate in the blood stream, some encounter cells that 
match their target protein in your own body; those that 
match then replicate and find their way back to the bone 
marrow. Here their presence suppresses further genera-
tion of that kind of cell. After a period the only immune 
cells produced are those that do not match any of your 
own cells, and these become locked in as a form of mem-
ory and the body changes its mode of response to a de-
fence state. Now if one of the cells sent into the blood 
stream encounters a matching organism, it must be for-
eign to the body and an attack is triggered. 

It is evident how this kind of model can be emulated 
as a form of artificial immune response. A network secu-
rity AI monitors network traffic initially generating large 
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numbers of random rules for matching individual pack-
ets of sequences of packets. Assuming that in this initial 
learning state, the network is benign, only those rules 
that match nothing are retained. Later, during the de-
fence stage, if any of these rules match passing packets, 
they are flagged as potentially malicious. 

16.5.5 Ensemble Methods 

In Chapter 5 we saw how decision trees could be con-
structed as a form of machine learning. For large datasets 
with large numbers of features there is a danger of over-
fitting, that is the trees match the particularities of the 
sample that comprises the dataset rather than the more 
generalisable aspects. There are various ways to counter 
this, for example limiting the depth or complexity of the 
trees. However, one simple solution that has proved sur-
prisingly successful is random forests. 

In random forests one randomly splits the dataset into 
smaller subsets and possibly also chooses a different ran-
dom subset of features for each (Figure 16.5). A simple 
decision tree algorithm is then applied to each subset of 
the data items using its respective subset of features. This 
yields a large number of trees, the forest, each trained 
on the different fragments of the initial dataset. The in-
dividual trees are not necessarily very good when ap-
plied over the whole dataset, that is they are individually 
weak learners. However, one can combine their individ-
ual outputs to create a single strong learner that is better 
than any individually. This is the automated equivalent 
of the wisdom of the crowds. 

The methods of combination can vary. For binary clas-
sification often a simple majority is used, for more nu-
merical outputs simple weighted sums can be used. More 
complex methods can be used for this combination of 
many weak learners into a single strong learner, often 
called boosting methods. These may use probabilistic de-
cision algorithms, neural networks or other forms of ma-
chine learning. 

Another way to think about this is that the original 
feature set has been replaced with the vector of outputs 
of the individual trees. Seen like this it has similarities 
with the various non-linear transformation techniques 
we saw in Chapter 7 such as support vector machines and 
reservoir computing. 

The individual elements need not be decision trees, 
and other ensemble methods use different forms of al-
gorithms for the lower-level learners. For example, one 
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FIGURE 16.5 Random forest. 

might use simple regression or linear classifiers or con-
cept learning alongside or instead of decision trees. If all 
of the lower-level learners are of the same kind, the sys-
tem is homogeneous, but if a mix is used, it is heteroge-
neous. A random forest is a particular example of a ho-
mogeneous ensemble. 

Neural-network-based models are often monolithic, 
but they can be structured in similar ways. In particu-
lar, the DeepSeek LLM uses a mixture-of-experts (MoE) 
approach [173]. There is a central general-purpose por-
tion of the network that is always active, and other parts 
that are specialised for different topic areas. This means 
that only a relatively small portion of the network needs 
to be activated for any particular query, enabling perfor-
mance comparable to other LLMs while using far lower 
computing power. 

16.6 SUMMARY 
Software agents are at the heart of several recent and cur-
rent developments to make software easier to use and to 
help people find their way through complex information 
spaces. They act in response to different kinds of events 
and can gather information to use later. Agents can watch 
a user’s actions, use machine learning algorithms to iden-
tify common actions and then offer to do them for the 
user. Agents can use knowledge about a user’s interests to 
search for information and may interact with other user’s 
agents in the process. Similarity measures are one tech-
nique used for identifying potentially interesting docu-
ments. 

Reinforcement learning can be used when agents en-
counter new situations where they need to act in order 
to obtain the information they need to learn. Critically 
they need to balance exploitation (using the knowledge 
they have already learnt to maximise benefits) with ex-
ploration (seeking out new knowledge). 

Co-operating agents can be used to structure an 
intelligent system, to divide a system between different 
places or to simulate human co-operation. Blackboard 
architectures can be used to allow simple agents 
to solve problems co-operatively. In an industrial 
setting distributed control can allow groups of simple 
robots and machinery to work together without a 
central planner, but some overall direction is usually 
necessary. The joint actions of many simple agents 
often give rise to more complex effects, called emergent 
behaviour. This is observed in humans: a group of 
people have a shared knowledge and ability that no 
individual possesses (distributed cognition). Also 
cellular automata, very simple computational agents, 
can produce complex, lifelike phenomena. Applications 
include the simulation of social behaviour and crowd 
movements. 

EXERCISES 

This is another chapter where exercises are more discur-
sive, suitable for individual projects or group discussion. 

16.1 Find out about web “crawlers” and “spiders”, 
which rove the internet looking for useful 
resources. Some are related to the major search 
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engines but you should try to find examples 
of more specialised crawlers and how they 
work. 

16.2 Similarly, collect examples of “intelligence” in 
popular applications such as word processors, 
spreadsheets and drawing packages. Classify 
the examples you find into those where the 
intelligence is hidden or working behind the 
scenes, and those where it is explicitly embodied 
in some form of agent. Compare your list with 
other students. Do you agree on what constitutes 
intelligence and agency? 

16.3 Experiment with different rules similar to the 
Game of Life. You can start using paper and 
pencil or draughts on a chess board but may find 
it faster to write a program to do it. (It is said that 
Conway used plates on a tiled kitchen floor!) 

Writing on software agents is quite widely dispersed. 
Papers can be found in conferences and journals 
on human–computer interaction, the internet and 
even sociology, as well as traditional AI sources 
and proceedings of specialised conferences and 
workshops on distributed AI such as the European 
Conference on Multi-Agent Systems and International 
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Conference on Autonomous Agents and Multiagent 
Systems. 

FURTHER READING 

M. Wooldridge. An introduction to multiagent systems. John 
Wiley & Sons, 2nd edition, 2009. 
Influential textbook with a formal flavour. 

R. Sutton and A. Barto. Reinforcement learning: An introduc-
tion. MIT Press, 2018. 
Comprehensive treatment of reinforcement learning. 

M. Minsky. The society of mind. Simon and Schuster, New York, 
1985. 
Classic work viewing cognition as interaction. 

I. Hitoshi. AI and SWARM evolutionary approach to emer-
gent intelligence. CRC Press, Boca Raton, FL, 2020, 
ISBN: 9780367136314 

An accessible and beautifully illustrated overview of cur-
rent swarm intelligence. 

P. Maes. Agents that reduce work and information overload. 
Communications of the ACM, 37(7): 30–40, 1994. 
Classic article on the promise of software agents in the user 
interfaces. 
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Web-scale Reasoning 

17.1 OVERVIEW 
We use AI and big-data enabled algorithms every time 
we do a web search, use social media or go to an inter-
net shopping site. However, the vast volume of material 
available on the web can also be used as a resource for AI. 
We have seen some of this, especially the machine learn-
ing potential in Chapter 8. In this chapter we will see how 
the idea of the Semantic Web allows the web to be a lo-
cus for machine reasoning, both from special machine-
readable data and from human-readable web pages with 
additional markup. We will also see how various forms of 
external semantics and text mining can be used to extract 
information from web pages and social media to allow 
them to better support our own day-to-day interactions 
and also to make them available as a source of large-scale 
information. 

17.2 THE SEMANTIC WEB 
The web now is all about video streaming, social net-
working, shopping and instant information. However, 
Berners-Lee’s original design for the web was focused 
primarily on the sharing of scientific data at CERN [24]. 
This vision of the web as a place for computer readable 
data is still very much alive including in large-scale open 
data initiatives by governments and others. Some of this 
is simply about using the web to share data, but there 
is also a more profound mission to provide a ‘web of 
data’ through a range of technologies that are collectively 
known as the semantic web [25]. 

FIGURE 17.1 The Semantic Web Stack (user: Marobi1, CC0, 
via Wikimedia Commons, https://commons.wikimedia.org/ 
wiki/File:Semantic_web_stack.svg). 

These technologies build upon one another, from 
ways to represent global character sets to complex 
reasoning (see Figure 17.1). However, the foundations, 
the most mature, are RDF and ontologies, which 
are forms of network representation as discussed in 
Chapter 2. 

17.2.1 Representing Knowledge – RDF and Triples 

RDF, the Resource Description Framework, was origi-
nally developed to talk about properties of web pages, 
for example that the author of https://alandix.com/ 
is Alan Dix, but has been extended to become a general 
knowledge representation tool. 

Core to RDF is the notion of subject–predicate–object 
triples, for example: 
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FIGURE 17.2 Encoding arbitrary length records as triples. 

subject predicate object 
https://alandix.com/ – has author – Alan Dix 

Look back to Figure 2.6 and see how some of the prop-
erties in that could be represented in this way: 

subject predicate object 
Scooby Doo – instance_of – Great Dane 

Dog – number_of_legs – 4 

Notice that there are two kinds of triple, ones that re-
late two kinds of entity (objects or concepts) and those 
that express some sort of value of a property. 

Triples are very simple and yet also very expressive. 
All the standard data structures can be represented in 
triples. For example, where a traditional database might 
have a table with many fields/columns for each row, with 
triples you would give the row a unique id and then have 
lots of triples, one for each field (see Figure 17.2). How-
ever, while you can represent pretty much everything 
with triples, they are not always the most efficient or easy 
to understand representations; sequences and arrays are 
particularly difficult, with multiple representations, each 
having problems. 

Because RDF is a web notation, all the objects, 
concepts and predicates are expressed using URIs 
(Uniform Resource Identifiers). You will be familiar 
with web addresses given as URLs (Uniform Resource 
Locators). URIs have a similar style, but as well as 
referring to web pages, images, etc., they can include 
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namespaces that refer to things outside the web itself. 
The last three lines in Figure 17.3 show some of the 
examples we’ve already discussed, expressed as RDF 
triples. The document is written in Turtle, one of several 
concrete syntaxes for expressing abstract RDF. 

See how these examples include: 

1. A URI that is an actual URL of a web page: 
<https://alandix.com/> 

2. Literal string value: "Alan Dix" 

3. A typed string value representing an integer: 
"4"^^xsd:integer 

4. A ‘built-in’ RDF URI <rdf:type> (de-
fined in http://www.w3.org/1999/ 
02/22-rdf-syntax-ns#) 

5. A URI <dc:creator> from a standard ontology, 
the Dublin Core [297], which is used to represent 
‘meta data’ about information resources, such as 
authorship. 

6. URIs from a specialised vocabulary: e.g. 
<aibk:Scooby_Doo> 

The namespace prefixes ‘dc:’, ‘rdf:’, ‘aibk:’ and 
‘xsd:’ are shorthand for longer URI prefixes, which 
would normally be defined at the start of an RDF 
document. These are normally declared in the document 
that contains the RDF, as can be seen in Figure 17.3. 

Because URIs build on the naming system of the web, 
they can be globally unique. This is very different from 
notations and systems that use local names. This is partly 
an ‘accident’ of the development of RDF for describing 
web resources but is crucial in allowing RDF to be very 
extensible, in several ways. 

1. If an entity is defined in one RDF document, 
say if an RDF example in this book references 
<aibk:alanjohndix>, anyone can refer to this 
from their own RDF document adding their own 
statements. 

2. In general, RDF documents can be merged as they 
refer to globally defined entities. 

3. As the vocabularies are also defined by URIs, 
the things that can be talked about (predicates, 
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FIGURE 17.3 Fragment of RDF document in Turtle syntax showing namespaces and triples. 

classes) are also both open (new ones can 
be added) and common (if two documents 
refer to xsd:integer, they both mean the same 
thing). 

In general, RDF effectively adopts an open world 
assumption. This is the opposite of the closed world 
assumption adopted by Prolog in Chapter 2. In Prolog, 
the list of facts was assumed to be precisely and 
only what was true. If something is not stated, it is 
assumed to be false. In contrast an RDF document 
containing lots of RDF statements is understood to 
mean that these things are asserted to be true, but 
not that they are the only things that are true. Other 
documents may be added at a later time that talk 
about new entities or say new things about existing 
entities. 

17.2.2 Ontologies 

In philosophy ‘ontology’ is the study of being: what 
makes a cat a cat, and indeed what does it mean 
to even be an ‘it’, to be talked about as a thing? 
Within computing ‘ontologies’ have a more mundane 
meaning as ways to express relationships between 
concepts, ideas and properties. How we might ex-
press formally the kinds of relationship we saw in 
Chapter 2. 

As well as the basic RDF predicates defined in ‘rdf:’, 
there are a larger number of predicates in RDFS (Re-
source Description Framework Schema), which include
class–subclass relationships between concepts (a dog is a
kind of animal) and the kinds of values that are accept-
able for different predicates (the number of legs is an in-
teger). 

<aibk:Dog> <rdfs:subClassOf> <aibk:Animal> 
<aibk:number_legs> <rdfs:range> <xsd:integer> 

However, this is still fairly limited, sufficient to say that 
statements in RDF are well-formed, but not for more 
complex reasoning. For this a variety of more complex 
ontologies have been defined, some for specific domains, 
such as legal concepts, some to simply say more expres-
sive things about general statements.

The nature of RDF is to be extensible, but the more 
general vocabulary is represented in the Web Ontology 
Language, OWL. For example, this allows you to say that 
‘is owned by’ is the opposite of ‘owns’, so that one can 
infer from ‘Shaggy owns Scooby Doo’ that equivalently 
‘Scooby Doo is owned by Shaggy’. In RDF triple 
notation: 

<aibk:owns> <owl:inverseOf> <aibk:is_owned_by> 

OWL comes in several variants that vary in: 

expressiveness – how complex are the things you can 
specify 

tractability – how hard or even possible is it to verify 
statements 

In general the more expressive a notation, the harder it is 
to automatically check things. For example, the simplest 
variants of OWL only allow you to specify that the cardi-
nality (how many values something can have) is zero, one 
or unlimited. This is effectively making checking more 
about binary decisions. If one is allowed to express a con-
straint such as “number of legs <= 4”, then any reason-
ing system checking the statement needs to be able to do 
arithmetic proofs. 

OWL inherits the open world assumption of RDF, but 
some of the variants do allow you to make strong state-
ments that effectively include some level of closedness. 
For example, if there is a cardinality statement that says 
a dog has only one owner, we know it is not possible to 
consistently have a statement in another document that 
adds a second owner. 
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17.2.3 Asking Questions – SPARQL 

RDF can be put in a simple text file in one of the standard 
formats. However, there are also a number of research 
and commercial triplestores. These are like databases for 
RDF. 

SPARQL is the query language for RDF. It holds a sim-
ilar place to RDF and triple stores as SQL does to re-
lational databases. It was crucial in allowing Semantic 
Web technology to be used in end-user applications. One 
of the early examples of this was the BBC’s website for 
the 2010 World Cup, which used an RDF triplestore and 
SPARQL to allow different facets of the tournament data 
to be easily explored [231]. 

SPARQL allows queries to be expressed using variables 
to denote unknown entities. For example, the following 
is a query to find the email addresses of all people with 
the nickname “Shaggy”. 

SELECT ?e 
WHERE { 

?p vcard:nickname "Shaggy" , 
?p vcard:hasEmail ?e . 

} 

Note how this query uses the vcard ontology, 
developed for the transfer of information between 
address books. 

The query above is a simple conjunction; it effectively 
matches all pairs of triples that match the two pattern 
statements. The pattern variables ?p and ?e are instan-
tiated during the matching. 

More complex queries are possible, including disjunc-
tions (either match this or that) and crucially negation. 
Figure 17.4 shows an example of SPARQL with a nega-
tion, ‘NOT EXISTS’. This query looks for all people who 
have no name specified. It is clear from this example that 
this could be useful. 

However, the ‘NOT’ here is adopting a negation as 
failure model, like Prolog; that is, SPARQL is using a 
closed world assumption. This makes sense as SPARQL 
is effectively used as a query language over triplestores, 
which contain a fixed set of statements. However, this 
causes some conflict with the general open world na-
ture of RDF, a situation that can lead to endless academic 
discussion. 
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17.2.4 Talking about RDF – Reification, Named 
Graphs and Provenance 

Sometimes we just want to say something “Scooby Doo is 
a Great Dane”. However, we often also want to talk about 
who said something, whether something is true, how you 
know it is true. For example, I might want to say “It is 
true in the film ‘Ghostbusters’ that Scooby Doo is a Great 
Dane”. 

There are two ways this is dealt with in RDF, the first 
is reification, which basically takes a statement and treats 
it as an entity in its own right, with the subject, predi-
cate and object of the statement defined as triples. This 
is rather like putting “quote marks” round a statement in 
text to turn it into a ‘thing’ you can talk about (as in the 
paragraph above). We can then make statements about 
the statement! 

aibk:_stmt_42 rdf:type rdf:Statement. 
aibk:_stmt_42 rdf:subject aibk:Scooby_Doo. 
aibk:_stmt_42 rdf:predicate rdf:type. 
aibk:_stmt_42 rdf:object aibk:Great_Dane. 

aibk:_stmt_42 aibk:true_in_film 
aibk:Ghostbusters. 

Notice how the statement itself has been given a sort 
of anonymous id, this is rather like numbering equations 
in a mathematical proof. The URI is only there to en-
able us to talk about the statement, so would probably 
not be given a meaningful name unless it were a spe-
cial statement such as Descartes’ [72] “I think therefore 
I am”. 

When RDF descriptions are created in a triplestore 
or through some form of automatic tools, there will 
be many of these generated URIs, even for meaningful 
things. This is rather like record ids in a traditional 
database. For example, Alan has a Facebook handle 
alanjohndix, but internally within Facebook’s database 
and API, this has an id 635054223. 

This is powerful, but cumbersome – OK to talk about 
one or two things, but looks like a pain if you want to talk 
about everything that happens in Ghostbusters. Similarly, 
if you want to import RDF statements from several doc-
uments into a triplestore, you may want to keep track of 
which statements came from which document, especially 
if you have different levels of confidence in the reliability 
of the different sources. 
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FIGURE 17.4 SPARQL example with negation (from https://www.w3.org/TR/sparql11-query/#negation). 

To support this, many triplestores are actually 
quadstores, labelling each triple with a graph identifier 
... which in true RDF fashion is itself, of course, a URI. 

<graph_uri> <subject_uri> <predicate_uri> 
<object_uri_or_literal> 

These are called ‘named graphs’, although the name 
may simply be a URI. They can be used in various ways: 

1. To make it easier to update the store if an RDF 
document has changed and needs to be reloaded 

2. To allow queries against particular graphs as well 
as the whole store 

3. To allow statements to be made about the named 
graph as a whole 

The first is just bookkeeping (albeit important). The 
second can be used if, for example, you were not entirely 
sure about the reliability of one of the sources, so some 
queries might want to be only against the trusted source. 
However, the last is the most interesting. 

One can use this to talk about all the statements in the 
graph, in a similar way to reified statements above: 

aibk:graph_37 aibk:true_in_film 
aibk:Ghostbusters. 

Perhaps more important, it can be used to talk about 
provenance, where the data came from, its reliability, etc. 

aibk:graph_37 ex:derived_from 
https:/ex.com/a_doc.rdf. 

aibk:graph_37 ex:reliability "medium" 

17.2.5 Linked Data – Connecting the Semantic 
Web 

Having URIs that represent things not actually on the 
web is really powerful, they allow RDF to talk about phys-
ical things such as Mount Everest, ideas such as ‘truth’ 
and fictional things such as Harry Potter. However, this 
does not help discoverability. We might know that the 
URI aibk:alanjohndix is an unambiguous way to talk 
about the particular Alan Dix who is the author of this 
book, but how do we find out more? 

Linked data achieves this by making URIs link to 
actual web accessible documents that then contain RDF 
that describes the thing. That is, Linked Data is RDF 
where the URIs are URLs pointing to machine readable 
data. Two of the central examples of this are GeoNames 
and DBpedia. 

The GeoNames website and database collects open 
geographic data from a number of sources and has a 
web interface and a number of APIs. Each country, city, 
mountain, village and stream has a unique GeoNames 
id. For example, 6077243 is the id for Montreal, and 
geonames:6077243 can be used in RDF documents to 
refer to Montreal. Figure 17.5 shows a portion of the 
RDF available at GeoNames about Montreal. 

Note that ‘geonames:’ is a common prefix, which 
is short for https://sws.geonames.org/; so 
geonames:6077243 expands to https://sws.geonames 
.org/6077243/. 

One of the entries in Figure 17.5 is a ‘see also’ link 
to https://dbpedia.org/resource/Montreal, 
the entry for Montreal in DBpedia. DBpedia is an 
extract of the parts of Wikipedia that can be easily 
codified as data. If you look at this page in an or-
dinary web browser, it will render it in a readable 
manner (not raw RDF!), and you can see, among 
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FIGURE 17.5 Portion of RDF about Montreal (from https://sws.geonames.org/6077243/about.rdf). 

other things, that there are typically 11.5 rainy days 
in November (predicate dbp:novRainDays) and that 
the album Queen Rock Montreal was recorded there 
(dbo:recordedIn dbr:Queen_Rock_Montreal). 

So, if you use the GeoNames URI as an identifier for 
Montreal in your own RDF, it is possible for code to fol-
low this through to the GeoNames RDF, and from that 
to the DBpedia RDF. A reasoning engine can then, if it 
wants to, find that Queen Rock Montreal was recorded 
there, that it was recorded in November 1981 (from its 
DBpedia RDF), and that means there was approximately 
a 1 in 3 chance that it was raining the day it was recorded. 

GeoNames and DBpedia were two of the first datasets 
in the ‘Linked Data Cloud’ in 2007, but by November 
2020 there were more than 1200 listed (see Figure 17.6) 
as well as many individual RDF documents that use 
URIs from Linked Data without being publicly listed 
themselves. In addition to more generic resources, 
such as DBpedia, there are also densely interconnected 
sub-clouds, for example around medical and biological 
data. 

The promise of this as a data source for knowledge-
rich reasoning is clear, but in practice there are additional 
steps needed. 

First, if you just type a Linked Data URI into a 
browser you will normally get a human readable 
HTML page. Code accessing the page needs to 
say explicitly that it wants RDF as a response. In 

the case of GeoNames, if your code asks for RDF 
from https://sws.geonames.org/6077243/, 
GeoNames will give an HTML 303 redirect to 
https://sws.geonames.org/6077243/about.rdf 
where the actual RDF about Montreal can be found. 
This is so that there is a difference between the URI 
that represents Montreal the city and the URL of the 
file containing RDF about Montreal. These distinctions 
sound subtle but make it possible, for example, to talk 
about provenance. 

Second, although this use of the HTTP request– 
redirect is now fairly standard, there are variations 
between datasets, for example some just deliver RDF 
directly, some have a SPARQL endpoint. Often you need 
to know a little more about the particular dataset. 

Third, the RDF at the DBpedia URI tells you what DB-
pedia knows about Montreal but does not know about 
every dataset that has a link to it. Even within a dataset 
often the RDF at the URI only tells you the RDF state-
ments where the thing you are referring to is the sub-
ject, not those where it is the object. If the dataset has a 
SPARQL endpoint, then it is easy to ask for everything 
that refers to a specific URI, but not everything has this. 
In general, full discovery needs an additional Semantic 
Web search/index rather like Google does for the human 
readable web. 

Finally, GeoNames uses a ‘see also’ link to DBpedia but 
doesn’t explicitly say they are the same thing. There is a 
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FIGURE 17.6 Growth of the Linked Data Cloud 2007–2020 (source: https://lod-cloud.net/, CC-BY). 

standard RDF predicate owl:sameAs, which means that 
two URIs refer to the same thing. However, as is evident, 
it is often easier to ‘mint’ your own URIs rather than refer 
to one from another dataset. In general, there is a lot of 
effort involved in verifying that two things are actually 
identical, and datasets may differ in this judgement. For 
example, GeoNames makes a distinction between Mon-
treal the city and Montreal the larger administrative re-
gion. DBpedia includes RDF owl:sameAs statements for 
its Montreal URI but declares it to be the same as two 
GeoNames URIs, which GeoNames would regard as dis-
tinct! 

On the last point, while this is a specific issue for 
Linked Data, it is also a common problem when 
attempting to reason using multiple datasets. As humans 
we manage to deal quite easily with concepts that are 

similar but not identical. For example, when we refer to 
‘Portugal’, we could be referring to the administrative 
country, including Madeira and the Azores, we may 
mean only the geographic region overlooking the Bay 
of Biscay or we may even be referring to the Portuguese 
football team. Often the distinction doesn’t matter, and 
we make it unambiguous only when necessary. For 
computer knowledge bases, we are often forced to be 
completely unambiguous from the beginning and not 
all human knowledge easily fits into such hard and fast 
categories. 

17.3 MINING THE WEB: SEARCH AND 
SEMANTICS 

Only a fraction of the information in Wikipedia is cap-
tured in DBpedia, and in general much of the web is in 
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FIGURE 17.7 Half a billion search results for ‘Montreal’, how 
does Google rank more useful ones first. 

human readable text that is not immediately available for 
automated reasoning. Applications that want to use the 
data on the web need to mine this material in some way. 

17.3.1 Search Words and Links 

Search engines are the most obvious way in which web 
information is mined to make it more useful. The normal 
purpose is to give web pages back to the user, although 
similar techniques are used to help deliver effective ad-
verts. 

The earliest search engines were simply indexes, web 
pages are scanned, the text extracted, broken into words 
and then the words used to create an index that links a 
single word, say ‘Montreal’, to all web pages that contain 
the word. If several words are used, then the results re-
turned are instead the set of web pages that contain some 
of the words, typically sorted so that the pages that con-
tain more of the terms appear first. 

For a small collection of documents, finding those that 
refer to terms of interest is sufficient, but once we get 
to the web with 10 billion or so pages, things get more 
difficult. If you had to look through nearly 500 million 
result pages to find the one you were interested in (see 
Figure 17.7), the web would not be very useful! How does 
Google search manage to find the most relevant ones to 
put first? 

One of the techniques is to use properties of the text it-
self. If you are searching for the term “Montreal bus sta-
tion”, then ‘bus’ and ‘station’ are more common words 
than ‘Montreal’. The pages that mention ‘Montreal’ and 
‘bus’, but not ‘station’, will get ranked more highly than 
those that just mention ‘bus’ and ‘station’; even though 
both have the same number of search terms, the pages 
with the more rare terms get ranked more highly. Also 
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pages that include the words close to one another, say 
the sentence starting “This bus station is not to be con-
fused ...” will count more highly than if ‘bus’ and ‘station’ 
appear anywhere on the page. 

These techniques work for any collection of docu-
ments. However, the web is not simply a collection of 
text documents, but it is a hypertext, the documents 
are linked to one another. This can be used in two 
ways. 

First, this can be used as extra relevance information 
for specific words and phrases. For example, if web page 
A references web page B using a link in the text “Mon-
treal”, then this will add to the “Montreal” index for page 
B as well as page A; possibly even if page B does not ex-
plicitly mention Montreal itself. The fact that for the au-
thor of page A, B is the page to go as a reference for Mon-
treal counts in page B’s favour. 

Second, the link structure can be used to generate 
a measure of importance of a page in general. If lots 
of pages link to page A, then it suggests that page A is 
an important page. In the web the link counts in and 
out of pages tend to follow a power law distribution; 
there is a small number of pages with lots of link 
connections and a large number with far fewer, so 
even this simple measure can be used to help order 
pages. 

Google’s PageRank algorithm takes this a step further, 
by ranking the importance of incoming links by the 
importance of the pages they come from. This is a 
circular definition of importance, but the algorithm 
deals with this by starting with a uniform measure 
of importance and then iterating, this is effectively a 
variant of spreading activation (Chap. 3). There are 
various equivalent ways of thinking about this. One is 
to imagine an army of people randomly clicking links 
on pages and then keeping track of how often they end 
up on different pages. Another, more mathematical, 
analogy is to think about a massive matrix with one 
row and one column for each page and the number in 
the matrices representing the links between the pages. 
The PageRank is then the principal eigenvector of the 
matrix. 

The actual algorithms used by Google and other 
search engines add many other factors, for example, 
there are some well trusted sites (such as Wikipedia), 
so these can be used to boost the initial weights of 
PageRank. 
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FIGURE 17.8 Using schema.org markup to make text meaningful for automated tools. 

17.3.2 Explicit Markup 

HTML pages are not just text but structured doc-
uments. This can be used to boost the text tech-
niques above, for example mentions of words in 
headers will count more highly than in ordinary 
paragraphs. However, the structure can be used in other 
ways. 

Some of this is a side effect of human readable HTML. 
Tables are explicitly marked using the <table> tag, so 
they can be extracted as data. Similarly form fields have 
hidden names for each field, which are used by web 
browsers to suggest pre-filled values. A special case of 
this is password input fields which have a special tag 
<input type="password"> and often the previous 

input field is a user name – this is used by the browser to 
save your passwords. 

However, these are fairly limited, for example a com-
pany web page may well include a phone number or ad-
dress, but these are likely to be organised using the same 
layout tag as ordinary tags. 

In order to help search engines and other web tools, 
some web pages include additional information that is 
invisible to the human reader but enables automated 
tools to extract structured information. A number of 
specific emergent standards (called microformats) arose 
to tackle specific kinds of content, such as contact details 
(address, email, etc.) and events (time, place, etc.), 
but these have now mostly been merged into a single 
industry standard called schema.org. 
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Schema.org allows a web page to include markup that 
is rather like (and in some cases exactly like) a form 
of lightweight RDF. Existing tags in the HTML have 
properties added to say what they enclose and where 
additional markup is needed HTML <span> tags are 
used, which have no impact on human-readable layout, 
but allows extra information to be added. Figure 17.8 
shows an example of an initial paragraph describing 
the publication of this book (i), as might appear in, 
say, a blog or press release. The same information is 
then shown (ii) with the microdata added that says 
that the paragraph is talking about a book, that the 
author is Alan Dix and that he was born in Cardiff. 
Finally, the extracted information is shown as JSON data 
in (iii). 

This information can be used to help augment search-
ing but also to create structured representations of arbi-
trary web pages in a similar way to what DBpedia does 
for Wikipedia pages. It would of course be a lot of work 
to add this information by hand to the HTML, but au-
thoring tools can help for one off pages. Many pages are 
themselves generated from databases, and in this case it 
is a relatively simple matter to add this kind of markup 
automatically and also to provide parallel RDF versions. 

17.3.3 External Semantics 

Not every web page has explicit semantic markup, so of-
ten structure has to be inferred from the outside. This 
can use the structural tags of the HTML to help, for ex-
ample, a part that is set in italic, bold or given a class with 
a <span> will often represent some sort of name or title. 

There are two main ways of looking for this structure, 
but they often interact. 

entity identification – finding representations of things 
such as people’s names, book titles or dates 

structured data identification – looking for structure 
such as tables or relationships between entities 

Named entity recognition may use lookup tables, for 
example lists of people’s names or places. This may be 
based on large public datasets, or local ones, such as your 
address book. This can be used to tag a word or phrase as 
a possible location or film title. For places or names there 
are often several possible matches for the same name, 
for example there is a region called Montreal in France 
as well as the city in Canada, not to mention numer-

ous Montreal Hotels across the world. For some pur-
poses having a list of possible matches, or just know-
ing it is a place name is sufficient, for example if the 
reader can make the selection. However, often we at least 
want an order of likelihood. Context can often be used 
in these cases, one starts with a weighting proportional 
to common uses, so that Montreal the city in Canada is 
most highly weighted, but if other entities or the page 
origin suggest it is about places in France, then Montreal 
the French region would gain extra weight. Given other 
named places on the same page might also be ambiguous 
this might be an iterative process. 

Other forms of entity recognition are based on pat-
terns. This can be used to suggest possible named en-
tities, for example a series of words with initial capitals 
within a body of text might suggest that it is a book or 
film title. Pattern-based recognition can also be used for 
various forms of non-textual codes, dates, etc. These are 
often called data detectors and are found in various appli-
cations and built into the Apple operating systems since 
the late 1990s. 

Figure 17.9 shows an example of a pattern to match 
potential ISBNs in text. It mainly consists of a regular 
expression that looks for an optional prefix such as 
‘ISBN10:’, followed by a suitable number of digits and 
dashes and possibly a final ‘x’ in the case of older length 
10 ISBNs. Note that the presence of dashes means that 
the regular expression is only a possible match, and a 
further verification stage is needed to count the digits 
and calculate the checksum is correct; in the Snip!t 
system that this example is drawn from, this additional 
verification is performed by a JavaScript constructor for 
the ‘isbn’ datatype. 

Extensions of this technique can be used to detect 
more complex structures such as tables, or lists, even 
when this is not immediately apparent in the HTML 
markup, or if the document is text or a PDF. For 
example, if multiple lines contain a high proportion 
of numbers and additional spaces or tabs, this might 
trigger a table detector. Similarly if something that looks 
like a personal name occurs in a paragraph with an 
email address and telephone number, then this might 
trigger a ‘contact’ detector, binding the various elements 
together and creating an ‘add to address book’ suggested 
action. This kind of detector may also use cue phrases in 
the text, for example, ‘let’s meet’ close to a date or time 
would cue a meeting recogniser that would look for a 
place, etc. and trigger an ‘add to calendar’ suggestion. 
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FIGURE 17.9 Data detector for ISBNs in text (from https://snipit.org/tellmeabout/). 

As well as this form of generic pattern recogniser, 
hand-crafted tools are often used for scraping data 
from specific websites. For example, the reference 
manager Zotero has more than 500 crafted JavaScript 
‘translators’ for extracting information from websites 
that might mention referenceable items including those 
of journals, news sites and booksellers. Figure 17.10 
shows a portion of the Zotero translator for Amazon; 
it is scanning the site for tags with particular names or 
classes. 

These various forms of pattern matching, data detec-
tors, recognisers and translators can be seen as a form of 
AI in their own right. Some are simple, but others involve 
complex matching algorithms or machine learning. In 
addition, it is quite common for various AI or machine 
learning projects to start with web scraping in order to 
gather data. 

17.4 USING WEB DATA 
We have seen how structured data can be made available 
on the web, how web pages can have additional markup 

to make them more machine readable and how even 
plain web pages can be analysed to extract meaning. 
However, we want to use this information. 

17.4.1 Knowledge-rich Applications 

Both structured and unstructured data can be used as 
part of human-in-the-loop applications. For example, 
if you want to know the height of the Eiffel Tower, you 
could be presented with several snippets of the text 
from the web that appear to show the height of the 
Eiffel Tower. If one of the snippets starts “This model 
of the Eiffel Tower stands 3.2 metres tall ...”, the human 
reader can easily skip this and move on to more relevant 
results. Similarly, if a web assistant extracts fields from 
a web form and presents them as a suggested calendar 
entry, the user can choose to ignore or amend the fields. 
It is also clear how the structured data in RDF and in 
semantic markup can be used as part of a knowledge 
base for automated reasoning. 

Part of the power of human reasoning is our ability 
to draw on a wide range of knowledge accumulated dur-
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FIGURE 17.10 Fragment of Zotero translator for scraping an Amazon product page (from 
https://github.com/zotero/translators/blob/master/Amazon.js). 

ing our lives, some very specific and precise (“The Eiffel 
Tower is 324m high.”), some more qualitative (“The Eif-
fel Tower is a lot taller than most buildings.”) and some 
more analytic (“If building A is taller than building B and 
building B is taller than building C, then building A is taller 
than building C.”). In early AI systems the latter was eas-
ier to create than the former. There have been a number 
of projects over the years to gather declarative knowledge 
of the first kind in volume (see Chap. 2), but many have 
faltered due to the scale of the task. The web has changed 
that. 

Crucially there is a trade-off in human and AI rea-
soning between using declarative knowledge and ana-
lytic rules. For example, you might remember your mul-
tiplication tables or just work things out quickly on your 
fingers. The web allows automated reasoning to have far 
more knowledge and therefore rely less on analytic meth-
ods. This may make it possible for a system to produce 
answers that appear to be very intelligent, without deep 
understanding. 

In 2011 the IBM AI program Watson beat human 
contestants in Jeopardy!, a US general knowledge quiz 
show. This involved techniques to understand what 
was being asked [101] but also many terabytes of data 
gathered from digital sources including traditional 
dictionaries and encyclopaedias as well as selected 
high-quality web resources, in particular Wikipedia. 
It used a number of specialised natural language 
processing techniques to extract useful knowledge 
from free text and turn it into a form that could be 
interrogated to answer questions faster than the human 
contestants. 

Watson was very careful in its selection of sources, 
and thus could have high confidence in the answers. 
However, many of the kinds of automated extraction 

described in Section 17.3.3 are uncertain, offering pos-
sible data but with less confidence. This is problematic 
for totally automated reasoning systems. However, the 
sheer volume of web information comes to our rescue. 

Imagine you have an automated reasoner that needs to 
know the height of the Eiffel Tower but doesn’t have it in 
high-quality sources. The system can gather web pages 
that mention Eiffel Tower and scan these for the word 
height near a length number. This is then used to create 
a collection of ‘heights’ for the Eiffel Tower. This would 
include 3.2m from the web page with the sentence “This 
model of the Eiffel Tower stands 3.2 metres tall ...”, but 
there would be many more that say around 324–330m. 
Choosing a mid-point of the most common cluster of 
values would almost certainly give a good estimate. 

We can see that even very uncertain semantics can be 
boosted by volume. 

Note too that between the first draft of this chapter and 
publication, the true figure changed from 324m to 330m 
as the radio antenna at the top of the tower was replaced 
with a longer one [49]. At the time of writing there were 
still ten times as many Google search results for ‘height 
of the Eiffel Tower 324m’ compared with ‘height of the 
Eiffel Tower 330m’; however, the top results for ‘height 
of the Eiffel Tower’ all show 330m as Google’s PageRank 
algorithm is favouring the more up-to-date and reliable 
sources. That is while volume is important, some knowl-
edge of authority can also help. 

17.4.2 The Surprising Power of Big Data 

This effect of volume can be used to create data-oriented 
solutions to problems which would appear to need deep 
understanding. 
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FIGURE 17.11 Search suggestions after typing ‘artificial’ into 
Google. The first five suggestions will be based on popular 
search terms, the last two are probably using the author’s pre-
vious browsing history. 

A simple example of this is search suggestions. As you 
begin to type into a search box, your typing is compared 
with millions of previous search terms and the most com-
mon are reflected back as suggestions (see Figure 17.11). 
This appears ‘intelligent’, guessing what you want before 
you type it but in fact can be built using a simple index 
(albeit very large) and counting. Similar techniques are 
used to offer auto-completion when typing an email mes-
sage, although this is also often personalised. 

This type of technique has proved very powerful 
in tackling natural language processing tasks without 
needing to create the rich grammars that are needed in 
the techniques described in Chapter 13. Statistical tech-
niques have a long history in NLP, for example Hidden 
Markov Models (see Chapter 14) use a probabilistic state 
machine to predict the next word from the current state 
and word. HMMs are trained using large amounts of 
continuous text. Other methods are based on adjacency 
statistics, most commonly n-gram frequencies (see also 
Chap. 13). 

An n-gram is simply a collection of n successive words 
in the text. The simplest 1-gram is simply the frequency 
of each word. For example, in the last paragraph the top 
word is ‘the’ with frequency 3 followed by six words that 
occur twice (a, are, in, see, state, word) and then another 
50 or so that occur just once. Two-grams are word pairs; 
there are no pairs that appear more than once in the pre-
vious paragraph, but at the point of writing the 2-gram 
“are used” occurs five times in the chapter as a whole, so 
it would be in the chapter 2-gram list with a frequency 
of 5. Similarly at the same moment of time the chapter 

FIGURE 17.12 Google Books Ngram Viewer (captured 
28/12/2020). 

contains the 3-gram “a web page” three times, including 
this one. 

As is evident even 2-grams (bigrams) become quite 
rare unless the document or document collection is large. 
Of course the web is very large, and so it is possible to ob-
tain frequency statistics for quite long n-grams. Google 
also does this for n-grams in the scanned text in Google 
Books. With large n-grams it is possible to perform ap-
parently intelligent tasks relatively easily. For example, 
to obtain predictive text in an email, the last n words can 
be looked up as the first words in the n+1-gram statis-
tics. If there is a frequent enough n+1-gram, then the 
last word (or top few) is used as the next prediction. If 
there are no matching n+1 grams, the last n-1 words are 
considered. 

Figure 17.12 shows statistics from Google Books n-
grams. You can see how there are a substantial number of 
4-grams for “in the long run” (0.000344% of all 4-grams), 
although far less than in the 1960s. In contrast “in the 
long grass” only occurs about 1/30th as often (0.000011% 
of all 4-grams). If you typed “In the long”, then “run” 
would be an obvious next suggestion. 

As well as text prediction n-grams can be used to build 
sophisticated language models. For example imagine 
clustering words based on whether they are preceded 
or followed by the same words. So that “in” and “on” 
might get clustered together as they are often followed 
by “the” or “that”. If each cluster is given an id and then 
the words are replaced by the cluster ids, we can do the 
same thing to build higher level clusters. This can be 
used to create emergent grammatical categories for any 
language. 
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Similar techniques are used for translation services 
based on corpora where there are existing translations 
(say English and Welsh versions). Large numbers 
of examples are used to match phrases in the two 
languages, so that “bore ’ma” often occurs in the Welsh 
corresponding to sentences with “this morning”. This 
will not be one-to-one correspondence as the same 
phrase may translate in different ways, but with a 
sufficiently large number of examples, translators can be 
built on a phrase-by-phrase basis. By using overlapping 
phrases grammatical changes, such as different sentence 
orderings, can be managed. 

17.5 THE HUMAN WEB 
While some of the content we see on the web is generated 
directly from data, the majority of our day-to-day use will 
be with material that has been crafted by human hands: 
news items, Wikipedia pages and social media. However, 
as social media makes clear, the web is not merely a static 
output of human authoring, but a place where there is a 
constant stream of human activity. Indeed the web sci-
ence community refer to the web as a social machine 
[129, 252]. 

This human activity, the things we do on the web, is 
both an opportunity for AI, and especially ML, to help 
us, but also the acts themselves are a source of input into 
many AI algorithms. Some of these are built using data 
that is passively gathered from web users, such as usage 
patterns, some is explicitly gathered, for example, when 
you give a star rating. Sometimes the results of this feed 
back into the web itself, for example in targeted advertis-
ing or prioritising of social media posts, but the data can 
also be used for other purposes. 

17.5.1 Recommender Systems 

When you look at a product on Amazon or a film on Net-
flix, you are presented with suggestions of other prod-
ucts and films you might also like. Some of this is based 
purely on raw popularity, the top ten films or music in 
the genre. However, we know that much of this is far 
more targeted, sometimes implicitly (those suggestions 
that just seem prescient) and sometimes explicitly “peo-
ple who watched X also watched Y”. Collectively, and for 
obvious reasons, these are called recommender systems, 
and we’ve already mentioned them in Chapters 7 and 8. 

There are very many algorithms used in recom-
mender systems and also different kinds of data, but 

largely they are based around an event stream of the 
form: 

At time <t> user <u> 
interacted with product <p> 
in an event <e> 

The events may be of different kinds, for example 
viewing a product and buying it, or checking the 
information about a film vs. watching it. In addition, 
there may be some extra information attached to the 
event, for example if you are asked to star rate a film, or 
how long you viewed the information about a product. 

When users are asked to rate a product or film, this 
is called relevance feedback. You will also see this used 
in other kinds of interactions, such as customer support 
sites which ask you to rate the answer to a query. We look 
in detail at intelligent interactive systems in Chapter 19. 

This stream of <t,u,p,e> events is complex to han-
dle in a raw state, so is often reduced to relatively simple 
matrices. Let’s look at just one way to do this. 

We’ll turn the event stream into a matrix, let’s call it 
M, where the rows are people and the columns products. 
Each cell is some sort of score measuring the level of pos-
itive engagement with the product. The score will often 
be a weighted combination of factors, with some factors, 
such as whether the person bought/watched it or a star 
rating, weighted more highly than others, such as view-
ing the information. Indeed, viewing the information on 
a film and then never watching it might be included as a 
negative score. 

Note a few things: 

1. We have completely ignored some information, 
such as the order we viewed two different items. 

2. We have reduced the stream of events for each 
product to a single score. 

3. The resulting matrix is sparse, that is most of the 
entries are zero. On a large site each person will 
only engage with a relatively small number of 
products and vice versa. 

The first two are a form of initial data reduction, which 
is a common theme in all big data analysis. The volume 
of data is often too big even with massive computational 
resources, so we have to find ways to progressively sim-
plify it (see also Chapter 8). 
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FIGURE 17.13 Pseudocode for product–product score based 
on multiplying user scores. Note this is schematic, not opti-
mised for sparse matrix M. 

The last is more about data representation but also in-
fluences the kinds of algorithms we apply. Let’s look at 
the scale of this matrix: 

N – total number of users (many millions in a typical 
e-commerce site, billions for internet giants) 

P – products (many thousands on movie sites, millions 
on large eCommerce sites such as Amazon) 

E – typical number of products engaged with by a single 
user over the time frame of the modelling, say a few 
hundred per year 

The total size of the matrix M is N × P, but the 
number of non-zero entries is only N×E, that is only 
E/P of the cells have numbers in. If we take a million 
users, with 10,000 products, the sparse matrix has 
perhaps 100 million non-zero entries (big enough), 
but the complete matrix has 10 billion cells. It is clear 
we want to avoid any sort of algorithm whose time 
taken, or memory used is based on the complete 
matrix. 

As there are typically more users than products, so of-
ten it is the users that are ‘simplified’ further using some 
form of clustering into classes of users or representa-
tion as a vector of characteristics. Both of these can be 
obtained through automated processes, for example, the 
self-organising maps in Chapter 5, although at each stage 
algorithms often have to be adapted to deal with scale. 

Another approach is to create product–product scores 
by summing over users. Figure 17.13 shows a simple 
example of this, each user’s scores for a pair of products 
are multiplied together and add to the relevant product– 
product score. If you know your matrix algebra, you 
might recognise this as transpose(M)×M. 

This code is rather oversimplified in two senses. First, 
it is not optimised for the sparseness of the matrix M, but 
there are ways of doing this. Second, one might want to 

combine the users’ scores in other non-linear ways, not 
just multiply them. For example, if the same user has a 
positive score for two products, we might count this more 
strongly than a positive and a negative, or two negative 
scores. 

Even this score matrix is quite large (P×P), so further 
data reduction might be necessary. However, let’s assume 
t is manageable. We can then see how this can be used in 
practice. 

When the user is looking at product A, and finds 
other products B1, B2, ... where score(A, Bi) is large, this 
is the simple “customers who liked/bought A also liked 
B”. Adding a little more sophistication, one could rank 
the Bi by also looking at other products P1, P2, ... the 
user had recently engaged with and using the values of 
score(Bi, Pj) to enable a more personalised ranking of 
suggestions. 

17.5.2 Crowdsourcing and Human Computation 

One of the defining features of the web has been its use of 
crowdsourcing, engaging very large numbers of people 
in the creation of knowledge as opposed to small num-
bers of professionals. Sometimes this is voluntary as in 
the case of Wikipedia with over a quarter of a million ac-
tive contributors. However, it may also be paid, as in the 
case of Amazon Mechanical Turk and many other sites 
offering ‘human intelligence tasks’ to the lowest bidder. 
Finally, there are tasks that happen, possibly without you 
being aware that you are doing them as they are part of a 
game or login process. 

These human tasks vary in their complexity. Some 
involve expertise or creativity including design and 
writing work. Some are more low-level such as 
checking/correcting text generated by OCR (optical 
character recognition). The latter are sometimes also 
called human computation, a phrase that conjures up 
images of the worker as a cog in the machine; in fact not 
an unfair portrayal of much of the work. 

One of the earliest examples of human computation 
was reCAPTCHA codes, used as part of an authentica-
tion process to ensure that the user was human and not 
an automated bot. These asked the user to type the text 
in several slightly broken or blurry images. The images 
were derived from scans of books and news articles 
where OCR had either failed or had low confidence. Two 
images were shown, one had known text and was used to 
verify the user was human, the other had unknown text 
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FIGURE 17.14 Early reCAPTCHA – human as gap filling for 
automated systems. 

and the user was effectively providing a transcription. 
If enough users typed the same text, it became ‘known’ 
and the relevant OCR updated. 

This early example was effectively filling in gaps in the 
automated system (see Figure 17.14). OCR has become 
increasingly sophisticated, often including rich language 
models to help choose where the text is ambiguous, even 
for poor quality or hand-written text. This is true of many 
kinds of automated systems. If the gaps are occasional 
and can be detected, then it may be more cost effective 
to have the task completed by people rather than trying 
to create ever more complex automated systems, even 
where this is possible. 

You may also have used reCAPTCHA codes that show 
you a number of images and ask you whether these in-
clude cyclists or road crossings. This is also being used 
as part of an intelligent system, but rather than filling in 
gaps in the processing you are preparing training mate-
rials. 

Deep learning and other machine learning algorithms 
have allowed the development of highly accurate image 
recognition systems. However, to do this they require 
large quantities of training data. It is easy to gather vast 
quantities of image data, from dashboard cameras in cars 
to satellite imagery. If these are tagged to describe the 
features seen ‘person’, ‘cloud’, ‘mountain’, then the ma-
chine learning system can work on them. The difficult 
thing is adding tags as this is a huge quantity of images. 
When you complete the image reCAPTCHA codes, you 
are doing precisely that, adding tags so that Google can 
use these to train the image processing systems for au-
tonomous cars (Figure 17.15). 

Both of these can happen in the same system. For ex-
ample, many apparently AI-driven chatbots have human 
backup. First they attempt automatic recognition of your 
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question. If this succeeds with high enough confidence, 
then the system responds. However, if the confidence is 
low, there is a pool of back-up humans who attempt to in-
terpret the user’s request. The human-generated response 
is then used as further training data so that if the system 
encounters a similar request in future it may be able to 
respond automatically. 

17.5.3 Social Media as Data 

We have already seen how the large corpora of text in 
the web and social media can be used to derive language 
models and structured knowledge simply by its volume. 
In addition, social media can be used as a source of raw 
data for sophisticated (and simple) real-time analysis. 

The national health services and the WHO have exten-
sive monitoring processes for doctors and health workers 
to report potential outbreaks of endemic diseases from 
the common cold to Ebola. This can then be used to di-
rect resources or generate emergency responses as neces-
sary. During the Covid-19 pandemic, the same authori-
ties were trying to gauge public sentiment as to whether 
they would respond well to various public health mea-
sures and to predict uptake of vaccination. 

However, often changes in search behaviour, Twit-
ter/X and other social media content precede official 
channels. When seasonal flu begins, there will be more 
web searches for symptoms and more phrases in tweets 
and posts suggesting poor health. Similarly language 
analysis of tweets from early in the Covid-19 outbreak 
included levels of fear or surprise [Medford, 2020]. 
This data cannot always be taken at face value as small 
numbers of people account for large volumes of activity, 
and these are often, depending on the platform, slanted 
towards younger and more affluent users. However, with 
sufficient processing these data sources can be used as 
indicators of change and trends without relying on them 
uncritically. 

Similar techniques have been used by national power 
regulators. It may take several minutes for local power 
generation and distribution companies to inform their 
national grid about outages. This time can be critical to 
prevent catastrophic knock-on failures when problems 
in one area cause power surges in neighbouring regions. 
However, spikes in ‘#powercut’ tweets can start within 
seconds allowing early warning of impending problems. 

A slightly different version of similar techniques 
has been used to monitor public opinion shifts during 
political campaigns at a far finer granularity than is 
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FIGURE 17.15 More recent reCAPTCHA – human creating training data for machine learning. 

possible with traditional opinion polls. Many online 
betting sites allow users to place bets on political 
campaigns such as the US presidential election, and the 
sites change the odds based on betting patterns. So, the 
odds during a live debate can give a near instant reading 
of whether watchers think this has shifted the overall 
sentiment [293]. Of course, the raw result is focused 
on those who are both watching the debate and also 
online gamblers, but again this can be raw data for more 
sophisticated machine learning algorithms. 

17.6 SUMMARY 
We’ve seen that the Semantic Web and in particular 
RDF and linked data can facilitate web-scale reasoning. 
Triplestores can be used to store RDF including meta-
information and provenance, while SPARQL allows 
queries. Various forms of markup can also make 
human-readable web pages in HTML available for 
automated reasoning, but text-mining techniques can 
also be used. The vast quantity of information allows 
new forms of knowledge-rich reasoning, but also simple 
statistical techniques can be surprisingly powerful, 
allowing apparently intelligent understanding of text 
based on vast quantities of essentially frequency data. 
The web is ultimately a social machine where people and 
machines interact, this leads to opportunities to learn 
automatically from similarities and communications 
between people and to explicitly include people in data 
production and management through crowdsourcing. 

17.1 Following the pattern in Section 17.2.1 represent 
all of the entity–entity relationships in Figure 2.6 
as triples. Note, in the semantic network diagram 
in Figure 2.6, the entities are the objects or con-
cepts enclosed in boxes. For this exercise, ignore 
the properties that are not relationships between 
entities, that is: ‘is carnivorous’, ‘is wild’, ‘has/has 
no tail’, ‘barks/doesn’t bark’, ‘has 4 legs’, ‘is tall’, ‘is 
brown’ and ‘is drawn’. 

17.2 Now represent the properties in Figure 2.6 
as triples. Think carefully about whether the 
property is boolean (true/false) or has some 
numeric or other type of value. 

17.3 Imagine you are trying to create a name 
recogniser, rather like the ISBN recogniser in 
Figure 17.9. You want it to match simple names 
such as ‘Alan Dix’, ‘J Finlay’, ‘J.E. Finlay’ and 
‘Alan John Dix’. That is any number of forenames 
including optional initials followed by a surname. 
Initials may or may not be followed by a full stop. 
You can assume that names always start with a 
capital letter but do not match fully capitalised 
names such as “Alan DIX”. 

a. Create a small number of regular expression 
that together will match names. That is any 
valid name should match at least one of the 
regular expressions, but no non-name should 
match any of them. Try to do this using as few 
regular expressions as possible. 

b. Can you think of names of people that this 
would not match? 

Note: If you are not sure of how to write regular 
expressions, look up the entry for regular expres-
sion in the book’s online glossary. 
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CHAP T ER 1 8 

Expert and Decision Support Systems 

18.1 OVERVIEW 
Expert systems were one of the early success stories of 
AI, with medical advice systems dating back to the 1970s. 
In this chapter we will look at systems where AI in var-
ious ways seeks to aid, learn from and in some cases re-
place experts. As well as expert systems, which attempt to 
capture knowledge explicitly, we will consider decision 
support systems, which use a variety of statistical and AI 
techniques to offer advice or supporting information for 
experts making their own decisions. In particular, visual 
analytics combines interactive machine learning and ad-
vanced visualisation. We will see that knowledge acqui-
sition may be explicit, seeking to draw out the expert’s 
understanding of a domain, or implicit based on the ex-
pert’s past behaviour and data. Explanation is critical at 
various stages of this process, an issue we will return to 
in Chapter 21. 

18.2 INTRODUCTION – EXPERTS IN THE 
LOOP 

The core feature of the systems and techniques we will 
cover in this chapter is that experts are in some way in-
volved. The term ‘expert’ is itself broad as we are all ex-
pert at something. We will principally be dealing with 
uncommon expertise, such as medical knowledge, but 
many of the techniques would also apply for more day-
to-day but still individual or unique perspectives, such as 
the way your grandma makes pasta. Experts can be in-

FIGURE 18.1 Different forms of expert involvement. 

volved in two different ways: they can be used as sources 
during knowledge acquisition in the construction of an 
AI system; or they can be users applying the outputs of 
the system (Figure 18.1). 

Traditional expert systems (Section 18.3) ask users to 
explicitly encode their knowledge in rules or one of the 
other forms of knowledge representation dealt with in 
Chapter 2. This may then be used entirely automatically 
or by people with less expertise. For example, you might 
follow the instructions from a cookery application based 
on your grandma’s expertise. This process of knowledge 
elicitation can be difficult, and we will look at this in 
more detail in Section 18.4.1. Machine learning can 
be used either alongside this or to implicitly capture 
expert knowledge from past data. For example, a system 
might use data about past patient symptoms combined 
with (human) treatment decisions and use this to build 
automated recommendations. 

Decision support systems (Section 18.6) provide in-
formation and visualisations to help experts make deci-
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sions or predictions. This may be based on the expert’s 
own knowledge or the knowledge of peers, for example 
natural language processing techniques to retrieve past 
cases similar to a current patient’s symptoms. More of-
ten they are based more on pure data analysis, for ex-
ample the (highly controversial) systems used by some 
courts that offer predictions of the likelihood of a felon 
re-offending [7]. 

A special case of decision support is visual analytics 
(Section 18.6.3). Many expert systems and decision sup-
port systems pre-process past data and knowledge and 
then use this as a relatively static resource. In contrast, 
visual analytics systems offer the expert the ability to ex-
plore data interactively using a combination of statistical 
and machine learning techniques and rich visualisations. 
This can be used historically to gain understanding of a 
dataset or with live data as part of decision making. Note 
that in the case of visual analytics, one of the outcomes 
of the process is to increase expert understanding of phe-
nomena. 

18.3 EXPERT SYSTEMS 
An expert system is an AI program that uses knowledge 
to solve problems that would normally require a human 
expert. The knowledge is collected from human experts 
and secondary knowledge sources, such as books. The 
knowledge is represented in some form, often using logic 
or production rules, although forms of neural networks 
are increasingly common. The system includes a reason-
ing mechanism as well as heuristics for making choices 
and navigating around the search space of possible solu-
tions. It also includes a mechanism for passing informa-
tion to and from the user. Even from this brief overview 
you can probably see how the techniques that we have 
already considered might be used in expert system de-
velopment. 

We can think of an expert system as operating in two 
main phases (see also Figure 18.2): 

knowledge acquisition – A knowledge engineer works 
with experts in order to elicit and then represent 
their knowledge. 

application – The running system based on that 
knowledge is used by non-experts to help them 
make judgements or may be applied automatically. 

In this section we will look at the latter, assuming that ex-
pert knowledge has been captured and represented, and 

we will return to the question about how this is acquired 
in Section 18.4. 

18.3.1 Uses of Expert Systems 

If an expert system is a program that performs the work 
of human experts, what type of work are we talking 
about? This is not an easy question to answer since the 
possibilities, if not endless, are extensive. Commercial 
expert systems have been developed to provide financial, 
tax-related and legal advice; to plan journeys; to check 
customer orders; to perform medical diagnosis and 
chemical analysis; to solve mathematical equations; to 
design everything from kitchens to computer networks; 
and to debug and diagnose faults. And this is not 
a comprehensive list. Such tasks fall into two main 
categories: 

diagnosis and advice – Those that use evidence to se-
lect one of a number of hypotheses; and 

design and planning – Those that work from require-
ments and constraints to produce a solution which 
meets these. 

So why are expert systems used in such areas? Why not 
use human experts instead? And what problems are can-
didates for an expert system? To take the last question 
first, expert systems are generally developed for domains 
that share certain characteristics. 

rare expertise – First, human expertise about the sub-
ject in question is not always available when it is 
needed. This may be because the necessary knowl-
edge is held by a small group of experts who may 
not be in the right place at the right time. Alterna-
tively it may be because the knowledge is distributed 
through a variety of sources and is therefore difficult 
to assimilate. 

problem clarity – Secondly, the domain is well defined 
and the problem clearly specified. At present, as we 
discovered in Chapter 2, AI technology still strug-
gles to handle common sense or general knowledge 
very well, but expert systems can be very successful 
for well-bounded problems. 

willing experts – Thirdly, there are suitable and will-
ing domain experts to provide the necessary knowl-
edge to populate the expert system. It is unfeasible 
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FIGURE 18.2 Expert system capturing and applying knowledge. 

to contemplate an expert system when the relevant 
experts are either unwilling to co-operate or are not 
available. 

limited scope – Finally, the problem is of reasonable 
scope, covering diagnosis of a particular class of 
disease, for example, rather than of disease in 
general. 

If the problem fits this profile, it is likely to benefit 
from the use of expert system technology. In many 
cases the benefits are in real commercial terms such as 
cost reduction, which may go some way to explaining 
their commercial success. For example, expert systems 
allow the dissemination of information held by one or 
a small number of experts. This makes the knowledge 
available to a larger number of people, and less 
skilled (so less expensive) people, reducing the cost 
of accessing information. Expert systems also allow 
knowledge to be formalised. It can then be tested 
and potentially validated, reducing the costs incurred 
through error. They also allow integration of knowledge 
from different sources, again reducing the cost of 
searching for knowledge. Finally, expert systems can 
provide consistent, unbiased responses. This can be a 
blessing or a curse depending on which way you look 
at it. On the positive side, the system is not plagued by 
human error or prejudice (unless this is built into the 
knowledge and reasoning), resulting in more consistent, 
correct solutions. On the other hand, the system is 
unable to make value judgements, which makes it more 
inflexible than the human (e.g. a human assessing 
a loan application can take into account mitigating 
circumstances when assessing previous bad debts, but 
an expert system is limited in what it can do). 

FIGURE 18.3 Typical expert system architecture. 

18.3.2 Architecture of an Expert System 

An expert system comprises a number of components, 
several of which utilise the techniques we have consid-
ered so far (see Figure 18.3). 

Working from the bottom-up, we require: (i) knowl-
edge; (ii) a reasoning mechanism and heuristics for prob-
lem solving (e.g. search or constraint satisfaction); (iii) 
an explanation component; and (iv) a dialogue compo-
nent or user interface. We have considered the first two 
of these in previous chapters and will come back to them 
when we consider particular expert systems. Before that, 
let us look in a little more detail at the last two. 

18.3.3 Explanation Facility 

It is not acceptable for an expert system to make decisions 
without being able to provide an explanation for the basis 
of those decisions. Clients using an expert system need 
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to be convinced of the validity of the conclusion drawn 
before applying it to their domain. They also need to be 
convinced that the solution is appropriate and applica-
ble in their circumstances. Engineers building the expert 
system also need to be able to examine the reasoning be-
hind decisions in order to assess and evaluate the mecha-
nisms being used. It is not possible to know if the system 
is working as intended (even if it produces the expected 
answer) if an explanation is not provided. So explanation 
is a vital part of expert system technology. 

There are a number of ways of generating an explana-
tion, the most common being to derive it from the goal 
tree that has been traversed. Here the explanation facil-
ity keeps track of the subgoals solved by the system and 
reports the rules that were used to reach that point. For 
example, imagine the following very simple system for 
diagnosing skin problems in dogs. 

Rule 1: IF the dog is scratching its ears 
AND the ears are waxy 
THEN the ears should be cleaned 

Rule 2: IF the dog is scratching its coat 
AND if insects can be seen in the coat 
AND if the insects are grey 
THEN the dog should be treated for lice 

Rule 3: IF the dog is scratching its coat 
AND if insects can be seen in the coat 
AND if the insects are black 
THEN the dog should be treated for fleas 

Rule 4: IF the dog is scratching its coat 
AND there is hair loss 
AND there is inflammation 
THEN the dog should be treated for 
eczema 

Imagine we have a dog that is scratching and has insects 
in its coat. A typical consultation would begin with a re-
quest for information, in an attempt to match the con-
ditions of the first rule “is the dog scratching its ears?”, 
to which the response would be no. The system would 
then attempt to match the conditions of rule 2, asking “is 
the dog scratching its coat?” (yes), “can you see insects in 
the coat?” (yes), “are the insects grey?”. If we respond yes 
to this question, the system will inform us that our dog 
needs delousing. At this point if we asked for an expla-
nation, the following style of response would be given: 

It follows from rule 2 that 

If the dog is scratching 

And if insects can be seen 

And if the insects are grey 

Then the dog should be treated for lice. 

This traces the reasoning used through the consultation 
so that any errors can be identified and justification can 
be given to the client if required. However, as you can see, 
the explanation given is simply a restatement of the rules 
used, and as such is limited. 

In addition to questions such as “how did you reach 
that conclusion?” the user may require explanatory feed-
back during a consultation, particularly to clarify what 
information the system requires. A common request is 
“why do you want to know that?” when the system asks 
for a piece of information. In this case the usual response 
is to provide a trace up to the rule currently being con-
sidered and a restatement of that rule. Imagine that in 
our horror at discovering crawling insects on our dog we 
hadn’t noted the colour – we might ask to know why the 
system needs this information. The response would be of 
the form 

You said the dog is scratching 

and that there are insects. 
If the insects are grey 

then the dog should be treated for lice. 

Notice that it does not present the alternative rule, rule 3, 
which deals with black insects. This would be useful but 
assumes look-ahead to other rules in the system to see 
which other rules may be matched. 

This form of explanation facility is far from ideal, both 
in terms of the way that it provides the explanation and 
the information to which it has access. In particular it 
tends to regurgitate the reasoning in terms of rules and 
goals, which may be appropriate to the knowledge en-
gineer but is less suitable for the user. Ideally, an expla-
nation facility should be able to direct the explanation 
towards the skill level or understanding of the user. In 
addition, it should be able to differentiate between the 
domain knowledge that it uses and control knowledge, 
such as that used to control the search. Explanations for 
users are best described in terms of the domain; those for 
engineers in terms of control mechanisms. 

In addition, rule tracing only makes sense for back-
ward reasoning systems, since in forward reasoning it is 
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not known, at a particular point, where the line of rea-
soning is going. 

For these reasons researchers have looked for 
alternative mechanisms for providing explanations. 
One approach is to maintain a representation of the 
problem-solving process used in reaching the solution as 
well as the domain knowledge. This provides a context 
for the explanation: the user knows not only which 
rules have been fired but what hypothesis was being 
considered. More complex explanations may include a 
domain model [269] (rather like the blocks world model 
of SHRDLU, but more complex for the real world) or 
meta-knowledge. In order to do this successfully, expert 
systems must be designed for explanation. 

18.3.4 Dialogue and UI Component 

The dialogue component is closely linked to the 
explanation component, as one side of the dialogue 
involves the user questioning the system at any point 
in the consultation in the ways we have considered. 
However, the system must also be able to question the 
user in order to establish the existence of evidence. 
The dialogue component has two functions. First, 
it determines which question to ask next (using 
meta-rules and the reasoning mechanism to establish 
what information is required to fire particular rules). 
Secondly, it ensures that unnecessary questions are not 
asked, by keeping a record of previous questions. For 
example, it is not helpful to request the model of a car 
when the user has already said that they don’t know its 
make. 

The dialogue could be one of three styles: 
• system controlled, where the system drives the dia-

logue through questioning the user 

• mixed control, where both user and system can di-
rect the consultation 

• user controlled, where the user drives the consulta-
tion by providing information to the system. 

Most expert systems use the first of these, the rest the sec-
ond. This is because the system needs to be able to elicit 
information from the user when it is needed to advance 
the consultation. If the user controlled the dialogue, the 
system might not get all the information required. Ideally 
a mixed dialogue should be provided, allowing the sys-
tem to request further information and the user to ask 
for “why?” and “how?” explanations at any point. 
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Expert systems for large-scale use deployed over the 
web or in phone apps may use other forms of interac-
tion, including menus or forms for initial input possibly 
combined with chatbots. 

18.3.5 Examples of Four Expert Systems 

To illustrate how the components that we have looked at 
fit together we will consider four early expert systems. 
Although these systems are far from up-to-date, they 
were systems that were groundbreaking when they 
were built, and they have all been successful in their 
domains. As such they rank among the “classics” of 
expert systems and therefore merit a closer look. In each 
case we will summarise the features of the expert system 
in terms of the key components we have identified. 
This will help you to see how different expert systems 
can be constructed for different problems. In each 
case, consider the problem that the expert system was 
designed to solve, and why the particular components 
chosen are suited to that task. 

18.3.5.1 Example 1: MYCIN 

MYCIN was an expert system for diagnosing and recom-
mending treatment of bacterial infections of the blood 
(such as meningitis and bacteremia) [258]. It was devel-
oped at Stanford University in California in the 1970s 
and became a template for many similar rule-based sys-
tems. It was intended to support clinicians in the early 
diagnosis and treatment of meningitis, which can be fa-
tal if not treated in time. However, the laboratory tests for 
these conditions take several days to complete, so doctors 
(and therefore MYCIN) have to make decisions with in-
complete information. A consultation with MYCIN be-
gins with requests for routine information such as age, 
medical history and so on, progressing to more specific 
questions as required. 

• Knowledge representation. Production rules (imple-
mented in LISP). 

• Reasoning. Backward chaining, goal-driven reason-
ing. MYCIN uses certainty factors to reason with 
uncertain information. 

• Heuristics. When the general category of infection 
has been established, MYCIN examines each can-
didate diagnosis in a depth first manner. Heuristics 
are used to limit the search, including checking all 
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premises of a possible rule to see if any are known 
to be false. 

• Dialogue/explanation. The dialogue is computer (or 
system) controlled, with MYCIN driving the con-
sultation through asking questions. Explanations 
are generated through tracing back through the 
rules that have been fired. Both “how?” and “why?” 
explanations are supported. 

18.3.5.2 Example 2: PROSPECTOR 

PROSPECTOR was an expert system to evaluate geolog-
ical sites for potential mineral deposits, again developed 
at Stanford in the late 1970s [95]. Given a set of obser-
vations on the site’s attributes (provided by the user), 
PROSPECTOR provides a list of minerals, along with 
probabilities of them being present. In 1984 it was instru-
mental in discovering a molybdenum deposit worth 100 
million dollars! 

• Knowledge representation. Rules, semantic network. 

• Reasoning. Predominantly forward chaining (data-
driven), with some backward chaining. Bayesian 
reasoning is used to deal with uncertainty. 

• Heuristics. Depth first search is focused using the 
probabilities of each hypothesis. 

• Dialogue/explanation. The dialogue uses mixed 
control. The user volunteers information at the 
start of the consultation, and PROSPECTOR 
can request additional information when required. 
Explanations are generated by tracing back through 
the rules that have been fired. 

18.3.5.3 Example 3: DENDRAL 

DENDRAL was one of the earliest expert systems, devel-
oped at Stanford during the late 1960s [170]. It infers the 
molecular structure of organic compounds from chem-
ical formulae and mass spectrography data. It is not a 
“stand-alone” expert, more an expert’s assistant, since it 
relies on the input of the human expert to guide its deci-
sion making. However, it was successful enough in this 
capacity to discover results that were published as origi-
nal research. 

• Knowledge representation. Production rules and al-
gorithms for generating graph structures, supple-
mented by expert user’s knowledge. 

• Reasoning. Forward chaining (data-driven). 

• Heuristics. DENDRAL uses a variation on depth 
first search called generate and test, where all 
hypotheses are generated and then tested against 
the available evidence. Heuristic knowledge from 
the users (chemists) is also used to constrain the 
search. 

• Dialogue/explanation. The dialogue uses mixed 
control. The user can supply information and the 
system can request information as required. 

18.3.5.4 Example 4: XCON 

XCON was a commercial expert system developed by 
Digital Electronics Corporation to configure VAX com-
puter systems to comply with customer orders [14]. The 
problem is one of planning and design: there could be 
up to 100 components in any system and XCON had to 
decide how they could best be spatially arranged to meet 
the specification. The design also had to meet constraints 
placed by the functionality of the system and physical 
constraints. 

• Knowledge representation. Production rules. 

• Reasoning. Forward chaining (data-driven). Since it 
is possible to specify rules exactly no uncertainty is 
present. 

• Heuristics. The main configuration task is split into 
subtasks which are always examined in a predeter-
mined order. Constraint satisfaction is used to in-
form the search for a solution to a subtask. 

• Dialogue/explanation. The dialogue is less impor-
tant than in the previous situations since the cus-
tomer’s requirements can be specified at the begin-
ning and the system contains all the information it 
needs regarding other constraints. 

These examples illustrate how the different techniques 
we have considered in previous chapters can be com-
bined to produce a useful solution, and how different 
problems require different solutions. 

18.3.6 Building an Expert System 

We have looked at some of the applications for which ex-
pert systems have proved successful, and what compo-
nents an expert system will have. But how would we go 
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about building one? First, we need to be certain that ex-
pert system technology is appropriate to solve the prob-
lem that we have in mind. If the problem falls into one 
of the categories we have already mentioned, such as di-
agnosis, planning, design or advice giving, then it has 
passed the first test. The second consideration is whether 
the problem can be adequately solved using conventional 
technology. For example, can it be solved statistically or 
algorithmically? If the answer to this is no, we need to ask 
whether the problem justifies the expense and effort re-
quired to produce an expert system solution. This usually 
means that the expert system is expected to save costs in 
the long term, perhaps by making an operation more ef-
ficient or making knowledge more widely available. The 
problem should also be clearly defined and of reasonable 
size, since expert system technology cannot handle gen-
eral or common-sense knowledge. 

18.3.7 Limitations of Expert Systems 

We have looked at expert systems, what they are used 
for and whether to build one. But what are the current 
limitations of expert system technology that might affect 
our exploitation of them? We have already come across 
a number of limitations in our discussion, but we will 
reconsider them here. 

First, there is the problem of knowledge acquisition: 
it is not an easy task to develop complete, consistent 
and correct knowledge bases. Experts are generally 
poor at expressing their knowledge, and non-expert (in 
the domain) knowledge engineers may not know what 
they are looking for. Some tool support is available, 
and using a structured approach can alleviate the 
problem, but it remains a bottleneck in expert system 
design. 

A second problem is the verification of the knowledge 
stored. The knowledge may be internally consistent but 
inaccurate, due to either expert error or misunderstand-
ing at the acquisition stage. Validation of data is usually 
done informally, on the basis of performance of the sys-
tem, but this makes it more difficult to isolate the cause 
of an observed error. Knowledge elicitation techniques 
such as critiquing, where the domain expert assesses the 
knowledge base in stages as it is developed, help to alle-
viate this problem, although the verification is still sub-
jective. 

Thirdly, expert systems are highly domain dependent 
and are therefore brittle. They cannot fall back on general 
or common-sense knowledge or generalise their knowl-
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edge to unexpected cases. A new expert system is there-
fore required for each problem (although expert system 
shells can be re-used) and the solution is limited in scope. 

An additional problem with brittleness is that the user 
may not know the limitations of the system. For example, 
in a Prolog-based system a goal may be proved false if 
the system has knowledge that it is false or if the system 
does not have knowledge that it is true. So the user may 
not know whether the goal is in fact false or whether the 
knowledge base is incomplete. 

Finally, expert systems often lack meta-knowledge, 
that is knowledge about their own operations, so they 
cannot reason about their limitations or the effect of 
these on the decisions that are made. They cannot decide 
to use a different reasoning or search strategy if it is more 
appropriate or provide more informative explanations. 

18.4 KNOWLEDGE ACQUISITION 
So we have examined our candidate problem and de-
cided that an expert system would be an appropriate so-
lution; what next? Assuming that we have considered our 
domain of interest carefully and defined the boundaries 
of the expert system, our first and most crucial stage is 
knowledge acquisition. Knowledge acquisition is the pro-
cess of getting information out of the head of the expert 
or from the chosen source and into the form required 
by the expert system. We can identify two phases of this 
process: 

knowledge elicitation – where the knowledge is 
extracted from the expert; and 

knowledge representation – where the knowledge is 
put into the expert system. 

In this section we will focus primarily on knowledge 
acquisition and representation for symbolic/rule-based 
expert systems. Many aspects do not change when deal-
ing with hybrid systems that also incorporate machine 
learning, but there are some differences which we will 
discuss in Section 18.5. 

18.4.1 Knowledge Elicitation 

The knowledge engineer (the title often given to the 
person developing the expert system) is probably not 
an expert in the domain of interest. The engineer’s first 
task is therefore to become familiar with the domain 
through talking to domain experts and reading relevant 
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background material. Once the engineer has a basic 
level of understanding of the domain he or she can begin 
knowledge elicitation. There are a number of techniques 
used to facilitate this. It is the job of the knowledge 
engineer to spot gaps in the knowledge that is being 
offered and fill them. 

The problem of knowledge elicitation is not a trivial 
one. To help you to understand the magnitude of 
the problem, think of a subject on which you would 
consider yourself expert. Imagine having to formalise 
all this information without error or omission. Think 
about some behaviour in which you are skilled (a 
good example is driving a car): can you formalise all 
the actions and knowledge required to perform the 
necessary actions? Alternatively, imagine questioning 
someone on a topic on which they are expert and you 
are not. How do you know when information is missing? 
This is where concrete examples can be useful since it is 
easier to spot a conceptual leap in an explanation of a 
specific example than it is in more general explanations. 

The interview can capture qualitative information, 
which is the crux of knowledge elicitation, and therefore 
provides the key mechanism for acquiring knowledge. 
There are a number of different types of interview, each 
of which can be useful for eliciting different types of 
information. We will consider a number of variants on 
the interview: the unstructured interview; the structured 
interview; focused discussion; role reversal; and think 
aloud. 

18.4.1.1 Unstructured Interviews 

The unstructured interview is open and exploratory: 
no fixed questions are prepared and the interviewee is 
allowed to cover topics as he or she sees fit. It can be 
used to set the scene and gather contextual information 
at the start of the knowledge elicitation process. Probes, 
prompts and seed questions can be used to encourage 
the interviewee to provide relevant information. A probe 
encourages the expert to provide further information 
without indicating what that information should be. 
Examples of such questions are “tell me more about 
that”, “and then?” and “yes?”. Prompts are more directed 
and can help return the interview to a relevant topic 
that is incomplete. Seed questions are helpful in starting 
an unstructured interview. A general seed question 
might be: “Imagine you went into a bookshop and 
saw the book you wished you’d had when you first 

started working in the field. What would it have in it?” 
[149]. 

18.4.1.2 Structured Interviews 

In structured interviews a framework for the interview 
is determined in advance. They can involve the use 
of check-lists or questionnaires to ensure focus is 
maintained. Strictly structured interviews allow the 
elicitor to compare answers between experts whereas 
less strict, perhaps more accurately termed semi-
structured interviews combine a focus on detail with 
some freedom to explore areas of interest. 

Appropriate questions can be difficult to devise with-
out some understanding of the domain. Unstructured in-
terviews are often used initially, followed by structured 
interviews and more focused techniques. 

18.4.1.3 Focused Discussions 

A focused discussion is centred around a particular prob-
lem or scenario. This may be a case study, a critical in-
cident or a specific solution. Case analysis considers a 
case study that might occur in the domain or one that 
has occurred. The expert explains how it would be or was 
solved, either verbally or by demonstration. Critical in-
cident analysis is a variant of this that looks at unusual 
and probably serious incidents, such as error situations. 

In critiquing, the expert is asked to comment on some-
one else’s solution to a problem or design. The expert is 
asked to review the design or problem solution and iden-
tify omissions or errors. This can be helpful as a way of 
cross-referencing the information provided by different 
experts and also provides validation checks, since each 
solution or piece of information is reviewed by another 
expert. 

18.4.1.4 Role Reversal 

Role reversal techniques place the elicitor in the expert’s 
role and vice versa. There are two main types: teach-
back interviews and Twenty Questions. In teach-back 
interviews the elicitor “teaches” the expert on a subject 
that has already been discussed. This checks the elicitor’s 
understanding and allows the expert to amend the 
knowledge if necessary. In Twenty Questions, the 
elicitor chooses a topic from a predetermined set and 
the expert asks questions about the topic in order to 
determine which one has been selected. The elicitor 

https://alandix.com/glossary/aibook/knowledge engineer
https://alandix.com/glossary/aibook/knowledge engineer
https://alandix.com/glossary/aibook/knowledge elicitation!unstructured interview
https://alandix.com/glossary/aibook/knowledge elicitation!seed questions
https://alandix.com/glossary/aibook/knowledge elicitation!structured interview
https://alandix.com/glossary/aibook/knowledge elicitation!focused discussions
https://alandix.com/glossary/aibook/knowledge elicitation!critiquing
https://alandix.com/glossary/aibook/knowledge elicitation!role reversal
https://alandix.com/glossary/aibook/knowledge elicitation!teach-back interview
https://alandix.com/glossary/aibook/knowledge elicitation!teach-back interview
https://alandix.com/glossary/aibook/knowledge elicitation!Twenty Questions


can answer yes or no. The questions asked reflect the 
expert’s knowledge of the topic and therefore provide 
information about the domain. 

18.4.1.5 Think-aloud 

Think-aloud is used to elicit information about specific 
tasks. The expert is asked to think aloud while carrying 
out the task. Similarly, the post-task walk-through in-
volves debriefing the expert after the task has been com-
pleted. Both techniques are better than simple observa-
tion, as they provide information on expert strategy as 
well as behaviour. 

18.4.2 Knowledge Representation 

When the knowledge engineer has become familiar with 
the domain and elicited some knowledge, it is necessary 
to decide on an appropriate representation for the 
knowledge, choosing, for example, to use a frame-based 
or network-based scheme. The engineer also needs to 
decide on appropriate reasoning and search strategies. 
At this point the engineer is able to begin prototyping 
the expert system, normally using an expert system shell 
or a high-level AI language. 

18.4.2.1 Expert System Shells 

An expert system shell abstracts features of one or 
more expert systems. The shell comprises the inference 
and explanation facilities of an existing expert system 
without the domain-specific knowledge. This allows 
non-programmers to add their own knowledge on a 
problem of similar structure but to re-use the reasoning 
mechanisms. A different shell is required for each type 
of problem, for example to support data-driven or 
goal-driven reasoning, but one shell can be used for 
many different domains. 

Expert system shells are useful if the match between 
the problem and the shell is good, but they are inflexible. 
They work best in diagnostic and advice-style problems 
rather than design or constraint satisfaction and are read-
ily available for most computer platforms. This makes 
building an expert system using a shell relatively cheap. 

18.4.2.2 High-level Programming Languages 

High-level programming languages, designed for AI, 
provide a fast, flexible mechanism for developing 
expert systems. They conceal their implementation 
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details, allowing the developer to concentrate on the 
application. They also provide inbuilt mechanisms for 
representation and control. Different languages support 
different paradigms, for example Prolog supports logic, 
LISP is a functional programming language and OPS5 
was a production system language designed specifically 
for expert systems. Python has become popular for AI 
particularly for machine learning. As well as handling 
data, there are implementations of various reasoning 
mechanisms in Python, including Prolog-like logic 
rules. 

However, high-level languages do demand certain 
programming skills in the user, particularly to develop 
more complex systems, so they are less suitable for 
the “do-it-yourself ” expert system developer. Some 
environments have been developed that support more 
than one AI programming language, such as POPLOG 
which incorporates LISP and Prolog, and there are 
configurable expert system shells available in many 
languages. These provide a blend of flexibility and some 
programming support but still require programming 
skills. 

18.4.2.3 Ontologies 

Expert systems often include specific reasoning rules 
such as: “if the patient has a headache and loss of smell 
suspect Covid-19”. However, this is often backed up 
by large amounts of declarative knowledge such as 
“Covid-19 is a kind of coronavirus” or “headaches are a 
symptom of flu”. 

This declarative knowledge is most often encoded 
in some form of ontology as we first saw in Chapter 2. 
This can be encoded in a bespoke fashion within tools 
or hand-edited using a standard such as OWL/RDF 
(Chap. 17). However, large ontologies are best created 
using a purpose-built tool as these include ways to edit, 
visualise and often verify properties of the ontology. 
Ontology editors will typically be able to import/export 
in standard formats that make them easy to share 
with other projects and use by different reasoning 
engines. 

Expert system shells may include some form of 
ontology, but there are also many commercial and open 
standalone ontology editors. Probably the most well 
known and used is Protégé [204], not least because it has 
a highly extensible architecture, so its large developer 
community can create their own plugins which expand 
its capabilities. Figure 18.4 shows a screenshot of 
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WebProtégé, which allows both web-based editing and 
also cloud-hosted sharing of ontologies. 

18.4.2.4 Selecting a Tool 

There are a number of things to bear in mind when 
choosing a tool to build an expert system. First, select 
a tool which has only the features you need. This will 
reduce the cost and increase the speed (both in terms 
of performance and development). Secondly, let the 
problem dictate the tool to use, where possible, not the 
available software. This is particularly important with 
expert system shells, where choosing a shell with the 
wrong reasoning strategy for the problem will create 
more difficulties than it solves. Think about the problem 
in the abstract first and plan your design. Consider your 
problem against the following abstract problem types: 

• problems with a small solution space and reliable 
data 

• problems with unreliable or uncertain data 

• problems where the solution space is large but 
where you can reduce it, say using heuristics 

• problems where the solution space is large but not 
reducible. 

Each of these would need a different approach. Look 
also at successful systems, try to find one that is solving a 
similar problem to yours and look at its structure. Only 
when you have decided on the structure and techniques 
that are best for your problem should you look for an ap-
propriate tool. Finally, choose a tool with built-in expla-
nation facilities and debugging if possible. These are eas-
ier to use and test and will save time in implementation. 

18.5 EXPERTS AND MACHINE LEARNING 
One possible solution to some of the limitations of ex-
pert systems is to combine the knowledge-based technol-
ogy of expert systems with technologies that learn from 
examples, such as neural networks and inductive learn-
ing. These classify instances of an object or event accord-
ing to their closeness to previously trained examples and 
therefore do not require explicit knowledge representa-
tion (see Chap. 22 and Chap. 5 for more details). 

Some machine learning systems learn purely from 
real-world data, using ground truth. For example, 
looking at large-scale data on the way risk factors such 

as smoking relate to reported lung-cancer deaths. Even 
then there is a level of expertise in that the choice of what 
data to collect and what outcomes to address comes 
from somewhere. However, here we’ll look at ways in 
which the expert involvement is richer. 

There are several ways in which experts can be in-
volved in the creation of a hybrid expert system incor-
porating machine learning (Figure 18.5): 

implicit capture of expertise – Here the data collected 
incorporates some form of expert assessment, 
behaviour or knowledge. For example, we might 
look at data on initial patient symptoms and 
tests ordered by physicians and then use this to 
streamline hospital admissions by automatically 
ordering the most common tests (so long as they 
are not too costly). Similarly, we might train a 
system using the eventual diagnosis by senior 
clinicians and then use this to create an expert 
system to guide less-experienced practitioners. 

labelling – Experts may explicitly label data items. This 
can be with a final outcome measure such as a 
medical diagnosis, “has influenza”. However, the 
labelling could also be of intermediate features 
such as “tachycardia” for an ECG trace. 

feature selection – The choice of features is often crit-
ical, both in initial data collection and those used 
as part of machine learning. If important features 
are omitted, then the machine learning will not be 
accurate, and if too many features are present, there 
may be overlearning for smaller datasets. 

knowledge and rules – The experts may still encode 
knowledge and/or rules to be combined with more 
automated techniques. For example a taxonomy of 
disease types may make it easier to automatically 
train a system as it can diagnose to higher level 
disease types when data is sparse for more precise 
diagnoses. 

synthetic data models – We saw in Chapter 8 that syn-
thetic data used in training requires domain knowl-
edge. At its simplest it may be about saying what 
kinds of distortion are realistic (e.g. blurring, rotat-
ing). However, it may be more complex, for exam-
ple using images of a tumour from one X-ray to be 
artificially added to others in anatomically correct 
places, or creating models of human anatomy and 
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FIGURE 18.4 WebProtégé – a web-based version of the Protégé ontology editor [204]. 

cancer growth to generate completely artificial im-
ages. 

Note that this expert-based data and knowledge may 
be combined with ground truth data such as eventual 
clinical outcome, especially in the cases of feature 
labelling. 

Some aspects of expert systems are the same no matter 
whether machine learning is involved, but there are some 
crucial differences, in knowledge elicitation and valida-
tion, and perhaps most crucial is the way algorithmic 
choice impacts explanation. 

18.5.1 Knowledge Elicitation for ML 

18.5.1.1 Acquiring Tacit Knowledge 

Some expert knowledge is explicit, the expert knows it, 
and they know that they know it. There may be problems 
in dealing with the volume of information or in encod-
ing it in ways that a machine can understand, but still 
this is the easiest kind of expert knowledge to acquire. 
However, it is usually only a fraction of the experts’ full 
knowledge, much of which is implicit. There are many 
things they ‘know’ in the sense that they are implicitly 

used in their decision making, but which are tacit knowl-
edge, that they cannot easily tell you that they know. 

Tacit knowledge may be physical, such as the way we 
move our arms and legs while walking. Typically only 
elite sports players or those undergoing some sort of re-
habilitation have a deep knowledge of their movements, 
and then often only through external movement experts 
recording them and discussing their gait or technique. 
Tacit knowledge may also be cognitive, ways of address-
ing problems or the way one just gets an impression that 
someone is unwell. 

An expert knowledge engineer can use the techniques 
in Section 18.4.1 to gain some insight into this tacit 
knowledge and then externalise it, for example by asking 
for explanations of decisions. However, it is hard and not 
always successful. It is precisely in these circumstances 
that machine learning techniques can be most valuable. 

Deriving the training set purely from implicit be-
havioural data entirely bypasses the need for the expert 
to articulate their knowledge; it is captured entirely 
from the outcomes of their previous conscious and 
unconscious decision making. There are disadvantages 
of this, not least that our behaviours may be influenced 
by unconscious bias (see also Chapter 20). 
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FIGURE 18.5 Hybrid expert system incorporating machine learning guided by human expertise. 

18.5.1.2 Feature Selection 

One of the early observations by knowledge engineers 
engaged in knowledge elicitation was that experts may 
struggle to tell you the precise rules they employ; it is 
often tacit knowledge, not explicitly available to the ex-
perts, but guiding their decision making. However, they 
are often far better at telling you which features they con-
sider. This is fortunate; as the appropriate choice of fea-
tures is critical for effective machine learning. 

18.5.1.3 Expert Labelling 

Asking experts to label data sits somewhere between 
purely behavioural data and more explicit knowledge 
elicitation. However, an issue with expert labelling is 
that many machine learning techniques require large 
volumes of data. This is not a problem when the data is 
implicitly captured or even explicitly captured as part 
of normal practice, for example diagnoses in medical 
records. However, experts’ time is, by definition, limited 
and costly, so it is not usually possible to ask them to 
label vast quantities of data simply to create a training 
set. 

Sometimes it is sufficient to use semi-supervised 
learning over partially labelled data, as discussed in 
Chapter 9. Alternatively it may be possible for some 
aspects of labelling to be carried out by those with more 
limited expertise, for example one might delegate the 
task to junior doctors rather than senior physicians. 
However, it is then critical that those doing the task 
recognise when they don’t know enough and so are able 
to flag the more problematic cases for expert review. 

18.5.1.4 Iteration and Interaction 

In a similar way, the machine learning algorithm 
itself may be able to identify difficult, low certainty 
or boundary cases. This then enables an iterative 
process where a relatively small initial labelled dataset is 
combined with partially unsupervised learning and then, 
in a series of cycles, the difficult cases are presented to 
the expert for verification or labelling. In a similar way, 
the user can provide an initial, but partial, collection of 
rules, which can then be used to bootstrap inductive 
learning. 

In all cases it is crucial to use efficient and easy user 
interfaces for this process, to allow rapid scanning and 
labelling. In the cases when there is less expert human la-
belling or semi-automated labelling, it can often be faster 
to have an interface for the experts that is verification-
based, ‘this X-ray appears to have a tumour here – Y/N’, 
rather than open-ended entry. 

18.5.2 Algorithmic Choice, Validation and 
Explanation 

Because of the advantages in simplifying knowledge ac-
quisition, hybrid expert systems have been used since the 
early days of AI and with a wide variety of algorithmic 
approaches. 

Symbolic machine learning techniques such as con-
cept learning, decision trees and rule induction lead to 
knowledge representations that are similar in form to 
those generated by purely human-based knowledge elici-
tation. They can therefore use the same forms of dialogue 
management and explanation. 
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In addition, the scrutability of this kind of rule makes 
it amenable to various forms of iterative expert valida-
tion where the rules are presented back to the expert who 
can verify whether they make sense or not. However, 
they should be presented in language or visual form that 
is familiar in the expert’s own domain, rather than AI-
related terms. For example, note the way that the Query-
by-Browsing interface described in Chapter 5 shows an 
SQL representation of the decision tree generated by ma-
chine learning (Figure 18.6). 

Concrete examples are also important and often easier 
to understand than generic rules. Examples can be pre-
sented to the expert with the classification or advice that 
would be generated by the expert system for the expert 
to verify. We have already discussed how this can be used 
during knowledge elicitation in order to ask for labels of 
boundary cases or difficult to classify data items. Exactly 
the same techniques can be used during validation as it 
is precisely the boundary cases or those with little train-
ing data and large uncertainty where errors are likely to 
occur. 

Using Query-by-Browsing again as an example, note 
the way that the user can see both the SQL query and the 
list of selected and unselected records (Figure 18.6). The 
combination of intentional (rules) and extensional (ex-
amples) representations makes it easier to verify whether 
the generated decision rule is what the user wants. This 
is particularly important for logical connectives such as 
AND/OR, as the formal meaning of these can differ from 
day-to-day use. 

We have discussed the phenomenal success of deep 
learning and other large-data-based techniques in 
many areas that were previously thought to require far 
richer knowledge. While neural networks and other 
sub-symbolic approaches have been used for many 
years, their popularity has increased. However, they 
tend to be “black-box” techniques, which are poor at 
providing explanations for their decisions even to data 
scientists let alone domain experts or end users. This 
is also true to a large extent with other techniques that 
create very large or complex rule sets, including random 
forests. 

Example-based methods of validation and expla-
nation can also be used for the final system, and we 
will discuss other ways to address these issues in 
Chapter 21. In fact part of the expert’s role may be to 
help the knowledge engineer to craft explanations for 
the end-user, for example creating meaningful labels 

for classes generated by unsupervised learning. These 
explanations are not only important when the expert 
or end-user asks for them but also to avoid automation 
bias [62, 63], the tendency to accept blindly the outputs 
of computers. The more ‘intelligent’ the algorithm, the 
greater the tendency to assume the computer knows 
best. Explanations, especially when combined with 
some form of confidence rating, can help to encourage a 
more sceptical use of automated evidence. 

Hybrid architectures have a role here; that is systems 
that encompass both symbolic and sub-symbolic tech-
niques. For example, a machine learning system may use 
labelled ECG data to classify different forms of arrhyth-
mia. This classification could then form the input to a 
more rule-based diagnosis. An explanation might then 
say “drug X is being proposed as the patient is an ex-
smoker and has tachycardia” – the smoking history may 
come from a form input or questions generated by the 
dialogue component, and the rules that generate the ad-
vice given the tachycardia will be explainable in the ways 
discussed in Section 18.3.3. The categorisation of tachy-
cardia itself may not be explainable except in the form 
of a fixed patient-oriented description, “rapid heart rate”. 
However, this would be similar to the explanation a doc-
tor would have given; it is sufficient reason. 

18.6 DECISION SUPPORT SYSTEMS 
The term decision support system includes many forms 
of data dashboard or visualisations; however, here we 
are only considering those that include some form of AI 
component. 

Sometimes the AI is based solely on machine learning 
from data with no expert input. This is the case with the 
controversial COMPAS system that has been used in US 
parole decisions [7]. However, often the line between ex-
pert systems and decision support is blurred as systems 
implicitly or explicitly include elements of expert knowl-
edge combined with historic and current data. 

As an example, consider the online tool that medical 
practitioners in the UK use when assessing risk 
associated with high blood pressure. They enter a 
number of factors into a web form including blood 
pressure, cholesterol level, smoking and drinking; this 
then returns a risk factor for the person. The tool 
embodies the best expert knowledge, itself drawing on 
statistical data and published medical results. This is 
a good example of evidence-based medicine. In many 
cases the practitioner may directly follow this as an 
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FIGURE 18.6 Query-by-Browsing – shows inferred rule both as SQL query and highlighted listing. 

indicator combined with prescribing norms from NICE 
(National Institute for Health and Care Excellence) to, 
say, prescribe statins. However, especially on boundary 
cases, a physician may also take into account additional 
risk or mitigating factors that are not part of the tool, 
perhaps a recent change in lifestyle. 

We can see from this example that the decision sup-
port tool is aiding the medical practitioner to make a 
decision. However, the medical practitioner is still using 
their own discretion and judgement based on their own 
expert knowledge, both general and situational. 

In 1960 Licklider wrote about a ‘symbiosis’ between 
humans and computers harnessing the complementary 
abilities of each [168] (also known as synergistic interac-
tion, see Chapter 19). Decision support systems can be 
thought of in these terms. The list of different abilities in 
Table 18.1 was produced in 2004 in an influential paper 
on decision support [62]. Twenty years later, some of the 
abilities on the left, particularly pattern recognition and 
the ability to recall pertinent information are certainly 
within the realms of AI, but even then in different ways 
to humans. 

The challenge of decision support is to harness the 
abilities of the machine (in the right-hand column) but 
then to present these in ways that maximise the abilities 
of the human expert (on the left). 

In some cases this is managed using textual or form-
based interactions, as in the blood pressure example. In 
other cases there may be very domain-specific methods 
such as a kitchen-planning aid that knows about the 
kitchen triangle (sink, cooker, refrigerator) and warns 
the planner if they are not suitably placed. However, 
often decisions may be based on larger datasets, for 

TABLE 18.1 Strengths of Humans and Computers in Decision 
Making, from [62]. 
Humans are better at: Computers are better at: 
Perceiving patterns Responding quickly to control 

tasks 
Improvising and using flexible Repetitive and routine tasks 
procedures 
Recalling relevant facts at the Reasoning deductively 
appropriate time 
Reasoning inductively Handling many complex tasks 

simultaneously 
Exercising judgment 

example a government planner using past and projected 
population and traffic trends to help determine transport 
policy. 

We will look at visualisation and associated manage-
ment issues, before looking at visual analytics, when 
visualisation and machine learning are interactively 
linked. 

18.6.1 Visualisation 

You will undoubtedly have seen many forms of static vi-
sualisation or infographic, from simple histograms or pie 
charts, to geographic images that colour areas depending 
on some factor such as population or carbon footprint. In 
addition, visualisation research has created many more, 
some used only fleetingly by the researchers who devel-
oped them and then forgotten, others that have become 
part of the toolkit of visualisation, for example parallel 
coordinates [127]. In addition to general purpose visual-
isations, others are more bespoke such as the ROC curves 
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we saw in Chapter 9 and Nyquist diagrams, used in con-
trol engineering. Images and text documents can be par-
ticularly hard to visualise in bulk as there is no obvious 
‘average’ value, but central examples can be used for clus-
ters, or rapid serial visualisation shows images or words 
in flip-book fashion. 

Some visualisations, such as the last above, already in-
clude some form of animation. However, the power of 
visualisation is often increased dramatically by interac-
tion. At its simplest interactivity can be used to make 
otherwise static decisions dynamic; for example, when 
drawing a scatter graph of multi-dimensional data, one 
has to choose which numeric fields to plot and this can 
be made selectable. 

Figure 18.7 shows dancing histograms [87], simple 
stacked histograms, but where the user can select 
which attribute to align to the x-axis. In other systems 
interaction is used to zoom into areas of a data plot, 
to show the details of any specific data item or to 
interactively filter results based on sliders [3, 277]. 

Ben Shneiderman’s ‘visual information seeking 
mantra’ [255] summarises many of the common forms 
of interactive visualisation: 

Overview First – Show the whole dataset even if this 
means in some way reducing detail such as amal-
gamating close elements. 

Zoom and Filter – Allow the user to zoom spatially into 
areas of interest and also to apply filtering criteria. 

Details on Demand – Open up individual data items 
for inspection when needed. 

There are additional interaction possibilities when 
there are several visualisations of the same data (see 
Figure 18.8). One of the simplest is to select a data item 
on one visualisation and then see the corresponding 
item highlighted on another visualisation. An extension 
of this is to sweep a range of values that are close on one 
visualisation and see the whole set highlighted on the 
other. If they are using different ways to visualise, this 
can often reveal rich patterns. 

18.6.2 Data Management and Analysis 

This form of interactive visualisation is easily possible 
on desktop workstations or even personal devices when 
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the dataset is relatively small. However, to feel interac-
tive the response to continuous actions such as rotat-
ing, zooming or moving a slider needs to be in the or-
der of 100s of milliseconds, with more discrete actions 
such as a major change in view, within a couple of sec-
onds. For more complex visualisations even medium-
sized data (millions of items) may make such interactive 
visualisation impossible. In addition, in an AI-powered 
decision support system, these visualisations may them-
selves require data items to be run through a pre-trained 
network or similar algorithm, further exacerbating the 
problems in the data-pipeline. 

This can partially be tackled by some of the data re-
duction techniques we saw Chapter 8. For example, if 
we have geographical data at one metre resolution, we 
might down-sample to a kilometre grid, or show aver-
ages over geographical areas such as postal districts. Note 
that the former reduces the dataset size by a factor of one 
million. 

However, data reduction techniques may need to be 
recomputed as the user interacts with the visualisations. 
In the case of the geographic data if the user zooms 
in one might want to have a higher resolution sample 
of the smaller area. Similarly in the earlier example, if 
one had randomly sampled documents to visualise and 
then made a sub-selection based on chosen words, more 
documents might need to be sampled from the smaller 
set. 

These changes need to be managed in ways that are 
comprehensible to the user of the system, especially 
when the analyst is a domain expert, but not a data sci-
entist. In the case of sampled data it may be important to 
keep track of which samples have previously been shown 
so that if the user zooms out and then zooms back again 
into the same part of the data space, the same items are 
shown. 

Sometimes it is possible to perform some kind of pre-
computation, either generic or bespoke. For example, full 
ECG data is often recorded at 100–500 Hz, that is hun-
dreds of samples a second, but often one is more inter-
ested in heart rate. This can be pre-calculated and a cus-
tom lower-resolution data stream created with, say, av-
erage heart rate and heart rate variability every minute. 
Just as with the geographic down-sampling, it would be 
possible to zoom into a region and retrieve the raw ECG 
data. 
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FIGURE 18.7 Dancing histograms: (left) plain stacked histogram – easy to discern overall trends and trends in the baseline 
category (apples), but other categories less clear; (right) add interaction – click on a category (bananas) to alter the baseline and 
make trends in that category easier to see. Available at https://www.meandeviation.com/dancing-histograms/. 

18.6.3 Visual Analytics 

Visual analytics has been defined as, “the science of 
analytical reasoning facilitated by interactive visual 
interfaces” [271]. The term was initially coined in the 
aftermath of the 9/11 terrorist attacks on the United 
States. Research funded in part by US Homeland 
Security sought to understand how they might be 
better able to deal with the vast volumes of information 
available to security services and hence prevent future 
attacks [54]. However, it was recognised at the time 
that this was giving a name to a style of interactive 
visualisation of data analysis that was present in earlier 
systems and that the research agenda was applicable 
across a wide range of areas including medical and 
environmental data [152]. The volume of available data 
has of course grown even more since that time, and 
visual analytics can be seen as an aspect of the broader 
area of data science. 

The core of the idea of visual analytics is to create 
ways in which human experts can better analyse and 
understand large volumes of data and/or complex 
simulations and models. Central is a tight interactive 
loop where the analyst can select and modify parameters 
of analysis tools, focus in on specific parts of a dataset 
and in real time see the results in multiple visualisations. 
The aim is to explore the data and in so doing gain 
insights, and ideally actionable insights, that can lead to 
better decisions. 

For example, suppose you are studying a large docu-
ment set. One view of the data might represent the doc-
uments interlinked in a graph based on text-based simi-
larity measures. Selecting a document might recentre the 
network visualisation at the focus document, but also in 
a second window show the word cloud associated with 
the document (see Figure 18.8). In the word cloud you 
might choose a subset of the terms and then tell the sys-
tem to restrict further analysis to documents containing 
the chosen terms, and then get it to do an unsupervised 
clustering on the selected documents. 

Notice that even in a relatively simple domain there is 
the need to move back and forth between different visu-
alisations and to combine human analytic choices with 
algorithmic analysis. The range and type of such visu-
alisations and algorithmic data analysis varies between 
application domains, and also on the level of technical 
expertise of the analyst. Some applications are tailored so 
that they are more usable by a domain expert, but conse-
quently may need to have a more restricted set of capabil-
ities than an application designed for more open-ended 
exploration. 

This creates additional challenges for both visualisa-
tion and data analysis. 

18.6.3.1 Visualisation in VA 

All of the techniques in Section 18.6.1 can be applied 
here, with the main difference being that the algorithms 
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FIGURE 18.8 Connected visualisations. 

generating the data being presented may need to be 
recomputed as the user interacts with the visualisation. 
This creates a two-way path: 

From algorithm to visualisation – where the compu-
tation changes the processed data presented. 

From visualisation to algorithm – where the user in-
teractions change the parameters of the algorithm 
or the filtered data being processed. 

In Section 18.6.1 we saw ways in which interaction 
between multiple visualisations can be used to cast light 
on both. In visual analytics, multiple visualisations are 
the norm; however, here the visualisations are typically 
the result of some form of AI or statistical algorithm. The 
two paths above then work back-and-forth between the 
visualisations. 

This was clear in the example above. There are two vi-
sualisations, one shows the documents spatially arranged 
based, say, on Jaccard similarity and the other a word 
cloud. Lassoing a subset of documents in the spatial lay-
out cloud selects these and then the word cloud is recom-
puted based on the selected documents. Alternatively, as 
in the initial example for this section, selecting words in 
the word clouds could filter the documents which would 
then need a fresh 2D layout based on an unsupervised 
algorithm. 

This creates computational issues, discussed below, 
but also interaction ones. It can be easy to lose track 

of the path of interaction. Imagine the user in the 
example looking at the word cloud for a particular set 
of filtered data and algorithm settings, thinking “I recall 
these terms in an earlier cloud”, but being unable to 
recall which particular set of choices had led there. 
Some visual analytics systems include the ability to see 
multiple copies of the same visualisation side-by-side 
with different parameter choices or filters for each. 
In addition, history mechanisms become important, 
recording past settings and allowing the user to review 
these, mark interesting ones, and then, using the side-
by-side techniques above, compare, contrast and above 
all gain insight. 

18.6.3.2 Data Management and Analysis for VA 

The problems we discussed in Section 18.6.2 are further 
exacerbated in visual analytics. As well as the visualisa-
tion being interactive, we are dealing with AI and statis-
tical components that are not fully determined and pre-
trained but typically require the user to change parame-
ters or re-run algorithms based on interactively filtered 
data. As we saw in Chapter 8, many successful machine 
learning and data analysis techniques obtain their power 
through applying massive computation based on large-
scale data. These datasets may not fit within the mem-
ory of an ordinary computer, and computation that even 
takes a few seconds can feel interminable when working 
interactively. 
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The techniques described in Section 18.6.2 are more 
complicated when they also need to work with machine 
learning or other data analysis tools interactively. Some 
combinations of techniques work quite well, for example 
random sampling of largely independent data items can 
give good results for many kinds of machine learning 
as well as rapid visualisation. However, this is not good 
for network algorithms as the sampling process will lose 
connections. 

It may also be possible to modify algorithms. For ex-
ample, some methods, such as simulated annealing or ge-
netic algorithms, improve iteratively, so it may be possi-
ble to stop them earlier to obtain a less accurate but more 
timely answer. Depending on the context it may even 
be possible to continue the algorithm in the background 
and have the outputs gradually update. Some algorithms 
or variants of them can operate incrementally adding or 
removing data as the user updates a selection. For ex-
ample, a neural network can simply be given additional 
items and weight them more highly during subsequent 
cycles of learning, and even negatively weight items to 
be removed. 

18.7 STEPPING BACK 
It is easy in AI to focus on the techniques and al-
gorithms, even when dealing with human expertise. 
However, it is important to step back and look at how 
the system fits into the world. A medical diagnosis 
support system affects the lives of patients as well as 
the functioning of the hospital as a whole. We need 
to ask ourselves who the system affects, what it is 
intended to achieve and how this fits into the larger 
organisational or social context. All of these influence 
the cost–benefit balance when we trade-off precision and 
recall. 

18.7.1 Who Is It About? 

When considering what a system is for, one question to 
ask is whether the impact is individual or about a popu-
lation as a whole. 

Imagine designing a vision-based system to sort 
fruit in a packing factory. The system might be based 
on a combination of expert rules and lower-level 
vision based on labelled data for categories such as 
bruising, ripeness and shape. You do not expect the 
system to be 100% accurate but do want a high level of 
accuracy on average. In contrast, imagine you are the 

owner of the factory and using an AI planning tool to 
help decide whether to invest in the new technology 
at all. 

In the first case we are interested in the population as a 
whole, errors for individuals are less important than the 
overall levels. In the second case the single decision is 
absolutely critical. 

The same system can often embody both these 
aspects, individual vs. population – single decision vs 
average, depending on the point of view. Consider a 
system that helps diagnose early-stage cancers. From 
the point of view of each individual patient the crucial 
thing is that it improves their own health outcome; if the 
system improves this, it is worth using. From the point of 
view of the national health system, the improved health 
outcomes are important, but they also have to consider 
the costs of the system and perhaps additional tests and 
procedures for any false positive diagnosis. Additional 
costs for cancer care mean less money elsewhere. 

18.7.2 Why Are We Doing It? 

Another question is what we intend to learn from using 
the system. Is it to make an assessment of the current 
state, to give a prediction about the future or to generate 
insight about the phenomenon as a whole? 

In the case of a medical system the question is of-
ten “does the patient have disease X?” that is knowledge 
about the (hidden) current state of an individual or the 
world. In other cases, for example climate modelling, we 
are interested in predictions, “what happens next?” 

Of course both assessments of current state and 
predictions are estimates and both typically have some 
level of uncertainty or, in some cases, probabilities 
attached to them. Indeed, for algorithmic purposes the 
two do not differ that much. In fact, for certain diseases 
an absolute definitive diagnosis can only be made post 
mortem, so any diagnosis on the living patient could 
be argued to be a prediction about the findings of 
that future post-mortem. Even when definitive tests 
or investigations are possible, the system is operating 
before that point on what is, at that point, hidden and 
unknown. 

However, while being technically similar and indeed 
in many ways epistemologically similar (that is in 
terms of knowledge), there is a fundamental difference 
between prediction and assessment of current or past 
state. The future is mutable, the past is not. One can take 
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actions based on past knowledge and the current state, 
indeed this might even change the state, perhaps curing 
an infection, but the state as it is now cannot be changed. 
In contrast, acknowledging another AI story, “the future 
is not set” [38]. This means the way we use the system’s 
outputs is often different. 

Sometimes either instead of or alongside some form of 
decision making, the outcome of the use of an AI system 
is to increase human knowledge or give insight. This is 
particularly obvious for visual analytics systems, which 
can help the user to make decisions, but are principally 
about exploring the data, working out the best way to 
understand it, and then based on that knowledge maybe 
making some sort of decision. 

This can also be the case during knowledge elicita-
tion. The very act of externalising tacit expert knowledge 
changes the expert’s own explicit knowledge and maybe 
their future behaviour. This may be amplified when the 
results of AI are fed back to the expert, possibly showing 
logical consequences of rules, or inferred rules or cases 
based on data. 

Some years ago, data was collected in the heart 
unit of a US hospital. When a heart attack patient is 
admitted and stabilised, the doctors need to make an 
assessment of future risk and hence treatment. To do 
this they used to record around 30 factors including 
ordering multiple tests. The historic data included this 
information and the final patient outcomes (ground 
truth). This was used to perform data analysis using 
some form of machine learning or statistical analysis. 
As with many expert systems in medicine, this was 
never deployed – the legal and medical barriers are 
often too high. However, the physicians learnt from 
the exercise. The analysis showed that the influence 
of the majority of the factors was extremely low, only 
four of the factors had any predictive power. The 
physicians changed their practice and only focused 
on the relevant factors but otherwise used their own 
human judgement as before. With less information, 
but the best information, their clinical outcomes 
improved. 

In the natural sciences symbolic regression has 
been used to re-learn fundamental physical equations 
based purely on data [247, 279]. This is a form of 
genetic programming that learns formulae such as 
F = q(Ef + B v sin 𝜃) by building, mutating and 
combining trees of basic operators. More recently 
this has been combined with deep learning to create 
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FIGURE 18.9 Visual analysis – the big picture: data coming 
from the world is used to generate insights, which influence 
decisions, which then change the world. 

new hypotheses, for example concerning galactic 
evolution in the early universe [58]. It may be that in 
time these systems will create truly new physics, but at 
present the new formulae that are generated are not the 
final outcome; instead they are used to prompt more 
theoretical analysis [166]. 

18.7.3 Wider Context 

Expert systems and decision support, indeed any appli-
cation of AI, does not exist in a vacuum; the insights or 
predictions gained from the process will be used to in-
form decisions in a wider organisational or social context 
(Figure 18.9). For example, any large supermarket will 
have a team of sales forecasters whose job is to analyse 
past sales data in order to make forecasts on the future 
sales of different products [9]. However, this is not the 
end of the story; they will communicate their predictions 
to the sales team or company board who will then make 
marketing and stocking decisions. 

This may mean that additional forms of visualisation 
may be needed in order to inform others of the insights 
gained. These may be simple tables or static graphs in 
a PowerPoint presentation or may include animated or 
interactive visualisations. Where more complex analysis 
techniques have been used, for example black-box ma-
chine learning, the analyst may need to be able to explain 
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the reasons for the choice of the technique to an appro-
priate level, showing how it works in general and for the 
particular forecast. 

For sales forecasts and any complex prediction 
domain, the forecasting process includes many tweaks 
and adjustments, for example manually increasing a 
past data point to remove the anomalous impact of a 
stocking shortage. In addition, where there are a range 
of predictions (as in climate change models), one can 
choose to make more or less optimistic assumptions. 
These are partly a matter of judgement and so the 
precise choices may include organisational politics as 
well as data analysis. For example, a manager may want 
forecasts to be set higher to motivate sales staff to try 
harder or low so that a future report can show the team 
is outperforming expectations. 

Often forecasts are measured based on accuracy. How 
close is the predicted value to what actually happens? For 
example, you might tell your friends that you think your 
football team will win this week, and after the match you 
will know how accurate you were. This is unproblematic 
as a metric because you are not part of the team and have 
not had influence on the team’s behaviour. However, if 
you are a player and think the match will be an easy win, 
you may relax and then perform less well. In the sales 
forecasting example, if the forecaster predicts an increase 
in the sales of speciality cheeses, the store may display the 
cheeses more prominently and the marketing team have 
a special advertising campaign. If the cheese sells better, 
is this because the forecast was right or simply because of 
the better marketing? 

18.7.4 Cost–Benefit Balance 

Think back to the fruit factory example. There is a cost to 
rejecting items that are saleable, but also we don’t want to 
accept too many items that are blemished or misshapen. 
The vision system can be tuned to make a trade-off be-
tween false negatives and false positives (recall the ROC 
curve from Chapter 9). This tradeoff depends on costs. 
If the system occasionally misclassifies an item of fruit 
then the impact is perhaps a disgruntled shopkeeper or 
customer who has a poor quality banana. However, if this 
were instead analysing wheat for ergot, then the result of 
a failure might be a dead customer. 

These trade-offs are also different if we are looking at a 
population as a whole or at an individual. For the popu-
lation, we might consider some sort of overall measure of 

costs and benefits (sum or average), which in public pol-
icy include putting a value on human lives. For example, 
in the UK NICE (the National Institute for Health and 
Care Excellence) uses a figure of £20–30,000 per QALY 
[211]. A QALY is a Quality Adjusted Life Year, which 
measures both quality of life (e.g. coma vs full health) 
and also extension of life. 

In contrast for an individual entity we may be more 
risk averse. For example, imagine we have used an ex-
pert system to help guide the investment decision for the 
factory. It may suggest there is a 80% chance that using 
new technology will increase net profits by 50% even tak-
ing into account investment costs, but a 20% probability 
that increased productivity will be insufficient to service 
the interest repayments on the costs of refitting leading 
to bankruptcy. On a simple average returns basis (maybe 
a venture capital firm deciding on the investment), this 
looks like an easy decision, on average we would have a 
40% increase in profitability, but the factory owner and 
the workforce may not agree. 

We also have to consider how this fits into the wider 
organisational and social processes, often in timescales 
beyond the simple decision point. A clinician looking at 
a cervical smear may notice an inconclusive mark that 
could be cancerous but ignore it as they know that there 
will be another smear test in two years’ time and that if it 
is cancerous it will be slow developing and will be caught 
at a subsequent point. Here the cost–benefit trade-off is 
not just about the immediate severity of a false negative 
but that the test now is just one of a series. 

Sometimes, these cost–benefit calculations are built 
into the expert rules or training data. For example, if an 
image system is based on smears together with the hu-
man labelling, the judgements about re-testing intervals 
will already be part of the data. In contrast, if a machine 
learning system is built using historic smears and post-
hoc knowledge of cancer outcomes, then it may generate 
too many false negatives leading to unnecessary stress for 
the patients and wasted hospital procedures. 

In the latter cases we can sometimes use wider knowl-
edge of the costs of different kinds of misdiagnosis to-
gether with models of the process to build more appro-
priate advice. Alternatively, we might design an overall 
decision support system that takes the raw learnt out-
comes and presents them in a form that allows the user 
of the system to make expert judgements. For example, if 
a system labels a test “80% chance of cancer, time to de-

https://alandix.com/glossary/aibook/accuracy
https://alandix.com/glossary/aibook/computer vision
https://alandix.com/glossary/aibook/false negatives
https://alandix.com/glossary/aibook/false positives
https://alandix.com/glossary/aibook/ROC curve
https://alandix.com/glossary/aibook/ROC curve
https://alandix.com/glossary/aibook/probability
https://alandix.com/glossary/aibook/cost--benefit
https://alandix.com/glossary/aibook/false negative
https://alandix.com/glossary/aibook/cost--benefit
https://alandix.com/glossary/aibook/human labelling
https://alandix.com/glossary/aibook/human labelling
https://alandix.com/glossary/aibook/false negatives


Expert and Decision Support Systems ■ 291 

velop 6 years”, this may be judged less critical than “20% 18.2 Working in small groups and using the 
chance of cancer, time to develop 6 months”. 

Note also that where systems are based on machine 
learning or complex statistics, the algorithms themselves 
will have uncertainty within their own training and oper-
ation which may need to be factored into decisions. This 
can be hard to assess, again pointing to the need for more 
explainable AI ... see Chapter 21. 

18.8 SUMMARY 
In this chapter we looked at the main applications of 
expert systems and the components that we would 
expect to see in an expert system. We considered the 
stages in building an expert system, concentrating 
on knowledge acquisition and choosing appropriate 
tools. Machine learning can be used alongside expert 
knowledge or make use of data that embodies prior 
expert decisions or behaviour. This reduces some of 
the difficulties of expert knowledge elicitation but may 
lead to less comprehensible rules making explanation 
difficult. 

Decision support systems use AI to provide guidance 
and data that helps experts employ their own human 
judgement. This often includes elements of visualisation 
as well as data analysis in order to make the outcomes of 
algorithms more comprehensible to the expert. This can 
be made more interactive in visual analytics where the 
choices and parameters of machine learning and statisti-
cal transformations are both displayed and manipulated 
through multiple visualisations. 

In all cases we need to keep in mind a wider picture 
including the nature of the decisions which will be made 
and the organisational and social processes within which 
it will be used. Both will affect cost–benefit choices which 
may be embedded in various ways within algorithms. 

18.1 You are asked to advise on the use of expert sys-
tems for the following tasks. Outline appropriate 
reasoning methods and other key expert system 
features for each application. 

a. a system to advise on financial investment (to 
reduce enquiries to a bank’s human advisor) 

b. a medical diagnosis system to help doctors 

c. a kitchen design system to be used by sales 
personnel 

textual information below about causes 
for a car overheating (extending it where 
necessary) 

a. Formalise the knowledge as a set of rules (of 
the form IF evidence THEN hypothesis) 

b. Calculate certainty factors (see Chap. 3) for 
each hypothesis given the evidence (estimate 
measures of belief and disbelief from the state-
ments made) 

c. Use an expert system shell or bespoke code to 
implement this knowledge. 

Car overheating: There are a number of reasons 
why a car might overheat. If the radiator is empty, 
it will certainly overheat. If it is half full, this may 
cause overheating but is quite likely not to. If the fan 
belt is broken or missing, the car will again certainly 
overheat. If it is too tight, it may cause this problem 
but not always. Another possible cause is a broken 
or jammed thermostat, or too much or too little oil. 
If the engine is not tuned properly, it may also over-
heat, but this is less likely. Finally, the water pump 
may be broken. If none of these things is the cause, 
the temperature gauge might be faulty (the car is 
not overheating at all). Also the weather and the 
age of the car should be considered (older cars are 
more likely to overheat). A combination of any of 
the above factors would increase the likelihood of 
overheating. 

18.3 Individually or in a group, find examples of 
graphs, diagrams and infographics used in 
magazines, newspapers or academic papers. 

a. Look for potential ways in which each 
could be made interactive as described in 
Section 18.6.1. 

b. Consider ways in which the underlying data 
might make use of AI, perhaps machine learn-
ing, or clustering. 

c. Now think of how the AI could interact 
with the visualisation (or an alternative 
visualisation), to show its outcomes and to be 
controlled. 
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If you found a lot of examples, you can focus 
on the most promising as you work through the 
steps. 
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CHAP T ER 1 9 

AI Working with and for Humans 

19.1 OVERVIEW 
This chapter looks at the issues that arise when people in-
teract closely with AI. It begins by looking at some broad 
dimensions on which this can vary including who is in 
control and the level of automation. We will then look in 
more detail first at intelligent user interfaces, where AI is 
very explicitly part of an application, followed by smart 
environments, where AI is less obvious, but more inti-
mately embedded in sensors and devices around us. Just 
like people, the results of AI are not always 100% correct, 
so we look at interaction techniques which are robust to 
individual errors. Finally we will see how synergistic in-
teractions between humans and AI may require changes 
in the design of both AI algorithms and user interfaces. 

19.2 INTRODUCTION 
As we noted at the beginning of this book, every AI-
based system will in the end need to work with people. In 
this chapter, we will look at cases where this is very direct 
such as an intelligent website, a semi-autonomous car or 
a smart home. In the last chapter we were dealing with 
expert use, whereas here it is more everyday applications 
for anyone. 

In some ways AI systems are yet another kind of tech-
nology and so to understand the relations between hu-
mans and AI it is sufficient to look at the history of new 
technology in general or consult human–computer in-
teraction texts [88]. 

However, there are key differences, which we can sum-
marise in terms of three ‘C’s (we’ll see a different three 
‘C’s later). 

complexity – When we pick up a rock, we can see the 
rock and know what will happen. When we turn a 
door handle or flick a light switch, the mechanism 
is hidden but there is a straightforward cause-and-
effect that we can learn. Standard (non-AI) com-
puter programs have higher complexity, every de-
veloper has encountered unexpected behaviour of 
the code that they wrote, but the intention when it 
is written is that the coder knows what they want 
to happen! Even traditional rule-based AI systems 
have added complexity, as the order and interac-
tions between rules is hard to track, and when we 
have neural networks with billions of parameters, it 
is impossible to know unambiguously what is going 
on. 

(un)certainty – With the exception of mechanical 
breakdown or electrical failure, turning the door 
handle always opens the door, flicking the switch 
always turns the light on. However, the complexity 
of many machine learning systems means we are 
often uncertain as to precisely what the outcome 
will be. Furthermore, many AI systems themselves 
take input from sensors that either have uncertainty 
in themselves or where the interpretation of the 
sensor is open to doubt. If a heart sensor shows a 
high rate, is that because the person is excited or 
has just walked up three flights of stairs? 

co-adaptation – Humans always adapt to the technol-
ogy we use, learning to work with its benefits and 
work around its limitations. Often we are creative 
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appropriating technology in ways that designers 
never considered [81], such as a shop-keeper 
using a mobile phone contact list as a place to 
remember who owes money. However, with the 
exception of wear patterns, traditional devices 
do not themselves change. In contrast, many 
AI systems constantly adapt to their users, for 
example the way autocompletion gets to know 
your common phrases. This co-adaptation can be 
powerful: voice-based systems learn your voice, 
but also you unconsciously adapt the way you 
speak to be more understandable. However, when 
two systems adapt to each other, there can be new 
problems, think about the little dance when you try 
to pass someone on a narrow sidewalk. 

In each case there are non-AI systems that also share 
one or more of these characteristics, for example the 
operation of a large chemical plant is very complex, and 
even simple, sensor-based systems have considerable 
uncertainty. This is helpful as we can think of related 
but simpler systems that share some of these properties 
as we think about creating AI systems to work with 
people. 

In the rest of the chapter we’ll see many examples of 
systems working with people. We’ll consider how to both 
design human interactions that work with AI taking into 
account the three ‘C’s and also how AI algorithms can be 
modified to work better with people. 

In the next section we’ll look at some of the different 
ways in which people work with AI before looking at 
more specific areas in more detail. 

19.3 LEVELS AND TYPES OF HUMAN 
CONTACT 

There are a wide range of ways in which AI-based sys-
tems can interact with people. We’ll explore four dimen-
sions of this: 

Social scale – From single users to the whole of society. 

Visibility and embodiment – From screens and robots 
to smart environments. 

Intentionality – From pressing a button to unobtrusive 
support. 

Who is in control – From saying what you want to be-
ing told what to do. 

We will describe each in a little more detail, but we will 
also see aspects of them emerge in the various examples 
in the rest of the chapter. 

19.3.1 Social Scale 

Some systems are focused on a single individual, for ex-
ample biometric authentication on a phone or recom-
mender systems in a website. This is the most obvious 
form of human interaction with AI, and Section 19.4 will 
consider several examples. 

At the other extreme is the use of AI at a social scale, 
for example, when AI is used in mass surveillance, or to 
help governments plan healthcare. Chapter 23 will look 
at these issues in more detail. 

Between the two are systems that operate where a 
small group of people are involved, for example, the 
lift that needs to decide between all the humans’ floor 
requests, or the digital party-hats or other filters that can 
be applied in video chat. 

This may be partially hidden, for example when 
you chat with a salesperson on a website, your 
interactions may sometimes be handled by AI and 
sometimes by a human, and you may even be un-
aware which it is. More often when AI mediates 
human–human communication, it is clear which is 
which. For example, in the pre-consultation system 
described in Chapter 13, the patient was interacting 
with a chatbot and knew it was not human, but the 
patient’s responses were designed to be available to 
help a later face-to-face consultation with a human 
clinician. 

The individual and group concerns can interact, par-
ticularly if the level of personalisation of the system is 
high. In many case studies of control rooms, such as in 
the London Underground, it has been found that shared 
displays and also casual overhearing or seeing activity in 
peripheral vision are key to effective collaboration [126]. 
Furthermore in collaboration between teams of differ-
ing kinds of expertise, boundary objects have been found 
to be crucial; that is physical or information artefacts 
that connect in different ways to each person’s specialised 
domain [265]. Even informal helping assumes that the 
same application behaves the same for everyone. There 
are many benefits in the use of machine learning to adapt 
systems to each individual user, but also care needs to be 
taken to ensure opportunities for human–human collab-
oration are not hindered. 
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19.3.2 Visibility and Embodiment 

The device embodying AI can also differ. Sometimes it 
will be very explicit: visualised on a screen, or a physical 
device in the home to which you speak. However, some-
times it may be invisible, more part of the environment. 
We will look at the latter in more detail in Section 19.5. 

Often smart systems, such as lights or home music, are 
controlled by a separate device, most commonly through 
a phone app. In these cases we need to think both about 
the design of the app and the way in which the user makes 
sense of its, sometimes invisible, effects on the environ-
ment. 

In some cases the AI system may be embodied in ways 
that have considerable autonomy. At its simplest a lift can 
be thought about as a robot with a single degree of free-
dom that we happen to ride in ... and we can sometimes 
find lifts hard to control. Industrial robots, autonomous 
cars and drones all create situations where it is not just 
about telling the AI device what to do, but fluidly work-
ing alongside it. 

19.3.3 Intentionality 

AI based systems also differ in their level of intentional-
ity, that is whether the user explicitly instructs the system 
to do something, or whether it chooses to do so. This can 
be thought of as a continuum (note the use of the term 
‘intentionality’ here is different from philosophical no-
tions of intentionality discussed in Chapter 23): 

explicit – Here the user issues some form of explicit 
command, for example telling a home automation 
system, “turn off the lights”. Note that here the user 
consciously and explicitly plans what will happen. 

implicit – Here the user performs some form of action 
that triggers the system to respond, but it is more a 
natural action such as tipping an e-book to turn a 
page [246]. The action is still in a sense planned or 
triggered by the user, but more unconsciously. 

expected – Here the user doesn’t do anything specific to 
trigger the action, but they know it will happen and 
would be surprised if it didn’t, for example auto-
matic doors opening as you approach them or lights 
going on when you enter a room. 

incidental – Here the user is doing some action as part 
of other activities which the system uses to perform 
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some other action [79]. This is often at a completely 
different time, for example learning email habits; or 
it may be to help a different person such as the use 
of one customer’s book buying to make suggestions 
to another. The action is planned entirely by the AI, 
the user may not even be aware that it has happened. 

accidental – Finally there are cases when neither human 
nor AI plan that things happen, but they arise as 
an unexpected side effect or emergent behaviour. In 
the telecoms industry feature interaction has been a 
recognised issue for many years, where several fea-
tures each of which seem reasonable have an unex-
pected, and possibly damaging, effect together. AI 
and ML often intensify this due to the complexity 
of the algorithms; for example the personalisation 
of news and social media seemed overwhelmingly 
positive, but has given rise to filter bubbles. 

Note that the implicit, expected and incidental levels 
all make heavy use of context in order to make sense of 
the users’ activity. This can involve the user of physical 
sensors in the environment or monitoring of digital in-
teractions. This is because the AI system has to interpret 
the users’ actions in order either to understand the users’ 
intentions or at least make sense of their actions. 

19.3.4 Who Is in Control 

Closely related to levels of intentionality is the question 
of how the level of control between human and AI can 
vary: 

Human as cog (in the machine) – In the web chapter 
(Chap. 17) we have seen how reCaptcha codes sim-
ply regard the end-user as a ‘recogniser’ to be used 
as part of a larger machine learning system. Sim-
ilarly in many gig-economy applications, such as 
ride or delivery services, the driver is told by the 
machine who or what to pick up when. 

Human as controller – In other applications, the 
human is definitely in control, telling the AI what 
to do. For example, you tell an autonomous car 
where you want to go and then let it drive you 
there. 

Human as partner – At other times the relationship is 
more collaborative, for example a system might sug-
gest options to you, or semi-automate processes, but 
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let you fine tune or guide. This is sometimes called 
hybrid AI, as we saw in Chapter 18; however, the 
term ‘hybrid’ is also used for discrete/continuous 
problems (Chap. 4) or combining different kinds of 
AI algorithm (Chap. 6). 

In these we can see different options as to who has 
the initiative, does something that starts things off; who 
makes the decision as to what should be done; and who 
actually takes action to do it (see Table 19.1 for some ex-
amples). When the human acts as a cog (in the machine), 
the initiative and decisions are made by the system and 
the human merely performs the action that has been se-
lected. Whereas in the human as controller situation, the 
initiative and high-level decisions are taken by the hu-
man, with the system dealing with details. 

Another term you may hear is human in the loop. This 
can refer to situations in all three of the above classes, 
wherever the results of the AI are not applied without 
additional human interaction. This is particularly clear 
where the human is used as part of a broader algorithm 
(human as cog) or working alongside (human as part-
ner). 

TABLE 19.1 Who Has Control and Who Does the Work, 
Some Examples. 
initiative decision action example 
machine machine human delivery service 
human machine machine autonomous car 
human joint human decision support 
machine joint joint recommender system 
human joint machine engine management 

system 

19.3.5 Levels of Automation 

When considering automobile automation, the Society 
of Automotive Engineers have defined five levels [238, 
239], which have been adopted or adapted by many na-
tional and international standards: 

0. No Driving Automation 

1. Driver Assistance 

2. Partial Driving Automation 

3. Conditional Driving Automation 

4. High Driving Automation 

5. Full Driving Automation 

In levels 0–2 the driver is still ‘driving’ the car. Level 
0 includes basic features such as ABS (anti-lock braking 
system) and various forms of warning such as blind spot 
or lane changing alarms. Levels 1 and 2 include more ad-
vanced features such as automated steering within lanes, 
or maintaining distance from the vehicle in front, but the 
driver is still expected to maintain attention and over-
sight even when the AI system is doing much of the fine 
work of driving. 

Levels 3–5 include times when the automation is 
actually driving the car. In Level 3 the driver has to 
take over when requested by the system (which creates 
hand-over challenges for the driver-car interface). In 
levels 4 and 5 the car may have no human operated 
controls at all; the difference is that level 4 is only within 
constrained environments, such as an airport shuttle 
service. 

Although the levels were developed for cars, we 
can see other kinds of human–AI system in a similar 
vein. For example in an AI-assisted programming 
environment, level 0 would include things such as 
syntax highlighting or auto-completion of variable 
names and function templates, whereas level 2 and 3 
would include auto-completion of more substantial 
chunks of code, as with GitHub Copilot [48]. In level 3 
we can imagine a system that writes full programs but 
maybe stops and requests help from the programmer 
when it gets stuck; level 4 would be something that codes 
entirely autonomously, but within a limited context, 
such as configuring IoT rules in a domestic setting; while 
level 5 would be a fully autonomous general-purpose 
artificial coder. 

Shneiderman argues that this one-dimensional view 
of automation is too simplistic and instead suggests con-
sidering a two-dimensional framework with higher and 
lower levels of human-control compatible with higher 
and lower levels of automation [257]. 

Figure 19.1 illustrates this with camera design. Early 
mass-market film cameras (bottom right: low human-
control, low automation) had no automation beyond 
springs in the shutter and little human control beyond 
pushing the button to take the picture and winding on 
the film. In contrast older (pre-digital) SLR cameras (top 
left: high human-control, low automation) allowed the 
photographer to manipulate many settings such as the 
focus, exposure time, aperture size and level of zoom 
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FIGURE 19.1 Shneiderman’s two-dimensional human– 
centred AI framework. 

as well as switch lenses, or attach different forms of 
flash devices or lens filters for different conditions. Early 
mass-market digital cameras and the basic mode of most 
phone-based cameras are essentially point-and-click 
(bottom right: low human-control, high automation), 
where the embedded computer automatically focuses 
and determines the exposure time and other settings 
available to the camera. Finally high-end professional 
cameras allow photographers to manage settings when 
they want to but can also include rich automation to 
enhance the photographer’s experience and capabilities, 
especially when in challenging circumstances such as 
needing to take many rapid shots at a wedding or during 
wildlife photography. 

The meaning of ‘control’ in this framework is 
slightly different from the kinds of control we were 
considering in Section 19.3.4, but the more synergistic 
human–AI interaction, which we will return to in 
Section 19.7, tends to fall into the upper-right quadrant 
of Shneiderman’s framework which he considers the 
sweet spot for “reliable, safe and trustworthy” AI 
systems. 

19.4 ON A DEVICE – INTELLIGENT USER 
INTERFACES 

Throughout this book, we’ve already seen many exam-
ples of user interfaces that make use of some form of 
AI including recommender systems and data detectors 
in Chapter 17. User interfaces where AI forms a signif-
icant element are often called intelligent user interfaces, 
and there is a long-running ACM conference dedicated 
to the area. 
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19.4.1 Low-level Input 

Many low-level input methods make use of some form 
of AI or ML. Some are obvious such as the speech recog-
nition used in voice assistants, but others less so. 

In Chapter 12 we discussed gesture recognition that is 
often used in pen-based systems. This includes recognis-
ing letters and numbers to enable handwriting recogni-
tion to avoid the use of a keyboard. In addition, there are 
usually action gestures, such as crossing out for delete or 
circling text to select it. These systems come pre-trained 
but will also usually adapt themselves to the user’s own 
styles of writing. 

In many situations the goal of the recognition engine 
is to translate the free-flowing gestures into a series of 
predefined codes or tokens such as letters or editing com-
mands. However, for some strokes such as lassoing text 
to edit, the precise path is important. In games often the 
speed of the movement is also critical. 

Even smartphone virtual keyboards embody quite 
complex algorithms to minimise (inevitable) mistyping. 
Often this is not in the public domain as it is either 
commercially sensitive or just buried in the code. 
However, some years ago, Microsoft engineers gave 
a rare glimpse into the detailed engineering of the 
Windows Phone 7 virtual keyboard [119]. The design 
combined fixed rules to ensure that the centre portion of 
every key is consistent with more predictive techniques 
that expand the effective size of each key depending on 
the likelihood it will be pressed next. 

Even less visible are the algorithms used for picture 
stabilisation and auto-focus in a smartphone camera. 
These are only noticed when they go wrong. 

19.4.2 Conversational User Interfaces 

The origins of conversing with a computer date back 
many years, not least ELIZA in the mid-1960s [299] that 
we discussed in Chapter 1. By the mid-1980s the MIT 
Speech Interface Group used various state-of-the-art 
techniques to create an envisionment ‘Phone Slave’, 
which still looks remarkable given the 30 years it took to 
become commonplace [245]. It is interesting that many 
of the issues that can still cause problems today were 
foreseen at that point, for example how to distinguish 
deliberate commands vs accidentally overheard speech. 

A home automation device has a relatively high-
quality microphone and also gradually learns your 
speech patterns. Voice-based systems over telephones 
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FIGURE 19.2 Talking to Siri. 

that have to work with anyone can still be difficult and 
can be particularly problematic for certain accents, or 
older people. For this reason, interactive voice response 
(IVR) systems are still often built around a computer-
driven dialogue with quite complex parts spoken by the 
system and key presses or very simple spoken responses 
by the user. 

IVR systems and indeed many chatbots typically oper-
ate using a simple flow-chart-based dialogue, often called 
a ‘decision tree’, but in a different sense to the decision 
trees in machine learning. The decisions here refer to the 
choices made by the user, for example what kind of query 
they have, or choosing between different kinds of prob-
lem. 

Text-based chatbots can also use more sophisticated 
NLP using the kinds of techniques discussed in Chap-
ter 13. This is in part because the actual words are well 
defined even though the extraction of meaning can be 
more difficult. 

In all cases there will be errors and uncertainty and 
so it is critical that any conversation-based interactions 
have plenty of provision for error detection and repair, 
for example the system repeating back what it thinks the 
user has said. We’ll return to these issues of repair in Sec-
tion 19.6.2. 

Home automation systems or voice assistants on 
smartphones or in a car have to work by voice alone 
but typically do not operate in a fully conversational 
mode, instead adopting a question-and-answer or 
command-and-action pattern. Figure 19.2 shows an 
attempt to get MacOS’s Siri to engage in conversation. 

Sometimes conversational interfaces merge with 
gesture-based interaction in multimodal interfaces. 
Both the speech and gesture aspects have their own 
algorithms and uncertainties, but it is also important 
that they are synchronised to enable interactions such 
as “put that circle there” in a graphics editing system. 
The different locations of the user’s pointed finger 
at the words ‘that’ and ‘there’ are crucial. Often the 
recognition process has small delays, so it is important 
that the speech-recognition part is able to link the 
recognised words with the time they were uttered not 
the time the recognition is complete. 

19.4.3 Predicting What Next 

The key-level algorithm used in the Windows Phone 
keyboard and the word-level prediction that offers 
suggested completions are performing a simple form 
of lookahead prediction: the next token in a sequence. 
Older systems often used Markov models or similar 
statistical techniques, and simple frequency-based 
methods are often sufficient for more discrete short text 
such as search auto-complete. However, for sequence-
based prediction, such as sentence completion in 
an email client, transformer models (Chap. 14) are 
increasingly used. 

In some ways these are simply more sophisticated ver-
sions of older statistical or probability-based methods, 
taking a window of past text and predicting the next few 
words. However, there is a point at which the simple 
change in quantity of text feels like a qualitative differ-
ence. GPT-3 was trained on half a trillion words, many 
thousands of times more than a child would encounter as 
they grow up, and this huge figure is only increasing with 
subsequent versions. Our own language is often a mix of 
stock phrases and adaptations to the precise situation. To 
some extent the transformer models are doing this. Cru-
cially they maintain a substantial amount of context and 
so are able to stay ‘on topic’ for extended periods, to the 
extent that whole essays are being produced with publicly 
available tools such as ChatGPT. 

Often GPT-based applications are tuned to specific ar-
eas, and there is a considerable art in priming the models, 
that is giving them some starting text that establishes the 
right topic area. For example the Codex model is a ver-
sion of GPT-3 trained on 54 million public repositories 
at GitHub [48]. This has been used to offer code auto-
completion in GitHub Copilot [108], which often offers 
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amazing coding suggestions, but also can create reason-
able but wrong code, or possibly worse, return code that 
duplicates whole chunks of specific code from GitHub 
with implications for IP. 

The same underlying Codex has also been to drive a 
chatbot in ‘The Programmer’s Assistant’ offering conver-
sations that are remarkably like one might expect with a 
fellow programmer [236]. Crucially however, the devel-
opers of the Programmer’s Assistant prime Codex with a 
prompt that shifts it towards effective interactions. This 
prompt contains some fixed text that has been tuned to 
nudge Codex in a helpful direction, which is combined 
with phrases drawn from the specific current coding con-
text. 

19.4.4 Finding and Managing Information 

Researchers in personal information management (PIM) 
often focus on four activities; the user needs to acquire, 
organise, maintain and retrieve information [23, 150]. 
Organisational information management has similar ac-
tivities. Various machine learning techniques are used in 
at least three of these – relatively little for the ‘maintain’ 
side. 

Thinking first on acquiring information, we have al-
ready discussed forms of recommender system in previ-
ous chapters. These use your own and other people’s past 
selection of material (books, music, news items) in or-
der to offer suitable items to suggest to you. Similar tech-
niques are used for both targeted advertising and dat-
ing apps. Note these systems often depend on relevance 
feedback, some indication of whether the recommenda-
tions are indeed what you want to see or hear. This can 
be explicit, as in star ratings for films you have watched 
or favouriting an item to return to; or it can be implicit, 
for example that you chose to listen to a recommended 
piece of music to the end. 

The organising side has also been a major success, at 
least in email management, where the volume of incom-
ing information is greatest. As well as spam filters, the 
main commercial systems exploit machine learning for 
classification to pre-sort mail into major categories, try-
ing to identify the most important emails for immediate 
attention. These systems are so good that people rely on 
them and will often miss emails that have not been cor-
rectly categorised. Outside of email, the picture is more 
patchy; hierarchical filing systems on personal comput-
ers and the cloud have changed little since the 1970s. Of-
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ten the assumption is that if retrieval is good enough, 
careful filing is unnecessary. 

As noted there seems to be less use of AI for main-
taining information, that is ensuring it is kept up-to-date 
and filing systems are efficient. As with organisation, if 
retrieval is good enough, having things poorly sorted is 
not a problem. One of the reasons for deleting old infor-
mation is to reduce the clutter that gets in the way of ef-
fective human retrieval, but if AI can identify candidates 
for deletion, it may as well not bother and simply ignore 
or low-rank these items during retrieval. 

There are two times when deletion is important. 
First is for resource management. Phones may identify 
apps to archive, as running apps reduce battery life and 
cloud services may automatically migrate items to and 
from your personal computer. However, full deletion 
is rare except for disk clean-up applications, which use 
relatively simple rules, not least because mistakes are 
hard to fix. The other reason is privacy and security, both 
personal and corporate. Indeed, many organisations still 
find it hard to comply with data protection legislation 
that requires personal information not to be kept longer 
than necessary. 

In some ways retrieving information is similar to ac-
quiring it, except that the sources are internal rather than 
external. Indeed at an organisational level very similar 
techniques are used. At a personal level things are a little 
more complicated as by definition the information is not 
personal and therefore simple popularity-style metrics 
cannot be used to learn from other people’s behaviour. 
The search systems in use for personal information do 
indeed seem to be relatively simple. 

Crucially personal information search requires trans-
fer learning where things learnt about one person’s be-
haviour in an abstract sense can be transferred to another 
person’s documents or emails, even though the actual 
items are completely different. The main example of this 
at present is at the language level where synonyms for 
terms learnt from document corpora or other people’s 
(public) searches can be used to tune searching of per-
sonal or corporate repositories, but as work on transfer 
learning develops this may soon change. 

Search and retrieval systems differ in terms of accu-
racy. Many of the highly successful systems developed 
for acquiring information, particularly recommender 
systems, work on the principle that there is too much 
information available and so giving good enough 
information is sufficient, you do not need to have every 
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single piece of information that is relevant, and a few 
irrelevant items don’t matter as you can skip them. 

However, sometimes it does matter that you have pre-
cisely the items you want. This can be the case for pub-
lic information, for example it is important that a lawyer 
retrieves ‘all’ of the relevant case law. It is even more 
common for retrieval of personal or organisational in-
formation – you want precisely the document you were 
working on three weeks ago, or exactly the records of 
employees that are nearing retirement. This was one of 
the drivers for Query-by-Browsing (QbB) described in 
Chapter 5; if you are going to perform an action, such 
as giving a pay rise to employees, or sending a loan re-
minder to clients, it is important that you select exactly 
the right ones. Note that QbB was designed to create an 
understandable query which could be verified by the user 
– we will return to these issues in Chapter 21. 

While non-AI based systems tend to merely retrieve 
information when asked, more intelligent systems can 
proactively suggest potentially useful information. Rec-
ommender systems do this for acquiring information, 
while some personal knowledge management may sug-
gest relationships between items as a form of creativity or 
inspiration aid. Note that personal knowledge manage-
ment is a term often used in commercial systems rather 
than PIM, which is used more in the research domain. 

19.4.5 Helping with Tasks 

Various forms of more (or less) intelligent algorithms can 
be used to help make day-to-day digital tasks easier. 

At the simpler end is automated form-filling in email 
browsers. Research systems have created sophisticated 
versions that use contextual information to tune sugges-
tions for each field, but most systems used in practice rely 
on simple rules such as the names of the web form fields 
and match these to previous entries in fields of the same 
name, especially on the same web form. 

One step up are data detectors and named entity 
recognition introduced in Chapter 17. For the former, 
simple patterns are used to match structured content 
such as a date. The latter match specific words or 
sequences of words to known entities such as places, 
people or titles. These are sometimes combined in more 
complex recognisers such as the way some email systems 
will notice that if a time, a date and place are mentioned, 
then this may be an appointment. If the source of an 
email is recognised, then more specific rules may be 

applied, for example parsing the automated emails from 
flight or hotel booking sites. Most of these systems are 
based on pre-specified rules rather than learning from 
user interactions. 

There is also a long history of systems that observe and 
then automate user tasks. Some of the earliest examples 
were related to programming user interfaces [169, 205], 
and hence the term programming-by-demonstration 
is often used even when the applications involve 
no code. 

Systems such as Apple Automator simply record 
the user’s actions on an interface and then allow the 
user to replay them, but more sophisticated systems 
attempt to match potential variable elements, so that 
they can repeat the same task for a different object or 
look for repetitions (or loops in a coding analogy). An 
early example of this was EAGER [64], which was able 
to automate iterative tasks in HyperCard, a common 
hypertext and coding system on Apple computers 
at the time. As well as being relatively sophisticated 
EAGER was embodied in the interface in the form of a 
small cat. 

Despite these early research systems being relatively 
successful, the level of sophistication of actual deployed 
systems is very basic. This is partly due to the complexity 
of correctly inferring both parameterised and repeated 
tasks, not least the completion criteria for the latter. 
The success of code-completion systems such as Copilot 
in inferring complex coding structures is because they 
are based on large bodies of code containing loops as 
text, not because they understand coding structures 
themselves. 

Another barrier to effective task automation is access 
to the underlying data. First the units of activity on a 
graphical system are not obvious. If you simply record 
user actions you end up with a series of mouse-click 
events, whereas for effective task learning this needs to 
happen at a more semantic level such as “MOVE FILE 
august.xls TO FOLDER monthly_reports”. Apple 
attempted to encourage developers to code applications 
using this form of intermediate representation so that 
they were recordable for automation, but few followed 
this advice including many of Apple’s own applications. 

Furthermore both task automation and simpler aids 
such as form filling ideally would have access to rich data 
about the user and current context such as contacts and 
different messaging systems. There have been attempts to 
capture this in what has been called a semantic desktop 
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applying semantic web technologies to personal comput-
ers [242]. However, these efforts have never found their 
way into commercial systems, for both practical reasons 
and also issues of privacy. 

19.4.6 Adaptation and Personalisation 

Most computer applications have settings that can be 
customised by the user, but few ever change the default 
settings. This is partly because customisation requires 
upfront effort in order to improve future experience. 
Furthermore the precise implications of customisation 
decisions can be hard to predict, further reducing our 
willingness to put in effort for uncertain outcomes. 

Various forms of intelligent adaptation can address 
these problems. For example, a word processor might 
highlight ‘colour’ as a potential spelling mistake but, 
when you open the pop-up menu, will offer both 
changing it to ‘color’ and changing the default language 
setting to ‘English (UK)’. Note that this: 

• reduces the knowledge required – how to change 
language settings, 

• reduces the effort required – agreeing to the sugges-
tion rather than navigating to the settings, 

• is timely in terms of understanding – the user can 
see how the change would have helped the interac-
tion, 

• is timely in terms of value – because of this the user 
can appreciate the value of the (small) effort to agree 
the settings change. 

While there are many advantages to this form of timely 
suggestion, some adaptations may be performed entirely 
automatically. For example, if you adjust your screen 
backlight, the system could use this to improve its 
algorithm that sets the backlight depending on ambient 
light. Similarly, if a user frequently opens then closes 
files, it may be a sign that double-click delay needs to 
be slightly adjusted. Note that these are both examples 
where it is very hard to say precisely what is a good 
setting except in the precise situation and where the user 
may be unaware of the adaptation except in so far as it 
subtly improves their experience. 

In between are adaptations that are automated but vis-
ible. One of the oldest examples of this is long menus. An 
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obvious way to adapt a long menu is to order it by fre-
quency of use so that the most commonly used items are 
at the top. Indeed, this is the approach taken in some file 
browsers where the default view is of recently accessed 
files. In the case of the file system you still can access 
them in an alphabetic or hierarchical view. However, if 
the menu is entirely sorted by recency, then it becomes 
very hard to find the less frequently accessed items as 
their location in the menu keeps changing. 

This illustrates a general issue for adaptation, the 
need for deterministic ground, having things that do 
not change as well as things that do and knowing which 
is which. In the filing system the hierarchical folder 
view is the deterministic ground, meaning you can rely 
on it being stable and hence learn to access things in it 
without them being confused by adaptations. In fact, 
most adaptive menus, such as font selection, do have a 
deterministic ground as they only place a small number 
of most likely items at the top (adaptive area) and 
then have a fully alphabetic menu below (deterministic 
ground). 

Note too that an effective deterministic ground can 
also help manage the conflict between personalisation 
and cooperation, which we highlighted earlier. 

19.4.7 Going Small 

Many of the machine-learning approaches we have seen 
in this book require large datasets and extensive com-
putational power for initial training. We’ve already dis-
cussed how transfer learning can help deal with the lim-
ited data available for a single user. However, in addi-
tion the user’s device cannot perform the massive com-
putation that is available for the most sophisticated algo-
rithms. Execution is usually less computationally expen-
sive than learning, but still the many billions of param-
eters of some deep learning models would challenge the 
memory and processing capacity of smaller devices. 

This is one of the reasons that many of the systems we 
have described use relatively simple rules rather than 
more complex machine learning. One solution is to 
use large computational resources to train models and 
then use some form of simplification to create smaller 
models that perform nearly as well. This simplification 
is itself a computationally expensive task but only needs 
to be done once and is performed centrally with its 
results then downloaded into individual devices. Of 
course, if the device is internet connected, then some 
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computation can be off-loaded to the cloud, and this 
is precisely the approach taken in some speech-based 
systems. 

19.5 IN THE WORLD – SMART 
ENVIRONMENTS 

Most of the examples so far have been where the in-
telligence is in some form of information system and 
where there is a single user largely in control. However, 
we are increasingly living in environments where many 
aspects are digitally controlled and monitored. This is 
true in the home, in hospitals, on the road and at work. 
These devices are often network connected creating what 
is known as the internet of things (IOT) and furthermore 
these devices often either include local intelligent algo-
rithms or connect to cloud-based intelligent services. 

The nature of human interactions with these diffuse 
smart environments (smart home, smart city) is funda-
mentally different from information systems. 

We can think of this from both the computer and the 
human side. First of all the designer of smart environ-
ment algorithms needs to consider: 

initiative – These systems often involve the computer 
taking the initiative, that is in the incidental end of 
the intentionality spectrum. 

interpretation – Because of this the computer algo-
rithm also needs to interpret the environment 
which may include one or many people. 

sensing – Often the inputs for the system come from 
sensors in the environment, not user commands. 
However, these sensors may offer incomplete or un-
certain data due to placement or inherent accuracy 
of the electronics. 

physical – The output or impact of computer actions 
may be more informational (such as the colour of 
lights) but also may include actual physical actions 
such as the raising of a barrier or an autonomous 
car driving on the road. 

human action – Some outputs such as traffic lights only 
have an effect indirectly through human actions, 
which may not be reliably predictable. 

distribution – The computation for AI may be 
distributed in sensors or actuators as well as 
in centralised systems, which can then be seen 

as interacting with one another digitally and 
physically. 

In addition, these systems feel very different for the 
human: 

uncertainty – The uncertainty of sensors is com-
pounded with the uncertain behaviour of complex 
AI systems. 

hiddenness – Some system actions are immediately ob-
vious, for example changing the music, but others 
are not immediately obvious, such as turning on an 
outside security light. 

time lags – Furthermore there are often delays between 
an action being performed by the system and its 
effect on the environment, for example between 
turning on heating and feeling the air warm up the 
room. 

conjoint action – Changes in a smart environment are 
often related to broad human activity, such as traffic 
volume, rather than individual user actions. 

We’ll look at a selection of issues in more detail. 

19.5.1 Configuration 

If IOT devices are being installed in an industrial 
environment, then expert installation engineers can set 
the system up, configuring the locations and settings 
of the individual sensors and connecting them into the 
overall system. However, in a domestic environment 
this has to be managed by an ordinary person. In both 
cases mechanisms to ease the installation process are 
important. 

The smart environment typically needs to take into 
account the relative locations of devices, which may be 
used by specialised algorithms or fed as additional in-
put alongside the sensor values as part of machine learn-
ing. This is relatively easy to configure in an industrial 
plant where there are plans and schematics, but harder 
in a home or for devices installed outside. However, al-
gorithms can be designed to help this process. This can 
use time of flight for wireless signals or sound, or trian-
gulation using cameras. For example, the Firefly system 
in Figure 19.3 allows lights to be positioned randomly 
but then works out their locations after installation by 
twinkling each light in a unique code [44]. 
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FIGURE 19.3 Firefly – individual lights flash a unique code and are then positioned using triangulation from multiple camera 
angles (see https://lucidina.com/). 

After initial installation, sensors may fail or new 
sensors are deployed. Ideally this should not require 
configuring from scratch. Where there is redundancy 
in the sensor network this can be used to fill in the 
gaps for broken sensors and to train on the fly for new 
sensors. 

19.5.2 Sensor Fusion 

There are often many sensors in an area. These may be 
homogeneous, for example many air-quality sensors in 
a city street, or heterogeneous, for example temperature 
sensors in a conjunction with cameras. Some sensors 
may return very different data about the same thing, 
for example a camera and air-quality sensor in the 
same street; some similar data about different things, 
for example temperature sensors in a distant room. 

However, sensors can also offer redundant data, that 
is they are measuring the same or nearly the same 
thing. This sounds wasteful, but allows for sensors to 
fail, or also to potentially deploy large numbers of low 
cost and low quality sensors that together are accurate, 
sometimes called smart dust. 

The data from the sensors needs to be brought together 
to generate a coherent view of the environment. This is 
called sensor fusion. At its simplest all the sensor input 
could be used as inputs to a single large neural network; 
however, this approach is rarely best as datasources are 
so different both in terms of sample rate (e.g. sound sam-
pled as 44kHz vs video at 60 frames per second) and size 
(a single volume level or two stereo channels for sound, 
vs millions of pixels for video). Because of this, sensors 
will typically have some initial media-specific process-
ing, for example a convolutional neural network for im-
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FIGURE 19.4 Sensor fusion: from multiple raw sensors to rich 
context model. 

ages or Fourier analysis for sound sources, that reduces 
the heterogeneous signals to forms that can be brought 
together either through more rule-based approaches or 
machine learning. 

19.5.3 Context and Activity 

The final aim of processing sensor data will be to 
do something. This might be to autonomously make 
decisions, for example to adjust the pattern of heating 
and ventilation in the house as a particular area is too 
hot. It may also be used to modify or augment explicit 
user interactions, for example taking into account the 
packet of food you have taken out of the freezer when 
you say “put the oven on” to the home computer. This 
latter is called context-aware interaction. 

In the case of the freezer pack the system might be us-
ing a vision system to read the packet label or bar code, or 
scanning an RFID tag. This is relatively straightforward. 
However, more complex automatic decisions or context 
aware interactions may require the system to recognise 
what you are doing. This activity recognition typically 
involves observing over a time period, for example the 
difference between stirring and beating an egg, or run-
ning vs walking. 

The final output of such a system may be a single 
activity, say ‘running’, possibly with a confidence 
value, say 53%; or it may be a vector of activities with 
associated confidence levels: say [running:53%, 
hopping:32%, walking:15%]. Of course the latter 
can be reduced to a single activity by selecting the activity 
with highest confidence as often a single choice may be 
needed. 

When we have several possible activity types (or in-
deed several kinds of classification in general for ma-

chine learning), then there is not a simple accuracy value, 
nor even simple false positive/negative, as a classification 
of ‘running’ could be wrong in several ways. A confusion 
matrix captures this uncertainty giving the probability, 
say, that a person who is classified as running is actually 
walking; in the example confusion matrix in Table 19.2 
this is 12%. 

TABLE 19.2 Confusion Matrix for Activity Recognition. 

actual activity 
running walking hopping 

running 67% 12% 21%classified walking 82% 15% 3%activity hopping 57% 7% 36% 

Note that you can draw this the other way round, ask-
ing that if someone is actually running, how likely they 
are to be classified as walking, but this is not simply the 
transpose of the matrix in Table 19.2 as it needs to take 
into account the probability that a person is running in 
the first place, that is the base rate. 

Note finally that this uncertainty in the final classifica-
tion in the output of sensor processing (whether an ac-
tivity label or some other kind of measure) includes both 
uncertainty due to raw sensor measurement and due to 
the recognition/processing process. Sensor redundancy 
and sensor fusion may reduce some of the raw sensor 
uncertainty, but there is almost always significant uncer-
tainty remaining. 

19.5.4 Designing for Uncertainty in Sensor-rich 
Smart Environments 

Designing in smart environments is almost always 
about designing within uncertainty, creating a system 
that works as a whole even if elements cannot be 100% 
accurate. One way to do this is to try to match the 
accuracy of the sensor and AI. We’ll see how to do this 
using a simple example of car courtesy lights. 

Figure 19.5 shows a scenario of getting into a car ready 
to drive off. Each step is marked with how important it is 
that the lights are on (‘+’s) or off (‘–’s), the more plusses or 
minuses there are, the more important it is that the lights 
are on or off in the state. So for example it is more impor-
tant that the lights are on when looking up the route than 
when adjusting the seat. 

This kind of representation can be useful in itself as 
part of a discussion with potential users. Note especially 
the little bomb symbol for walking up to the car. This 
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FIGURE 19.5 Courtesy lights – when do you want them on? 

was initially marked with plusses as it seemed good to 
have a little light as one was opening the door, but in a 
discussion about this one person pointed out that when 
alone at night, it was dangerous to have the light turn on 
as one approached the car as it let muggers know where 
you were going. 

Having got this it can be used to match with available 
smart technology. This might include simple door sen-
sors, weight sensors in the seats (available for seat belt 
warnings) and data from the internal infra-red security 
sensors that can help differentiate the driver and passen-
ger’s activity. 

Let’s imagine that we have trained a neural network 
to identify the various activities in Figure 19.5 and pro-
duced the confusion matrix. If there were only two activ-
ities, then we would need to trade-off false positives and 
false negatives using a ROC curve as we saw in Chap-
ter 9. However, here we have a multi-way classification 
and in particular some of these are less critical than oth-
ers. These less critical cases give us leeway to improve the 
behaviour in the most critical situations. 

Suppose the classification system is 60% certain you 
are trying to put the key in the ignition (step 11), when it 
is slightly easier with no light as it is in shadow anyway; 
but with a 30% certainty that you are finding the right 
key on your key ring (step 10), when it is a little better 
to have light, but possible by feel; and only 15% certainty 
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that you are still looking up your route (step 9). A ‘highest 
certainty’ rule would turn the light off, as you are most 
likely to be trying to get the key in the ignition, but a more 
importance weighted rule would keep the light on as the 
state of the light in step 11 is of low importance whereas 
step 9 is critical. 

19.5.5 Dealing with Hiddenness – A Central 
Heating Controller 

With the car courtesy light the problem is that the system 
doesn’t know precisely what you are doing. However, if 
there is a time lag, or the state of the system is hidden, 
the user may be in a position of uncertainty about the 
system. This can sometimes be used constructively by 
taking into account the context and the user’s inferred 
meaning because of that. 

One of the problems with heating controllers is that 
people think the level on the controller is about the quan-
tity of heat that is being produced. Imagine you have 
only recently arrived home and the heating has only just 
started to warm the room, that is the current temperature 
of the room is below the thermostat temperature and the 
heating is already working at full capacity warming it up. 
However, you feel cold, so you turn the thermostat right 
up. This has no immediate effect as the heating is already 
working as hard as it can, but some while later the room 
ends up far too hot. You then turn the thermostat right 
down ... and the cycle continues! 

We are going to replace the system with a smart system 
that tries to adjust the temperature to your preferences 
but still allows you to override the system’s chosen tem-
perature – indeed it is precisely these times you override 
it that allow it to learn. If the new system simply copies 
the old model of a thermostat temperature, it will inherit 
the same problems. 

One solution is to make the state less hidden, perhaps 
showing the target temperature the system is trying to 
reach and the current temperature, with an icon such as 
a fire to show the heating is working hard (Figure 19.6, 
left). 

Another option is to have no display at all and sim-
ply a control with plus/minus or up/down arrows mean-
ing “I’d like it warmer” or “I’d like it colder” (Figure 19.6, 
left). Maybe pressing the plus button twice might mean 
“I’d like it a lot warmer”. If we return to the scenario of 
the heating being below the current system target tem-
perature and you press the plus, the system will sim-
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FIGURE 19.6 Heating controller (left) first design option more information; (right) second design option less information, 
more intelligence. 

ply ignore your press – it is doing it already. However, 
if the temperature is at the system setting, it will both 
turn up the target temperature and use this to improve its 
learning. 

Thinking further imagine you have installed a carbon-
conscious AI system. Over time the system can gradu-
ally lower the room temperature from its best estimate of 
your desired temperature. It may be that you don’t no-
tice or if asked would ideally like it a little warmer, but 
not enough to be bothered to do anything. However, if it 
gets too cold you press the plus button. This means that 
the system can not only learn over time your ideal tem-
perature but also your tolerance either side and deliber-
ately save energy by keeping the room only just above the 
point where you care. Maybe over time you even get used 
to the lower temperature and the levels can drop further 
still, saving you money and saving the world at the same 
time. 

19.6 DESIGNING FOR AI–HUMAN 
INTERACTION 

When there is expected to be human involvement, some 
of the unstated requirements of algorithms change. 

For machine learning systems and AI in general, the 
normal metrics are about accuracy, correctness and opti-
mality. How often does the system give the right answer? 
What is the single best choice? These are good questions 
if the system is to be deployed with no direct human in-
volvement, or in situations where people should not be 
aware that the AI is operating. 

However, these are often not the best algorithm 
heuristics when there is a human in the loop. Here the 
appropriate question is not how to make the AI as good 
as possible but how do we design the intelligence and 
the interaction so that when they are used with people 
the system as a whole behaves as well as possible. 

19.6.1 Appropriate Intelligence – Soft Failure 

When you demo a system, you of course want to give the 
best answer as often as possible. We can think of this as 
two tenets of useful artificial intelligence: 

1. be right as often as possible 

2. be as good as possible 

These are important. However, in real use the key 
question is often how badly things go wrong and how 
easy is it to recover when they do. In other words, tenet 
1 is important, but in practice so long as it is right 
reasonably often it is fine. Tenet 2 is important, but if it 
is reasonably useful, it is fine. However, more important 
is the tenet of appropriate intelligence: 

3 don’t mess things up when you are wrong 

Older users of Microsoft Word will remember Clippy. 
Every so often, as you were typing, a small pop up would 
appear with a little paperclip figure in it to give useful 
advice, “I can see that you are writing a letter, why don’t 
you ...”. It used reasonably clever algorithms in order to 
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FIGURE 19.7 Appropriate intelligence – Sum button in Excel. 

detect the kind of document you were working on (ad-
dressing tenet 1) and had (more debatably) useful advice 
(tenet 2). However, when it popped up in the middle of 
the screen it interrupted both your train of thought and 
your typing, discarding anything you were typing after it 
appeared until you cancelled it. That is, it failed tenet 3. 

Not surprisingly, Clippy was withdrawn, although 
other more subtle forms of intelligence are used. In 
contrast, the Sum (Σ) button has been in all versions 
of Excel for many years. This was introduced based on 
analysis of spreadsheet use that showed that the most 
frequent action after entering numbers is adding up a 
row or column. 

The Sum button uses a fairly simple intelligent algo-
rithm. There are a few tweaks to manage subtotals, but 
basically it scans upwards and leftwards from the current 
cell looking for the nearest block of consecutive numbers 
and adds a sum formula. If there is a tie for the closest, 
the vertical (column) sum wins. The algorithm is simple 
and often works out what you want (tenet 1) and inserts 
the correct formula (tenet 2). 

Crucially however, once the sum is inserted the cells 
that form part of the sum are selected. If they are not what 
you want, it is easy to grab one of the selection handles 
to extend or completely change the selected region (Fig-
ure 19.7). In other words, when it is wrong, it is easy to 
fix (tenet 3). 

19.6.2 Feedback – Error Detection and Repair 

With Clippy, it was usually obvious whether or not its 
suggestions were helpful, it was just that by this point the 
damage to your concentration had already been done. 
However, in many settings the problem is even more se-
vere: things go wrong but you don’t even realise. 
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One day you say to Aria, your voice-based virtual as-
sistant, “Aria, order two, no three, no two bottles of milk”; 
“OK”, says Aria. The next morning a large, refrigerated 
truck arrives and starts to unload crate, after crate, after 
crate. If only Aria had instead answered, “You’d like to 
order two oh three oh two, that is twenty thousand three 
hundred and two bottles of milk. Is that right?” 

In human–human conversations we often mishear or 
misinterpret what others are saying, but we also con-
stantly offer ways to confirm that we have a common un-
derstanding and are adept at repair. Sometimes this takes 
the form of an explicit confirmation step, such as Aria’s 
“Is that right?”, but it can also be in the form of implicit 
feedback during the next step of conversation. 

Imagine you are on the phone to the airline agent 
(maybe human, maybe AI) at New York JFK and say 
“When is the next flight to [slightly inaudible] London?”, 
the reply might be “The next direct flight from New 
York JFK to Lisbon is midday tomorrow”. Note that this 
gave the answer to the question, but rather than just 
saying “It’s at midday tomorrow”, the reply reiterated the 
hearer’s interpretation of what was asked, partly based 
on context (the airport of the agent) and partly based on 
(mis)heard information (Lisbon rather than London). 
This gives you the chance to correct the mishearing 
“that was London not Lisbon”, and also the contextual 
interpretation “what about other New York airports”, or 
“I’d be happy with a connection”. 

We can think of these speech-based interactions using 
the stages of language processing we saw in Chapter 13; 
there are lots of different kinds of AI involved at each 
level (Figure 19.8). 

Lexical – what was actually said – “no” or “oh”, “London” 
or “Lisbon” 

Syntactic – how this is pieced together as a unit, for ex-
ample “oh” being treated as a digit (zero) and thus 
making the number 20,302 

Semantic – the utterance means “please order 20,302 
bottles of milk” 

Pragmatic – the way this makes sense in the real-world 
setting, for example the assumption that this is from 
the normal dairy supplier and maybe that 20,302 is 
a lot of milk 

There is the potential for misunderstanding or 
misinterpretation at each level, and thus for feedback 
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and repair. However, in practice, as a human, we make 
choices of the level of feedback and whether we seek 
explicit or implicit confirmation based on our level of 
confidence. If the line was very bad, or the location very 
unusual, the agent might explicitly ask “did you say 
Lisbon?”. Similarly, Aria might normally say, “I’ll order 
twenty thousand three hundred and two bottles of milk. 
Is that right?” but would only add the lexical feedback 
“two oh three oh two”, if there was high uncertainty 
(noisy room). 

Note too that these levels cannot be treated entirely 
separately as a pipeline. If at the pragmatic level the Aria 
system notices that 20,302 is an unusually large milk or-
der, this might trigger a search at a lower level for inter-
pretations of lower confidence, maybe not low enough 
on their own to trigger additional feedback but possibly 
sufficient to say, “two oh three oh two”, with the addi-
tional knowledge that there is potential high-level incon-
sistency. 

19.6.3 Decisions and Suggestions 

Note that while Clippy and Excel Sum differ in their 
impact, both are making suggestions rather than doing 
something. Imagine if when you pressed the Sum button 
in Excel, it not only added the sum but guessed that you 
were calculating numbers to put into your tax return, 
so it accessed your bank account and copied all your 
financial details into the spreadsheet. Of course, while 
this could be precisely what you are doing, maybe you 
are in the middle of a meeting projecting the spreadsheet 
on a large screen to a room of 20 colleagues, who then 
see all your personal expenditure for the year. As a rule 
of thumb unless the level of confidence you have in 
the correctness of an automatic decision is high or the 
consequences of getting it wrong are low, it is better to 
offer suggestions for action rather than automating the 
action (Figure 19.9). However, there are limits to this. 

If there are too many confirmations and suggestions, 
then this may itself interfere in the user’s tasks or lead to 
‘click it away’ habits, as often is the case with confirma-
tion dialogues. 

In practice there are three factors that work together to 
determine the appropriate level of suggestion or action. 

Confidence – how accurate is the AI system at its pre-
dictions/interpretations 

Cost of failure – how bad is it if the action is wrong 

Complexity of interaction – how much would this add 
to the human’s load 

If all of these agree, things are easy. For example, if 
there is high confidence, low cost of failure and high 
complexity of interaction, then there is a strong case to 
act without further user interaction. If on the other hand 
the confidence is low, cost of failure high and complexity 
of interaction low, then it is worth checking with a 
human user first. Real life often sits in the in-between 
places, and here effective design of interactions can 
make a difference, for example subtly offering feedback 
of what has been done, without asking an explicit “is this 
right”. 

19.6.4 Case Study: onCue – Appropriate 
Intelligence by Design 

Figure 19.10 shows the operation of onCue, a commer-
cial system the author was involved with in the dot-com 
period [78]. The interactions in onCue were designed 
with the principles of appropriate interaction explicitly 
in mind. 

onCue watched for when the user copied or cut 
items into the clipboard. It contained data detectors 
(see Chapter 17) that used pattern recognition to work 
out what kind of content had been copied. This was 
then used to populate an intelligent dynamic toolbar 
that usually floated on the side of the user’s screen. If 
the clipboard contents looked like plain words, onCue 
would suggest search engines; if the content looked 
like names it would suggest directory services; a table 
of numbers would suggest graphing or opening in a 
spreadsheet. 

Crucially, onCue was not intrusive – it was not modal 
taking keyboard focus, nor did it grab the user’s visual 
attention by appearing in the middle of the screen or 
changing suddenly. Instead, the icons slowly faded in and 
out, so that it was always there waiting but never de-
manding. 

This was a deliberate design choice based on the 
principles of appropriate intelligence. The matches, 
while potentially useful, had low confidence in two 
senses: (i) the pattern matching was simple, so there 
could be several potential tentative matches; and (ii) 
it might not be needed – you might simply want to 
copy a name but not want to look it up in a directory 
service. Because of this the interaction was designed to 
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FIGURE 19.8 Multiple levels of processing in a speech-based system. 

FIGURE 19.9 Levels of confidence and action – simplified 
view. 

offer unobtrusive suggestions, which imposed minimal 
additional load on the user. 

19.7 TOWARDS HUMAN–MACHINE 
SYNERGY 

We saw that AI systems differ in the extent to which the 
user or AI is in control. Possibly the best outcomes are 
when the system is designed to be synergistic, to enable 
both human and computer system to work together. 

One part of this is assessing which aspects of an overall 
task are most suited to the human or artificial participant, 
for example the “Humans are better at ... Computers are 
better at” lists we saw for expert systems in Table 18.1. 
This can be used for function allocation – who does what. 
This can be static, with fixed things that the system does 
(maybe find candidate interaction icons) and things the 
user does (choose which they want). However, we may 
also sometimes have dynamic function allocation where 
the balance changes depending on the context, for ex-
ample, in an aircraft cockpit, an AI system might auto-
matically manage less critical aspects during take-off and 

landing when the pilot’s attention needs to be focused, 
but leave them to the air crew during flight when they 
have free attention. 

As well as taking different tasks, the nature of both AI 
algorithms and interaction can be deliberately modified 
in order to make a better overall system. That is we might 
deliberately choose an apparently less than optimal AI al-
gorithm or a less than optimal user interface in order that 
the overall synergistic system works as well as possible. 

19.7.1 Tuning AI Algorithms for Interaction 

First let’s look at how we can adapt AI so that it works 
well in human-in-the-loop systems. In fact, many of 
the things needed for this turn out also to be helpful 
when one AI system is embedded within a larger 
fully automated system – that is algorithms that are 
good for human interaction are also often good for 
machine-machine interaction. 

We have seen several examples where measures of 
confidence or uncertainty are helpful in order to trigger 
feedback. These are generated as a matter of course 
by some algorithms as part of their normal workings. 
This may be used to select the best but can also be 
used to signal uncertainty. In some cases, there is an 
absolute measure, for example Bayesian reasoning 
can yield a probability estimate. In other cases, the 
measure is relative, for example where the scores for 
two alternatives are close to one another. Where there 
is no such measure, it may be possible to create one, 
for example by adding noise to the inputs of a neural 
network and seeing if this changes the classification it 
gives. 

When making an automated decision, an algorithm 
needs to be very sure it is correct; however, when making 
suggestions, the opposite strategy is often useful. If there 
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FIGURE 19.10 onCue – designing appropriate interactions. 

is some sort of score of fit or certainty, then the threshold 
for an automated decision can be set very high, but the 
threshold for whether to offer something as a suggestion 
can be set quite low, presenting multiple alternatives to 
the user. 

There are limits to this. Hick’s Law says that the time 
taken to make a choice increases with the logarithm of 
the number of choices – having more choices means 
more time. Sorting the choices in relevance order can 
help – which emphasises the importance of the quality 
of confidence measures. Also if the bar for admitting 
suggestions is too low, the poor quality suggestions may 
erode trust in the system. 

In some applications a mixture of the two can be help-
ful with liberal suggestions combined with conservative 
warnings. 

An example of this principle was adopted in human 
verification of record matching of historic 19th-century 
musical records [86]. There are often multiple newspaper 
notices referring to a concert, but they may differ slightly 
“St Thomas Hall, on 3rd Dec at 7pm” “Saint Thomas’s in 
the evening of December 3rd”. An automatic algorithm 
matched these records, with different kinds of matching 
for dates, times and venues that were weighted together 
to give a final score. A liberal policy was then used 
to match records with high match scores to create 
groups of records that might be the same concert. A 
human expert then went through these confirming or 
changing the groupings. In addition, to make this task 
quicker, some groups were marked as more critical 
to check than others. A conservative strategy was 
used for this, with only groups where all the items 

were nearly identical being given a positive health 
check. 

It is also helpful where the workings of the system are 
more transparent, that is if the way in which they have 
come to a decision is apparent to the user. We will return 
to this issue when we look at explainable AI in Chap-
ter 21, but we can see the importance of this already. 
When Aria reflects back the first stage of its interpre-
tation “two oh three oh two”, it is effectively exposing 
a mid-point in its processing pipeline. The speech pro-
cessing algorithm that has transformed the raw analogue 
signal into these words may be very obscure, perhaps 
involving signal processing or a deep neural network. 
When you heard this, you would realise the problem was 
that Aria had misheard you and at least understand what 
had gone wrong. In addition to making repair easier, this 
increases confidence in the system, it was not an arbitrary 
bug that led to those crates of milk appearing! 

19.7.2 Tuning Interaction for AI 

As well as modifying algorithms to make them work bet-
ter with people, we can modify the interaction to provide 
better information to allow AI systems to work better. 
This can be explicit, for example asking users to provide 
information for a profile; however, it is often better if it 
is implicitly embedded in the interaction. 

Let’s look at an example. 
When you use a search engine, the system logs which 

websites you click through to. This is then taken as an im-
plicit measure of relevance and is used to improve the al-
gorithm’s effectiveness for you and others. However, this 
is harder if the results are short. 
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On the left of Figure 19.11 is the search results page 
for a text book [88] that is finding each paragraph in the 
book mentioning the search terms. The paragraphs are 
shown in full and the user scrolls down to look at dif-
ferent search results. This is a very fluid interaction as 
we are used to scrolling quickly to skim, but it is very 
hard for the system to work out which are the most rel-
evant results. It is possible to measure how long the user 
spends before scrolling further, but there are typically 
several results visible, so without using eye tracking it is 
hard to know which is the actual result the user is looking 
at. 

On the right is an alternative accordion-style inter-
face. A shortened version of each result is shown, and 
the user has to explicitly ‘open’ the entry to see the full 
paragraph. Imagine we have done testing and found that 
the original is slightly better than this new interface, but 
not by a large margin. It may be worth still using the new 
design, even if it is slightly less usable, as it is far easier 
to work out which of the results the user found relevant 
and hence improve future searching for this user and 
others. 

This is an example of epistemic interaction, that is 
where the style of interaction is chosen in order to 
improve the information available for the AI system 
and thus to improve the overall synergistic human–AI 
system. 

The menu example is hypothetical; however, it has 
been suggested that part of the success of TikTok has 
been due to precisely such interaction tuning. TikTok 
works by scrolling, but ensures that only one video at a 
time is visible on screen, making it easy to collect precise 
feedback that is then used to tune the recommendation 
algorithms [195]. 

19.8 SUMMARY 
In the end, every AI system has an impact on humans. 
This chapter considered situations where the contact be-
tween AI and people is more direct. This has included 
where traditional digital applications incorporate AI in 
intelligent user interfaces and also where the AI is more 
behind the scenes, combining sensor inputs to modify 
aspects of the physical environment in which we live. 
We saw that appropriate intelligence can be used to de-
sign interactions where occasional inaccurate or incor-
rect outputs of AI do not lead to failures in the overall 
human–AI system. We have also seen ways in which AI 

algorithms can be adapted to work more effectively in 
human-in-the-loop systems, and user interaction can be 
designed to maximise information available for synergis-
tic human–AI adaptations. 

19.1 Using Shneiderman’s two-dimensional human– 
centred AI framework in Figure 19.1: 

a. Populate it with examples of tools and appli-
ances used in a kitchen. 

b. Do the same for controls and devices in cars 
with different levels of automation. 

19.2 Create a table similar to Table 19.1 in Sec-
tion 19.3.4 and classify the initiative, decision 
and action of each of the following: 

car-nav-1 – A car navigation system where you 
enter the destination, it works out the optimal 
route and then tells you which turns to take 
along the way. 

car-nav-2 – The same, but where the system pro-
poses several routes and you select the one you 
prefer. 

warehouse-1 – A system in a warehouse where 
incoming orders are processed and robots au-
tomatically despatched to collect items from 
the shelves. 

warehouse-2 – A system in a warehouse where 
incoming orders are processed, the optimal 
picking order created and given to the human 
operator to fetch the items. 

warehouse-3 – The same, except that the system 
asks an operator, who decides whether to send 
the robot or whether they wish to fetch the 
item themselves. 

lorry key – A key fob for a lorry, where you press 
the button and depending on which end of the 
lorry you are at (sensed by the wireless signal 
of the key fob), either the back door or the cab 
doors are unlocked. 

19.3 Make a list of activities that you (or your group) do 
regularly, both on computers (such as answering 
email, or writing a report) and physically (such as 
making toast, or playing squash). For each, ask: 
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FIGURE 19.11 Two search engine interaction styles. 

a. Is AI used already in the activity? 

b. If not, could it be, or if it is, could the AI be 
used more? 

c. Use the vocabulary developed in this chapter, 
to describe the existing or envisioned use of 
AI. For example, is it synergistic or does one 
partner have most of the control? Does it use 
sensors, and if so, is it single sensors or using 
sensor fusion? 

d. Choose one activity where the AI (or 
sensors it uses) is likely to be inaccurate or 
uncertain, and create an analysis similar to 
Figure 19.5. 

e. Are there ways additional sensors or changes 
in the activity (epistemic interaction) can be 
used to improve the information available to 
the AI? 

FURTHER READING 

B. Shneiderman. Human-centered AI. Oxford University Press, 
Oxford, 2022. 
Shneiderman’s book was one of the key sources for the dis-
cussion of levels of automation in Section 19.3.5 but also 
covers many other issues in design and governance. In par-
ticular it emphasises the importance of AI companies be-
ing held accountable for failures in systems, which connects 
with issues of responsibility in Chapter 23. 

A. Dix. AI for human–computer interaction. CRC Press, Boca 
Raton, FL, 2025. 
Expands on the issues of this chapter, exploring in more 
detail the way AI can be used in the user experience design 
process and also the way insights from HCI can help create 
more effective tools for AI practitioners, including aspects 
of explainable AI. 
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CHAP T ER 2 0 

When Things Go Wrong 

20.1 OVERVIEW 
This chapter deals with some of the things that can 
go wrong due to AI. The previous chapter has talked 
about dealing with individual failures, but this chapter 
is more about systemic issues. This includes deliberate 
misuse such as disinformation and also unintentional 
misuse, notably bias. We will discuss some of the 
general approaches to deal with problems including 
transparency and algorithmic accountability. We 
examine bias in detail, including how it arises at 
different stages in the machine learning process. We 
look at threats to privacy and ways to mitigate it, and 
also some of the dangers of deliberate and accidental 
misinformation. 

20.2 INTRODUCTION 
AI can be very powerful both in tackling tasks that 
humans already do and also doing things that are 
beyond our comprehension. This is of course good when 
everything works, but sometimes things go wrong. The 
tide of AI optimism has been countered by an increasing 
number of stories of failures of various forms, from 
autonomous car fatalities to ‘racist’ search results and 
in the UK a (so called) ‘mutant’ algorithm for school 
leaving exams. Some are also laying part of the blame 
for growing intolerance and extremism in society on 
the algorithms behind social media and search engines, 
which, in the interest of giving consumers what they 
want, are creating sounding boxes where we each see 

only views, news and ‘facts’ that agree with our own 
preconceptions. 

To some extent Chapter 19 has already dealt with 
various forms of errors or failures in AI, but focused 
on specific points in an interaction and how overall 
human–computer systems can function robustly despite 
the inevitable inaccuracy or failures of AI. In this 
chapter, we will focus more on the larger-scale impact of 
AI algorithms, focusing particularly on misinformation, 
bias and privacy. We will consider other large-scale 
societal and ethical AI issues in Chapter 23, many of 
which do not admit easy answers and where the key 
question is “what do we want AI to do?” In the main 
issues discussed in this chapter we have a better idea 
of what is wanted, but there are challenges in how to 
achieve it. 

20.3 WRONG ON PURPOSE? 
The press naturally focuses on the bad side of algorithms 
and machine learning. However, it is important to distin-
guish different forms of bad outcomes, some are deliber-
ate, some are unintentional, either accidental or negli-
gent. 

20.3.1 Intentional Bad Use 

We’ll first consider deliberate misuse such as hacking. 
Here we may not blame the algorithms per se, but their 
weakness or vulnerability. In such cases we may seek bet-
ter software design or security. For classic hacking the 
vulnerability is not in the complexity of the intelligent 
algorithm itself, but the surrounding operating system, 
device drivers, etc. Once the hacker is ‘in’ they may sub-
vert the software – modifying or replacing the code. 

However, big data has led to more complex forms of 
vulnerability based on subverting the data. In the case 
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of the Cambridge Analytica scandal, this was principally 
about using data in ways it was not supposed to be used; 
so is mainly connected with privacy and personal control 
of data. However, the other aspect of this scandal was the 
way the resulting data was used to influence the US pres-
idential elections. This was a fairly direct use of data, but 
often it can be less direct. Bots often deliberately create 
inflammatory posts on both sides of an issue; the aim is 
to increase re-posts and hence the ranking of the chan-
nel, so that subsequent deliberately misleading or misin-
formative posts (fake news) will have instant influence. 
A more citizen-led form of data manipulation is used by 
campaigns to get everyone to do specific Google searches 
in order to make it have a particular auto-completion 
when you start to type a query such as “Trump”. 

Some forms of deliberate ‘bad’ use are legal and may be 
regarded as acceptable depending on one’s ethical view-
point. 

Autonomous weapons have been widely condemned if 
there is not a human in the loop, and major scientists and 
industrialists have called for there to be an international 
ban akin to that on chemical weapons [124]; although 
others have argued that if AI weapons are more accu-
rately targeted on combatants, we have an ethical duty to 
use them. Oddly we accept bombs that explode at a fixed 
height, or guide themselves to a specific location using 
GPS; we also accept soldiers trained to obey orders with-
out question. Perhaps unpacking what is so bad about 
autonomous weapons could help us unpack our attitudes 
to war itself? 

Cyberweapons and cyberattacks have also attracted 
significant publicity. Some simply attack computer 
software or data, for example Denial of Service (DoS) 
attacks, but others may be targeted to bring down 
infrastructure or even cause physical damage. The first 
(publicly known) case of cyberwarfare against physical 
infrastructure was Stuxnet designed by Israeli and US 
intelligence to degrade the Iranian nuclear programme 
by attacking centrifuges [156]. Spread by USB memory 
sticks, Stuxnet showed that even internet-isolated 
computers could be at risk, and there are also rumours 
that it ‘escaped’ spreading to unintended targets with 
similar hardware including Ukrainian and Russian 
nuclear power stations [290]. 

Many of the methods to detect and prevent cyberat-
tacks are based on big data and machine learning, but 
malware applies similar principles to mutate itself and 
find ways around defences. 

In some cases ethics can be built into machine learn-
ing to prevent misuse. Notably GPT-4 was progressively 
modified before release to prevent it answering questions 
relating to illegal or otherwise harmful activities [217]. 

20.3.2 Unintentional Problems 

Sometimes things go wrong unintentionally, whether 
through ignorance, negligence or pure accident. 

One example, which is often widely reported in 
the media, is accidents involving autonomous and 
semi-autonomous cars. In some cases, these accidents 
have been because drivers have not understood the 
capabilities of cars that operate in semi-autonomous 
mode but rely on the driver to maintain attention. Some 
suggest that this means that only fully autonomous 
vehicles should be allowed. However, there is a long 
history of partial autonomy from ABS to cruise control; 
so it may be that the answer is better design of the 
autonomous vehicle user interface, crucially ensuring 
that the ‘driver’ has a clear understanding of the 
momentary level of autonomy ... and maybe also that 
the vehicle has a model of the driver’s attention 

In other cases the vehicle has been in fully autonomous 
mode. Here the manufacturers and accident investiga-
tion authorities have to determine whether this was un-
avoidable (e.g. a person running into the road in front of 
the vehicle) or potentially preventable. In the latter case it 
is particularly important to be able to unpack the chain 
of sensing and decisions that led to the accident in or-
der to see whether there are changes that could improve 
safety. The software for such vehicles is inevitably com-
plex with interacting sets of rules and machine-learnt as-
pects, making such essential explanations difficult. 

Even where there is no obvious cataclysmic ‘accident’, 
things can go wrong. The system appears to work and 
make suitable decisions, but are there unintended con-
sequences? 

Three forms of this will be familiar to all readers, and 
we’ll deal with each in a little more detail in the rest 
of the chapter. The first is unintended bias, as opposed 
to deliberate discriminatory or hateful acts. The latter 
are easier to identify, but the former may be as harmful 
both at individual and societal levels. Every few months 
there seems to be a new case in the news where an 
algorithm has created sexist or racist results. The second 
is privacy, which has been recognised as a problem 
since the early days of the web, but came to prominence 

https://alandix.com/glossary/aibook/Cambridge Analytica scandal
https://alandix.com/glossary/aibook/privacy
https://alandix.com/glossary/aibook/Autonomous weapons
https://alandix.com/glossary/aibook/human in the loop
https://alandix.com/glossary/aibook/Cyberweapons
https://alandix.com/glossary/aibook/cyberattacks
https://alandix.com/glossary/aibook/Denial of Service (DoS)
https://alandix.com/glossary/aibook/cyberwarfare
https://alandix.com/glossary/aibook/Stuxnet
https://alandix.com/glossary/aibook/big data
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/ethics
https://alandix.com/glossary/aibook/GPT-4
https://alandix.com/glossary/aibook/autonomous car
https://alandix.com/glossary/aibook/semi-autonomous car
https://alandix.com/glossary/aibook/autonomous vehicles
https://alandix.com/glossary/aibook/autonomous vehicles
https://alandix.com/glossary/aibook/user interface
https://alandix.com/glossary/aibook/unintended bias
https://alandix.com/glossary/aibook/privacy


with high-profile cases such as the Cambridge Analytica 
scandal, and is a constant backdrop to discussions about 
social media. Finally, we will look at misinformation 
and filter bubbles, both how to counter deliberate mis-
information and also how to promote good information 
habits. 

20.4 GENERAL STRATEGIES 
There are a number of general ways to address both in-
tentional and unintentional problems with AI. In fact 
these are mostly approaches that apply across the board 
to digital systems, but of course these often embody some 
aspect of AI anyway. 

20.4.1 Transparency and Trust 

When things go wrong we want to ask the question, 
“why?” Why did the autonomous car not notice the 
pedestrian crossing the road? Why did the bank system 
reject my loan application? Why did the automated 
exam marking system give me a B grade? 

The need to answer these “why?” questions has led to 
calls for transparency of algorithms. This is an important 
ethical consideration, but also increasingly embedded in 
law, and demanded by customers or the public. The Eu-
ropean general data protection regulation (GDPR) de-
mands that when algorithms make decisions that affect 
individuals, for example credit scoring or job shortlist-
ing, these need to be capable of explanation. This is often 
referred to as a ‘right to an explanation’, a term that some 
argue may be misinterpreted in scope [57]. Note that this 
is not simply guidance but has legal force with very large 
fines for any organisation or individual who is not able 
to show they have provided sufficient explanation. 

Most countries also have anti-discrimination laws 
covering what are called ‘protected characteristics’. 
These vary a little between countries but may include 
gender, ethnicity, religion, age and sexual orientation. If 
you are using any sort of machine learning or complex 
algorithm to make decisions, for example on job 
applicants, awarding loans or selecting housing tenants, 
you must ensure that you are not discriminating on the 
grounds of one of these. Typically, there are substantial 
fines for breaking these laws. 

For personal crimes, such as theft or murder, most ju-
risdictions require that the defendant intended to com-
mit the crime. However, for civil cases this is not usually 
the case. You may never have intended to discriminate, 
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but if an organisation does, however unintentionally, it 
has broken the law. 

It is therefore crucial both: 

• To be able to convince yourself (and your boss/-
client) that systems are unbiased 

• To be able to provide evidence to others, notably a 
judge, that they are. 

If the decision had been made by a deep neural 
network, with multiple layers of weights and threshold, 
would you feel able to justify this to a court? 

In fact, the judge may not be the hardest audience. Of-
ten a court will appoint expert witnesses, so that a cor-
rect, but obscure, explanation may suffice. However, if 
you are a bank, or a public facing medical provider, you 
will also need to convince the general public. Indeed in 
the online world, trust is often the most valuable com-
modity of all. 

To win public trust you may need to provide different 
forms of visualisation and explanation, for example the 
way some advertisement platforms allow you to ask “why 
am I seeing this?”. 

Trust is a complex issue as it has many facets. For ex-
ample, you may trust a company’s technical competence, 
but not its good intentions. Alternatively, there may be 
a different organisation that you trust to want to do the 
right things, but you are not sure whether it is able to 
achieve its goals successfully. Establishing trust in the al-
gorithms is just one part of this wider picture. However, 
the fact that an organisation at least attempts to be open 
in its algorithmic decision-making processes often con-
tributes to other, more subjective forms of trust. 

20.4.2 Algorithmic Accountability 

Another way to tackle these issues is to increase legal and 
financial accountability [110, 256]. We may accept that 
legislation will never keep up with technology and when 
it does may end up hampering good things while not re-
ally preventing the harms it seeks to avoid. Instead we 
can seek to ensure that if things do go wrong, the compa-
nies and individuals responsible are held to account, with 
substantial legal and financial consequences. If compa-
nies know they will pay for bad practices or mistakes, 
they will work to ensure that these things do not happen. 
This approach effectively trusts the free market to create 
the best outcomes when costs are suitably manipulated. 
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This happens with other technologies. In many coun-
tries companies that have been found to be negligent to 
employees, customers or the general public can face large 
compensation claims, and US courts in particular may 
choose to set these at a punitive scale, to avoid companies 
simply factoring potential compensation as part of cost– 
benefit calculations. On the financial side ‘polluter pays’ 
and carbon pricing have been used to create financial in-
centives for companies to adopt more environmentally 
friendly practices. These schemes sometimes impose ad-
ditional costs for ‘bad’ behaviour (such as polluter-pays 
taxes) or may do the opposite and offer financial incen-
tives for ‘good’ behaviour (such as subsidies for farmers 
to set-aside land for wildlife). 

Typically these financial penalties or incentives are 
paired with more explicit laws that limit or constrain 
behaviour within limits. For example, most countries 
have dangerous driving laws that may include criminal 
proceedings against those who drive recklessly but also 
have explicit speed limits and other traffic regulation, 
not leaving it entirely up to individuals to decide 
moment-to-moment what is safe. Similarly health 
and safety regulation combines explicit limits such as 
mandating the wearing of hard hats in certain areas or 
only allowing certain additives in foods, but in addition 
requires companies to apply general safety assessment 
with the potential for negligence claims if predictable 
hazards are ignored. 

We already see similar principles at work in the dig-
ital arena with explicit regulation, such as the EU pri-
vacy and data protection regulations [56], but backed by 
civil law cases, such as the class action privacy lawsuits 
brought against Facebook after the Cambridge Analytica 
scandal. 

There are limits to these approaches. 
If laws are too tightly defined, larger companies with 

sufficient resources can find loopholes. At its worst this 
may distort markets giving larger companies an inherent 
advantage over smaller ones, despite the fact that it is 
typically the behaviour of the larger ones that legislators 
are most concerned about. 

Penalties, whether directly imposed as fines by gov-
ernments or through damages in civil cases, also need 
to be large enough that they are not merely regarded 
as a ‘cost of business’. This is particularly difficult with 
transnational companies, such as the large tech compa-
nies, as chains of subsidiaries can shift financial account-
ability away from the parent company and fines that are 

FIGURE 20.1 Increasing opacity in more complex algorithms. 

too large may cause international friction between gov-
ernments. 

Sometimes companies have appealed to the inherent 
complexity and opacity of AI as a defence; effectively say-
ing “the AI did it”. The core of effective algorithmic ac-
countability is to turn this on its head, to put the onus 
onto the company to show it has used technology fairly 
and legally. 

20.4.3 Levels of Opacity 

The apparent opacity of algorithms is not unique to 
AI. Although these issues are most stark when the 
algorithms involve machine learning, they arise with all 
sorts of algorithms, even the simplest (Figure 20.1). For 
example, in the 1980s a project using expert systems to 
capture some of the legislation around welfare benefits 
found there were inconsistencies that had previously 
been overlooked [162, 163]. Similarly, few understand 
the relatively small set of rules around taxation. 

As things get more complex, few programmers would 
claim to understand all the behaviour of their code. In-
deed, advocates of formal methods in computing attempt 
to address precisely this issue, but these methods often 
prove too cumbersome for all but the most safety critical 
situations or toy problems in research contexts. 

Classic symbolic AI is not so far from programming, 
although far more broad in terms of computational 
genres. Crucially many AI languages and notations are 
declarative; this can make them more clear in intent 
than ordinary code but may also make the consequences 
of multiple interacting rules hard to predict. On the 
other hand AI techniques such as formal argumentation 
logics may offer ways to help other algorithms become 
more explainable. 

Finally, most of the media coverage both positive and 
negative in recent years has concerned machine learning 
of various forms, from fairly simple frequency-based 
techniques on big data to neural methods in deep 

https://alandix.com/glossary/aibook/Facebook
https://alandix.com/glossary/aibook/Cambridge Analytica\protect \penalty -\@M scandal
https://alandix.com/glossary/aibook/Cambridge Analytica\protect \penalty -\@M scandal
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/expert systems
https://alandix.com/glossary/aibook/symbolic AI
https://alandix.com/glossary/aibook/explainable
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/big data
https://alandix.com/glossary/aibook/deep learning


learning. For these techniques the explanation as to why 
something has happened often comes down to “there 
was this shed-load of data and this is what came out”. 

20.5 SOURCES OF ALGORITHMIC BIAS 
Some of the most common ‘bad news’ stories about AI 
relate to the potential for unintended bias, including 
gender or ethnic bias, in automated decision-making 
systems. The potential for this to be a problem in 
machine learning was predicted as far back as 1992 [74], 
but it was only in the mid-2010s when this started to 
become a major problem.1 There have been headline 
cases of this, notably Microsoft’s Twitter bot Tay, 
which quickly learnt sexist, racist and anti-Semitic 
language [118]; or cases of Google search returning 
gender stereotyped images or auto-completion [159]. 
These stories have continued with almost every new 
search technology or chatbot [244, 259, 275]. However, 
potentially more worrying are the cases we don’t notice: 
what are the factors that are being used to set your loan 
interest rate or determine whether you are shown highly 
paid job adverts [41, 66]? 

20.5.1 What Is Bias? 

In statistics and when we are dealing with more formal 
aspects of machine learning there is a very specific quan-
titative meaning of bias. When you produce some sort 
of estimation algorithm, then if you use the estimation 
process on lots of examples, some will end up a little too 
high, some a little too low. We say an estimate is unbi-
ased if the long-term average of the estimate is the true 
average. Effectively this statistical bias is a measure of ac-
curacy. 

However, the ‘bias’ that we refer to in ethical or legal 
discussions is not the ‘bias’ used in technical discussions. 
By bias here we mean an algorithm or decision procedure 
that unfairly discriminates or disadvantages certain peo-
ple. We shall see that even an algorithm that is entirely 
‘accurate’ may still embody ‘bias’ in the ethical sense of 
the word. It is not sufficient for an algorithm to be tech-
nically ‘right’, it must also be ethically upright. 

Even where systems are utterly neutral, the impact of 
numerous design decisions may affect different groups 
disproportionately. For example, the UK’s Universal 
Credit system is designed to unify and simplify welfare 

1In fact issues of bias in hand-crafted algorithms were already ev-
ident in the 1980s [248]. 
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FIGURE 20.2 Bias entering at different stages in machine 
learning. 

payments but is completely computer based. Early 
trials showed that 49% of those eligible did not have 
internet access at home [51]. In rural areas land-based 
broadband and mobile connectivity may be slow or 
non-existent, so that not just Universal Credit but all 
forms of internet-shopping, eGovernment or other 
services are hard to access [201]. 

20.5.2 Stages in Machine Learning 

Figure 20.2 shows a simplified view of machine learning. 
Training data is fed into the learning algorithm. The algo-
rithm is guided by an objective or fitness function, which 
defines what it is to be a ‘good’ set of learnt rules. This all 
results in some form of learnt rules (where a ‘rule’ might 
consist thousands of weights in a deep neural network). 

Each of these stages offers potential sources of bias: 

1. bias in the training data from past biased human 
behaviour 

2. bias in the goals from societal bias 

3. even when bias in (1) and (2) are removed, the 
‘best’ or accurate result may still be biased (in 
the ethical sense) 

In addition, we’ll see that the choice of features – what 
you choose to gather data about, is also critical. We will 
look at each in turn. 

20.5.3 Bias in the Training Data 

Imagine we want a machine learning system to distin-
guish cows from sheep, so we feed it lots of images la-
belled ‘cow’ and ‘sheep’. Similarly if we want it to recog-
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nise cancerous lesions, then we give it lots of labelled 
mammograms. Now imagine that we want it to pre-select 
job applicants based on their CVs. So, we feed the ma-
chine learning system lots of CVs labelled as to whether 
or not the candidate was called to interview. 

This sounds straightforward. The system is accurate if 
when we give it a picture, it correctly labels it, that is if 
it reproduces the expert human labelling of the training 
set. 

However, if the person labelling pastoral images was 
confused by highland cows and labelled them ‘sheep’, 
then the ML system will confuse them too; if a certain 
form of cancer often got missed by radiologists, then the 
new cancer diagnosis system will also miss them; and if 
the past human selection of job applicants was racially 
biased, then the trained automated selection process will 
be similarly biased. 

In general, the existing norms and biases of society will 
be embodied in past decisions and even special labelling 
for training. The machine learning system will faithfully 
copy the patterns of the training data and thus embody 
the self-same traits of society at large. Algorithms reflect 
data and data reflects society. 

Happily this first source of bias is relatively well un-
derstood both in the technical literature and by the me-
dia. Google processes billions of search queries; if peo-
ple search for sexist or racist terms, this may naturally 
emerge when it autocompletes as you type. Similarly, an 
image search for “Professor” or “CEO” returns predom-
inantly white male faces (see Figures 20.3 and 20.4), but 
this precisely reflects the preponderance of such images 
in web pages labelled “professor” or “CEO”. The last ex-
ample is important as it is effectively reflecting the reality 
of society: senior positions in many countries are more 
likely to be held by white males. 

Some courts in the US have used automated systems 
to assess the risk of reoffending when considering 
sentencing or parole requests [7]. These systems have 
been found to assess black offenders as significantly 
more likely to reoffend than white offenders even after 
balancing for other factors. However, if the police have 
been more assiduous in arresting and prosecuting black 
offenders, then, as a group, they will have a higher 
recorded reoffending rate, and therefore a statistically 
‘correct’ system would reflect this. Of course the system 
would not have had the offenders’ ethnicity as an explicit 
factor in the training data, but we shall see later that 
‘proxy’ measures may effectively yield the same result. In 

these examples the training data reflects societal effects 
that are not neutral with regard to gender or race. It is 
no wonder the resulting systems also exhibit bias. 

There are methods designed to de-bias data, for exam-
ple to rebalance or weight the training data based on gen-
der or other characteristics. These tools can be powerful 
as part of efforts to avoid bias, but very dangerous if one 
believes that they have really removed all bias either from 
the data or the process as a whole. Furthermore removing 
bias in one area often increases it elsewhere, especially if 
one considers individual cases rather than overall statis-
tics. 

For example, pupils from fee-paying schools perform 
better at university entrance exams than those from 
state-funded schools; this is clearly unfair across society 
as a whole. We might attempt to de-bias the data by 
reducing the grades of all those from fee-paying schools. 
This would balance the overall statistics, but would it be 
fair for a child at a fee-paying school who had worked 
hard for their examinations? Happily there are more 
sophisticated ways to approach de-biasing data, but this 
simple example highlights the complexity of the task. 

Simulated data has also been suggested as a way of 
avoiding human bias embodied in data. Indeed some 
companies have suggested that by using synthetic data 
they remove the inherent ‘risk’ in real data and also offer 
to create datasets with any desired balance of gender, 
ethnic or other demographic factors [144]. Again, while 
potentially a valuable tool in machine learning, the idea 
that synthetic data entirely removes bias is dangerous. 
Indeed the algorithms generating synthetic datasets are 
often themselves in part built using machine learning, 
and the idea that you can generate particular racial 
characteristics to order means that stereotypical features 
are deeply burned into the algorithms. 

20.5.4 Bias in the Objective Function 

The second source of bias is through what is called the 
objective or fitness function. 

A development programme for autonomous cars 
might choose to train their system using a simulator. 
Initially the car would crash all the time, but gradually 
learn to be better. However, for the car to be ‘better’ the 
training system needs to know what ‘better’ is. If the 
measure of ‘better’ is minimising damage to the vehicle, 
then later, given a choice of a minor scrape against 
another car or mounting the pavement and ploughing 
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FIGURE 20.3 Google image search “Professor” 13th Feb 2019 – 15 images, 10 white males. 

FIGURE 20.4 Google image search “CEO” 13th Feb 2019 – 14 individual images, 9 white males. 
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down pedestrians, the car might choose the latter. If the 
measure of ‘better’ had been minimising fatalities and 
injury, then of course it would learn to make different 
choices. This measure of ‘better’ is precisely the fitness 
function, and it is clear that this significantly affects the 
ultimate behaviour of the system. 

In the previous example the objective function was ex-
plicit. However, often it is implicit, encoded in the prefer-
ences of society at large. Examples of this are rife, not just 
in automated systems, but also human decision making. 
We’ll consider a number of examples. 

At the ACM CHI 2018, Chris Rudder, co-founder 
of the dating site OkCupid, gave one of the keynotes 
based on his book Dataclysm [237]. He described how 
data analytics exposed the choices of different genders, 
ages and ethnic groups. Much of this was unsurprising 
but still shocking to see in raw numbers. However, 
more problematic was the way the dating site effectively 
pandered to these human biases. OkCupid was simply 
giving people what they wanted, maximising the chances 
they would find a profile they would like, but in doing 
so it made explicit choices, for example to use ethnic 
profiles to determine who saw whom. 

In the 1990s, the Trump Plaza casino was fined 
$200,000 for deliberately moving black employees away 
from the tables when certain high stakes gamblers 
visited the casino [284]. Note that the casino had black 
employees, it was not being fined for discriminatory 
recruitment policies. The fine was because they were 
pandering to the racist whims of their customers. 

In 2017, the BBC was widely criticised after it pub-
lished pay gap figures showing that the most highly paid 
male presenters were receiving significantly more money 
than their female equivalents. When the story broke, the 
BBC Director General, Lord Hall, was quoted as saying, 

The BBC does not exist in a market on its own 
where it can set the market rates. If we are to give 
the public what they want, then we have to pay 
for those great presenters and stars. [18] 

Of course, if the public’s perception of major presen-
ters is biased, then that market ‘value’ will reflect this. In 
particular, experiments show that both male and female 
subjects harbour gender stereotypes that have changed 
relatively little in 30 years [121]. One such stereotype 
may lead viewers to unreasonably place more trust in 
male news presenters, thus creating the market demand 

and ‘justifying’ the BBC pay gap. However, the same ar-
gument could be made by Trump Plaza’s casino man-
agers. 

In each case the bias, prejudice and stereotypes of so-
ciety mean that ‘good business’ would suggest making 
decisions that are driven by gender, ethnicity and other 
characteristics that would be deemed inappropriate, un-
ethical or illegal if expressed explicitly. 

However, imagine if in each case a machine learning 
algorithm or similar black-box technique was being 
driven by apparently neutral metrics such as popularity 
or consumer demand. 

The only reason we know about OkCupid’s decision 
rules is that they obtained them in a two-stage process, 
using data analytics to go from big data to comprehen-
sible results, and then from that to hard-coded rules. If 
they had simply said, “we put all our data into a recom-
mender system”, it would have been a very short but un-
controversial keynote. Similarly, Trump Plaza’s shift al-
location systems would ‘just happen’ to avoid black em-
ployees on the days certain customers were expected. 

In some ways this is already happening with the BBC 
as the ‘market’ is the black-box system. Given an objec-
tive function to maximise profit, or audience share, the 
accurate and ‘best’ decision is ‘good’ business, but is def-
initely not good. 

20.5.5 Bias in the Accurate Result 

Finally, even if the training data and objective are en-
tirely unbiased, and the algorithms used have obtained 
the most accurate and optimal rules, the results of learn-
ing can still be ‘biased’ in the ethical sense. For this part 
we’ll look at an example of gender discrimination. 

In most societies there are major differences on aver-
age between males and females, due to many factors, but 
most significantly the societal norms, expectations and 
sometimes explicit rules that influence our physical, in-
tellectual and emotional development. 

In the UK (and many countries), when there are 
choices in school, boys are more likely to take STEM 
subjects, such as chemistry, and girls humanities, such 
as history. This is clearly not an inherent fact of gender, 
as other countries do not have such a marked difference. 
However, in the UK it is the case that, on average, girls 
and boys have had very different education by the time 
they leave school. 
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Now imagine you are selecting applicants for two jobs 
with the Antarctic Survey, one for a communication-rich 
role at Rothera research station on the Palmer Land 
peninsula, and the other for an engineering-related 
role at Davis research station near the Amery Ice Shelf, 
several thousand miles of ice and snow away. The 
applications are all in and you need to work quickly as 
the last ships, one for Rothera and one for Davis, are 
about to leave to get there before winter weather cuts off 
the bases for six months of dark winter. 

You take the applications home and you have whittled 
the applicants down to two. Then, disaster, the dog eats 
the CVs. All you have left are the diversity information 
pages that you carefully separated and which contain in-
formation about gender, etc. There is no time to get fresh 
CVs and yet you must send the chosen applicants post 
haste to their respective ships. You peek at the forbidden 
diversity pages: one applicant is male and one female; one 
job is communications-rich, one engineering related ... 
what do you do? 

Because of our education system, gender is a predictor 
of communication and technical skills, albeit a poor one. 
The reason we do not use gender as a predictor is not 
because it lacks predictive power; instead it is because as 
a society we choose not to. It is an ethical decision. 

As a society we choose to use other (and actually 
far better) predictors. We may look at exam results, or 
run our own tests that more directly assess the skills or 
knowledge we require, but we choose not to use gender 
irrespective of whether it offers any predictive power. 

20.5.6 Proxy Measures 

We may think that we can deal with bias simply by not 
including protected characteristics in our training data. 
So long as the CV does not mention the gender of the 
applicant, then the outcome must be fair. 

To see why this is not the case, imagine a very so-
cially conscious building company. They are very tradi-
tional in terms of methods (a lot of heavy lifting), but 
advanced in the use of IT, so they decide to create an 
automated system to help with hiring. In order to avoid 
bias in the system, they conduct an extensive experiment. 
One thousand people are recruited, 50% male, 50% fe-
male, and employed for 2 months, with their produc-
tivity heavily monitored. At the end of the experiment 
a machine learning system is given the measured pro-
ductivity of subjects together with their CVs and builds a 

predictor of productivity. Being an ethical company, the 
gender and other protected characteristics are removed 
from the CVs before they are entered into the learning 
system. 

If the system were entirely opaque, one would just have 
to trust it. The entire process was gender-blind, so surely 
the resulting system would be unbiased? 

Now imagine a learning system that creates more 
transparent rules. You start to interrogate it and find 
that school exam subjects are being used and the rules 
effectively say, “if the person has taken STEM subjects 
then hire them”. Now STEM subjects at school are 
almost certainly not useful on an old-fashioned building 
site. However, they are a proxy indicator of gender, 
which in turn is a crude predictor of strength. 

Note again that the algorithm may be producing the 
‘best’, most accurate estimator given the data available. 
However, bias, in an ethical and legal sense, is not about 
algorithmic correctness, it is about social choice. 

Note also that if the job had required technical abil-
ity or good communications, then exam grades would 
be deemed a reasonable and acceptable decision criteria. 
The exam results would correlate with gender, but would 
be directly relevant to the job. The problem in the build-
ing site is that they are not clearly relevant to the job at 
hand and merely act as a proxy gender measure. 

In other words, exactly the same training data could 
yield ethical or unethical (and legal or illegal) outcomes 
depending on context. 

20.5.7 Input Feature Choice 

In several of the examples we have discussed, the choice 
of input features being fed into a learning system has 
been often critical in creating or controlling bias. The 
most obvious approach is to exclude explicit gender or 
similar indicators, but as we have seen this is not suffi-
cient. 

In the case of the builder, the problem is partly that 
if there is no direct measure of physical strength on the 
CVs, then the system will choose the ‘next best’ thing and 
may latch onto (proxy measures of) gender. 

A strong guard against this is to make sure you collect 
relevant features. If the system has a good measure of 
physical strength, it is less likely to fall back on gender, 
the use of which is both a relatively poor predictor and 
illegal in many countries. 
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Furthermore, as well as removing explicit gender in-
dicators, one might consider also deliberately excluding 
what appear to be irrelevant features. This may have tech-
nical benefits by reducing overfitting and also make the 
system less likely to have potential proxies to latch onto. 

20.5.8 Bias and Human Reasoning 

The examples point out potential dangers for machine 
learning systems. However, anti-discrimination legisla-
tion predated the widespread use of AI. The legislation 
exists precisely because humans haven’t done so well at 
these issues prior to automation. 

The human perceptual and cognitive system has 
developed primarily for information poor environ-
ments, where you have to make the most effective 
inferences from scant data. Now we live in a world 
of information overload, but with the same per-
ceptual and cognitive system as our cave-dwelling 
ancestors. 

Crucially humans are poor at ignoring low-quality 
cues even when there are better ones to hand. One 
example of this was exposed by experiments on people’s 
ability to assess the quality of search results based on 
the title and snippet as commonly found in web search 
results [241]. Users were able to assess relevance using 
only the snippet but were better when shown the title 
on its own. They were then shown both together (title 
and snippet), which one might imagine would be better 
still (more information). However, on the contrary, 
the effectiveness fell between the two on their own. 
Even though the snippet was not adding to the subjects’ 
ability to assess relevance, they were unable to ignore it 
and hence performed less well than if they had had the 
title alone. 

Some algorithms also have these problems of ignoring 
this unhelpful information, but others can do better and 
maybe even help people to become better at judging such 
things. 

Recall in Chapter 18, we discussed a study that was 
performed some years ago of people admitted to hospi-
tal for heart attacks. The doctors gathered many test re-
sults and other forms of evidence and used this to decide 
among a few different forms of treatment. Retrospective 
data was then collected including the original diagnostic 
features and the clinical outcomes for the patients after 
a few months, whether they had recurrence, or indeed 
died. 

The data was used to train a classifier; however, 
this was not used as an automatic diagnosis system to 
replace the doctors’ judgement. Instead the analysts 
examined the rules created by the system and realised 
that the optimal classification depended on four features 
only. 

The doctors were told about this and changed their 
clinical practice: only collecting the four relevant factors, 
but otherwise using their clinical judgement as before. 
They found that their own clinical outcomes improved. 
By not collecting data and never seeing it, they became 
better at their job. 

20.5.9 Avoiding Bias 

While in principle algorithms could behave better than 
people, the reality is still far from this. 

Crucially, as we have seen, it is not sufficient to remove 
explicit indicators of gender, ethnicity, disability, reli-
gion or other protected characteristics. Many discrimi-
nation cases relate to indirect forms of discrimination, 
for example demanding a particular headwear when this 
is not essential to the job, which effectively discriminates 
against Sikhs or those wearing the hijab. As we have seen 
it is easy for a machine learning system to accidentally 
latch onto proxy measures of a protected characteristic. 

Instead, algorithms need to actively avoid discrimina-
tion. For example, after training an algorithm on gender-
blinded data, one could deliberately re-introduce gender 
and build a causal model. If the impact of features on the 
final decision is factored through gender, then that is a 
good indication that the features were acting as a proxy 
for gender. One could even imagine building this into the 
original learning process. 

Whether or not algorithms are better or worse than 
humans at making ethically unbiased decisions; how do 
we know? There is a growing set of techniques and tools 
to help with this, and it will undoubtedly have grown by 
the time you read this. 

One method is to perform some form of external au-
dits of the statistics comparing the way different groups 
are dealt with by a system or process, whether by hu-
man or machine. A good example of this is the way many 
companies now publish pay gap data. 

Note that such external statistics do not answer the 
question “is my process biased”, but do offer evidence to 
pursue and investigate in more detail. There may be ex-
ternal societal reasons, such as disparity of access to ed-
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ucation, that create unbalanced outcomes. The stats are 
the beginning, not the end of an investigation into bias. 
It is not sufficient to look at the overall numbers, but we 
must dig into the reasons that led to them. 

This can be applied at the end of the process by look-
ing at the overall decision being produced. However, the 
same technique can be used proactively to attempt to de-
bias training data. If there is a disparity in the labelling of 
training data, for example if we thought prior recruiters 
had discriminated against female applicants, we could 
deliberately re-weight the data. 

The disparity may not be in the labelling, but in the 
spread of data. Several face recognition algorithms have 
had higher error rates among certain groups simply be-
cause the training data contained fewer examples. Either 
gathering more data from the poorly represented groups 
or weighting them more highly during training may help 
to alleviate this. Note too, this is often worth doing when 
training data is unbalanced, even if there is no issue of 
bias, as this can often improve accuracy. 

This kind of audit can also be used to identify fea-
tures that are strongly connected to a particular protected 
characteristic. For example, choice of school subjects or 
gaps in employment record (potentially because of fam-
ily responsibilities). These features can then be examined 
to see if they are really necessary, and removed if not. 
Proxy indicators can be very hard to eliminate; as we 
have seen, a feature which is a proxy measure for a pro-
tected characteristic in one context may be quite valid in 
another. One way to detect this is through building ex-
planatory models. There are algorithms that do this natu-
rally, but it is also possible to detect potential proxy mea-
sures for other algorithms. 

Paradoxically the way to do this is often to re-
introduce the protected characteristic. Think of the 
building site example. You train the algorithm with 
CVs with gender removed and find that STEM subjects 
in school are a strong feature used in the prediction. 
You then retrain the algorithm, but this time including 
gender explicitly. If the role of STEM subjects is 
substantially reduced, this is a strong indicator that it is 
functioning as a gender proxy rather than as a predictor 
in its own right. 

20.6 PRIVACY 
One of the most common worries about big data and 
indeed the internet in general is privacy. From the 
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early days of the web, worries about misuse and the 
dangers of hacking and information theft led to various 
governments creating legislation to protect personal 
data. The Cambridge Analytica scandal and continual 
newspaper stories about data breaches show that these 
problems have not gone away. 

To some extent this is an issue for data collection in 
general rather than AI and indeed most data breaches are 
on conventional data stores. However, machine learning 
has exacerbated issues, in part because the value of data 
has led to more data being gathered and retained and 
in part because of the ability of algorithms to mine both 
stolen data and public data. Furthermore an ever greater 
part of life is online – personal, financial and professional 
– so the dangers of identity theft are correspondingly 
greater. 

20.6.1 Anonymisation 

The most obvious privacy worry is that identifiable 
personal data may be leaked. Data may be stored either 
fully anonymised or pseudonymised. The latter is where 
a unique identifier (such as a number) is used instead of 
a personal identifier (such as a name and address). If data 
is being retained for machine learning, then the identity 
of individuals often doesn’t matter, so anonymised or 
pseudonymised data can be used. However, if the data 
has any relations between individuals, then this needs 
to be retained, for example knowing that several people 
are in the same household. 

Often anonymisation is deemed to have made data 
‘privacy-safe’. This is evident in the relevant UK law 
which defines ‘anonymous information’ as: 

information which does not relate to an iden-
tified or identifiable natural person or to per-
sonal data rendered anonymous in such a man-
ner that the data subject is not or no longer iden-
tifiable. [142] 

If data is anonymous by this definition, UK privacy law 
does not apply. Similar legislation can be found elsewhere 
in the world and even where this is not enshrined in law, 
a similar principle often applies in organisations’ internal 
ethical guidelines. 

However, this is not the end of the story. 
Note the phrase “is not or no longer identifiable”. Re-

moving names may mean that one cannot simply look up 
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the person, but if the data has sufficient surrounding ma-
terial it may be possible to work out who the person is – 
there may be only one person living in a particular postal 
code with one hundred and one dogs! This potential for 
deanonymisation is not new, but more complex AI al-
gorithms combined with the ability to trawl the web for 
additional connected information has turned this from a 
remote possibility to an off-the-shelf service. 

20.6.2 Obfuscation 

One solution is obfuscation where small details are al-
tered, for example adding a year to age or a 5% change 
in salary. This is clearly not an option for actual data 
records – you would not be happy to find your bank 
balance vary randomly from month to month even as 
part of privacy-preserving practices. However, for ma-
chine learning purposes such obfuscated data is often 
suitable. Indeed this is rather like the perturbation tech-
niques used for growing datasets for machine learning 
we saw in Chapter 8. 

Note however, if the intention is also to grow the data 
using perturbation, this should be done in a two step-
process: (i) first perturb the data once for privacy and 
then (ii) do data growing perturbations from that point. 
If you simply do lots of perturbations of the original raw 
data point, it will become apparent as the ‘centre’ of a 
cluster in the derived data. 

20.6.3 Aggregation 

Another approach is to only store aggregated data. Tra-
ditionally this would have meant averages for areas or 
demographics but now is more likely to be the learnt 
weights in a neural network or latent features in a big data 
model. 

It has been known for many years that it is sometimes 
possible to recreate raw data from multiple statistical 
queries [69] and similar problems arise with machine 
learning. This can be through deliberate attacks but may 
even ‘slip out’. OpenAI Copilot was trained on large 
volumes of open source data from GitHub and is able 
to autocomplete or even completely write code with 
amazing accuracy. However, soon after it was released it 
became apparent that it would occasionally reproduce 
whole sections of code from the originals line-for-line 
including comments, leading to a lawsuit and lots of 
discussion of IP issues surrounding models built from 
large-scale data [291]. 

There are problems with aggregated data even if per-
sonal data is not divulged. Consider this example from 
one of the author’s early papers on privacy: 

A parent may drive his child 100 metres down 
the road to school because the road is unsafe to 
cross. On the way, he passes an observer mea-
suring road usage. Because the road is used such 
a lot it is widened, attracting more traffic and 
thus making it more dangerous. [91] 

There is no identifiable data here, just a count of road 
usage. However, the parent would not assent to the data 
capture if they knew it would be used to make their child’s 
life worse. 

20.6.4 Adversarial Privacy 

Another privacy concern has been the use of image 
recognition techniques both on web images and CCTV 
in the physical world. 

Hand-crafted image processing algorithms use tech-
niques such as those described in Chapter 12 and often 
follow similar steps to human visual processing. How-
ever, machine learning techniques often use very differ-
ent features from the human eye. Adversarial learning 
techniques have exploited this to create small variations 
of images which do not look any different to the human 
eye and yet are able to fool state-of-the-art face recogni-
tion algorithms [45]. 

Similar techniques have been used in the physical 
world using adversarial techniques to create car licence 
plates that look normal to the human eye but are 
unreadable to a number plate recognition system [305]. 
This can be part of asserting privacy and freedom to 
travel without being tracked but of course can also be 
used to evade legitimate law enforcement such as an 
automatic speed trap. 

It is also possible to buy clothing that claims to subvert 
image recognition, but with this, as in all of the above, 
adversarial techniques are only powerful until the next 
iteration! 

20.6.5 Federated Learning 

Many organisations want to protect privacy either be-
cause it is part of their fundamental ethos (e.g. NGOs and 
some governments) or as part of management of public 
perception and brand. Hence there has been substantial 
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work in looking at privacy preserving algorithms [303]. 
Some of the techniques we have already discussed fall 
into this heading. 

One technique in this area is federated learning. The 
very act of bringing data together to be processed by ma-
chine learning creates a risk of data being hacked or ac-
cidentally leaked. So why transmit it at all? In federated 
learning your personal data is processed close to you on 
your own device and only the processed data is passed 
on to be collated. 

One of the easiest forms of this is as a modification 
to backpropagation algorithms. Backpropagation 
normally works by processing a dataset item-by-item, 
presenting each data item to the neural network and 
then making small modifications to the weights at each 
step. The federated version of the algorithm sends the 
complete network to every participating device. The 
device then processes small numbers of data items 
locally and passes back a delta, the small changes in 
the neural network’s weights due to the additional 
examples. These are then added to the central algorithm 
very nearly reproducing the normal workings of the 
algorithm, while never sending raw data to the central 
hub. 

However, even this apparently bullet-proof method 
has been subject to adversarial attacks, reproducing 
example data from weight changes [234]. Privacy in AI 
is an ever-evolving arms race! 

20.7 COMMUNICATION, INFORMATION 
AND MISINFORMATION 

At its best, the web brings much of human knowledge 
into nearly every corner of the world. There are limits to 
availability both in terms of literacy and also the ability 
to afford a web-ready device and sufficient network 
bandwidth, but these are lower barriers than previously. 
AI and large-data algorithms have been at the heart of 
this, not least PageRank and other web search algorithms 
that scan and sift vast numbers of web resources in order 
to find the most relevant information. Furthermore, 
the objects around us are becoming more internet 
connected, meaning that not just abstract knowledge 
but real-time information is at our fingertips, from 
the current weather forecast to whether our kettle has 
boiled. 

However, we also all know that this has a dark side: 
phishing, cyberattacks, radicalisation, online grooming 
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and misinformation. The Cambridge Analytica scandal 
not only raised privacy issues but showed how demo-
cratic process might be subverted by AI-powered mes-
saging. During the Covid-19 pandemic, distorted news 
stories, pseudo-science and deliberate mis-information 
rose alongside more trustworthy, but not always trusted, 
sources. The causes of this include both deliberate misuse 
and unintentional consequences of otherwise beneficial 
systems and, between the two, negligence when bad con-
sequences could have been averted. 

20.7.1 Social Media 

AI can be used positively to help deal with some of the 
dangers of social media, for example using natural lan-
guage algorithms to automate moderation by flagging 
or removing hate speech. This is not easy. Simple algo-
rithms can generate false positives, for example suspend-
ing the account of someone quoting and refuting a racist 
statement, or where a term that has a totally benign day-
to-day use has been appropriated by an extremist group. 
Similarly image processing can generate false positives, 
for example where nudity filters on social media have 
censored posts of breastfeeding mothers. 

One solution to this is human-in-the-loop algorithms, 
where the AI system passes harder to classify examples to 
human moderators to judge and in the process improve 
the training of the algorithms. As we saw in Chapter 19, 
the design of algorithms of this kind is different from a 
simple automated decision. Of course, human modera-
tion is expensive compared with automatic processing, 
and so the preferred solution for many social media plat-
forms is to employ ‘better AI’ ... not always successfully! 

Of course the opposite problem is false negatives, the 
bad posts that are missed. These can be hard to spot as 
they may simply use coded language, combine neutral 
or ironic speech combined with images that make their 
meaning clear, or simply point to video clips. This means 
that effective algorithms often need to combine media, 
including text, recorded, static and video images. Each 
medium requires its own individual specialised process-
ing, using techniques we’ve described in previous chap-
ters, but crucially they have to be combined. 

Recall the levels of natural language processing 
described in Chapter 13. Really effective moderation 
ideally requires pragmatic understanding. A statement 
“that’s awful” about an image depicting an atrocity could 
be an expression of shock or an ironic statement of 
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support for the terrorist group. Of course distinguishing 
such statements is not easy for humans and indeed 
may simply end up reflecting our own prejudices about 
the speaker. Automated algorithms can face similar 
problems, for example, some terrorist groups may 
use religious language, so that, without care, machine 
learning could lead to highly biased algorithms that 
block benign uses of that language. 

Natural language processing has also been used 
to detect potential paedophile grooming, especially 
techniques that include elements of sentiment analysis. 
Sometimes this is based on cumulative textual content, 
distinguishing 14 year-old speech from a 40 year-old 
pretending to be 14. Sometimes this can be augmented 
by learning patterns of interchanges, for example the 
way alternating critical and complimentary statements 
can be used as a means of coercive control. 

20.7.2 Deliberate Misinformation 

AI can also be used to detect and help ameliorate the 
spread of deliberate misinformation in social media, in-
cluding that distributed by AI-driven bots. Social media 
platforms are constantly adjusting algorithms and poli-
cies to attempt to prevent or discourage fake news [94, 
213, 278]. This includes the use of techniques similar 
to those used for intrusion detection in cybersecurity: 
human-like patterns of behaviour are learnt from large 
volumes of normal usage and then this can be used to 
spot the unusual behaviour of bots. However, the bots 
themselves are also using AI and machine learning tech-
niques, both to mimic the most successful influencers 
and memes and to avoid the defences of the platforms. 

Big data techniques, especially network analysis, have 
been used to understand the spread of fake news and dis-
information on social media platforms. Crucially, it ap-
pears that fake news is spread more quickly and broadly 
than true news, quite likely because it is more novel; fur-
thermore, while bots help this spread, the difference is 
principally due to humans [292]. Attempts to distinguish 
misinformation have also found that often the text of so-
cial media posts may be relatively innocuous, but then 
link to media on other platforms, such as YouTube, that 
contain the actual misinformation [190]. This means that 
misinformation detection needs to operate both across 
different kinds of media and also across different dis-
tribution platforms. This has both technical challenges 

and also commercial ones as different platform providers 
need to cooperate. 

20.7.3 Filter Bubbles 

Recommendation and personalisation algorithms help 
to ensure that the news items we are shown or the 
information we search for is most relevant to us. If a 
search engine knows you are a geographer, then it makes 
more sense that searches for ‘Chihuahua’ would favour 
the place in Mexico, whereas if you are a dog lover, then 
the dog breed is more likely to be of interest. Of course, 
we are aware that the counter problem to this is that 
we may only ever see information that confirms our 
existing views, especially when the algorithms take into 
account our social groups. 

As with deliberate disinformation, big data network 
analysis has been used to study the phenomena, for ex-
ample highlighting the role of ‘gatekeepers’, people who 
consume a wide variety of media but then only pass on 
those of a more partisan nature, which then get amplified 
by the social recommendation algorithms; sadly people 
who are more balanced pay a “price of bipartisanship” 
and are less well received by their peers [111]. 

As well as analysing social recommendation, attempts 
have been made to modify algorithms in order to offer 
alternative views [106, 147]. These have had limited 
success, especially in actual deployment, potentially 
even hardening views. This is clearly an area where 
behavioural science and data science need to work 
together; for example, it may be more effective to show 
views that are slightly less extreme than one’s own, 
rather than those very different, which one may be likely 
to reject out of hand. 

Search engine personalisation may be even more 
problematic as many people do not realise quite how 
directed this can be and therefore trust the search 
engine to offer an unbiased view of the world. If 
instead we receive only information that agrees with 
us, this may lead us to believe that we are operat-
ing on objective facts, further reinforcing our own 
biases. 

20.7.4 Poor Information 

With the best intentions we can all create or pass on 
poor quality or incorrect information. This is partic-
ularly problematic if we are acting in a professional 
capacity whether as an academic, journalist or in policy 
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making. As humans we have a known tendency to 
seek confirmatory evidence, and, as discussed above, 
if anything search engines and social media make 
this worse. Ideally we need tools that counter this. 
Although systems offering opposing views have had 
poor success, they have potential as add-on tools for 
those seeking broader viewpoints. For example, these 
can use clustering techniques and deliberately offer 
items with high reliability (say peer-reviewed science) 
but in different clusters to the items you have been 
referencing. 

AI can make these problems worse. For example, gen-
erative AI language tools, or simply predictive text within 
word processors, may lead to text in articles that sounds 
articulate, reliable and persuasive. If errors or misinter-
pretations are common in the training data, these are 
likely to be regurgitated. However, AI can also help by 
performing a level of fact checking or analysing argu-
ments and flagging common fallacies. 

TABLE 20.1 Data Used in Exercises 20.1 and 20.2. 
Key: M–Mathematics, S–Science, L–Language, H–History. 
(This data is also available in the chapter web resources.) 
XY height M S L H apt A apt B 

X 1.53 N N Y Y 0 3 
X 1.56 N Y Y Y 2 3 
Y 1.68 N Y N N 2 0 
Y 1.6 Y Y Y N 3 2 
Y 1.65 Y Y N Y 3 1 
Y 1.65 Y Y Y N 3 3 
X 1.56 N Y Y Y 2 3 
X 1.52 Y N N Y 1 1 
X 1.56 Y N Y N 0 3 
Y 1.71 N Y N N 2 0 
X 1.54 N N Y Y 0 3 
Y 1.75 N Y N N 2 0 
X 1.53 N N N Y 0 0 
Y 1.63 N Y N N 2 0 
X 1.58 N Y Y Y 3 3 
Y 1.63 Y Y N N 3 0 
Y 1.69 N Y N Y 3 0 
X 1.56 Y N Y Y 1 3 
Y 1.6 Y Y Y N 3 2 
X 1.63 N N Y N 0 2 

20.8 SUMMARY 
This chapter has discussed a number of potential ways in 
which AI can go wrong including bias in machine learn-
ing, threats to privacy and misinformation. In each case 
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there are ways to mitigate the danger, but these are always 
partial. For deliberate misuse, there is always an arms 
race between those creating prevention mechanisms and 
those seeking to undermine them. However, inadvertent 
misuse can be at least as dangerous, for example believ-
ing that simply removing identifying characteristics can 
prevent bias or spreading poor quality or misleading in-
formation. These threats do not mean that AI shouldn’t 
be used but mean that we do need to use it responsibly 
and be aware that despite our best efforts things can still 
go wrong. 

20.1 An employer has taken on a group of 20 school 
leavers. Data collected during recruitment 
(Table 20.1) includes height, and whether they 
took higher level exams in maths, science, 
language or history (but not their marks in the 
exams). In order to guide future recruitment, 
the employer trials them all for initial periods 
on two kinds of tasks and they are assessed on 
each (labelled ‘apt A’ and ‘apt B’). For the present 
ignore the column labelled ‘XY’. 

a. Work out a decision rule for whether someone 
will be good at task A (score 2 or 3) using only 
the columns ‘language’ and ‘history’. You can 
use an algorithm such as ID3 or simply plot 
the values and work out a rule by eye. 

b. Do the same for task B, but this time using only 
the columns ‘maths’ and ‘science’. 

TABLE 20.2 First Dataset Used in Exercise 20.3 
(This data and an extended version are also available in the 
chapter web resources.) 
x y x y x y 

1.804 4.344 1.219 3.050 1.275 3.966 
1.671 4.609 1.324 3.463 3.665 3.298 
4.845 3.538 3.542 2.357 4.876 3.535 
1.821 4.301 1.832 2.642 4.664 3.651 
1.777 4.645 4.338 2.706 2.464 3.357 
4.362 2.600 4.189 4.021 1.264 4.161 
1.735 3.849 4.383 2.113 1.283 3.969 
4.014 1.477 4.577 2.373 1.509 4.118 
4.846 4.151 1.330 3.669 1.458 3.351 
4.167 3.277 3.990 2.056 3.807 3.298 
4.856 3.372 1.114 3.909 1.862 5.366 
1.233 3.442 0.978 4.113 4.144 2.072 
4.607 2.574 4.786 1.899 3.780 3.388 
1.746 3.680 
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TABLE 20.3 Second Dataset Used in Exercise 20.3 
(This data and an extended version are also available in the 
chapter web resources.) 
x y x y x y 

1.809 2.160 2.214 2.341 4.743 1.852 
3.971 1.430 4.268 3.946 3.410 3.594 
2.943 1.849 4.564 2.526 2.225 2.172 
4.534 2.325 1.810 3.400 3.771 3.573 
3.499 2.309 2.204 3.609 2.558 4.856 
4.340 2.065 2.472 4.136 3.269 3.593 
4.479 3.830 1.803 1.955 1.937 1.842 
3.384 3.684 2.517 3.792 4.295 2.658 
4.319 2.553 1.698 1.542 1.979 3.460 
2.367 4.100 1.971 3.457 4.449 3.834 
4.460 3.668 4.101 2.024 2.499 3.835 
2.311 1.134 4.450 4.447 3.947 2.009 
1.673 3.604 1.712 1.934 1.743 2.653 
3.793 4.317 

In fact the aptitude for tasks A and B in this sim-
ulated dataset were calculated as a weighted sum 
of the four subjects studied. Apt A was calculated 
from maths, science and history in the ratio 2:6:1 
plus a small random amount. Similarly apt B was 
calculated from maths, language and history in 
the ratio 1:6:2. That is, language did not contribute 
at all to apt A and science did not contribute to apt 
B. 

c. Is this surprising given your decision rules? 

d. If so, can you work out what is happening? 

20.2 This exercise builds on Exercise 20.1 and uses the 
same data from Table 20.1: 

a. Work out a decision rule for whether someone 
will be good at task A (score 2 or 3) using only 
the column ‘height’. You can use an algorithm 
such as ID3 or simply plot the values and work 
out a rule by eye. 

b. Do the same for task B based again on height 
only. 

Suppose, the column labelled XY represents some 
kind of protected characteristic, such as gender. 

c. Use each of the decision rules in parts (a) and 
(b) and from Exercise 20.1 to create predictors 
of whether each person will be good at tasks A 
and B. 

d. Does this look fair taking into account the pro-
tected characteristic XY? 

e. Can you make sense of any apparent unfair-
ness? 

20.3 The data in Tables 20.2 and 20.3 have been 
generated from small seeds of (simulated) real 
data by adding small random perturbations (as 
discussed originally in Chapter 8). In both tables, 
there are multiple columns for x and y values, 
but they should each be read as single datasets 
of 40 x–y values. In this exercise you are aiming 
to de-anonymise the data by finding the original 
data items. 

a. For the data in Table 20.2 identify clusters 
of data items. You can do this by plotting 
the data and identifying groups by eye, or by 
using a clustering algorithm such as k-means. 
For each cluster calculate its centroid. 

b. Do the same for the data in Table 20.3. 

There were four initial seed items with x–y values 
(2,2),(2,4), (4,2) and (4,4). The second dataset (Ta-
ble 20.3) replicated each value ten times and then 
added random noise to each replicated item, fol-
lowing the perturbation techniques in Chapter 8. 
The first dataset (Table 20.2) did the same, but be-
fore replicating the seed data item it added a ran-
dom value to each seed first, as described in Sec-
tion 20.6.2. 

c. How close were the results in (a) and (b) to this 
original data? 

d. Consider on your own, or discuss in small 
groups the results you have observed and how 
good each technique has been in preserving 
privacy. 

FURTHER READING 

A. Dix. Human issues in the use of pattern recognition tech-
niques. In R. Beale and J. Finlay, editors, Neural networks 
and pattern recognition in human computer interaction, 
pages 429-451. Ellis Horwood, 1992. 
This early paper highlighted the dangers of ethnic, gen-
der and social bias in black-box machine learning systems. 
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Sadly, many of the issues are still apparent more than 30 
years on. 

C. O’Neil. Weapons of math destruction: How big data increases 
inequality and threatens democracy. Crown, New York, 
NY, 2016. 
Highly influential popular science book that shows how the 
indiscriminate use of AI and big data can be socially divi-
sive and discriminatory. 

J. Angwin, J. Larson, S. Mattu, and L. Kirchner. Machine bias: 
There’s software used across the country to predict future 
criminals: And it’s biased against blacks and how we ana-
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lyzed the COMPAS recidivism algorithm. ProPublica, 23 
May 2016. https://www.propublica.org/article/machine-
bias-risk-assessments-in-criminal-sentencing and 
https://www.propublica.org/article/how-we-analyzed-
the-compas-recidivism-algorithm 

This is the article which exposed the potential discrimina-
tory impact of the COMPAS probation decision support 
systems used in court rooms across the US. Read the more 
detailed report of the way the authors obtained and anal-
ysed the data as well as the article aimed at the general 
public. This illustrates the complexity of dealing with this 
kind of data and in particular the issue of base rates, which 
means it is hard to be fair in all senses at once. 
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CHAP T ER 2 1 

Explainable AI 

21.1 OVERVIEW 
It is important that AI gives the right answers; however, 
it is often equally important that we understand why 
it is giving the answers it does. This was recognised 
in the early days of expert systems, which offered 
some form of explanation as we saw in Chapter 18. 
It is particularly important for black-box machine 
learning, such as deep neural networks, where the 
link between input and output can be hard to fathom. 
Because of this, the investigation of explainable AI 
has become a sub-field in itself attracting both generic 
solutions that are agnostic to the underlying AI or 
machine learning and also more specialised solutions 
to adapt specific algorithms to make them more 
scrutable. 

In this chapter we will first look in more detail at 
the reasons why explainable AI is important, return 
to Query-by-Browsing (first seen in Chapter 5) as 
an example of how machine learning systems can 
be designed to be scrutable and then look at general 
heuristics for designing explainable AI. 

21.2 INTRODUCTION 
A job candidate has been pre-selected for shortlist by 
a neural net; an autonomous car has suddenly changed 
lanes almost causing an accident; the intelligent fridge 
has ordered an extra pint of milk. From the life chang-
ing or life threatening to day-to-day living, decisions are 
made by computer systems on our behalf. If something 

goes wrong, or even when the decision appears correct, 
we may need to ask the question, “why?” 

In the case of failures we need to know whether it is the 
result of a bug in the software, a need for more data, faulty 
sensors, inadequate training or just ‘one of those things’: 
a decision correct in the context, which happened to turn 
out badly. Even if the decision appears acceptable, we 
may wish to understand it for our own curiosity, peace 
of mind or for legal compliance. 

Explainable AI is the term that is used to describe 
methods to make the algorithms that underlie decision-
making systems more understandable by humans. 

21.2.1 Why We Need Explainable AI 

We have looked at bias in detail as it is one of the areas 
that has caused most controversy in the application of AI 
and ML. However, bias is not the only reason we need to 
dig more deeply into algorithmic (or other) decisions. 

safety – When an autonomous car has an accident, 
we need to understand what went wrong in order 
to prevent similar future accidents. The airline 
industry has long-standing rigorous methods for 
this adopting a forensic analysis of every accident. 
Normally car accidents are not treated with the 
same level of detail even though in total they cause 
a far greater death toll. This is in part because 
they are each individually smaller but also because 
it is too easy to blame the driver: human error. 
However, software-controlled cars will mean that 
accidents will be more likely to have repeatable 
causes. 

democracy – There have been growing worries about 
the ways algorithms potentially undermine democ-
racy. Sometimes this is about deliberate practices 
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such as the Cambridge Analytica scandal or social 
media bots. Perhaps more worrying is the way that 
search engines and social media use a “what people 
want” objective function in their algorithms, which 
as a side effect creates bubbles of like-minded infor-
mation, allowing us to each feel we are in the fact-
based majority against an ignorant, albeit vocal, mi-
nority. 

health and wellbeing – Imagine you are the senior 
executive of a soft drinks manufacturer that wishes 
to adopt an ethical advertising policy. You do not 
deliberately advertise in children’s magazines or 
on children’s TV, but how do you know whether 
your online advertising, which may be driven by 
keywords or much more complex algorithmic 
mechanisms, is not implicitly targeting children? 

social issues – The author first wrote about the danger 
of gender and ethnic bias in AI in 1992 [74]. This 
was prompted in part by a letter from his bank that 
said he would need to pick up a chequebook directly 
from his branch; they couldn’t post it because he 
lived in a ‘high-risk postal code’. In other words they 
did not trust the honesty of his neighbours if it were 
misdelivered to the wrong house ... and, by implica-
tion, they would not trust him if they were consider-
ing posting a chequebook to a neighbour! This was 
a minor inconvenience, but the cost of everything 
from car insurance to interest rates on loans them-
selves is driven by a wide variety of factors includ-
ing the area you live in, often linked directly or in-
directly to your socio-economic status. At one level 
this is simply reflecting the market, but of course the 
same could be said about some of the other discrim-
inatory effects we have discussed. Unless we under-
stand how these decisions are made it is hard to as-
sess their ethical status. 

science – There are similar worries in the scientific com-
munity that big data approaches to science may well 
be ‘discovering’ relationships that later turn out to 
be spurious [115]. Bias can also creep into the most 
apparently ‘objective’ basic science. Most cognitive 
psychology has been developed using experimental 
subjects that are WEIRD (Western, Educated, In-
dustrialised, Rich and Democratic); a meta-study 
revealed that fundamental cognitive and perceptual 
phenomena, such as the Müller-Lyer illusion, which 

had previously been regarded as universal, are often 
culturally determined [130]. 

In general, for many kinds of algorithms and complex 
rule-driven human processes, we need to be able to ask 
the question “why?” 

• Why did that car crash? 

• Why was I refused a loan? 

• Why did the police stop me in the street to question 
me rather than all the others walking by? 

This emphasises the need for some form of trans-
parency or explainability in complex algorithms. 

21.2.2 Is Explainable AI Possible? 

Explainability has always been a central aspect of 
expert systems, but the field of explainable AI has been 
growing rapidly over recent years in the face of the 
above issues. Some suggest that deeply opaque methods 
such as deep learning are by their nature unexplainable. 
However, there has also been promising work, both 
in more traditional symbolic AI (e.g. argumentation-
based reasoning) and in sub-symbolic AI and machine 
learning (e.g. hotspot analysis of critical regions for 
image-recognition systems). 

Often results are very specific to a domain or tech-
nique, but it is evident that some of these offer poten-
tial methods that could be adapted or core principles ex-
tracted so that they could be used more widely. This has 
led to a growing number of commercial and open-source 
tools that can help increase transparency even for black-
box techniques. 

21.3 AN EXAMPLE – QUERY-BY-BROWSING 
Before discussing general methods and heuristics for 
transparency and explanation, let’s look at a specific 
example of a machine learning system, Query-by-
Browsing (QbB), which was designed to be transparent. 
QbB was originally designed as a thought experiment to 
highlight potential problems and solutions but is also a 
running system [77]. 

We first discussed QbB in Chapter 5, but here we will 
look in a little more detail. Note that the screenshots in 
Chapter 5 were from the early envisionment, whereas 
Figure 21.1 depicts a later web version. 
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21.3.1 The Problem 

Many recommender systems for news articles, techni-
cal help or additional products use some form of rele-
vance feedback. Sometimes this is implicit, when the user 
clicks through an advert, and sometimes explicit, per-
haps a thumbs up or star rating. These can be almost 
prescient suggesting just the right book, music or news 
item but sometimes can be almost embarrassingly weird. 
A recommender for news or products has to be ‘good 
enough’, finding sufficient relevant articles to suggest and 
not showing too many irrelevant items. Precise accuracy 
is not required. 

In contrast, when querying a database, say to select a 
specific group of staff for a pay rise, it is usually impor-
tant that the records selected are precisely those that are 
required. This is commonly achieved by writing an SQL 
query to select the required records, but this requires 
both technical expertise and the ability to frame one’s re-
quirements in precise logic. It would be nice to be able 
to use relevance feedback style interactions to select the 
records desired and then let that determine which staff 
receive the pay rise. 

The technical challenge is to do this in a way that 
(a) you can be sure is updating precisely the right 
staff; (b) the rule used is one that does not violate any 
anti-discrimination legislation. 

21.3.2 A Solution 

The record form of a database table is compatible with the 
input format of many machine-learning methods; how-
ever, most of these have relatively opaque learning algo-
rithms and decision rules. 

Query-by-Browsing (QbB) attempts to address this, 
starting with relevance-feedback-style user-selection of 
records, but creating rules that are scrutable addressing 
requirements (a) and (b), and in the process highlight-
ing the potential for biased results to arise that would be 
illegal in a less transparent system. 

The original machine learning system chosen was a 
variant of ID3 [226, 227] (see Chapter 5) extended to 
allow multi-column comparison criteria. However, one 
QbB version used genetic algorithms to create rules [75]. 

Walking through the behaviour in Figure 21.1: 

1. The user selects records of interest with a tick for 
those that are wanted and cross for those not re-
quired. 

2. The user selects “Make a Query”. 

3. The system generates an SQL query that matches 
the desired records. 

4. The query is displayed in the Query area and 
the records selected by the query are shown 
highlighted. 

5. The user can select more examples and counter-
examples to refine the query. 

Note that the interface effectively includes two rep-
resentations of the decision rule. In the Query area the 
decision tree is rendered as an SQL query giving an in-
tentional representation; this is useful for precision, en-
suring that conditions are exactly as required. In the List 
area the highlighted records form an extensional view of 
the rule, showing which records are chosen by it. This is 
particularly useful for complex and–or queries, or those 
including negation, which are known to be hard to inter-
pret. 

As well as allowing precision, the Query area 
makes the decision rule transparent. It is immediately 
obvious if the rule says, for example, ‘SELECT * 
WHERE title="Mr"’. As we saw in Chapter 20, this 
is not sufficient to prevent bias, but certainly helps to 
uncover problematic decision rules. 

21.3.3 How It Works 

Figure 21.2 shows schematically the steps ‘under the 
bonnet’. The examples chosen by the user are fed into a 
machine learning system that generates a decision tree 
or similar rules, and these are then rendered as SQL (or 
RQBE). 

In the case of ID3 the top-down ‘divide and conquer’ 
nature of the machine learning algorithm is itself com-
prehensible; it is possible, albeit tedious, to go through 
the process by hand or read a trace of the system learn-
ing. As noted, there has also been a version of QbB that 
uses genetic algorithms to generate the decision tree. In 
this case the complexity of the algorithm (large popula-
tion and number of generations) make the learning pro-
cess opaque; however, the rules generated are still under-
standable. 

This is crucial. Think of a mathematician; the process 
of finding a proof may require trial and error, sparks 
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FIGURE 21.1 Query-by-Browsing (https://www.meandeviation.com/qbb/). 

of insight, generating intermediate lemmas. To fully de-
scribe and justify each step of this would be impossible. 
However, mathematicians do not attempt to represent 
how they came to a solution, but instead present a proof, 
a form of rational reconstruction of the actual mathemat-
ical process. 

That is, we need to think about two kinds of trans-
parency: 

• decision rules 

• learning process 

Just like the sparks of inspiration behind a mathemati-
cal proof, it is often acceptable to have an opaque learning 
process so long as the rules generated are comprehensi-
ble. 

21.4 HUMAN EXPLANATION – SUFFICIENT 
REASON 

When looking at complex AI methods, such as deep 
learning, explainability can seem impossible. However, it 
is crucial to remember that human–human explanations 
are rarely utterly precise or reproducible. 

If at a restaurant you were asked why you chose a 
particular main course you might say something like, 
“well I usually go for a steak, but it was late and I wanted 
something lighter; I’d had fish last night, so chose a 
salad.” Within this are many vague concepts and open 
questions. Why normally choose steak? What do you 
mean by ‘lighter’? Why not have fish two nights running? 
However, for most purposes this would be a sufficient 

explanation. Of course the statement might elicit further 
questions, “why didn’t you go for the spinach brûlée, I 
know it sounds odd but is actually quite delicious?” Of 
course, both questions and answers themselves might 
leave aspects only roughly defined, but sufficient for a 
discussion about food. 

We do not try to explain in terms of the firing of indi-
vidual neurons in our brain, or try to make precise ev-
ery nuance. Furthermore, the explanations we provide 
are often rational reconstructions, ways to make sense 
to ourselves, as much as to others, of the complex inter-
weaving of conscious and unconscious processes in our 
minds. 

In human–human discourse statements and expla-
nations are part of a process of mutual understanding 
that enables further action or communication. Studies 
repeatedly show an incremental process of unfolding 
of partial statements rather than precise detailed 
monologues (except in the university lecture theatre). 
For example Grice’s conversational maxims include 
“make your contribution as informative as is required” – 
but no more [117]. Clark and Brennan [52] suggest that 
our conversational utterances will always involve levels 
of ambiguity, which are confirmed or disconfirmed as 
part of on-going discourse, with the aim of creating a 
sufficient common ground of understanding for future 
conversation and action. 

In short, the purpose of an explanation is to inspire 
confidence and trust to allow future mutual action, or 
possibly to create sufficient openness to allow critique or 
dispute. 
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FIGURE 21.2 QbB – under the bonnet. 

When we look at machine–human explanations in this 
light, it is often easier to see how we may at least make 
complex big-data analysis, deep learning and similar al-
gorithms comprehensible if not utterly ‘explained’ to the 
last possible detail. Indeed such an over-detailed expla-
nation would probably, for the human, be no explanation 
at all. 

21.5 LOCAL AND GLOBAL EXPLANATIONS 
Another insight that helps make explanations more 
tractable is that we may not need to understand the 
whole system, merely the aspects that influence a 
particular decision. 

Imagine you have been stopped by a police officer and 
ask, “why have you stopped me?” The police officer could 
offer a complete explanation starting with Roman Law 
and its impact on modern jurisprudence, or could sim-
ply say, “you were driving too fast”. There are times when 
the complete explanation is useful, especially if you are 
trying to assess the fairness of the legal system as a whole. 
However, here the answer you require is local: why you 
were stopped at this time, in this situation. 

As well as being more comprehensible, these local ex-
planations also offer the potential for better human de-
cision making and action. If you drive just a little more 
slowly, you won’t be stopped in future. 

We have already seen an example of a local expla-
nation in Chapter 18, tracing inferences of a forwards 
chaining inference system (Section 18.3.3). This is 

FIGURE 21.3 Decision tree for whether police stop a car (se-
lected path in red). 

far from perfect for a non-technical user, but at least 
is a representation where the individual rules are 
comprehensible. Other representations, especially those 
from machine learning, need more work to make them 
understandable. This section looks at two examples of 
specific techniques for local explanation before we move 
to a broader classification in Section 21.6. 

21.5.1 Decision Trees – Easier Explanations 

Some decision rules admit very easy local explanations. 
For a decision tree the best explanation is often related to 
the final decision points, lowest in the tree. For example, 
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FIGURE 21.4 Alternative decision tree taking into account 
emergency vehicles. 

in Figure 21.3, the police officer would say, “you were 
driving too fast”, not, “you weren’t driving dangerously”. 

However, there are exceptions to this. The police 
would not normally stop an ambulance or fire engine, 
even if it were driving over the limit, as they would 
assume it was on its way to an emergency. Figure 21.4 
includes this and so the final decision point is therefore 
“(is it an) emergency vehicle”. However, if the police 
officer said “you’re not a fire engine”, this would be taken 
as a facetious answer, not a helpful one. 

In general, stating the obvious is not helpful! Happily, 
the decision tree in Figure 21.4 is also labelled with 
the probability of each branch occurring (taken from 
either training data or ongoing data collection). A 
more helpful explanation rule for decision trees is the 
last low probability choice. In this case “driving too 
fast”. 

21.5.2 Black-box – Sensitivity and Perturbations 

You do not always have such an easy (or at least rela-
tively easy) representation available. In some cases, the 
representation is fundamentally complex, for example 
the weights on thousands of internal nodes in a neural 
network do not offer such an easy explanation. Alter-
natively, the algorithm may be proprietary or secret, for 
example, a labour rights organisation might have access 
to the decisions made by a gig-economy platform, but 
not the algorithm itself. Even if the algorithm is avail-
able, generic tools or legal compliance tests need to work 
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with any algorithm, so cannot be dependent on specific 
details. 

In these cases it is possible to obtain local explana-
tions by trial and error. For example, in the UK a med-
ical advice app hit the news headlines when a reporter 
entered identical sets of symptoms but changed whether 
they said they were male or female. If the reporter en-
tered “male”, they were advised to go to a hospital as they 
might be having a heart attack, if they entered “female”, 
they were advised to stay at home as they probably just 
had a stomach-ache. 

To be fair on the app, there were good reasons for this, 
heart problems are more common in men than women 
(the base rate is different), so the gender-specific advice 
is reasonable. One could imagine a similar case where 
the woman was advised to seek medical attention due 
to a suspected ectopic pregnancy, which would not be 
sensible for a man with otherwise identical symptoms. 
Crucially though, the reporter’s investigation brought the 
issue to the surface. 

Note that the reporter was entering a small perturba-
tion to the input data (female vs male) and observing the 
local effects of this. This same technique can be applied 
automatically. Given a black-box decision mechanism B 
and particular set of data x, we can try lots and lots of 
variants x1, x2, ..., xn where each xi is the same as x with 
one or a small number of features modified. We can then 
see the effect of the decision made on these B(x1), B(x2), 
..., B(xn) compared with B(x) (see Figure 21.5). 

These small trials are all small perturbations of the 
original data x and can be used to build a local model 
of B near x. This might be a decision tree or, in the case 
of numeric features, some sort of linear decision model. 

The same data can also be used to give a rating for the 
sensitivity of each feature. For example, given a binary 
feature such as “smoker/non-smoker” we can look at the 
proportion of experiments that yield each decision out-
put for each feature value. The entropy or chi-squared 
of the resulting contingency table can be used as a way 
to assess the sensitivity, that is the extent to which that 
feature is likely to change the categorisation. 

21.6 HEURISTICS FOR EXPLANATION 
For both local and global explanation, we can group 
methods into three main classes (Figure 21.6): 

white-box techniques – These are algorithms which by 
their nature or with minor modifications naturally 
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FIGURE 21.5 Sensitivity analysis using small perturbations of the original data. 

FIGURE 21.6 Three broad classes of explainability technique. 

have understandable internal representations. For 
example, the choice of decision trees in Query-by-
Browsing was because these were relatively easy to 
understand and could easily be transformed into 
standard database queries. 

black-box techniques – Here one treats the process as 
a black-box, but attempts to make sense of it from 
the outside. If the police have suspected terrorists 
under surveillance, they will not walk up to them 
and ask, “why are you buying fertiliser?” Instead, 
they will attempt to determine plans, motives 
and reasons based on the observable behaviour 
of the suspects. In a similar way, it is possible to 
explore an AI or ML algorithm based purely on its 
behaviour. 

grey-box techniques – Where the internal process has 
some sort of intermediate representation, such as 
one of the internal layers in a multi-layer deep learn-
ing network, the network can effectively be split to 
look for black-box explanations in both directions. 
Typically the early layers, closer to the input, will be 
framing broad conceptual categories, whereas the 
later layers may be amenable to transformation onto 
a more logical/symbolic representation. 

Using this framework, we can consider different gen-
eral heuristics, some of which can be used for both exist-
ing and novel algorithms. We will consider a few exam-
ples for each of the three classes and more are described 
on the book website. 

21.6.1 White-box Techniques 

The simplest case is when we choose an algorithm that 
by its nature has a human readable representation, for 
example a decision tree. Even a decision tree can be hard 
to understand if it gets very large, and there are ways to 
steer tree building algorithms towards more understand-
able trees, but at least the tree is relatively comprehen-
sible. A step along from this is where a black-box tech-
nique is used to generate a readable representation; for 
example we saw in Section 21.3 that a version of Query-
by-Browsing used a genetic algorithm to create a deci-
sion tree. Although it would be hard to explain precisely 
how the algorithm chose a particular tree, the tree itself 
is readable. This is rather like a judge who has an instinc-
tive idea of whether the defendant is guilty or not based 
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on experience but has to make that feeling explicit in a 
legally argued judgement. 

More complex methods may use a black-box machine 
learning algorithm initially, but then use it to generate a 
white-box model. 

One approach is simplification of the rule set. The end 
point of training a neural network is a complex set of 
real-valued weights and thresholds, in some cases it may 
be possible to ‘harden’ the network into a binary network 
after training is complete (see Figure 21.7). Recall from 
Chapter 9 that the sigmoid activation function is nec-
essary to ‘soften’ the network to allow backpropagation 
learning as it is often easier to learn continuous rather 
than discrete boundaries. It may be possible to turn the 
sigmoid into a simple threshold for deployment, result-
ing in a more comprehensible (albeit large) Boolean net-
work. 

Another approach is to use adversarial examples 
for white-box learning. Adversarial learning (as used 
in GAN) generates a large case-base of examples. 
One of the problems with many knowledge-rich 
ML techniques (especially ones that have stochas-
tic/uncertainty elements) is that they were hamstrung 
as they often needed to work on small training sets, 
risking overfitting from repeated exposure to the 
same examples, and missing cases where there were 
none. The case-base of examples from the adversarial 
learning can be used as a training set for these other 
more traditional, and more scrutable, techniques (see 
Figure 21.8). 

In some ways this is rather like observing human ex-
perts and building an expert system based on the obser-
vations. The expert may not be able to fully explain their 
decision making, but it may be possible to build an ex-
ternal model. 

21.6.2 Black-box Techniques 

We have already seen an example of a black-box method 
when discussing sensitivity analysis techniques in Sec-
tion 21.5.2. Basically black-box techniques work rather 
like a scientist examining a new material, experimenting 
with it, measuring it and creating some sort of humanly 
reasonable explanation. In the case of the local pertur-
bation methods, we used small perturbations around a 
specific input, that is exploring the close neighbourhood 
of a single value. 
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Most black-box techniques work either by generating 
small perturbations or large numbers of examples gener-
ated in other ways. 

Following the scientific analogy one can use a form 
of exploratory analysis for human visualisation. Lots of 
random or systematically chosen inputs can be used 
to create input–output maps that can be visualised 
using standard scientific or information visualisation 
techniques (see Figure 21.9). The example values 
can be created through lots of small perturbations of 
training set data or randomly chosen. The former has 
the advantage that they are more realistic examples, 
but the latter may expose extreme cases or unexpected 
generalisations of the algorithm. In addition, some 
algorithms can be turned backwards, feeding in what 
would normally be an output and generating typical 
‘input’ values. 

Various forms of hotspot analysis can be used to high-
light the key features in the data, or pixels in an image, 
that are most critical for the classification or decision of 
an algorithm, typically using some form of perturbation 
of features/pixels (Figure 21.10). For example, an image 
recognition algorithm might be very successful at distin-
guishing yachts from fighter aircraft, but hotspot analy-
sis shows that it is the bottom and top of the image that 
are important, not the central part where the object is; 
the image recognition algorithm is really distinguishing 
images with sea at the bottom from those in the open 
sky. SHAP, one of the popular systems for local expla-
nation, uses this method for non-image data, calculating 
the sensitivity of each feature to help users assess which 
are affecting the decision being made [178]. 

Similar methods can be used to distinguish central 
and boundary examples. You begin generating lots 
of examples but then perturb each. If an example’s 
output remains constant despite perturbation, it is a 
central example. If small perturbations change the class, 
it is a boundary example (see Figure 21.11). Those 
examples where small perturbations do not change it 
but larger ones do (large and small as measured by 
Hamming distance, or another suitable metric) are in 
the penumbra of the boundary – these may also be 
useful. 

The boundary and central cases can be used to help 
a human understand the classes, just as we would do if 
explaining a concept to another person. We might use a 
crow as a central example to describe what we mean by a 
‘bird’ and then maybe use some extreme examples such 
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FIGURE 21.7 Simplification of rule set. 

FIGURE 21.8 Adversarial learning to generate training sets 
for white-box learning. 

FIGURE 21.9 Exploratory analysis for human visualisation. 

FIGURE 21.10 Key feature detection through perturbations. 

FIGURE 21.11 Identifying central and boundary examples. 

as a penguin or ostrich to explore the range of animals 
covered. 

These boundary examples can also be used to generate 
other forms of explanation. For example, LIME, another 
popular local-explanation technique, automatically 
finds cases close to a given example that fall inside or 
outside of the same classification; these are then used 
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FIGURE 21.12 Grey-box techniques prising open the black-
box at an internal layer. 

to create a linear classifier that is simpler to understand 
than the overall black-box model [235]. In general, it 
is sometimes possible to take a black-box model that 
is in itself inscrutable but then use it to train other, 
more comprehensible algorithms, such as decision trees, 
that can then be used either instead of the original 
black-box model or as an explanation of it (local or 
global). 

21.6.3 Grey-box Techniques 

Grey-box techniques are a form of divide-and-conquer, 
effectively cutting the black-box model in half at a 
layer of internal representation. The initial black-box 
input–output system can then be seen as a pipeline 
(Figure 21.12): 

first stage – input transformed to internal representa-
tion 

second stage – internal representation transformed to 
output 

Note that this is not changing the underlying algo-
rithm but simply viewing it in parts. In principle one 
could split the network into three or more parts, here 
we’ll just look at splitting in two at a single central layer. 

For some ML algorithms, such as a simple three-layer 
neural network, there is only one sensible split point, 
but for deep neural networks, or other algorithms, 
there may be many ways to do this division. We saw in 
Chapter 8 that in deep network architectures there is 
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often a pinch point, a layer that has relatively few nodes 
that in some way acts as a compact representation of 
lower level features, and which would be an obvious split 
point. 

Divide-and-conquer approaches are generally useful 
to simplify things, but as we discussed in Chapter 8, the 
earlier and later parts of multi-layer systems often per-
form different functions. Typically, the early layers are 
about feature extraction and the later layers about com-
bining these into some form of decision or categorisa-
tion. For example, it may be possible to create an expla-
nation of the first stage that says “that cluster of nodes is 
about whether there is a cat in the scene” or “that is about 
food being spicy”, whereas the second stage may be more 
rule-like: “choose the meal if it is spicy, but not too expen-
sive”. 

So, while in principle both sides of the black-box 
can be treated equally, in practice different black-box 
explanation techniques may work better on the two 
parts. We’ll look at one example technique each for the 
first and second parts. 

As the first part of the black-box is likely to be 
performing feature extraction, we are unlikely to extract 
a simple logical explanation, but may be able to obtain 
an intuitive understanding of the behaviour through 
clustering or visualisation of the low-level features 
represented in the internal layer. 

We focus on the mapping from input to intermediate 
activation of the layer for any specific input. We effec-
tively treat the intermediate activation (or a subset of it) 
as a feature vector (rather than the input) and seek to find 
clusters or other ways to organise the input space (see 
Figure 21.13). This may involve initially reducing the ex-
ample set to a similarity matrix where the cosine or other 
distance metric is used on the intermediate activations of 
each pair of examples, this can then be fed into a variety 
of algorithms for clustering such as self-organising maps 
(see Section 6.6.2). 

The aim of this process is not to create a precise 
explanation of the first part of the black-box, but rather 
to be able to obtain a qualitative understanding, such 
as “ah, yes, this cluster of nodes is encoding the shape 
of the wing”, “this set is about the background”. This is 
the same as with explaining a friend’s taste in books; 
you may not be able to codify precisely what makes 
a novel fit into a genre, but you can still understand 
enough to look for Gothic fantasy as a birthday 
present. 
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FIGURE 21.13 Clustering and comprehension of low-level 
features. 

The structure of the internal layer can also be used 
more directly. For example, in Chapter 13 we saw how 
this can be used as a latent space for other purposes such 
as creating similarity measures between pairs of inputs, 
or, in the case of word2vec having structural properties 
such as “Madrid is to Spain as Paris is to France”. 

As the second stage is often about building final deci-
sions from features, there is more likelihood that we will 
be able to build more symbolic descriptions of the high-
level processing. In the book example, we might have an 
intuitive idea of genre, but are able to say, “my friend likes 
both Gothic fantasy and Nordic noir”, that is an explicit 
and codifiable statement built on top of more intuitively 
understood classes of literature. 

In general, we may be able to use a white-box algo-
rithm, such as a decision tree to create an alternative set 
of explainable rules (see Figure 21.14). 

1. Take a set of input examples: I1, I2, ..., In 

2. Use a black-box classifier to generate outputs: O1, 
O2, ..., On 

3. While doing this also store the intermediate rep-
resentation L1, L2, ..., Ln 

4. Collect the pairs < L1, O1 >, < L2, O2 >, ..., 
< Ln, On > as new training data 

5. Apply your favourite white-box learning algo-
rithm to this training set 

In some cases, the resulting white-box model may be 
able to be substituted for the second stage of the original 

FIGURE 21.14 High-level model generation. 

black-box. However, more commonly it may not entirely 
capture everything. For example, the friend might dislike 
a particular Nordic noir writer. The general rule is still 
useful to give a broad understanding of the behaviour of 
the black-box system, even if there are exceptions that do 
not fit the rule. 

21.7 SUMMARY 
We have seen how explainable AI is essential for un-
derstanding failures in AI as well as building confidence 
when they are right. This is particularly important when 
we want to detect or prevent bias in AI decisions. We saw 
an example, QbB, of how explainability can be built into 
the design of a system as well as more general heuris-
tics for explainability. Explanations can be global, giving 
a sense of the whole system behaviour, or local, allow-
ing a viewer to make sense of a specific decision. Tech-
niques for increasing explainability may be: white-box, 
using details of the internals of a model; black-box, sim-
ply using input and outputs in a model-agnostic way; 
or grey-box, choosing an intermediate layer of a com-
plex model and then applying black-box techniques to 
the parts before and after the chosen layer. 

21.1 Consider the following situations of AI use: 

• At the end of each week an integrated office 
system uses natural language processing 
techniques to scan emails for potential to-do 
items that have been missed. It then posts a 
reminder on Saturday morning. 
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• During a presidential election a video clip 
is shared on social media showing one of 
the candidates accepting a bribe. It says it 
is based on image and voice reconstruction 
from poor-quality CCTV recordings. 

• An AI-generated proof has been published 
showing that P=NP, a long open problem. The 
proof is over a million lines long. 

• A government agency asks a marketing 
agency to advertise its new career develop-
ment grants. The agency uses AI to determine 
advert placement in order to optimise uptake 
of the grants. 

• AI is used to detect potential cancerous tu-
mours in X-rays. 

a. For each consider what kind of problems 
might arise. Note, there may be several for 
each situation. 

b. Classify these using the terms in Sec-
tion 21.2.1. 

c. For each situation and problem, say whether 
explainability/transparency is likely to be an 
issue. 

21.2 Using the list of situations in Exercise 21.1, sug-
gest ways to mitigate potential problems using the 
explainability techniques discussed in this chap-
ter. 

21.3 A deep neural network has been trained to 
identify potential cancers based on urine samples 
for mass screening. However, there is a worry 
that differences in hormones may make the 
test less reliable for women. The network has a 
pinch point (see Chapter 8), and the developers 
have augmented the training data by saving the 
activation state of the nodes in the pinch point for 
each training example. As a first stage of analysis 
they applied a clustering algorithm to this data 
and identified 17 main clusters. 

a. Using the local/global, white-box/black-
box/grey-box terminology, what kind of 
explanation is being attempted. 

b. What would you suggest as potential next 
steps in the analysis? 

The developers try an alternative analysis where 
they use an algorithm to identify other samples 
that are similar to a given one and let the clinician 
see the AI classification of these alongside the pri-
mary diagnosis. 

c. Classify this technique using the local/global, 
white-box/black-box/grey-box terminology. 

d. In what situations would each kind of expla-
nation be useful? 
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CHAP T ER 2 2 

Models of the Mind – Human-like 
Computing 

22.1 OVERVIEW 
In this chapter, we consider approaches that have been 
developed for modelling not only intelligent human ac-
tivity but also human cognition. While neural networks 
model the brain at a low level, this chapter focuses prin-
cipally on more high-level cognitive models. The earli-
est models of cognition focused on human rationality, 
and we will look at two of these, ACT* and SOAR, which 
use production systems to model problem solving and 
memory. However, further into the chapter we will look 
at other features of human cognition, including uncon-
scious processes of attention, imagination, dreaming and 
emotion. We will see how human regret encompasses 
many of these and demonstrates how modelling emotion 
can not only offer understanding of human cognition but 
also suggest potential ways to improve practical AI. 

22.2 INTRODUCTION 
While the origins of many techniques used in AI are 
based on artificial human intelligence, often the way 
they behave is strange and counter-intuitive, even if they 
give the right results. Sometimes this does not matter; 
so long as the algorithm works it is fine. However, there 
are times when we would like the alien intelligence to 
behave more like a human. 

There are three main reasons for this: 

Understanding humans – From early days of AI, cog-
nitive scientists have created computational models 
of the human mind – the way people think, learn 
and make mistakes. These are used to inform exper-
imental and theoretical psychology and potentially 
help in creating better clinical interventions. 

Assisting humans – In Chapter 19 we see examples 
where lessons from human–human conversations 
can help make the behaviour of an artificial system 
more comprehensible. In many other examples, 
from medical advice to computer-assisted learning 
and care robots, automated systems need to behave 
in ways that are intellectually and/or emotionally 
meaningful. 

Emulating humans – There have been many quite as-
tounding successes in AI, not least advances in deep 
learning and the use of big data. However, there are 
still some situations where current volume-based 
AI is less good than a human, especially when there 
are very few examples on which to base behaviour, 
sometime called, in the extreme, single-shot learn-
ing. 

While the first of these has been part of the earliest 
history of AI, the other areas have risen in importance 
more recently. As this is an open research area, there is 
not yet an overarching view, so we’ll just look at a few 
examples. 

22.3 WHAT IS THE HUMAN MIND? 
To model the human mind we first need to understand 
what it is like, what it can do, what it can’t. A true model of 
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the mind would incorporate the positive and the negative 
about the human so that what is produced shares our 
limitations as well as our strengths. Think about the mind 
for a moment. What qualities does it have? What are its 
limits? What do you think is its main strength? 

The mind has a number of characteristics, some 
good, some bad. On the positive side we are able to 
tackle unfamiliar problems and apply our knowledge to 
produce new solutions. Indeed, we can create original 
things, from words to machines to music. People are very 
creative, and, while it is debatable whether anything is 
truly original (since most ideas are influenced by existing 
things), we generate considerable variety and make huge 
leaps through insight and imagination. Another positive 
aspect of the human mind is its ability to learn. From 
infancy humans assimilate information and make sense 
of it, using it to interpret their environment. Our ability 
to learn degrades as we get older (the speed at which 
babies and small children learn is remarkable), but we 
never lose it completely and we can adapt throughout 
our lives. We can do several things at once, often 
without any apparent loss of performance (although the 
less skilled we are at something, the more we have to 
concentrate our attention on it). So experienced drivers 
have no problem talking to passengers and listening to 
music while they drive. The capacity of the mind means 
that we can still function, even if our performance is 
impaired by fatigue, illness or even partial brain damage. 
Although we may be less efficient or unable to do some 
activities, we do not cease to function altogether, and 
our mind provides inventive solutions to these problems 
to support us when we face them. 

The mind is clearly a remarkable thing. However, it 
does have its limitations. Compare the performance of a 
human with that of a computer in arithmetic calculations 
or remembering the names and ages of all the people 
who work in an organisation, and you will start to see 
the limits. The human mind works slowly. In the time it 
takes a human to add up a few numbers, a computer can 
have summed millions. Human memory is also limited. 
Our short-term memory capacity (i.e. what we can hold 
in our conscious mind at a time) has been shown to be of 
the order of 7 ± 2 items, that is a range of 5 to 9 [192]. Try 
an experiment to test this. Spend 30 seconds looking at 
this list of numbers; then, without looking, write down, 
in order, as many as you can remember. 

2 7 12 4 9 3 23 7 1 10 18 16 21 

How many could you recall? Unless you have an excep-
tionally poor or well-trained memory you probably man-
aged between 5 and 9 items. There are of course ways of 
increasing memory capacity; by relating items together, 
such as in a phone number, we can remember more. So 
in fact, our short-term memory capacity is not 7 ± 2 
items but 7 ± 2 chunks of information. Our long-term 
memory capacity is another matter. Many believe that 
this is in principle unlimited, although in practice it is 
bounded by our ability to recall the information. Again, 
using cues and association helps us to remember more. 
Finally, humans make mistakes, even when performing 
tasks at which we are expert. This is because we have 
lapses of concentration or get distracted. We are not often 
precise and thorough. 

All in all you can see that the human mind is very 
different to the computer. The areas that we are good 
at (creativity, flexibility, learning and so on) computers 
are notoriously bad at, whereas those areas where we fall 
down (memory, speed, accuracy) are the strengths of the 
computer. So how can we make a computer model the 
human mind? First we should be clear what is meant by 
a model. A model is an approximation or a representa-
tion of something else. Think about architectural design. 
As well as drawing up plans for a new building, an ar-
chitect will often produce a scale model of it. This is not 
the building itself, it may not have all the properties of 
the building (for instance, it is unlikely to be constructed 
of the same materials), but it will have enough detail to 
enable the architect to learn something about the real 
building (perhaps about its appearance or structural lim-
itations). 

22.4 RATIONALITY 
Most of the earliest cognitive models were based on the 
rational/logical aspects of human cognition. In partic-
ular production systems were adopted as they could be 
adapted to a wide range of different kinds of knowledge 
and matched various constructs in cognitive science. 

Recall our discussion of the production system in 
Chapter 2. It has three components: (i) a database 
of current knowledge (the working memory), (ii) 
rules to alter the state of the memory and (iii) some 
method of deciding which rules to apply when. The 
production system was originally proposed as a method 
that plausibly reflected human thinking, including 
short-term memory limitations. However, it was also 
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recognised as a powerful tool for the development 
of AI applications, such as expert systems, and these 
pragmatic concerns have rather eclipsed the role of 
production systems as a model of the mind. How-
ever, a number of researchers continued to work on 
this, and there are several general implementations 
of models of cognition using production systems. 
Two of the best known are ACT* [5, 6] and SOAR 
[157, 158]. Each is a general model, but more specific 
applications can be built on top of them. For example, 
Programmable User Models or PUMs [304] was an 
application built on top of SOAR, designed to simulate 
the behaviour of a user with a computer or machine 
interface. 

22.4.1 ACTR 

ACT-R (formally known as ACT*) has been developed 
by Anderson and others over the past 40 years [5, 6]. It 
comprises a large long-term memory in the form of a se-
mantic network, a small working memory of active items 
and a production system that operates on the memories. 
As in humans, only a small part of the long-term memory 
is active at any time and the condition part of a rule can 
only match an active element. The action part of the rule 
can change memory (say, by activating a new item or de-
activating one) or perform some other action. Memory 
elements can spread activation to their neighbours in the 
semantic network, mimicking association of ideas. As in 
human memory, activation decays if an element is not 
accessed by the rules, so only items that are being used 
remain in active memory. 

ACT-R is used to model learning, or the development 
of skills. It is Anderson’s contention that the mind can 
develop procedures for specialised activities from some 
basic knowledge, general problem-solving rules and a 
mechanism for deciding which rules to apply. Conse-
quently skill is acquired in three stages. At first, general 
purpose rules are used to make sense of facts known 
about a problem. This is slow and places significant de-
mands on memory. Gradually the learner develops pro-
ductions or rules specific to the new task, and, as skill be-
comes more developed, these rules are tuned to improve 
performance. 

ACT-R provides two general mechanisms to account 
for each of these transitions. Proceduralisation is the 
mechanism to move from general rules to specific rules. 
Memory access is reduced by removing those parts 
of the rules that require it and by replacing variables 
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with specific values. Generalisation is the mechanism 
that tunes the specific rules to improve performance. 
Commonalities between specific rules are identified and 
combined to form a more general rule.

A simple example of ACT-R should illustrate 
this (reproduced with permission from the authors’ 
book, Human–Computer Interaction, published by 
Prentice Hall). Imagine you are learning to cook. 
Initially you may have a general rule to tell you how 
to determine the cooking time for a dish, together 
with some explicit examples for particular dishes. You 
can instantiate the rule by retrieving these cases from 
memory. 

IF cook[type,ingredients,time] 
THEN 

cook for: time 

cook[casserole, [chicken,carrots,potatoes], 
2 hours] 

cook[casserole, [beef,dumpling,carrots], 
2 hours] 

cook[cake, [flour,sugar,butter,egg], 
45 mins] 

Gradually your knowledge becomes proceduralised 
and you have specific rules for each case: 

IF type is casserole 
AND ingredients are 

[chicken,carrots,potatoes] 
THEN 

cook for: 2 hours 

IF type is casserole 
AND ingredients are 

[beef,dumpling,carrots] 
THEN 

cook for: 2 hours 

IF type is cake 
AND ingredients are 

[flour,sugar,butter,egg] 
THEN 

cook for: 45 mins 

Finally you may generalise from these rules to produce 
general purpose rules which exploit their commonalities: 

IF type is casserole 
AND ingredients are ANYTHING 
THEN 

cook for: 2 hours 
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ACT-R has shown impressive results in modelling the 
learning of arithmetic in children and the utterances of a 
child learning to speak, indicating that it is quite a pow-
erful general model. However, it is unable to model in-
dividual differences in learning or the problem of how 
incorrect rules are acquired. 

22.4.2 SOAR 

SOAR is a general model of human problem solving 
developed by Laird et al. [157, 158]. In SOAR, long-
term memory is represented by production rules, and 
short-term memory is a buffer containing facts deduced 
from these rules. Problem solving is modelled as state 
space traversal (see Chap. 4), and SOAR uses the same 
approach to problem solving to deal with domain 
problems and those relating to the process of problem 
solving. So, given a start state and a goal state, SOAR sets 
up an initial problem space. It then faces the problem 
of which rule to choose to move towards the goal. To 
solve this problem it sets up an auxiliary problem space 
and so on. By treating control problems in the same way 
as domain problems SOAR is able to use either general 
problem-solving rules or domain-specific rules to deal 
with all types of problems. If a difficulty is encountered, 
SOAR sets up an impasse, creating a subgoal to resolve 
the difficulty. 

A key characteristic of SOAR is chunking. When an 
operator or sequence of operators has been particularly 
successful in reaching a goal, SOAR encapsulates this in 
a “chunk”, essentially a new operator that it can use when 
it meets a similar problem again. The basic operation of 
SOAR is illustrated in Figure 22.1. 

SOAR is a flexible, general purpose architecture, but 
this has its price: it can be resource intensive and slow. 
However, as an attempt to produce a general cognitive 
architecture it has been the focus of substantial research 
efforts. 

22.5 SUBCONSCIOUS AND INTUITION 
In Chapter 1 we discussed thinking ‘fast and slow’ [151]: 
System 1 (fast, largely unconscious) vs System 2 (slow, 
conscious). Production systems emphasise System 2; 
however, even when thinking logically/rationally, it is 
hard to pin down just why we start a train of thought 
or why a related idea comes to mind. Furthermore, the 
main growth in AI has been in areas that are closest to 
the unconscious aspects of the human condition: the 

gut feeling or spark of insight. So one big challenge is to 
connect these into some of the more traditional areas 
of AI that were inspired more by higher-level conscious 
cognition. 

We will look at a few of these more intuitive or uncon-
scious aspects of human cognition to see lessons for AI. 

22.5.1 Heuristics and Imagination 

In Chapter 4, we saw that an appropriate heuristic evalu-
ation function can substantially improve tree search. This 
mimics the way a human chess player will typically look 
many moves ahead in their head, but, except in the very 
last moves, this lookahead will not get as far as a check-
mate position, but stop when the board looks ‘good’ or 
‘bad’. In traditional AI, these heuristics were designed by 
hand. For example, counting the number of squares con-
trolled by pieces in a game of chess. However, the human 
assessment is a mixture of rules and also an unconscious 
assessment of board positions. In a very similar way Al-
phaGo combined tree search with deep neural networks 
[260]. 

Similarly, when you read a mathematics proof, it is 
written as if it were a straightforward progression from 
axioms through lemmas and sub-proofs through to a fi-
nal theorem and QED. However, that is not how the hu-
man process of finding proof is actually done. There are 
many, many ways the axioms could be combined, and 
only some are useful in order to prove the theorem. 

The human mathematician proceeds using heuristics 
as to which paths to try. They might find it very hard to 
explain just why they tried a particular strategy, but that 
doesn’t matter. We don’t mind if the process is obscure, 
so long as this gives rise to a verifiable proof. Similarly, 
neural networks or other black-box techniques are being 
applied to automated mathematical or logical reasoning. 
While symbolic rule-based approaches are needed to do 
the actual mathematical derivations, machine learning 
can be applied to find heuristics to choose which rules 
to try next. 

Mathematical proofs, and indeed problem solving in 
general, does not proceed linearly from axioms to theo-
rem or from problem statement to solution. Instead, one 
‘guesses’ intermediate things, lemmas in mathematics, 
or perhaps an intermediate state in a less mathematical 
problem “if I can get the green block on top of the red one 
...”. 
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FIGURE 22.1 Basic SOAR diagram. After Newell [208]. 

One way we find these is by imagining or sketching 
examples and noticing patterns, perhaps all triangles that 
have the same base and height have the same area, or ev-
ery route between two places crosses a particular bridge. 
If lots of examples can be generated virtually (automated 
imagination!), then this creates exactly the sort of data 
that can be used for automated pattern extraction, and 
once patterns are noticed they become lemmas or inter-
mediate points for more conventional problem solving. 

22.5.2 Attention, Salience and Boredom 

In 1890, William Jones, one of the founders of modern 
psychology, identified attention as a critical resource for 
cognition [146]. He described attention as 

“taking possession by the mind, in clear and 
vivid form, of one out of what seem several 
simultaneously possible objects or trains of 
thought” 
“withdrawal from some things in order to deal 
effectively with others” [146] 

Note that this is as much about what is ignored as what 
is attended to – there are so many things, both entering 
our senses and already in our heads, that they threaten to 

overwhelm us, or as James puts it “without it [attention] 
the consciousness of every creature would be a gray chaotic 
indiscriminateness”. By ignoring the (for now) irrelevant, 
we are able to function better on the things we want to 
do. 

This is already used within practical AI systems. Trans-
former models, discussed in Chapter 14, are often viewed 
in terms of attention: those elements in the trace that are 
more closely related to the current topic are given greater 
salience and hence pass more activation to higher levels 
of the network. 

Human attention occurs at multiple levels, some vol-
untary, but some largely unconscious. 

22.5.3 Rapid Serial Switching 

When performing image recognition, it is common to 
treat the scene as if it were presented as a whole, like look-
ing at a photograph. This might be to apply edge detec-
tion uniformly or simply to feed the whole image into a 
neural network. 

This does parallel the way it feels as if we see the world, 
but in reality the detailed images humans see are built up 
of many rapid saccades. Our eyes flit over a web page, 
document or outdoor scene focusing first on one detail, 
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and then another. Try fixating on a single word on this 
page, and without moving your eyes, see how far you can 
read either side. You’ll find that only the next word or 
so is readable. Our eyes have very detailed resolution in 
the middle, the fovea, but a far lower density of light-
detecting cells further out. The area of detailed vision 
(the fovea) is very small and hence the need for saccades. 
The detailed view we appear to have is the overall effect 
of lots of small glimpses of specific areas. 

In some ways this can be seen as a deficiency in hu-
man vision that is not present in computer vision, which 
usually has a uniform resolution across the whole field 
of view. However, the way our eye works can also be an 
inspiration. In an image with two people in it there are 
many low-level features, eyes, hands and clothes, and we 
have to associate the right parts with the right person. If 
the two people evoke different emotional feelings, per-
haps a terrorist and hostage, then it is important that the 
connections are the right ones. This can be a challenge 
taking the whole image at once, but when our eye scans 
in saccades, it focuses attention on one person at a time, 
so that we might momentarily focus on one person’s face, 
recognise that person, then skip to the other perhaps fo-
cusing on the gun that suggests they are the aggressor. 

This switching of attention can also happen at a more 
gestalt level. When you look at an ambiguous image such 
as Rubin’s vase, at one moment you will see one interpre-
tation, perhaps the vase, and then a few moments later it 
will ‘flip’ and you’ll see two faces (Figure 22.2). Because 
these are deliberately intended to be confusing, this can 
go on for ever, but this exposes the kind of processing 
that is going on for ‘ordinary’ images; our brains rapidly 
flick between interpretations until they settle on one that 
is most globally consistent. 

22.5.4 Disambiguation 

The same principle of rapidly switching attention can be 
applied in higher-level processing. For example, we have 
a piece of text with ambiguous words in it, perhaps ‘bow’, 
which could be the front of a boat, the weapon used to 
shoot an arrow, or bending over in greeting. How can we 
design algorithms to disambiguate them? Some combi-
nations are more likely than others based on semantic 
similarity, for example if there is mention of stern and 
sail ‘bow’ is more likely to be the nautical term. 

One way is to effectively push all of the interpretations 
at once into a semantic network as shown in Figure 22.3 – 

FIGURE 22.2 Rubin’s vase (Source: NevitNevit Dilmen, CC 
BY-SA 3.0 via Wikimedia Commons). 

putting a weight of, say, one third each on the three inter-
pretations of ‘bow’, and similarly half each for the mean-
ings of ‘stern’ (part of boat and facial expression). Some 
form of spreading activation or neural algorithm then 
iterates, strengthening similar meanings and weakening 
others. This can work well if the topic is very focused but 
may struggle where there are two things being discussed 
such as the Queen visiting naval dockyards, rather like 
the image with two people in it. 

An alternative is to rapidly switch between different 
interpretations. This can happen as an emergent property 
of some spiking neural networks or can be coded more 
explicitly. For example, one can use the same seman-
tic connections as shown in Figure 22.3 but randomly 
fix different interpretations (e.g. temporarily treat ‘bow’ 
as meaning bend at the waist) with probability depen-
dent on their weight, then ripple out their impact on 
the other interpretations to weaken or strengthen their 
weights. 

22.5.5 Boredom 

At a higher level, we find it hard to maintain attention on 
one topic as we get bored with it. In school, this lack of 
attention is either criticised as a lack of diligence or diag-
nosed as a cognitive disorder, but in fact boredom is es-
sential for human cognition. Due to a brain injury, a pa-
tient lost their ‘ability’ to experience boredom. Undoubt-
edly, this caused some issues for social interactions, but 
for most purposes this had little effect on their ability to 
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FIGURE 22.3 Semantic network for disambiguation. 

problem solve. However, for certain problems it severely 
hampered them. 

It is easy to see how this comes about. As we saw in 
Chapter 4, there are many ways to tackle even highly for-
mulated AI problems, let alone the complexity of human 
life. Initially one method of solution may seem best and 
worth pursuing first. However, if this proves unfruitful, 
we get bored and try an alternative strategy. If this flit-
ting happens too often, we may never reap the benefits 
of the original choice, but without any boredom we may 
simply become fixated on a single, initially ‘best choice’ 
method, and never find a solution. This is also true in the 
physical world, indeed there is some evidence that ‘atten-
tion deficits’ may have been important for foraging, to 
encourage movement to new food sources, literally seek-
ing more ‘fruitful’ patches [13]. 

Computationally it is often worth switching between 
strategies, or trying several in parallel, especially if there 
is the potential for partial work on one to benefit the 
others. This has similarities with swarm computing, ex-
cept the agents in swarms usually have a similar method 
of solution, but are following different alternative paths 
within the solution space. 

22.5.6 Dreaming 

There are many theories about the role of sleep and 
dreaming, especially as there are aspects that are 
particularly unusual in humans. It is known that lack 
of sleep can cause problems with laying down new 
memories, so it is commonly assumed that sleeping 
and dreaming have a role in ‘sorting out’ experiences 
in shorter term memory before committing them to 
long-term memories. 
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This is still an open question. However, very early in 
the investigation of neural networks, two papers were 
coincidentally published in the same issue of a journal, 
one by John Hopfield, one of the founders of neural 
network research, and one by neuroscientist and co-
discoverer of DNA, Francis Crick. Both presented closely 
equivalent accounts of one of the purposes of sleep 
[59, 137]. 

If you create certain kinds of network architecture, for 
example spreading activation over a semantic network, it 
is possible to have small sub-networks with strong posi-
tive feedback between the elements within them. Even a 
small initial amount of activation (perhaps because one 
element has a weak semantic link to one of the inputs) 
leads to more and more feedback until everything in the 
sub-network is highly active. In a practical application, 
these greedy sub-networks can be very difficult to deal 
with. The suggestion is that during dreaming or maybe 
sleeping in general, the brain is cut off from normal sen-
sory inputs and so is effectively subject to random noise. 
If particular parts are constantly active when subject to 
this, they clearly have low discrimination and are there-
fore weakened. Doing the same to an artificial network 
would reduce the strength of the links in those greedy 
sub-networks [2, 225]. 

22.6 EMOTION 
Humans are not creatures of reason and logic alone: we 
think, but we also feel. Human emotion can be viewed 
pragmatically as a ‘fast response’ system – part of Kahne-
man’s System 1 thinking [151]. However, complex emo-
tions are more than that, modulating much of our so-
cial and personal experience of the world. While emotion 
brings uncertainty and irrationality, it is also the mecha-
nism by which we take account of shared human experi-
ence in our decisions. We react to situations not only by 
reason but by emotion. 

We do not normally associate machines with emotion. 
Indeed it is the ability to perform rationally, logically, 
without the baggage of emotional response that can make 
an intelligent machine powerful. 

There are two possibilities for machine intelligence. 
Either we attempt to provide artificial emotion (a neces-
sity if machine intelligence is truly to mirror that of hu-
mans) or we preserve objective reasoning. If we do the 
former, will the occasional emotional decisions of a ma-
chine be acceptable to a human? Yet if we do the latter, 
how will the decisions of the machine be tempered to 
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take into account emotional and moral issues that are im-
portant in society? 

It can certainly be useful for an artificial system to de-
tect, interpret or emulate emotion for a number of rea-
sons: 

1. to detect or assess a human’s emotional state – 
This may be for health-related reasons or simply 
to improve the behaviour of a game. Typically this 
might involve reading facial expressions, tone of 
voice or, in the case of text, sentiment analysis us-
ing shifts in vocabulary. 

2. to shape or predict human emotion – Again this 
may be as part of mental health or well-being ap-
plications, but also in creating meaningful nar-
ratives for a story. Typically this requires deeper 
models of human emotion. 

3. to model or emulate human emotion – This may 
be to support (2), but also may be a goal in its 
own right, perhaps to make an artificial compan-
ion that (appears to) have feelings, or to model the 
impact of therapies. 

4. to improve machine algorithms – By un-
derstanding the role emotion plays in human 
cognition and behaviour, we may be able to learn 
techniques for automatic systems. For example, 
boredom can help prevent fixation on a single 
problem-solving strategy. 

Note that each of these may be implemented at an in-
dividual or group level. For example, (1) might read an 
individual face or use movement patterns in a crowd; (2) 
and (3) could be used by a policing application to sug-
gest suitable strategies to defuse a potential riot situation 
or calm inmates in a prison. 

As is evident this is a broad area in itself. We’ll look in 
a little more detail at empathy, which is related to (1), 
(2) and (3); and then at a more computational exam-
ple, modelling regret, which has elements of (3) and (4). 
However, this is an open topic: theoretically, computa-
tionally, philosophically and ethically. 

22.6.1 Empathy and Theory of Mind 

Some form of empathy is widely regarded as critical for 
the functioning of both small- and large-scale social 

groups. We are often asked to put ourselves in another 
person’s shoes, to see the world through their eyes, and 
moreover feel what it is like to be them. This is at the 
heart of much of great literature: characters, who may 
be far different from you, and yet whose inner life as 
well as external circumstances are exposed to let you 
vicariously experience what it is like to be them. 

This is closely related to what psychologists call ‘theory 
of mind’, being able to reason from another’s perspective. 
A small child hiding will often assume they are invisible if 
they can’t see you, rather like the mythical ostrich hiding 
its head under the sand. Piaget established more formal 
tests as part of his investigation into childhood cogni-
tive development [224]. When shown a model landscape 
with a hill or building blocking the view of a doll in the 
landscape, a small child will exhibit egocentrism: they 
will say that the doll can see something the other side of 
the obstacle, just because they, the child, can see it. How-
ever, as they get older, this usually changes. The exact age 
depends on the child and the exact way the experiment 
is performed, with more realistic scenarios yielding less 
egocentric responses at an earlier age [273]. 

It is straightforward to see how AI can achieve this 
perceptual level of theory of mind, working out what a 
person could see or do based on their situation, but deep 
empathy seems more elusive. How can a computer ‘get 
inside’ the mind of a human without being human them-
selves, without having experienced the full gamut of hu-
man experience and emotion itself: joy, love, fear, laugh-
ter? 

In descriptions of adult theory of mind, it is often as-
sumed that it is easy to put yourself into another person’s 
shoes and imagine what it feels like. However, it is not so 
clear why we need to understand our own minds. Indeed, 
it can be argued that theory of mind precedes knowledge 
of self – we need to understand other people’s mental 
states and intentions in order to interact with them, and 
because they similarly have models of our own inten-
tions, we need to model ourselves [82]. 

The ability to put ourselves into others’ heads is not 
universal and certainly does not come ‘naturally’ to ev-
eryone. For example, those with some forms of neuro-
divergence may find it difficult to see the world instinc-
tively from another person’s viewpoint, or for that matter 
to easily make sense of their own mental states. How-
ever, while this ability may not come naturally, it does 
not mean it cannot be learnt, just as we may learn to un-
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derstand many aspects of the world. Furthermore, this 
less ‘natural’ empathy can often be better. 

When we put ourselves into another person’s shoes, 
we are asked to imagine what it would be like if we were 
them. Of course, the real question is not what we would 
feel like in their shoes, but what they feel like. We are 
all different, with different life experiences and different 
ways of thinking. 

You may have heard about method acting, that is 
when actors try to get inside the head of the part they 
are playing, so that when something happens they really 
feel the emotions of the part they are acting and respond 
accordingly. In conversation, an actor was asked about 
method acting and they said “well there is method 
acting, and there is real acting”. By this they meant actors 
who simply create the expressions, mannerisms and 
behaviours of the role as they appear to others. That is to 
understand the role but not attempt to be it. Of course, 
there are different views on this within acting, and 
there are similarly different approaches in day-to-day 
life. 

If it was essential to share experiences to understand 
another person, the only suitable psychologist to 
work in a prison for the criminally insane would 
be one who is themself a psychopath. Indeed, the 
power of a good clinical psychologist in general is 
precisely to understand those who are not like them. 
Understanding how someone is feeling is not the same 
as feeling like them. This is equally true for machine 
‘empathy’. 

We saw in Chapter 1 how those interacting with 
Eliza felt as if it understood them, even though all it 
did was reflect back words they had said using very 
simple rules. Arguably this is about the way the human 
interprets the response of Eliza, but then surely that 
is also true of Rogerian therapists on which Eliza was 
based? Those using ChatGPT and similar tools have 
reported apparently deeper understanding or empathy 
as they engage in dialogues. This is not so surprising, 
large language models are trained on large datasets 
including human–human dialogues, so have access to 
humans’ understanding of other humans (both good 
and bad). 

One can argue that while these dialogues might appear 
to exhibit empathy, they are not true empathy. However, 
the same could be said for professional therapists or 
counsellors. Arguably, for therapeutic purposes it is 
what it feels like for the patient that matters, so if they 
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feel that a machine exhibits ‘real’ empathy, it is real 
enough. 

22.6.2 Regret 

Have you ever lain awake at night going over and over a 
conversation from the previous day, “if only I’d said ...”? 
Regret feels like a very negative emotion, forcing us to re-
peatedly relive painful incidents, making outcomes that 
were already bad far worse. It is hard to think of this as 
something adaptive, designed to help in some way. How-
ever, it is precisely that, a human facility that can improve 
learning. 

The things you regret most are not simply when things 
go wrong but when you could have done something to 
make it better. The smaller the difference between success 
and failure, the more intense the sense of regret. From 
a cognitive point of view, regret brings a lot of different 
mechanisms together: 

1. Something bad happens (sensation and immedi-
ate assessment) 

2. You bring to mind a possible action that may have 
caused it (memory, imagination and salience) 

3. You work out what might have happened if you’d 
done something different (counterfactual reason-
ing) 

4. If alternative actions would have been better you 
feel worse (emotion) 

5. The emotional state acts as (negative) reinforce-
ment of the action, making to less likely in future 
(low-level stimulus–response learning) 

6. In free moments you remember this and repeat 
steps 2–5 in your mind (more extensive imagina-
tion) 

Note how this involves high-level logical thinking, in-
deed complex counterfactual “what if I hadn’t ...” reason-
ing, but also emotion, imagination and eventually low-
level stimulus–response learning that we share with the 
simplest forms of animal. 

This is a finely tuned mechanism, related to some 
forms of boosting in machine learning. The small things 
that would have made a big difference are precisely 
those that are most important to learn. In such cases 
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regret increases both the strength of learning (stronger 
emotion) and also the (virtual) repetitions of the 
example. Of course it can go wrong, and perhaps by 
understanding this mechanism, we can design therapies 
or self-help guides for psychologically damaging feelings 
of pathological regret. 

Partly in order to consider such issues a simple ma-
chine learning model of regret was built [90] and used 
to learn how to play a simplified version of Black Jack. It 
consisted of a basic stimulus–response learner and a plu-
gin regret module (Figure 22.4). The stimulus–response 
learner chose a move based on the current situation and 
the next cards were played based on the move. This could 
lead to positive or negative reward (win or lose) that rein-
forced or inhibited learning – that is a form of reinforce-
ment learning. The plug-in regret model looked at the sit-
uation after the move, and the “what if ” analysis adjusted 
the reward (emotion) accordingly. Note this emulates as-
pects of steps 1–5, but not step 6, the repetition. 

Running this model led to two insights: 

Learning with fewer examples – Even without the 
additional boosting effect of repetition, adding the 
regret module improved the rate of learning, in 
terms of the number of iterations required, by a 
factor of 5–10 times. For purely virtual learning, 
this may well be outweighed by the additional 
complexity, but where the iterations involve costly, 
time-consuming or risky actions in the real world, 
this is a massive improvement, and certainly a step 
towards single-shot learning. 

Positive regret – Initially the regret module only kicked 
in for negative outcomes, but this looked odd in the 
code. An alternative included ‘regret’ also for pos-
itive outcomes, that is if the outcome was positive, 
but could have been better, the positive reward is re-
duced. This also improved learning, especially when 
the low-level learning employed a ‘winner takes all’ 
approach choosing the best previous outcomes as 
opposed to more probabilistic approaches. 

The first of these partially validates the belief that the 
human mechanism is a form of tuned learning but also 
offers a way to improve machine learning algorithms, es-
pecially when these involve actions in the real world. 

The second is perhaps more surprising. In human 
terms it is a “grass is greener on the other side” effect. 
Imagine you are eating a good meal in a restaurant, and 

then spot someone else with a different meal, maybe 
your meal does not feel quite so good now. At first this 
sounds a rather unpleasant type of human emotion. 
However, on investigating the machine learning 
algorithm it became apparent that the positive regret 
was forcing the algorithm to try alternatives rather than 
settling on the first ‘good enough’ solution. That is, 
positive regret helped to discourage local minima and 
encourage exploration ... maybe you’ll try the other meal 
next time you go to the restaurant. 

22.6.3 Feeling 

So far we have been using emotion and feeling 
interchangeably. However, psychologists often draw a 
distinction between the two, reserving the word feeling 
for the internal subjective state and emotion for the 
physiological state related to it (heart racing, etc.). The 
natural assumption is that the latter is caused by the 
former. However, William James, one of the late 19th-
century pioneers of current ideas of emotion, challenged 
this assumption. He asserted that the opposite was the 
case [145]: the bodily response comes first, for example 
heart racing when you hear a loud bang, which is then 
interpreted by higher levels of cognition, for example as 
fear. 

Modern views are a little more mixed, allowing some 
top-down processes but still close to James’ view. This is 
probably one of the reasons that in child development 
empathy and the ability to talk about and manage one’s 
own emotions develop at around the same age. It is at 
least as difficult to understand oneself as others. 

We have seen how emotions (in the above sense), such 
as regret, may be useful for artificial intelligence. We’ve 
also seen how empathy, understanding the emotions 
and feelings of others, can also be helpful. It therefore 
seems quite possible for an artificial intelligence to both 
have emotions (as a means to drive better behaviour and 
learning) and interpret its own emotions – that is have 
feelings. But, apart from its curiosity value, would this 
be a good thing? 

First, one can imagine applications in research or 
clinical settings following reason (3): ‘to model or 
emulate human emotion’. There are various cognitive 
conditions that make it hard to interpret one’s own 
emotional state, which can be distressing. By modelling 
these we may be able to understand human emotion 
and feeling better and hence produce better clinical 
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FIGURE 22.4 Regret in machine learning. 

FIGURE 22.5 ChatGPT advice about an emotional situation (https://askaichat.app/, 6th May 2024). 

strategies, both generally and maybe even for individual 
therapy. 

Second, one of the reasons humans have feelings as 
well as emotions is that they can help us make better de-
cisions. Imagine that a shop has two entrances and that 
just as you go out a painter drops a large dollop of paint 
on your head. You might feel regret, “if only I’d left by the 
other entrance”. However, by understanding that feeling 
as regret, you can also think “but if I’d left the other way, 
the careless painter might have been there”. Although you 
won’t entirely be able to lose the slight anxiety next time 
you leave the shop by the first entrance, your head will 
tell you that both are still equally good. In a similar way, 
a more reflective AI could both have emotions (where 
they are useful) and also be able to interpret and where 
appropriate overrule them or make more complex deci-
sions based on them; that is have ‘feelings’. 

Of course by ‘feelings’ this does not (necessarily) mean 
pain, distress or joy in the sense that humans, or indeed 

many animals, do. However, this does start to take us 
into more complicated ethical territory, which we ex-
plore more in the next chapter. 

22.7 SUMMARY 
In this chapter we have considered a number of mod-
els of the human mind ranging from production systems 
for problem solving and memory to the role of emotion. 
This has included the importance of attention in effective 
use of cognitive and sensory resources and how dream-
ing can unlearn overactive sub-networks. The example of 
regret showed how models of emotion have the potential 
to improve machine learning. This and other examples 
illustrate how emotion is not a separate aspect of human 
experience, divorced from more rational aspects, but that 
human cognition is a holistic phenomenon incorporat-
ing conscious and unconscious processes, rational and 
emotional reactions and rich imagination. Incorporating 
the full range of human-like cognition in AI has the po-
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tential to create AI that is both more effective and more 
easily relates to people. 

22.1 Illustrate how ACT-R would represent the process 
of learning multiplication. 

22.2 Figure 22.5 shows a ChatGPT session asking 
about an emotional situation. Consider yourself, 
or discuss in a group: 

a. Does this represent emotional understanding? 

b. Might this be useful advice? 

A message to Sally from a friend reads: “I’m really 
sorry to hear that you weren’t invited to the party. It 
must feel really disappointing. Remember that your 
worth is not defined by social events, and I’m here 
for you if you need to talk or do something fun to-
gether.” 

c. Does this suggest the friend is empathetic? 

d. Would your answer change if you were told 
that the friend had asked ChatGPT to generate 
the text?1 

22.3 As a mini-project, create a system with ‘artificial 
imagination’ to suggest possible geometric facts. 
Proceed as follows (but feel free to add your own 
steps too). 

a. Generate sets of four random points on a cir-
cle (the easiest way is to generate four random 
numbers between 0 and 360 and use these as 
angles from the centre), then sort them so that 
they proceed clockwise and call them A, B, C 
and D. 

b. For each set calculate all of the six side lengths 
(using a radius of 1): AB, AC, AD, BC, BC, 
CD; the four angles subtended at the centre 
(O): ∠AOB, ∠BOC, ∠COD, ∠DOA; and the 12 
angles between points: ∠BAC, ∠BAD, ∠CAD,
∠ABC, ... 

1In fact this text was generated by ChatGPT in response to the 
follow-on question, “I’d like to express empathy with Sally; what should 
I say?” 

c. Next look for any near equalities, say if AD 
is nearly the same length as CD or ∠BAC is 
nearly the same angle as ∠ABD. Record these 
in a separate column. Initially use 0.1 as ‘near’ 
in distance and 5 degrees as ‘near’ in angle, 
but you can adjust these to get the best results. 
Note if you use a smaller ‘near’, you will prob-
ably need to generate more examples. 

d. By eye or using a machine learning algorithm, 
look for potential ‘hypotheses’. For example, 
a simple hypothesis would be if every set of 
points has the same near equality. A more 
complex one might be an ‘if-then’ rule such 
as ‘if the length of AB is nearly the same as 
the length CD, then the angles subtended at 
the centres, ∠AOB and ∠COD, are also nearly 
equal’. 

e. Test your hypotheses by creating more 
examples and verifying if the hypothesis is 
true for them all. Note that for ‘if-then’ rules 
use a slightly more strict ‘nearly the same’ on 
the ‘if ’ part of the rule than you used when 
generating the hypothesis. 

f. Why do you think step 22.3c. uses ‘nearly’ 
equal rather than exactly equal, and why is it 
a good idea to use a stricter ‘near’ for the ‘if ’ 
part of the rule? 

g. There are symmetries in geometry, so that 
properties that are true of points ABCD are 
usually also true of rotations: BCDA, CDAB 
and DABC; and also mirror images: DCBA, 
etc. How might you make use of these? 

FURTHER READING 

J. A. Michon and A. Akyurek, editors. SOAR: A cognitive archi-
tecture in perspective. Kluwer, Dordrecht, 1992. 
A collection of papers on SOAR and related research. An 
excellent survey of the area. 

J. R. Anderson. The architecture of cognition. Harvard Univer-
sity Press, Cambridge, MA, 1983. 
The key work on the ACT* architecture. 

J. E. Laird. An analysis and comparison of ACT-R and soar. 
arXiv preprint arXiv:2201.09305, 2022. 

https://alandix.com/glossary/aibook/ACT-R
https://alandix.com/glossary/aibook/ChatGPT
https://alandix.com/glossary/aibook/ChatGPT
https://alandix.com/glossary/aibook/artificial imagination
https://alandix.com/glossary/aibook/artificial imagination
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/SOAR
https://alandix.com/glossary/aibook/ACT*


Models of the Mind – Human-like Computing ■ 355 

An analysis by Laird, the originator of SOAR, examining methods. SEFM 2021 collocated workshops, pages 15-36. 
the common features of and differences between ACT-R Springer, 2022. ISBN:978-3-031-12429-7. 
and SOAR models. This paper describes the regret model that is used in Sec-

tion 22.6.2.A. Dix and G. Kefalidou. Regret from cognition to code. In A. 
Cerone et al., editors, Software engineering and formal 

https://alandix.com/glossary/aibook/SOAR
https://alandix.com/glossary/aibook/ACT-R
https://alandix.com/glossary/aibook/SOAR


CHAP T ER 2 3 

Philosophical, Ethical and Social 
Issues 

23.1 OVERVIEW 
Artificial intelligence is not simply a matter of develop-
ing appropriate technology. It also raises philosophical, 
moral, ethical and social questions that must be 
addressed. In this chapter we highlight some of these. 

We will start by looking at artificial intelligence itself – 
is it indeed possible for machines to be truly intelligent, 
and, if so, what about even more quintessential aspects 
of being human such as creativity and consciousness. 
These fundamental questions themselves raise moral 
issues about the status of AI. However, we then go on 
to consider more current and imminent issues as AI is 
deployed in morally sensitive areas, and then further 
how the very presence of AI is fundamentally changing 
the way society and the economy operate, crucially often 
further concentrating existing power and wealth. 

23.2 THE LIMITS OF AI 
“Can machines think?” is a question that has been de-
bated throughout the lifetime of AI. In fact it is a very 
vague question that begs more questions than it answers. 
However, the question of whether digital computers will 
ever be considered intelligent is an important one, since 
our response to it determines our view of what AI is all 
about. We will consider some of the arguments in the 

ongoing debate as well as the implications of seeking ma-
chine intelligence. But be warned: our intention is not to 
direct your choice, simply to map out some of the possi-
bilities. You will have to consider the evidence and make 
up your own mind! 

23.2.1 Intelligent Machines or Engineering Tools? 

As we have seen, there is a strand of AI that aims to in-
vestigate the nature of intelligence and build intelligent 
machines. In Chapter 1, we saw that within this strand 
there are in fact two camps: 

• strong AI, whose supporters claim that machines 
can possess cognitive states and can think (or will 
be able to at some point in the future) 

• weak AI, whose supporters use computers to test 
theories of intelligence, and so build models of hu-
man intelligence. 

A third view of AI is what might be called the prag-
matic view: it views AI as a discipline which has pro-
vided engineering techniques for solving difficult prob-
lems. Whether these techniques indicate intelligence or 
reflect human cognition is immaterial. 

It is the strong AI viewpoint that is most controversial, 
since it suggests that machines can, or at least will, pos-
sess genuine independent intelligence. Fiction and film 
have taken this notion on board with enthusiasm. But 
how realistic is it, and what implications does it raise? 
The first question we need to consider is: what is meant 
by intelligence? 
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23.2.2 What Is Intelligence? 

Intelligence is very difficult to define. Chambers’ 
dictionary describes it as being “endowed with the 
faculty of reason”, but our intuitive notion of intelligence 
includes more than that. Intelligent agents can plan 
and adapt plans to respond to changes in circumstance 
(or anticipated changes); they can recognise what is 
significant in a situation; they can learn new concepts 
from old; they can interact and learn from their 
environment; they can exercise aesthetic appreciation. 
We might also identify imagination, moral conscience, 
creativity and emotion as characteristics associated 
with intelligence, but while it may not be possible 
to have these without intelligence, it is possible to 
have intelligence without these. A psychopath, for 
example, lacks moral conscience but may be extremely 
intelligent. So intelligence includes some or all of these 
characteristics. 

So where does such a definition leave us? As we have 
seen throughout this book, computers are being given 
the ability to plan, to adapt, to learn, to make decisions, 
to reason, albeit in a limited form as yet. So perhaps this 
suggests that machines that simulate human intelligence 
are ultimately very likely? Many would argue that this is 
not the case for one crucial reason: machines do not and 
cannot share the environment in which we live. Weizen-
baum, one of the pioneers of AI and the creator of ELIZA, 
claimed that the notion that a machine can be modelled 
on a human is 

artificial intelligence’s perverse grand fantasy. 
[300] 

He argues that an organism is defined by the problems 
it faces. Computers will never face the same problems 
as humans and therefore cannot simulate human intel-
ligence. Dreyfus [93] agrees, arguing that computers do 
not have bodies and share the human context. They are 
digital rather than analogue and are therefore fundamen-
tally different from humans. They cannot therefore sim-
ulate human intelligence. Others are not so dismissive. 
Boden [29] believes that some aspects of intelligence may 
be simulated, but not necessarily all: 

The philosophical arguments most commonly 
directed against artificial intelligence [such as 
Dreyfus’] are unconvincing. 

However, she goes on: 

the issues involved are too obscure to allow 
one …to insist that all aspects of human 
thought could in principle be simulated by 
computational means …Still less should one 
assume that complete simulation is possible in 
practice. 

23.2.3 The Computational Argument vs. Searle’s 
Chinese Room Argument 

The fundamental assumption underlying strong AI is 
that human intelligence is computational: we are simply 
information processing machines and our brain runs 
“programs”. The claim, therefore, is that with the right 
programs, computers can possess cognitive states and 
be said to understand and be intelligent. Even if the 
hardware on which these programs run (the digital 
computer) differs from that used by the human (the 
brain), the computer will reflect human cognition. 
We can use an analogy between natural and artificial 
flight. In nature, birds have wings made of bone, skin, 
muscle and feathers, which they flap in order to fly. 
Early attempts at artificial flight tried to imitate this and 
failed miserably (humans and birds are constructed very 
differently). However, by understanding the underlying 
principles of flight and the laws of thermodynamics, 
essentially by using a model of flying, we can build 
machines to fly. They look different from the natural 
thing and use different materials but reflect the same 
principles. 

Searle [250] criticised the computational view by argu-
ing that a human could run a program and not possess 
understanding (therefore suggesting that intelligence is 
more than this). He also opposes the behavioural model 
of the Turing test, since the appearance of intelligence 
does not indicate actual intelligence. As a thought ex-
periment, he posed the Chinese Room argument which 
(paraphrased) is as follows: 

Imagine a prisoner locked in a room. He 
understands English but not Chinese. In the 
room he has pieces of Chinese writing and 
English rules to say how to manipulate these. 
An interrogator passes more Chinese writing 
into the room. The rules say how to give back 
Chinese symbols in response. Unknown to 
the prisoner, the writing is a script which the 
interrogator is asking about. The prisoner uses 
the rules to answer the questions. 
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Does the prisoner understand the script? Searle 
argues that he doesn’t: the prisoner has only syntax, 
not semantics. He has no idea what the scripts are 
about. In order to understand he needs to know what 
the symbols mean in the context of the real world. 
He compares this scenario with another where the 
prisoner is given scripts and asked questions in his own 
language. In this case the prisoner does understand 
since he not only knows how to answer the questions but 
also what the questions and answers mean. Searle calls 
this intentionality. Similarly, Searle argues, computers 
do not have intentionality and therefore cannot be 
intelligent. 

A counter argument to Searle is the Systems Response: 
the prisoner does not understand Chinese but is part of 
a larger system that does (the whole room). The pris-
oner corresponds to only one level of a full computa-
tional system. The functional relationships between the 
entities make an intelligent system. Searle argued against 
this by dismissing the notion of a “system”: the system 
is just the prisoner, the symbols, the instructions, and 
if the prisoner is not demonstrating intelligence, then 
adding pieces of paper cannot change that. However, this 
assumes that a system is a physical thing, the combina-
tion of its physical constituents, whereas the Systems Re-
sponse argues that the system is made up of the com-
bined functions and interactions of the constituents, just 
as being human is more than the sum of the cells com-
prising our bodies. 

The arguments about machine intelligence will 
continue. Indeed, we have only scratched the surface of 
the philosophy of intelligence and artificial intelligence: 
interested readers are directed to the recommended 
reading list at the end of the chapter. However, 
machine intelligence is not simply a philosophical 
question. It raises important ethical and legal ques-
tions that will need to be addressed as it becomes a 
reality. 

23.3 CREATIVITY 
Creativity appears to be a quintessentially human 
trait, perhaps the last bastion against the onslaught of 
AI. However, there has been work on various forms 
of creative AI for many years. Some of the earliest 
work was focused on poetry, taking models of simple 
grammatical and poetic forms and using stochastic 
methods to generate novel stanzas. Early work also 

included painting or drawing robots (or at least robotic 
arms) that looked at a face or scene and used a variety 
of vision techniques to transform the image into one 
that could be painted stroke by stroke. More recently 
generative AI and large-language models have been used 
to create apparently original images, music or text in the 
style of famous artists, and even converse in rhyming 
couplets. 

Critics would say that the latter technologies are 
merely copying or reproducing the collected work of 
others. However, if this is so, the results often seem to 
be novel, at least in terms of the ways in which they 
combine these existing elements. Furthermore, human 
creative art is based on thousands of years of culture 
that shapes our ideas of beauty and influences our own 
attempts to be truly original. So, if learning from the 
work of others means computers are not creative, then 
neither are we. 

23.3.1 The Creative Process 

Imagine a sealed room, rather like Searle’s Chinese 
Room, with only a letter-box on its door. Unlike 
Searle’s room, no text is fed into the sealed room, but 
occasionally a small envelope is posted out [84]. Inside 
the envelope is a short poem or aphorism of amazing 
beauty or profundity. “There must be a really creative 
person inside” everyone thinks. However, if you peek 
inside the room instead you find row upon row upon 
row of desks, and at each desk a chimpanzee typing. Back 
and forth along the rows a small team of humans walk 
the aisles. They look at each sheet of paper as they pass. 
Sometimes it starts well, only to descend into gibberish 
“To be or not bugle ppdf ”. However, occasionally, by 
pure chance, the words have real merit. Quickly, the 
walker pulls out the sheet of paper, folds it neatly, 
places it in an envelope and posts it out through the 
door. 

Where is the creativity in this? 
The possible responses are parallels to those for intel-

ligence in the Chinese room. One might assert that there 
is no creativity: the chimpanzees merely randomly type, 
the walkers simply act as critics, judging the text pro-
duced, but not being original themselves – although the 
outputs of the room might appear creative, in fact it is an 
illusion. However, one could counter-argue that even if 
there is no creativity in the individual parts of the room, 
the room as a whole, as a system, is creative. 
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FIGURE 23.1 Generate and filter: initial ideas are iteratively 
evaluated, filtered, recombined and modified until the final 
problem solution or work of art is selected. 

23.3.2 Generate and Filter 

In fact much of human creativity is not purely individ-
ual and has elements of this system-like behaviour. In 
the early 20th century various artists and writers delib-
erately used random methods as part of their practice, 
and even where this is not the final outcome, it may be 
used for inspiration. The importance of the wider system 
is also evident in more classical work. Find a copy of the 
complete works of Wordsworth, one of the great poets in 
the English language. Depending on the edition, it will 
run to about a thousand pages and yet only a handful of 
the poems are commonly known. Wordsworth will have 
carefully edited and curated his poems before publishing 
them, so there will have been some selection, and yet af-
ter this, there is a potentially more extreme process of se-
lection by critics and society to give us the ‘Wordsworth’ 
that we know today. 

A simple model of creativity is generate and filter – 
an interplay of novel ideas being created and then only 
some being taken forward for further work, perhaps be-
ing modified or recombined (see Figure 23.1). This is 
rather like a human equivalent of the generate and test 
search in Chapter 4. Depending on the art form and situ-
ation there may be more ‘creativity’ in either part of this. 
Indeed in photography one could argue that the art is 
90% selection. 

As is evident, there are different roles in the human 
creative process, sometimes all performed by the same 
person, but often by a formal or informal team, indeed 
great Renaissance artists such as Michelangelo will have 
had a Bottega, or workshop, containing a team of appren-
tices and assistants. 

In addition, much of human art is based on culture and 
recombination. When we realise this, it is not surprising 
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that large-language models can produce apparently cre-
ative novel works. Most often this is part of a collabora-
tive process, rather like the Renaissance Bottega, where 
the human user guides the model and then chooses what 
is an acceptable outcome. In this model, the AI acts like 
a better version of the typing chimpanzee: able to write 
grammatically, and to some extent semantically, sensible 
text, from which the humans can select the best passages. 

23.3.3 The Critical Edge 

What is perhaps less clear is the extent to which AI can 
take the role of the critic. 

The generate-and-filter view of creativity parallels one 
of the definitions of a creative idea: that it should pos-
sess both novelty and quality. The generation processes 
ensure novelty (with more or less initial quality) and the 
filtering process ensures final quality. Quality here can 
mean utility for more technical or scientific creativity, or 
have a more aesthetic dimension in art and design. For 
the former, it is easy to see how AI can perform the role 
of assessing technical adequacy or scientific correctness. 
Indeed AI is being actively used to generate new phar-
maceutical compounds, mathematical proofs and even 
whole building blueprints. The latter, filtering and assess-
ing aesthetic quality, seems more challenging; however, 
generative AI models based on large datasets are in some 
way absorbing human ideas of what is good text, music 
or images, and adversarial learning includes the ability to 
train what are effectively critics. 

23.3.4 Impact on Creative Professionals 

Of course, this is all based on the way that large models 
use corpora of existing human creative output. There are 
concerns that the outputs of this infringe the intellectual 
property of those whose work was used and furthermore 
may put large numbers of creative professionals out of 
work. For example, concern about the growing use of 
AI in studios led to the 2023 Hollywood screenwriters 
strike. Arguably, AI is no different from a human writer 
who has studied the work of others and is part of a cul-
tural milieu. However, AI models are based on far greater 
volumes of work than a human could ever digest, so do 
fall into a different category. 

Given there are ongoing experiments of AI agents in-
teracting with one another in virtual worlds, there is the 
possibility that the agents may develop their own distinct 
aesthetic, just as has happened in Bohemian circles in 
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the past. Such an alien aesthetic may initially be hard for 
humans to understand [84], just as Eastern and Western 
musical and artistic traditions took time to fully appreci-
ate each other. 

In summary, it is clear that AI is already being used 
extensively within creative practice and will undoubtedly 
continue to do so. This will inevitably mean that some 
jobs previously regarded as ‘creative’ are automated, but 
hopefully AI might also enhance aspects of the creative 
professions. 

23.4 CONSCIOUSNESS 
If creativity is complex, then AI consciousness is doubly 
so. Philosophers and neuroscientists debate endlessly, in 
part as there are so many ways we can understand con-
sciousness. 

At the simplest, there is consciousness in the sense of 
being awake rather than asleep or in a coma. However, 
our experiences while dreaming are a form of conscious-
ness and if simply being awake is conscious, then surely 
when the power is on and a computer is responding, it 
is ‘conscious’ to some degree. However, we usually mean 
something more than simply being awake. 

23.4.1 Defining Consciousness 

Most definitions are about deeper forms of conscious-
ness such as one’s stream of thought or knowledge of one-
self. For each, we can ask why it arises, that is what pur-
pose it has for human survival; and how it arises within 
the human brain. These are also related to the question of 
when it arose in the development of the human species, 
or indeed other animals, and also in an individual hu-
man. The answer to each, of course, differs on the kind 
of consciousness being discussed. 

The first question, why, is important to assess whether 
it is desirable for AI to have consciousness (of a particu-
lar kind). For example, an AI system that has an explicit 
model of its reasoning process that led to a decision may 
be able to critique and refine its behaviour – one of the 
advantages we have in possessing that ability. Also, as we 
saw in Chapter 8, one of the key advances in MapReduce 
over the existing programming paradigms it built upon is 
the way that it is able to respond to failures in individual 
computers in a data centre – that is a form of model of 
its own ‘body’. 

The second question, how, can aid in the design of con-
scious AI, just as studying human neurones led to artifi-

cial neural networks. Neuroscientists attempt to discover 
neural correlates of consciousness, particular patterns of 
brain activity that arise when people exhibit different lev-
els or kinds of activity. However, if a region of the brain 
is active when we are conscious, that may just be a re-
sult of consciousness, rather than its cause or origin. In-
deed some theories of consciousness focus on global syn-
chronisation of oscillations across the brain [100] or, in 
Global Workspace Theory, as a shifting focus of attention 
on different aspects [11]. 

The when question is closely associated with the 
first, as one assumes there must have been some sort of 
advantage for consciousness to emerge through natural 
selection. This initial reason however does not need to be 
the only reason it is useful today. Indeed, there are some 
who regard consciousness as purely an epiphenomenon, 
something that arose almost by accident due to more 
mundane processes. However, even if the initial 
reason for the development of a particular form of 
consciousness is not the most important now, it may 
suggest paths for artificial development. For example, as 
noted in Chapter 22, theory of mind, the ability to ‘put 
oneself in another’s shoes’ may have developed in order 
to aid social relations and then indirectly gave rise to the 
ability to understand one’s own intentions [82]. If this 
is the case, or even plausibly the case, then this might 
suggest focusing on artificial empathy may be a better 
route to self-aware AI than addressing the problem head 
on. 

23.4.2 Dualism and Materialism 

Descartes considered so-called res cogitans, the material 
that forms mind, as distinct from res extensa, the physical 
body [72]. This dualism is almost universally rejected by 
modern scientists and philosophers, who instead focus 
on physicalism or materialism, the tenet that everything 
can be explained by physical processes [266]. 

Following this, many explanations of human con-
sciousness focus on the behaviour of neurones in the 
brain as a form of information processing engine, and 
then it becomes almost inevitable that sufficiently com-
plex information processing machines will themselves, 
at some point, become conscious. The human brain 
has about 100 billion neurones and current artificial 
networks are already around this size. 

There is resistance to this idea, arguing that while fully 
material, there are special aspects of human (or animal) 

https://alandix.com/glossary/aibook/consciousness
https://alandix.com/glossary/aibook/MapReduce
https://alandix.com/glossary/aibook/neurones
https://alandix.com/glossary/aibook/artificial neural networks
https://alandix.com/glossary/aibook/artificial neural networks
https://alandix.com/glossary/aibook/neural correlates of consciousness
https://alandix.com/glossary/aibook/global synchronisation of oscillations
https://alandix.com/glossary/aibook/global synchronisation of oscillations
https://alandix.com/glossary/aibook/Global Workspace Theory
https://alandix.com/glossary/aibook/natural selection
https://alandix.com/glossary/aibook/natural selection
https://alandix.com/glossary/aibook/epiphenomenon
https://alandix.com/glossary/aibook/theory of mind
https://alandix.com/glossary/aibook/empathy
https://alandix.com/glossary/aibook/Descartes
https://alandix.com/glossary/aibook/res cogitans
https://alandix.com/glossary/aibook/res extensa
https://alandix.com/glossary/aibook/dualism
https://alandix.com/glossary/aibook/physicalism
https://alandix.com/glossary/aibook/materialism
https://alandix.com/glossary/aibook/neurones
https://alandix.com/glossary/aibook/information processing


life that are necessary for consciousness (or indeed intel-
ligence) beyond this purely information processing ap-
proach. Searle’s Chinese room is just such an argument, 
suggesting that there needs to be some form of inner 
meaning ... or (in philosophical terms) intentionality be-
yond mere information. 

Some look to the physical architecture of the brain, 
in particular glial cells, which outnumber neurones. For 
many years these were seen as having only a supporting 
role for neurones rather than being engaged in mental 
activity themselves, but more recent advances have raised 
the potential that they may have a more active role. In 
some ways this would merely raise the complexity and 
number of elements that need to be considered. More 
controversially, Penrose has argued that simple informa-
tion processing cannot explain some aspects of human 
intelligence and suggested that quantum effects may be 
critical [220]; the nanoscale microtubules that form the 
scaffolding within cells are suggested as a potential locus 
for this [221]. 

Many explanations of consciousness focus on the 
body, for example Damasio locates the origins of 
consciousness in the need for models of the body, 
damage and function in order to maintain life [65]. This 
might suggest that only embodied agents such as robots 
could develop any form of consciousness. However, 
one could also argue that it is the ability to act on the 
physical and digital worlds that is more critical. We’ve 
already seen that algorithms have models of their own 
state in this sense. 

23.4.3 The Hard Problem of Consciousness 

The various forms of consciousness we have considered, 
the modelling of one’s physical body, intentions or 
train of thought, differ in terms of complexity, but 
it does not feel impossible to imagine sufficiently 
complex AI systems emulating them at some point. 
However, there is something that is in many ways 
simpler, and yet deeper – the bare awareness of being. 
Chalmers calls this the hard problem of consciousness 
[43]. 

Philosophers talk about qualia, for example the phe-
nomenological experience of seeing redness as opposed 
to the wavelengths that comprise red, or the signals gen-
erated when they strike the sensory cells at the back of 
your eye. These are themselves complex; your experience 
of redness may be different from mine. The hard problem 
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is not about what these are like but that there is such an 
experience that we can imagine. 

One mental tool that is often used is to think about 
‘Zombie Alice’, who can move, think and act, but has no 
inner consciousness (or alternatively true intelligence). 
It is argued that a machine will always be like this. Of 
course if the zombie behaves and acts as if it is conscious, 
then perhaps that is consciousness? 

To some extent these are purely philosophical debates, 
but we are coming to the point where they have potential 
ethical consequences. In 2022 a Google engineer, Blake 
Lemoine, was suspended and then fired because he had 
claimed that the Google chatbot LaMDA was sentient 
[179]. Most AI scientists did not agree with Lemoine, 
but the issue is critical at a practical level – if an AI is 
sentient, then is it ethical to turn it off, or manipulate its 
algorithms? 

23.5 MORALITY OF THE ARTIFICIAL 
As AI is used more it inevitably influences areas where 
complex moral choices are made, from healthcare to 
law. This is true of every technology, but AI is often also 
regarded as offering advice to human decision makers 
or even autonomously making critical life-or-death 
decisions. 

23.5.1 Morally Neutral 

One of the long-standing arguments about technology, 
and indeed science, is whether it is morally neutral. One 
argument is that technology/science in itself is neither 
good nor bad, merely the use to which it is put, or as those 
who oppose gun control would say, “guns don’t kill, peo-
ple do”. A common counter to this is that where the po-
tential harmful impacts are clear, we have responsibility. 
To take another gun analogy, if you fire a gun in the gen-
eral direction of a person, its trajectory is predictable and 
hence you may be imprisoned for the harm it causes. 

Of course, the extreme examples are easy, but real sit-
uations are often more complicated. 

One of the success stories of AI has been the way 
it is being used to understand and generate potential 
new drugs to address some of the most critical health 
problems on our planet, for example AlphaFold’s 
ability to predict folding structures of proteins [30] 
or the discovery of the new drug halicin using neural 
networks trained to predict antibacterial effects 
[167, 182]. 
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However, this has its own dark side. In preparation 
for a conference on potential implications of AI on the 
Chemical/Biological Weapons Convention, researchers 
using similar techniques to those used to discover halicin 
turned their modelling around to see what would happen 
if it deliberately attempted to create toxic compounds. 
Their thought experiment shocked them as within six 
hours their system had independently rediscovered VX 
nerve agent as well as several compounds that were po-
tentially more toxic still [286]. 

The authors did not use this as an argument to ban 
the use of AlphaFold, but they did use it to challenge the 
scientific community to use this as a ‘wake-up call’ to 
establish ways to manage the use of open AI models as 
well as better ethical training for scientists. 

Researchers creating new algorithms are further from 
the point of application than those developing final ap-
plications, but we all need to think about the potential 
implications of the algorithms and systems we create. 
The UK’s research funding agencies created a framework, 
AREA, to help researchers think about responsible inno-
vation (see Figure 23.2). 

23.5.2 Who Is Responsible? 

The first and, perhaps, most crucial issue raised by 
the possibility of intelligent, independent machines 
is responsibility. Who is responsible, both ethically 
and legally, for their actions? Can a machine be held 
accountable? 

Even when the first edition of this book was written, 
nearly 30 years ago, expert systems were already being 
used to decide where resources should be allocated in a 
UK hospital. This is now common; an algorithm predicts 
which patients have most chance of survival, aiding doc-
tors in deciding where treatment should be given. More 
recently US judges have been using the COMPAS system 
to predict likelihood of recidivism, whether a prisoner is 
likely to re-offend. This is then used, controversially, by 
the judges as part of their assessment as to whether to 
grant parole [7, 143]. 

In both these cases they are human-in-the-loop sys-
tems, that is the ultimate decision is made by a human; 
the machine does not literally decide who should live 
or die, who should be jailed or go free. However, these 
systems do influence human decision making, especially 
given automation bias, the tendency for people to over-
trust machines. In the case of a wrong decision by an ex-

pert system, is the system responsible or the knowledge 
engineer or the user? And if the system, how can a ma-
chine be made accountable? Normal legal methods are 
not valid here. It is not possible to sue a machine! 

These issues are being actively discussed in theory by 
philosophers of ethics and in practice as part of policy 
formation. However, for many purposes it is the legal and 
insurance professions which will determine the practical 
assignment of responsibility. 

We discussed empathy in Chapter 22, but principally 
thinking about human–AI dialogues and the way the AI 
may or may not appear to be empathetic to the human. 
However, taking others’ feelings into account is not just 
important for therapy or conversation. Humans feel and 
so these feelings matter for many types of decisions. 

Asimov’s First Law of Robotics says “A robot may not 
injure a human being or, through inaction, allow a hu-
man being to come to harm” [10]. When first stated in the 
1960s this was science fiction, but these are precisely the 
kinds of rules being built into autonomous vehicles. For 
preventing serious road accidents, it is primarily physi-
cal harm that is to be avoided. However, even for road 
use, emotion matters. Imagine if an autonomous vehicle 
passes very close to a pedestrian, or appears to ‘near miss’ 
another car; this may be ‘safe’ defined purely physically, 
but the humans involved may feel stressed, or anxious. 

For many purposes, the decision of a machine may 
be acceptable because it is impersonal and therefore 
objective. However, emotional empathy tempers 
decisions that are otherwise too severe. An empathetic 
autonomous vehicle may be polite as well as safe. 

23.5.3 Life or Death Decisions 

Moral philosophers love to create thought experiments 
as ways to probe the extreme ethical implications of ap-
parently benign rules, or to see how people weigh up dif-
ficult choices. One of these that has become important 
within AI is the Trolley Problem, particularly in relation 
to autonomous vehicles. (Note: A small urban train is 
known as a trolley in some parts of the world.) 

Imagine a runaway train is about to hit a group 
of people, often five. Fortunately, you are standing 
right next to a lever which can redirect the train 
onto a side track saving their lives. Unfortunately 
there is a single person standing on the side track 
(Figure 23.3). What do you do, sacrifice one life to save 
five? 
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FIGURE 23.2 Anticipate, Reflect, Engage, Act – The UKRI AREA Framework for Responsible Innovation [282]. 

FIGURE 23.3 Trolley problem: do you sacrifice one life to save five? (Image: McGeddon Vector: Zapyon – This SVG diagram 
includes elements from this icon: CC-BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=67107784). 

There are variants to this. You can play with the 
numbers: would it make a difference if 50, 500 or 5 
million lives were at stake? Or with the people: maybe 
a healthy young child on one track and a terminally ill 
person in a coma on the other. More problematic cases 
include pushing someone onto a track to stop the train 
– few people say they would do this, even if they would 
shift the train down the side track. It is clearly not simply 
about numbers, but about the kinds of action we are 
doing. 

These situations do occur. During the Second World 
War British intelligence learnt that there was to be a huge 
bombing raid on Coventry. However, to raise the alarm 
would have compromised the source of the intelligence 
and the future course of the war. The British government 
chose not to act resulting in many avoidable deaths in the 

city; a decision which has caused controversy ever since, 
but is also generally understood in the light of the times. 

Happily, we are rarely faced with such dilemmas. 
Partly because they don’t happen very often except in 
the movies or in wartime, but also when a real situation 
arises of this kind, those involved rarely have time to 
make a careful weighing up of the options. Imagine a car 
is driving down a road when a child runs out in front; 
the driver instinctively swerves and then hits a bus stop 
injuring and killing many of these waiting there. No one 
would blame the driver for this, even though it would 
probably haunt them ever after. The decision is taken in 
the spur of the moment, not coldly deciding who lives 
and who dies. 

Now imagine you are programming the guidance sys-
tem for an autonomous car. It has many sensors facing 
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in all directions and a fast processor, so it has near per-
fect knowledge of the consequences of every choice. We 
clearly build in rules either explicitly or through train-
ing examples so that it will take evasive action to avoid 
hitting anyone when this is possible. However, there will 
be times when the speed of the vehicle and the options 
available mean that someone is going to be hit ... how do 
we program the system to make the choice of who will 
die? 

23.5.4 The Special Ethics of AI 

The ethical conundrum of the trolley problem is not new, 
the difference is that AI means we have to explicitly de-
cide, ahead of time, what rule it is to follow. 

These choices will of course have legal implications in 
the case that there are fatalities or injuries. Even if there 
is no single rule operating, it will have been possible to 
run simulations and see the impact of rules, so neither 
companies supplying such vehicles nor those using them 
will have the defence of ignorance. Countries will almost 
certainly develop different safety guidelines and laws so 
that AI software may have to change its rules as vehicles 
cross borders ... meaning different trolley problem deci-
sions in different jurisdictions. 

Finally, this interacts with other issues, not least the 
potential for unintended bias in algorithms. Imagine it 
is a winter’s evening and a patch of fog suddenly blows 
across the road reducing visibility, the autonomous vehi-
cle has already started to slow, but too late detects two po-
tential pedestrians ahead. If it keeps on driving straight 
ahead it will strike both of them, but by swerving one 
way or other it can hit just one. The vision system is not 
certain of the detection, but gives the person on the left 
90% certainty, but the more indistinct possible person 
on the right only 20% certainty. It would make perfect 
sense for the car to swerve to the right as it is less likely 
to actually be a person. However, we also know that the 
accuracy of image recognition systems often depends on 
skin colour. Is the system’s decision potentially racially 
biased? 

23.6 SOCIETY AND WORK 
The ethical problems above are principally about individ-
ual decisions and the way AI might affect or even make 
them. However, the very presence of technology has a 
broader and more diffuse effect across society and the 
economy. 

The latter, as it is less immediate, can be harder to 
understand; however, it is perhaps easier to see when 
we think about an older technology, such as cars. The 
internal combustion engine reshaped cities and nations 
around roads, with shops and other services often 
becoming more distant from people – car-trip distance 
rather than walking distance. Even where car ownership 
is widespread, access is not universal, disadvantaging 
those who are without cars or who rely on others 
in their household; typically those with existing 
disadvantages. 

Digital technology in general has had a similar effect, 
with many government services increasingly accessed 
via the web and cheaper online deals for travel. Those 
without access to the latest technology, or without 
sufficient digital skills, are left behind. Furthermore, in 
the UK and other countries, the increasingly cashless 
society has meant fewer physical bank branches and 
ATMs, so harder and more expensive access for those 
who are still reliant on cash [281, 268], predominantly 
the old and poor; this was a particular problem during 
the Covid pandemic [131]. 

As we have seen, AI is already having a dramatic ef-
fect on the creative industry and starting to have a trans-
formative impact across many aspects of society – some 
good but others more problematic. 

23.6.1 Humanising AI or Dehumanising People 

There have been many debates on the impact of com-
puter technology in general on society and whether in-
creasing computerisation will have a dehumanising ef-
fect. These issues are magnified when artificial intelli-
gence is considered. Expert systems have been proposed 
for many applications, including medicine, counselling 
and psychotherapy. 

Such applications raise strong objections from many 
sides on the grounds that they dehumanise the people 
who are subjected to them. Weizenbaum, who created 
ELIZA, believed that it was obscene to use artificial intel-
ligence in clinical situations. Yet it is possible that some 
prefer the impersonal anonymity of dealing with a ma-
chine. 

Related to this is the implication of loss of human– 
human contact. As computers are able to perform more 
and more of the tasks currently performed by people, 
there will be less need for human–human contact. This 
shift from reliance on other people to reliance on ma-
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chines may cause breakdown in social structures and so-
cial responsibility. The 1974 prediction that 

it may be possible for intelligent machines of 
the future to supply not only intellectual stim-
ulation or instruction, but also domestic and 
health care, social conversation, entertainment, 
companionship, and even physical gratification 
[103] 

now appears closer and is still as likely to inspire horror 
as excitement in many. 

The dehumanising potential of artificial intelligence 
has another aspect: if it is true that we can create intelli-
gent life, then life may cease to have the same value. If ar-
tificial intelligence is possible in machines, then humans 
are reduced to little more than machines themselves. The 
implication of this may change our view of ourselves and 
those around us. 

Artificial intelligence has the potential to empower 
humans through enhanced learning and performance, 
and through freeing us from mundane and dangerous 
tasks. It may provide critical insights into how we 
ourselves operate. But if this potential is to be realised 
and accepted, the social and ethical aspects as well as the 
technical must be addressed. 

23.6.2 Top-down: Algorithms Grading Students 

In the summer of 2020, in the midst of the Covid pan-
demic, UK schools were shut and exams cancelled. In the 
absence of formal examinations, the government asked 
the qualifications agency to devise a means to create a 
grading for pupils to be used by universities and employ-
ers. 

The available information included teachers’ assess-
ments of their pupils’ performance, any previously 
marked coursework and also historic information on 
pupil attainment in different schools. It was known that 
teachers’ assessment of their own pupils varied sub-
stantially between schools and different demographics, 
and furthermore tended to be slightly generous. If used 
on their own, they would introduce social, ethnic and 
gender bias and furthermore unfairness between years 
[161]. The algorithm needed to retain a pass level similar 
to previous years and also correct bias. 

When the results were released, they caused contro-
versy, not least because they appeared to introduce addi-
tional bias of their own [97]. After intense media cover-
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age and large protests by school children outside Parlia-
ment, the algorithmic results were abandoned in favour 
of the teachers’ assessments leading to the highest grades 
and largest university intake ever. 

This story reminds us that every algorithm is designed 
and deployed within a wider social, political and organi-
sational context. From this single story we can see a num-
ber of general lessons that apply broadly [60]: 

Trust – It was never clear in the end whether the algo-
rithm actually fulfilled its purposes to maintain fair-
ness as the actual teacher grades were never scru-
tinised in the same way. However, irrespective of 
whether an algorithm does its job, it needs to be 
trusted, it needs to be both right and seen to be 
right. 

Diverse stakeholders – The qualifications agency did 
consult widely before producing the algorithm, but 
ultimately it was written to a specification given 
by government. The protests came from pupils 
and media, at which point government distanced 
itself from the decision. There are often diverse and 
potentially conflicting views and needs. 

Individuals vs. aggregate – The requirements were 
about ensuring that on average, the grades awarded 
were fair between years and between social, ethnic 
and gender differences. There was debate about 
whether this was achieved, but the principal 
opposition was driven by specific cases that 
appeared unfair. 

Transparency – The algorithm was largely using tradi-
tional statistics, which meant critics could scruti-
nise its inner workings. This might not have been 
as easy with a machine learning algorithm, empha-
sising the need for explainable AI (Chap. 21). 

Unreasonable expectations – There was clearly a belief 
that the algorithm could in some way create for 
each person a reasonable estimate of the exam 
grade the individual would have received in a 
written in-person exam. Given the lack of available 
information, this was always an impossible 
expectation. 

Although this was a headline grabbing national issue, 
you will see examples in many kinds of AI system de-
ployment, for example stakeholder conflicts between the 
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system and workers in gig-economy platforms, or issues 
of trust in acceptance of autonomous vehicles. 

You may be able to focus inwards on the algorithms 
themselves for periods, but in professional practice, you 
will also have to lift your eyes and take into account the 
complex environment in which the final system will be 
placed, and also the multiple pressures that may exist 
during the specification and design process itself. 

23.6.3 Bottom-up: When AI Ruled France 

In late 2018 mass protests erupted across France, which 
became known as the “mouvement des gilets jaunes” 
(yellow vest protests) sparked by recent fuel price rises, 
but also capturing simmering resentment on many 
issues. In response to this, in 2019, President Macron 
instigated the “Great National Debate”, a series of 
public meetings across the country backed up by a web 
platform that gathered more than 300,000 responses 
expressing citizen views. This was far too many to 
process manually and so the data was processed by a 
company using natural language processing techniques 
to extract key themes and issues [203]. These were then 
critical in determining French policy. 

While the ‘AI ruled France’ in this section heading has 
an element of hyperbole, certainly it was instrumental in 
shaping the course of the country. Given the major effect 
on the nation, this is not a small role for AI and raises key 
issues: 

who is represented – As the majority of input to this 
process came from a web forum, is it representative 
of society as a whole? Presumably there will have 
been a bias towards younger and more educated 
groups. This is not a specific AI issue as social 
media means we are seeing the world through the 
eyes of ‘generation Twitter’. It is easy when seeing 
international news to forget those who are older, 
more rural or from lower socio-economic groups 
who have less access to digital media. At least 
when we see a social-media post we have some 
model of who we are reading and who may not be 
represented. The use of AI hides the underlying 
media and hence makes it harder to visualise who, 
and who is not, represented. This is of course 
equally true of the large language models such as 
GPT-4 that are taught on material produced in 
large by the more advantaged portion of the world’s 
population. 

language – One would hope that those in French 
government would have had some awareness of the 
demographics of respondents. However, even when 
people did respond, were they all heard equally? 
More educated respondents and first-language 
French speakers are perhaps more likely to have 
used more formally correct phrasing and more 
succinct language which will be easy to process 
using NLP techniques. It is possible that those with 
broken language, or only able to express complex 
thoughts in more round-about ways, will have been 
missed in the summarisation process. 

choice of algorithms – The above effect may be ame-
liorated or intensified by the choice of algorithm. 
A simple word-matching algorithm such as used in 
word clouds would be most likely to focus on a sin-
gle word or pair of words that capture a topic. Tools 
that dig more into the meaning of text might be able 
to capture less precise language and hence be less 
biased towards more highly educated respondents. 

cherry picking – Not only will different algorithms give 
different results, but each algorithm will have vari-
ous parameters, such as the sizes or number of lay-
ers in a neural network, and often have stochastic 
aspects to their learning so that many different re-
sults are possible from the same underlying data. 
Who chooses which of these is used? It may be sim-
ply luck, but if anyone in the process has a view they 
wish to advance, it would be easy to choose the tun-
ing parameters that give the most convenient an-
swers and pass these on quite truthfully as a result 
of (a particular run of) the AI algorithm. 

In some way this is merely a next step on from the use 
of opinion polls and other statistical data in politics and 
so inherits existing issues including the choice of ques-
tions asked, which is known to radically affect the an-
swers given. However, the fact that this is mediated by 
AI adds the danger that those reading the result assume 
a level of factuality because it comes from a computer; 
that is automation bias [63]. 

The French use of AI was a one-way process from 
data gathering to summarised themes. However, it is 
also known that the presence of opinion polls changes 
voting habits; we are all influenced by other people’s 
views. If the results of public discussion are presented 
as derived by AI, the automation bias may mean we 
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assume that the results are factual, hence not affected by 
political pressures and bias; even though it is clear from 
the above that this may not be the case. 

23.6.4 AI and Work 

Every few months a new report predicts that whole types 
of profession from taxi drivers to journalists will be ren-
dered obsolete by AI. 

Of course digital technology has eradicated many 
jobs, for example the ‘human computers’ who performed 
scientific calculations at NASA and elsewhere [99], the 
disappearance of the typing pool or factories peopled 
only by robots. Further back, the Spinning Jenny 
replaced handspinners – technology of all kinds brings 
change. 

One reaction has often been resistance. In the mid-
1980s newspapers moved from ‘hot metal’ printing to 
computerised printing where the laborious hand-layout 
of type was replaced by journalists keying in their own 
copy. In the UK this led to an acrimonious dispute and 
the loss of thousands of jobs as the Sunday Times moved 
production to a new automated press in Wapping [215]. 
This dispute is reminiscent of the Luddites in the 19th 
century, who are now synonymous with technophobia 
and vain resistance to inevitable change. 

Another reaction is technological determinism, a form 
of fatalism, that says technological change is inevitable 
and unstoppable so that, whether or not it is good, we 
simply have to learn to live with it. However, this is per-
haps even less positive in its outlook than active resis-
tance. 

However, there are countervailing arguments. 
Technological optimists would say that the jobs that are 
lost are mostly those that are boring, dangerous or dirty. 
This might mean that humanity’s future is one of leisure 
served by the machines, as E.M. Forster [105] foresaw 
in “The Machine Stops” (albeit with not totally positive 
results). Alternatively it may mean new and better jobs, 
possibly even more jobs. Indeed there are statistics that 
show that companies that embrace new technology, not 
least Amazon, grow their labour force ... although this is 
largely because they grow and displace other companies, 
the job losses elsewhere are not usually accounted. 

Where do you put yourself in this spectrum of 
responses to AI: resistance, fatalism or welcome? 

In principle, if AI enables the same work to be done 
more efficiently, then there will be more for everyone. 
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However, we also know that the benefits of technological 
change are rarely distributed evenly. What is certainly the 
case is that the nature of work is changing. 

Looking back to the Luddites and the Industrial Revo-
lution, there was a similar pattern and similar complex-
ity. Often those working in the factories were the same 
people who used to work in their homes spinning and 
weaving. It was clear in the letters between the mill own-
ers that their motives were not so much the efficiency of 
the technology per se, but the way it gave greater control 
over the workforce [272]. The much maligned Luddites 
were not against machines in themselves, but against ma-
chines that were “Harmful to the commonality”, and when 
they occupied factories, they would only destroy the ma-
chines that were most dangerous to the poorly paid and 
often child labour of the time [188]. 

It sometimes feels as though we are simply re-iterating 
the mistakes of the past as most gig-work platforms 
create precarious jobs and the platform owners delib-
erately seek to avoid legal and financial responsibility. 
The uneven playing field puts traditional companies 
out of business leading to greater control by a few large 
players. On the other hand, many people have found 
that the flexibility of gig-work allows them a level of 
autonomy that they would not experience in traditional 
employment. 

Perhaps we can learn the lessons of the Industrial Rev-
olution without repeating its mistakes, and all be Lud-
dites in the best sense of the word! 

23.7 MONEY AND POWER 
The lessons of history suggest that the first beneficiaries 
of any new technology are those who already have 
power. Certainly this seems to be the case with 
digital technology where the digital divide is further 
entrenching existing social inequality. Sometimes this 
power is governmental and military. Considering the 
former, there are indeed worries about the use of AI 
in civil surveillance, albeit often for apparently good 
reasons such as better policing. On the latter, while this 
second edition is being written, conflicts rage in Ukraine 
and Israel, where drones, precision ordnance and cyber-
attacks on civic infrastructure are increasingly reliant 
on AI [21, 67]. These issues are perhaps too raw and too 
difficult to discuss dispassionately but will only increase 
in relevance. There are calls to ban the deployment 
of fully autonomous weapons including from the UN 
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Secretary General [283]; it might be that by the time you 
read this there are changes in international law. 

The other source of power in market economies is 
money. This is also a difficult topic, and indeed also 
costs lives, albeit less clearly accountable to individual 
acts than a missile strike. 

23.7.1 Finance and Markets 

The finance industry has always embraced new technol-
ogy, particularly anything that can help predict markets. 
When markets are rising, it is easy to make money, 
you simply buy stock and then sell it later for a profit. 
Conversely, when markets are falling you need to sell 
as quickly as possible to avoid making losses. Of course 
the really difficult thing is knowing when that change 
will happen. The perfect trade is to buy when stocks 
are at their minimum and sell just as they are at their 
maximum and about to fall. 

For large long-term investors, these trends may 
be averaged over months or years, but short traders 
depend on change over hours, minutes or less, making 
quick small profits on small movements typically with 
borrowed capital. Noticing when the market is shifting 
and then acting quickly is the difference between profit 
and loss. The speed of these shifts is exacerbated because 
every other trader is also looking out for then, and so if 
prices begin to rise or drop, the reactions of others lead 
to a positive feedback and the changes are sudden and 
dramatic. 

Because of this, many of these short trades depend on 
automatic algorithms, which of course themselves then 
make the overall reactions of the market even more rapid 
and unstable. As well as the large financial investors there 
are numerous apps offering AI-powered short-trading. 
Small margins in terms of accuracy and speed of predic-
tion make a huge difference in money. In the past these 
were driven by fixed rules, then more traditional math-
ematical models, but of course now many use machine 
learning. 

For each trader the use of automated algorithms and 
AI is about individually maximising returns; however, 
the overall impact is to fundamentally change the market, 
increasing the speed and scale of upward and downward 
shifts. Often, these are relatively small, relatively short 
and affect only a small number of stocks. However, as 
with many feedback phenomena, there can be infrequent 
larger anomalies. On Monday, October 19, 1987, known 

as Black Monday, a stock market crash wiped more than 
half a trillion dollars from the Dow Jones alone and is 
believed to have been caused, in large part, by automatic 
trading. Although national governments and the major 
stock exchanges have established various mechanisms to 
try to prevent such events, since then there have been 
several ‘flash crashes’ including in 2010 when the Dow 
Jones dropped 10% in just ten minutes. 

The 1987 crash, which had major economic im-
plications worldwide, way beyond the stock markets 
themselves, is believed to have been because many 
hedgefunds used similar algorithms based on the 
Black–Scholes equation [27]. The algorithms were 
designed to remove volatility of each fund’s own 
portfolio, but because they all had the same market 
data and used similar algorithms, they all took the same 
decisions leading to massive instability. In contrast to 
these early deterministic algorithms, many machine 
learning algorithms have some level of indeterminacy 
in training. While this can be a problem in some fields, 
such as medicine, where explainability is important, 
it is possible this may increase diversity of the trading 
algorithms meaning that there is less tendency to act 
in tandem. However, ultimately they are trained on the 
same historic data. 

In addition, the competitive nature of stock trading 
means that small differences in the performance of AI, 
both in speed and accuracy, can make a disproportionate 
difference in outcome, leading to an AI arms race. We can 
see this issue arise in other areas. 

23.7.2 Advertising and Runaway AI 

In many birds, the males exhibit bold plumage during 
mating season. The peacock is an extreme example, 
with huge, extravagantly beautiful tail feathers. Of 
course, such obvious plumage makes it hard to hide 
from predators, and the sheer size of the tail hampers 
escape. From an evolutionary perspective, no matter 
how attractive it is to look at, this tail seems terribly 
poorly adapted for survival, hence should never have 
developed. The Darwinian answer to this conundrum is 
sexual selection, and this is believed to be the cause of 
other, apparently maladapted, features of many animals. 
The idea is that initially fitter males tend to eat better 
and thus have better plumage. Females seek out the best 
males and hence choose those with better plumage. 
Over time males develop better plumage in order to 
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exploit this preference and indeed have to be better than 
other males. 

We can see a similar story in the need for AI in the 
stock market. If your AI is even a little better than other 
traders, you make money, if it is less good you lose. The 
same dynamic is also at play in internet advertising. 

Many free services and websites, including most social 
media, make their money from advertising. These plat-
forms use increasingly sophisticated algorithms in order 
to target adverts to the most receptive audience at the 
most opportune time when they will click through and 
make a purchase (a conversion). Of course large com-
panies will be using detailed data analytics to monitor 
the success of their adverts on different platforms. If one 
platform is performing better, in terms of conversions 
per dollar of advertising spend, they will favour that plat-
form. In the extreme, they may shift nearly all their ad-
vertising budget to the most successful platform, only re-
taining enough on others as a monitor to see if they im-
prove. 

If you are the platform, say a social media or web 
search site, you know that a small difference in AI 
performance will boost advertising revenues massively. 
If your competitors have better AI, then you will either 
lose advertising clients or have to reduce the amount you 
charge. Some of the improvement in AI can be obtained 
by recruiting the best AI researchers (good news for 
readers of this book), but also, as we saw in Chapter 8, 
sheer size is increasingly regarded as the solution 
with bigger models, requiring more computation to 
train and execute, producing better performance. So 
long as the cost of AI algorithms for selecting advert 
placement is relatively small compared with other 
fixed costs of maintaining the site, it is worth spending 
more and more money and more and more computer 
time on AI even when the gains are marginal, well 
beyond their value in attracting, overall, more paying 
customers. 

This is rather like the prisoner’s dilemma and similar 
issues we discussed in Chapter 11, every player in 
the industry would benefit from a lower level of AI 
use, but none can individually act. In the end we 
all end up paying slightly more for goods due to 
wasted computation. Of course the cost is not merely 
financial, that compute time also means more carbon 
emissions. 

Happily there are some countervailing effects. Dif-
ferent platforms target slightly different demographics, 
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meaning it is not a simple head-to-head competition, 
large advertisers may wish to have brand presence across 
a wide range of platforms not merely the most effective, 
and platforms can adjust pricing so that they trade off 
income for AI costs. So the impact of AI is not total, but 
still the pressures to overuse it are there. 

23.7.3 Big AI: The Environment and Social Impact 

The resurgence of AI was not fundamentally based on 
new AI theory or radically novel algorithms. These have 
come, but the breakthrough was driven by scale. Deep 
neural networks had been known about since the 1990s, 
but the larger a network, the more data it needs to train, 
and the deeper it is, the more computation is needed to 
tame the underdetermined inner layers (see Chapter 8). 
The growth of search engines, such as Google search, 
and also social networks, such as Facebook, gave rise 
to (a) vast datasets and (b) massive computational 
power distributed over data centres. This scale driven 
by internet business enabled the training of large deep 
neural networks, kick-starting a process that then gave 
rise to novel paradigms such as adversarial training and 
transformer networks. Size matters! However, there 
is a social and environmental cost that comes with 
this size. 

The scale of data and computation arose through 
the needs of the tech giants such as Google, Facebook 
and Microsoft. However, the machine learning that has 
driven the revolution in AI requires such massive levels 
of investment, that it potentially shuts out any but the 
largest companies and even most governments. Back in 
2014, Ian Bartram of Gartner said: 

I don’t know if any public sector has necessar-
ily cracked the nut on attracting the right skills 
and capabilities, ... The commercial sector has, 
because they’ve got the dollars to spend. 

This was before the advent of big AI and talking about 
governments. The prospect for non-governmental 
organisations, charities, communities or individ-
uals seems bleak ... AI, as with much of digital 
technology, seems to be entrenching existing 
power within society and disadvantages the already 
marginalised. 

Scale also has an environmental impact. One estimate 
predicts that global use of energy for AI will be around 
100 terawatt-hours (TWh) by 2027, which is equivalent 

https://alandix.com/glossary/aibook/social media
https://alandix.com/glossary/aibook/social media
https://alandix.com/glossary/aibook/social media
https://alandix.com/glossary/aibook/web search
https://alandix.com/glossary/aibook/web search
https://alandix.com/glossary/aibook/prisoner's dilemma
https://alandix.com/glossary/aibook/Deep neural networks
https://alandix.com/glossary/aibook/Deep neural networks
https://alandix.com/glossary/aibook/underdetermined
https://alandix.com/glossary/aibook/search engines
https://alandix.com/glossary/aibook/Google search
https://alandix.com/glossary/aibook/Facebook
https://alandix.com/glossary/aibook/deep neural networks
https://alandix.com/glossary/aibook/deep neural networks
https://alandix.com/glossary/aibook/adversarial training
https://alandix.com/glossary/aibook/transformer networks
https://alandix.com/glossary/aibook/Google
https://alandix.com/glossary/aibook/Facebook
https://alandix.com/glossary/aibook/Microsoft
https://alandix.com/glossary/aibook/machine learning


370 ■ Artificial Intelligence 

to the entire energy use of the Netherlands [70]. To put 
this figure in perspective with other carbon-intensive in-
dustries, it is still only about 0.5% of total global electric-
ity use. However, it is also worth noting this is just AI, 
not all digital technology, and it is still increasing when 
other uses are reducing in an attempt to meet net-zero 
carbon targets. 

Happily, there are counter trends, especially following 
Meta’s open release of LLaMa 2 (Large Language Model 
Meta AI)) [274], which enabled small start-ups and re-
searchers to create myriad new applications and exten-
sions [73, 240]. In principle as large language models are 
foundation models the fully trained model is then spe-
cialised in various ways so that the initial (enormous) 
cost of training is amortised. The specialisation process 
itself is still way beyond small companies or individuals; 
however, there are techniques to reduce this technology 
gap. 

Some, such as LiGO (Linear Growth Operator) 
[296], seek to make the learning process faster. Other 
techniques focus more on the execution post-training, 
for example memory layers act as a form of fuzzy 
key–value mechanism, which can dramatically reduce 
the computation costs during use [22]. LoRA (Low-
rank adaptation of large language models, [138]) takes 
the inner layers of the deep neural network, where 
specialisation occurs, and uses a form of dimensional 
reduction to vastly reduce the number of nodes, while 
not compromising too severely the overall efficacy of 
the network (Figure 23.4). This means that the resulting 
network is both faster to re-train for new applications 
and faster to execute on smaller processors. 

More radically, DeepSeek’s mixture-of-experts 
approach showed that it is possible to create high quality 
large-language models with a small fraction of the exe-
cution costs of previous models [173]. The development 
of DeepSeek was driven by the technological restrictions 
imposed by the US export ban on high-end chips to 
China, but it demonstrates that smart techniques can 
create effective AI models without simply throwing 
more and more resources at them. 

In general, there is an active research area seeking to 
reduce the training costs and runtime size of AI, both for 
environmental reasons and also to enable advanced tech-
niques to be used on tiny IoT (internet of things) devices 
that are an essential element in smart homes, cities and 
workplaces. 

FIGURE 23.4 Reducing the dimensionality of inner layers to 
reduce re-training and runtime costs. 

23.8 SUMMARY 
We began this chapter by considering whether machine 
intelligence is possible, looking in particular at the 
Chinese Room argument and its opponents. This led 
to discussing creativity and consciousness, which seem 
even more intrinsically human than intelligence. The 
more human-like AI becomes, the more it seems to 
raise deep philosophical and moral questions. Some are 
more theoretical, but some of quite immediate relevance 
as autonomous vehicles drive through our streets, and 
AI fundamentally shifts patterns of work and society. 
Considering this, we have looked at issues of legal and 
ethical responsibility, and the potential social impact of 
artificial intelligence. It is vital that these questions are 
tackled if artificial intelligence is to be accepted widely. 
Perhaps the key question we need to ask ourselves is 
not whether true machine intelligence is possible but 
whether and where it is desirable. What do you think? 

EXERCISES 

This is another chapter where exercises are more discur-
sive, suitable for individual projects or group discussion. 
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23.1 Collect newspaper reports on social and ethical is-
sues in AI – they appear quite frequently. Examine 
each with three lenses: 

a. The particular human context, has AI made it 
worse or simply highlighted existing issues? 

b. What kind of AI is being used and does it ap-
pear sensible or well designed for the purpose? 

c. Are there ways you could imagine improving 
the AI to reduce the problem, or deploying AI 
to counter it? 

23.2 A university is collaborating with a major 
washing machine manufacturer to optimise the 
design of washing machine drums, as factory 
testing never entirely matches real-world perfor-
mance. The idea is to use a form of AB-testing, 
where internet-enabled washing machines are 
delivered with slight variations in the shape of 
the drum. Performance data will be sent back 
to the manufacturer enabling near-real-time 
modifications to the manufacturing process and 
ever more energy and water efficient washing 
machines. 
Use the questions of the AREA framework (Fig-
ure 23.2 in Section 23.5.1) to explore some of the 
social and ethical implications of this. 

23.3 Try variations of the Trolley Problem with friend-
s/colleagues. Things you could experiment with 
include: 

• Different numbers of people, different ages, 
etc. 

• Certainty of effects: what if there were a bridge 
between the trolley and the people that might 
collapse with the weight of the trolley before 
hitting the people. 

• The blameworthiness of the people involved, 
perhaps some are legitimately standing where 
they are, but others have trespassed onto the 
tracks even though there are warning signs. 

23.4 Design Fiction uses fictitious scenarios in order 
to explore the potential positive and negative 
consequences of emerging technology, including 
AI [181]. 
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a. Forster’s The Machine Stops [105] was written 
in 1909, based on future machinery as envis-
aged then, so could be seen as a form of de-
sign fiction from before the term was coined. 
Read the short story (available on the Internet 
Archive) and consider yourself or discuss in a 
group the extent to which the issues in it have 
parallels today. 

b. The Machine Stops was written over a hundred 
years ago, looking forward. Can you do the 
same, imagine potential just-over-the-horizon 
AI and its impact. Here are some ideas, but 
think of your own too.
• Computers are better than humans than 

all intellectual tasks, but robotics is still 
struggling so that the only jobs requiring 
humans are physical ones. 

• Artificial companions are being used ex-
tensively in care homes. 

• AI enables instant fact checking of any-
thing. 

FURTHER READING 

M. Boden, editor. The philosophy of artificial intelligence. Ox-
ford University Press, Oxford, 1990. 
A collection of seminal papers on machine intelligence by 
leaders in the field including Searle and Turing. An excel-
lent and accessible introduction to some of the philosophi-
cal issues of AI. 

M. Boden. Artificial intelligence and natural man. MIT Press, 
London, 2nd edition, 1987. 
Part IV in particular provides a useful survey of the social, 
psychological and philosophical issues of AI. 

M. Wooldridge. A brief history of artificial intelligence: What it 
is, where we are, and where we are going. Flatiron Books, 
2021. ISBN: 9781250770745 

An overview of the development and history of AI. 

A. Dix. ChatGPT, culture and creativity – simulacrum and al-
terity. Keynote at JRL Creative AI Research Conference, 
2023, 26 June 2023. https://alandix.com/academic/talks 
/CAR2023-keynote/ 
A more detailed exploration of the issues surrounding AI 
creativity discussed in Section 23.3. 

A. Seth. Being you: A new science of consciousness. Faber, Lon-
don, 2021. 
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Rich discussion of the current state of consciousness re-
search and philosophy. 

B. Panic and P. Arthur. AI for peace. CRC Press, Boca Raton, 
FL, 2024. 
A rich analysis of the way AI can be used positively to pro-
mote peace as well as counter the ways it is being used for 
the opposite. 

C. Crivellaro and A. Dix. AI for social justice. CRC Press, Boca 
Raton, FL, 2025. 
Another volume in the AI for Everything series. It expands 
on many of the issues in Sections 23.6 and 23.7.1; indeed 
early drafts of AI for Social Justice were used to help write 
this chapter. 
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CHAP T ER 2 4 

Epilogue: What Next? 

24.1 OVERVIEW 
The book is almost finished, but AI will continue to de-
velop. In this chapter we take a look at some of the pos-
sible future developments of AI, both in terms of techni-
cal developments and the way it is used in society. Given 
the rate of change, asking “what next?” is a risky en-
terprise, but some near future directions are clear. Ul-
timately, though, the big questions in AI may be about 
what we want to do with it and what sort of AI future we 
want. 

24.2 CRYSTAL BALL 
It seems a foolish time to ask “what next?” for AI. 
When the first edition of this book was written, AI 
was on a downward rollercoaster. Indeed, as previously 
mentioned, the preface of the 1996 edition of this book 
said, “... the subject is far from dead or historical”. Written 
as the AI winter started to bite, we felt it was necessary 
to defend even writing a book on AI. 

As this edition is written AI is still on a rising curve, 
with apparently ever accelerating change, to the point 
that many AI researchers and entrepreneurs are less con-
cerned about whether AI has a future than whether we 
have any control over it. 

It may be that by the time you read this, that future 
is already with us – AI as saviour, nemesis or dead-end. 
However, risking instant obsolescence, let’s take a tour 
through a few directions that AI may take over the com-

ing years, social and technical. These are not mutually ex-
clusive alternatives, more that all are likely to happen to 
a greater or lesser degree. 

24.3 WHAT NEXT: AI TECHNOLOGY 

24.3.1 Bigger and Better 

As noted in Chapters 8 and 17 there has been continual 
surprise at the qualitative leaps in performance gained 
by simply throwing more and more computational re-
sources at greater and greater amounts of data to cre-
ate ever larger models. Before deep learning took centre 
stage, simple statistical algorithms were delivering ‘un-
reasonably’ effective natural language results that would 
once have been seen as requiring some form of gram-
matical knowledge [122]. More recently, simply scaling 
large-language models (LLMs) has led to step changes in 
behaviour, to the point at which they can perform with 
apparent human understanding in many tests. 

Some believe that this process can continue; simply 
making larger models will lead to general artificial 
intelligence. Measured in purely information terms, the 
brain contains around half a petabyte (see Figure 24.1), 
which, at the time of writing, is still several hundred 
times greater than the largest LLMs. It is argued that as 
LLMs reach these sizes, more human-like features will 
emerge. 

Of course, as models get bigger they need more train-
ing data. However, existing models are getting close to 
consuming all human-generated material. In some do-
mains it is possible for this to be supplemented or even 
replaced with generated synthetic data, as was the case 
with AlphaGo and then AlphaZero. However, it is hard 
to see what the equivalent is for text or art. 

In addition, while scale has been important, it has not 
been the only factor at play. The inclusion of attention 
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mechanisms in transformer models made fundamental 
differences in their effectiveness. That is algorithmic and 
architectural innovation has also been critical in the past 
and undoubtedly will continue to be significant. 

24.3.2 Smaller and Smarter 

In Chapter 23, we discussed how the sheer scale of AI cre-
ates both environmental and social issues. We also saw 
that methods are being developed to dramatically reduce 
the necessary size and training costs of large models and 
in general develop AI for smaller devices. We can expect 
to see developments in a number of directions: 

• Improvements in large-language models and gener-
ative AI with roughly the same behaviour, but faster 
training. 

• Ways to tweak large models after they have been 
trained to make them faster to specialise. 

• Ways to shrink large models after training to reduce 
the final execution size. 

• Ways to use large-scale training to create small-
footprint AI directly. 

• Alternative methods that do not require such large-
scale models or training. 

There is ongoing work in each area – alongside scale, 
the future is lean and mean! 

24.3.3 Mix and Match 

One of the alternatives to simple scaling is a return to 
more traditional knowledge-rich methods. This won’t be 
‘business as usual’ for traditional AI, there was plenty of 
time during the long AI winter for that, but lessons learnt 
from big data and big computation can be brought to 
bear. It may be that simply having more computational 
power or more data available can reinvigorate past so-
lutions that were infeasible 20 years ago. However, ap-
proaches that combine neural techniques and big data 
with knowledge-rich methods will undoubtedly become 
more common. Again there are various ways in which 
this is developing: 

• Using machine learning techniques to craft tradi-
tional AI, such as inferring grammar rules from text 
corpora, or the use of genetic algorithms to create 
decision trees as described in Chapter 21. 

• Hybrid systems combining modules with different 
styles of AI, as described in Chapter 6, for example, 
using image classifiers in combination with hand-
crafted rules. 

• Neurosymbolic techniques, also discussed in 
Chapter 6, where neural-inspired methods 
and more high-level reasoning are com-
bined at a more fundamental level, for ex-
ample, by crafting neurons with specialised 
behaviour. 

One of the critiques of large-language models is 
their propensity to hallucinate: to invent text that 
is plausible, yet inaccurate or entirely fabricated. 
In contrast, traditional planning or mathematical 
proof systems guarantee to create accurate results 
but may struggle with more complex problems. The 
opportunities for these to complement each other are 
clear. 

The joker in the pack is the emergence of quantum 
computing and other forms of novel computational sub-
strates such as reservoir computing. Google already has a 
quantum version of its successful TensorFlow framework 
[33] and research on quantum AI has been growing for 
a number of years [98]. These new substrates, physical 
and biological, will certainly work within hybrid digital 
architectures. 

24.3.4 Partners with People 

The book began with a reminder that all AI at some 
level impacts real people. We saw in Chapter 19 that this 
impact may be quite diffuse as AI invisibly becomes part 
of the devices we use or the environment in which we 
live. When more visible, it may act as a tool or servant 
doing things we tell it to, or, more problematic, AI 
tells us what to do! However, the real promise may be 
in systems where humans and AI work synergistically 
together. The ultimate goals and purposes must be 
human ones, but the endeavour to achieve them is 
collaborative. 

This requires more human-like AI that can both pro-
duce behaviour that is comprehensible to humans and 
also respond to humans in ways that go beyond simply 
doing what they are told. Systems such as GitHub Copi-
lot [108] begin to show what is possible, and similar tech-
niques have already been built into conversational agents 
[236]. 
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FIGURE 24.1 Brain sized. 

24.4 WHAT NEXT: AI IN THE WORLD 

24.4.1 Friend or Foe? 

While this edition was being prepared, the European 
Union and the governments of 27 countries including 
the UK, the USA and China signed the Bletchley 
Declaration following a two-day summit on AI 
safety [264, 280]. The declaration acknowledged the 
positive aspects of AI but also warned of a “potential 
for serious, even catastrophic, harm, either deliberate 
or unintentional, stemming from the most significant 
capabilities of these AI models”. This echoes warnings 
from within the academic AI community [36]. 

In the last chapter, we looked at many of the social and 
ethical issues around the growing use of AI: job losses, 
misinformation and the undermining of human creativ-
ity. These are current issues and will continue to be so 
for years to come. There is the promise that AI may do 
away with all unfulfilling labour and give us all, in Elon 
Musk’s words, a “universal high income” [187]. How-
ever, given the history of adoption of technology in mar-
ket economies, and the nature of transnational compa-
nies ... that future seems least likely. 

Some worry about more existential risks – as AI de-
signs better AI we will come to the point when its growth 
is uncontrollable, leading to a singularity when AI so 
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far exceeds human intelligence that humanity becomes 
at best an irrelevance to be brushed away, and at worst 
an impediment to be crushed. This seems less science 
fiction than it did a few years ago and, in true B-movie 
style, there are those who are welcoming the alien in-
vader as the next stage in the evolution of intelligence. 
While there are clearly more pressing problems, this is 
an issue that will continue to create headlines, but also, 
at the most pragmatic level, cannot be utterly ignored. 

Fans of the Terminator films will recall that Skynet was 
created for military use before it decided to destroy hu-
manity to protect itself. However, apocalyptic scenarios 
do not require sentient AI. We are already seeing AI used 
in guided weaponry, and while there are moves to pre-
vent fully autonomous weapons, it seems unlikely this 
will be averted. Of course AI is used to design new mil-
itary hardware and, perhaps more worrying, AI has al-
ready been shown to be capable of designing new chem-
ical and biological weapons. Certainly AI is being used 
to develop and deploy cyberattacks, both military and 
criminal. 

Most likely, in terms of utter apocalypse, is the use of 
AI to initiate the overall firing of weapons, especially nu-
clear missiles. There is widespread desire to retain human 
control, not least political control, but, as successive nu-
clear control treaties have expired or collapsed, it may be 
hard for countries to avoid installing ‘use it or lose it’ hair 
triggers if they fear the other side has already done so. 
The issue here is not so much AI itself (indeed the film Dr 
Strangelove predicted just such a hair trigger using 1960s 
technology), but more about conflict resolution and de-
escalation. Dealing with more prosaic issues around filter 
bubbles and echo chambers is perhaps at least as impor-
tant here as the direct military threat. 

Indeed, we are facing so many problems in national 
and global society: climate change, growing inequality, 
deepening political division, extremism and the 
likelihood of a next pandemic. In some cases AI is 
currently exacerbating these problems but could be 
turned for good. In others there is real hope that AI 
may make significant advances, for example, in climate 
prediction models or the rapid creation of new vaccines. 

24.4.2 Boom then Bust 

It may be that the current surge in interest in AI will come 
to an end and there will be another AI winter. However, 
this seems unlikely. The surge in AI interest in the early 

1990s was driven by some early research success and 
an aspiration that outstripped the state of maturity. In 
contrast, the current wave is being driven by real appli-
cations that are delivering business benefits in numerous 
fields. Some of the high hopes may not be fully achieved, 
but it seems unlikely that there will be a complete 
collapse. 

In addition, while the grand narrative of waves of AI 
interest interspersed with long winters makes good read-
ing, the reality is more nuanced. During the period from 
mid-1990s to 2010, AI researchers would mourn the state 
of the discipline, but meanwhile there were gradual de-
velopments in areas such as natural language processing, 
text mining, speech recognition and computer vision, 
which in the 1980s would have been regarded as major 
goals of AI. In addition the growth of web and big data 
algorithms such as Google PageRank and recommender 
systems were clearly ‘intelligent’ if not card-carrying AI. 

So, while there may well be a deceleration or even a 
hiatus in the rise of AI, a collapse is not imminent. 

24.4.3 Everywhere and Nowhere 

The earliest commercial engines were enormous, sitting 
in factories, belching smoke and driving rumbling 
machinery, but within a hundred years became part of 
the background of society with mass-produced cars and 
now the electric toothbrush on your bathroom shelf. 
Similarly the earliest digital mainframe computers sat 
in large glass computer rooms, served by white-coated 
technicians, but within 30 years were on every desk 
and now in tags on fast-fashion clothes. As Weiser 
put it, 

The most profound technologies are those that 
disappear. They weave themselves into the fabric 
of everyday life until they are indistinguishable 
from it. [298] 

Similarly, novel developments in AI are headline 
grabbing and require large budgets: Big Blue defeating 
Kasparov, Watson winning Jeopardy! or AlphaZero 
mastering Go. However, we are already so used to 
AI in recommender systems, email filtering and 
voice-controlled home automation, it too has become 
invisible. 

The future of pervasive AI may be that we don’t even 
know it is there. 
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24.5 SUMMARY – FROM HYPE TO HOPE 
Artificial intelligence is at an interesting juncture; there 
are many directions in which it may develop, both tech-
nically and, more critically, in the way we use it in society. 
You may be one of those who develop the algorithms that 
take the next steps in AI. Certainly you will be a user of 
AI, no matter how invisible. Within AI as a research and 
development discipline and within society at large, there 
are crucial choices to be made. We are all part of the de-
bate as to whether AI becomes yet another technology 
that divides, or whether it can be harnessed to serve hu-
manity as a whole. 

What’s next for AI? 
The choice is in your hands. 

FURTHER READING 

S. Russell, R. Rossi, and M. Schönstein, co-chairs. OECD work-
ing party and network of experts on AI, 2024. https://oecd 
.ai/en/network-of-experts/working-group/10847 

The OECD run periodic workshops of global experts in AI 
to offer an informed glimpse into the future. 

B. Panic and P. Arthur. AI for peace. CRC Press, Boca Raton, 
FL, 2024. 

H. S. Sætra. AI for the sustainable development goals. CRC 
Press, Boca Raton, FL, 2022. 
Thinking about the future of AI is only meaningful if we 
have a future. These two volumes address key issues where 
AI can have a role ... for good or ill ... in determining the 
future of humankind and the world we live in. 

https://oecd.ai/en/network-of-experts/working-group/10847
https://oecd.ai/en/network-of-experts/working-group/10847


https://taylorandfrancis.com/


Bibliography 

[1] David H. Ackley, Geoffrey E. Hinton, and Ter-
rence J. Sejnowski. A learning algorithm for Boltz-
mann machines. Cognitive Science, 9(1):147–169, 
1985. 

[2] Elena Agliari, Francesco Alemanno, Adriano 
Barra, and Alberto Fachechi. Dreaming neu-
ral networks: Rigorous results. Journal of 
Statistical Mechanics: Theory and Experiment, 
2019(8):083503, 2019. 

[3] Christopher Ahlberg and Ben Shneiderman. Vi-
sual information seeking: Tight coupling of dy-
namic query filters with starfield displays. In 
Proceedings of the SIGCHI conference on human 
factors in computing systems, CHI ’94, page 313– 
317. Association for Computing Machinery, New 
York, NY, 1994. 

[4] I. Aleksander and T. J. Stonham. Guide to pattern 
recognition using random-access memories. Pro-
ceedings of the IEE: Computers and Digital Tech-
niques, 2(1):42–49, 1979. 

[5] J. R. Anderson. The architecture of cognition. Har-
vard University Press, Cambridge, MA, 1983. 

[6] John R. Anderson. How can the human mind occur 
in the physical universe? Oxford University Press, 
Oxford, 2009. 

[7] Julia Angwin, Jeff Larson, Surya Mattu, 
and Lauren Kirchner. Machine bias 
there’s software used across the country 
to predict future criminals: And it’s biased 
against blacks. ProPublica (23 May 2016). 
https://www.propublica.org/article/machine-bias-
risk-assessments-in-criminal-sentencing. 

[8] R. C. Arkin, W. M. Carter, and D. C. Macken-
zie. Active avoidance: Escape and dodging be-
haviors for reactive control. In H. I. Christensen, 
K. W. Bowyer, and H. Bunke, editors, Active robot 
vision: Camera heads, model based navigation 
and reactive control. World Scientific, Singapore, 
1993. 

[9] Stavros Asimakopoulos, Robert Fildes, and Alan 
Dix. Forecasting software visualizations: An ex-
plorative study. In People and computers XXIII 
celebrating people and technology, pages 269–277. 
BCS, Swindon, 2009. 

[10] I. Asimov. I, Robot. Panther, London, 1968. 
[11] Bernard J. Baars, Natalie Geld, and Robert Kozma. 

Global workspace theory (gwt) and prefrontal 
cortex: Recent developments. Frontiers in Psychol-
ogy, 12:749868, 2021. 

[12] Rembrandt Bakker, Paul Tiesinga, and Rolf Köt-
ter. The scalable brain atlas: Instant web-based 
access to public brain atlases and related content. 
Neuroinformatics, 13:353–366, 2015. 

[13] David L. Barack, Vera U. Ludwig, Felipe Parodi, 
Nuwar Ahmed, Elizabeth M. Brannon, Arjun Ra-
makrishnan, and Michael Platt. Attention deficits 
linked with proclivity to explore while foraging. 
Biological Sciences, 291(2017), Article 202222584, 
2024. 

[14] V. E. Barker and D. E. O’Connor. Expert sys-
tems for configuration at DIGITAL: XCON and 
beyond. Communications of the ACM, 32(3):298– 
318, 1989. 

[15] B. Barrett. Google maps is racist because the in-
ternet is racist. Wired (May 23, 2015). 

[16] N. Baym, L. Shifman, C. Persaud, and K. 
Wagman. Intelligent failures: Clippy memes 
and the limits of digital assistants. AoIR 
Selected Papers of Internet Research, 2019. 
https://doi.org/10.5210/spir.v2019i0.10923. 

[17] BBC. Google’s AI wins final Go challenge. BBC 
News (15 March 2016). 

[18] BBC. BBC pay: Male stars earn more than female 
talent. BBC News (19 July 2017). 

[19] BBC. Go master quits because AI ‘cannot be de-
feated’. BBC News (27 November 2019). 

[20] R. Beale and T. Jackson. Neural computing: An 
introduction. Adam Hilger, Bristol, 1990. 

381 

https://doi.org/10.5210/spir.v2019i0.10923


382 ■ Bibliography 

[21] Samuel Bendett. Roles and implications of 
AI in the Russian–Ukrainian conflict. Russia 
Matters, Harvard Kennedy School (20 July 2023). 
https://www.russiamatters.org/analysis/roles-
and-implications-ai-russian-ukrainian-conflict 
accessed 02/12/2023. 

[22] V. P. Berges, B. Oğuz, D. Haziza, W. T. Yih, L. 
Zettlemoyer, and G. Gosh. Memory layers at scale. 
arXiv preprint arXiv:2412.09764, 2024. 

[23] Ofer Bergman and Steve Whittaker. The science of 
managing our digital stuff. MIT Press, Cambridge, 
MA, 2016. 

[24] Tim Berners-Lee, Robert Cailliau, Ari Luotonen, 
Henrik Frystyk Nielsen, and Arthur Secret. The 
world-wide web. Communications of the ACM, 
37(8):76–82, 1994. 

[25] Tim Berners-Lee, James Hendler, and Ora Lassila. 
The semantic web. Scientific American, 284(5):34– 
43, 2001. 

[26] Andrzej Bieszczad and Bernard Pagurek. Neuro-
solver: Neuromorphic general problem solver. In-
formation Sciences, 105(1–4):239–277, 1998. 

[27] Fischer Black and Myron Scholes. The pricing of 
options and corporate liabilities. Journal of Politi-
cal Economy, 81(3):637–654, 1973. 

[28] Y. Bob. Ex-gov’t agent: Crisis worse than 9/11 
could emerge from AI arms race. Jerusalem Post 
(12 Feburary 2019). 

[29] M. A. Boden. Artificial intelligence and natural 
man. MIT Press, London, 2nd edition, 1987. 

[30] Nazim Bouatta, Peter Sorger, and Mohammed 
AlQuraishi. Protein structure prediction by Al-
phaFold2: Are attention and symmetries all you 
need? Acta Crystallographica Section D: Structural 
Biology, 77(8):982–991, 2021. 

[31] Leo Breiman. Random forests. Machine Learning, 
45(1):5–32, 2001. 

[32] Sergey Brin and Lawrence Page. The anatomy of a 
large-scale hypertextual web search engine. Com-
puter Networks and ISDN Systems, 30(1–7):107– 
117, 1998. 

[33] Michael Broughton, Guillaume Verdon, Trevor 
McCourt, Antonio J. Martinez, Jae Hyeon Yoo, 
Sergei V. Isakov, Philip Massey, Ramin Halavati, 
Murphy Yuezhen Niu, Alexander Zlokapa, et al. 
TensorFlow Quantum: A software framework 

for quantum machine learning. arXiv preprint 
arXiv:2003.02989, 2020. 

[34] Tom Brown, Benjamin Mann, Nick Ryder, 
Melanie Subbiah, Jared D. Kaplan, Prafulla 
Dhariwal, Arvind Neelakantan, Pranav Shyam, 
Girish Sastry, Amanda Askell, et al. Language 
models are few-shot learners. Advances in Neural 
Information Processing Systems, 33:1877–1901, 
2020. 

[35] Mark Buchanan. Ubiquity: The science of history, 
or why the world is simpler than we think. Weiden-
feld & Nicolson, London, 2000. 

[36] Benjamin S. Bucknall and Shiri Dori-Hacohen. 
Current and near-term AI as a potential exis-
tential risk factor. In Proceedings of the 2022 
AAAI/ACM conference on AI, ethics, and society. 
ACM, New York, NY, July 2022. 

[37] R. R. Burton. Semantic grammar: An engineering 
technique for constructing natural language under-
standing systems. Report No. 3453. Bolt Beranek 
and Newman, Boston, MA, 1976. 

[38] James Cameron and William Wisher. Terminator 
2: Judgment day. TriStar Pictures, Culver City, CA, 
1991. 

[39] Chunshui Cao, Yongzhen Huang, Zilei Wang, 
Liang Wang, Ninglong Xu, and Tieniu Tan. Lateral 
inhibition-inspired convolutional neural network 
for visual attention and saliency detection. In Pro-
ceedings of the AAAI conference on artificial intel-
ligence, volume 32, 2018. AAAI Press, Palo Alto, 
CA. 

[40] Karel Čapek. R.U.R. (Rossum’s Universal Robots). 
Samuel French, Inc., 1923. English version by 
Paul Selver and Nigel Playfair. Original Czech play 
1921, “Rossumovi Univerzální Roboti”. https://gu 
tenberg.org/ebooks/59112. 

[41] J. Carpenter. Google’s algorithm shows prestigious 
job ads to men, but not to women. Independent (7 
July 2015). 

[42] CERN. Storage: What data to record? CERN, 
2021. https://home.cern/science/computing/stor 
age accessed 01/12/2024. 

[43] David J. Chalmers. Facing up to the problem of 
consciousness. Journal of Consciousness Studies, 
2(3):200–219, 1995. 

[44] Angie Chandler, Joe Finney, Carl Lewis, and Alan 
Dix. Toward emergent technology for blended 

https://gutenberg.org/ebooks/59112
https://gutenberg.org/ebooks/59112
https://home.cern/science/computing/storage
https://home.cern/science/computing/storage


Bibliography ■ 383 

public displays. Proceedings of the 11th Interna-
tional Conference on Ubiquitous Computing, pages 
101–104. ACM, New York, NY, 2009. 

[45] Varun Chandrasekaran, Chuhan Gao, Brian Tang, 
Kassem Fawaz, Somesh Jha, and Suman Baner-
jee. Face-off: Adversarial face obfuscation. 
Proceedings on Privacy Enhancing Technologies 
2021(2):369-390, 2021. 

[46] E. Charniak. Towards a model of children’s story 
comprehension. Report No. TR-266, AI Labora-
tory. MIT, Cambridge, MA, 1972. 

[47] Kumar Chellapilla and David B. Fogel. Evolving 
neural networks to play checkers without relying 
on expert knowledge. IEEE Transactions on Neu-
ral Networks, 10(6):1382–1391, 1999. 

[48] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming 
Yuan, Henrique Ponde de Oliveira Pinto, Jared 
Kaplan, Harri Edwards, Yuri Burda, Nicholas 
Joseph, Greg Brockman, et al. Evaluating 
large language models trained on code. arXiv 
preprint arXiv:2107.03374, 2021 https://arxiv.org/ 
abs/2107.03374. 

[49] Jessica Cherner. The Eiffel Tower is now 
20 feet taller. Architectural Digest (17 March 
2022). https://www.architecturaldigest.com/stor 
y/eiffel-tower-20-feet-taller. 

[50] Leon Chua. Memristor-the missing circuit el-
ement. IEEE Transactions on Circuit Theory, 
18(5):507–519, 1971. 

[51] Citizens Advice Bureau. 22% don’t have basic 
banking services needed to deal with univer-
sal credit. Technical Report, Citizens Advice 
Bureau, 2013. https://www.citizensadvice.org.uk/ 
cymraeg/amdanom-ni/about-us1/media/press-
releases/22-don-t-have-basic-banking-services-
needed-to-deal-with-universal-credit/ accessed 
01/12/2024. 

[52] H. H. Clark and S. E. Brennan. Grounding in com-
munication. In L. B. Resnick, J. Levine, and S. 
D. Behrend, editors, Perspectives on socially shared 
cognition, pages 127–149. American Psychologi-
cal Association, Washington, DC, 1991. 

[53] A. J. G. Cockburn. Groupware design: Principles, 
prototypes and systems. PhD thesis, University of 
Stirling, 1993. 

[54] Kristin A. Cook and James J. Thomas. Illuminat-
ing the path: The research and development agenda 

for visual analytics. Technical Report. National 
Visualization and Analytics Center (NVAC), Pa-
cific Northwest National Lab (PNNL), Richland, 
WA, 2005. https://www.pnnl.gov/publications/ 
illuminating-path-research-and-development-
agenda-visual-analytics. 

[55] Rémi Coulom. Efficient selectivity and backup 
operators in Monte-Carlo tree search. In 
International conference on computers and 
games, pages 72–83. Springer, Berlin, 2006. 
http://www.europarl.europa.eu/sed/doc/news/ 
document/CONS_CONS(2016)05418(REV1)_ 
EN.docx/ accessed 01/12/2024. 

[56] Council of the European Union. Position 
of the Council on General Data Protec-
tion Regulation. Technical Report. Coun-
cil of the European Union, 8 April 2016. 
http://www.europarl.europa.eu/sed/doc/news/ 
document/CONS_CONS(2016)05418(REV1)_ 
EN.docx/ accessed 01/12/2024. 

[57] Andy Crabtree, Lachlan Urquhart, and Jiahong 
Chen. Right to an explanation considered harm-
ful. Technical Report. Edinburgh School of Law 
Research Paper, Edinburgh, 8 April 2019. 

[58] Miles Cranmer, Alvaro Sanchez Gonzalez, Peter 
Battaglia, Rui Xu, Kyle Cranmer, David Spergel, 
and Shirley Ho. Discovering symbolic models 
from deep learning with inductive biases. In 
H. Larochelle, M. Ranzato, R. Hadsell, M.F. 
Balcan, and H. Lin, editors, Advances in neural 
information processing systems, volume 33, 
pages 17429–17442. Curran Associates, Inc., 
2020. 

[59] Francis Crick and Graeme Mitchison. The func-
tion of dream sleep. Nature, 304:111–114, 1983. 

[60] Clara Crivellaro and Alan Dix. AI and so-
cial justice: From avoiding harms to positive ac-
tion. The AI Summit, New York, 8 Decem-
ber 2021. https://www.alandix.com/academic/tal 
ks/AI-Summit-NY-2021-AISJ/. 

[61] Florinel-Alin Croitoru, Vlad Hondru, Radu Tudor 
Ionescu, and Mubarak Shah. Diffusion models in 
vision: A survey. IEEE Transactions on Pattern 
Analysis and Machine Intelligence, 45(9):10850– 
10869, 2023. 

[62] Mary L. Cummings. Automation bias in intel-
ligent time critical decision support systems. In 

https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://www.architecturaldigest.com/story/eiffel-tower-20-feet-taller
https://www.architecturaldigest.com/story/eiffel-tower-20-feet-taller
https://www.pnnl.gov/publications/illuminating-path-research-and-development-agenda-visual-analytics
https://www.pnnl.gov/publications/illuminating-path-research-and-development-agenda-visual-analytics
https://www.pnnl.gov/publications/illuminating-path-research-and-development-agenda-visual-analytics
https://www.alandix.com/academic/talks/AI-Summit-NY-2021-AISJ/
https://www.alandix.com/academic/talks/AI-Summit-NY-2021-AISJ/


384 ■ Bibliography 

AIAA 1st intelligent systems technical conference, 
2004. Chicago, IL, 20–22 September 2004. 

[63] Mary L. Cummings. Automation bias in intelli-
gent time critical decision support systems. In D. 
Harris, editor, Decision making in aviation, pages 
289–294. Routledge, Abingdon, 2017. 

[64] Allen Cypher. Eager: Programming repetitive 
tasks by example. In Proceedings of the SIGCHI 
conference on human factors in computing systems, 
CHI ’91, page 33–39. Association for Computing 
Machinery, Ney York, NY, 1991. 

[65] Antonio R. Damasio. Descartes’ error. Putnam, 
New York, NY, 1994. 

[66] A. Datta, M. Tschantz, and A. Datta. Automated 
experiments on ad privacy settings. In Proceedings 
on privacy enhancing technologies, pages 92–112. 
De Gruyter, Berlin, 2015. 

[67] Harry Davies, Bethan McKernan, and Dan Sab-
bagh. ‘The Gospel’: How Israel uses AI to select 
bombing targets in Gaza. The Guardian (1 De-
cember 2023). 

[68] Ernest Davis and Gary Marcus. Commonsense 
reasoning and commonsense knowledge in arti-
ficial intelligence. Communications of the ACM, 
58(9):92–103, August 2015. 

[69] Wiebren De Jonge. Compromising statistical 
databases responding to queries about means. 
ACM Transactions on Database Systems (TODS), 
8(1):60–80, 1983. 

[70] Alex de Vries. The growing energy footprint of 
artificial intelligence. Joule, 7(10):2191–2194. ht 
tps://doi.org/10.1016/j.joule.2023.09.004, 2023. 

[71] Jeffrey Dean and Sanjay Ghemawat. MapReduce: 
Simplified data processing on large clusters. Com-
mun: ACM, 51(1):107–113, January 2008. 

[72] R. Descartes. A discourse on method, page 1637. 
Project Gutenberg EBook, 2008. http://www.gute 
nberg.org/files/59/59-h/59-h.htm#part4. 

[73] Ben Dickson. Can large language models 
be democratized? TechTalks (16 May 2022). 
https://bdtechtalks.com/2022/05/16/opt-175b-
large-language-models/. 

[74] A. Dix. Human issues in the use of pattern recog-
nition techniques. In R. Beale and J. Finlay, ed-
itors, Neural networks and pattern recognition in 

human computer interaction, pages 429–451. Ellis 
Horwood Hemel Hempstead, 1992. 

[75] A. Dix. Interactive querying - locating and discov-
ering information. In Second workshop on infor-
mation retrieval and human computer interaction. 
Paper presented at workshop without subse-
quent proceedings, Glasgow, 11 September 1998. 
https://www.alandix.com/academic/papers/IQ98/ 
accessed 01/12/2024. 

[76] A. Dix, J. Finlay, G. Abowd, and R. Beale. Human-
computer interaction. Prentice Hall, Hemel 
Hempstead, 1993. 

[77] A. Dix and A. Patrick. Query by Browsing. 
In P. Sawyer, editor, Proceedings of IDS’94: The 
2nd international workshop on user interfaces to 
databases, pages 236–248. Springer Verlag, Lan-
caster, 1994. 

[78] Alan Dix, Russell Beale and Andy Wood. Archi-
tectures to make simple visualisations using sim-
ple systems. In Proceedings of the working con-
ference on Advanced Visual Interfaces (AVI 2000), 
pages 51–60, 2000. 

[79] Alan Dix. Beyond intention – pushing bound-
aries with incidental interaction. In Proceed-
ings of Building bridges: Interdisciplinary context-
sensitive computing. Paper presented at workshop 
without subsequent proceeding, Glasgow Univer-
sity, 2002. https://alandix.com/academic/papers/ 
beyond-intention-2002/ accessed 01/12/2024. 

[80] Alan Dix. The brain and the web: A quick 
backup in case of accidents, 29 August 
2005. https://www.alandix.com/academic/paper 
s/brain-and-web-2005/ accessed 21/11/2023. 

[81] Alan Dix. Designing for appropriation. In Pro-
ceedings of the 21st British HCI group annual con-
ference on people and computers: HCI...but not as 
we know it - volume 2, BCS-HCI ’07, page 27– 
30. BCS Learning & Development Ltd, Swindon, 
GBR, 2007. 

[82] Alan Dix. I in an other’s eye. AI and Society, 
34(1):55–73, 2019. 

[83] Alan Dix. Statistics for HCI: Making sense of 
quantitative data. Morgan & Claypool, 2020. 
DOI:10.2200/S00974ED1V01Y201912HCI044. 

[84] Alan Dix. ChatGPT, culture and creativity – sim-
ulacrum and alterity. Keynote at JRL Creative AI 

https://doi.org/10.1016/j.joule.2023.09.004
https://doi.org/10.1016/j.joule.2023.09.004
http://www.gutenberg.org/files/59/59-h/59-h.htm#part4
http://www.gutenberg.org/files/59/59-h/59-h.htm#part4
https://alandix.com/academic/papers/beyond-intention-2002/
https://alandix.com/academic/papers/beyond-intention-2002/
https://www.alandix.com/academic/papers/brain-and-web-2005/
https://www.alandix.com/academic/papers/brain-and-web-2005/
https://www.alandix.com/academic/papers/IQ98


Research Conference 2023, 26 June 2023. https:// 
alandix.com/academic/talks/CAR2023-keynote/. 

[85] Alan Dix, Rachel Cowgill, Christina Bashford, Si-
mon McVeigh, and Rupert Ridgewell. Authority 
and judgement in the digital archive. In Proceed-
ings of the 1st international workshop on digital li-
braries for musicology (DLfM’14). Association for 
Computing Machinery, New York, NY, 2014. 

[86] Alan Dix, Rachel Cowgill, Christina Bashford, Si-
mon McVeigh, and Rupert Ridgewell. Spread-
sheets as user interfaces. In Proceedings of the in-
ternational working conference on advanced visual 
interfaces (AVI’16), page 192–195. Association for 
Computing Machinery, New York, NY, 2016. 

[87] Alan Dix and Geoffrey Ellis. Starting simple: 
Adding value to static visualisation through sim-
ple interaction. In Proceedings of the working 
conference on Advanced Visual Interfaces (AVI’98), 
pages 124–134, 1998. https://alandix.com/acad 
emic/papers/simple98/. 

[88] Alan Dix, Janet Finlay, Gregory D. Abowd, and 
Russell Beale. Human-computer interaction. Pear-
son Education, 2003. https://hcibook.com/. 

[89] Alan Dix, Akrivi Katifori, Giorgos Lepouras, 
Costas Vassilakis, and Nadeem Shabir. Spreading 
activation over ontology-based resources: From 
personal context to web scale reasoning. Interna-
tional Journal of Semantic Computing, 4(01):59– 
102, 2010. 

[90] Alan Dix and Genovefa Kefalidou. Regret 
from cognition to code. In Antonio Cerone, 
Marco Autili, Alessio Bucaioni, Cláudio Gomes, 
Pierluigi Graziani, Maurizio Palmieri, Marco 
Temperini, and Gentiane Venture, editors, Soft-
ware engineering and formal methods. SEFM 2021 
collocated workshops, pages 15–36. Springer Inter-
national Publishing, Cham, 2022. 

[91] Alan J Dix. Information processing, context and 
privacy. In Proceedings of INTERACT’90, pages 
15–20. IFIP, 1990. https://alandix.com/academic 
/papers/int90/. 

[92] J. Doyle. A truth maintenance system. Artificial 
Intelligence, 12(3):232–272, 1979. 

[93] H. Dreyfus. What computers can’t do. Harper and 
Row, New York, 2nd edition, 1979. 

Bibliography ■ 385 

[94] Emily Dreyfuss and Issie Lapowsky. Facebook 
is changing news feed (again) to stop fake news. 
Wired, 2019. 

[95] R. O. Duda, J. Gaschnig, and P. E. Hart. Model 
design in the PROSPECTOR consultant system 
for mineral exploration. In D. Michie, editor, Ex-
pert systems in the micro-electronic age. Edinburgh 
University Press, Edinburgh, 1979. 

[96] Susan T. Dumais et al. Latent semantic analysis. 
Annual Review of Information Science and Tech-
nology, 38(1):188–230, 2004. 

[97] Pamela Duncan, Niamh McIntyre, Rhi Storer, and 
Cath Levett. Who won and who lost: when A-
levels meet the algorithm. The Guardian (13 Au-
gust 2020). 

[98] Vedran Dunjko and Hans J Briegel. Machine 
learning & artificial intelligence in the quantum 
domain: A review of recent progress. Reports on 
Progress in Physics, 81(7):074001, 2018. 

[99] Sue Bradford Edwards and Duchess Harris. Hid-
den human computers: The black women of NASA. 
Hidden Heroes. Essential Library Dallas, TX, 
2016. 

[100] Andreas K. Engel and Pascal Fries. Chapter 3 -
neuronal oscillations, coherence, and conscious-
ness. In Steven Laureys, Olivia Gosseries, and 
Giulio Tononi, editors, The neurology of concious-
ness, pages 49–60. Academic Press, San Diego, 2nd 
edition, 2016. 

[101] David Ferrucci, Eric Brown, Jennifer Chu-Carroll, 
James Fan, David Gondek, Aditya A. Kalyanpur, 
Adam Lally, J. William Murdock, Eric Nyberg, 
John Prager, et al. Building Watson: An overview 
of the DeepQA project. AI Magazine, 31(3):59–79, 
2010. 

[102] C. Fillmore. The case for case. In E. Bach and 
R. T. Harms, editors, Universals in linguistic theory. 
Holt, New York, 1968. 

[103] O. Firschein, M. A. Fischler, L. S. Coles, and J. M. 
Tenenbaum. Forecasting and assessing the im-
pact of artificial intelligence on society. In IJCAI-
3, pages 105–120. Morgan Kaufmann, San Fran-
cisco, CA, 1974. 

[104] David V. Ford, Kerina H. Jones, Jean-Philippe 
Verplancke, Ronan A. Lyons, Gareth John, 
Ginevra Brown, Caroline J. Brooks, Simon 

https://alandix.com/academic/talks/CAR2023-keynote/
https://alandix.com/academic/talks/CAR2023-keynote/
https://alandix.com/academic/papers/simple98/
https://alandix.com/academic/papers/simple98/
https://hcibook.com/
https://alandix.com/academic/papers/int90/
https://alandix.com/academic/papers/int90/


386 ■ Bibliography 

Thompson, Owen Bodger, Tony Couch, et al. The 
SAIL Databank: Building a national architecture 
for e-health research and evaluation. BMC Health 
Services Research, 9(1):1–12, 2009. 

[105] E. M. Forster. The machine stops. 1909. 
The Oxford and Cambridge Review (November 
1909). https://archive.org/details/e.-m.-forster-
the-machine-stops_202008/. 

[106] Marcus Foth, Martin Tomitsch, Laura Forlano, 
M. Hank Haeusler, and Christine Satchell. Citi-
zens breaking out of filter bubbles: Urban screens 
as civic media. In Proceedings of the 5th ACM in-
ternational symposium on pervasive displays, pages 
140–147. ACM, New York, NY, 2016. 

[107] N. Friedman, M. Linial, I. Nachman, and D. Pe’er. 
Using Bayesian networks to analyze expression 
data. Journal of Computational Biology, 7(3– 
4):601–620, 2000. 

[108] Nat Friedman. Introducing GitHub Copilot: Your 
AI pair programmer, 2021. https://github.com/f 
eatures/copilot/. 

[109] Takuya Fukushima, Tomoharu Nakashima, and 
Hidehisa Akiyama. Evaluation-function model-
ing with multi-layered perceptron for RoboCup 
soccer 2D simulation. Artificial Life and Robotics, 
25(3):440–445, 2020. 

[110] Simson Garfinkel, Jeanna Matthews, Stuart S. 
Shapiro, and Jonathan M. Smith. Toward algorith-
mic transparency and accountability, 2017. 

[111] Kiran Garimella, Gianmarco De Fran-
cisci Morales, Aristides Gionis, and Michael 
Mathioudakis. Political discourse on social 
media: Echo chambers, gatekeepers, and the price 
of bipartisanship. In Proceedings of the 2018 world 
wide web conference, pages 913–922. ACM, New 
York, NY, 2018. 

[112] F. H. George. The brain as a computer. Pergamon 
Press, Oxford, 1961. 

[113] Peter A. Getting. Emerging principles governing 
the operation of neural networks. Annual Review 
of Neuroscience, 12(1):185–204, 1989. 

[114] B. Gholipour. We need to open the AI black box 
before it’s too late: If we don’t, the biases of our past 
could dictate our future. Futurism (18 January 
2018). 

[115] P. Ghosh. AAAS: Machine learning ‘causing sci-
ence crisis’. BBC News (16 February 2019):99–99. 

[116] Ian Goodfellow, Jean Pouget-Abadie, Mehdi 
Mirza, Bing Xu, David Warde-Farley, Sherjil 
Ozair, Aaron Courville, and Yoshua Bengio. Gen-
erative adversarial networks. Communications of 
the ACM, 63(11):139–144, 2020. 

[117] H. P. Grice. Logic and conversation. In P. Cole and 
J. Morgan, editors, Studies in syntax and semantics 
III: Speech acts, pages 183–198. Academic Press, 
New York, 1975. 

[118] Guardian. Microsoft ‘deeply sorry’ for racist and 
sexist tweets by AI chatbot. The Guardian (26 
March 2016). 

[119] Asela Gunawardana, Tim Paek, and Christopher 
Meek. Usability guided key-target resizing for soft 
keyboards. In Proceedings of the 15th international 
conference on Intelligent user interfaces, pages 111– 
118. ACM, New York, NY, 2010. 

[120] Alfréd Haar. Zur Theorie der orthogonalen 
Funktionensysteme. Mathematische Annalen, 
71(1):38–53, 1910. 

[121] Elizabeth L. Haines, Kay Deaux, and Nicole Lo-
faro. The times they are a-changing… or are they 
not? A comparison of gender stereotypes, 1983– 
2014. Psychology of Women Quarterly, 40(3):353– 
363, 2016. 

[122] Alon Halevy, Peter Norvig, and Fernando Pereira. 
The unreasonable effectiveness of data. IEEE In-
telligent Systems, 24(2):8–12, 2009. 

[123] R. Hall. Computational approaches to analogi-
cal reasoning. Artificial Intelligence, 39(1):39–120, 
1989. 

[124] S. Hawking, E. Musk, S. Wozniak, et al. Au-
tonomous weapons: An open letter from AI & 
robotics researchers. Technical Report 99. Future 
of Life Institute, 2015. 

[125] Jeff Hawkins, Subutai Ahmad, and Yuwei Cui. A 
theory of how columns in the neocortex enable 
learning the structure of the world. Frontiers in 
Neural Circuits, 11:81, 2017. 

[126] Christian Heath and Paul Luff. Collaboration 
and control crisis management and multimedia 
technology in London Underground line control 
rooms. Computer Supported Cooperative Work 
(CSCW), 1:69–94, 1992. 

[127] Julian Heinrich and Daniel Weiskopf. State of 
the art of parallel coordinates. In M. Sbert and 

https://archive.org/details/e.-m.-forster-the-machine-stops_202008/
https://archive.org/details/e.-m.-forster-the-machine-stops_202008/
https://github.com/features/copilot/
https://github.com/features/copilot/


Bibliography ■ 387 

L. Szirmay-Kalos, editors, Eurographics 2013 -
state of the art reports. The Eurographics Associ-
ation, Eindhoven, 2013. 

[128] James Hendler. Avoiding another AI winter. IEEE 
Intelligent Systems, 23(2):2–4, March 2008. 

[129] James Hendler, Nigel Shadbolt, Wendy Hall, Tim 
Berners-Lee, and Daniel Weitzner. Web science: 
An interdisciplinary approach to understanding 
the web. Communications of the ACM, 51(7):60– 
69, July 2008. 

[130] J. Henrich, S. Heine, and A. Norenzayan. The 
weirdest people in the world? Behavioral and 
Brain Sciences, 33(2–3):61–83, 2010. 

[131] Gary Higgs, Andrew Price, and Mitchel Langford. 
Investigating the impact of bank branch closures 
on access to financial services in the early stages of 
the COVID-19 pandemic. Journal of Rural Stud-
ies, 95:1–14, 2022. 

[132] Geoffrey E. Hinton. Learning multiple layers 
of representation. Trends in Cognitive Sciences, 
11(10):428–434, 2007. 

[133] Geoffrey E. Hinton and Ruslan R. Salakhutdinov. 
Reducing the dimensionality of data with neural 
networks. Science, 313(5786):504–507, 2006. 

[134] Tin Kam Ho. Random decision forests. In Pro-
ceedings of 3rd international conference on doc-
ument analysis and recognition, volume 1, pages 
278–282. IEEE, Los Alamitos, CA, 1995. 

[135] J. K. Hodgins, W. L. Wooten, D. C. Brogan, and 
J. F. O’Brien. Animating human athletics. In Pro-
ceedings of SIGGRAPH95. ACM, New York, NY, 
1995. 

[136] Johannes Hoffart, Fabian M. Suchanek, Klaus 
Berberich, and Gerhard Weikum. Yago2: A spa-
tially and temporally enhanced knowledge base 
from Wikipedia. Artificial Intelligence, 194:28–61, 
2013. Artificial Intelligence, Wikipedia and Semi-
Structured Resources. 

[137] John J. Hopfield, David I. Feinstein, and Richard G 
Palmer. ‘Unlearning’ has a stabilizing effect in col-
lective memories. Nature, 304:158–159, 1983. 

[138] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan 
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, 
and Weizhu Chen. LoRA: Low-rank adapta-
tion of large language models. arXiv preprint 
arXiv:2106.09685, 2021. 

[139] E. Hutchins. The technology of team navigation. 
In J. Gallagher, R. Kraut, and C. Egido, editors, 
Intellectual teamwork: Social and technical bases of 
collaborative work. Lawrence Erlbaum Associates, 
Hillsdale, NJ, 1990. 

[140] Matthew Hutson. AI learns the art of diplomacy. 
Science (New York, NY), 378(6622):818–818, 2022. 

[141] IFTTT. What is IFTTT? If this then 
that, 2023. https://ifttt.com/explore/new_to_ifttt 
accessed 01/01/2023. 

[142] Information Commissioner’s Office. Introduc-
tion to anonymisation: Draft anonymisation, 
pseudonymisation and privacy enhancing tech-
nologies guidance, 2021. Information Com-
missioner’s Office May 2021, https://ico.org. 
uk/media/about-the-ico/consultations/2619862/ 
anonymisation-intro-and-first-chapter.pdf. 

[143] Eugenie Jackson and Christina Mendoza. 
Setting the record straight: What the COMPAS 
Core risk and need assessment is and is not. 
Harvard Data Science Review, 2(1), 2020. 
https://doi.org/10.1162/99608f92.1b3dadaa. 

[144] Benjamin N. Jacobsen. Machine learning and the 
politics of synthetic data. Big Data & Society, 
10(1):20539517221145372, 2023. 

[145] William James. What is an emotion? Mind, 
9(34):188–205, 1884. 

[146] William James. The principles of psychology, 
chapter XI. Attention. Dover, New York, 
1890. https://psychclassics.yorku.ca/James/Princ 
iples/prin11.htm. 

[147] Youngseung Jeon, Bogoan Kim, Aiping Xiong, 
Dongwon Lee, and Kyungsik Han. Chamber-
breaker: Mitigating the echo chamber effect and 
supporting information hygiene through a gami-
fied inoculation system. Proceedings of the ACM 
on Human-Computer Interaction, 5(CSCW2):1– 
26, 2021. 

[148] Leisheng Jin, Zhuo Liu, and Lijie Li. Chain-
structure time-delay reservoir computing for syn-
chronizing chaotic signal and an application to se-
cure communication. EURASIP Journal on Ad-
vances in Signal Processing, 2022(1):1–17, 2022. 

[149] L. Johnson and N. E. Johnson. Knowledge elic-
itation involving teach-back interviewing. In 
A. Kidd, editor, Knowledge acquisition for expert 
systems. Plenum Press, London, 1987. 

https://ifttt.com/explore/new_to_ifttt
https://psychclassics.yorku.ca/James/Principles/prin11.htm
https://psychclassics.yorku.ca/James/Principles/prin11.htm
https://doi.org/10.1162/99608f92.1b3dadaa


388 ■ Bibliography 

[150] William Jones. Keeping found things found: The 
study and practice of personal information man-
agement. Morgan Kaufmann, Burlington, MA, 
2010. 

[151] Daniel Kahneman. Thinking, fast and slow. 
Macmillan, Basingstoke, 2011. 

[152] Daniel Keim, Jörn Kohlhammer, Geoffrey Ellis, 
and Florian Mansmann. Mastering the informa-
tion age: Solving problems with visual analytics. 
Eurographics Association, Goslar, 2010. https: 
//www.vismaster.eu/book/. 

[153] C. W. Kilmister. Language, logic and mathematics. 
English Universities Press, London, 1967. 

[154] Thomas Kluyver, Benjamin Ragan-Kelley, Fer-
nando Pérez, Brian E. Granger, Matthias Bus-
sonnier, Jonathan Frederic, Kyle Kelley, Jes-
sica B. Hamrick, Jason Grout, Sylvain Corlay, 
et al. Jupyter Notebooks – a publishing format 
for reproducible computational workflows. In F. 
Loizides and B. Schmidt, editors, Positioning and 
Power in Academic Publishing: Players, Agents and 
Agendas. IOS Press, Amsterdam, 2016. 

[155] T. Kohonen. Self organisation and associative 
memory. Springer-Verlag, Berlin, 3rd edition, 
1990. 

[156] D. Kushner. The real story of Stuxnet. IEEE Spec-
trum, 50(3):48–53, 2013. 

[157] J. E. Laird, A. Newell, and P. S. Rosenbloom. 
SOAR: An architecture for general intelligence. 
Artificial Intelligence, 33(1):1–64, 1987. 

[158] John E Laird. The Soar cognitive architecture. MIT 
Press, 2019. 

[159] I. Lapowsky. Google autocomplete still makes vile 
suggestions. Wired (2nd December 2018). 

[160] Matthew E. Larkum, Lucy S. Petro, Robert N. S. 
Sachdev, and Lars Muckli. A perspective on 
cortical layering and layer-spanning neuronal el-
ements. Frontiers in Neuroanatomy, 12(56), 
2018. 

[161] M. W. Lee and M. Walter. Equality im-
pact assessment: Literature review. Of-
fice of Qualifications and Examina-
tions Regulation (Ofqual) April 2020. 
https://assets.publishing.service.gov.uk/media/5e 
971f1de90e071a145ec51f/Equality_impact_asses 
sment_literature_review_15_April_2020.pdf. 

[162] P. Leith. Ell: An expert legislative consultant. In 
Proceedings lEE conference on man/machine sys-
tems, Manchester, UK, 1982. 

[163] P. Leith. Legal knowledge engineering: Computing, 
logic and law. PhD thesis, Open University, 1985. 

[164] D. B. Lenat and R. V. Guha. Building large knowl-
edge based systems. Addison-Wesley, Reading, 
MA, 1990. 

[165] S. Levin and J. Wong. Self-driving Uber kills Ari-
zona woman in first fatal crash involving pedes-
trian. The Guardian (19 March 2018). 

[166] Thomas Lewton. The Einstein machine. New Sci-
entist, 256(3414):44–47, 2022. 

[167] Jialiang Li, Ming Gao, and Ralph D’Agostino. 
Evaluating classification accuracy for modern 
learning approaches. Statistics in Medicine, 
38(13):2477–2503, 2019. 

[168] Joseph C. R. Licklider. Man-computer symbiosis. 
IRE Transactions on Human Factors in Electronics, 
HFE-1 (1):4–11, 1960. 

[169] Henry Lieberman. Constructing graphical user 
interfaces by example. In Proceedings: Graphics In-
terface, pages 295–302. National Research Coun-
cil of Canada, 1982 (SEE N 82-29909 20-61). https: 
//doi.org/10.20380/GI1982.44. 

[170] R. K. Lindsay, B. G. Buchanan, E. A. Feigenbaum, 
and J. Lederberg. Applications of artificial in-
telligence for organic chemistry: The DENDRAL 
project. McGraw-Hill, New York, 1980. 

[171] Jacques-Louis Lions, Lennart Luebeck, Jean-Luc 
Fauquembergue, Gilles Kahn, Wolfgang Kubbat, 
Stefan Levedag, Leonardo Mazzini, Didier Merle, 
and Colin O’Halloran. Ariane 5 flight 501 failure 
report by the inquiry board, 1996. http://sunnyd 
ay.mit.edu/nasa-class/Ariane5-report.html. 

[172] Ziming Liu, Yixuan Wang, Sachin Vaidya, 
Fabian Ruehle, James Halverson, Marin Soljačić, 
Thomas Y. Hou, and Max Tegmark. KAN: 
Kolmogorov–Arnold networks. arXiv preprint 
arXiv:22404.19756, 2024. 

[173] A. Liu, B. Feng, B. Wang, et al. DeepSeek-v2: 
A strong, economical, and efficient mixture-
of-experts language model. arXiv preprint 
arXiv:2405.04434, 2024. 

[174] Sarah Loos, Geoffrey Irving, Christian Szegedy, 
and Cezary Kaliszyk. Deep network guided proof 
search. arXiv preprint arXiv:1701.06972, 2017. 

https://www.vismaster.eu/book/
https://www.vismaster.eu/book/
https://assets.publishing.service.gov.uk/media/5e971f1de90e071a145ec51f/Equality_impact_assessment_literature_review_15_April_2020.pdf
https://assets.publishing.service.gov.uk/media/5e971f1de90e071a145ec51f/Equality_impact_assessment_literature_review_15_April_2020.pdf
https://assets.publishing.service.gov.uk/media/5e971f1de90e071a145ec51f/Equality_impact_assessment_literature_review_15_April_2020.pdf
https://doi.org/10.20380/GI1982.44
https://doi.org/10.20380/GI1982.44
http://sunnyday.mit.edu/nasa-class/Ariane5-report.html
http://sunnyday.mit.edu/nasa-class/Ariane5-report.html


[175] C. Loughlin. Sensors for industrial inspection. 
Kluwer Academic, Dordrecht, 1993. 

[176] Ada Lovelace. Notes upon the memoir by the trans-
lator: Sketch of the analytical engine invented by 
Charles Babbage, by L. F. Menabrea, Bibliothèque 
Universelle de Genève, October, 1842, no. 82. ht 
tps://www.fourmilab.ch/babbage/sketch.html. 

[177] Peter Lucas, Linda van der Gaag, and Ameen Abu-
Hanna. Bayesian networks in biomedicine and 
health-care. Artificial Intelligence in Medicine, 
30(3):201–214, 2004. 

[178] Scott M. Lundberg and Su-In Lee. A uni-
fied approach to interpreting model predictions. 
In Proceedings of the 31st international confer-
ence on neural information processing systems 
(NIPS’17), page 4768–4777. Curran Associates 
Inc, Red Hook, NY, 2017. 

[179] Richard Luscombe. Google engineer put on leave 
after saying AI chatbot has become sentient. The 
Guardian (December 2022). 

[180] Ronan A. Lyons, Kerina H. Jones, Gareth John, 
Caroline J. Brooks, Jean-Philippe Verplancke, 
David V. Ford, Ginevra Brown, and Ken Leake. 
The SAIL Databank: linking multiple health and 
social care datasets. BMC Medical Informatics and 
Decision Making, 9(1):1–8, 2009. 

[181] Alessio Malizia, Alan Chamberlain, and Ian Will-
cock. From design fiction to design fact: Devel-
oping future user experiences with proto-tools. 
In Masaaki Kurosu, editor, Human-computer in-
teraction: Theories, methods, and human issues, 
pages 159–168. Springer International Publishing, 
Berlin, 2018. 

[182] Jo Marchant. Powerful antibiotics discovered us-
ing AI. Nature News (20 February 2020). 

[183] Henry Markram. The human brain project. Sci-
entific American, 306(6):50–55, 2012. 

[184] D. Marr. Vision: A computational investigation into 
the human representation and processing of visual 
information. W. H. Freeman, San Francisco, 1982. 

[185] J. McCarthy and P. J. Hayes. Some philosophical 
problems from the standpoint of artificial intelli-
gence. In B. Meltzer and D. Michie, editors, Ma-
chine intelligence 4. Edinburgh University Press, 
Edinburgh, 1969. 

Bibliography ■ 389 

[186] J. L. McClelland and D. E. Rumelhart. Parallel dis-
tributed processing, volume 1. MIT Press, Cam-
bridge, MA, 1986. 

[187] Paige McGlauflin and Joseph Abrams. Elon Musk 
says AI will remove need for jobs and create ‘uni-
versal high income.’ But workers don’t want to 
wait for robots to get financial relief. Fortune, 
2023. 

[188] Katharine McGowan and Sean Geobey. “Harmful 
to the commonality”: The Luddites, the distribu-
tional effects of systems change and the challenge 
of building a just society. Social Enterprise Journal, 
18(2), 306-320, 2022. 

[189] Cade Metz. In two moves, AlphaGo and Lee Sedol 
redefined the future. WIRED (16 March 2016). 

[190] Nicholas Micallef, Marcelo Sandoval-Castañeda, 
Adi Cohen, Mustaque Ahamad, Srijan Kumar, 
and Nasir Memon. Cross-platform multi-
modal misinformation: Taxonomy, characteris-
tics and detection for textual posts and videos. 
In Proceedings of the international AAAI con-
ference on web and social media, volume 16, 
pages 651–662, Association for the Advance-
ment of Artificial Intelligence, Washington, DC, 
2022. 

[191] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. 
Corrado, and Jeff Dean. Distributed representa-
tions of words and phrases and their composition-
ality. Advances in Neural Information Processing 
Systems, 26, 3111–3119, 2013. 

[192] G. A. Miller. The magical number seven, plus or 
minus two: Some limits on our capacity to process 
information. Psychological Review, 63(2):81–97, 
1956. 

[193] George A. Miller. WordNet: A lexical database for 
English. Communications of the ACM, 38(11):39– 
41, 1995. 

[194] George A. Miller and Christiane Fellbaum. Word-
Net then and now. Language Resources and Eval-
uation, 41(2):209–214, 2007. 

[195] Dan Milmo and Alex Hern. TikTok: Why the app 
with 1bn users faces a fight for its existence. The 
Guardian (31 March 2023). 

[196] M. Minsky. A framework for representing knowl-
edge. In P. H. Winston, editor, The psychology of 
computer vision. McGraw-Hill, New York, 1975. 

https://www.fourmilab.ch/babbage/sketch.html
https://www.fourmilab.ch/babbage/sketch.html


390 ■ Bibliography 

[197] M. Minsky. The society of mind. Simon and Schus-
ter, New York, 1985. 

[198] M. Minsky and S. Papert. Perceptrons. MIT Press, 
Cambridge, MA, 1969. 

[199] T. M. Mitchell. Version spaces: An approach to 
concept learning. PhD thesis, Stanford University, 
Stanford, CA, 1978. 

[200] Matej Moravčík, Martin Schmid, Neil Burch, Vil-
iam Lisỳ, Dustin Morrill, Nolan Bard, Trevor 
Davis, Kevin Waugh, Michael Johanson, and 
Michael Bowling. DeepStack: Expert-level artifi-
cial intelligence in heads-up no-limit poker. Sci-
ence, 356(6337):508–513, 2017. 

[201] A. Morgan, A. Dix, M. Phillips, and C. House. 
Blue sky thinking meets green field usability: Can 
mobile internet software engineering bridge the 
rural divide? Local Economy, 29(6–7):750–761, 
2014. 

[202] Lev Muchnik, Sen Pei, Lucas C. Parra, Saulo D. 
S. Reis, José S. Andrade Jr, Shlomo Havlin, and 
Hernán A. Makse. Origins of power-law degree 
distribution in the heterogeneity of human activ-
ity in social networks. Scientific Reports, 3(1):1–8, 
2013. 

[203] Claire Mufson. What will France do with ’na-
tional debate’ data? 2019. https://www.france24. 
com/en/20190302-france-great-national-debate-
data-artificial-intelligence-politics-yellow-vests 
accessed 03/03/2019. 

[204] Mark A. Musen. The Protégé project: a look back 
and a look forward. AI Matters, 1(4):4–12, 2015. 
https://protege.stanford.edu/. 

[205] Brad A. Myers and William Buxton. Creating 
highly-interactive and graphical user interfaces by 
demonstration. In Proceedings of the 13th annual 
conference on computer graphics and interactive 
techniques, SIGGRAPH ’86, page 249–258. Asso-
ciation for Computing Machinery, New York, NY, 
1986. 

[206] J. Paul Myers and Kayako Yamakoshi. The 
Japanese Fifth Generation Computing Project: A 
brief overview. Journal of Computing Sciences in 
Colleges, 36(2):53–60, January 2021. 

[207] Miryam Naddaf. Europe spent €600 million to 
recreate the human brain in a computer: how did 
it go? Nature, 620(7975):718–720, 2023. 

[208] A. Newell. Unified theories of cognition and the 
role of SOAR. In J. A. Michon and A. Akyurek, 
editors, SOAR: A cognitive architecture in perspec-
tive, pages 25–79. Kluwer, Dordrecht, 1992. 

[209] A. Newell and H. A. Simon. Human problem solv-
ing. Prentice-Hall, Englewood Cliffs, NJ, 1972. 

[210] A. Newell and H. A. Simon. Computer science as 
empirical enquiry: Symbols and search. Commu-
nications of the ACM, 19:113–26, March 1976. 

[211] NICE. How nice measures value for money in rela-
tion to public health interventions. (Local govern-
ment briefing). National Institute for Health and 
Care Excellence, 1 September 2013, Manchester. 

[212] S. Noble. Google has a striking history of bias 
against black girls. Time (26 March 2018). 

[213] NPR. Twitter aims to crack down on misinforma-
tion, including misleading posts about Ukraine. 
NPR Technology (19 May 2022). 

[214] Brian Oakley and Kenneth Owen. Alvey: Britain’s 
strategic computing initiative. MIT Press, 1990. 

[215] Nic Oatridge. Wapping’86: The strike that broke 
Britain’s newspaper unions. ColdType, 2002, 
http://www.coldtype.net/Assets/pdfs/Wapping1. 
pdf. 

[216] Office of National Statistics. Sustainable devel-
opment indicators, July 2014. http://webarchive. 
nationalarchives.gov.uk/20160105183323/http:// 
www.ons.gov.uk/ons/rel/wellbeing/sustainable-
development-indicators/july-2014/sustainable-
development-indicators.html. 

[217] OpenAI. GPT-4 technical report. arXiv preprint 
[Submitted on 15 March 2023 (v1), last revised 27 
March 2023 (this version, v3)]. https://arxiv.org/ 
abs/2303.08774. 

[218] Dawn Ramanee Peiris. Computer interviews: 
Enhancing their effectiveness by simulating inter-
personal techniques. PhD thesis, University of 
Dundee, 1997. 

[219] Thomas Pellissier Tanon, Denny Vrandečić, Se-
bastian Schaffert, Thomas Steiner, and Lydia 
Pintscher. From Freebase to Wikidata: The great 
migration. In Proceedings of the 25th Interna-
tional conference on world wide web, WWW’16, 
page 1419–1428. International World Wide Web 
Conferences Steering Committee, Republic and 
Canton of Geneva, CHE, 2016. 

https://protege.stanford.edu/
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774


[220] Roger Penrose. The emperor’s new mind: Concern-
ing computers, minds and the laws of physics. Ox-
ford University Press, Oxford, 1989. 

[221] Roger Penrose. Shadows of the mind: A search 
for the missing science of consciousness. Science 
Spectra, 11:74–74, 1998. 

[222] F. C. N. Pereira and D. H. D. Warren. Definite 
clause grammars for language analysis – a sur-
vey of the formalism and a comparison with aug-
mented transition networks. Artificial Intelligence, 
13(3):231–78, 1980. 

[223] Andrés Pérez-Uribe and Eduardo Sanchez. Black-
jack as a test bed for learning strategies in neu-
ral networks. In 1998 IEEE international joint 
conference on neural networks proceedings: IEEE 
world congress on computational intelligence (Cat. 
No. 98CH36227), volume 3, pages 2022–2027. Los 
Alamitos, CA, IEEE, 1998. 

[224] Jean Piaget. Play, dreams and imitation in child-
hood (La formation du symbole chez l’enfant; imi-
tation, jeu et reve, image et représentation). Repub-
lished Norton, New York, NY (1962), Routledge, 
Abingdon (2013), 1945. 

[225] Luke Y. Prince and Blake A. Richards. The overfit-
ted brain hypothesis. Patterns, 2(5):100268, 2021. 

[226] J. R. Quinlan. Discovering rules by induction from 
large collections of examples. In D. Michie, editor, 
Expert systems in the micro-electronic age, pages 
168–201. Edinburgh University Press, Edinburgh, 
1979. 

[227] J. R. Quinlan. Induction of decision trees. Machine 
Learning, 1(1):81–106, 1986. 

[228] J. R. Quinlan. C4.5: Programs for machine learning. 
Morgan Kaufmann, Burlington, MA, 1993. 

[229] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, 
Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. 
arXiv preprint arXiv:2204.06125, 2022. 

[230] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, 
Scott Gray, Chelsea Voss, Alec Radford, Mark 
Chen, and Ilya Sutskever. Zero-shot text-to-
image generation. In International conference 
on machine learning, pages 8821–8831. PMLR, 
https://proceedings.mlr.press/v139/ramesh21a. 
html, 2021. 

[231] Jem Rayfield. BBC World Cup 2010 dynamic 
semantic publishing, 2010. BBC Internet Blog, 12 

Bibliography ■ 391 

July 2010. https://www.bbc.co.uk/blogs/bbcinter 
net/2010/07/bbc_world_cup_2010_dynamic_se 
m.html. 

[232] Paul Rayson and Roger Garside. The CLAWS web 
tagger. ICAME Journal, 22:121–123, 1998. 

[233] R. Reiter. On closed world data bases. In H. Gal-
laire and J. Minker, editors, Logic and data bases, 
pages 55–76. Plenum Press, New York, 1978. 

[234] Hanchi Ren, Jingjing Deng, and Xianghua Xie. 
GRNN: Generative regression neural network – a 
data leakage attack for federated learning. ACM 
Transactions on Intelligent Systems and Technol-
ogy, 13(4), May 2022. 

[235] Marco Tulio Ribeiro, Sameer Singh, and Carlos 
Guestrin. ‘‘Why should I trust you?”: Explain-
ing the predictions of any classifier. In Proceed-
ings of the 22nd ACM SIGKDD international con-
ference on knowledge discovery and data mining 
(KDD ’16), page 1135–1144. Association for Com-
puting Machinery, New York, NY, 2016. 

[236] Steven I. Ross, Fernando Martinez, Stephanie 
Houde, Michael Muller, and Justin D. Weisz. The 
programmer’s assistant: Conversational interac-
tion with a large language model for software 
development. In Proceedings of the 28th inter-
national conference on intelligent user interfaces, 
pages 491–514, ACM, New York, NY, 2023. 

[237] C. Rudder. Dataclysm: Who we are (when we think 
no one’s looking). Fourth Estate, London, 4th Es-
tate, 2014. 

[238] SAE International. Taxonomy and definitions 
for terms related to driving automation systems 
for on-road motor vehicles. SAE International, 
4970(724):1–5, 2018. 

[239] SAE International. SAE levels of driving 
automationTM refined for clarity and international 
audience. SAE Blog, posted: Monday (3 May 
2021), https://www.sae.org/blog/sae-j3016-upda 
te. 

[240] Haziqa Sajid. Can you build large language mod-
els like ChatGPT at half cost? UniteAI (11 May 
2023). https://www.unite.ai/can-you-build-larg 
e-language-models-like-chatgpt-at-half-cost/. 

[241] A. Salmoni. Task-based judgements of search en-
gine summaries, and negative information scent. 
PhD Thesis, Cardff University, September 2004. 

https://www.bbc.co.uk/blogs/bbcinternet/2010/07/bbc_world_cup_2010_dynamic_sem.html
https://www.bbc.co.uk/blogs/bbcinternet/2010/07/bbc_world_cup_2010_dynamic_sem.html
https://www.bbc.co.uk/blogs/bbcinternet/2010/07/bbc_world_cup_2010_dynamic_sem.html
https://www.sae.org/blog/sae-j3016-update
https://www.sae.org/blog/sae-j3016-update
https://www.unite.ai/can-you-build-large-language-models-like-chatgpt-at-half-cost/
https://www.unite.ai/can-you-build-large-language-models-like-chatgpt-at-half-cost/


392 ■ Bibliography 

[242] Leo Sauermann, Ansgar Bernardi, and Andreas 
Dengel. Overview and outlook on the semantic 
desktop. SDW’05, page 74–91. CEUR-WS.org, 
Aachan, DEU, 2005. 

[243] R. C. Schank and R. P. Abelson. Scripts, plans, 
goals, and understanding. Lawrence Erlbaum As-
sociates, Hillsdale, NJ, 1977. 

[244] Ari Schlesinger, Kenton P. O’Hara, and Alex S. 
Taylor. Let’s talk about race: Identity, chatbots, and 
AI. CHI ’18, page 1–14. Association for Comput-
ing Machinery, New York, NY, 2018. 

[245] Chistopher Schmandt and Barry Arons. Phone 
Slave: A graphical telecommunications interface. 
In Proceeding of the SID, volume 26, 1985. See 
video at https://www.youtube.com/watch?v=94j 
Ia7GIQu0. 

[246] Albrecht Schmidt. Implicit human computer in-
teraction through context. Personal Technologies, 
4:191–199, 2000. 

[247] Michael Schmidt and Hod Lipson. Distilling free-
form natural laws from experimental data. Sci-
ence, 324(5923):81–85, 2009. 

[248] Oscar Schwartz. Untold history of AI: Algorith-
mic bias was born in the 1980s. IEEE Spectrum, 
15, 2019. 

[249] J. R. Searle. Speech acts. Cambridge University 
Press, Cambridge, 1969. 

[250] J. R. Searle. Minds, brains and programs. Be-
havioural and Brain Sciences, 3:417–424, 1980. 

[251] T. J. Sejnowski and C. R. Rosenberg. Parallel net-
works that learn to pronounce English text. Com-
plex Systems, 1(1):145–168, 1987. 

[252] Nigel Shadbolt, Kieron O’Hara, David De Roure, 
and Wendy Hall. The theory and practice of social 
machines. Springer, Berlin, 2019. 

[253] Ehud Y. Shapiro. The Fifth Generation Project 
– a trip report. Commun. ACM, 26(9):637–641, 
September 1983. 

[254] Ying Shen, Lizhu Zhang, Jin Zhang, Min Yang, 
Buzhou Tang, Yaliang Li, and Kai Lei. CBN: Con-
structing a clinical Bayesian network based on 
data from the electronic medical record. Journal 
of Biomedical Informatics, 88:1–10, 2018. 

[255] B. Shneiderman. The eyes have it: A task by data 
type taxonomy for information visualizations. In 

Proceedings 1996 IEEE symposium on visual lan-
guages, pages 336–343, Los Alamitos, CA, 1996. 

[256] Ben Shneiderman. Bridging the gap between 
ethics and practice: Guidelines for reliable, safe, 
and trustworthy human-centered AI systems. 
ACM Transactions on Interactive Intelligent Sys-
tems (TiiS), 10(4):1–31, 2020. 

[257] Ben Shneiderman. Human-centered AI. Oxford 
University Press, Oxford, 2022. 

[258] E. H. Shortliffe. Computer-based medical consul-
tations: MYCIN. Elsevier, New York, 1976. 

[259] Christianna Silva. It took just one weekend for 
Meta’s new AI chatbot to become racist. Mashable 
(8 August 2022). 

[260] David Silver, Aja Huang, Chris J Maddison, 
Arthur Guez, Laurent Sifre, George Van 
Den Driessche, Julian Schrittwieser, Ioannis 
Antonoglou, Veda Panneershelvam, Marc 
Lanctot, et al. Mastering the game of Go with 
deep neural networks and tree search. Nature, 
529(7587):484–489, 2016. 

[261] D. Slate and L. Atkin. Chess 4.5 – the North-
western University chess program. In P. W. Frey, 
editor, Chess skill in man and machine. Springer-
Verlag, New York, 1977. 

[262] Matthew Sparkes. DeepMind uses AI to control 
plasma inside tokamak fusion reactor. New Scien-
tist (16 February 2022). 

[263] SSiW. SaySomethingin, 2023. https://www.says 
omethingin.com/ accessed 02/01/2023. 

[264] Kiran Stacey and Dan Milmo. UK, US, EU and 
China sign declaration of AI’s ‘catastrophic’ dan-
ger. The Guardian (1 November 2023). 

[265] Susan Leigh Star and James R. Griesemer. In-
stitutional ecology, ‘translations’ and boundary 
objects: Amateurs and professionals in Berkeley’s 
Museum of Vertebrate Zoology, 1907-39. Social 
Studies of Science, 19(3):387–420, 1989. 

[266] Daniel Stoljar. Physicalism. In Edward N. Zalta 
and Uri Nodelman, editors, Stanford encyclopedia 
of philosophy. Stanford University Press Stanford, 
CA, 2001. 

[267] Petr Suchánek, Franciszek Marecki, and Robert 
Bucki. Self-learning Bayesian networks in diag-
nosis. Procedia Computer Science, 35:1426–1435, 

https://www.youtube.com/watch?v=94jIa7GIQu0
https://www.youtube.com/watch?v=94jIa7GIQu0
https://www.saysomethingin.com/
https://www.saysomethingin.com/
https://CEUR-WS.org


2014. Knowledge-Based and Intelligent Informa-
tion & Engineering Systems 18th Annual Confer-
ence, KES-2014 Gdynia, Poland, September 2014 
Proceedings. 

[268] George Sullivan and Luke Burns. Cashing out: 
Assessing the risk of localised financial exclusion 
as the UK moves towards a cashless society. arXiv 
preprint arXiv:2202.05674, 2022. 

[269] W. R. Swartout. XPLAIN: A system for creating 
and explaining expert consulting programs. Arti-
ficial Intelligence, 21:285–325, 1983. 

[270] Gerald Tesauro. Neurogammon: A neural-
network backgammon program. In 1990 IJCNN 
international joint conference on neural networks, 
pages 33–39. IEEE, Los Alamitos, CA, 1990. 

[271] James J. Thomas and Kristin A. Cook. A visual 
analytics agenda. IEEE Computer Graphics and 
Applications, 26(1):10–13, 2006. 

[272] Edward P. Thompson. The making of the English 
working class: 1963. Vintage, New York, 1966. 

[273] Barbara Tizard and Martin Hughes. Young chil-
dren learning. Harvard University Press, Cam-
bridge, MA, also John Wiley & Sons (2008), 1984. 

[274] Hugo Touvron, Thibaut Lavril, Gautier Izacard, 
Xavier Martinet, Marie-Anne Lachaux, Timothée 
Lacroix, Baptiste Rozière, Naman Goyal, Eric 
Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
mand Joulin, Edouard Grave and Guillaume Lam-
ple. LLaMA: Open and efficient foundation lan-
guage models. arXiv preprint arXiv:2302.13971, 
2023. 

[275] Tony Ho Tran. Scientists built an AI to give ethical 
advice, but it turned out super racist. Futurism (22 
October 2021). 

[276] A. M. Turing. Computing machinery and intelli-
gence. Mind, 59:433–460, October 1950. 

[277] Lisa Tweedie, Bob Spence, Huw Dawkes, and Hua 
Su. The influence explorer. In Conference com-
panion on human factors in computing systems, 
CHI ’95, page 129–130. Association for Comput-
ing Machinery, New York, NY, 1995. 

[278] Twitter Inc. How we address misinformation on 
Twitter. Twitter Help Centre. https://help.twitter.c 
om/en/resources/addressing-misleading-info ac-
cessed 07/04/2023, 

Bibliography ■ 393 

[279] Silviu-Marian Udrescu and Max Tegmark. 
AI Feynman: A physics-inspired method 
for symbolic regression. Science Advances, 
6(16):eaay2631, 2020. 

[280] UK Government. The Bletchley Ceclaration by 
countries attending the AI Safety Summit, 1–2 
November 2023. Policy Paper. https://www.gov. 
uk/government/publications/ai-safety-summit-
2023-the-bletchley-declaration/the-bletchley-
declaration-by-countries-attending-the-ai-safety-
summit-1-2-november-2023. 

[281] UK Parliament. Statistics on access to cash, 
bank branches and ATMs. Research Briefing. 
House of Commons Library, 25 July 2022. 
https://commonslibrary.parliament.uk/research-
briefings/cbp-8570/. 

[282] UKRI. Framework for responsible research and 
innovation. https://www.ukri.org/about-us/eps 
rc/our-policies-and-standards/framework-for-
responsible-innovation/ accessed 11/03/2023. 

[283] Secretary-General United Nations. Joint call 
by the United Nations Secretary-General and 
the President of the International Commit-
tee of the Red Cross for states to establish 
new prohibitions and restrictions on au-
tonomous weapon systems. Note to Corre-
spondents (05 October 2023). https://www.un. 
org/sg/en/content/sg/note-correspondents/2023-
10-05/note-correspondents-joint-call-the-united-
nations-secretary-general-and-the-president-of-
the-international-committee-of-the-red-cross-
for-states-establish-new, 2023. 

[284] United Press International. Trump Plaza fined 
$200,000 for discrimination. UPI Archives (6 June 
1991) 

[285] Blase Ur, Melwyn Pak Yong Ho, Stephen Brawner, 
Jiyun Lee, Sarah Mennicken, Noah Picard, Diane 
Schulze, and Michael L. Littman. Trigger-action 
programming in the wild: An analysis of 200,000 
IFTTT recipes. In Proceedings of the 2016 CHI 
conference on human factors in computing systems, 
CHI’16, page 3227–3231. Association for Com-
puting Machinery, New York, NY, 2016. 

[286] Fabio Urbina, Filippa Lentzos, Cédric Invernizzi, 
and Sean Ekins. Dual use of artificial-intelligence-
powered drug discovery. Nature Machine Intelli-
gence, 4(3):189–191, 2022. 

https://help.twitter.com/en/resources/addressing-misleading-info
https://help.twitter.com/en/resources/addressing-misleading-info
https://commonslibrary.parliament.uk/research-briefings/cbp-8570/ 
https://commonslibrary.parliament.uk/research-briefings/cbp-8570/ 
https://www.ukri.org/about-us/epsrc/our-policies-and-standards/framework-for-responsible-innovation/
https://www.ukri.org/about-us/epsrc/our-policies-and-standards/framework-for-responsible-innovation/
https://www.ukri.org/about-us/epsrc/our-policies-and-standards/framework-for-responsible-innovation/


394 ■ Index 

[287] Ashish Vaswani, Noam Shazeer, Niki Par-
mar, Jakob Uszkoreit, Llion Jones, Aidan N. 
Gomez, Lukasz Kaiser, and Illia Polo-
sukhin. Attention is all you need, 2017 
doi:10.48550/ARXIV.1706.03762; https://arxiv. 
org/abs/1706.03762 . 

[288] D. Vernon, editor. Computer vision: Craft, engi-
neering and science. Springer-Verlag, Berlin, 1991. 

[289] Pablo Villalobos, Jaime Sevilla, Lennart Heim, 
Tamay Besiroglu, Marius Hobbhahn, and Anson 
Ho. Will we run out of data? An analysis of 
the limits of scaling datasets in machine learning, 
2022 doi: 10.48550/ARXIV.2211.04325; https://ar 
xiv.org/abs/2211.04325. 

[290] J. Vincent. Russian nuclear power plant in-
fected by Stuxnet malware says cyber-security ex-
pert. The Independent (Tuesday 12 November 
2013). 

[291] James Vincent. The lawsuit that could rewrite the 
rules of AI copyright. The Verge, 2022. 

[292] Soroush Vosoughi, Deb Roy, and Sinan Aral. The 
spread of true and false news online. Science, 
359(6380):1146–1151, 2018. 

[293] Matthew Wall, Rory Costello, and Stephen Lind-
say. The miracle of the markets: Identifying key 
campaign events in the Scottish independence ref-
erendum using betting odds. Electoral Studies, 
46:39–47, 2017. 

[294] D. L. Waltz. Understanding line drawings of 
scenes with shadows. In P. Winston, editor, The 
psychology of computer vision. McGraw-Hill, New 
York, 1975. 

[295] Lingfei Wang, Pieter Audenaert, and Tom Mi-
choel. High-dimensional Bayesian network in-
ference from systems genetics data using ge-
netic node ordering. Frontiers in Genetics, 10, 
2019 doi: 10.3389/fgene.2019.01196; https://doi. 
org/10.3389/fgene.2019.01196. 

[296] Peihao Wang, Rameswar Panda, Lucas Torroba 
Hennigen, Philip Greengard, Leonid Karlinsky, 

Rogerio Feris, David Daniel Cox, Zhangyang 
Wang, and Yoon Kim. Learning to grow pre-
trained models for efficient transformer training. 
arXiv preprint arXiv:2303.00980, 2023. 

[297] Stuart L. Weibel and Traugott Koch. The 
Dublin Core Metadata Initiative. D-lib Magazine, 
6(12):1082–9873, 2000. 

[298] Mark D. Weiser. Ubiquitous computing. In ACM 
conference on computer science, volume 418, pages 
197530–197680, ACM, New York, NY, 1994. 

[299] J. Weizenbaum. ELIZA – a computer program 
for the study of natural language communication 
between man and machine. Communications of 
the ACM, 9(1):36–44, 1966. 

[300] J. Weizenbaum. Computer power and human rea-
son: From judgement to calculation. Freeman, San 
Francisco, 1976. 

[301] T. Winograd. Understanding natural language. 
Addison-Wesley, Reading, MA, 1972. 

[302] W. A. Woods. Transition network grammars for 
natural language analysis. Communications of the 
ACM, 13(10):591–606, 1970. 

[303] Runhua Xu, Nathalie Baracaldo, and James 
Joshi. Privacy-preserving machine learning: 
Methods, challenges and directions. arXiv 
preprint arXiv:2108.04417, 2021. 

[304] R. M. Young and T. R. G. Green. Programmable 
user models for predictive evaluation of interface 
designs. In K. Bice and C. Lewis, editors, Proceed-
ings of CHI’89: Human factors in computing sys-
tems, pages 15–19, ACM, New York, NY, 1989. 

[305] Mingming Zha, Guozhu Meng, Chaoyang Lin, 
Zhe Zhou, and Kai Chen. RoLMA: A practical ad-
versarial attack against deep learning-based LPR 
systems. In Information security and cryptology: 
15th international conference, Inscrypt 2019, Nan-
jing, China, December 6–8, 2019, revised selected 
papers 15, pages 101–117. Springer, Berlin, 2020. 

https://arxiv.org/abs/2211.04325
https://arxiv.org/abs/2211.04325
https://doi.org/10.3389/fgene.2019.01196
https://doi.org/10.3389/fgene.2019.01196


Index 

A* algorithm, 49, 50, 55, 224 
abductive reasoning, 25, 26, 27, 34, 63 
accountability, 315, 362 
accuracy, 105, 119, 124, 178, 212, 228, 233, 

288, 290, 299, 302, 304, 306, 317, 
323, 332, 364, 368 

accuracy measure, 120, 129 
ACT-R, 345, 346, 354, 355 
activation function, 99 
active vision, 161, 232, 234, 235 
activity recognition, 304 
ACT∗ , 343, 345, 354 
Ada Lovelace, see Lovelace, Ada 
adjacency statistics, 262 
adversarial attacks, 325 
adversarial learning, 7, 102, 106, 116, 147, 

157, 158, 324, 337, 359, 369 
adversarial search, 39, 54 
agents, 155, 221, 236, 248, 249 

action, 236, 237, 238, 241, 248 
email filtering, 236, 238 
embodied, 237, 295, 300, 361 
intelligent filtering, 239 
machine learning, 239 
messages, 237 
methods, 237 

aggregation for privacy, 324 
AI arms race, 368 
AI winter, 6, 7, 375, 376, 378 
algorithmic accountability, 312, 313 
alien intelligence, 2, 343 
alpha–beta pruning, 147, 152, 154, 158 
AlphaFold, 214, 361, 362 
AlphaGo, 3, 7, 85, 102, 106, 148, 149, 157, 

158, 160, 346, 375 
AlphaGo Zero, 158 
AlphaZero, 375, 378 
Alvey Programme, 6 
ambiguity 

in computer vision, see ambiguous 
image 

lexical, 189 
pragmatic, 189 
referential, 189 
semantic, 189 
syntactic, 189 

ambiguous image, 161, 232, 348 
analogy, 16, 30, 79 

derivational, see derivational analogy 
transformational, see transformational 

analogy 
analytic rules, see procedural knowledge 
Analytical Engine, 4, 147 
Anderson, John Robert, 345 
Andrey Andreyevich Markov, see Markov, 

Andrey 
anonymisation, 323 
anonymous identifier, 253 
antecedent-driven reasoning, see bottom-up 

reasoning 
anti-discrimination laws, 315 
Apache Hadoop, 113, 116 
aperture, 232, 233 
application phase, 60, 118 
appropriate intelligence, 306, 308, 311 
appropriating technology, see appropriation 
appropriation, 294 
architecture, 123, 346 
AREA framework, 362, 363, 371 
area under the curve, 121, 130 
arithmetic mean, 94, 95, 96, 137 
ARMA (Auto Regressive Moving Average), 

216, 217, 220 
artificial emotion, 349 
artificial human intelligence, see artificial 
artificial imagination, 354 
artificial intelligence, 2, 4 

history, see history of AI 
artificial life, 221, 243, 246 
artificial neural networks, 6, 83, 360 
artificial society, 246 
Asimov, Isaac, 221, 362 
aspect ratio, 163, 178 
associative memory, 74, 80 
asymmetric distribution, 95 
attention, 347 
attention mechanisms, 214, 376 
augmented transition network, 192, 195, 

196 
auto-associative memory, 80, 138, 182 
auto-complete, 298 
auto-regressive model, 216, 217 
autoencoder, 80, 181, 182, 183, 187 
automated decision, 309, 310, 317, 325 
automation bias, 283, 362, 366 

autonomous car, 106, 222, 295, 302, 313, 
314, 315, 330, 363 

autonomous vehicle, 7, 231, 314, 362, 364, 
366, 370 

autonomous weapons, 314, 367, 378 
avoidance mechanisms, see obstacle 

avoidance 
avoidance rules, see obstacle avoidance 

B-splines, 99 
Babbage, Charles, 4, 147, 215 
backpropagation, 75, 76, 78, 96, 102, 103, 

122, 123, 127, 129, 182, 325, 337 
backtracking, 16, 23, 44, 48, 50, 54, 224 
backward branching factor, see branching 

factor 
backward chaining, see backward reasoning 
backward reasoning, 26, 223, 274, 275, 276, 

279 
bag of words, 141 
base rate, 119, 304, 329, 335 
Bayes Theorem, 28, 29, 33, 34, 171, 176, 181, 

276, 309 
Bayesian methods, 30, 33, 34, 242 
Bayesian network, 29, 33 
Berners-Lee, Tim, 7, 250 
best first search, 48, 49, 50, 55 
bias, 7, 67, 108, 211, 217, 313, 317, 318, 320, 

321, 323, 327, 328, 330, 331, 332, 
340, 341, 365, 366, 367 

bibliographic database, 240 
bibliographic search, 240 
Big Blue, 378 
big data, 7, 79, 102, 107, 115, 116, 188, 203, 

250, 313, 314, 316, 320, 323, 324, 
326, 329, 331, 334, 343, 376, 378 

binary image, 162, 173 
bitmap image, 179 
black-box machine learning, 283, 289, 320, 

328, 330, 331, 336, 337, 339, 340, 
341, 346 

blackboard architecture, 243, 244, 245 
blind search, 54 
Boden, Margaret, 357 
Boltzmann machine, 74, 80, 81, 83, 182 
Bombe, 4 
Boolean network, 337 
boosting, 108, 109, 247, 351, 352 

395 



396 ■ Index 

bootstrapping, 138, 158, 213, 282 
boredom, 347 
bottega, 359 
bottom-up algorithm, see bottom-up 

reasoning 
bottom-up reasoning, 26, 186, 192, 211 
boundary example, 337 
boundary objects, 294 
brain architecture, 74, 361 
branch and bound search, 46, 47, 49, 54, 64, 

152 
branching factor, 40, 41, 45, 54, 148, 223 
breadth first search, 43, 44, 45, 46, 47, 48, 50, 

53, 54, 152, 223 
Byzantine conditions, 97 

C4.5, 68 
Cambridge Analytica scandal, 314, 315, 316, 

323, 325, 331 
camera 

aperture, 233 
focus, 232, 233 
frame, 303 
pan, 186 
zoom, 186, 232 

cardinality of set, 141 
care robots, 343 
Cartesian coordinates, 90 
case grammar, 198, 199, 200, 202 
case memory, 32 
case-based reasoning, 30, 31, 32, 34, 35, 64 
cellular automata, 245, 246, 248 
central example, 337 
centroid, 92, 129, 328 
cerebral cortex, 83 
CERN, 115, 250 
certainty factors, 27, 29, 30, 34, 275, 291 
changes in status, see status change event 
Charniak, Eugene, 21 
chatbot, 3, 188, 201, 265, 275, 294, 298, 299, 

317, 361 
ChatGPT, 206, 298, 351, 354 
chess, see computer chess 
chess heuristic, 152 
chess program, 149, 157 
Chi squared, 335 
childhood cognitive development, 350 
Chinese room argument, 357, 358, 361, 370 
choice of features, 317 
chunking, 344 
Clarke, Arthur C., 4 
classification, 86, 299, 304, 305, 334, 337, 

338, 341 
Clippy, 237, 306, 307, 308 
closed list, 47 
closed world assumption, 16, 252, 253 
closed-loop control, 230, 231, 234 
cloud computation, 102 

clustering, 60, 75, 81, 84, 92, 93, 98, 100, 
108, 109, 115, 124, 129, 135, 136, 
140, 171, 285, 327, 328, 339, 341 

co-operating agents, see cooperating agents 
cognitive architecture, 74, 346 
coherence of clusters, 124 
coin-weighing problem, 155 
combinatorial explosion, 39, 114 
common ground, 333 
common sense, see domain-independent 

knowledge 
COMPAS, 283, 329, 362 
compliant motion, 230, 233, 234, 235 
computational argument, 357 
computer chess, 2, 12, 38, 39, 40, 41, 42, 70, 

74, 102, 147, 148, 149, 158, 204, 
249, 346 

computer vision, 6, 222, 226, 231, 232, 233, 
235, 288, 290, 294, 304, 348, 358, 
364, 378 

concept learning, 31, 63, 65, 240, 248, 282 
conditional probability, 28, 33 
confidence, 309 
confidence in output, 134, 304, 308 
confidence measures, 310 
confidence rating, 283 
configuration parameters, 118 
configuration space, 224, 225, 227, 234, 235 
confusion matrix, 304, 305 
connectionist model, 6, 74, 82, 87, 182, 292 
conscious, 353 
consciousness, 356, 360, 370, 372 
consequent-driven reasoning, see 

bottom-up reasoning 
conservative warnings, 310 
constraint propagation, 54 
constraint satisfaction, 4, 53, 55, 126, 127, 

173, 273, 276, 279 
constraint solving, see constraint satisfaction 
constraints, 38, 39, 40, 53, 54, 125, 126, 127, 

128, 129, 173, 179, 196, 234, 272, 
276 

context in language, 15 
context of human activity, 295 
context-aware interaction, 304 
context-free grammar, 195 
context-sensitive grammar, 192, 195, 196, 

198, 202 
contingency table, 73, 335 
continuity in learning, 127 
continuous distribution, 95 
contour following, 163 
converge, 79 
convolutional neural network, 116, 181, 187, 

303 
convolutions, 181 
Conway, John, 245, 249 
cooperating agents, 242, 248 
correlation, 185 

correlation matrix, 92, 107, 108 
cosine similarity, 141 
cost–benefit, 120, 239, 288, 290, 291 
counterfactual reasoning, 85, 242, 351 
cousin relationship, 13 
Covid pandemic, 365 
creativity, 356, 357, 358, 370, 371 
credit assignment, 70, 242 
critical point, 99 
cross-validation, 121 
crowdsourcing, 140, 183, 264, 266 
Cuban missile crisis, 153 
current state representation, 228, 229 
cyberattack, 314, 325, 378 
cyberwarfare, 314 
cyberweapons, 314 
CYC Project, 22 
cyclotorsion, 232 

Daleks, 221 
Damasio, Antonio, 361 
Dartmouth Workshop, 4 
data cleaning, 132, 137, 215 
data detector, 259, 297, 300, 308 
data documentation, 143 
data fusion, see sensor fusion 
data reduction, 84, 85, 97, 102, 107, 108, 

115, 116, 129, 143, 285 
data structure, 173 
data validation, 132 
data wrangling, 132 
data-driven reasoning, see forward 

reasoning 
database, 16, 17, 18, 25, 32, 33, 71, 132, 180, 

189, 193, 198, 200, 218, 238, 251, 
253, 254, 332, 344 

database identifier, 135 
database query, 198, 336 
DBpedia, 254, 255 
de-bias, 318, 323 
de-trending, see trend removal 
decibel, 215 
decision support system, 271, 283 
decision table, 73 
decision tree, 67, 72, 84, 85, 110, 117, 118, 

121, 122, 124, 135, 247, 248, 282, 
283, 298, 332, 334, 335, 336, 339, 
340, 376 

decision tree in IVR, 298 
decision trees, see decision tree 
declarative knowledge, 11, 12, 261, 279 
deduction, see deductive reasoning 
deductive learning, 61, 64, 73 
deductive reasoning, 26, 34, 63 
Deep Blue, 102 
deep fakes, 80, 183 
deep learning, see deep neural network 
deep neural network, 7, 76, 80, 81, 83, 84, 

98, 102, 103, 105, 106, 115, 116, 



Index ■ 397 

129, 148, 157, 158, 160, 182, 183, 
201, 203, 212, 217, 265, 283, 289, 
301, 310, 315, 317, 330, 331, 333, 
334, 336, 339, 341, 343, 346, 369, 
370, 375 

architecture, see neural-network 
architecture 

DeepSeek, 248, 370 
definite clause grammar, 196 
degrees of freedom (data), 105, 125 
degrees of freedom (robotics), 229, 232 
deliberate misinformation, 326 
delta, 78, 79, 142, 325 
DENDRAL, 276 
denial of service (DoS), 314 
dependent feature, 126 
dependent variable, 89 
depth first search, 43, 44, 45, 46, 48, 50, 53, 

54, 55, 275, 276 
depth of field, 232 
depth of search tree, 40, 54 
depth perception, 233 
derivational analogy, 30 
Descartes, Réne, 4, 253, 360 
design fiction, 371 
deterministic, 38, 241 
deterministic algorithms, 368 
deterministic ground, 301 
deterministic search, 38, 39, 54, 98, 148, 149 
dialogue, 275, 276 

mixed control, 275, 276 
system control, 275, 276 
user control, 275 

dialogue component, 273, 275, 283 
Difference Engine, 4, 215 
differential (calculus), 79, 127, 169 
diffusion models, 183, 184 
digital filtering, 164 
digital signal processing, 166 
digitisation, 161, 162, 186 
dimension reduction, 104, 105, 107, 125, 

370 
directed graph, 41 
disambiguation, 84, 197, 201, 232, 348 
discontinuous, 99, 205 
discrete distributions, 95 
disinformation, see misinformation 
distributed AI, 152, 242, 249 
distributed cognition, 245, 248 
divide and conquer, 224, 339 
document retrieval, 202 
domain knowledge, see domain-specific 

knowledge 
domain-independent knowledge, 11, 12, 21, 

22, 23, 52, 61, 272, 277 
domain-specific knowledge, 11, 53, 54, 105, 

136, 274, 275, 279, 280 
dominoes, 149, 150, 152 
dot-com period, 308 

down-sampling, 285 
dreaming, 349 
Dreyfus, Hubert, 357 
drunkards walk, 97 
DSP , see digital signal processing 
dualism, 360 
dynamic function allocation, 309 

EAGER, 237, 300 
EBL, see explanation-based learning 
ECG , 106, 128, 129, 135, 205, 206, 218, 280, 

283, 285 
echo chambers, 295, 315, 326, 378 
edge detection, 161, 162, 163, 166, 167, 169, 

170, 171, 173, 176, 181, 186, 233, 
347 

edge following, 170, 186 
egocentrism, 350 
Eiffel Tower, 261 
eigenvalues, see eigenvector 
eigenvector, 91, 92, 100, 101, 107 
eight queens problem, 36, 37 
ELIZA, 4, 5, 12, 192, 201, 297, 351, 357, 364 
email filtering agents, see email filtering 
embodied, see embodied 
embodied agents, see embodied 
emergent behaviour, 245, 246, 248, 295 
emotion, 85, 103, 343, 349, 350, 351, 352, 

353, 357, 362 
emotion recognition, 181 
empathy, 350, 351, 352, 360, 362 
energy landscape, 121 
Enigma machine, 4 
ensemble methods, 110, 247 

heterogeneous, 248 
homogeneous, 248 

entity recognition, 143, 259 
entropy, 68, 69, 124, 136, 335 
epiphenomenon, 360 
epistemic action, 232 
epistemic interaction, 311, 312 
equilibrium, 231 
ethics, 314, 317 
Euclidean distance, 49, 50 
European General Data Protection 

Regulation, see GDPR 
event, 25, 80, 115, 204, 205, 213, 237 
event stream, 107, 115, 219 
evidence-based medicine, 283 
exception sets, 134 
exclusive or problem, see XOR problem 
expert knowledge, 217, 218, 271, 272, 281, 

283, 284, 289, 291 
expert labelling, see human labelling 
expert system, 6, 23, 25, 28, 29, 59, 85, 217, 

271, 309, 316, 330, 331, 337, 345, 
362, 364 

brittleness, 277 
hybrid, 280 

limitations, 277 
meta-knowledge, 275, 277 
purpose, 288 
rule tracing, 274, 276 
shell, 277 
verification, 277 

expert system shell, 279, 291 
explainable AI, 3, 7, 118, 119, 217, 283, 291, 

310, 312, 316, 330, 331, 340, 365, 
368 

explanation, 315 
explanation component, 273, 275 
explanation-based learning, 64, 70, 71, 73 
explicit confirmation, 307 
exploration-exploitation trade-off, 232, 242, 

248, 352 
exponential decay, 215 
exponential growth, 45, 215 
extensional representation, 283, 332 
external semantics, 250, 259 

F score, 120, 129 
Facebook, 253, 316, 369 
facial recognition, 7, 180, 181, 323, 324 
fake news, 326 
false negative, 120, 121, 129, 290, 305, 325 
false positive, 120, 121, 129, 180, 288, 290, 

305, 325 
Fast Fourier Transform, 207 
fault tolerant, 74, 86, 113 
feasibility, see feasible solution 
feasible solution, 38, 50, 125, 126, 127 
feasible state, 38 
feature interaction, 295 
feature sets, 196 
federated learning, 325 
feedback, 205, 215, 230, 231, 234 
feedback phenomena, 96, 368 
feeling, 352 
Fifth Generation Computer Project, 6 
figure-ground separation, 233 
filter bubbles, see echo chambers 
finite impulse response, 206, 210, 216 
finite state machine, 194, 211 
FIR, see finite impulse response 
firewalls, 52 
first-order difference, 215 
first-order predicate calculus, 14 
fitness function, 118, 121, 122, 124, 126, 127, 

128, 211, 212, 317, 318, 320, 331 
fitness landscape, 52, 117, 121, 122, 123, 124, 

125, 126, 129 
fixation point, 232 
flocking behaviour, 246 
fMRI, 83 
focus, 232 
forgetful hill climbing, 50, 51, 55 
formal grammar, 200, 202 
formal logic, 14, 15 



398 ■ Index 

forward branching factor, see branching 
factor 

forward chaining, see forward reasoning 
forward reasoning, 26, 27, 223, 274, 276, 334 
foundation models, 201, 370 
four knights problem, 12 
Fourier analysis, 84, 304 
Fourier transform, 207 
fovea, 348 
FPGAs, 99 
frame, 20, 196, 279 
frame axiom, see frame problem 
frame of video, 125, 186, 187 
frame problem, 22, 23 
frame rate, 125 
Francis Crick, 349 
Frankenstein, 3, 221 
frequency domain, 84, 85, 205 
frequency space, see frequency domain 
fully connected, 75, 79, 80, 81, 83, 99, 103, 

125 
function allocation, 309 
fuzzy logic, 30, 34 
fuzzy reasoning, 27, 30, 33, 34 
fuzzy set theory, 30 

Game of Life, 245, 249 
game playing, 2, 4, 6, 7, 12, 38, 39, 52, 85, 

116, 183 
heuristics, 149 

game theory, 153 
game tree, 53, 148, 149, 150, 151, 152, 153, 

154, 155, 157, 159, xi 
game tree search, 53 
GAN, see generative adversarial network 
Gaussian distribution, see Normal 

distribution 
Gaussian filter, 165, 166, 170, 181 
GDPR, 315 
general knowledge, see 

domain-independent knowledge 
general problem solving, 4, 345, 346 
generalisation, 25, 31, 105, 121, 124 
generate and filter, 359 
generate and test, 39, 276, 359 
generations, 52 
generative adversarial network, 107, 183, 

337 
generative AI, 327, 358, 359, 376 
genes, 52, 110, 126, 127 
genetic algorithm, 52, 55, 64, 104, 110, 118, 

122, 123, 124, 125, 126, 135, 159, 
212, 288, 332, 336, 376 

genetic programming, 85, 124, 212, 289 
genotype, 52 
geographic information system, 135, 173 
geometric constraints, 179 
GeoNames, 254, 255 
gestalt, 85, 348 

gesture recognition, 179, 297 
gig economy, 295, 335, 366 
glial cells, 361 
global feedback, 230 
global minimum, 48, 52 
global planning, 222, 226, 227, 234 
global search, 122, 123, 124 
global synchronisation of oscillations, 360 
global workspace theory, 360 
Go, 3, 7, 40, 98, 102, 103, 106, 147, 148, 158, 

378 
goal state, 26, 36, 38, 39, 41, 42, 43, 44, 48, 

49, 55, 222, 223, 235, 346 
goal-driven reasoning, see backward 

reasoning 
Gödel, Kurt, 39 
Google, 7, 22, 114, 183, 240, 255, 257, 318, 

361, 369, 376 
Google alerts, 239 
Google Gemini, 206 
Google PageRank, see PageRank 
Google search, 32, 257, 317, 369 
GPT-3, 76, 201, 298 
GPT-4, 7, 314, 366 
GPU, see graphics processing unit 
graceful degradation, 74 
gradient ascent, 122 
gradient descent, 96, 122, 123, 124, 183 
gradient filters, see gradient operators 
gradient operators, 167, 169, 181 
grammar, 191, 192, 193, 194, 195, 196, 198, 

201, 202, 204, 210, 211, 219 
case, see case grammar 
context-free, see context-free grammar 
context-sensitive, see context-sensitive 

grammar 
rules, see grammar rules 
semantic, see semantic grammar 
syntactic, see syntactic grammar 

grammar fragment, 193, 194 
grammar rules, 192, 194, 376 
grammar-free approaches, 200 
graph identifier, 254 
graph search, 41, 47 
graphics processing unit, 166 
grey matter, 83 
grey-box techniques, 336, 339, 340 
grey-scale image, 162, 163, 165, 179, 185 
Grice’s conversational maxims, 333 
ground truth, 106, 183, 231, 280, 281, 289 
gut feeling, 346 

Harr wavelets, 207 
Hadoop, see Apache Hadoop 
HAL 9000, 4, 222 
handwriting recognition, 179, 205, 297 
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explicitness, 14, 16, 18, 19, 20 
expressiveness, 14, 16, 18, 19, 20 
frame, see frame 
granularity, 12 
metrics, 14, 16, 18, 19, 20 
procedural, see procedural knowledge 

script, see script 
structured, 19 

knowledge-based system, 25 
knowledge-rich AI, 6, 7 
knowledge-rich reasoning, 255, 376 
knowledge-rich search, 52, 53, 149, 222 
Kohonen networks, 81, 83, 84, 117 
Kolmogorov-Arnold Networks, 99, 100 
Kolmogorov-Arnold representation 

theorem, 99 

labelling, 128, 129, 173, 318 
Laird, John, 346 
LaMDA , 361 
language understanding, see natural 

language understanding 
Laplacian operator, 169 
Laplacian-of-Gaussian filter, 166, 170 
large language model, 7, 188, 201, 202, 248, 

351, 358, 359, 366, 370, 375, 376 
large language model meta AI, see LLaMA 
latent semantic analysis, 202 
latent space, 202, 340 
lateral inhibition, 83 
laws of robotics, 221, 362 
learning phase, see training phase 
learning rate, 123 
least squares, 89, 96, 107, 138 
Lee Sedol, 3, 7, 102, 158 
Lego-style matching, 214 
Lemoine, Blake, 361 
Lenat, Doug, 22 
Lex, 70 
lexical processing, 198 
lexicon, 191, 192, 193, 194, 195, 198 
liberal suggestions, 310 
Licklider, J.C.R., 284 
LiGO, 370 
limb control, 229 
LIME, 338, 341 
line labelling, 173, 175, 176, 177, 187 
linear discriminant analysis, 85, 92 
linear filter, 164, 166, 167, 169, 170 
linear growth operator, see LiGO 
linear patches, see piecewise linear 
linear planning, 224 
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