

Artificial Intelligence

An authoritative and accessible one-stop resource, the first edition of An Introduction to Artificial Intelligence
presented one of the first comprehensive examinations of AI. Designed to provide an understanding of the
foundations of artificial intelligence, it examined the central computational techniques employed by AI, including
knowledge representation, search, reasoning and learning, as well as the principal application domains of expert
systems, natural language, vision, robotics, software agents and cognitive modelling. Many of the major philosophical
and ethical issues of AI were also introduced. This new edition expands and revises the book throughout, with new
material to augment existing chapters, including short case studies, as well as adding new chapters on explainable
AI, big data and deep learning, temporal and web-scale data, statistical methods and data wrangling. It expands the
book’s focus on human-centred AI, covering gender, ethnic and social bias, the need for transparency, intelligent
user interfaces, and designing interactions to aid machine learning. With detailed, well-illustrated examples and
exercises throughout, this book provides a substantial and robust introduction to artificial intelligence in a clear
and concise coursebook form. It stands as a core text for all students and computer scientists approaching AI.

https://taylorandfrancis.com/

Artificial Intelligence
Humans at the Heart of Algorithms

Second Edition

Alan Dix with Janet Finlay

Designed cover image: Alan Dix

First edition published 2025
by CRC Press
2385 NW Executive Center Drive, Suite 320, Boca Raton FL 33431

and by CRC Press
4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2025 Alan Dix

First edition published by CRC Press 1996

Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all
materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this
publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been
acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic,
mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or
retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.com or contact the Copyright Clearance Center, Inc. (CCC),
222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. For works that are not available on CCC please contact mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used only for identification and explanation without intent
to infringe.

ISBN: 9780367536879 (hbk)
ISBN: 9780367515980 (pbk)
ISBN: 9781003082880 (ebk)

DOI: 10.1201/ 9781003082880

Typeset in Minion
by Deanta Global Publishing Services, Chennai, India

mailto:mpkbookspermissions@tandf.co.uk
http://dx.doi.org/10.1201/9781003082880

Contents

Preface, xxi

About the Author, xxiii

CHAPTER 1 ■ Introduction 1

1.1 WHAT IS ARTIFICIAL INTELLIGENCE? 1

1.1.1 How Much Like a Human: Strong vs. Weak AI 1

1.1.2 Top-down or Bottom-up: Symbolic vs. Sub-symbolic 1

1.1.3 A Working Definition 2

1.1.4 Human Intelligence 2

1.1.5 Bottom-up and Top-down 3

1.2 HUMANS AT THE HEART 3

1.3 A SHORT HISTORY OF ARTIFICIAL INTELLIGENCE 3

1.3.1 The Development of AI 4

1.3.2 The Physical Symbol System Hypothesis 5

1.3.3 Sub-symbolic Spring 6

1.3.4 AI Renaissance 7

1.3.5 Moving Onwards 7

1.4 STRUCTURE OF THIS BOOK – A LANDSCAPE OF AI 7

SECTION I Knowledge-Rich AI

CHAPTER 2 ■ Knowledge in AI 11

2.1 OVERVIEW 11

2.2 INTRODUCTION 11

2.3 REPRESENTING KNOWLEDGE 12

2.4 METRICS FOR ASSESSING KNOWLEDGE REPRESENTATION SCHEMES 13

2.5 LOGIC REPRESENTATIONS 14

2.6 PROCEDURAL REPRESENTATION 16

2.6.1 The Database 16

2.6.2 The Production Rules 16

2.6.3 The Interpreter 17

2.6.4 An Example Production System: Making a Loan 18

v

vi ■ Artificial Intelligence

2.7 NETWORK REPRESENTATIONS 19

2.8 STRUCTURED REPRESENTATIONS 19

2.8.1 Frames 20

2.8.2 Scripts 20

2.9 GENERAL KNOWLEDGE 22

2.10 THE FRAME PROBLEM 22

2.11 KNOWLEDGE ELICITATION 23

2.12 SUMMARY 23

CHAPTER 3 ■ Reasoning 25

3.1 OVERVIEW 25

3.2 WHAT IS REASONING? 25

3.3 FORWARD AND BACKWARD REASONING 26

3.4 REASONING WITH UNCERTAINTY 27

3.4.1 Non-monotonic Reasoning 27

3.4.2 Probabilistic Reasoning 28

3.4.3 Certainty Factors 29

3.4.4 Fuzzy Reasoning 30

3.4.5 Reasoning by Analogy 30

3.4.6 Case-based Reasoning 30

3.5 REASONING OVER NETWORKS 32

3.6 CHANGING REPRESENTATIONS 33

3.7 SUMMARY 34

CHAPTER 4 ■ Search 36

4.1 INTRODUCTION 36

4.1.1 Types of Problem 36

4.1.2 Structuring the Search Space 39

4.2 EXHAUSTIVE SEARCH AND SIMPLE PRUNING 42

4.2.1 Depth and Breadth First Search 43

4.2.2 Comparing Depth and Breadth First Searches 43

4.2.3 Programming and Space Costs 44

4.2.4 Iterative Deepening and Broadening 45

4.2.5 Finding the Best Solution – Branch and Bound 46

4.2.6 Graph Search 47

4.3 HEURISTIC SEARCH 47

4.3.1 Hill Climbing and Best First – Goal-directed Search 48

4.3.2 Finding the Best Solution – The A∗ Algorithm 49

4.3.3 Inexact Search 50

Contents ■ vii

4.4 KNOWLEDGE-RICH SEARCH 52

4.4.1 Constraint Satisfaction 53

4.5 SUMMARY 54

SECTION II Data and Learning

CHAPTER 5 ■ Machine Learning 59

5.1 OVERVIEW 59

5.2 WHY DO WE WANT MACHINE LEARNING? 59

5.3 HOW MACHINES LEARN 60

5.3.1 Phases of Machine Learning 60

5.3.2 Rote Learning and the Importance of Generalisation 61

5.3.3 Inputs to Training 61

5.3.4 Outputs of Training 63

5.3.5 The Training Process 63

5.4 DEDUCTIVE LEARNING 64

5.5 INDUCTIVE LEARNING 64

5.5.1 Version Spaces 65

5.5.2 Decision Trees 67

5.5.2.1 Building a Binary Tree 68

5.5.2.2 More Complex Trees 69

5.5.3 Rule Induction and Credit Assignment 70

5.6 EXPLANATION-BASED LEARNING 70

5.7 EXAMPLE: QUERY-BY-BROWSING 71

5.7.1 What the User Sees 71

5.7.2 How It Works 71

5.7.3 Problems 72

5.8 SUMMARY 73

CHAPTER 6 ■ Neural Networks 74

6.1 OVERVIEW 74

6.2 WHY USE NEURAL NETWORKS? 74

6.3 THE PERCEPTRON 74

6.3.1 The XOR Problem 75

6.4 THE MULTI-LAYER PERCEPTRON 75

6.5 BACKPROPAGATION 76

6.5.1 Basic Principle 78

6.5.2 Backprop for a Single Layer Network 78

6.5.3 Backprop for hidden layers 79

viii ■ Artificial Intelligence

6.6 ASSOCIATIVE MEMORIES 80

6.6.1 Boltzmann Machines 80

6.6.2 Kohonen Self-organising Networks 81

6.7 LOWER-LEVEL MODELS 82

6.7.1 Cortical Layers 83

6.7.2 Inhibition 83

6.7.3 Spiking Neural Networks 84

6.8 HYBRID ARCHITECTURES 84

6.8.1 Hybrid Layers 84

6.8.2 Neurosymbolic AI 85

6.9 SUMMARY 86

CHAPTER 7 ■ Statistical and Numerical Techniques 88

7.1 OVERVIEW 88

7.2 LINEAR REGRESSION 88

7.3 VECTORS AND MATRICES 90

7.4 EIGENVALUES AND PRINCIPAL COMPONENTS 91

7.5 CLUSTERING AND K-MEANS 92

7.6 RANDOMNESS 93

7.6.1 Simple Statistics 93

7.6.2 Distributions and Long-tail Data 95

7.6.3 Least Squares 96

7.6.4 Monte Carlo Techniques 97

7.7 NON-LINEAR FUNCTIONS FOR MACHINE LEARNING 98

7.7.1 Support Vector Machines 98

7.7.2 Reservoir Computing 99

7.7.3 Kolmogorov-Arnold Networks 99

7.8 SUMMARY 100

CHAPTER 8 ■ Going Large: Deep Learning and Big Data 102

8.1 OVERVIEW 102

8.2 DEEP LEARNING 102

8.2.1 Why Are Many Layers so Difficult? 103

8.2.2 Architecture of the Layers 103

8.3 GROWING THE DATA 105

8.3.1 Modifying Real Data 105

8.3.2 Virtual Worlds 106

8.3.3 Self-Learning 106

8.4 DATA REDUCTION 107

Contents ■ ix

8.4.1 Dimension Reduction 107

8.4.1.1 Vector Space Techniques 107

8.4.1.2 Non-numeric Features 108

8.4.2 Reduce Total Number of Data Items 108

8.4.2.1 Sampling 108

8.4.2.2 Aggregation 109

8.4.3 Segmentation 109

8.4.3.1 Class Segmentation 109

8.4.3.2 Result Recombination 109

8.4.3.3 Weakly Communicating Partial Analysis 110

8.5 PROCESSING BIG DATA 110

8.5.1 Why It Is Hard – Distributed Storage and Computation 110

8.5.2 Principles behind MapReduce 111

8.5.3 MapReduce for the Cloud 112

8.5.4 If It Can Go Wrong – Resilience for Big Processing 112

8.6 DATA AND ALGORITHMS AT SCALE 113

8.6.1 Big Graphs 113

8.6.2 Time Series and Event Streams 115

8.6.2.1 Multi-scale with Mega-windows 115

8.6.2.2 Untangling Streams 115

8.6.2.3 Real-time Processing 115

8.7 SUMMARY 115

CHAPTER 9 ■ Making Sense of Machine Learning 117

9.1 OVERVIEW 117

9.2 THE MACHINE LEARNING PROCESS 117

9.2.1 Training Phase 117

9.2.2 Application Phase 118

9.2.3 Validation Phase 118

9.3 EVALUATION 119

9.3.1 Measures of Effectiveness 119

9.3.2 Precision–Recall Trade-off 120

9.3.3 Data for Evaluation 121

9.3.4 Multi-stage Evaluation 121

9.4 THE FITNESS LANDSCAPE 121

9.4.1 Hill-Climbing and Gradient Descent/Ascent 122

9.4.2 Local Maxima and Minima 122

9.4.3 Plateau and Ridge Effects 123

9.4.4 Local Structure 123

x ■ Artificial Intelligence

9.4.5 Approximating the Landscape 124

9.4.6 Forms of Fitness Function 124

9.5 DEALING WITH COMPLEXITY 124

9.5.1 Degrees of Freedom and Dimension Reduction 124

9.5.2 Constraints and Dependent Features 125

9.5.3 Continuity and Learning 127

9.5.4 Multi-objective Optimisation 127

9.5.5 Partially Labelled Data 128

9.6 SUMMARY 129

CHAPTER 10 ■ Data Preparation 132

10.1 OVERVIEW 132

10.2 STAGES OF DATA PREPARATION 132

10.3 CREATING A DATASET 132

10.3.1 Extraction and Gathering of Data 132

10.3.2 Entity Reconciliation and Linking 133

10.3.3 Exception Sets 134

10.4 MANIPULATION AND TRANSFORMATION OF DATA 134

10.4.1 Types of Data Value 134

10.4.2 Transforming to the Right Kind of Data 135

10.5 NUMERICAL TRANSFORMATIONS 136

10.5.1 Information 136

10.5.2 Normalising Data 136

10.5.3 Missing Values – Filling the Gaps 137

10.5.4 Outliers – Dealing with Extremes 138

10.6 NON-NUMERIC TRANSFORMATIONS 140

10.6.1 Media Data 140

10.6.2 Text 140

10.6.3 Structure Transformation 141

10.7 AUTOMATION AND DOCUMENTATION 142

10.8 SUMMARY 143

SECTION III Specialised Areas

CHAPTER 11 ■ Game Playing 147

11.1 OVERVIEW 147

11.2 INTRODUCTION 147

11.3 CHARACTERISTICS OF GAME PLAYING 148

11.4 STANDARD GAMES 149

Contents ■ xi

11.4.1 A Simple Game Tree 149

11.4.2 Heuristics and Minimax Search 149

11.4.3 Horizon Problems 151

11.4.4 Alpha–beta Pruning 152

11.4.5 The Imperfect Opponent 152

11.5 NON-ZERO-SUM GAMES AND SIMULTANEOUS PLAY 152

11.5.1 The Prisoner’s Dilemma 153

11.5.2 Searching the Game Tree 153

11.5.3 No Alpha–Beta Pruning 154

11.5.4 Pareto-optimality 154

11.5.5 Multi-party Competition and Co-operation 155

11.6 THE ADVERSARY IS LIFE! 155

11.7 PROBABILITY 155

11.8 NEURAL NETWORKS FOR GAMES 157

11.8.1 Where to Use a Neural Network 157

11.8.2 Training Data and Self Play 158

11.9 SUMMARY 158

CHAPTER 12 ■ Computer Vision 161

12.1 OVERVIEW 161

12.2 INTRODUCTION 161

12.2.1 Why Computer Vision Is Difficult 161

12.2.2 Phases of Computer Vision 161

12.3 DIGITISATION AND SIGNAL PROCESSING 162

12.3.1 Digitising Images 162

12.3.2 Thresholding 163

12.3.3 Digital Filters 164

12.3.3.1 Linear Filters 164

12.3.3.2 Smoothing 165

12.3.3.3 Gaussian Filters 165

12.3.3.4 Practical Considerations 166

12.4 EDGE DETECTION 166

12.4.1 Identifying Edge Pixels 167

12.4.1.1 Gradient Operators 167

12.4.1.2 Robert’s Operator 167

12.4.1.3 Sobel’s Operator 168

12.4.1.4 Laplacian Operator 169

12.4.1.5 Successive Refinement and Marr’s Primal Sketch 170

12.4.2 Edge Following 170

175

180

185

190

195

xii ■ Artificial Intelligence

12.5 REGION DETECTION 171

12.5.1 Region Growing 171

12.5.2 The Problem of Texture 172

12.5.3 Representing Regions – Quadtrees 173

12.5.4 Computational Problems 173

12.6 RECONSTRUCTING OBJECTS 173

12.6.1 Inferring Three-Dimensional Features 173

12.6.1.1 Problems with Labelling

12.6.2 Using Properties of Regions 176

12.7 IDENTIFYING OBJECTS 177

12.7.1 Using Bitmaps 177

12.7.2 Using Summary Statistics 178

12.7.3 Using Outlines 178

12.7.4 Using Paths 179

12.8 FACIAL AND BODY RECOGNITION

12.9 NEURAL NETWORKS FOR IMAGES 181

12.9.1 Convolutional Neural Networks 181

12.9.2 Autoencoders 182

12.10 GENERATIVE ADVERSARIAL NETWORKS 183

12.10.1 Generated Data 183

12.10.2 Diffusion Models 183

12.10.3 Bottom-up and Top-down Processing 184

12.11 MULTIPLE IMAGES 184

12.11.1 Stereo Vision

12.11.2 Moving Pictures 186

12.12 SUMMARY 186

CHAPTER 13 ■ Natural Language Understanding 188

13.1 OVERVIEW 188

13.2 WHAT IS NATURAL LANGUAGE UNDERSTANDING? 188

13.3 WHY DO WE NEED NATURAL LANGUAGE UNDERSTANDING? 188

13.4 WHY IS NATURAL LANGUAGE UNDERSTANDING DIFFICULT? 189

13.5 AN EARLY ATTEMPT AT NATURAL LANGUAGE UNDERSTANDING: SHRDLU

13.6 HOW DOES NATURAL LANGUAGE UNDERSTANDING WORK? 190

13.7 SYNTACTIC ANALYSIS 192

13.7.1 Grammars 192

13.7.2 An Example: Generating a Grammar Fragment 193

13.7.3 Transition Networks 194

13.7.4 Context-sensitive Grammars

Contents ■ xiii

13.7.5 Feature Sets 196

13.7.6 Augmented Transition Networks 196

13.7.7 Taggers 196

13.8 SEMANTIC ANALYSIS 197

13.8.1 Semantic Grammars 198

13.8.1.1 An Example: A Database Query Interpreter Revisited 198

13.8.2 Case Grammars 199

13.9 PRAGMATIC ANALYSIS 200

13.9.1 Speech Acts 200

13.10 GRAMMAR-FREE APPROACHES 200

13.10.1 Template Matching 201

13.10.2 Keyword Matching 201

13.10.3 Predictive Methods 201

13.10.4 Statistical Methods 202

13.11 SUMMARY 202

13.12 SOLUTION TO SHRDLU PROBLEM 203

CHAPTER 14 ■ Time Series and Sequential Data 204

14.1 OVERVIEW 204

14.2 GENERAL PROPERTIES 204

14.2.1 Kinds of Temporal and Sequential Data 204

14.2.2 Looking through Time 205

14.2.3 Processing Temporal Data 205

14.2.3.1 Windowing 206

14.2.3.2 Hidden State 206

14.2.3.3 Non-time Domain Transformations 207

14.3 PROBABILITY MODELS 207

14.3.1 Markov Model 207

14.3.2 Higher-order Markov Model 209

14.3.3 Hidden Markov Model 210

14.4 GRAMMAR AND PATTERN-BASED APPROACHES 210

14.4.1 Regular Expressions 210

14.4.2 More Complex Grammars 211

14.5 NEURAL NETWORKS 212

14.5.1 Window-based Methods 212

14.5.2 Recurrent Neural Networks 212

14.5.3 Long-term Short-term Memory Networks 213

14.5.4 Transformer Models 214

14.6 STATISTICAL AND NUMERICAL TECHNIQUES 214

xiv ■ Artificial Intelligence

14.6.1 Simple Data Cleaning Techniques 215

14.6.2 Logarithmic Transformations and Exponential Growth 215

14.6.3 ARMA Models 216

14.6.4 Mixed Statistics/ML Models 217

14.7 MULTI-STAGE/MULTI-SCALE 217

14.8 SUMMARY 219

CHAPTER 15 ■ Planning and Robotics 221

15.1 OVERVIEW 221

15.2 INTRODUCTION 221

15.2.1 Friend or Foe? 221

15.2.2 Different Kinds of Robots 222

15.3 GLOBAL PLANNING 222

15.3.1 Planning Actions – Means–Ends Analysis 222

15.3.2 Planning Routes – Configuration Spaces 224

15.4 LOCAL PLANNING 226

15.4.1 Local Planning and Obstacle Avoidance 226

15.4.2 Finding Out about the World 227

15.5 LIMBS, LEGS AND EYES 229

15.5.1 Limb Control 229

15.5.2 Walking – On One, Two or More Legs 230

15.5.3 Active Vision 232

15.6 PRACTICAL ROBOTICS 233

15.6.1 Controlling the Environment 233

15.6.2 Safety and Hierarchical Control 233

15.7 SUMMARY 234

CHAPTER 16 ■ Agents 236

16.1 OVERVIEW 236

16.2 SOFTWARE AGENTS 236

16.2.1 The Rise of the Agent 236

16.2.2 Triggering Actions 237

16.2.3 Watching and Learning 238

16.2.4 Searching for Information 239

16.3 REINFORCEMENT LEARNING 241

16.3.1 Single Step Learning 241

16.3.2 Choices during Learning 242

16.3.3 Intermittent Rewards and Credit Assignment 242

16.4 CO-OPERATING AGENTS AND DISTRIBUTED AI 242

Contents ■ xv

16.4.1 Blackboard Architectures 243

16.4.2 Distributed Control 244

16.5 LARGER COLLECTIVES 245

16.5.1 Emergent Behaviour 245

16.5.2 Cellular Automata 245

16.5.3 Artificial Life 246

16.5.4 Swarm Computing 246

16.5.5 Ensemble Methods 247

16.6 SUMMARY 248

CHAPTER 17 ■ Web-scale Reasoning 250

17.1 OVERVIEW 250

17.2 THE SEMANTIC WEB 250

17.2.1 Representing Knowledge – RDF and Triples 250

17.2.2 Ontologies 252

17.2.3 Asking Questions – SPARQL 253

17.2.4 Talking about RDF – Reification, Named Graphs and Provenance 253

17.2.5 Linked Data – Connecting the Semantic Web 254

17.3 MINING THE WEB: SEARCH AND SEMANTICS 256

17.3.1 Search Words and Links 257

17.3.2 Explicit Markup 258

17.3.3 External Semantics 259

17.4 USING WEB DATA 260

17.4.1 Knowledge-rich Applications 260

17.4.2 The Surprising Power of Big Data 261

17.5 THE HUMAN WEB 263

17.5.1 Recommender Systems 263

17.5.2 Crowdsourcing and Human Computation 264

17.5.3 Social Media as Data 265

17.6 SUMMARY 266

SECTION IV Humans at the Heart

CHAPTER 18 ■ Expert and Decision Support Systems 271

18.1 OVERVIEW 271

18.2 INTRODUCTION – EXPERTS IN THE LOOP 271

18.3 EXPERT SYSTEMS 272

18.3.1 Uses of Expert Systems 272

18.3.2 Architecture of an Expert System 273

xvi ■ Artificial Intelligence

18.3.3 Explanation Facility 273

18.3.4 Dialogue and UI Component 275

18.3.5 Examples of Four Expert Systems 275

18.3.5.1 Example 1: MYCIN 275

18.3.5.2 Example 2: PROSPECTOR 276

18.3.5.3 Example 3: DENDRAL 276

18.3.5.4 Example 4: XCON 276

18.3.6 Building an Expert System 276

18.3.7 Limitations of Expert Systems 277

18.4 KNOWLEDGE ACQUISITION 277

18.4.1 Knowledge Elicitation 277

18.4.1.1 Unstructured Interviews 278

18.4.1.2 Structured Interviews 278

18.4.1.3 Focused Discussions 278

18.4.1.4 Role Reversal 278

18.4.1.5 Think-aloud 279

18.4.2 Knowledge Representation 279

18.4.2.1 Expert System Shells 279

18.4.2.2 High-level Programming Languages 279

18.4.2.3 Ontologies 279

18.4.2.4 Selecting a Tool 280

18.5 EXPERTS AND MACHINE LEARNING 280

18.5.1 Knowledge Elicitation for ML 281

18.5.1.1 Acquiring Tacit Knowledge 281

18.5.1.2 Feature Selection 282

18.5.1.3 Expert Labelling 282

18.5.1.4 Iteration and Interaction 282

18.5.2 Algorithmic Choice, Validation and Explanation 282

18.6 DECISION SUPPORT SYSTEMS 283

18.6.1 Visualisation 284

18.6.2 Data Management and Analysis 285

18.6.3 Visual Analytics 286

18.6.3.1 Visualisation in VA 286

18.6.3.2 Data Management and Analysis for VA 287

18.7 STEPPING BACK 288

18.7.1 Who Is It About? 288

18.7.2 Why Are We Doing It? 288

18.7.3 Wider Context 289

18.7.4 Cost–Benefit Balance 290

Contents ■ xvii

18.8 SUMMARY 291

CHAPTER 19 ■ AI Working with and for Humans 293

19.1 OVERVIEW 293

19.2 INTRODUCTION 293

19.3 LEVELS AND TYPES OF HUMAN CONTACT 294

19.3.1 Social Scale 294

19.3.2 Visibility and Embodiment 295

19.3.3 Intentionality 295

19.3.4 Who Is in Control 295

19.3.5 Levels of Automation 296

19.4 ON A DEVICE – INTELLIGENT USER INTERFACES 297

19.4.1 Low-level Input 297

19.4.2 Conversational User Interfaces 297

19.4.3 Predicting What Next 298

19.4.4 Finding and Managing Information 299

19.4.5 Helping with Tasks 300

19.4.6 Adaptation and Personalisation 301

19.4.7 Going Small 301

19.5 IN THE WORLD – SMART ENVIRONMENTS 302

19.5.1 Configuration 302

19.5.2 Sensor Fusion 303

19.5.3 Context and Activity 304

19.5.4 Designing for Uncertainty in Sensor-rich Smart Environments 304

19.5.5 Dealing with Hiddenness – A Central Heating Controller 305

19.6 DESIGNING FOR AI–HUMAN INTERACTION 306

19.6.1 Appropriate Intelligence – Soft Failure 306

19.6.2 Feedback – Error Detection and Repair 307

19.6.3 Decisions and Suggestions 308

19.6.4 Case Study: onCue – Appropriate Intelligence by Design 308

19.7 TOWARDS HUMAN–MACHINE SYNERGY 309

19.7.1 Tuning AI Algorithms for Interaction 309

19.7.2 Tuning Interaction for AI 310

19.8 SUMMARY 311

CHAPTER 20 ■ When Things Go Wrong 313

20.1 OVERVIEW 313

20.2 INTRODUCTION 313

20.3 WRONG ON PURPOSE? 313

xviii ■ Artificial Intelligence

20.3.1 Intentional Bad Use 313

20.3.2 Unintentional Problems 314

20.4 GENERAL STRATEGIES 315

20.4.1 Transparency and Trust 315

20.4.2 Algorithmic Accountability 315

20.4.3 Levels of Opacity 316

20.5 SOURCES OF ALGORITHMIC BIAS 317

20.5.1 What Is Bias? 317

20.5.2 Stages in Machine Learning 317

20.5.3 Bias in the Training Data 317

20.5.4 Bias in the Objective Function 318

20.5.5 Bias in the Accurate Result 320

20.5.6 Proxy Measures 321

20.5.7 Input Feature Choice 321

20.5.8 Bias and Human Reasoning 322

20.5.9 Avoiding Bias 322

20.6 PRIVACY 323

20.6.1 Anonymisation 323

20.6.2 Obfuscation 324

20.6.3 Aggregation 324

20.6.4 Adversarial Privacy 324

20.6.5 Federated Learning 324

20.7 COMMUNICATION, INFORMATION AND MISINFORMATION 325

20.7.1 Social Media 325

20.7.2 Deliberate Misinformation 326

20.7.3 Filter Bubbles 326

20.7.4 Poor Information 326

20.8 SUMMARY 327

CHAPTER 21 ■ Explainable AI 330

21.1 OVERVIEW 330

21.2 INTRODUCTION 330

21.2.1 Why We Need Explainable AI 330

21.2.2 Is Explainable AI Possible? 331

21.3 AN EXAMPLE – QUERY-BY-BROWSING 331

21.3.1 The Problem 332

21.3.2 A Solution 332

21.3.3 How It Works 332

21.4 HUMAN EXPLANATION – SUFFICIENT REASON 333

Contents ■ xix

21.5 LOCAL AND GLOBAL EXPLANATIONS 334

21.5.1 Decision Trees – Easier Explanations 334

21.5.2 Black-box – Sensitivity and Perturbations 335

21.6 HEURISTICS FOR EXPLANATION 335

21.6.1 White-box Techniques 336

21.6.2 Black-box Techniques 337

21.6.3 Grey-box Techniques 339

21.7 SUMMARY 340

CHAPTER 22 ■ Models of the Mind – Human-like Computing 343

22.1 OVERVIEW 343

22.2 INTRODUCTION 343

22.3 WHAT IS THE HUMAN MIND? 343

22.4 RATIONALITY 344

22.4.1 ACTR 345

22.4.2 SOAR 346

22.5 SUBCONSCIOUS AND INTUITION 346

22.5.1 Heuristics and Imagination 346

22.5.2 Attention, Salience and Boredom 347

22.5.3 Rapid Serial Switching 347

22.5.4 Disambiguation 348

22.5.5 Boredom 348

22.5.6 Dreaming 349

22.6 EMOTION 349

22.6.1 Empathy and Theory of Mind 350

22.6.2 Regret 351

22.6.3 Feeling 352

22.7 SUMMARY 353

CHAPTER 23 ■ Philosophical, Ethical and Social Issues 356

23.1 OVERVIEW 356

23.2 THE LIMITS OF AI 356

23.2.1 Intelligent Machines or Engineering Tools? 356

23.2.2 What Is Intelligence? 357

23.2.3 Computational argument vs. Searle’s Chinese Room 357

23.3 CREATIVITY 358

23.3.1 The Creative Process 358

23.3.2 Generate and Filter 359

23.3.3 The Critical Edge 359

xx ■ Artificial Intelligence

23.3.4 Impact on Creative Professionals 359

23.4 CONSCIOUSNESS 360

23.4.1 Defining Consciousness 360

23.4.2 Dualism and Materialism 360

23.4.3 The Hard Problem of Consciousness 361

23.5 MORALITY OF THE ARTIFICIAL 361

23.5.1 Morally Neutral 361

23.5.2 Who Is Responsible? 362

23.5.3 Life or Death Decisions 362

23.5.4 The Special Ethics of AI 364

23.6 SOCIETY AND WORK 364

23.6.1 Humanising AI or Dehumanising People 364

23.6.2 Top-down: Algorithms Grading Students 365

23.6.3 Bottom-up: When AI Ruled France 366

23.6.4 AI and Work 367

23.7 MONEY AND POWER 367

23.7.1 Finance and Markets 368

23.7.2 Advertising and Runaway AI 368

23.7.3 Big AI: The Environment and Social Impact 369

23.8 SUMMARY 370

SECTION V Looking Forward

CHAPTER 24 ■ Epilogue: What Next? 375

24.1 OVERVIEW 375

24.2 CRYSTAL BALL 375

24.3 WHAT NEXT: AI TECHNOLOGY 375

24.3.1 Bigger and Better 375

24.3.2 Smaller and Smarter 376

24.3.3 Mix and Match 376

24.3.4 Partners with People 376

24.4 WHAT NEXT: AI IN THE WORLD 377

24.4.1 Friend or Foe? 377

24.4.2 Boom then Bust 378

24.4.3 Everywhere and Nowhere 378

24.5 SUMMARY – FROM HYPE TO HOPE 379

BIBLIOGRAPHY, 381

INDEX, 395

Preface

The first edition of this textbook was written 25 years
ago. A lot has changed since then, both in artificial in-
telligence and for the authors. Janet Finlay, who was the
first author then, has now shifted her full-time focus to
another non-human intelligence ... dogs, and her influ-
ence is still felt in the pages that follow, not least in the
various canine examples.

A major driver for the first edition was the lack of an
appropriate textbook for an introductory course on ar-
tificial intelligence (AI) at the University of York where
Janet and I were at the time. In the first edition, we said
that our aim was to create a book that gave a sound in-
troduction to technical aspects of AI without assuming
too much background knowledge beforehand, especially
for those coming to AI from areas other than computer
science. Then and still today, most books on AI either as-
sume too much technical knowledge or provided a very
limited coverage of the subject.

In the introduction to the first edition we wrote, “It
is clear then that although the goals and emphases of AI
may have changed over time, the subject is far from dead
or historical.” This was written as AI was entering its long
‘winter’ and hence had almost an apologetic tone. How
things have changed!

Over the years we did think (indeed the publisher sug-
gested we think) about a second edition, but for many
years, while there was much new work in the frontiers of
AI, the fundamentals were relatively stable. This started
to change with developments around big data and the
web, but it has really been in the last few years that we
have seen more substantial changes, and so it felt an ap-
propriate time for a new edition including new topics
such as deep learning, big data, the Semantic Web, large-
language models and explainable AI.

This edition, while substantially expanding the mate-
rial covered, still seeks to follow the same principles as
the first edition, providing accessible coverage of the key
areas of AI in such a way that it will be understandable
to those with only a basic knowledge of mathematics and

computer science. The huge growth of data science and
the ubiquity of AI mean that today this approach is more
important than ever, and I hope that the new material in
this new edition has followed this principle as well as the
first.

The book takes a pragmatic approach to AI, looking
at how AI techniques are applied to various application
areas, and includes both more traditional symbolic AI
and sub-symbolic AI including neural networks and
deep learning. It covers both general principles such as
reasoning and machine learning and also more specific
techniques for areas such as computer vision, language
understanding and the web.

Ultimately all AI impacts humans directly or indi-
rectly. This was always true, and in the first edition we
wrote, “It may not be long before AI is an integral part of
all our lives.” This is now far more clear as aspects of AI
permeate nearly every area of life from online shopping
to smart cities. So, the book attempts to highlight both
the design issues involved in having AI work alongside
humans and also the social, ethical and philosophical
challenges raised by AI. The book concludes with a brief
peek into possible futures for AI, although, given the
pace of change, these futures may be upon us before you
read this.

This book does not claim to be comprehensive:
there are many books on the market which give more
detailed coverage in specific areas. However, it does
attempt to give a broad view of AI that is accessible
to a wide audience and yet opens up more technical
aspects. Throughout it attempts to give the reader a
sense of the overall feel of the area not just how to
do it but also when, where and why to use particular
techniques.

Educators can use the book to support a one-semester
introductory module spending approximately one week
each on Chapters 2 to 8 and selected further chapters.
Alternatively it can be used as a longer course cover-
ing most of the chapters, again at around one week per

xxi

xxii ■ Artificial Intelligence

chapter. You are encouraged to include some material on
social, human or philosophical aspects, both to bring the
topic to life and most critically because the questions of
how AI fit into wider society are some of the most press-
ing for everyone.

If you are an AI professional, this book will primarily
be useful to give you a grandstand view of the area, help-
ing you to understand the field as a whole, and identify
the particular topics you need to know about in more de-
tail. Having identified these areas use the recommended
reading at the end of each chapter or web resources to dig
deeper.

For the more casual reader, after the introductory
chapter you might like to skip to Chapters 19, 20 or 23 to
address some of the ‘why’ questions for AI and then step
back to delve into topics in the earlier chapters given
that context. Indeed educators might also want to take
this approach with their classes.

Look at the book’s website https://alandix.com/aibook
/ for lots of support material including code examples,
videos and teaching resources.

ACKNOWLEDGEMENTS

I would like to thank family, friends and colleagues who
have helped in many ways and especially Alex Blandin
for extensive insightful comments on the text, Fiona for
her personal support and help ensuring the text is read-
able and coherent, and, of course, Janet without whom
the first edition and in turn this fresh edition would never
have happened. Any remaining faults or omissions are
my own.

Alan Dix
Cardiff Metropolitan University, Cardiff, Wales, UK

https://alandix.com/aibook/
https://alandix.com/aibook/

About the Author

Alan Dix is Professorial Fellow at Cardiff Metropolitan
University and Professor Emeritus at Swansea Univer-
sity. He started his academic career as a mathematician
and was part of the British team to the International
Mathematical Olympiad in 1978. However, he is best
known for his work in human–computer interaction
(HCI), including writing one of the key textbooks in the
area. He was elected to the ACM SIGCHI Academy in
2013 and is a Fellow of the Learned Society of Wales.
Outside academia, Alan has been co-founder of two dot-
com era tech companies, developed intelligent lighting
and worked in local government and even submarine
design.

In every role, Alan seeks to understand and innovate
in all aspects where people and technology meet. He has
often been prescient in recognising the implications of
digital technology, in 1990 writing the first paper on pri-
vacy within the HCI literature and in 1992 predicting
the potential danger of social, ethnic and gender bias in
black-box machine learning algorithms.

Alan writes and talks extensively on the connections
between artificial intelligence and human issues, both in
terms of individual user interfaces and also social impli-
cations of technology. This has included leading the al-
gorithmic social justice theme within the UK Not-Equal
programme and participating in the European TANGO
project on synergistic human–AI decision making. He
has also worked on fundamental models of emotion in
AI and practical applications of genetic algorithms in
engineering.

His other books include Human–Computer Inter-
action (with Janet Finlay, Gregory Abowd and Russell
Beale), one of the key international textbooks in the area;
TouchIT: Understanding Design in a Physical-Digital
World (with Steve Gill, Devina Ramduny-Ellis and Jo
Hare) on the design of physical-digital products; and
Statistics for HCI: Making Sense of Quantitative Data.
He is also completing two books in the CRC/Taylor &
Francis “AI for Everything” series: AI for Social Justice
(with Clara Crivellaro) and AI for HCI.

xxiii

https://taylorandfrancis.com/

1 CHAP T ER

Introduction

1.1 WHAT IS ARTIFICIAL INTELLIGENCE?
Artificial intelligence (AI) is many different things to dif-
ferent people. It is likely that everyone who picks up this
book has their own, albeit perhaps vague, notion of what
it is. As a concept, AI has long captured the attention
and imagination of journalists and novelists alike, lead-
ing both to popular renditions of current AI develop-
ments and futuristic representations of what might be
just around the corner. Television and film producers
have followed suit, so that AI is rarely far from the public
eye. Robots, computers that talk to us in our own lan-
guage and AI entrepreneurs are continually in the media,
though there is some division as to whether these devel-
opments will provide us with benign servants or sinister
and deadly opponents.

But outside the media furore, what is AI all about? Un-
fortunately there is no single answer: just like in the me-
dia representation, it very much depends upon who you
talk to.

1.1.1 How Much Like a Human: Strong vs. Weak
AI

One of the major divides in AI is between strong and
weak AI:

strong AI – There are those who view AI in high-level
terms as the study of the nature of intelligence and,
from there, how to reproduce it. Computers are
therefore used to model intelligence in order to

understand it. Within this group there are those
who believe that human intelligence is essentially
computational and, therefore, that cognitive states
can be reproduced in a machine. Others use
computers to test their theories of intelligence:
they are interested less in replicating than in
understanding human intelligence. For either of
these groups, it is vital that the techniques proposed
actually reflect human cognitive processes.

weak AI – On the other hand, there are those who
view AI as a discipline that provides engineering
techniques to solve difficult problems. Whether
these techniques reflect human cognition or
indicate actual intelligence is not important. To
this group the success of an AI system is judged
on its behaviour in the domain of interest. It is
not necessary for the machine to exhibit general
intelligence.

A third set of people, who fall somewhere between the
previous two, want to develop machines that not only
exhibit intelligent behaviour but are able to learn and
adapt to their environment in a way similar to humans.
In striving towards this, it is inevitable that insights
will be gained into the nature of human intelligence
and learning, although it is not essential that these are
accurately reproduced.

This book takes this third, more pragmatic line, leav-
ing it to you to decide which side of the strong/weak ar-
gument you want to adopt.

1.1.2 Top-down or Bottom-up: Symbolic vs.
Sub-symbolic

Another major divide is between those who address the
problem top-down or bottom-up:

DOI: 10.1201/9781003082880-1 1

https://alandix.com/glossary/aibook/strong AI
https://alandix.com/glossary/aibook/human intelligence
https://alandix.com/glossary/aibook/human intelligence
https://alandix.com/glossary/aibook/weak AI
https://alandix.com/glossary/aibook/human intelligence
http://dx.doi.org/10.1201/9781003082880-1

2 ■ Artificial Intelligence

symbolic AI – Most of early AI addressed intelligence
top-down, starting with high-level human abilities
such as logical reasoning and then building systems
that emulated these. Crucially they can be seen as
symbol manipulation systems, where symbols are
tokens that represent quite complex concepts such
as ‘human’, ‘block’ or ‘move’.

sub-symbolic AI – On the other hand, there are meth-
ods that start off with very simple models inspired
by human neurons, and by combining many mil-
lions or billions of these aim to achieve intelligent
behaviour bottom-up. For many today, these arti-
ficial neural networks are what first come to mind
when they hear “AI”.

In addition there are methods that are clearly
sub-symbolic in nature, but not based on neural
networks. Some take their inspiration from other
natural life forms or processes that seem to exhibit
‘intelligent’ overall behaviour, even when the individual
components are not deemed (very) intelligent. This has
included emulating ant colonies, the immune system,
evolutionary development and crystal formation. These
in-between systems may include representations that
have a symbolic nature (e.g. rules) but operate in a
bottom-up fashion. Others apply purely mathematical
or statistical approaches to very large datasets, for
example, the algorithms underlying web search.

In the brief AI history later in this chapter, we will
see (spoiler alert) a general arc of dominance in the field
from symbolic to sub-symbolic methods. However, it is
likely that the next major AI steps will combine the two.

1.1.3 A Working Definition

So, can we derive a definition of AI that encompasses
some of these ideas? A working definition may go some-
thing like this:

AI is concerned with building machines that
can act and react appropriately, adapting their
response to the demands of the situation. Such
machines should display behaviour compara-
ble with that considered to require intelligence
in humans.

Such a definition incorporates learning and adaptability
as general characteristics of intelligence but stops short of
insisting on the replication of human intelligence. Indeed

it can sometimes be more useful to think of AI as Alien
Intelligence – something that behaves intelligently, but
not necessarily as we know it.

1.1.4 Human Intelligence

What types of behaviour would meet this definition and
therefore fall under the umbrella of AI? Or, perhaps more
importantly, what types of behaviour would not? It may
be useful to think about some of the things we consider
to require intelligence or thought in human beings. A
list would usually include conscious cognitive activities:
problem solving, decision making, reading and mathe-
matics. Further consideration might add more creative
activities: writing and art. We are less likely to think of
our more fundamental skills – language, vision, motor
skills and navigation – simply because, to us, these are au-
tomatic and do not require conscious attention. But con-
sider for a moment what is involved in these “everyday”
activities. For example, language understanding requires
recognition and interpretation of words, spoken in many
different accents and intonations, and knowledge of how
words can be strung together. It involves resolution of
ambiguity and understanding of context. Language pro-
duction is even more complex. One only needs to take up
a foreign language to appreciate the difficulties involved
– even for humans.

On the other hand, some areas that may seem to us
very difficult, such as arithmetic calculation, are in fact
much more formulaic and therefore require only the abil-
ity to follow steps accurately. Such behaviour is not in-
herently intelligent, and computers are traditionally ex-
cellent as calculators. However, this activity would not be
classed as artificial intelligence. Of course, we would not
want to suggest that mathematics itself does not require
intelligence! For example, problem solving and interpre-
tation are also important in mathematics, and these as-
pects have been studied as domains for AI research.

There are also some “grey” areas, activities that require
skill and strategy when performed by humans but that
can, ultimately, be condensed to a search of possible
options (albeit a huge number of them). Game playing
is a prime example of such an activity. In the early days,
chess and other complex games were very much within
the domain of humans and not computers and were
considered a valid target for AI research. But today
computers can play chess at grandmaster level, largely
due to their huge memory capacity. Some would say that
such brute force techniques are not true AI; however,

https://alandix.com/glossary/aibook/symbolic AI
https://alandix.com/glossary/aibook/logical reasoning
https://alandix.com/glossary/aibook/sub-symbolic AI
https://alandix.com/glossary/aibook/Alien Intelligence
https://alandix.com/glossary/aibook/Alien Intelligence
https://alandix.com/glossary/aibook/Game playing
https://alandix.com/glossary/aibook/chess
https://alandix.com/glossary/aibook/chess

Introduction ■ 3

when AlphaGo beat the Go Grandmaster Lee Sedol,
commentators described AlphaGo’s game as ‘beautiful’
[189]. It is hard not to think of this as intelligent, even if
it is not clear how it achieves what it does.

1.1.5 Bottom-up and Top-down

However, it should be noted that many of the things that
make us intelligent, especially in more creative ways, are
not easily explainable by us. A mathematician may be
able to justify each step in a proof, but not the ‘gut feel-
ing’ that led to formulating a particular lemma that was
crucial to the proof. In day-to-day life these two aspects
of human problem solving and activity work together.
On the one hand is the fast emotional or subconscious
thinking that leads to instant reactions and rapid deci-
sions when time is limited. On the other hand is our more
leisurely logical and also imaginative thinking. These are
often called ‘System 1’ (fast, subconscious, emotional)
and ‘System 2’ (slow, conscious, rational) [151]. Early
symbolic AI focused almost exclusively on System 2 pro-
cesses, whereas systems such as AlphaGo and neural net-
works, which rely on more sub-symbolic methods, in
general are more like highly competent System 1 think-
ing. This book will consider both of these aspects of AI,
and in later chapters we see how they can be in various
ways integrated.

However, before we move on to look in more detail at
the techniques and applications of AI, we will pause to
consider how it has developed up to now.

1.2 HUMANS AT THE HEART
As a theoretical discipline there will be some who study
AI purely for its own sake, just because it is fun to create
algorithms that do cool things. There will also be a few
on the extreme end of strong AI who study it for the sake
of the artificial entities that are being created, maybe to
stand up for the rights of coming sentient artificial life
forms.

However, for the majority, AI is being developed and
used because it does something in the human world, to
solve problems in engineering, medicine, law or day-to-
day life. Whether or not AI is like a human in terms of
the intelligence it portrays, it is for humans.

Indeed, every AI-based system will, in the end, need
to work with people. Sometimes this will be very explicit,
such as a chatbot, in others virtually invisible, for exam-
ple in an engine management system.

In the latter case it may be possible for the ultimate
human user to ignore or be ignorant of the AI aspect. It
is a black box that does a job; so long as it is reliable and
performs well, how it does that job doesn’t matter. Simi-
larly the programmer or engineer creating the system in
the black-box is only concerned with meeting a specifi-
cation. Even such systems may need to be comprehensi-
ble by an engineer or lawyer if there is a malfunction or
accident, that is the behaviour may need to be explain-
able (see Chapter 21). Humans will be involved over a
long timescale in the creation and oversight of the sys-
tem, but, for day-to-day use, the AI and the human can
operate separately.

However, more often the boundaries are less clear,
with levels of active interaction or mutual influence. For
example, when a media website suggests films you might
like to watch, you may often take it for granted, but
sometimes the intelligence of the underlying algorithm,
or lack of it, is obvious.

We will deal with the more direct human contact in
Part IV; however, you will find examples throughout the
book. If you get into the technical aspects of AI, there
may be times when you just want to get your head down,
buried in the algorithmic details. However, when you do,
from time to time take an opportunity to step back and
think about the wider picture, how the systems you are
creating fit into a wider human and technical and human
environment. If you don’t, you might find yourself pro-
ducing something that is wonderful in itself but useless
or even dangerous for the purpose it is intended.

1.3 A SHORT HISTORY OF ARTIFICIAL
INTELLIGENCE

AI is not a new concept. The idea of creating an intelligent
being was proposed and discussed in various ways by
writers and philosophers centuries before the computer
was even invented. The earliest writers imagined their
‘‘artificial’’ beings created from stone: the Roman poet
Ovid wrote a story of Pygmalion, the sculptor, whose
statue of a beautiful woman was brought to life (the musi-
cal My fair lady is the more recent rendition of this fable).
Much later, in the age of industrial machines and the dis-
covery of almost magical qualities of electrical phenom-
ena, Mary Shelley had Victor Frankenstein manufacture
a man from separate biological components and bring
him to life through electricity. By the 1960s, fiction was
beginning to mirror the goals of the most ambitious AI

https://alandix.com/glossary/aibook/AlphaGo
https://alandix.com/glossary/aibook/Go
https://alandix.com/glossary/aibook/Lee Sedol
https://alandix.com/glossary/aibook/System 1
https://alandix.com/glossary/aibook/System 2
https://alandix.com/glossary/aibook/System 2
https://alandix.com/glossary/aibook/AlphaGo
https://alandix.com/glossary/aibook/neural networks
https://alandix.com/glossary/aibook/neural networks
https://alandix.com/glossary/aibook/sub-symbolic
https://alandix.com/glossary/aibook/System 1
https://alandix.com/glossary/aibook/strong AI
https://alandix.com/glossary/aibook/chatbot
https://alandix.com/glossary/aibook/explainable AI
https://alandix.com/glossary/aibook/explainable AI
https://alandix.com/glossary/aibook/Ovid
https://alandix.com/glossary/aibook/Pygmalion
https://alandix.com/glossary/aibook/Mary Shelley
https://alandix.com/glossary/aibook/Frankenstein

4 ■ Artificial Intelligence

researcher. In Arthur C. Clarke’s 2001, we find the com-
puter HAL displaying all the attributes of human intel-
ligence, including self-preservation. Other films, such as
Terminator and Ex Machina, present a vision of cyborg
machines almost indistinguishable from humans.

Early philosophers also considered the question of
whether human intelligence can be reproduced in a
machine. In 1642, Descartes argued that, although
machines (in the right guise) could pass as animals, they
could never pass as humans. He went on to identify his
reasons for this assertion, namely that machines lack
the ability to use language and the ability to reason.
Interestingly, although he was writing at a time when
clocks and windmills were among the most sophisticated
pieces of machinery, he had identified two areas that still
occupy the attention of AI researchers today and that are
central to one of the first tests of machine intelligence
proposed for computers, the Turing test.

Precursors of AI can be seen in the development of
first mechanical and later electronic devices for various
forms of specialised calculations, including landmark
systems such as Babbage’s Difference Engine for
calculating polynomials and the Bombe for decrypting
Enigma Machine messages. Even these would, at the
time, seem to mimic certain human traits that would
have been regarded as requiring human thought. As
these machines became programmable, the step from
calculation to computation brought yet more thought-
like potential. This was foreseen by Ada Lovelace when
she described the fundamental difference between
the Difference Engine and Babbage’s later Analytical
Engine:

The Difference Engine can merely tabulate, and
is incapable of developing, the Analytical Engine
can either tabulate or develope. [176]

She noted the potential for “symbolic results”, but she
also cautioned about the “possibility of exaggerated
ideas” about the capabilities of the Analytical Engine,
a sentiment that might have been better heeded by AI
commentators over the years.

Turing and the Turing Test

To find the start of modern AI many look more than
one hundred years after Babbage and Lovelace, to 1950,
when computers were still basically large numeric calcu-
lators. In that year, a British mathematician, Alan Turing,

wrote a now famous paper entitled Computing machin-
ery and intelligence, in which he posed the question “can
machines think?” [276]. His answer to the question was
to propose a game, the ‘imitation game’, as the basis for
a test for machine intelligence. His test is now known as
the Turing test.

His proposal was as follows. Imagine you have a per-
son able to communicate with two others, one male and
one female, only through a teletype or computer link.
This person must try to distinguish the male from the fe-
male simply by asking questions, while those being ques-
tioned try to fool the interrogator about their gender. In
the Turing test, one of the human participants is replaced
by a computer. If the computer is able to convince the in-
terrogator it is the human, Turing argued, it can be said
to be intelligent.

The Turing test has been widely criticised since it was
proposed, and in Chapter 23 of this book we will look
in detail at some of the objections to it. However, the
main criticism is that it takes a behavioural rather than a
psychological view of intelligence. Regardless of the crit-
icisms the Turing test is significant as it provided the first
concrete goal for AI research.

1.3.1 The Development of AI

In 1956 about a dozen researchers met at Dartmouth
College. They represented a number of academic disci-
plines including mathematics, electrical engineering and
psychology, but they had one interest in common: using
the powerful tool of the computer to simulate human in-
telligence. It was here, at the Dartmouth Workshop, that
the name “Artificial Intelligence” was coined.

In the early days of AI, research concentrated on
applications that were considered to involve intelligence
and reasoning, mainly game playing and theorem
proving. During the decade following the Dartmouth
Workshop there were significant developments in search
techniques, pattern matching, heuristics and constraint
satisfaction, which are still important today. However,
these early applications proved to be solvable using rapid
searches through all possible options, rather than the
selection strategies and reasoning applied by humans,
and attention turned to the problem of modelling and
reproducing true understanding.

From the mid-1960s researchers concentrated on
applications such as perception, language understanding
and general problem solving. One such application,
ELIZA [299], was hailed by some as a breakthrough

https://alandix.com/glossary/aibook/Arthur C. Clarke
https://alandix.com/glossary/aibook/HAL
https://alandix.com/glossary/aibook/human intelligence
https://alandix.com/glossary/aibook/human intelligence
https://alandix.com/glossary/aibook/human intelligence
https://alandix.com/glossary/aibook/Descartes
https://alandix.com/glossary/aibook/Turing test
https://alandix.com/glossary/aibook/Babbage
https://alandix.com/glossary/aibook/Difference Engine
https://alandix.com/glossary/aibook/Bombe
https://alandix.com/glossary/aibook/Enigma Machine
https://alandix.com/glossary/aibook/Ada Lovelace
https://alandix.com/glossary/aibook/Difference Engine
https://alandix.com/glossary/aibook/Babbage
https://alandix.com/glossary/aibook/Analytical Engine
https://alandix.com/glossary/aibook/Analytical Engine
https://alandix.com/glossary/aibook/Analytical Engine
https://alandix.com/glossary/aibook/Babbage
https://alandix.com/glossary/aibook/Ada Lovelace
https://alandix.com/glossary/aibook/Turing, Alan
https://alandix.com/glossary/aibook/imitation game
https://alandix.com/glossary/aibook/Turing test
https://alandix.com/glossary/aibook/Turing test
https://alandix.com/glossary/aibook/Turing test
https://alandix.com/glossary/aibook/Turing test
https://alandix.com/glossary/aibook/human intelligence
https://alandix.com/glossary/aibook/human intelligence
https://alandix.com/glossary/aibook/Dartmouth Workshop
https://alandix.com/glossary/aibook/artificial intelligence!definition
https://alandix.com/glossary/aibook/reasoning
https://alandix.com/glossary/aibook/game playing
https://alandix.com/glossary/aibook/Dartmouth Workshop
https://alandix.com/glossary/aibook/Dartmouth Workshop
https://alandix.com/glossary/aibook/search techniques
https://alandix.com/glossary/aibook/search techniques
https://alandix.com/glossary/aibook/pattern matching
https://alandix.com/glossary/aibook/heuristics
https://alandix.com/glossary/aibook/constraint satisfaction
https://alandix.com/glossary/aibook/constraint satisfaction
https://alandix.com/glossary/aibook/reasoning
https://alandix.com/glossary/aibook/perception
https://alandix.com/glossary/aibook/language understanding
https://alandix.com/glossary/aibook/general problem solving
https://alandix.com/glossary/aibook/ELIZA

Introduction ■ 5

in language understanding. ELIZA appeared, on the
surface, to understand and respond intelligently to
human conversation, albeit in the slightly artificial
context of Rogerian psychoanalysis. “Patients” would
communicate with ELIZA via a keyboard, and the
program would respond in such a way that many
patients believed that they were talking to a human. A
conversation with ELIZA would run something like this
(machine responses in upper case):

TELL ME ABOUT YOUR PROBLEM
men are all alike
HOW DO YOU FEEL ABOUT MEN?
none of them can be trusted
NOT ANY?
well very few
COULD YOU BE MORE PRECISE PLEASE?
my grandfather was trustworthy
TELL ME ABOUT YOUR GRANDFATHER
he is dead
HOW LONG HAS HE BEEN DEAD?
a couple of years – he was my mother’s father
TELL ME ABOUT YOUR MOTHER
she is very nice
CAN YOU THINK OF A SPECIFIC EXAM-
PLE?
she is always glad to see me
IS YOUR FATHER ALSO ALWAYS GLAD
TO SEE YOU?
most of the time
HOW DID YOUR PARENTS TREAT YOU
AS A CHILD?

Such a conversation may appear convincing, but does
ELIZA therefore pass the Turing test? In 1966, the pro-
gram’s developer, Joseph Weizenbaum, wrote a paper to
dispel this notion (at the same time casting some doubt
on the validity of the Turing test) [299]. ELIZA actu-
ally works on the basis of some clever tricks of substitu-
tion, pattern matching and random selection. The user’s
sentence is searched for key words that are then either
substituted into a new sentence by ELIZA or used to
fire an associated response. If more than one possible re-
sponse is available, ELIZA chooses between them ran-
domly. In spite of appearances, therefore, ELIZA embod-
ies no understanding of the English language. As Weizen-
baum says, it shows “how easy it is to create and maintain
the illusion of understanding” [299]. Once these tricks are
understood it is very easy to fool ELIZA:

HOW DID YOUR PARENTS TREAT YOU AS
A CHILD?
they gave me my grandfather clock
TELL ME ABOUT YOUR GRANDFATHER
…

However, research continued into language understand-
ing in the early 1970s and another significant system
emerged: SHRDLU. SHRDLU (the name comes from
six of the 12 most commonly used letters in English)
was developed by Terry Winograd [301]. The system can
understand and comply with quite complex sentences,
but there is a catch: it is restricted to the domain of
simulated blocks. Although this may seem limited,
SHRDLU still far surpassed any other system of the
time.

Consider an instruction such as “Find a block that is
taller than the one you are holding and put it on top of the
red box.” What knowledge is required to interpret such
a sentence? First you need to understand the concepts of
relative sizes. Then you need to interpret the reference
in the second clause: to what does “it” refer? Then you
need to understand relative position and differentiate by
colour. SHRDLU was able to interpret such instructions
through the use of stored knowledge and was one of the
applications of this period that led to the development
of a number of methodologies for knowledge represen-
tation (discussed in Chap. 2).

1.3.2 The Physical Symbol System Hypothesis

In 1976 Newell and Simon proposed a hypothesis that
has become the basis of research and experimentation
in AI: the physical symbol system hypothesis [210]. The
hypothesis states that

A physical symbol system has the necessary
and sufficient means for general intelligent ac-
tion.

So what does this mean? A symbol is a token that rep-
resents something else. For example, a word is a symbol
representing an object or concept. The symbol is physi-
cal, although the thing represented by it may be concep-
tual. Symbols are physically related to each other in sym-
bol structures (e.g. they may be adjacent). In addition to
symbol structures, the system contains operators or pro-
cesses that transform structures into other structures, for
example copying, adding and removing them. A physical

https://alandix.com/glossary/aibook/ELIZA
https://alandix.com/glossary/aibook/ELIZA
https://alandix.com/glossary/aibook/ELIZA
https://alandix.com/glossary/aibook/ELIZA
https://alandix.com/glossary/aibook/Turing test
https://alandix.com/glossary/aibook/Weizenbaum, Joseph
https://alandix.com/glossary/aibook/Turing test
https://alandix.com/glossary/aibook/ELIZA
https://alandix.com/glossary/aibook/ELIZA
https://alandix.com/glossary/aibook/ELIZA
https://alandix.com/glossary/aibook/ELIZA
https://alandix.com/glossary/aibook/ELIZA
https://alandix.com/glossary/aibook/SHRDLU
https://alandix.com/glossary/aibook/SHRDLU
https://alandix.com/glossary/aibook/Winograd, Terry
https://alandix.com/glossary/aibook/SHRDLU
https://alandix.com/glossary/aibook/SHRDLU
https://alandix.com/glossary/aibook/knowledge representation
https://alandix.com/glossary/aibook/knowledge representation
https://alandix.com/glossary/aibook/Newell, A
https://alandix.com/glossary/aibook/Simon, H
https://alandix.com/glossary/aibook/physical symbol system hypothesis

6 ■ Artificial Intelligence

symbol system comprises an evolving set of symbol struc-
tures and the operators required to transform them. The
hypothesis suggests that such a system is able to model
intelligent behaviour.

Without a clear definition of human intelligence, the
only way to test this hypothesis is by experimentation:
choose an activity that requires intelligence and devise a
physical symbol system to solve it. Computers are a good
means of simulating the physical symbol system and are
therefore used in testing the hypothesis. It is not yet clear
whether the physical symbol system hypothesis will hold
in all areas of intelligence. It is certainly supported by
work in areas such as game playing and decision making,
but in lower-level activities, such as vision, sub-symbolic
approaches (such as neural networks) often prove to be
more useful. However, this in itself does not disprove the
physical symbol system hypothesis, since it is clearly pos-
sible to solve problems in alternative ways.

The physical symbol system hypothesis is important as
the foundation for the belief that it is possible to create
artificial intelligence. It also provides a useful model of
human intelligence that can be simulated and therefore
tested.

1.3.3 Sub-symbolic Spring

By the late 1970s, while the physical symbol system
hypothesis provided fresh impetus to those examining
the nature of intelligent behaviour, some research
moved away from the “grand aim” of producing general
machine understanding and concentrated instead upon
developing effective techniques in restricted domains.
Arguably this approach has had the most commercial
success, producing, among other things, the expert
system (see Chap. 18).

The 1980s saw a period of great optimism within
AI. In 1982 Japan launched the Fifth Generation
Computer Project, aiming to become a world leader in
supercomputing and artificial intelligence [206, 253].
This led to rival initiatives in the UK, US and pan-EU.
The amounts were staggering for the time, the UK’s
Alvey Programme alone was 500 million pounds
sterling [214]. The central focus of the Fifth Generation
Computer Project was on logic programming, that is
traditional knowledge-rich AI. However, the funding
also allowed other areas to flourish.

The development of artificial neural networks, in the
late 1980s and early 1990s, modelled on the human

brain, was hailed by some as the basis for genuine
machine intelligence and learning. Neural networks,
or “connectionist” systems, initially proved effective
in small applications, but many have huge resource
requirements. Traditional AI researchers were slow to
welcome the connectionists, being sceptical of their
claims and the premises underlying neural networks.

In one example, a recognition system used neural net-
works to learn the properties of a number of photographs
taken in woodland. Its aim was to differentiate between
those containing tanks and those without. After a num-
ber of test runs in which the system accurately picked out
all the photographs of tanks, the developers were feeling
suitably pleased with themselves. However, to confirm
their findings they took another set of photographs. To
their dismay the system proved completely unable to pick
out the tanks. After further investigation it turned out
that the first set of photographs of tanks had been taken
on a sunny day while those without were cloudy. The
network was not classifying the photographs according
to the presence of tanks at all but according to prevail-
ing weather conditions! Since the “reasoning” underly-
ing the network is difficult to examine such mistakes can
go unnoticed.

The Great AI Winter

To some extent expectations of AI were over-hyped.
Progress in some areas was rapid but often hit limi-
tations. This led to a period of around 15 years, often
called the AI Winter, when funding and enthusiasm
died, and it seemed as if progress had slowed. If you
talked to many in AI during this period, they would feel
they were having little impact outside the research lab.

In fact, many of the areas that would have once been
seen as part of core AI were progressing steadily during
this time, notably vision, speech and robotics, but this did
not counter the overall sense of a subject in the doldrums.

Historians of the Dark Ages in Europe (500–1000
AD) tell us that it was far from a period of anarchy
and ignorance, but one where knowledge flourished in
pockets, often at the outer fringes. Similarly historians
of AI can pick up the threads of work that flourished
during this AI winter. In particular, while it was not
originally seen as an AI revolution, the web changed
everything.

The seeds of the impact of the web on AI were (in
retrospect) evident from the late 1990s and early 2000s.

https://alandix.com/glossary/aibook/physical symbol system hypothesis
https://alandix.com/glossary/aibook/game playing
https://alandix.com/glossary/aibook/sub-symbolic
https://alandix.com/glossary/aibook/neural networks
https://alandix.com/glossary/aibook/physical symbol system hypothesis
https://alandix.com/glossary/aibook/physical symbol system hypothesis
https://alandix.com/glossary/aibook/human intelligence
https://alandix.com/glossary/aibook/physical symbol system hypothesis
https://alandix.com/glossary/aibook/physical symbol system hypothesis
https://alandix.com/glossary/aibook/expert system
https://alandix.com/glossary/aibook/expert system
https://alandix.com/glossary/aibook/Fifth Generation Computer Project
https://alandix.com/glossary/aibook/Fifth Generation Computer Project
https://alandix.com/glossary/aibook/Alvey Programme
https://alandix.com/glossary/aibook/logic programming
https://alandix.com/glossary/aibook/knowledge-rich AI
https://alandix.com/glossary/aibook/artificial neural networks
https://alandix.com/glossary/aibook/Neural networks
https://alandix.com/glossary/aibook/connectionist systems
https://alandix.com/glossary/aibook/neural networks
https://alandix.com/glossary/aibook/neural networks
https://alandix.com/glossary/aibook/neural networks
https://alandix.com/glossary/aibook/AI Winter
https://alandix.com/glossary/aibook/computer vision
https://alandix.com/glossary/aibook/speech recognition
https://alandix.com/glossary/aibook/robotics
https://alandix.com/glossary/aibook/AI winter

Introduction ■ 7

As domestic use of the internet grew, recommendation
systems for shopping services grew. These were initially
seen as purely statistical algorithms, rather than AI, but
the often uncanny ability of “other people bought ...” to
recommend pertinent books and music had the feel of
intelligence – recall our definition “considered to require
intelligence in humans”.

Similarly the success of search engines, notably
Google’s PageRank algorithm [32], harnessed the
growing volume of human-produced material on the
web to produce results that were not just sensible but
often prescient. Around the same time Berners-Lee and
others proposed the semantic web with an aim to make
the material on the web machine-readable and hence
available for large-scale intelligent reasoning [25].

1.3.4 AI Renaissance

It is no hyperbole to describe as seismic the impact of Al-
phaGo’s defeat of Go grandmaster Lee Sedol in 2016 [17].
Go had been considered an almost impossible challenge
for AI requiring true human insight and intelligence.

Although the win had been unexpected, the resur-
gence had begun some years earlier, not least with the
success of IBM’s Watson at the quiz game Jeopardy!
[101], even leading some to warn against overblown
optimism and the possibility of a return to another AI
winter [128]. It would be good to be able to say that
this resurgence was purely due to the ingenuity of AI
researchers creating new and more powerful algorithms.
There is truth in this, but the reality is more prosaic –
more about speed and scale than science.

The technology giants did have access to human in-
tellectual capital and funding for internal AI initiatives.
However, they also had access to vast amounts of data
and computational power, the twin enablers of deep
learning. Well before AlphaGo, Google researchers had
written about “The unreasonable effectiveness of data”,
describing the way big data analysis based on simple
word concurrence was able to tackle issues that had
been thought to need knowledge-rich natural language
understanding [122].

However, the availability of big data and massive
computation has in turn led to new approaches and
algorithms. Some are brute force, but others are highly
creative ways of harnessing that power, for example
general adversarial learning approaches inspired by
game playing.

Furthermore the application scale has continued to
yield new surprises. In particular, GPT-4 and other
large-language models are based on deep neural
networks trained on billions of documents. They behave
as if they have grammatical and even semantic abilities,
despite being based solely on low-level weights. This
has led to a scale-based version of the physical symbol
system hypothesis, where it is believed that simply
making bigger and bigger deep neural networks will
lead to AI systems that exhibit true general intelligence.

1.3.5 Moving Onwards

At the end of the introduction to the first edition of this
book we said that “it may not be long before AI is an
integral part of all our lives”. Of course, this is now the
case: personalised product recommendations and news
on the web, voice-operated home automation systems,
face recognition on our phones and autonomous vehicles
on the road.

Of course this ubiquity has led to its own challenges,
not least ethical issues including gender, ethnic and so-
cial bias in the outputs of many machine learning algo-
rithms and the need for explainable AI.

Time will tell how far the trend towards bigger and big-
ger machine learning will take us. Even if it does continue
to be successful, there will be increasing needs for ‘small
AI’ for environmental reasons (large AI models consume
lots of power) and also social (only the rich can afford big
AI).

It does seem likely that the next step however will re-
quire a re-integration of the more knowledge-rich tech-
niques of ‘traditional’ symbolic AI and the hugely suc-
cessful but hard to interpret sub-symbolic systems.

1.4 STRUCTURE OF THIS BOOK – A
LANDSCAPE OF AI

The chapters that follow will take a relatively pragmatic
approach to AI and are divided into five parts:

Part I. Knowledge-Based AI – This is rooted in classic
areas of AI covering knowledge representation,
reasoning and search. While these are mostly con-
cerned with symbolic AI, they are also important
basics for those interested in neural networks
and machine learning as they give a conceptual
vocabulary with which to interpret more emergent
features.

https://alandix.com/glossary/aibook/search engines
https://alandix.com/glossary/aibook/PageRank
https://alandix.com/glossary/aibook/Berners-Lee
https://alandix.com/glossary/aibook/semantic web
https://alandix.com/glossary/aibook/AlphaGo
https://alandix.com/glossary/aibook/AlphaGo
https://alandix.com/glossary/aibook/Go
https://alandix.com/glossary/aibook/Lee Sedol
https://alandix.com/glossary/aibook/Go
https://alandix.com/glossary/aibook/human insight
https://alandix.com/glossary/aibook/IBM's Watson
https://alandix.com/glossary/aibook/jeopardy
https://alandix.com/glossary/aibook/AI winter
https://alandix.com/glossary/aibook/AI winter
https://alandix.com/glossary/aibook/deep learning
https://alandix.com/glossary/aibook/deep learning
https://alandix.com/glossary/aibook/AlphaGo
https://alandix.com/glossary/aibook/Google
https://alandix.com/glossary/aibook/big data
https://alandix.com/glossary/aibook/knowledge-rich AI
https://alandix.com/glossary/aibook/natural language understanding
https://alandix.com/glossary/aibook/natural language understanding
https://alandix.com/glossary/aibook/big data
https://alandix.com/glossary/aibook/adversarial learning
https://alandix.com/glossary/aibook/game playing
https://alandix.com/glossary/aibook/GPT-4
https://alandix.com/glossary/aibook/large-language models
https://alandix.com/glossary/aibook/deep neural networks
https://alandix.com/glossary/aibook/deep neural networks
https://alandix.com/glossary/aibook/physical symbol system hypothesis
https://alandix.com/glossary/aibook/physical symbol system hypothesis
https://alandix.com/glossary/aibook/deep neural networks
https://alandix.com/glossary/aibook/home automation
https://alandix.com/glossary/aibook/face recognition
https://alandix.com/glossary/aibook/autonomous vehicles
https://alandix.com/glossary/aibook/bias
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/explainable AI
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/knowledge-rich AI
https://alandix.com/glossary/aibook/symbolic AI
https://alandix.com/glossary/aibook/sub-symbolic systems
https://alandix.com/glossary/aibook/pragmatic approach to AI
https://alandix.com/glossary/aibook/pragmatic approach to AI

8 ■ Artificial Intelligence

Part II. Data and Learning – This covers various forms some impact on people. However, some applica-
of machine learning, that is techniques where the
AI algorithm works from data and creates its
own rules. This includes some more traditional
algorithms, various forms of neural networks,
statistical techniques and architectural decisions
for deep learning. It will consider more conceptual
and theoretical issues for any form of machine
learning as well as techniques for dealing with big
data and practical ‘data wrangling’.

Part III. Specialised Areas – This part considers a
number of specific areas: games, natural language
processing (NLP), vision, time-varying signals and
media, robotics, agents and the web. Each of these
has some specialised methods and algorithms, but
also there is much overlap and many cross-cutting
lessons. It is well worth dipping your toes into all
the areas even if you have one specific focus.

Part IV. Humans at the Heart – Every computer
system and every system involving AI will have

tions and some issues have more direct impact
than others. In this part we consider such areas
including expert and decision support systems,
methods for designing human interactions with
intelligent systems, issues of bias, privacy and
explainable AI, more cognitively inspired AI and
critical philosophical, social and ethical questions.
We see that there are still many opportunities for
using understanding of human cognition to inspire
AI and for AI to help us understand some of the
profound aspects of being human.

Part V. Looking Forward – The book ends with a short
glimpse into the possible future directions of AI:
what is current, upcoming and maybe coming
next. In such a fast-moving area, some of this
will undoubtedly look dated by the time the book
is even printed. However, looking back to the
epilogue of the first edition, 25 years ago, there are
issues that are still valid today. So, clearly, some
challenges are likely to take longer to come to
fruition ... maybe ones you would like to address
yourself.

I
Knowledge-Rich AI

https://taylorandfrancis.com/

2 CHAP T ER

Knowledge in AI

2.1 OVERVIEW
Knowledge is vital to all intelligence. In this chapter we
examine four key knowledge representation schemes
looking at examples of each and their strengths and
weaknesses. We consider how to assess a knowledge
representation scheme in order to choose one that
is appropriate to our particular problem. We discuss
the problems of representing general knowledge and
changing knowledge.

2.2 INTRODUCTION
Knowledge is central to intelligence. We need it to use
or understand language, to make decisions, to recognise
objects, to interpret situations and to plan strategies. We
store in our memories millions of pieces of knowledge
that we use daily to make sense of the world and our
interactions with it.

Some of the knowledge we possess is factual. We know
what things are and what they do. This type of knowledge
is known as declarative knowledge. We also know how
to do things: procedural knowledge. For example, if we
consider what we know about the English language, we
may have some declarative knowledge that the word tree
is a noun and that tall is an adjective. These are among the
thousands of facts we know about the English language,

However, we also have procedural knowledge about
English. For example, we may know that in order to pro-
vide more information about something we place an ad-
jective before the noun.

Similarly, imagine you are giving directions to your
home. You may have declarative knowledge about the
location of your house and its transport links (e.g. “my
house is in Golcar”, “the number 301 bus runs through
Golcar”, “Golcar is off the Manchester Road”). In addi-
tion you may have procedural knowledge about how to
get to your house (“Get on the 301 bus”).

Another distinction that can be drawn is between
the specific knowledge we have on a particular subject
(domain-specific knowledge) and the general or
“common-sense” knowledge that applies throughout
our experience (domain-independent knowledge). The
fact “the number 301 bus goes to Golcar” is an example
of the former: it is knowledge that is relevant only in a
restricted domain – in this case Huddersfield’s transport
system. New knowledge would be required to deal with
transport in any other city. However, the knowledge
that a bus is a motorised means of transport is a piece
of general knowledge which is applicable to buses
throughout our experience.

General or common-sense knowledge also enables us
to interpret situations accurately. For example, imagine
someone asks you “Can you tell me the way to the sta-
tion?”. Your common-sense knowledge tells you that the
person expects a set of directions; only a deliberately ob-
tuse person would answer literally “yes”! Similarly there
are thousands if not millions of “facts” that are obvious
to us from our experience of the world, many acquired
in early childhood. They are so obvious to us that we
wouldn’t normally dream of expressing them explicitly.
Facts about age: a person’s age increments by one each
year, children are always younger than their parents, peo-
ple don’t live much longer than 100 years; facts about the
way that substances such as water behave; facts about
the physical properties of everyday objects and indeed
ourselves – this is the general or “common” knowledge

DOI: 10.1201/9781003082880-3 11

https://alandix.com/glossary/aibook/declarative knowledge
https://alandix.com/glossary/aibook/procedural knowledge
https://alandix.com/glossary/aibook/declarative knowledge
https://alandix.com/glossary/aibook/procedural knowledge
https://alandix.com/glossary/aibook/declarative knowledge
https://alandix.com/glossary/aibook/procedural knowledge
https://alandix.com/glossary/aibook/domain-specific knowledge
https://alandix.com/glossary/aibook/general knowledge
https://alandix.com/glossary/aibook/general knowledge
https://alandix.com/glossary/aibook/domain-independent knowledge
https://alandix.com/glossary/aibook/general knowledge
https://alandix.com/glossary/aibook/general knowledge
http://dx.doi.org/10.1201/9781003082880-3

12 ■ Artificial Intelligence

that humans share through shared experience and that
we rely on every day.

Just as we need knowledge to function effectively,
it is also vital in artificial intelligence. As we saw
earlier, one of the problems with ELIZA was lack of
knowledge: the program had no knowledge of the
meanings or contexts of the words it was using and so
failed to convince for long. So the first thing we need
to provide for our intelligent machine is knowledge. As
we shall see, this will include procedural and declarative
knowledge and domain-specific and general knowledge.
The specific knowledge required will depend upon the
application. For language understanding we need to
provide knowledge of syntax rules, words and their
meanings, and context; for expert decision making,
we need knowledge of the domain of interest as well
as decision-making strategies. For visual recognition,
knowledge of possible objects and how they occur in
the world is needed. Even simple game playing requires
knowledge of possible moves and winning strategies.

2.3 REPRESENTING KNOWLEDGE
We have seen the types of knowledge that we use in
everyday life and that we would like to provide to our
intelligent machine. We have also seen something of
the enormity of the task of providing that knowledge.
However, the knowledge that we have been considering
is largely experiential or internal to the human holder.
In order to make use of it in AI we need to get it from
the source (usually human but can be other information
sources) and represent it in a form usable by the ma-
chine. Human knowledge is usually expressed through
language, which, of course, cannot be accurately under-
stood by the machine. The representation we choose
must therefore be both appropriate for the computer
to use and allow easy and accurate encoding from the
source.

We need to be able to represent facts about the world.
However, this is not all. Facts do not exist in isolation;
they are related to each other in a number of ways. First,
a fact may be a specific instance of another, more gen-
eral fact. For example, “Spotty Dog barks” is a specific
instance of the fact “all dogs bark” (not strictly true but a
common belief). In a case like this, we may wish to allow
property inheritance, in which properties or attributes of
the main class are inherited by instances of that class. So
we might represent the knowledge that dogs bark and
that Spotty Dog is a dog, allowing us then to deduce

FIGURE 2.1 Four knights: how many moves?

by inheritance the fact that Spotty Dog barks. Secondly,
facts may be related by virtue of the object or concept to
which they refer. For example, we may know the time,
place, subject and speaker for a lecture and these pieces
of information make sense only in the context of the oc-
casion by which they are related. And of course we need
to represent procedural knowledge as well as declarative
knowledge.

It should be noted that the representation chosen can
be an important factor in determining the ease with
which a problem can be solved. For example, imagine
you have a 3×3 chess board with a knight in each corner
(as in Figure 2.1). How many moves (i.e. chess knight
moves) will it take to move each knight round to the
next corner?

Looking at the diagrammatic representation in Fig-
ure 2.1, the solution is not obvious, but if we label each
square and represent valid moves as adjacent points on a
circle (see Figure 2.2), the solution becomes more obvi-
ous: each knight takes two moves to reach its new posi-
tion, so the minimum number of moves is eight.

In addition, the granularity of the representation can
affect its usefulness. In other words, we have to deter-
mine how detailed the knowledge we represent needs to
be. This will depend largely on the application and the
use to which the knowledge will be put. For example, if

https://alandix.com/glossary/aibook/ELIZA
https://alandix.com/glossary/aibook/declarative knowledge
https://alandix.com/glossary/aibook/declarative knowledge
https://alandix.com/glossary/aibook/general knowledge
https://alandix.com/glossary/aibook/game playing
https://alandix.com/glossary/aibook/property inheritance
https://alandix.com/glossary/aibook/procedural knowledge
https://alandix.com/glossary/aibook/declarative knowledge
https://alandix.com/glossary/aibook/declarative knowledge
https://alandix.com/glossary/aibook/chess
https://alandix.com/glossary/aibook/chess
https://alandix.com/glossary/aibook/knowledge representation!granularity

Knowledge in AI ■ 13

FIGURE 2.2 A different representation makes the solution clearer.

we are building a knowledge base about dog family re-
lationships for a pedigree management system, we may
include a representation of the definition of the relation
“cousin” (given here in English but easily translatable
into logic, for example):

an offspring of a sibling of a dog’s parent
is the dog’s cousin

However, this may not be enough information; we may
also wish to know the gender of the cousin. If this is the
case, a more detailed representation is required. For a
female cousin:

a daughter of a sibling of a dog’s parent
is the dog’s cousin,

or a male cousin:

a son of a sibling of a dog’s parent
is the dog’s cousin.

Similarly, if you wanted to know which side of the fam-
ily a dog’s cousin belongs, you would need different in-
formation; from the dog’s sire’s (father’s) side:

an offspring of a sibling of a dog’s sire (father)
is the dog’s cousin,

or its dam’s (mother’s) side:

an offspring of a sibling of a dog’s dam (mother)
is the dog’s cousin.

A full description of all the possible variations is given in
Figure 2.3. Such detail may not always be required and
therefore seem unnecessarily complex, but some simple
reasoning systems may need this form of expansion.
Note too as we are more precise, or at least exhaustive,
we may miss or, if we are observant, notice cases that
might slip between or challenge our definitions, for
example dog surrogacy,

There are a number of knowledge representation
methods that can be used. Later in this chapter we
will examine some of them briefly and identify the
areas for which each is best suited. In later chapters
of the book we will see how these methods can be
used in specific application areas. But what makes a
good knowledge representation scheme, and how can
different schemes be evaluated against one another?
Before going on to consider specific approaches to
knowledge representation, we will look in more detail
at what features a knowledge representation scheme
should possess.

2.4 METRICS FOR ASSESSING KNOWLEDGE
REPRESENTATION SCHEMES

We have already looked at some of the factors we are
looking for in a knowledge representation scheme.
However, we can expand upon these and generate
some metrics by which to measure the representations
available to us. The main requirements of a knowledge
representation scheme can be summarised under four

https://alandix.com/glossary/aibook/knowledge base
https://alandix.com/glossary/aibook/cousin relationship
https://alandix.com/glossary/aibook/logic
https://alandix.com/glossary/aibook/reasoning systems

14 ■ Artificial Intelligence

a daughter of a sister of a dog’s dam

is the dog’s cousin

a daughter of a sister of a dog’s sire

is the dog’s cousin

a daughter of a brother of a dog’s dam

is the dog’s cousin

a daughter of a brother of a dog’s sire

is the dog’s cousin

a son of a sister of a dog’s dam

is the dog’s cousin

a son of a sister of a dog’s sire

is the dog’s cousin

a son of a brother of a dog’s dam

is the dog’s cousin

a son of a brother of a dog’s sire

is the dog’s cousin

FIGURE 2.3 Full list of variants of the relationship “cousin”.

headings: expressiveness, effectiveness, efficiency and
explanation.

• expressiveness. We have already considered some of
the types of knowledge that we might wish to rep-
resent. An expressive representation scheme will be
able to handle different types and levels of granular-
ity of knowledge. It will be able to represent com-
plex knowledge and knowledge structures and the
relationships between them. It will have means of
representing specific facts and generic information
(e.g. by using variables). Expressiveness also relates
to the clarity of the representation scheme. Ideally,
the scheme should use a notation that is natural and
usable both by the knowledge engineer and the do-
main expert. Schemes that are too complex for the
latter to understand can result in incorrect knowl-
edge being held, since the expert may not be able
to critique the knowledge adequately. In summary,
our representation scheme should be characterised
by completeness and clarity of expression.

• effectiveness. The second measure of a good repre-
sentation scheme is its effectiveness. In order to be
effective, the scheme must provide a means of in-
ferring new knowledge from old. It should also be
amenable to computation, allowing adequate tool
support.

• efficiency. Thirdly, the scheme should be efficient.
The knowledge representation scheme must not
only support inference of new knowledge from
old but must do so efficiently in order for the new
knowledge to be of use. In addition, the scheme
should facilitate efficient knowledge gathering and
representation.

• explicitness. Finally, a good knowledge representa-
tion scheme must be able to provide an explanation
of its inferences and allow justifications of its rea-
soning. The chain of reasoning should be explicit.

In the rest of this chapter we will use these four metrics
to compare the effectiveness of the techniques we will
consider.

2.5 LOGIC REPRESENTATIONS
Logic representations use expressions in formal logic to
represent the knowledge required. Inference rules and
proof procedures can apply this knowledge to specific
problems. First-order predicate calculus is the most com-
mon form of logic representation, with Prolog being the
most common language used to implement it.

Logic is appealing as a means of knowledge represen-
tation, as it is a powerful formalism with known infer-
ence procedures. We can derive a new piece of knowl-
edge by proving that it is a consequence of knowledge
that is already known. The significant features of the do-
main can be represented as logical assertions, and gen-
eral attributes can be expressed using variables in logical
statements. It has the advantage of being computable, al-
beit in a restricted form.

So how can we use logic to represent knowledge? Facts
can be expressed as simple propositions. A proposition is
a statement that can have one of two values: true or false.
These are known as truth values. So the statements It is
raining and I am hungry are propositions whose values
depend on the situation at the time. If I have just eaten
dinner in a thunderstorm, then the first is likely to be
true and the second false. Propositions can be combined
using operators such as and (∧) and or (∨). Returning

https://alandix.com/glossary/aibook/knowledge representation!expressiveness
https://alandix.com/glossary/aibook/knowledge representation!clarity
https://alandix.com/glossary/aibook/knowledge engineer
https://alandix.com/glossary/aibook/knowledge representation!completeness
https://alandix.com/glossary/aibook/knowledge representation!effectiveness
https://alandix.com/glossary/aibook/knowledge representation!efficiency
https://alandix.com/glossary/aibook/knowledge representation!explicitness
https://alandix.com/glossary/aibook/logic!as knowledge representation
https://alandix.com/glossary/aibook/formal logic
https://alandix.com/glossary/aibook/First-order predicate calculus
https://alandix.com/glossary/aibook/logic representation
https://alandix.com/glossary/aibook/Prolog
https://alandix.com/glossary/aibook/Logic
https://alandix.com/glossary/aibook/logic
https://alandix.com/glossary/aibook/truth values
https://alandix.com/glossary/aibook/logic!operators

FIGURE 2.4 Truth values for simple logic operators.

to our dining example, we could combine the two state-
ments: It is raining and I am hungry (which for conve-
nience we will express as P ∧ Q). The truth value of the
combined propositions will depend upon the truth val-
ues of the individual propositions and the operator con-
necting them. If the situation is still as it was, then this
combined propositional statement will be false, since one
of the propositions (Q) is false.

Figure 2.4 shows a truth table that defines the truth
values of and and or.

Do note however that the use of ‘and’ and ‘or’ in day-
to-day speech is not always the same as in formal logic.
For example, if asked about food preferences, you might
reply “I like sausage and ice cream” or “I’d like ice cream
or I’d like sausage”, but neither would be taken to mean
you’d like both on the same plate. Note too that the word
‘like’ in the two sentences means something different, in
the first ‘enjoy’ in the second ‘want to eat now’, but this re-
quires an understanding of context. So, when expressing
natural language in formal logic take care that the trans-
lation may not be direct.

Propositional logic is limited in that it does not allow
us to generalise sufficiently. Common elements within
propositions cannot be used to make inferences. We need
to be able to extract such common elements as parame-
ters to the propositions, in order to allow inferences with
them. Parametrised propositions give us predicate logic.
For example, if we wish to represent our knowledge of
the members of Thunderbirds’ International Rescue or-
ganisation, we might include such facts as

father(Jeff, Virgil)
father(Jeff, Alan)

to mean Jeff is the father of Virgil and Jeff is the father of
Alan, respectively. Father is the predicate here and Jeff,
Virgil and Alan are parameters. In predicate logic, pa-
rameters can also include variables. For example,

Knowledge in AI ■ 15

father(Jeff, x)

where x is a variable that can be instantiated later with a
value – the name of someone of whom Jeff is the father.

Quantifiers (universal and existential) allow the
scope of the variable to be determined unambiguously.
For example, in the statement above, we do not know
for certain that there is value for x; that is, that Jeff
is indeed someone’s father (ignoring the two earlier
facts for a moment). In the following statement we use
the existential quantifier, ∃ (read as ‘there exists’), to
express the fact that Jeff is the father of at least one
person:

∃x ∶ father(Jeff, x)

Similarly we can express rules that apply universally
using the universal quantifier, ∀ (read as ‘for all’):

∀x ∀y ∶ father(x, y) ∨ mother(x, y)
→ parent(x, y)

∀x ∀y ∀z ∶ parent(x, y) ∧ parent(x, z)
→ sibling(y, z)

The first of these states that for all values of x and y if x is
the father of y or (∨) the mother of y, then x is the parent
of y. The second uses this knowledge to say something
about siblings: for all values of x, y and z, if x is the parent
of y (i.e. the father or the mother), and (∧) x is the parent
of z, then y and z are siblings.

Inference methods allow us to derive new facts from
existing facts. There are a number of inference proce-
dures for logic, but we can illustrate the principle using
the simple rule that we can substitute a universally quan-
tified variable with any value in its domain. So, given the
rule about parenthood and the facts we already know
about the family from International rescue, we can derive
new facts as shown below.

Given

∀x ∀y ∶ father(x, y) ∨ mother(x, y)
→ parent(x, y)

father(Jeff, Virgil)
father(Jeff, Alan)

we can derive the facts (by substitution)

parent(Jeff, Virgil)
parent(Jeff, Alan)

Similarly, given

https://alandix.com/glossary/aibook/truth values
https://alandix.com/glossary/aibook/truth values
https://alandix.com/glossary/aibook/truth values
https://alandix.com/glossary/aibook/truth values
https://alandix.com/glossary/aibook/formal logic
https://alandix.com/glossary/aibook/context in language
https://alandix.com/glossary/aibook/formal logic
https://alandix.com/glossary/aibook/Propositional logic
https://alandix.com/glossary/aibook/predicate logic
https://alandix.com/glossary/aibook/Thunderbirds
https://alandix.com/glossary/aibook/predicate logic
https://alandix.com/glossary/aibook/Quantifiers
https://alandix.com/glossary/aibook/inference procedures
https://alandix.com/glossary/aibook/inference procedures
https://alandix.com/glossary/aibook/logic

16 ■ Artificial Intelligence

∀x ∀y ∀z ∶ parent(x, y) ∧ parent(x, z)
→ sibling(y, z)

parent(Jeff, Virgil)
parent(Jeff, Alan)

we can derive the fact

sibling(Virgil, Alan)

Facts and rules such as these can be represented
easily in Prolog. However, predicate logic and Prolog
have a limitation, which is that they operate under
what is known as the closed world assumption. This
means that we assume that all knowledge in the world is
represented: the knowledge base is complete. Therefore
any fact that is missing is assumed to be false. Prolog
uses a problem-solving strategy called negation as
failure, which means that it returns a result of false if it
is unable to prove a goal to be true. This relies on the
closed world assumption [233]. Such an assumption
is useful when all relevant facts are represented but
can cause problems when the knowledge base is
incomplete.

In summary, logic is

• expressive: it allows representation of facts,
relationships between facts and assertions about
facts. It is relatively understandable. Prolog is less
expressive since it is not possible to represent
logical negation explicitly. This in turn leads to less
clarity.

• effective: new facts can be inferred from old. It is
also amenable to computation through Prolog.

• efficient: the use of predicates and variables makes
the representation scheme relatively efficient,
although computational efficiency depends to
a degree on the interpreter being used and the
programmer.

• explicit: explanations and justifications can be pro-
vided by backtracking.

2.6 PROCEDURAL REPRESENTATION
Logic representations, such as we have been looking at,
are declarative: we specify what we know about a prob-
lem or domain. We do not specify how to solve the prob-
lem or what to do with the knowledge. Procedural ap-
proaches, on the other hand, represent knowledge as a set

of instructions for solving a problem. If a given condition
is met, then an associated action or series of actions is
performed. The production system is an example of this
[209].

A production system has three components:

• a database of facts (often called working memory)

• a set of production rules that alter the facts in the
database. These rules or productions are of the form

IF <condition> THEN <action>

• an interpreter that decides which rule to apply and
handles any conflicts.

2.6.1 The Database

The database or working memory represents all the
knowledge of the system at any given moment. It can
be thought of as a simple database of facts that are true
of the domain at that time. The number of items in
the database is small: the analogy is to human working
memory, which can hold only a small number of items
at a time. The contents of the database change as facts
are added or removed according to the application of
the rules.

2.6.2 The Production Rules

Production rules are operators that are applied to
the knowledge in the database and change the state
of the production system in some way, usually by
changing the content of the database. Production rules
are sometimes called condition–action rules, and this
describes their behaviour well. If the condition of a rule
is true (according to the database at that moment), the
action associated with the rule is performed. This may
be, for example, to alter the contents of the database by
removing a fact or to interact with the outside world in
some way.

Production rules are usually unordered, in the sense
that the sequence in which the rules will be applied de-
pends on the current state of the database: the rule whose
condition matches the state of the database will be se-
lected. If more than one rule matches, then conflict res-
olution strategies are applied. However, some produc-
tion systems are programmed to apply rules in order, so
avoiding conflict (this is itself a conflict resolution strat-
egy).

https://alandix.com/glossary/aibook/Prolog
https://alandix.com/glossary/aibook/predicate logic
https://alandix.com/glossary/aibook/Prolog
https://alandix.com/glossary/aibook/closed world assumption
https://alandix.com/glossary/aibook/knowledge base
https://alandix.com/glossary/aibook/Prolog
https://alandix.com/glossary/aibook/negation as failure
https://alandix.com/glossary/aibook/negation as failure
https://alandix.com/glossary/aibook/closed world assumption
https://alandix.com/glossary/aibook/knowledge base
https://alandix.com/glossary/aibook/logic
https://alandix.com/glossary/aibook/knowledge representation!expressiveness
https://alandix.com/glossary/aibook/Prolog
https://alandix.com/glossary/aibook/knowledge representation!effectiveness
https://alandix.com/glossary/aibook/Prolog
https://alandix.com/glossary/aibook/knowledge representation!efficiency
https://alandix.com/glossary/aibook/interpreter
https://alandix.com/glossary/aibook/knowledge representation!explicitness
https://alandix.com/glossary/aibook/backtracking
https://alandix.com/glossary/aibook/Logic representations
https://alandix.com/glossary/aibook/knowledge representation!procedural
https://alandix.com/glossary/aibook/production system
https://alandix.com/glossary/aibook/production system
https://alandix.com/glossary/aibook/production system!database
https://alandix.com/glossary/aibook/production system!working memory
https://alandix.com/glossary/aibook/production rules
https://alandix.com/glossary/aibook/database
https://alandix.com/glossary/aibook/interpreter
https://alandix.com/glossary/aibook/database
https://alandix.com/glossary/aibook/working memory
https://alandix.com/glossary/aibook/database
https://alandix.com/glossary/aibook/database
https://alandix.com/glossary/aibook/analogy
https://alandix.com/glossary/aibook/human working memory
https://alandix.com/glossary/aibook/human working memory
https://alandix.com/glossary/aibook/database
https://alandix.com/glossary/aibook/Production rules
https://alandix.com/glossary/aibook/database
https://alandix.com/glossary/aibook/production system
https://alandix.com/glossary/aibook/database
https://alandix.com/glossary/aibook/Production rules
https://alandix.com/glossary/aibook/database
https://alandix.com/glossary/aibook/database
https://alandix.com/glossary/aibook/Production rules
https://alandix.com/glossary/aibook/database
https://alandix.com/glossary/aibook/database

Knowledge in AI ■ 17

FIGURE 2.5 Production system rules for assessing a loan application.

2.6.3 The Interpreter

The interpreter is responsible for finding the rules
whose conditions are matched by the current state of the
database. It must then decide which rule to apply. If there
is more than one rule whose condition matches, then
one of the contenders must be selected using strategies
such as those proposed below. If no rule matches, the
system cannot proceed. Once a single rule has been
selected the interpreter must perform the actions in
the body of the rule. This process continues until there
are no matching rules or until a rule is triggered which
includes the instruction to stop.

The interpreter must have strategies to select a single
rule where several match the state of the database. There
are a number of possible ways to handle this situation.
The most simple strategy is to choose the first rule that
matches. This effectively places an ordering on the pro-
duction rules, which must be carefully considered when
writing the rules. An alternative strategy is to favour the
most specific rule. This may involve choosing a rule that
matches all the conditions of its contenders but that also
contains further conditions that match, or it may mean
choosing the rule that instantiates variables or qualifies a
fact.

https://alandix.com/glossary/aibook/interpreter
https://alandix.com/glossary/aibook/database
https://alandix.com/glossary/aibook/interpreter
https://alandix.com/glossary/aibook/interpreter
https://alandix.com/glossary/aibook/database
https://alandix.com/glossary/aibook/production rules
https://alandix.com/glossary/aibook/production rules

18 ■ Artificial Intelligence

For example,

IF <salary is high> and < age > 40>

is more specific than

IF <salary is high>.

Similarly

IF <salary > £40,000>

is more specific than

IF <salary > £20,000>

since fewer instances will match it.

2.6.4 An Example Production System: Making a
Loan

This production system gives advice on whether to make
a loan to a client (its rules are obviously very simplistic,
but it is useful to illustrate the technique). Initially the
database contains the following default facts:

<client working? is unknown>
<client student? is unknown>
<salary is unknown>

and a single fact relating to our client:

<AMOUNT REQUESTED is £2000>

which represents the amount of money our client wishes
to borrow (we will assume that this has been added us-
ing other rules). We can use the production system to
find out more information about the client and decide
whether to give this loan. Figure 2.5 shows a set of rules
that could be used to determine this.

Imagine our client is working and earns £7500. Given
the contents of the database, the following sequence oc-
curs:

1. Rule 1 fires since the condition matches a fact
in the database. The user answers YES to the
question, instantiating the variable WORKING
to YES. This adds the fact <client working? is
YES> to the database, replacing the fact <client
working? is unknown>

• Database contents after rule 1 fires:
<client working? is YES>
<client student? is unknown>
<salary is unknown>
<AMOUNT REQUESTED is £2000>

2. Rule 2 fires instantiating the variable SALARY to
the value given by the user. This adds this fact to
the database, as above.

• Database contents after rule 2 fires:
<client working? is YES>
<client student? is unknown>
<salary is £7500>
<AMOUNT REQUESTED is £2000>

3. Rule 4 fires since the value of SALARY is less than
five times the value of AMOUNT REQUESTED.
This results in an instruction to grant a loan of
SALARY/5, that is £1500. The system then clears
the database to the default values and finishes.

This particular system is very simple and no conflicts can
occur. It is assumed that the interpreter examines the rule
base from the beginning each time.

To summarise, we can consider production systems
against our metrics:

• expressiveness: production systems are particularly
good at representing procedural knowledge. They
are ideal in situations where knowledge changes
over time and where the final and initial states
differ from user to user (or subject to subject). The
approach relies on an understanding of the concept
of a working memory, which sometimes causes
confusion. The modularity of the representation
aids clarity in use: each rule is an independent
chunk of knowledge, and modification of one rule
does not interfere with others.

• effectiveness: new information is generated using
operators to change the contents of working mem-
ory. The approach is very amenable to computation.

• efficiency: the scheme is relatively efficient for
procedural problems, and their flexibility makes it
transferable between domains. The use of features
from human problem solving (such as short-term
memory) means that the scheme may not be the
most efficient. However, to counter this, these
features make it a candidate for modelling human
problem solving.

• explicitness: production systems can be pro-
grammed to provide explanations for their
decisions by tracing back through the rules that are
applied to reach the solution.

https://alandix.com/glossary/aibook/production system
https://alandix.com/glossary/aibook/database
https://alandix.com/glossary/aibook/production system
https://alandix.com/glossary/aibook/database
https://alandix.com/glossary/aibook/interpreter
https://alandix.com/glossary/aibook/knowledge representation!expressiveness
https://alandix.com/glossary/aibook/procedural knowledge
https://alandix.com/glossary/aibook/working memory
https://alandix.com/glossary/aibook/knowledge representation!effectiveness
https://alandix.com/glossary/aibook/working memory
https://alandix.com/glossary/aibook/working memory
https://alandix.com/glossary/aibook/knowledge representation!efficiency
https://alandix.com/glossary/aibook/short-term memory
https://alandix.com/glossary/aibook/short-term memory
https://alandix.com/glossary/aibook/knowledge representation!explicitness

2.7 NETWORK REPRESENTATIONS
Network representations capture knowledge as a graph,
in which nodes represent objects or concepts and arcs
represent relationships or associations. Relationships
can be domain specific or generic (see below for
examples).

Networks support property inheritance. An object or
concept may be a member of a class and is assumed to
have the same attribute values as the parent class (unless
alternative values override). Classes can also have sub-
classes that inherit properties in a similar way. For ex-
ample, the parent class may be Dog, which has attributes
such as has tail, barks and has four legs. A subclass of that
parent class may be a particular breed, say Great Dane,
which consequently inherits all the attributes above, as
well as having its own attributes (such as tall). A particu-
lar member (or instance) of this subclass, that is a partic-
ular Great Dane, may have additional attributes such as
colour. Property inheritance is overridden where a class
member or subclass has an explicit alternative value for
an attribute. For example, Rottweiler may be a subclass
of the parent class Dog but may have the attribute has no
tail.

Alternatives may also be given at the instance level:
Rottweiler as a class may inherit the property has tail, but
a particular dog, whose tail has been docked, may have
the value has no tail overriding the inherited property.

Semantic networks are an example of a network rep-
resentation. A semantic network illustrating property in-
heritance is given below. It includes two generic relation-
ships that support property inheritance: is-a indicating
class inclusion (subclass) and instance indicating class
membership. The network of classes, subclasses and their
properties and relations is sometimes called an ontology.

Property inheritance supports inference, in that we
can derive facts about an object by considering the
parent classes. For example, in the Dog network in
Figure 2.6, we can derive the facts that a Great Dane has
a tail and is carnivorous from the facts that a dog has
a tail and a canine is carnivorous, respectively. Note,
however, that we cannot derive the fact that a Basenji
can bark since we have an alternative value associated
with Basenji. Note also how the network links together
information from different domains (dogs and cartoons)
by association.

Network representations are useful where an object or
concept is associated with many attributes and where re-
lationships between objects are important. Considering

Knowledge in AI ■ 19

them against our metrics for knowledge representation
schemes:

• expressiveness: they allow representation of facts
and relationships between facts. The levels of the
hierarchy provide a mechanism for representing
general and specific knowledge. The representation
is a model of human memory, and it is therefore
relatively understandable.

• effectiveness: they support inference through prop-
erty inheritance. They can also be easily represented
using Prolog and other AI languages making them
amenable to computation.

• efficiency: they reduce the size of the knowledge
base, since knowledge is stored only at its highest
level of abstraction rather than for every instance or
example of a class. They help maintain consistency
in the knowledge base, because high-level proper-
ties are inherited by subclasses and not added for
each subclass.

• explicitness: reasoning equates to following paths
through the network, so the relationships and in-
ference are explicit in the network links.

Some kinds of knowledge or data you encounter will be
very clearly networks, for example links in web pages
or friend connections in a social network. Others you
may build up based on analysing the meaning of data
(such as the semantic network above) or derived from
other forms of information, for example connecting
words that frequently occur close to one another
in text. These are all symbolic networks, where the
individual nodes have a well-defined meaning (a web
page, person or word). However, you will also encounter
sub-symbolic networks, including different forms of
neural network, that is where the nodes in the network
have no predefined meaning. We will discuss these in
Chapter 6.

2.8 STRUCTURED REPRESENTATIONS
In structured representations information is organised
into more complex knowledge structures. Slots in the
structure represent attributes into which values can be
placed. These values are either specific to a particular
instance or default values, which represent stereotypical
information. Structured representations can capture
complex situations or objects, for example eating a meal

https://alandix.com/glossary/aibook/Network representations
https://alandix.com/glossary/aibook/property inheritance
https://alandix.com/glossary/aibook/Property inheritance
https://alandix.com/glossary/aibook/Semantic networks
https://alandix.com/glossary/aibook/network representation
https://alandix.com/glossary/aibook/network representation
https://alandix.com/glossary/aibook/semantic network
https://alandix.com/glossary/aibook/property inheritance
https://alandix.com/glossary/aibook/property inheritance
https://alandix.com/glossary/aibook/property inheritance
https://alandix.com/glossary/aibook/ontology
https://alandix.com/glossary/aibook/Property inheritance
https://alandix.com/glossary/aibook/Network representations
https://alandix.com/glossary/aibook/knowledge representation!expressiveness
https://alandix.com/glossary/aibook/human memory
https://alandix.com/glossary/aibook/knowledge representation!effectiveness
https://alandix.com/glossary/aibook/property inheritance
https://alandix.com/glossary/aibook/property inheritance
https://alandix.com/glossary/aibook/Prolog
https://alandix.com/glossary/aibook/knowledge representation!efficiency
https://alandix.com/glossary/aibook/knowledge base
https://alandix.com/glossary/aibook/knowledge base
https://alandix.com/glossary/aibook/knowledge base
https://alandix.com/glossary/aibook/knowledge representation!explicitness
https://alandix.com/glossary/aibook/semantic network
https://alandix.com/glossary/aibook/sub-symbolic
https://alandix.com/glossary/aibook/neural network
https://alandix.com/glossary/aibook/knowledge representation!structured

20 ■ Artificial Intelligence

FIGURE 2.6 A fragment of a semantic network.

in a restaurant or the content of a hotel room. Such
structures can be linked together as networks, giving
property inheritance. Frames and scripts are the most
common types of structured representation.

2.8.1 Frames

Frames are knowledge structures that represent expected
or stereotypical information about an object [196]. For
example, imagine a supermarket. If you have visited one
or two, you will have certain expectations as to what
you will find there. These may include aisles of shelves,
freezer banks and check-out tills. Some information will
vary from supermarket to supermarket, for example the
number of tills. This type of information can be stored
in a network of frames where each frame comprises a
number of slots with appropriate values. A section of a
frame network on supermarkets is shown in Figure 2.7.

In summary, frames extend semantic networks to in-
clude structured, hierarchical knowledge. Since they can
be used with semantic networks, they share the benefits
of these, as well as

• expressiveness: they allow representation of
structured knowledge and procedural knowledge.
The additional structure increases clarity.

• effectiveness: actions or operations can be associ-
ated with a slot and performed, for example, when-

ever the value for that slot is changed. Such proce-
dures are called demons.

• efficiency: they allow more complex knowledge to
be captured efficiently.

• explicitness: the additional structure makes the rel-
ative importance of particular objects and concepts
explicit.

2.8.2 Scripts

A script, like a frame, is a structure used to represent a
stereotypical situation [243]. It also contains slots that
can be filled with appropriate values. However, where a
frame typically represents knowledge of objects and con-
cepts, scripts represent knowledge of events. They were
originally proposed as a means of providing contextual
information to support natural language understanding
(see Chap. 13).

Consider the following description:

Alison and Brian went to the supermarket.
When they had got everything on their list
they went home.

Although it is not explicitly stated in this description,
we are likely to infer that Alison and Brian paid for
their selections before leaving. We might also be able

https://alandix.com/glossary/aibook/property inheritance
https://alandix.com/glossary/aibook/knowledge representation!frame
https://alandix.com/glossary/aibook/knowledge representation!script
https://alandix.com/glossary/aibook/Frames
https://alandix.com/glossary/aibook/supermarket
https://alandix.com/glossary/aibook/frames
https://alandix.com/glossary/aibook/frame
https://alandix.com/glossary/aibook/frame
https://alandix.com/glossary/aibook/frames
https://alandix.com/glossary/aibook/semantic networks
https://alandix.com/glossary/aibook/semantic networks
https://alandix.com/glossary/aibook/knowledge representation!expressiveness
https://alandix.com/glossary/aibook/procedural knowledge
https://alandix.com/glossary/aibook/knowledge representation!effectiveness
https://alandix.com/glossary/aibook/knowledge representation!efficiency
https://alandix.com/glossary/aibook/knowledge representation!explicitness
https://alandix.com/glossary/aibook/script
https://alandix.com/glossary/aibook/frame
https://alandix.com/glossary/aibook/frame
https://alandix.com/glossary/aibook/scripts
https://alandix.com/glossary/aibook/natural language understanding
https://alandix.com/glossary/aibook/supermarket

Knowledge in AI ■ 21

FIGURE 2.7 Frame representation of supermarket.

to fill in more details about their shopping trip: that
they had a trolley and walked around the supermarket,
that they selected their own purchases, that their
list contained the items that they wished to buy. All
of this can be inferred from our general knowledge
concerning supermarkets, our expectations as to what is
likely to happen at one. Our assumptions about Alison
and Brian’s experience of shopping would be very
different if the word supermarket was replaced by corner
shop.

It is this type of stereotypical knowledge that scripts
attempt to capture, with the aim of allowing a computer
to make similar inferences about incomplete stories to
those we were able to make above. Schank and colleagues
developed a number of programs during the 1970s and
1980s that used scripts to answer questions about stories
[243]. The script would describe likely action sequences
and provide the contextual information to understand
the stories.

A script comprises a number of elements:

• entry conditions: these are the conditions that must
be true for the script to be activated.

• results: these are the facts that are true when the
script ends.

• props: these are the objects that are involved in the
events described in the script.

• roles: these are the expected actions of the major
participants in the events described in the script.

• scenes: these are the sequences of events that take
place.

• tracks: these represent variations on the general
theme or pattern of the script.

For example, a script for going to a supermarket might
store the following information:

Entry supermarket open, shopper needs goods,
conditions: shopper has money
Result: shopper has goods,

supermarket has less stock,
supermarket has more money

Props: trolleys, goods, check-out tills
Roles: shopper collects food,

assistant checks out food and takes money,
store manager orders new stock

Scenes: selecting goods, checking out goods,
paying for goods, packing goods

Tracks: customer packs bag, assistant packs bag

Scripts have been useful in natural language under-
standing in restricted domains. Problems arise when the
knowledge required to interpret a story is not domain
specific but general, “common-sense” knowledge.
Charniak [46] used children’s stories to illustrate just
how much knowledge is required to interpret even
simple descriptions. For example, consider the following
excerpt about exchanging unwanted gifts:

Alison and Brian received two toasters at their
engagement party, so they took one back to the
shop.

To interpret this we need to know about toasters and
why, under normal circumstances, one wouldn’t want
two; we also need to know about shops and their normal
exchange policies. In addition, we need to know about
engagements and the tradition of giving gifts on such
occasions. But the situation is more complicated than
it appears. If instead of toasters Alison and Brian had
received two gift vouchers, two books or two £20 notes,
they would not have needed to exchange them. So
the rule that one doesn’t want two of something only
applies to certain items. Such information is not specific
to engagements: the same would be true of birthday
presents, wedding presents or Christmas presents. So in
which script do we store such information?

https://alandix.com/glossary/aibook/general knowledge
https://alandix.com/glossary/aibook/scripts
https://alandix.com/glossary/aibook/Schank, R.
https://alandix.com/glossary/aibook/scripts
https://alandix.com/glossary/aibook/script
https://alandix.com/glossary/aibook/script
https://alandix.com/glossary/aibook/script
https://alandix.com/glossary/aibook/supermarket
https://alandix.com/glossary/aibook/Scripts
https://alandix.com/glossary/aibook/natural language understanding
https://alandix.com/glossary/aibook/natural language understanding
https://alandix.com/glossary/aibook/Charniak
https://alandix.com/glossary/aibook/script

22 ■ Artificial Intelligence

This is indicative of a basic problem of AI, which is
how to provide the computer with the general, interpre-
tative knowledge that we glean from our experience, as
well as the specific factual knowledge about a particular
domain. We will consider this problem in the next sec-
tion.

Scripts are designed for representing knowledge in a
particular context. Within this context the method is ex-
pressive and effective, except as we have seen in repre-
senting general knowledge, but it is limited in wider ap-
plication. Similarly, it provides an efficient and explicit
mechanism for capturing complex structured informa-
tion within its limited domain.

2.9 GENERAL KNOWLEDGE
Most knowledge-based systems are effective in a
restricted domain only because they do not have access
to the deep, common knowledge that we use daily to
interpret our world. Few AI projects have attempted to
provide such general knowledge, the CYC project begun
at MCC, Texas, by Doug Lenat [164], being a notable
exception.

The CYC project aimed to build a knowledge base con-
taining the millions of pieces of common knowledge that
humans possess. It was originally envisaged as a ten-year
project involving many people, meticulously encoding
the type of facts that are “obvious” to us, facts at the level
of “all men are people” and “children are always younger
than their parents”. To us, expressing such facts seems
ludicrous; for the computer they need to be represented
explicitly.

The project set out to investigate whether it is possible
to represent such common-sense knowledge effectively
in a knowledge base and also considers the problems
of building and maintaining large-scale knowledge
bases. Its critics claimed that it would be a waste of
time and money, since such knowledge can only be
gained by experience, for example the experiences
children have through play. However, CYC can derive
new knowledge from the facts provided, effectively
learning and generalising from its, albeit artificial,
experience.

Although the original 10-year timescale was mas-
sively optimistic, CYC has confounded its critics,
and the open and research versions (OpenCYC and
ResearchCYC) have been widely used [68]. Furthermore
other projects have picked up aspects of this including

the YAGO/YAGO2 project that draws knowledge
from a variety of sources including DBpedia [136].
Another ambitious project was FreeBase, which was
crowdsourced collection of interlinked data based on
standard ontologies and relationships and provided
a publicly available API. The original startup was
acquired by Google and used to pump-prime its own
KnowledgeGraph used for the information boxes
attached to many web searches, but sadly closed the
original service. Happily, the FreeBase data was made
available in various forms including to the WikiData
project [219].

We will see in Chapters 8 and 17 how the availability
of large data sources, especially on the web, has allowed
alternative ways to acquire (apparent) knowledge based
on text mining. It is likely that ongoing and future ini-
tiatives will leverage the large curated resources such as
OpenCyc alongside data mining techniques.

2.10 THE FRAME PROBLEM
Throughout this chapter we have been looking at knowl-
edge representation schemes that allow us to represent a
problem at a particular point in time: a particular state.
However, as we will see in subsequent chapters, repre-
sentation schemes have to be able to represent sequences
of problem states for use in search and planning. Imag-
ine the problem of moving an automatic fork lift truck
around a factory floor. In order to do this we need to rep-
resent knowledge about the layout of the factory and the
position of the truck, together with information dictat-
ing how the truck can move (perhaps it can only move if
its forks are raised above the ground). However, as soon
as the truck makes one movement, the knowledge has
changed and a new state has to be represented. Of course,
not all the knowledge has changed; some facts, such as
the position of the factory walls, are likely to remain the
same. The problem of representing the facts that alter
from state to state as well as those that remain the same
is the essence of the frame problem [185].

In some situations, where keeping track of the
sequence of states is important, it is infeasible to simply
store the whole state each time – doing so will soon
use up memory. So it is necessary to store information
about what does and does not change from state to state.
In some situations even deciding what changes is not an
easy problem. In our factory we may describe bricks as
being on a pallet which in turn is by the door:

https://alandix.com/glossary/aibook/general knowledge
https://alandix.com/glossary/aibook/general knowledge
https://alandix.com/glossary/aibook/Scripts
https://alandix.com/glossary/aibook/general knowledge
https://alandix.com/glossary/aibook/general knowledge
https://alandix.com/glossary/aibook/CYC
https://alandix.com/glossary/aibook/Lenat, Doug
https://alandix.com/glossary/aibook/CYC project
https://alandix.com/glossary/aibook/knowledge base
https://alandix.com/glossary/aibook/knowledge base
https://alandix.com/glossary/aibook/CYC
https://alandix.com/glossary/aibook/CYC
https://alandix.com/glossary/aibook/ontologies
https://alandix.com/glossary/aibook/Google
https://alandix.com/glossary/aibook/text mining
https://alandix.com/glossary/aibook/frame problem

Knowledge in AI ■ 23

on(pallet, bricks)
by(door, pallet)

If we move the pallet, then we infer that the bricks also
move but that the door does not. So in this case at least
the relationship on implies no change, but by does imply
a change (the pallet is no longer by the door).

A number of solutions have been proposed to the
frame problem. One approach is to include specific
frame axioms which describe the parts that do not
change when an operator is applied to move from state
to state. So, for example, the system above would include
the axiom

on(x, y, s1) ∧ move(x, s1, s2) → on(x, y, s2)

to specify that when an object, y, is on object x in state s1,
then if the operation move is applied to move x to state s2,
then object y is still on object x in the new state. Frame
axioms are a useful way of making change explicit but
become extremely unwieldy in complex domains.

An alternative solution is to describe the initial state
and then change the state description as rules are ap-
plied. This means that the representation is always up-
to-date. Such a solution is fine until the system needs
to backtrack in order to explore another solution. Then
there is nothing to indicate what should be done to undo
the changes. Instead we could maintain the initial de-
scription but store changes each time an operator is ap-
plied. This makes backtracking easy since information as
to what has been changed is immediately available, but it
is again a complex solution. A compromise solution is to
change the initial state description but also store infor-
mation as to how to undo the change.

There is no ideal solution to the frame problem, but
these issues should be considered both in selecting
a knowledge representation scheme and in choosing
appropriate search strategies. We will look at search in
more detail in Chapter 4.

2.11 KNOWLEDGE ELICITATION
All knowledge representation depends upon knowledge
elicitation to get the appropriate information from
the source (often human) to the knowledge base.
Knowledge elicitation is the bottleneck of knowledge-
based technology. It is difficult, time consuming and
imprecise. This is because it depends upon the expert
providing the right information, without missing
anything out. This in turn often depends upon the

person trying to elicit the knowledge (the knowledge
engineer) asking the expert the right questions in an
area that he or she may know little about.

To illustrate the magnitude of the knowledge elicita-
tion problem, think of a subject that you know something
about (perhaps a hobby, a sport, a form of art or liter-
ature, a skill). Try to write down everything you know
about the subject. Even more enlightening, get a friend
who is not expert in the subject to question you about it,
and provide answers to the questions. You will soon find
that it is difficult to be precise and exhaustive in this type
of activity.

A number of techniques have been proposed to help
alleviate the problem of knowledge elicitation. These
include structured interview techniques, knowledge elic-
itation tools and the use of machine-learning techniques
that learn concepts from examples. The latter can be used
to identify key features in examples which characterise
a concept. We will look in more detail at knowl-
edge elicitation when we consider expert systems in
Chapter 18.

2.12 SUMMARY
In this chapter we have seen the importance of an appro-
priate knowledge representation scheme and how we can
assess potential schemes according to their expressive-
ness, effectiveness, efficiency and explicitness. We have
considered four key representation schemes – logic, pro-
duction rules, network representations and structured
representations – looking at examples of each and their
strengths and weaknesses. We have looked at the prob-
lems of representing general knowledge and changing
knowledge. Finally, we have touched on the problem of
knowledge elicitation, which we will return to in Chap-
ter 18.

2.1 UK law forbids marriage between certain relatives
(e.g. parents and children, brothers and sisters)
but allows it between others (e.g. first cousins).
Use a logic formalism to represent your knowl-
edge about UK (or your own country’s) marriage
laws.

2.2 A pet shop would like to implement an expert
system to advise customers on suitable pets for
their circumstances. Write a production system to
incorporate the following information (your sys-
tem should elicit the information it needs from
the customer).

https://alandix.com/glossary/aibook/frame problem
https://alandix.com/glossary/aibook/frame axioms
https://alandix.com/glossary/aibook/Frame axioms
https://alandix.com/glossary/aibook/Frame axioms
https://alandix.com/glossary/aibook/backtracking
https://alandix.com/glossary/aibook/frame problem
https://alandix.com/glossary/aibook/knowledge representation
https://alandix.com/glossary/aibook/search strategies
https://alandix.com/glossary/aibook/search
https://alandix.com/glossary/aibook/knowledge elicitation
https://alandix.com/glossary/aibook/knowledge elicitation
https://alandix.com/glossary/aibook/knowledge base
https://alandix.com/glossary/aibook/Knowledge elicitation
https://alandix.com/glossary/aibook/knowledge engineer
https://alandix.com/glossary/aibook/knowledge engineer
https://alandix.com/glossary/aibook/knowledge elicitation
https://alandix.com/glossary/aibook/knowledge elicitation
https://alandix.com/glossary/aibook/knowledge elicitation
https://alandix.com/glossary/aibook/knowledge elicitation
https://alandix.com/glossary/aibook/knowledge elicitation
https://alandix.com/glossary/aibook/machine-learning
https://alandix.com/glossary/aibook/knowledge elicitation
https://alandix.com/glossary/aibook/knowledge elicitation
https://alandix.com/glossary/aibook/expert systems
https://alandix.com/glossary/aibook/knowledge representation
https://alandix.com/glossary/aibook/logic
https://alandix.com/glossary/aibook/production rules
https://alandix.com/glossary/aibook/production rules
https://alandix.com/glossary/aibook/network representations
https://alandix.com/glossary/aibook/general knowledge
https://alandix.com/glossary/aibook/knowledge elicitation
https://alandix.com/glossary/aibook/logic
https://alandix.com/glossary/aibook/expert system
https://alandix.com/glossary/aibook/expert system
https://alandix.com/glossary/aibook/production system

24 ■ Artificial Intelligence

A budgie is suitable for small homes (including city
flats) where all the members of the family are out
during the day. It is not appropriate for those with
a fear of birds or who have a cat.
A guinea pig is suitable for homes with a small gar-
den where the occupants are out all day. It is par-
ticularly appropriate for children. However, it will
require regular cleaning of the cage.
A cat is suitable for most homes except high-rise
flats, although the house should not be on a main
road. It does not require exercise. Some people are
allergic to cats.
A dog is suitable for homes with a garden or a park
nearby. It is not suitable if all occupants are out all
day. It will require regular exercise and grooming.

2.3 Construct a script for a train journey. (You can use
a natural language representation but you should
clearly indicate the script elements.)

2.4 Working in pairs, one of you should take the role
of expert, the other of knowledge engineer. The
expert should suggest a topic in which he or she
is expert and the knowledge engineer should ask
questions of the expert to elicit information on
this topic. The expert should answer as precisely as
possible. The knowledge engineer should record

all the answers given. When enough information
has been gathered, choose an appropriate repre-
sentation scheme and formalise this knowledge.

FURTHER READING

F. Van Harmelen, V. Lifschitz, and B. Porter, editor. Hand-
book of knowledge representation. Elsevier, San Diego,
CA, 2008.
Edited collection that covers a wide variety of knowledge
representation techniques, including spatial reasoning and
temporal logics.

G. A. Ringland and D. A. Duce. Approaches to knowledge repre-
sentation: An introduction. John Wiley, Chichester, 1988.
This classic book explains the issues of knowledge represen-
tation in more detail than is possible here: a good next step.
It is now out of print but available at: https://www.chilton-
computing.org.uk/inf/pdfs/knowledge_representation.pdf

R. J. Brachman, H. J. Levesque, and R. Retier, editors. Knowl-
edge representation. MIT Press Cambridge, MA, 1992.
A collection of papers that makes a good follow-on from the
above covering fundamental research into representation
for symbolic reasoning.

D. G. Bobrow and A. Collins, editors. Representation and un-
derstanding: Studies in cognitive science. Academic Press
New York, 1975.
A collection of early papers on knowledge representation.

https://alandix.com/glossary/aibook/script
https://alandix.com/glossary/aibook/script
https://alandix.com/glossary/aibook/knowledge engineer
https://alandix.com/glossary/aibook/knowledge engineer
https://alandix.com/glossary/aibook/knowledge engineer
https://alandix.com/glossary/aibook/spatial reasoning
https://alandix.com/glossary/aibook/temporal logics
https://www.chilton-computing.org.uk/inf/pdfs/knowledge_representation.pdf
https://www.chilton-computing.org.uk/inf/pdfs/knowledge_representation.pdf

3 CHAP T ER

Reasoning

3.1 OVERVIEW
Reasoning is the ability to use knowledge to draw new
conclusions about the world. Without it we are simply
recalling stored information. There are a number of dif-
ferent types of reasoning, including induction, abduction
and deduction. In this chapter we consider methods for
reasoning when our knowledge is unreliable or incom-
plete. We also look at how we can use previous experience
to reason about current problems.

3.2 WHAT IS REASONING?
Mention of reasoning probably brings to mind logic puz-
zles or “whodunit” thrillers, but it is something that we
do every day of our lives. Reasoning is the process by
which we use the knowledge we have to draw conclusions
or infer something new about a domain of interest. It is a
necessary part of what we call “intelligence”: without the
ability to reason we are doing little more than a lookup
when we use information. In fact this is the difference
between a standard database system and a knowledge-
based or expert system. Both have information that can
be accessed in various ways, but the database, unlike the
expert system, has no reasoning facilities and can there-
fore answer only limited, specific questions.

Think for a moment about the types of reasoning you
use. How do you know what to expect when you go on
a train journey? What do you think when your friend is
annoyed with you? How do you know what will happen
if your car has a flat battery? Whether you are aware of

it or not, you will use a number of different methods of
reasoning depending on the problem you are considering
and the information that you have before you.

The three everyday situations mentioned above illus-
trate three key types of reasoning that we use. In the first
case you know what to expect on a train journey because
of your experience of numerous other train journeys: you
infer that the new journey will share common features
with the examples you are aware of. This is induction,
which can be summarised as generalisation from cases
seen to infer information about cases unseen. We use it
frequently in learning about the world around us. For
example, every crow we see is black; therefore we infer
that all crows are black. If you think about it, such rea-
soning is unreliable: we can never prove our inferences
to be true, we can only prove them to be false. Take the
crows again. To prove that all crows are black we would
have to confirm that all crows that exist, have existed or
will exist are black. This is obviously not possible. How-
ever, to disprove the statement, all we need is to produce
a single crow that is white or pink. So at best we can amass
evidence to support our belief that all crows are black. In
spite of its unreliability, inductive reasoning is very use-
ful and is the basis of much of our learning. It is used
particularly in machine learning, which we will meet in
Chapter 5.

The second example we suggested was working out
why a friend is annoyed with you, in other words try-
ing to find an explanation for your friend’s behaviour. It
may be that this particular friend is a stickler for punctu-
ality and you are a few minutes late to your rendezvous.
You may therefore infer that your friend’s anger is caused
by your lateness. This uses abduction, the process of rea-
soning back from something to the state or event that
caused it. Of course this too is unreliable; it may be that
your friend is angry for another reason (perhaps you had

DOI: 10.1201/9781003082880-4 25

https://alandix.com/glossary/aibook/database
https://alandix.com/glossary/aibook/knowledge-based system
https://alandix.com/glossary/aibook/knowledge-based system
https://alandix.com/glossary/aibook/expert system
https://alandix.com/glossary/aibook/database
https://alandix.com/glossary/aibook/expert system
https://alandix.com/glossary/aibook/induction
https://alandix.com/glossary/aibook/generalisation
https://alandix.com/glossary/aibook/inductive reasoning
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/abduction
https://alandix.com/glossary/aibook/event
http://dx.doi.org/10.1201/9781003082880-4

26 ■ Artificial Intelligence

promised to telephone but had forgotten). Abduction can
be used in cases where the knowledge is incomplete, for
example where it is not possible to use deductive reason-
ing (see below). Abduction can provide a “best guess”
given the evidence available.

The third problem is usually solved by deduction: you
have knowledge about cars such as “if the battery is flat
the headlights won’t work”; you know the battery is flat
so you can infer that the lights won’t work. This is the
reasoning of standard logic. Indeed, we could express our
car problem in terms of logic: given that

a = the battery is flat
b = the lights won’t work

and the axioms

∀x ∶ a(x) → b(x)
a(my car)

we can deduce b(my car). Note, however, that we cannot
deduce the inverse: that is, if we know b(my car) we can-
not deduce a(my car). This is not permitted in standard
logic but is of course another example of abduction. If
our lights don’t work, we may use abduction to derive
this explanation. However, it could be wrong; there may
be another explanation for the light failure (e.g. a bulb
may have blown).

Deduction is probably the most familiar form of ex-
plicit reasoning. Most of us at some point have been tried
with syllogisms about Aristotle’s mortality and the like.
It can be defined as the process of deriving the logically
necessary conclusion for the initial premises. So, for ex-
ample,

Elephants are bigger than dogs
Dogs are bigger than mice

Therefore

Elephants are bigger than mice.

However, it should be noted that deduction is concerned
with logical validity, not actual truth. Consider the fol-
lowing example; given the facts, can we reach the con-
clusion by deduction?

Some dogs are greyhounds
Some greyhounds run fast
Therefore

Some dogs run fast.

The answer is no. We cannot make this deduction
because we do not know that all greyhounds are dogs.
The fast greyhounds may therefore be the greyhounds
that are not dogs. This of course is nonsensical in terms
of what we know (or more accurately have induced)
about the real world, but it is perfectly valid based on
the premises given. You should therefore be aware that
deduction does not always correspond to natural human
reasoning.

3.3 FORWARD AND BACKWARD
REASONING

As well as coming in different “flavours”, reasoning can
progress in one of two directions: forwards to the goal or
backwards from the goal. Both are used in AI in differ-
ent circumstances. Forward reasoning (also referred to
as forward chaining, data-driven reasoning, bottom-up
or antecedent-driven) begins with known facts and at-
tempts to move towards the desired goal. Backward rea-
soning (backward chaining, goal-driven reasoning, top-
down, consequent-driven or hypothesis-driven) begins
with the goal and sets up subgoals which must be solved
in order to solve the main goal.

Imagine you hear that a man bearing your family name
died intestate a hundred years ago and that solicitors are
looking for descendants. There are two ways in which
you could determine if you are related to the dead man.
First, follow through your family tree from yourself to see
if he appears. Secondly, trace his family tree to see if it in-
cludes you. The first is an example of forward reasoning,
the second backward reasoning. In order to decide which
method to use, we need to consider the number of start
and goal states (move from the smaller to the larger – the
more states there are, the easier it is to find one) and the
number of possibilities that need to be considered at each
stage (the fewer the better). In the above example there is
one start state and one goal state (unless you are related
to the dead man more than once), so this does not help
us. However, if you use forward reasoning, there will be
two possibilities to consider from each node (each per-
son will have two parents), whereas with backward rea-
soning there may be many more (even today the average
number of children is 2.4; at the beginning of the century
it was far more).

In general, backward reasoning is most applicable in
situations where a goal or hypothesis can be easily gener-
ated (e.g. in mathematics or medicine), and where prob-
lem data must be acquired by the solver (e.g. a doctor

https://alandix.com/glossary/aibook/Abduction
https://alandix.com/glossary/aibook/deductive reasoning
https://alandix.com/glossary/aibook/deductive reasoning
https://alandix.com/glossary/aibook/Abduction
https://alandix.com/glossary/aibook/deduction
https://alandix.com/glossary/aibook/standard logic
https://alandix.com/glossary/aibook/logic
https://alandix.com/glossary/aibook/standard logic
https://alandix.com/glossary/aibook/standard logic
https://alandix.com/glossary/aibook/abduction
https://alandix.com/glossary/aibook/abduction
https://alandix.com/glossary/aibook/Deduction
https://alandix.com/glossary/aibook/syllogisms
https://alandix.com/glossary/aibook/deduction
https://alandix.com/glossary/aibook/deduction
https://alandix.com/glossary/aibook/deduction
https://alandix.com/glossary/aibook/deduction
https://alandix.com/glossary/aibook/Forward reasoning
https://alandix.com/glossary/aibook/forward chaining
https://alandix.com/glossary/aibook/data-driven reasoning
https://alandix.com/glossary/aibook/bottom-up reasoning
https://alandix.com/glossary/aibook/antecedent-driven reasoning
https://alandix.com/glossary/aibook/Backward reasoning
https://alandix.com/glossary/aibook/Backward reasoning
https://alandix.com/glossary/aibook/backward chaining
https://alandix.com/glossary/aibook/goal-driven reasoning
https://alandix.com/glossary/aibook/top-down reasoning
https://alandix.com/glossary/aibook/top-down reasoning
https://alandix.com/glossary/aibook/consequent-driven reasoning
https://alandix.com/glossary/aibook/hypothesis-driven reasoning
https://alandix.com/glossary/aibook/forward reasoning
https://alandix.com/glossary/aibook/backward reasoning
https://alandix.com/glossary/aibook/goal states
https://alandix.com/glossary/aibook/goal state
https://alandix.com/glossary/aibook/forward reasoning
https://alandix.com/glossary/aibook/backward reasoning
https://alandix.com/glossary/aibook/backward reasoning
https://alandix.com/glossary/aibook/backward reasoning

asking for vital signs information in order to prove or
disprove a hypothesis). Forward reasoning, on the other
hand, is useful where most of the data is given in the
problem statement but where the goal is unknown or
where there are a large number of possible goals. For ex-
ample, a system which analyses geological data in order
to determine which minerals are present falls into this
category.

3.4 REASONING WITH UNCERTAINTY
In Chapter 2 we looked at knowledge and considered
how different knowledge representation schemes allow
us to reason. Recall, for example, that standard logics al-
low us to infer new information from the facts and rules
that we have.

Such reasoning is useful in that it allows us to
store and utilise information efficiently (we do not
have to store everything). However, such reasoning
assumes that the knowledge available is complete (or
can be inferred) and correct and that it is consistent.
Knowledge added to such systems never makes previous
knowledge invalid. Each new piece of information
simply adds to the knowledge. This is called monotonic
reasoning. Monotonic reasoning can be useful in
complex knowledge bases since it is not necessary
to check consistency when adding knowledge or to
store information relating to the truth of knowledge. It
therefore saves time and storage.

However, if knowledge is incomplete or changing,
an alternative reasoning system is required. There are
a number of ways of dealing with uncertainty. We will
consider four of them briefly:

• non-monotonic reasoning

• probabilistic reasoning

• reasoning with certainty factors

• fuzzy reasoning

3.4.1 Non-monotonic Reasoning

In a non-monotonic reasoning system new information
can be added that will cause the deletion or alteration
of existing knowledge. For example, imagine you have
invited someone round for dinner. In the absence of any
other information you may make an assumption that
your guest eats meat and will like chicken. Later you

Reasoning ■ 27

discover that the guest is in fact a vegetarian and the
inference that your guest likes chicken becomes invalid.

We have already met two non-monotonic reasoning
systems: abduction and property inheritance (see
Chap. 2). Recall that abduction involves inferring
some information on the basis of current evidence.
This may be changed if new evidence comes to light,
which is a characteristic of non-monotonic reasoning.
So, for example, we might infer that a child who has
spots has measles. However, if evidence comes to
light to refute this assumption (e.g. that the spots are
yellow and not red), then we replace the inference with
another.

Property inheritance is also non-monotonic. An
instance or subclass will inherit the characteristics of
the parent class, unless it has alternative or conflicting
values for that characteristic. So, as we saw in Chapter 2,
we know that dogs bark and that Rottweilers and
Basenjis are dogs. However, we also know that Basenjis
don’t bark. We can therefore infer that Rottweilers bark
(since they are dogs and we have no evidence to think
otherwise), but we cannot infer that Basenjis do, since
the evidence refutes it.

A third non-monotonic reasoning system is the truth
maintenance system or TMS [92]. In a TMS the truth or
falsity of all facts is maintained. Each piece of knowledge
is given a support list (SL) of other items that support (or
refute) belief in it. Each piece of knowledge is labelled for
reference, and an item can be supported either by another
item being true (+) or being false (-). Take, for example,
a simple system to determine the weather conditions:

(1) It is winter (SL ()())

(2) It is cold (SL (1+)(3-))

(3) It is warm

Statement (1) does not depend on anything else: it is a
fact. Statement (2) depends on statement (1) being true
and statement (3) being false. It is not known at this point
what statement (3) depends on. It has no support list.
Therefore we could assume that “it is cold” since we know
that “it is winter” is true (it is a fact) and we have no
information to suggest that it is warm (we can therefore
assume that this is false). However, if “it is warm” be-
comes true, then “it is cold” will become false. In this
way the TMS maintains the validity and currency of the
information held.

https://alandix.com/glossary/aibook/Forward reasoning
https://alandix.com/glossary/aibook/knowledge representation
https://alandix.com/glossary/aibook/standard logics
https://alandix.com/glossary/aibook/monotonic reasoning
https://alandix.com/glossary/aibook/monotonic reasoning
https://alandix.com/glossary/aibook/Monotonic reasoning
https://alandix.com/glossary/aibook/uncertainty
https://alandix.com/glossary/aibook/non-monotonic reasoning
https://alandix.com/glossary/aibook/probabilistic reasoning
https://alandix.com/glossary/aibook/reasoning with certainty factors
https://alandix.com/glossary/aibook/fuzzy reasoning
https://alandix.com/glossary/aibook/non-monotonic reasoning
https://alandix.com/glossary/aibook/non-monotonic reasoning
https://alandix.com/glossary/aibook/abduction
https://alandix.com/glossary/aibook/property inheritance
https://alandix.com/glossary/aibook/abduction
https://alandix.com/glossary/aibook/non-monotonic reasoning
https://alandix.com/glossary/aibook/Property inheritance
https://alandix.com/glossary/aibook/non-monotonic reasoning
https://alandix.com/glossary/aibook/truth maintenance system
https://alandix.com/glossary/aibook/truth maintenance system
https://alandix.com/glossary/aibook/TMS
https://alandix.com/glossary/aibook/TMS
https://alandix.com/glossary/aibook/TMS

28 ■ Artificial Intelligence

3.4.2 Probabilistic Reasoning

Probabilistic reasoning is required to deal with incom-
plete data. In many situations we need to make decisions
based on the likelihood of particular events, given the
knowledge we have. We can use probability to determine
the most likely cause.

Simple probability deals with independent events.
If we know the probability of event A occurring (call
it p(A)) and the probability of event B occurring
(p(B)), the probability that both will occur (p(AB))
is calculated as p(A) ∗ p(B). For example, consider
an ordinary pack of 52 playing cards, shuffled well.
If I select a card at random, what is the likelihood of
it being the king of diamonds? If we take event A to
be the card being a diamond and event B to be the
card being a king, we can calculate the probability as
follows:

13 p(A) =
52
= 0.25

(there are 13 diamonds)
4 p(B) =
52
= 0.077

(there are four kings)
p(AB) =

52 =
1 = 0.0192

2704 52

(there is one king of diamonds)

However, if two events are interdependent and the out-
come of one affects the outcome of the other, then we
need to consider conditional probability. Given the prob-
ability of event A (p(A)) and that of a second event B
which depends on it, p(B|A) (B given A), the probabil-
ity of both occurring is p(A) ∗ p(B|A). So, returning to
our pack of cards, imagine I take two cards. What is the
probability that they are both diamonds? Again, event A
is the first card being a diamond, but this time event B is
the second card also being a diamond:

p(A) =
13 = 0.25
52

(there are 13 diamonds)
p(B|A) =

12 = 0.235
51

(there are 12 diamonds left and 51 cards)
156 p(AB) =
2652

= 0.058

This is the basis of Bayes theorem and several probabilis-
tic reasoning systems. Bayes theorem calculates the prob-
abilities of particular “causes” given observed “effects”.

The theorem is as follows:

p(e|hi)p(hi)p(hi|e) =
∑n

j=1 p(e|hj)p(hj)

where

p(hi|e) is the probability that the hypothesis hi
is true given the evidence e
p(hi) is the probability that hi in the absence of
specific evidence

p(e|hi) is the probability that evidence e will be
observed if hypothesis hi is true

n is the number of hypotheses being consid-
ered.

For example, a doctor wants to determine the likelihood
of particular causes, based on the evidence that a patient
has a headache. The doctor has two hypotheses, a com-
mon cold (h1) and meningitis (h2), and one piece of ev-
idence, the headache (e), and wants to know the proba-
bility of the patient having a cold.

Suppose the probability of the doctor seeing a patient
with a cold, p(h1), is 0.2 and the probability of seeing
someone with meningitis, p(h2), is 0.000 001. Suppose
also that the probability of a patient having a headache
with a cold, p(e|h2), is 0.8 and the probability of a
patient having a headache with meningitis, p(e|h2),
is 0.9.

Using Bayes theorem we can see that the probability
that the patient has a cold is very high:

0.8 × 0.2 p(h1) = (0.8 × 0.2) + (0.9 × 0.000 001)
0.16= = 0.990.16 + 0.000 000 9

In reality, of course, the cost of misdiagnosis of menin-
gitis is also very high, and therefore many more factors
would have to be taken into account.

Bayes theorem was used in the early expert system,
PROSPECTOR [95], to find mineral deposits. The
aim was to determine the likelihood of finding a
specific mineral by observing the geological fea-
tures of an area. PROSPECTOR was used to find
several commercially significant mineral deposits.
Bayesian reasoning especially in the form of Bayesian

https://alandix.com/glossary/aibook/Probabilistic reasoning
https://alandix.com/glossary/aibook/probability
https://alandix.com/glossary/aibook/probability
https://alandix.com/glossary/aibook/probability
https://alandix.com/glossary/aibook/conditional probability
https://alandix.com/glossary/aibook/Bayes theorem
https://alandix.com/glossary/aibook/probabilistic reasoning
https://alandix.com/glossary/aibook/probabilistic reasoning
https://alandix.com/glossary/aibook/Bayes theorem
https://alandix.com/glossary/aibook/probability
https://alandix.com/glossary/aibook/probability
https://alandix.com/glossary/aibook/probability
https://alandix.com/glossary/aibook/probability
https://alandix.com/glossary/aibook/probability
https://alandix.com/glossary/aibook/probability
https://alandix.com/glossary/aibook/Bayes theorem
https://alandix.com/glossary/aibook/probability
https://alandix.com/glossary/aibook/Bayes theorem
https://alandix.com/glossary/aibook/expert system
https://alandix.com/glossary/aibook/PROSPECTOR
https://alandix.com/glossary/aibook/PROSPECTOR
https://alandix.com/glossary/aibook/Bayesian reasoning
https://alandix.com/glossary/aibook/Bayesian networks

networks (Section 3.5), is heavily used in many
AI applications, for example in medical diagnosis
[177, 254].

In spite of such successful uses, Bayes theorem makes
certain assumptions that make it intractable in many do-
mains. First, it assumes that statistical data on the rela-
tionships between evidence and hypotheses are known,
which is often not the case. Secondly, it assumes that the
relationships between evidence and hypotheses are all in-
dependent. In spite of these limitations Bayes theorem
has been used as the base for a number of probabilistic
reasoning systems, including certainty factors, which we
will consider next.

3.4.3 Certainty Factors

As we have seen, Bayesian reasoning assumes informa-
tion is available regarding the statistical probabilities of
certain events occurring. This makes it difficult to op-
erate in many domains. Certainty factors are a compro-
mise on pure Bayesian reasoning. The approach has been
used successfully, most notably in the early expert sys-
tem MYCIN [258]. MYCIN was a medical diagnosis sys-
tem that diagnosed bacterial infections of the blood and
prescribes drugs for treatment. Its knowledge was repre-
sented in rule form and each rule has an associated cer-
tainty factor.

For example, a MYCIN rule looks something like this:

If (a) the gram stain of the organism is gram
negative and

(b) the morphology of the organism is rod and

(c) the aerobicity of the organism is anaerobic

then there is suggestive evidence (0.5) that
identity of the organism is Bacteroides

In this system, each hypothesis is given a certainty
factor (CF) by the expert providing the rules, based
on his or her assessment of the evidence. A CF takes
a value between 1 and −1, where values approaching
−1 indicate that the evidence against the hypothesis is
strong, and those approaching 1 show that the evidence
for the hypothesis is strong. A value of 0 indicates
that no evidence for or against the hypothesis is
available.

A CF is calculated as the amount of belief in a hypoth-
esis given the evidence (MB(h|e)) minus the amount of
disbelief (MD(h|e)). The measures are assigned to each

Reasoning ■ 29

rule by the experts providing the knowledge for the sys-
tem as an indication of the reliability of the rule. Mea-
sures of belief and disbelief take values between 0 and
1. Certainty factors can be combined in various ways if
there are several pieces of evidence. For example, evi-
dence from two sources can be combined to produce a
CF as follows:

CF(h|e1, e2) = MB(h|e1, e2) − MD(h|e1, e2)

where

MB(h|e1, e2) = MB(h|e1)
+{MB(h|e2)[1 − MB(h|e1)]}

(or 0 if MD(h|e1, e2) = 1)

and

MD(h|e1, e2) = MD(h|e1)
+{MD(h|e2)[1 − MD(h|e1)]}

(or 0 if MB(h|e1, e2) = 1)

The easiest way to understand how this works is to
consider a simple example. Imagine that we observe the
fact that the air feels moist (e1). There may be a number
of reasons for this (rain, snow, fog). We may hypothesise
that it is foggy, with a measure of belief (MB(h|e1)) in
this being the correct hypothesis of 0.4. Our disbelief in
the hypothesis given the evidence (MD(h|e1)) will be low,
say 0.1 (it may be dry and foggy, but it is unlikely). The
certainty factor for this hypothesis is then calculated as

CF(h|e1) = MB(h|e1) − MD(h|e1)
= 0.5 − 0.1 = 0.4

We then make a second observation, e2, that visibility
is poor, which confirms our hypothesis that it is foggy,
with MB(h|e2) of 0.7. Our disbelief in the hypothesis
given this new evidence is 0.0 (poor visibility is a
characteristic of fog). The certainty factor for it being
foggy given this evidence is

CF(h|e2) = MB(h|e2) − MD(h|e2)
= 0.7 − 0.0 = 0.7

However, if we combine these two pieces of evidence,
we get an increase in the overall certainty factor:

MB(h|e1, e2) = 0.5 + (0.7 ∗ 0.5) = 0.85

MD(h|e1, e2) = 0.1 + (0.0 ∗ 0.9) = 0.1

CF(h|e1, e2) = 0.85 − 0.1 = 0.75

https://alandix.com/glossary/aibook/Bayesian networks
https://alandix.com/glossary/aibook/Bayes theorem
https://alandix.com/glossary/aibook/Bayes theorem
https://alandix.com/glossary/aibook/probabilistic reasoning
https://alandix.com/glossary/aibook/probabilistic reasoning
https://alandix.com/glossary/aibook/certainty factors
https://alandix.com/glossary/aibook/Bayesian reasoning
https://alandix.com/glossary/aibook/Certainty factors
https://alandix.com/glossary/aibook/Bayesian reasoning
https://alandix.com/glossary/aibook/expert system
https://alandix.com/glossary/aibook/expert system
https://alandix.com/glossary/aibook/MYCIN
https://alandix.com/glossary/aibook/MYCIN
https://alandix.com/glossary/aibook/MYCIN rule
https://alandix.com/glossary/aibook/Certainty factors

30 ■ Artificial Intelligence

Certainty factors provide a mechanism for reasoning
with uncertainty that does not require probabilities.
Measures of belief and disbelief reflect the expert’s
assessment of the evidence rather than statistical values.
This makes the certainty factors method more tractable
as a method of reasoning. Its use in MYCIN shows that
it can be successful, at least within a clearly defined
domain. However, in practice, despite some advantages,
more direct Bayesian methods are more heavily used
today.

3.4.4 Fuzzy Reasoning

Probabilistic reasoning and reasoning with certainty fac-
tors deal with uncertainty using principles from proba-
bility to extend the scope of standard logics. An alterna-
tive approach is to change the properties of logic itself.
Fuzzy sets and fuzzy logic do just that.

In classical set theory an item, say a, is either a mem-
ber of set A or it is not. So a meal at a restaurant is either
expensive or not expensive and a value must be provided
to delimit set membership. Clearly, however, this is not
the way we think in real life. While some sets are clearly
defined (a piece of fruit is either an orange or not an
orange), many sets are not. Qualities such as size, speed
and price are relative. We talk of things being very ex-
pensive or quite small.

Fuzzy set theory extends classical set theory to include
the notion of degree of set membership. Each item is as-
sociated with a value between 0 and 1, where 0 indicates
that it is not a member of the set and 1 that it is definitely
a member. Values in between indicate a certain degree of
set membership.

For example, although you may agree with the inclu-
sion of Porsche and BMW in the set FastCar, you may
wish to indicate that one is faster than the other. This is
possible in fuzzy set theory:

(Porsche 944, 0.9),
FastCar = { (BMW 316, 0.5), }

(Vauxhall Nova 1.2, 0.1)

Here the second value in each pair is the degree of set
membership.

Fuzzy logic is similar in that it attaches a measure of
truth to facts. A predicate, P, is given a value between 0
and 1 (as in fuzzy sets). So, taking an element from our
fuzzy set, we may have a predicate

fastcar(Porsche 944) = 0.9

Standard logic operators, such as and, or and not, can
be applied in fuzzy logic and are interpreted as follows:

P ∧ Q = min(P, Q)
P ∨ Q = max(P, Q)
not P = 1 − P

So, for example, we can combine predicates and get new
measures:

fastcar(Porsche 944) = 0.9
pretentiouscar(Porsche 944) = 0.6
fastcar(Porsche 944) ∧

pretentiouscar(Porsche 944)
= 0.6

3.4.5 Reasoning by Analogy

Analogy is a common tool in human reasoning [123].
Given a novel problem, we might compare it with a fa-
miliar problem and note the similarities. We might then
apply our knowledge of the old problem to solving the
new. This approach is effective if the problems are com-
parable and the solutions transferable.

Analogy has been applied in AI in two ways: trans-
formational analogy and derivational analogy. Transfor-
mational analogy involves using the solution to an old
problem to find a solution to a new. Reasoning can be
viewed as a state space search where the old solution is
the start state and operators are used (employing means–
ends analysis, for example) to transform this solution
into a new solution.

An alternative to this is derivational analogy, where
not only the old solution but the process of reaching it
is considered in solving the new problem. A history of
the problem-solving process is used. Where a step in the
procedure is valid for the new problem, it is retained;
otherwise it is discarded. The solution is therefore not a
copy of the previous solution but a variation of it.

3.4.6 Case-based Reasoning

A method of reasoning which exploits the principle of
analogy is case-based reasoning (CBR). All the exam-
ples (called cases in CBR) are remembered in a case base.
When a new situation is encountered, it is compared with
all the known cases and the best match is found. If the
match is exact, then the system can perform exactly the
response suggested by the example. If the match is not
exact, the differences between the actual situation and

https://alandix.com/glossary/aibook/Certainty factors
https://alandix.com/glossary/aibook/reasoning with uncertainty
https://alandix.com/glossary/aibook/reasoning with uncertainty
https://alandix.com/glossary/aibook/certainty factors
https://alandix.com/glossary/aibook/MYCIN
https://alandix.com/glossary/aibook/Bayesian methods
https://alandix.com/glossary/aibook/Probabilistic reasoning
https://alandix.com/glossary/aibook/reasoning with certainty factors
https://alandix.com/glossary/aibook/reasoning with certainty factors
https://alandix.com/glossary/aibook/uncertainty
https://alandix.com/glossary/aibook/probability
https://alandix.com/glossary/aibook/probability
https://alandix.com/glossary/aibook/standard logics
https://alandix.com/glossary/aibook/logic
https://alandix.com/glossary/aibook/Fuzzy sets
https://alandix.com/glossary/aibook/fuzzy logic
https://alandix.com/glossary/aibook/set theory
https://alandix.com/glossary/aibook/Fuzzy set theory
https://alandix.com/glossary/aibook/set theory
https://alandix.com/glossary/aibook/fuzzy set theory
https://alandix.com/glossary/aibook/Fuzzy logic
https://alandix.com/glossary/aibook/fuzzy sets
https://alandix.com/glossary/aibook/Standard logic
https://alandix.com/glossary/aibook/fuzzy logic
https://alandix.com/glossary/aibook/Analogy
https://alandix.com/glossary/aibook/Analogy
https://alandix.com/glossary/aibook/transformational analogy
https://alandix.com/glossary/aibook/transformational analogy
https://alandix.com/glossary/aibook/derivational analogy
https://alandix.com/glossary/aibook/Transformational analogy
https://alandix.com/glossary/aibook/Transformational analogy
https://alandix.com/glossary/aibook/state space search
https://alandix.com/glossary/aibook/means--ends analysis
https://alandix.com/glossary/aibook/means--ends analysis
https://alandix.com/glossary/aibook/derivational analogy
https://alandix.com/glossary/aibook/analogy
https://alandix.com/glossary/aibook/case-based reasoning
https://alandix.com/glossary/aibook/CBR
https://alandix.com/glossary/aibook/CBR

Reasoning ■ 31

FIGURE 3.1 Case-based reasoning.

the case are used to derive a suitable response (see Fig-
ure 3.1).

Where there is an exact match, the CBR acts as a rote
learning system, but where there is no exact match, the
combination of case selection and comparison is a form
of generalisation. The simplest form of CBR system may
just classify the new situation, a form of concept learning.
In this case, the performance of the system is determined
solely by the case selection algorithm. In a more compli-
cated system, the response may be some form of desired
action depending on the encountered situation. The case
base consists of examples of stimulus–action pairs, and
the comparison stage then has to decide how to modify
the action stored with the selected case. This step may
involve various forms of reasoning.

Imagine we have the following situation:

situation: buy(fishmonger,cod),
owner(fishmonger,Fred),
cost(cod,£3)

The case base selects the following best match case:

stimulus: buy(postoffice,stamp),
owner(postoffice,Dilys),
cost(stamp,25p)

action: pay(Dilys,25p)

The comparison yields the following differences:

fishmonger → postoffice, cod → stamp,
Fred → Dilys, £3 → 25p

The action is then modified correspondingly to give
“pay(Fred,£3)”.

In this example, the comparison and associated mod-
ification are based on simple substitution of correspond-
ing values. However, the appropriate action may not be
so simple. For example, consider a blocks-world CBR
(Figure 3.2). The situation is:

situation: blue(A), pyramid(A), on(A,table),
green(B), cube(B), on(B,table),
blue(C), ball(C), on(C,B),

The CBR has retrieved the following case:

stimulus: blue(X), pyramid(X), on(X,table),
green(Y), cube(Y), on(Y,table),
blue(Z), cube(Z), on(Z,table),

action: move(X,Y)

A simple pattern match would see that the action only
involves the first two objects, X and Y, and the situation
concerning these two objects is virtually identical. So, the
obvious response is “move(A,B)”. However, a more de-
tailed analysis would show that moving the blue pyramid
onto the green cube is not possible because, in the cur-
rent situation, the blue ball is on it. A more sophisticated
difference procedure could infer that a more appropriate
response would be: move(C,table), move(A,B).

Note how the comparison must be able to distinguish
irrelevant differences such as ball(C) vs. cube(Z) from
significant ones such as on(C,B) vs. on(Z,table). This is
also a problem for the selection algorithm. In practice
there may be many attributes describing a situation,
only a few of which are really important. If selection
is based on a simple measure such as “least number
of different attributes”, then the system may choose
“best match” cases where all the irrelevant attributes
match, but none of the relevant ones! At the very
least some sort of weighting is needed, similar to
salience in human attention. For example, if one were
developing a fault diagnosis system for a photocopier,
the attributes would include the error code displayed, the
number of copies required, the paper type, whether the
automatic feeder was being used and so on. However,
one would probably give the error code a higher
weighting than the rest of the attributes. Where the
comparison yields differences which invalidate the

https://alandix.com/glossary/aibook/CBR
https://alandix.com/glossary/aibook/rote learning
https://alandix.com/glossary/aibook/rote learning
https://alandix.com/glossary/aibook/generalisation
https://alandix.com/glossary/aibook/CBR
https://alandix.com/glossary/aibook/concept learning
https://alandix.com/glossary/aibook/CBR
https://alandix.com/glossary/aibook/CBR
https://alandix.com/glossary/aibook/salience

32 ■ Artificial Intelligence

FIGURE 3.2 Modifying cases.

response given in the case and no repair is possible,
the CBR can try another close match case. So, a good
selection mechanism is important, but some poor
matches can be corrected.

Case-based reasoning has some important advan-
tages. The most important is that it has an obvious and
clear explanation for the user: “the current situation is
similar to this given case and so I did a similar response”.
Indeed, one option is to do no comparison at all, simply
to present the user with similar cases and allow the user
to do the comparison between the current situation and
the selected cases. Arguably, because the human does
the “intelligent” part, this is not really CBR but simply a
case memory, a sort of database.

Another advantage of CBR is that it is not difficult to
incorporate partial descriptions, in both the cases and
the presented situations. This is because it is fairly easy
to generalise measures of similarity to cases where some
of the attributes are missing or unknown. For example,
we could score +1 for each matching attribute, −1 for
each non-match and 0 for any attributes that are missing
from either the case or situation (weighted of course!).
This is an important feature of CBR, as it is often the
case that records are incomplete. For example, if we start
to build a CBR based on past medical records, we will
find that many symptoms are unrecorded – the doctor
would not have taken the heart rate of someone with a
skin complaint. Other reasoning methods can deal with
such problems, but not so simply as CBR.

3.5 REASONING OVER NETWORKS
In Chapter 2, we saw that various forms of networks
either arise naturally or can be ways of representing
knowledge.

Some forms of reasoning over networks are about ‘link
chasing’, following connections, perhaps of a particular
kind, or through nodes that satisfy certain characteris-
tics, until all nodes of a particular kind are found. For
example, you might look in a social network for all
friends, friends of friends, friends of friends of friends,
etc., who all have snakes as pets. This would mean
that when you organise a trip to the reptile house, you
wouldn’t leave anyone out. This is a form of search, and
we’ll look at this more in Chapter 4.

Networks can also be considered in terms of more
complex patterns of links. For example, Figure 3.3 shows
a simple pattern of four nodes representing four people
where persons C and D are step-siblings. It consists of
an undirected link ‘married’ connecting nodes A and
B, and two directed links ‘parent’ connecting nodes
C to node A and node D to node B, respectively. In
addition the pattern describes links that shouldn’t exist
‘NOT parent’. This might be used to simply locate all
step-siblings in a larger genealogical graph, or as part
of a larger query or reasoning process. For example,
one might create additional inferred ‘step-sibling’ links
between all nodes that match in positions C and D in
the graph.

Often graph algorithms involve more numerical
weights or activations on links or nodes. You are likely
to have used at least one such system. The PageRank
algorithm [32], which is the basis of Google search,
starts out by assigning a measure of importance to each
page and then effectively ‘shares’ the importance of a
web page to all the pages it is connected to links. The idea
is that pages that are linked to from lots of important
pages, or those that link to lots of quality pages, must
themselves be important.

https://alandix.com/glossary/aibook/CBR
https://alandix.com/glossary/aibook/Case-based reasoning
https://alandix.com/glossary/aibook/CBR
https://alandix.com/glossary/aibook/case memory
https://alandix.com/glossary/aibook/database
https://alandix.com/glossary/aibook/CBR
https://alandix.com/glossary/aibook/CBR
https://alandix.com/glossary/aibook/CBR
https://alandix.com/glossary/aibook/search
https://alandix.com/glossary/aibook/PageRank
https://alandix.com/glossary/aibook/Google search

FIGURE 3.3 Graph pattern.

PageRank can be regarded as a form of spreading
activation algorithm. These are based on parallels with
the brain where if a particular concept is activated
(say by showing a picture or speaking a word), other
related ones clearly get some of this attention too, as
you will react more quickly to them or spontaneously
bring them to mind. Figure 3.4 shows an example of
spreading activation between a collection of people
and places. The node Vivi is initially activated (maybe
the name appears in an email) and then some of this
activation spreads to immediately connected nodes
Costas and UoA, activation from UoA to Athens
and then from Athens to Greece, but gets weaker
with each additional step. There is also some spread
back from Greece to Tripolis but spread through
1-to-m links (Greece has many cities) is weaker
than along m-to-1 links (a person is usually in one
university).

Bayesian methods and fuzzy reasoning have also
been used as the basis of reasoning and learning
networks. The former are particularly popular in the
form of Bayesian networks with applications including
medical diagnosis [267] and analysing gene expression
[107, 295]

In a Bayesian network each node represents some
feature or observable phenomenon and directed arrows
represent causal links. Figure 3.5 shows a small example
where the causal links are denoted as arrows between
the nodes: being sunny influences whether you are likely
to wear a coat; whether you feel hot will depend on
both the weather and if you have a coat on; and finally
whether you choose to eat ice cream will be based on
if you feel hot and if it is sunny. Each node also has a
probability table giving the conditional probability of
the node being true depending on the causal nodes.
Only the table for the ‘feel hot’ node is shown, showing
that, for example, the conditional probability that you

Reasoning ■ 33

feel hot if you are not wearing a coat and it is sunny is
0.7.

The network can be run ‘forward’ so that, for example,
if you know it is sunny, you can work out the probabil-
ity of eating ice cream. It can also be worked backwards
using Bayes theorem, for example if we spot someone
with a coat to work out the probability that is sunny.
It can even be used in a mixed mode by fixing known
nodes and then using the conditional probabilities for-
ward where we know all the causal factors and backwards
with Bayes theorem to fill gaps; for example if you know
someone is eating ice cream (and some prior probabili-
ties for everything else), you can work out the probability
that they are wearing a coat.

The networks illustrated here and in Chapter 2 have
all been small, but networks can also be very large – the
web, social networks and neural networks may all con-
tain billions of nodes. Chapter 8 will discuss some of the
additional issues that arise when dealing with these very
large networks.

3.6 CHANGING REPRESENTATIONS
As we saw in the four knights puzzle in Section 2.3, the
choice of knowledge representation can make a huge dif-
ference to the ease of solving a particular problem. Some-
times there will be a single best solution, but at other
times it may be necessary to use multiple representa-
tions as part of the same system. For example, the PageR-
ank algorithm effectively uses a graph representation of
the web in order to calculate the importance metric, but
then this value is stored as a value for the page in a more
database-record-like representation which is used when
performing searches for content.

Changing representation can be expensive, especially
for large datasets as it may involve complex manipula-
tion of every data element. One solution is to maintain
several representations of the same underlying data with
some way to connect the two, for example, using shared
identifiers. This means that reasoning algorithms can
work on the representation that is most appropriate.
However, if the underlying data changes, care is needed
to keep the different representations consistent with one
another.

Alternatively, there may be a single underlying repre-
sentation, with ways in which it can be viewed as though
it were different. Indeed, this is just what the PageRank
algorithm does in practice, conceptually it is performing
a spreading of page importance through the network, but

https://alandix.com/glossary/aibook/PageRank
https://alandix.com/glossary/aibook/spreading activation
https://alandix.com/glossary/aibook/spreading activation
https://alandix.com/glossary/aibook/spreading activation
https://alandix.com/glossary/aibook/Bayesian methods
https://alandix.com/glossary/aibook/fuzzy reasoning
https://alandix.com/glossary/aibook/Bayesian networks
https://alandix.com/glossary/aibook/Bayesian network
https://alandix.com/glossary/aibook/probability table
https://alandix.com/glossary/aibook/conditional probability
https://alandix.com/glossary/aibook/conditional probability
https://alandix.com/glossary/aibook/probability
https://alandix.com/glossary/aibook/probability
https://alandix.com/glossary/aibook/Bayes theorem
https://alandix.com/glossary/aibook/probability
https://alandix.com/glossary/aibook/Bayes theorem
https://alandix.com/glossary/aibook/probability
https://alandix.com/glossary/aibook/neural networks
https://alandix.com/glossary/aibook/knowledge representation
https://alandix.com/glossary/aibook/PageRank
https://alandix.com/glossary/aibook/PageRank
https://alandix.com/glossary/aibook/database
https://alandix.com/glossary/aibook/PageRank

34 ■ Artificial Intelligence

FIGURE 3.4 Spreading activation (from [89]).

FIGURE 3.5 Bayesian network.

it achieves this through a series of passes through a more
linear record structure in computer memory.

3.7 SUMMARY
In this chapter we have considered a number of differ-
ent types of reasoning, including induction, abduction
and deduction. We have seen that the knowledge that
we are reasoning about is often incomplete and therefore
demands reasoning methods that can deal with uncer-
tainty. We have considered four approaches to reasoning
with uncertainty: non-monotonic reasoning, probabilis-
tic reasoning, reasoning with certainty factors and fuzzy
reasoning. We have also considered analogical reason-
ing, case-based reasoning and reasoning over networks.

3.1 Distinguish between deductive, inductive and ab-
ductive reasoning, giving an example of the appro-
priate use of each.

3.2 Alison is trying to determine the cause of over-
heating in Brian’s car. She has two theories: a leak

in the radiator or a broken thermostat. She knows
that leaky radiators are more common than bro-
ken thermostats: she estimates that 10% of cars
have a leaky radiator while 2% have a faulty ther-
mostat. However, 90% of cars with a broken ther-
mostat overheat whereas only 30% overheat with
a leaky radiator. Use Bayes theorem to advise Al-
ison of the most likely cause of the problem.

3.3 Alison then checks the water level in Brian’s car
and notices it is normal. She knows that a car with
a leaky radiator is very unlikely not to lose water
(perhaps 1% chance), whereas water loss is not
seen in 95% of cases of faulty thermostats. How
would this new evidence affect your advice to
Alison? (Use Bayes theorem again and assume
for simplicity that all evidence is independent.)

FURTHER READING

J. Y. Halpern. Reasoning about uncertainty. MIT Press, Cam-
bridge, MA, 2017.
Covers a wide variety of probabilistic methods in detail
including Bayesian approaches.

H. T. Nguyen, C. Walker, and E. A. Walker. A first course in
fuzzy logic. Chapman and Hall/CRC, Boca Raton, FL,
2018.
While still aimed at an introductory level, this book is en-
tirely dedicated to fuzzy logics and fuzzy reasoning.

J. Kolodner. Case-based reasoning. Morgan Kaufmann,
Burlington, MA, 2014.
Book-length treatment of case-based reasoning including
methods to represent, index, rank and adapt cases.

https://alandix.com/glossary/aibook/induction
https://alandix.com/glossary/aibook/abduction
https://alandix.com/glossary/aibook/deduction
https://alandix.com/glossary/aibook/uncertainty
https://alandix.com/glossary/aibook/uncertainty
https://alandix.com/glossary/aibook/reasoning with uncertainty
https://alandix.com/glossary/aibook/reasoning with uncertainty
https://alandix.com/glossary/aibook/non-monotonic reasoning
https://alandix.com/glossary/aibook/probabilistic reasoning
https://alandix.com/glossary/aibook/probabilistic reasoning
https://alandix.com/glossary/aibook/reasoning with certainty factors
https://alandix.com/glossary/aibook/fuzzy reasoning
https://alandix.com/glossary/aibook/fuzzy reasoning
https://alandix.com/glossary/aibook/analogical reasoning
https://alandix.com/glossary/aibook/analogical reasoning
https://alandix.com/glossary/aibook/case-based reasoning
https://alandix.com/glossary/aibook/reasoning over networks
https://alandix.com/glossary/aibook/Bayes theorem
https://alandix.com/glossary/aibook/Bayes theorem
https://alandix.com/glossary/aibook/Bayesian approaches
https://alandix.com/glossary/aibook/fuzzy logics
https://alandix.com/glossary/aibook/fuzzy reasoning
https://alandix.com/glossary/aibook/case-based reasoning

Reasoning ■ 35

G. Shafer and J. Pearl, editors. Readings in uncertain reasoning. C. K. Riesbeck and R. Schank. Inside case based reasoning.
Morgan Kaufmann, Los Altos, 1990. Lawrence Erlbaum, Hillsdale, NJ, 1989.
A collection of classic articles which provide a useful intro- A useful introduction to case-based reasoning.
duction to reasoning with uncertainty. Now out of print but
available at: http://www.glennshafer.com/books/rur.html

https://alandix.com/glossary/aibook/reasoning with uncertainty
http://www.glennshafer.com/books/rur. html
https://alandix.com/glossary/aibook/case-based reasoning

4 CHAP T ER

Search

4.1 INTRODUCTION
When we want to solve a problem, we consider various
alternatives, some of which fail to solve the problem. Of
those that succeed, we may want to find the best solution
or the easiest to perform. The act of enumerating possi-
bilities and deciding between them is search. AI systems
must search through sets of possible actions or solutions,
and this chapter discusses some of the algorithms that are
used. Before we go on to consider specific algorithms, we
need to look at the sorts of problems that we are likely to
face, as the appropriate algorithm depends on the form
of the problem. The set of possible solutions is not just
an amorphous bag but typically has some structure. This
structure also influences the choice of search algorithm.

4.1.1 Types of Problem

State and Path

In some problems we are only interested in the state rep-
resenting the solution, whereas in other cases we also
want to know how we got to the solution – the path. A
crossword puzzle is an example of the former: the impor-
tant thing is that the crossword is eventually completed;
the order in which the clues were solved is only of interest
to the real crossword fanatic. The eight queens problem
and solving magic squares are similar problems (see Fig-
ure 4.1). Typically with pure state-finding problems the
goal state is described by some properties. In the case of
the magic square, the states are the set of all 3×3 squares

filled in with numbers between 1 and 9, and the property
is that each row, column and diagonal adds up to 15.

Mathematical theorem proving has been a major driv-
ing force in AI. If we consider this, we see that it is not
only important that we solve the required theorem but
that the steps we take are recorded – that is, the proof.
Other path problems include various finding route prob-
lems, puzzles such as the Towers of Hanoi (Figure 4.2)
and algorithms for planning actions such as means–ends
analysis (Chap. 15). In all these problems we know pre-
cisely what the goal state is to be; it is only the means of
getting there that is required. The solution to such prob-
lems must include not just a single goal state, but instead
a sequence of states visited and the moves made between
them. In some problems the moves are implicit from the
sequence of states visited and can hence be omitted.

In fact, some route problems do not specify their goal
state in advance. For example, we may want to find the
fastest route from Zuata, Venezuela, to any international
airport with direct flights to Sydney, Australia. In this
case we want to find a route (sequence of places) where
the goal state is a city that satisfies the property.

P(s) = “s has an international airport
with direct flights to Sydney”

The travelling salesman problem is more complex
again. Imagine a salesman has to visit a number of
towns. They must plan a route that visits each town
exactly once and that begins and ends at their home
town. They want the route to be as short as possible.
Although the final state is given (the same as the start
state), the important property is one of the whole path,
namely that each place is visited exactly once. It would
be no good to find a route which reached the goal state
by going nowhere at all! The last chapter was all about
the importance of the choice of representation. In this

DOI: 10.1201/9781003082880-5 36

https://alandix.com/glossary/aibook/search!solution state
https://alandix.com/glossary/aibook/search!solution path
https://alandix.com/glossary/aibook/eight queens problem
https://alandix.com/glossary/aibook/magic squares
https://alandix.com/glossary/aibook/goal state
https://alandix.com/glossary/aibook/magic square
https://alandix.com/glossary/aibook/Towers of Hanoi
https://alandix.com/glossary/aibook/means--ends analysis
https://alandix.com/glossary/aibook/means--ends analysis
https://alandix.com/glossary/aibook/goal state
https://alandix.com/glossary/aibook/goal state
https://alandix.com/glossary/aibook/goal state
https://alandix.com/glossary/aibook/goal state
https://alandix.com/glossary/aibook/goal state
https://alandix.com/glossary/aibook/travelling salesman problem
https://alandix.com/glossary/aibook/goal state
http://dx.doi.org/10.1201/9781003082880-5

Search ■ 37

FIGURE 4.1 Magic squares and the eight queens problem.

example, it may well be best to regard the travelling
salesman problem as a state problem where the state is a
path!

Any Solution or Best Solution

When finding a proof to a theorem (path problem), or
solving the magic square or eight queens problem (state
problems), all we are interested in is finding some solu-
tion – any one will do so long as it satisfies the required
conditions (although some proofs may be more elegant
than others).

However, if we consider the travelling salesman prob-
lem, we now want to find the shortest route. Similarly, we
may want to choose a colouring for a map that uses the
fewest colours (to reduce the costs of printing) or sim-

ply be looking for the shortest path between two places.
In each of these examples, we are not only interested in
finding a solution that satisfies some property, we are
after the best solution – that is, search is an optimisation
problem. The definition of best depends on the problem.
It may mean making some measure as big as possible (e.g.
profit) or making something as small as possible (e.g.
costs). As profits can be seen as negative costs (or vice
versa), we can choose whichever direction is easiest or
whichever is normal for a particular problem type.

For a state problem such as map colouring, the costs
are associated with the solution obtained, whereas in a
path problem it is a combination of the “goodness” of the
final solution and the cost of the path:

total cost = cost(route) − benefit(goal state)

https://alandix.com/glossary/aibook/travelling salesman problem
https://alandix.com/glossary/aibook/travelling salesman problem
https://alandix.com/glossary/aibook/magic square
https://alandix.com/glossary/aibook/eight queens problem
https://alandix.com/glossary/aibook/travelling salesman problem
https://alandix.com/glossary/aibook/travelling salesman problem
https://alandix.com/glossary/aibook/optimisation

38 ■ Artificial Intelligence

FIGURE 4.2 Towers of Hanoi.

However, one finds that for many path problems there
is no second term; that is, all goal states are considered
equally good.

In general, the specification of a problem includes
both a property (or constraints), which must be satisfied
by the goal state (and path), and some cost measure.
A state (and path) that satisfies the constraints is said
to be feasible, and a feasible state that has the least
cost is optimal. That is, real problems are a mixture of
finding any solution (feasibility) and finding the best
(optimality). However, for simplicity, the examples
within this chapter fall into one camp or the other.
Where constraints exist in optimisation problems, they
are often satisfied “by construction”. For example, a
constraint on map-colouring problems is that adjacent
countries have different colours. Rather than construct-
ing a colouring and then checking this condition, one
can simply ensure as one adds each colour that the
constraint is met.

Deterministic vs. Adversarial

All the problems considered so far have been determinis-
tic, that is totally under the control of the problem solver.
However, some of the driving problems of AI have been
to do with game playing: chess, backgammon and even
simple noughts and crosses (tic-tac-toe). The presence of
an adversary radically changes the search problem: as the
solver tries to get to the best solution (i.e. win), the ad-
versary is trying to stop it! Most games are state based:
although it is interesting to look back over the history of
a game, it is the state of the chess board now that matters.
However, there are some path-oriented games as well, for
example bridge or poker, where the player needs to re-
member all past moves, both of other players and their
own, in order to choose the next move.

Interaction with the physical environment can be seen
as a form of game playing also. As the solver attempts
to perform actions in the real world, new knowledge is

https://alandix.com/glossary/aibook/goal states
https://alandix.com/glossary/aibook/constraints
https://alandix.com/glossary/aibook/goal state
https://alandix.com/glossary/aibook/constraints
https://alandix.com/glossary/aibook/feasible
https://alandix.com/glossary/aibook/feasible state
https://alandix.com/glossary/aibook/optimal
https://alandix.com/glossary/aibook/search!feasibility
https://alandix.com/glossary/aibook/search!optimality
https://alandix.com/glossary/aibook/constraints
https://alandix.com/glossary/aibook/optimisation problems
https://alandix.com/glossary/aibook/deterministic
https://alandix.com/glossary/aibook/deterministic
https://alandix.com/glossary/aibook/game playing
https://alandix.com/glossary/aibook/chess
https://alandix.com/glossary/aibook/noughts and crosses
https://alandix.com/glossary/aibook/chess
https://alandix.com/glossary/aibook/game playing

Search ■ 39

found and circumstances may occur to help or hinder. If
one takes a pessimistic viewpoint, one can think of the
world as an adversary which, in the worst case, plays to
one’s downfall. (Readers of Thomas Hardy will be famil-
iar with this world view!)

A further feature in both game playing and real-world
interaction is chance. Whereas chess depends solely on
the abilities of the two players, a game like backgammon
also depends on the chance outcome of the throwing of
dice. Similarly, we may know that certain real-world phe-
nomena are very unlikely and should not be given too
great a prominence in our decision making.

This chapter will only deal with deterministic search.
Chapter 11 will deal with game playing and adversarial
search.

Perfect vs. Good Enough

Finally, we must consider whether our problem demands
the absolutely best solution or whether we can make do
with a “good enough” solution. If we are looking for
the best route from Cape Town to Addis Ababa, we are
unlikely to quibble about the odd few miles. This
behaviour is typical of human problem solving and is
called satisficing. Satisficing can significantly reduce
the resources needed to solve a problem, and when the
problem size grows may be the only way of getting a
solution at all.

There is a parallel to satisficing when we are simply
seeking any solution. In such cases, we may be satisfied
with a system that replies

YES – here is your solution
NO – there is no solution
SORRY – I’m not sure

In practice theorem provers are like this. In most do-
mains, not only is it very expensive to find proofs for
all theorems, it may be fundamentally impossible. (Basi-
cally, Gödel showed that in sufficiently powerful systems
(like the numbers) there are always things that are true
yet which can never be proved to be true [153].)

4.1.2 Structuring the Search Space

Generate and Test – Combinatorial Explosion

The simplest form of search is generate and test. You list
each possible candidate solution in turn and check to see
if it satisfies the constraints. You can either stop when you

reach an acceptable goal state or, if you are after the best
solution, keep track of the best so far until you get to the
end.

Figure 4.3 shows this algorithm applied to the 3 × 3
magic square. However, this is an extremely inefficient
way to look for a solution. If one examines the solutions
in the lexicographic order (as in the figure), the first
solution is found only after rejecting 75 231 candidates.
In fact, the whole search space consists of 9! = 362 880
possible squares of which only eight satisfy the goal
conditions – and that is after we have been careful not
to generate squares with repeated digits! This problem
is called combinatorial explosion and occurs whenever
there are a large number of nearly independent
parameters.

In practice, only the most ill-structured problems
require this sledge-hammer treatment. One can
structure most problems to make the search space far
more tractable.

Trees

The first square in Figure 4.3 fails because 1+2+3 ≠ 15.
So does the second square, the third ... in fact the first 720
squares all fail for exactly the same reason. Then the next
720 fail because 1 + 2 + 4 ≠ 15, etc. In each case, you
do not need to look at the full square: the partial state is
sufficient to fail it.

The space of potential magic squares can be organised
into a tree, where the leaf nodes are completed squares
(all 362 880 of them), and the internal nodes are par-
tial solutions starting off at the top left-hand corner. Fig-
ure 4.4 shows part of this search tree. The advantage of
such a representation is that one can instantly ignore all
nodes under the one starting 123, as all of these will fail.
There are 504 possible first lines,

1 5
of which only 52 add

up to 15 (the first being 9). That is, of 504 partial
solutions we only need to consider 52 of them further –
an instant reduction by a factor of 10. Of course, each of
the subtrees under those 52 will be able to be similarly
pruned – the gains compound.

There are many ways to organise the tree. Instead
of doing it in reading order, we could have filled out
the first column first, or the bottom right, and so on.
However, some organisations are better than others.
Imagine we had built the tree so that the third level
of partial solution got us to partial solutions like the
following:

https://alandix.com/glossary/aibook/Hardy, Thomas
https://alandix.com/glossary/aibook/game playing
https://alandix.com/glossary/aibook/chess
https://alandix.com/glossary/aibook/deterministic search
https://alandix.com/glossary/aibook/game playing
https://alandix.com/glossary/aibook/adversarial search
https://alandix.com/glossary/aibook/adversarial search
https://alandix.com/glossary/aibook/satisficing
https://alandix.com/glossary/aibook/Satisficing
https://alandix.com/glossary/aibook/satisficing
https://alandix.com/glossary/aibook/Godel, Kurt
https://alandix.com/glossary/aibook/Generate and Test
https://alandix.com/glossary/aibook/Combinatorial Explosion
https://alandix.com/glossary/aibook/generate and test
https://alandix.com/glossary/aibook/constraints
https://alandix.com/glossary/aibook/goal state
https://alandix.com/glossary/aibook/magic square
https://alandix.com/glossary/aibook/combinatorial explosion
https://alandix.com/glossary/aibook/partial state
https://alandix.com/glossary/aibook/magic squares
https://alandix.com/glossary/aibook/search tree
https://alandix.com/glossary/aibook/search tree
https://alandix.com/glossary/aibook/pruning
https://alandix.com/glossary/aibook/search tree

40 ■ Artificial Intelligence

FIGURE 4.3 Generate and test – finding solutions to the magic square.

FIGURE 4.4 Magic square – search tree of potential solutions.

? 2 ?

1 ? ?

? ? 3

Clearly, we would not be able to prune the tree so rapidly.
Choosing the best organisation for a particular problem
is somewhat of an art, but there are general guidelines. In
particular, you want to be able to test constraints as soon
as possible.

Branching Factor and Depth

We can roughly characterise a tree by the number of
children each node has – the branching factor – and the

distance from the root of the tree to the leaves (bottom
nodes) – the depth. The tree for magic squares has a
branching factor of 9 at the root (corresponding to the
nine possible entries at the top left), and a depth of 9
(the number of entries in the square). However, the
branching factor reduces as one goes down the tree: at
the second level it is 8, at the third level 7 and so on.
For a game of chess, the branching factor is 20 for the
first move (two possibilities for each pawn and four
knight moves). For Go, played on a 19 × 19 board,
the branching factor is 361! For a uniform tree, if the
branching factor is b, there are bn nodes at level n. That
is, over 10 billion possibilities for the first four moves in
Go – you can see why it took so long for AI Go-playing
to be cracked!

https://alandix.com/glossary/aibook/constraints
https://alandix.com/glossary/aibook/Branching Factor
https://alandix.com/glossary/aibook/search tree!depth
https://alandix.com/glossary/aibook/branching factor
https://alandix.com/glossary/aibook/depth of search tree
https://alandix.com/glossary/aibook/magic squares
https://alandix.com/glossary/aibook/branching factor
https://alandix.com/glossary/aibook/branching factor
https://alandix.com/glossary/aibook/search tree
https://alandix.com/glossary/aibook/chess
https://alandix.com/glossary/aibook/branching factor
https://alandix.com/glossary/aibook/Go
https://alandix.com/glossary/aibook/branching factor
https://alandix.com/glossary/aibook/branching factor
https://alandix.com/glossary/aibook/Go

Search ■ 41

FIGURE 4.5 Towers of Hanoi: graph of possible states and moves.

Graphs

When one considers a problem consisting of states with
moves between them, it is often the case that several
move sequences get one from a particular start state
to the same final state. That is, the collection of moves
and states can be best thought of as a directed graph,
where the nodes of the graph are the states and the
arcs between nodes are the moves. Figure 4.5 shows the
complete graph of states of the Towers of Hanoi (with
only two rings!). Notice how even such a simple puzzle
has a reasonably complex graph.

With the Towers of Hanoi, each arc is bidirectional,
because each move between two states can be undone
by a move in the reverse direction. This is not always so,
for example when a piece is taken in chess; if the nodes
represented states while making a cake, there would be
no move backwards once the cake was cooked. When
the arcs are directional, we can distinguish between the
forward branching factor – the number of arcs coming
from a node – and the backward branching factor – the
number of arcs going to a node. If the backward factor is
smaller than the forward factor, it suggests that searching

backwards from the goal state towards the start state may
be more efficient than searching forwards.

Some algorithms search this graph directly. However,
they will usually keep track of the path travelled through
the graph as this will be part of the solution. For exam-
ple, in the Towers of Hanoi puzzle, the path represents
the moves to solve the puzzle. Similarly, Figure 4.6 shows
a graph of states in a proof system. The states are addi-
tion formulae involving three variables, and the arcs are
rewrites of the formulae using the associative (A) and
commutative (C) laws of addition:

A: L + (M + N) = (L + M) + N
C: M + N = N + M

(Note that the commutative law is only applied to the
outermost (unbracketed) addition in order to simplify
the graph.)

If we wanted to prove, for instance, that

x + (y + z) = y + (z + x)

we could trace a path through the graph going clockwise.
We begin at the start state x + (y + z), apply first the
commutative law getting us to state (y + z) + x and then

https://alandix.com/glossary/aibook/directed graph
https://alandix.com/glossary/aibook/Towers of Hanoi
https://alandix.com/glossary/aibook/Towers of Hanoi
https://alandix.com/glossary/aibook/chess
https://alandix.com/glossary/aibook/forward branching factor
https://alandix.com/glossary/aibook/backward branching factor
https://alandix.com/glossary/aibook/goal state
https://alandix.com/glossary/aibook/graph search
https://alandix.com/glossary/aibook/Towers of Hanoi

42 ■ Artificial Intelligence

FIGURE 4.6 Addition proof graph.

the associative law getting us to the goal state y +(z + x).
The two steps (commutative law followed by associative
law) constitute the proof of the equality.

Notice that there are several paths to the same goal
state – we could have followed the graph anti-clockwise
(ACAC). If we want to distinguish the paths more
clearly, we can represent the graph by a tree. Figure 4.7
shows a portion of the proof tree for the same expression.
The root is the start state and the children are those
expressions that can be reached by applying one or other
of the laws. The ellipses in the tree represent nodes where
the tree “stutters”: that is, the child node is the same as
its parent. The figure stops expanding the tree when the
goal state is reached, but in a sense the full tree reaches
out below, as one could continue to apply arithmetic
laws.

Note that in the tree representation, the goal state
appears twice – once for each path to it. In fact, if one
continued to expand the “stuttering” nodes one would
uncover more goal states corresponding to “wasteful”
proofs such as CCCA.

Adding Information

We have already seen that the way we organised the
magic square search affected our ability to rule out
nodes. This ability to detect that searching down certain
paths of the tree is fruitless is a particularly simple (but
very useful) form of heuristics. (Although arguably it is
not a heuristic, as the information it provides is exact.)
Heuristics are information that tells us something about

the future of our search, before we have investigated a
path fully. Heuristics may tell us about the likelihood
of finding a solution down a path, about how far we
may have to search or how good the solution is likely
to be. Heuristics are usually approximations – they give
some indication but are not guaranteed to be right.
Obviously the more accurate the heuristic and the more
we know about its accuracy, the better it can inform our
search. Section 4.3 is all about searching using heuristic
information.

There are two major types of heuristic: those that tell
us about a node – whether it is worth investigating fur-
ther – and those which, when we are considering a node,
suggest an order in which to search its children. Obvi-
ously information of the former category can be used to
order the children, but only when the heuristic informa-
tion for each child has been calculated. As this is some-
times expensive to do in its own right, or there may be an
infinite number of children, a separate way of ordering
the children may be required. The majority of the search
algorithms in this chapter concentrate on the first type of
heuristic. Furthermore these algorithms will simply use a
heuristic evaluation function, a single number calculated
for each node, which says how good or bad it is likely
to be. Such heuristics are rather simple but can be sur-
prisingly powerful. In Section 4.4 we will discuss more
complex heuristics.

Virtual Trees and Real Trees

It is important to note that the trees and graphs that we
have been discussing are not necessarily real. That is,
they will not in general be constructed in the computer’s
memory. Indeed, given the size of the spaces (often
infinite) they would be impossible to construct. Instead,
they represent the space of possible solutions of which
a system may only investigate a part. For example,
we can imagine the graph of all chess games linked
by possible moves. However, if we play chess, we
do not by any means “construct” this graph in our
heads and play using it. Neither will the algorithms we
consider here!

4.2 EXHAUSTIVE SEARCH AND SIMPLE
PRUNING

In this section we consider simple search algorithms that
do not use heuristic information.

https://alandix.com/glossary/aibook/goal state
https://alandix.com/glossary/aibook/goal state
https://alandix.com/glossary/aibook/goal state
https://alandix.com/glossary/aibook/search tree
https://alandix.com/glossary/aibook/goal state
https://alandix.com/glossary/aibook/goal state
https://alandix.com/glossary/aibook/goal states
https://alandix.com/glossary/aibook/magic square
https://alandix.com/glossary/aibook/search tree
https://alandix.com/glossary/aibook/heuristics
https://alandix.com/glossary/aibook/Heuristics
https://alandix.com/glossary/aibook/Heuristics
https://alandix.com/glossary/aibook/Heuristics
https://alandix.com/glossary/aibook/heuristic information
https://alandix.com/glossary/aibook/heuristic information
https://alandix.com/glossary/aibook/heuristic information
https://alandix.com/glossary/aibook/heuristic information
https://alandix.com/glossary/aibook/heuristic evaluation function
https://alandix.com/glossary/aibook/heuristics
https://alandix.com/glossary/aibook/heuristics
https://alandix.com/glossary/aibook/chess
https://alandix.com/glossary/aibook/chess
https://alandix.com/glossary/aibook/heuristic information

Search ■ 43

FIGURE 4.7 Addition proof tree.

4.2.1 Depth and Breadth First Search

Consider the following simple logic problem:

find x, y, z such that
(¬x ∧ y) ∨ (x ∧¬y ∧¬z) is true

that is: (not x and y)
or (x and not y and not z)

Figure 4.8 shows a complete search tree for the prob-
lem based on choosing the variables in order. The tree
is slightly ragged as the formula is true when x is false
and y is true irrespective of the value of z. Note also that
there are two solutions, marked with ticks.

We now consider two algorithms for searching this
space of potential solutions: depth first and breadth
first. Depth first search starts off at the root of the
tree (the empty solution) and then works down the
left-hand branch considering the partial solutions until
it gets to a leaf. If this is not a goal state, it backs up
and tries the next path down. That is, the algorithm
tries to get as deep as possible as fast as possible, hence
its name. Figure 4.9 shows the order in which this
algorithm visits the nodes of the graph. In terms of
the logic variables, one is considering them in the
following order:

a: x = true – ?
c: x = true y = true – ?
g: x = true y = true z = true – NO
h: x = true y = true z = false – NO
d: x = true y = false – ?
i: x = true y = false z = true – NO
j: x = true y = false z = false – YES

In contrast, breadth first search moves back and forth
through the search tree, only looking at the children of a
node when all other nodes at a level have been examined.
Figure 4.10 shows the order in which this algorithm visits
the nodes, and the search progresses as follows:

a: x = true – ?
b: x = false – ?
c: x = true y = true – ?
d: x = true y = false – ?
e: x = false y = true – YES

4.2.2 Comparing Depth and Breadth First Searches

Note that the two searches encounter a different goal
state first. Often, one stops at the first goal state found –
in this case, depth first and breadth first searches would
return different solutions to the problem. Depth first al-

https://alandix.com/glossary/aibook/logic
https://alandix.com/glossary/aibook/search tree
https://alandix.com/glossary/aibook/depth first
https://alandix.com/glossary/aibook/breadth first
https://alandix.com/glossary/aibook/breadth first
https://alandix.com/glossary/aibook/Depth first search
https://alandix.com/glossary/aibook/goal state
https://alandix.com/glossary/aibook/logic
https://alandix.com/glossary/aibook/breadth first search
https://alandix.com/glossary/aibook/search tree
https://alandix.com/glossary/aibook/goal state
https://alandix.com/glossary/aibook/goal state
https://alandix.com/glossary/aibook/goal state
https://alandix.com/glossary/aibook/depth first search
https://alandix.com/glossary/aibook/breadth first search
https://alandix.com/glossary/aibook/depth first search

44 ■ Artificial Intelligence

FIGURE 4.8 Tree of potential solutions for logic problem.

ways finds the first solution, reading the tree left to right,
whereas breadth first finds the shallowest solution.

If we consider human problem solving, it is usually
a mixture of depth first (looking at individual detailed
options) and breadth first (considering the complete
range of options at an abstract level). If anything, the
tendency is towards depth first examination of a small
part of the possible space, but this is combined with
an almost uncanny ability to spot the right portion of
the state space to explore. To some extent this ability is
guided by heuristics, which enable us to make suitable
choices. Algorithms that mimic this will be dealt with in
Section 4.3.

To some extent depth first is the computationally eas-
ier method. However, breadth first searching has several
advantages. First of all, it finds the shallowest solution.
Often the depth in the tree is related to the complexity
of the solution and hence shallowest is, in a sense, best.
This is true, for example, of mathematical proofs, where
a short proof is usually considered superior to a long one.

Even ignoring the issue of which solution is best, there
are disadvantages to using depth first search. Consider
the proof tree in Figure 4.7: the nodes represented by
ellipses were those that stuttered; that is, the move re-
versed the effect of the previous move. If this were not
detected, it would lead to an infinite search, for example
continuously applying the commutativity axiom, and so
moving back and forth for ever between the expressions
(x + y) + z and x + (y + z). Figure 4.11 shows a similar
tree for the Towers of Hanoi problem. In this case there

are nodes that stutter (marked with asterisks ***) but, in
addition, paths that go on forever without repeating. For
example, if we performed the moves 1–2, 1–3, 2–3, we
would get to the state where all the rings are on the third
column; another sequence of moves would return us to
the initial state. One can avoid this terminal problem by
keeping track of the states visited along the current path
and backtracking whenever the current state is found on
the path. In a more complex domain, infinite paths may
exist that never repeat and, even where there are no infi-
nite paths, the leftmost branch of the search tree could be
immoderately large, making depth first search impracti-
cal.

4.2.3 Programming and Space Costs

From the previous discussion it would seem that breadth
first search was a hands-down winner, except in the case
where we were definitely seeking the leftmost solution
in the search space. However, when we consider ease of
programming and space costs, the situation is reversed.

To see this we will look at a simple implementation of
the depth and breadth first algorithms. Both search algo-
rithms must keep track of which nodes need to be exam-
ined next. This collection of nodes is known as the open
list. The open list starts off containing only the root node.
To search the tree the algorithm selects a node from the
open list. The node is checked to see if it is a goal state:
if it is, we have succeeded; if not, we add the children of
the node to the open list and start again. The algorithm
stops when the open list is exhausted. At that point the

https://alandix.com/glossary/aibook/breadth first search
https://alandix.com/glossary/aibook/depth first search
https://alandix.com/glossary/aibook/breadth first search
https://alandix.com/glossary/aibook/depth first search
https://alandix.com/glossary/aibook/heuristics
https://alandix.com/glossary/aibook/depth first search
https://alandix.com/glossary/aibook/breadth first search
https://alandix.com/glossary/aibook/depth first search
https://alandix.com/glossary/aibook/Towers of Hanoi
https://alandix.com/glossary/aibook/backtracking
https://alandix.com/glossary/aibook/search tree
https://alandix.com/glossary/aibook/depth first search
https://alandix.com/glossary/aibook/breadth first search
https://alandix.com/glossary/aibook/breadth first search
https://alandix.com/glossary/aibook/breadth first
https://alandix.com/glossary/aibook/open list
https://alandix.com/glossary/aibook/open list
https://alandix.com/glossary/aibook/open list
https://alandix.com/glossary/aibook/open list
https://alandix.com/glossary/aibook/goal state
https://alandix.com/glossary/aibook/open list
https://alandix.com/glossary/aibook/open list

Search ■ 45

FIGURE 4.9 Depth first search – order of visiting nodes.

entire tree has been searched and therefore the algorithm
reports failure.

The pseudocode for the algorithm is in Figure 4.12.
(Note that this version of the algorithm does not check
for repeated states.) The difference between depth and
breadth first search is in the line marked **. If we add
the children to the front of the open list (a stack), we get
depth first search; if we add them to the end (a queue),
we get breadth first search. It is truly amazing that such
a small difference to the algorithm makes such a big dif-
ference to the order of the search.

Consider now a tree of depth d and branching factor
b, and the largest open lists that can accumulate in the
two algorithms. For depth first, the worst case is when it
reaches the leftmost leaf node. At this point the open list
contains the b − 1 siblings at each of the d levels. That
is, the open list can contain up to (b − 1) × d nodes. The
worst case for breadth first is when the algorithm is about
to start looking at the leaf nodes. At this point all bd leaf
nodes will be in the open list – the space is exponential in
the depth of the tree. So, space usage would discourage
one from using breadth first search.

We turn now to ease of programming. In depth first
search, the open list is a stack. By using recursion, either
in procedural languages or in Prolog, we can effectively
use the language’s own run-time stack to give us depth
first search almost for free. Indeed, Prolog’s execution
can be seen as a search process that is itself depth first
(with consequent problems of infinite regress!).

4.2.4 Iterative Deepening and Broadening

We have seen that breadth first search may give an answer
far faster if the search tree has some solutions closer to
the root. However, breadth first search uses far more
space, so much that searching large spaces will become
prohibitive. One way to avoid this is an algorithm called
iterative deepening. This is basically depth first search
except with a maximum depth cut-off. The search is
repeated with the depth increasing at each pass until a
solution is found. If the depth is increased by one on
each pass, the solution found will be precisely the same
as that found by breadth first search. Like breadth first
search it is immune to infinitely deep branches and
hence is guaranteed to find a solution if one exists.

It seems as if iterative deepening would do a great
deal of work, as it keeps searching the tree again and
again. However, because of the exponential growth in
the number of nodes at each level in the search tree,
most of the work is done at the deepest level. Repeating
work at higher levels has very little effect on the cost.

The worst case is when the tree is of constant depth.
In this case, for a tree with branching factor b the extra
work is only 1/(b − 1) of the normal breadth first time.
For example, if b = 6, iterative deepening only takes 20
per cent longer. In contrast, if the tree has any infinite or
very deep branches, the saving can be enormous.

Iterative deepening avoids the problems associated
with very deep, or infinitely deep, branches. However,
sometimes there is an infinite branching factor. For

https://alandix.com/glossary/aibook/breadth first search
https://alandix.com/glossary/aibook/open list
https://alandix.com/glossary/aibook/depth first search
https://alandix.com/glossary/aibook/breadth first search
https://alandix.com/glossary/aibook/branching factor
https://alandix.com/glossary/aibook/depth first
https://alandix.com/glossary/aibook/open list
https://alandix.com/glossary/aibook/open list
https://alandix.com/glossary/aibook/breadth first
https://alandix.com/glossary/aibook/open list
https://alandix.com/glossary/aibook/breadth first search
https://alandix.com/glossary/aibook/depth first search
https://alandix.com/glossary/aibook/depth first search
https://alandix.com/glossary/aibook/open list
https://alandix.com/glossary/aibook/Prolog
https://alandix.com/glossary/aibook/depth first search
https://alandix.com/glossary/aibook/depth first search
https://alandix.com/glossary/aibook/depth first search
https://alandix.com/glossary/aibook/breadth first search
https://alandix.com/glossary/aibook/search tree
https://alandix.com/glossary/aibook/breadth first search
https://alandix.com/glossary/aibook/iterative deepening
https://alandix.com/glossary/aibook/depth first search
https://alandix.com/glossary/aibook/breadth first search
https://alandix.com/glossary/aibook/breadth first search
https://alandix.com/glossary/aibook/breadth first search
https://alandix.com/glossary/aibook/iterative deepening
https://alandix.com/glossary/aibook/search tree
https://alandix.com/glossary/aibook/exponential growth
https://alandix.com/glossary/aibook/search tree
https://alandix.com/glossary/aibook/branching factor
https://alandix.com/glossary/aibook/breadth first search
https://alandix.com/glossary/aibook/iterative deepening
https://alandix.com/glossary/aibook/Iterative deepening
https://alandix.com/glossary/aibook/branching factor

46 ■ Artificial Intelligence

FIGURE 4.10 Breadth first search – order of visiting nodes.

example, we may want to find a positive integer solution
to the equation x2 + y2 = z2 . As with the logic example
at the start of this section, we could look at all the
possibilities for x: 1, 2, 3, …– it might take some time! A
second variation, iterative broadening, can deal with this
problem by putting a bound on the number of children
that are examined on each pass. Iterative broadening
can be used on its own in conjunction with depth
first or breadth first search, or combined with iterative
deepening. In the latter case, one has to decide at each
pass how much to increase both depth and branching
cut-offs.

4.2.5 Finding the Best Solution – Branch and Bound

So far, we have only been concerned with finding the
first solution. Now consider the case when we have cost
associated with solutions. We cannot stop when we have
found the first solution; instead we must keep track of the
solution and its cost and then continue the search in case
there is a better solution further on. We have to continue
until the whole space is exhausted, all the time keeping
track of the best solution encountered so far. This process
could be combined with any of the search strategies we
have encountered. However, every node must eventually
be examined, so there is no advantage to using it with
anything but depth first search.

If the cost function is associated solely with the final
state, we can make no improvement to the algorithm

without further heuristic guidance. However, if the path
also has a cost, we can do somewhat better. We assume
that the cost always increases with path length, as we shall
do with all path costs. Examples of such costs include
the distance travelled along a route, the time taken to
perform actions between states, or a simple count of the
moves taken. In fact all these costs are also additive and
are the sum of the costs of each move; however, this is
not necessary for the algorithm to work.

Imagine we have found a solution g with cost c(g). We
go on to look for a further solution and are about to ex-
amine a node at the end of a path p from the root of the
tree. Now n and any state below n will have cost at least
c(p), so if c(p) > c(g), it is not worth pursuing this path
further – all nodes below it will exceed the current best
cost. The algorithm resulting from this insight is called
branch and bound. Figure 4.13 shows a search tree with
costs associated with each path. Node d is optimal with
path cost 3 + 1 = 4. Assuming it is visited first, nodes
below e and c need not be examined, as their partial path
costs are 3 + 3 = 6 and 5, respectively. Thus only the
circled nodes are examined.

There are again variants of branch and bound
associated with depth first, breadth first and iterative
deepening. For the latter, the cut-offs can be based
on the cost of the path rather than the depth. So
long as the costs of the path increase suitably with
path length, this will still be safe from infinitely deep
branches.

https://alandix.com/glossary/aibook/logic
https://alandix.com/glossary/aibook/iterative broadening
https://alandix.com/glossary/aibook/Iterative broadening
https://alandix.com/glossary/aibook/depth first search
https://alandix.com/glossary/aibook/depth first search
https://alandix.com/glossary/aibook/breadth first search
https://alandix.com/glossary/aibook/iterative deepening
https://alandix.com/glossary/aibook/iterative deepening
https://alandix.com/glossary/aibook/search strategies
https://alandix.com/glossary/aibook/depth first search
https://alandix.com/glossary/aibook/branch and bound
https://alandix.com/glossary/aibook/search tree
https://alandix.com/glossary/aibook/optimal
https://alandix.com/glossary/aibook/branch and bound
https://alandix.com/glossary/aibook/depth first search
https://alandix.com/glossary/aibook/breadth first search
https://alandix.com/glossary/aibook/iterative deepening
https://alandix.com/glossary/aibook/iterative deepening

Search ■ 47

FIGURE 4.11 Towers of Hanoi – search tree.

4.2.6 Graph Search

Several of the example trees we have been searching have
been trees of graph nodes, for example the arithmetic
proof tree. Indeed, the problem of repeated states arose
directly because of their graph-related nature. A tree gen-
erated from partial solutions, such as the magic square
tree in Figure 4.4 or the logic problem in Figure 4.8, can-
not have repeated states down a branch.

Notice also that, when a graph is considered as a tree,
nodes can be repeated along different branches. This
is seen in the Towers of Hanoi tree in Figure 4.11. It
is not as serious a problem as repeats down a single
branch, since it does not lead to infinite work. However,
if the same node is repeated on different branches,
time is wasted examining nodes that have already been
searched.

To avoid infinite branches we checked that the
new node was not already in the current path. A
similar technique can be used with graph searching.
In addition to the open list, we also keep a closed list,
keeping track of all those nodes that have already been
examined. If a node is in this list, it will not be examined
again.

One can use branch and bound on graphs as well, sim-
ply by adding the cost check. However, a second visit to
a node might be via a cheaper path. One therefore has to
compare the new cost with the old one and, if cheaper,

remove the node from the closed list and add it again to
the open.

Depending on where we add the children, we can
search the graph in a depth or breadth first fashion.
However, we cannot now avoid space costs as the closed
list will expand until it includes the whole space. In
addition to the space cost, this means that the lookup
to see whether a state has been visited previously gets
progressively more expensive. One option is to limit the
size of the closed list, discarding some entries when it
gets full. This will certainly reduce the space and time
costs but leaves the possibility of repeated work and
infinite loops.

4.3 HEURISTIC SEARCH
Recall from Section 4.1.2 that heuristics give us some
information from a node part-way through a search
about the nodes that lie beyond. Strictly, a heuristic
could be any information but is most usually a simple
number representing how good or bad that path is likely
to be. In a state problem, the evaluation will usually only
depend on the node itself ev(n), but in a path problem it
must also depend on the path to the node ev(n, p).

Figure 4.14 shows the search tree for finding the
way through a maze. This is a state problem, as we
are not interested in the shortest way through, just
any way. The start is marked with a bullet and the exit

https://alandix.com/glossary/aibook/search tree
https://alandix.com/glossary/aibook/magic square
https://alandix.com/glossary/aibook/logic
https://alandix.com/glossary/aibook/Towers of Hanoi
https://alandix.com/glossary/aibook/open list
https://alandix.com/glossary/aibook/closed list
https://alandix.com/glossary/aibook/branch and bound
https://alandix.com/glossary/aibook/closed list
https://alandix.com/glossary/aibook/breadth first
https://alandix.com/glossary/aibook/closed list
https://alandix.com/glossary/aibook/closed list
https://alandix.com/glossary/aibook/closed list
https://alandix.com/glossary/aibook/heuristics
https://alandix.com/glossary/aibook/search tree

48 ■ Artificial Intelligence

FIGURE 4.12 Depth/breadth first search – generic algorithm.

FIGURE 4.13 Search tree with path costs.

(goal state) is marked g. The rest of the letters mark
the choice points in the maze. The figures in square
brackets show the heuristic evaluation for each node.
The evaluation function chosen is the distance from the
node to the goal measured using the Manhattan block
distance. (That is, the sum of the distances in the x and y
directions.)

Notice the following about the maze search tree:

• misleading directions – At node a, it at first
appears that b is the most promising direction.
Unfortunately, it leads to a dead end.

• local minima – From node b nowhere looks any bet-
ter; whatever path you take you appear (in terms of
the heuristic) to get further from the goal. Hence

b is called a local minimum. A simple search might
stop at b and never reach g, which is the global min-
imum.

• plateaux – The heuristic evaluation does not change
between c and d; there is no sense of progress. In
more complex problems there may be whole areas
of the search space with no change of heuristic.
When this happens, the heuristic ceases to give any
guidance about possible direction.

• getting worse to get better – In order to progress
towards the goal one has to get temporarily further
away from it.

To be fair, a maze is designed to be hard to get through,
and hence it is no wonder that a simple distance measure
(or indeed any measure) is unhelpful. However, all these
problems do occur in real scenarios and must be faced
by any efficient search algorithm.

4.3.1 Hill Climbing and Best First – Goal-directed
Search

We can use heuristic evaluation functions to improve
basic depth first and breadth first searches. Both algo-
rithms search the children of nodes in a left-to-right fash-
ion. If instead we search for the child with the largest
heuristic value first, we get hill climbing with backtrack-
ing and best first search. The difference between the two
is that once hill climbing has chosen to follow a node it
continues to do so in a depth first fashion, even if the
heuristic value of the node’s children is higher than the
value for previously visited nodes. In contrast, best first

https://alandix.com/glossary/aibook/goal state
https://alandix.com/glossary/aibook/heuristic evaluation
https://alandix.com/glossary/aibook/Manhattan block distance
https://alandix.com/glossary/aibook/Manhattan block distance
https://alandix.com/glossary/aibook/search tree
https://alandix.com/glossary/aibook/local minima
https://alandix.com/glossary/aibook/local minimum
https://alandix.com/glossary/aibook/global minimum
https://alandix.com/glossary/aibook/global minimum
https://alandix.com/glossary/aibook/plateaux
https://alandix.com/glossary/aibook/heuristic evaluation
https://alandix.com/glossary/aibook/heuristic evaluation
https://alandix.com/glossary/aibook/depth first
https://alandix.com/glossary/aibook/breadth first
https://alandix.com/glossary/aibook/hill climbing with backtracking
https://alandix.com/glossary/aibook/hill climbing with backtracking
https://alandix.com/glossary/aibook/best first search
https://alandix.com/glossary/aibook/hill climbing
https://alandix.com/glossary/aibook/depth first
https://alandix.com/glossary/aibook/best first

Search ■ 49

FIGURE 4.14 Maze search tree.

will consider all previously visited nodes at each stage,
choosing the best so far.

Hill climbing is named after those situations where the
biggest number is best (benefit rather than cost), and so
the algorithm is constantly following the direction that
gives the fastest rate of increase – a rather keen climber
who always chooses the steepest path! (Perhaps in sit-
uations where lowest is best, we ought to use a down-
hill skier analogy?) However, the algorithm is prepared
to back up and try a different path if the steepest ascent
leads to a dead end, hence the addition “with backtrack-
ing”. Because best first search considers the whole open
list at each stage, it doesn’t need to backtrack but con-
sequently has to remember more nodes and to consider
more possibilities at each step.

In the case of the maze tree, both algorithms would
search the space in the same order, but this will not
always be the case. Consider the tree in Figure 4.15. Like
the maze tree, it represents some sort of goal-seeking
search, where the heuristic is an estimated distance to
a goal. The non-goal leaves are given an evaluation of
99 to represent the fact that they are no good at all!
The heuristic evaluation function is rather better this
time, especially as one gets closer to the goal nodes.
This is typical of real-world examples. However, just
as in the real world, it is not perfect – indeed, node f
has quite a good evaluation, but no goal state is found
beneath it.

Notice that the two algorithms reach different goal
states. In fact, both algorithms are guaranteed to reach
a goal state if one is there, as in the end they will both
search the entire space. However, one hopes that the
heuristic will so guide the search that a goal state is
found when only a small portion of the space has been
examined.

4.3.2 Finding the Best Solution – The A ∗ Algorithm

Given good enough heuristics, hill climbing and best
first searches can find a solution faster than exhaustive
searches. However, when a solution is found, they
cannot tell whether it is the best one. Consider the
tree in Figure 4.15. The heuristic on the goal nodes
represents how good they are. We see that the hill
climbing algorithm gets to a suboptimal solution, l. In
this case, best first does manage to find the optimal
solution h, but this will not always be the case. If the
heuristic had been a little less helpful and node d had
had value 4, then best first would have found node e –
again suboptimal.

The problem is that given a goal state and an open
list, we cannot determine whether there are as yet unseen
nodes with lower cost. The heuristic guides us to the good
nodes but does not give enough information to guarantee
we have found the optimum. Recall from Section 4.2.5
that branch and bound search did far better. It was able
to prune whole areas of the search tree as unfruitful. This
is because the cost of the path to a node serves as a lower
bound on the cost of the nodes below it. If we have a
heuristic function ev(n, p) that has this property, we can
have algorithms that guarantee an optimal solution.

A method of search that does this is the A∗ algorithm,
which is effectively a modified form of best first. It is used
especially on path problems where the cost of a path is the
sum of the costs of the moves. However, it is not limited
to such situations.

Rather than looking at the algorithm in detail, we shall
simply consider the way it works in the case of real route
finding on roads or around obstacles. We know that the
shortest distance between two places must be at least
as long as the straight-line distance. It may be longer if
there is an obstacle in the way or if the roads are not
straight, but, excluding cosmic worm-holes, it cannot be
shorter.

Imagine we are looking for routes between Appleth-
waite and Gilby (see Figure 4.16). We have already found

https://alandix.com/glossary/aibook/Hill climbing
https://alandix.com/glossary/aibook/best first search
https://alandix.com/glossary/aibook/open list
https://alandix.com/glossary/aibook/open list
https://alandix.com/glossary/aibook/heuristic evaluation function
https://alandix.com/glossary/aibook/goal state
https://alandix.com/glossary/aibook/goal states
https://alandix.com/glossary/aibook/goal states
https://alandix.com/glossary/aibook/goal state
https://alandix.com/glossary/aibook/goal state
https://alandix.com/glossary/aibook/heuristics
https://alandix.com/glossary/aibook/hill climbing
https://alandix.com/glossary/aibook/best first
https://alandix.com/glossary/aibook/best first
https://alandix.com/glossary/aibook/hill climbing algorithm
https://alandix.com/glossary/aibook/hill climbing algorithm
https://alandix.com/glossary/aibook/best first
https://alandix.com/glossary/aibook/optimal
https://alandix.com/glossary/aibook/best first
https://alandix.com/glossary/aibook/goal state
https://alandix.com/glossary/aibook/open list
https://alandix.com/glossary/aibook/open list
https://alandix.com/glossary/aibook/branch and bound search
https://alandix.com/glossary/aibook/search tree
https://alandix.com/glossary/aibook/lower bound
https://alandix.com/glossary/aibook/lower bound
https://alandix.com/glossary/aibook/optimal
https://alandix.com/glossary/aibook/A* algorithm
https://alandix.com/glossary/aibook/best first
https://alandix.com/glossary/aibook/straight-line distance

50 ■ Artificial Intelligence

FIGURE 4.15 Trace of hill climbing and best first searches.

a route via Barton that is 62 miles long. We then go on
to look for further routes. We find the shortest path from
Applethwaite to Cardale is 17 miles, but we see that the
straight-line distance from Cardale to Gilby is 50 miles.
So, any route from Applethwaite to Gilby via Cardale
must be at least 67 miles. As this is longer than the route
we have already found, we can stop looking for routes
via Cardale. That is, we have pruned the search tree at
Cardale.

Using this sort of reasoning the A∗ algorithm can
prune many fruitless paths but still guarantee to find the
best solution.

Unfortunately, being a variant of breadth first, the A∗

algorithm inherits its storage problems for the open list.

However, there are depth first and iterative deepening
versions of the algorithm that can be used to overcome
the problem.

4.3.3 Inexact Search

Hill Climbing Revisited

As we noted in Section 4.1.1, we are often content with a
good enough solution rather than the best. We saw that
this would be the case if we used the first solution from
best first or hill climbing. Furthermore, if all leaf nodes
are feasible (although some are better than others), hill
climbing will not need to do any backtracking. Thus we
can use forgetful hill climbing; that is, we need only keep

https://alandix.com/glossary/aibook/straight-line distance
https://alandix.com/glossary/aibook/pruning
https://alandix.com/glossary/aibook/search tree
https://alandix.com/glossary/aibook/A* algorithm
https://alandix.com/glossary/aibook/breadth first
https://alandix.com/glossary/aibook/A* algorithm
https://alandix.com/glossary/aibook/A* algorithm
https://alandix.com/glossary/aibook/open list
https://alandix.com/glossary/aibook/depth first
https://alandix.com/glossary/aibook/iterative deepening
https://alandix.com/glossary/aibook/best first
https://alandix.com/glossary/aibook/hill climbing
https://alandix.com/glossary/aibook/feasible
https://alandix.com/glossary/aibook/hill climbing
https://alandix.com/glossary/aibook/hill climbing
https://alandix.com/glossary/aibook/backtracking
https://alandix.com/glossary/aibook/forgetful hill climbing

Search ■ 51

FIGURE 4.16 Using the A∗ algorithm.

FIGURE 4.17 Graph of possible career moves.

track of the current node and forget where we have been
– no open list, no stack.

As the search space becomes very large, exhaustive
search, even when guided by a heuristic, becomes
impractical, and so this sort of inexact method is ac-
ceptable. Recall, however, the problems of hill climbing,
plateaux and local minima (or maxima depending on the
definition of best), making it hard to determine which
direction to follow. Indeed, at a local minimum, one
cannot even know if it is the best solution or not.
Consider the career graph in Figure 4.17; the hill
climbing school leaver would not get far!

In order to make progress in such domains (including
running mazes), one needs to be prepared to accept some

downhill movement. One way to proceed is periodically
to make random moves, or to start at several random
positions and compare the outcome of hill climbing from
each start position.

An advantage of hill climbing over the exact
techniques discussed earlier is that it can be used in
continuous as well as discrete domains. An example of
this would be driving a car. The parameters to control
include both discrete values (gear selected, choke on)
and continuous ones (depression of accelerator, steering
wheel position). Choosing continuous parameters, is
beyond the scope of tree-searching techniques. On the
other hand, traditional mathematical optimisation tech-
niques deal only with continuous variables. However,
hill climbing can be used with these rather difficult
hybrid problems.

To apply hill climbing to the continuous part of the
problem, one must choose some small step and look at
the change in cost, or alternatively use the derivative of
the cost function in that parameter. When one considers
continuous parameters, a new phenomenon is encoun-
tered: the ridge. This is, like a real rocky ridge, a direc-
tion where the system is slowly moving uphill, but where
it drops sharply downhill on either side. The problem is
that if you are slightly off the ridge, the uphill direction
is not to move along the ridge, but to ascend nearly di-
rectly up it. Unfortunately, the need to take discrete steps
means that one frequently overshoots, leading to a waste-
ful zig-zag up the ridge, potentially missing it entirely.
The equivalent problem where it occurs in discrete sys-
tems leads to a sequence of local minima occurring along
the line of the ridge.

Simulated Annealing

A slightly more systematic approach is simulated
annealing. At each step one considers a random move.
If the move is uphill, one always follows that direction.
However, even if the move is downhill, it is sometimes
followed, with a probability that diminishes as the
distance downhill increases. Slight downhill movements
are likely, large ones less likely. As the process proceeds,
the system is “cooled” – that is, it is made gradually
less likely that a downhill step is taken. Basically when
the system is hot the behaviour is almost a random
walk; when it is cold, it is simple hill climbing. Note
that although the discussion here compares it with hill

https://alandix.com/glossary/aibook/open list
https://alandix.com/glossary/aibook/hill climbing
https://alandix.com/glossary/aibook/plateaux
https://alandix.com/glossary/aibook/local minima
https://alandix.com/glossary/aibook/local minimum
https://alandix.com/glossary/aibook/hill climbing
https://alandix.com/glossary/aibook/hill climbing
https://alandix.com/glossary/aibook/hill climbing
https://alandix.com/glossary/aibook/hill climbing
https://alandix.com/glossary/aibook/mathematical optimisation
https://alandix.com/glossary/aibook/hill climbing
https://alandix.com/glossary/aibook/hybrid problems
https://alandix.com/glossary/aibook/hill climbing
https://alandix.com/glossary/aibook/ridge
https://alandix.com/glossary/aibook/local minima
https://alandix.com/glossary/aibook/Simulated Annealing
https://alandix.com/glossary/aibook/simulated annealing
https://alandix.com/glossary/aibook/simulated annealing
https://alandix.com/glossary/aibook/probability
https://alandix.com/glossary/aibook/random walk
https://alandix.com/glossary/aibook/random walk
https://alandix.com/glossary/aibook/hill climbing
https://alandix.com/glossary/aibook/hill climbing

52 ■ Artificial Intelligence

climbing, the algorithm is usually described with the
best state having the lowest value, or “energy”.

Simulated annealing is not guaranteed to find the
global minimum but usually gets somewhere close. It
can be made somewhat more systematic by keeping
track of a fixed number of good past states. If the search
seems to get stuck in the “lowlands” it can be restarted
from one of these positions. You’ll read more about this
fitness ‘landscape’ in Chapter 9.

Simulated annealing has proved to be a very robust
and flexible technique for solving problems that seem
particularly intractable (e.g. timetabling), yet is very sim-
ple to program. However, one may feel uncomfortable
using such a “random” algorithm for any critical appli-
cation, such as medical diagnosis. In these cases it would
need to be surrounded by firewalls to prevent mistakes.

Like hill climbing, simulated annealing is particularly
powerful in hybrid problems where continuous and dis-
crete parameters are mixed. The change in a continu-
ous parameter can be chosen randomly, and the size of
change can be arranged to reduce as the system is cooled,
leading to smaller jumps and fine adjustment.

Genetic Algorithms

As the name suggests, genetic algorithms are based on
an analogy with biotic genetics and natural selection.
The problem state is coded into separate parameters
(the genes). A random set of states (individuals) is then
allocated. The system then goes through a series of
generations. In each generation, some of the individuals
die, some breed and occasionally some mutate:

• death – Some of the individuals are randomly killed
(removed from the set). In order to simulate natu-
ral selection, those individuals that are considered
good, as measured by the relevant cost function on
the state, have a greater probability of survival.

• breeding – Pairs of individuals are chosen and a new
individual formed by mixing the genes of its par-
ents. The exact nature of this mixing will depend on
the particular parametrisation chosen for the prob-
lem.

• mutation – As the original “gene pool” is not
necessarily complete (or genes may be lost through
deaths), occasionally parts of an individual’s state
may randomly change.

The idea is that the individuals that survive will
gradually become better, as measured by the same
costs that drive the natural selection. This algorithm
has again proved fruitful in many domains where
traditional techniques have found great difficulty.
However, its success depends crucially on the choice
of representation. To work the mixing of the genes
from two good parents should lead (at least some of
the time) to a good child. This is true where a problem
consists of several almost independent parts. A good
example of this is a crossword puzzle. Given a complete
(but not necessarily correct) puzzle, we can measure
goodness by the number of words that are in the English
language. If one puzzle has good words in its top left and
another good words in its bottom right, then combining
the two is likely to lead to a reasonably promising
solution. The parts of the puzzle are almost independent
but not entirely so (as some words will cross between
the two).

The particular advantage of genetic algorithms is that
work spent on making one part right is not thrown away
because another part is wrong. In a simple tree-based
search, only the decisions near the root are re-used.
Those near the leaves are constantly being discarded,
even where different parts of the space have similar
structure.

The language of genetics is helpful in discussing the
general problem of search. The genotype is the internal
description – in the case of search, the parameters in the
state description. The phenotype is the external attribute
– the goodness measure or cost of the state. Systematic
progress can only be made in a search if the phenotype
and genotype have a reasonably simple mapping. For
example, simulated annealing and hill climbing rely
on the fact that small changes in the genotype (state)
will normally result in small changes in the phenotype
(goodness measure). In addition, genetic algorithms
rely on that mapping having reasonably good structural
properties.

4.4 KNOWLEDGE-RICH SEARCH
The different algorithms that have been presented so far
have depended upon the general type of problem (opti-
misation, game playing, etc.) but have been domain in-
dependent. They could be applied to solving crossword
puzzles or controlling a chemical factory. Of course, the
algorithms would not work equally well in all cases, but

https://alandix.com/glossary/aibook/hill climbing
https://alandix.com/glossary/aibook/Simulated annealing
https://alandix.com/glossary/aibook/global minimum
https://alandix.com/glossary/aibook/fitness landscape
https://alandix.com/glossary/aibook/Simulated annealing
https://alandix.com/glossary/aibook/firewalls
https://alandix.com/glossary/aibook/hill climbing
https://alandix.com/glossary/aibook/simulated annealing
https://alandix.com/glossary/aibook/hybrid problems
https://alandix.com/glossary/aibook/Genetic Algorithms
https://alandix.com/glossary/aibook/genetic algorithms
https://alandix.com/glossary/aibook/natural selection
https://alandix.com/glossary/aibook/genes
https://alandix.com/glossary/aibook/generations
https://alandix.com/glossary/aibook/natural selection
https://alandix.com/glossary/aibook/natural selection
https://alandix.com/glossary/aibook/probability
https://alandix.com/glossary/aibook/genes
https://alandix.com/glossary/aibook/genes
https://alandix.com/glossary/aibook/natural selection
https://alandix.com/glossary/aibook/genes
https://alandix.com/glossary/aibook/genetic algorithms
https://alandix.com/glossary/aibook/genotype
https://alandix.com/glossary/aibook/phenotype
https://alandix.com/glossary/aibook/phenotype
https://alandix.com/glossary/aibook/genotype
https://alandix.com/glossary/aibook/simulated annealing
https://alandix.com/glossary/aibook/hill climbing
https://alandix.com/glossary/aibook/genotype
https://alandix.com/glossary/aibook/phenotype
https://alandix.com/glossary/aibook/genetic algorithms
https://alandix.com/glossary/aibook/optimisation
https://alandix.com/glossary/aibook/optimisation
https://alandix.com/glossary/aibook/game playing
https://alandix.com/glossary/aibook/knowledge!domain-independent
https://alandix.com/glossary/aibook/knowledge!domain-independent

Search ■ 53

they are not intrinsically designed for a particular situa-
tion.

However, for many problems more domain knowledge
is required, and the general algorithms must be tuned to
the specific problem. There are obviously as many fine
tunings as there are problems, so this section will briefly
discuss two of the more general classes of problem: con-
straint satisfaction and means–ends analysis.

We have already explicitly assumed the use of
domain knowledge in the heuristic evaluation function.
Although this does in a sense embody knowledge
about the domain, it is quite crude – a single number.
Furthermore, it may be difficult to code knowledge
about the goodness of a state into a number. We may be
able to look at two states and say that one is better or
more interesting than the other, but not be able to put
a number to it. Note too that the word heuristic means
more than just this evaluation function, but indeed any
knowledge used to guide search.

In addition to the evaluation function, there have been
several places where we have implicitly assumed that do-
main knowledge would or could be used:

• ordering children – In depth or breadth first search,
we assumed that there was some ordering of the
children of a node. A good choice of this ordering
makes an enormous difference to the search effi-
ciency. In minimax search, examining the best child
first can double the depth to which it is possible to
search in a given time. Even where an evaluation
is being used, we may need extra guidance where
there are many plateaux.

• ordering the tree – That is, choosing which decisions
to make first in producing the tree. This is applicable
to trees where the states represent partial solutions,
and we have already seen in Section 4.1.2 how the
order in which we expand the magic square search
tree makes a big difference to our ability to prune
impossible solutions.

In addition, in Chapter 11, we will consider the
minimax algorithm for searching game tree searches.
An important parameter in the minimax algorithm is
the search horizon, which determines how deep the
search looks down the game tree. The choice of search
horizon will vary for different parts of the tree and
embody a great deal of the knowledge of the particular
game.

In this section, we will look at constraint satisfaction
and see how a good order of search can be determined
dynamically. In Chapter 15, we will see examples of
knowledge-rich search algorithms for planning and
route finding.

4.4.1 Constraint Satisfaction

Consider again the magic square tree shown in
Figure 4.4. In fact, the magic square is an example of
a constraint satisfaction problem. The goal is to have a
state described by parameters m11 … m33, corresponding
to the positions in the square:

m 11 m 12m 13

m 21 m 22m 23

m 31 m 32m 33

These parameters are to be different integers in the range
1 to 9 and must satisfy the following constraints:

1. m11 + m12 + m13 = 15
2. m21 + m22 + m23 = 15
3. m31 + m32 + m33 = 15
4. m11 + m21 + m31 = 15
5. m12 + m22 + m32 = 15
6. m13 + m23 + m33 = 15
7. m11 + m22 + m33 = 15
8. m13 + m22 + m31 = 15

Constraints 1–3 say that the rows add up to 15; 4–6 say
the same for the columns and 7 and 8 for the diagonals.

These constraints are arithmetic equalities, but con-
straints can also be inequalities or logical formulae. The
logic problem in Section 4.2.1 is an example of the latter.

We can use the constraints to:

• check the correctness of a partial solution and hence
prune fruitless branches.

• calculate some parameters from others. For exam-
ple, once we know m11 and m12 we can calculate that

m13 = 15 − m11 + m12

• choose which parameter to fix next.

In keeping with the idiom, the fixing of a parameter
value can be thought of as adding a new (albeit simple)

https://alandix.com/glossary/aibook/constraint satisfaction
https://alandix.com/glossary/aibook/constraint satisfaction
https://alandix.com/glossary/aibook/means--ends analysis
https://alandix.com/glossary/aibook/heuristic evaluation function
https://alandix.com/glossary/aibook/domain knowledge
https://alandix.com/glossary/aibook/domain knowledge
https://alandix.com/glossary/aibook/depth first search
https://alandix.com/glossary/aibook/breadth first search
https://alandix.com/glossary/aibook/minimax search
https://alandix.com/glossary/aibook/plateaux
https://alandix.com/glossary/aibook/magic square
https://alandix.com/glossary/aibook/search tree
https://alandix.com/glossary/aibook/search tree
https://alandix.com/glossary/aibook/minimax algorithm
https://alandix.com/glossary/aibook/game tree searches
https://alandix.com/glossary/aibook/minimax algorithm
https://alandix.com/glossary/aibook/search horizon
https://alandix.com/glossary/aibook/game tree
https://alandix.com/glossary/aibook/search horizon
https://alandix.com/glossary/aibook/search horizon
https://alandix.com/glossary/aibook/constraint satisfaction
https://alandix.com/glossary/aibook/knowledge-rich search
https://alandix.com/glossary/aibook/magic square
https://alandix.com/glossary/aibook/magic square
https://alandix.com/glossary/aibook/constraint satisfaction
https://alandix.com/glossary/aibook/constraints
https://alandix.com/glossary/aibook/constraints
https://alandix.com/glossary/aibook/constraints
https://alandix.com/glossary/aibook/constraints
https://alandix.com/glossary/aibook/logic
https://alandix.com/glossary/aibook/constraints

54 ■ Artificial Intelligence

constraint. However, we must remember to distinguish
those constraints that are given as part of the problem
and those that are guesses and may thus be changed later
(backtracking).

The first of these, checking, reduces the effective
breadth of the tree, as it means some branches need
not be examined. The second, calculation, reduces
the effective depth as some choices are made “for
free”. These two can be accomplished using a gen-
eral software method called constraint propagation.
However, it is the third choice that is ultimately most
powerful.

Recall how the particular order in which the magic
square was searched led to rapid pruning of unfruitful
paths, whereas an expansion that led to partial solutions
of the form

? 2 ?

1 ? ?

? ? 3

was clearly unsuitable. The reason for this is
that the chosen order filled in the parameters
of constraints that could then be checked (in
fact the third choice could have been made by
calculation).

A general heuristics is to choose to fix parameters that
will complete constraints. So, for example, once we have
chosen to fix m11 = 1, there are only two more param-
eters required on constraints 1, 4 and 7. This suggests
that we next choose to fix one of the other parameters in
these constraints, say m12 (as in the tree) or m22. A gen-
eral heuristic is thus to choose a parameter that is in the
constraint with the fewest free slots. Where this heuris-
tic yields several possible parameters, we can choose one
that reduces most other constraints. For example, this
would suggest that for the first parameter we ought to
choose m22, as this is in four constraints as opposed to
only three for m11.

As one focuses on more specific problems, these gen-
eral heuristics are also honed. In particular, we find that
the choice of order can no longer be made statically. All
the arguments we have used for the magic tree could be
made without looking at a single node. We can look at
the constraints and choose a search order (not square!)
such as the following:

2 6 4

8 1 9

5 7 3

In other problems it may not be clear what order
to choose until one has explicit information. This is
particularly true where the constraints are complex
logical formulae such as

(a ∧ b ∧ c ∧ d ∧ e ∧ f) ∨ (g ∧ h)

Initially this has a lot of parameters in it and would be
far down our list of interesting constraints. However, as
soon as we begin to examine the branch with a = false,
the whole left-hand side of the constraint becomes false
and it reduces to (g ∧ h), suggesting that we next fix g or
h.

4.5 SUMMARY
Search problems can be classified in a number of ways:

• state or path based

• any or best solution

• deterministic or adversarial

• perfect solution or just good enough

Search spaces can be structured as trees or graphs. In
some problems the interior nodes of a search tree may
represent partial solutions. Trees can be characterised by
their branching factor and their depth, either of which
may be infinite.

Search can be guided by heuristic evaluation functions
or by domain knowledge or can be virtually unguided.

Blind search algorithms include depth first search,
breadth first search, iterative broadening, iterative
deepening and branch and bound. Depth first search is
simple to program and uses relatively little space com-
pared with breadth first search but has problems with
very deep branches. Iterative deepening and iterative
broadening algorithms deal with problems of very (or
infinitely) deep and very broad trees respectively. Where
costs are associated with moves, branch and bound can
reduce the number of nodes searched by pruning nodes
of the search tree. But it is still guaranteed to find the
best solution.

https://alandix.com/glossary/aibook/constraints
https://alandix.com/glossary/aibook/backtracking
https://alandix.com/glossary/aibook/constraint propagation
https://alandix.com/glossary/aibook/magic square
https://alandix.com/glossary/aibook/magic square
https://alandix.com/glossary/aibook/pruning
https://alandix.com/glossary/aibook/constraints
https://alandix.com/glossary/aibook/heuristics
https://alandix.com/glossary/aibook/constraints
https://alandix.com/glossary/aibook/constraints
https://alandix.com/glossary/aibook/constraints
https://alandix.com/glossary/aibook/constraints
https://alandix.com/glossary/aibook/constraints
https://alandix.com/glossary/aibook/heuristics
https://alandix.com/glossary/aibook/constraints
https://alandix.com/glossary/aibook/constraints
https://alandix.com/glossary/aibook/constraints
https://alandix.com/glossary/aibook/deterministic search
https://alandix.com/glossary/aibook/adversarial search
https://alandix.com/glossary/aibook/Search spaces
https://alandix.com/glossary/aibook/search tree
https://alandix.com/glossary/aibook/branching factor
https://alandix.com/glossary/aibook/depth of search tree
https://alandix.com/glossary/aibook/heuristic evaluation
https://alandix.com/glossary/aibook/domain knowledge
https://alandix.com/glossary/aibook/Blind search
https://alandix.com/glossary/aibook/depth first search
https://alandix.com/glossary/aibook/breadth first search
https://alandix.com/glossary/aibook/iterative broadening
https://alandix.com/glossary/aibook/iterative deepening
https://alandix.com/glossary/aibook/iterative deepening
https://alandix.com/glossary/aibook/branch and bound
https://alandix.com/glossary/aibook/Depth first search
https://alandix.com/glossary/aibook/breadth first search
https://alandix.com/glossary/aibook/Iterative deepening
https://alandix.com/glossary/aibook/iterative broadening
https://alandix.com/glossary/aibook/iterative broadening
https://alandix.com/glossary/aibook/branch and bound
https://alandix.com/glossary/aibook/pruning
https://alandix.com/glossary/aibook/search tree

Search ■ 55

Heuristic evaluation functions can guide search. Hill
climbing with backtracking and best first search use the
heuristic value to choose the order to investigate nodes.
But both must search the entire tree to be sure of find-
ing the best solution. If the heuristic evaluation function
gives a lower bound on the final term, the A∗ algorithm
can prune nodes and so avoid searching all the tree, but
still will get the best solution.

Exact methods are often impractical. Forgetful hill
climbing can often find good solutions but suffers from
problems caused by local mimima and plateaux in
the search space. Genetic algorithms and simulated
annealing use randomness in different ways to search
complex spaces including problems with some discrete
and some continuous parameters. They often find
near-optimal solutions.

However, more knowledge is needed to tune algo-
rithms for specific problem domains. Algorithms that
include such knowledge include constraint satisfaction,
as well as specialist algorithms discussed in later
chapters.

4.1 In Section 4.1.1, it was said that for many path
problems the cost was a function of the route only
and not the goal state reached. Think of an exam-
ple of a problem where both the goodness of the
goal state and the cost of the path are important.

4.2 In Section 4.3.3 it was suggested that a genetic
algorithm was a possible way to solve crossword
puzzles. Find an online dictionary and extract all
words of four letters. You are trying to produce
4×4 acrostics. That is, four lines of four characters
so that each row and each column forms a word.
The states will be lists of 16 characters, and good-
ness can be measured by the number of four-letter
words (8 is perfect). For example, take the (incor-
rect) acrostic

P I N S
A M E O
I Q A N
L O T S

It has five correct words (pins, lots, pail, neat and
sons) and three incorrect (ameo, iqan and imqo).
Its goodness is therefore 5. Choose a method to
combine two acrostics and use a genetic algorithm
on it.

4.3 Mini-Sudoku only uses the numbers 1 to 4 on a
4 × 4 square where each row, each column, and
each of the four corner squares has exactly one
each of the digits 1 to 4. As with Sudoku, you are
given a partially filled square and have to complete
it. Here is your start square:

1
4

3 2
4

a. Draw a search tree that starts off by choosing
values for the free squares beginning at the
top left (so row 1 column 2 is the first blank
to fill).

b. Now do a depth first search, but starting with
the blank squares that are most constrained
(have the most filled-in squares in the same
column/row or small square).

FURTHER READING

J. Pearl. Heuristics: Intelligent search strategies for computer
problem solving. Addison Wesley, Reading, MA, 1984.
A detailed, mathematically precise exposition of the classic
search strategies and their application in AI. No longer in
print, but the PDF is available at the Internet Archive: http
s://archive.org/details/heuristicsintell00pear/

S. Edelkamp and S. Schroedl. Heuristic search: Theory and ap-
plications, Morgan Kaufmann, Waltham, MA, 2011.
A more recent book on heuristic search, covering similar
ground to Pearl and also other areas such as pragmatic
issues and distributed algorithms.

https://alandix.com/glossary/aibook/Heuristic evaluation
https://alandix.com/glossary/aibook/Hill climbing with backtracking
https://alandix.com/glossary/aibook/Hill climbing with backtracking
https://alandix.com/glossary/aibook/best first search
https://alandix.com/glossary/aibook/heuristic evaluation function
https://alandix.com/glossary/aibook/lower bound
https://alandix.com/glossary/aibook/A* algorithm
https://alandix.com/glossary/aibook/Forgetful hill climbing
https://alandix.com/glossary/aibook/Forgetful hill climbing
https://alandix.com/glossary/aibook/plateaux
https://alandix.com/glossary/aibook/search space
https://alandix.com/glossary/aibook/Genetic algorithms
https://alandix.com/glossary/aibook/simulated annealing
https://alandix.com/glossary/aibook/simulated annealing
https://alandix.com/glossary/aibook/constraint satisfaction
https://alandix.com/glossary/aibook/goal state
https://alandix.com/glossary/aibook/goal state
https://alandix.com/glossary/aibook/genetic algorithm
https://alandix.com/glossary/aibook/genetic algorithm
https://alandix.com/glossary/aibook/genetic algorithm
https://alandix.com/glossary/aibook/search tree
https://alandix.com/glossary/aibook/depth first search
https://archive.org/details/heuristicsintell00pear/
https://archive.org/details/heuristicsintell00pear/
https://alandix.com/glossary/aibook/heuristic search

https://taylorandfrancis.com/

II
Data and Learning

https://taylorandfrancis.com/

5 CHAP T ER

Machine Learning

5.1 OVERVIEW
In this chapter, we will see that machine learning is an
important and necessary part of artificial intelligence.
We will also discuss the general pattern of machine
learning and some of the issues that arise. Several
specific machine learning methods will be described:
deductive learning, inductive learning and explanation-
based learning. Most of the chapter will concentrate
on two specific inductive learning algorithms: the
version-space method and ID3. We will conclude with a
description of an experimental system that uses machine
learning in an intelligent database interface.

The techniques, algorithms and examples in this chap-
ter focus on more traditional symbolic machine learning,
and in this respect it is a bridge from Part I. However,
when many people hear ‘machine learning’, they now im-
mediately think of neural networks. We will deal with
neural networks and deep learning separately in Chap-
ters 6 and 8. However, they share many aspects with more
traditional machine learning techniques, and in Chap-
ter 9 we will return to some of the broader issues of ma-
chine learning.

5.2 WHY DO WE WANT MACHINE
LEARNING?

One response to the idea of artificial intelligence is to
say that computers can never think because they only
do what their programmers tell them to do. Of course,

it is not always easy to tell what a particular program
will do (!), but at least given the same inputs and condi-
tions it will do the same things – dependable if not pre-
dictable. If the program gets something right once, it will
always get it right. If it makes a mistake once, it always
makes the same mistake. In contrast, people tend to learn
from their mistakes; attempt to work out why things went
wrong; try alternatives. Also, we are able to notice simi-
larities between things and so generate new ideas about
the world we live in. An intelligence, however artificial
or alien, that did not learn would not be much of an in-
telligence. So, machine learning is a prerequisite for any
mature programme of artificial intelligence.

Of course, many practical applications of AI do not
make use of machine learning. The relevant knowledge
is built in at the start. Although perhaps fundamentally
limited, such systems are useful and do their job. How-
ever, even where we do not require a system to learn “on
the job”, machine learning has a part to play. One of the
most difficult problems in the building of expert system
is capturing the knowledge from the experts. There are
many knowledge elicitation techniques to aid this pro-
cess (see Chap. 18), but the fundamental problem re-
mains: things that are normally implicit, inside the ex-
pert’s head, must be externalised and made explicit (Fig-
ure 5.1).

Using machine learning this problem can be eased. Ex-
perts may find it hard to say what rules they use to as-
sess a situation, but they can usually tell you what factors
they take into account. A machine learning program can
take descriptions of situations couched in terms of these
factors and then infer rules that match the expert’s be-
haviour. The expert can then critique these rules and ver-
ify that they seem reasonable (it is easier to recognise cor-
rect rules than to generate them). If the rules are wrong,

DOI: 10.1201/9781003082880-7 59

https://alandix.com/glossary/aibook/expert system
https://alandix.com/glossary/aibook/knowledge elicitation
http://dx.doi.org/10.1201/9781003082880-7

60 ■ Artificial Intelligence

FIGURE 5.1 The knowledge elicitation bottleneck.

the expert may be able to suggest counter-examples that
can guide further learning (Figure 5.2).

In addition there are many situations for which there
is no expert knowledge. For example, Deep Mind used
machine learning to control plasma within the Tokamak
fusion reactor [262]. Although the scientists and engi-
neers understand the basic physics, they could not them-
selves control the flow of plasma. Here the goal of ma-
chine learning is not to capture human knowledge but
to generate new knowledge (or at least rules) based on
examples or experience.

5.3 HOW MACHINES LEARN
In previous chapters we have discussed reasoning,
knowledge representation and search. All are important
for machine learning. In addition, there are various
other factors that influence the choice and efficacy of
a learning system, for example the amount of domain
knowledge used by the system.

In this section we will look at several of these issues,
which will be important when we look at particular
learning algorithms later in this chapter. It will give
a context to these algorithms, and we shall mention
them where appropriate. We suggest that you revisit this
section after reading the rest of the chapter. We’ll start
by looking at the phases in a typical machine learning
system (Figure 5.3). The different issues will then be
discussed in relation to the data and processes involved.

5.3.1 Phases of Machine Learning

Machine learning typically follows three phases:

training – A training set of examples of correct
behaviour is analysed and some representation of
the newly learnt knowledge is stored. This is often
some form of rules.

validation – The rules are checked and, if necessary, ad-
ditional training is given. Sometimes additional test
data are used, but instead a human expert may val-
idate the rules (as in Figure 5.2), or some other au-
tomatic knowledge-based component may be used.
The role of the tester is often called the critic.

application – The rules are used in responding to some
new situation.

These phases may not be distinct. Often there is no
explicit validation phase; instead the learning algorithm
guarantees some form of correctness. Also, in some
circumstances, systems learn “on the job” – that is, the
training and application phases overlap.

Obviously the training stage is the most important. It
falls into two main types:

supervised learning – Here the training data comes
pre-labelled with some form of classification or
expected response. For example, this might be a
set of images with a tag that says if it is urban or
rural, or a collection of board position with the
best next move to play. The aim of the machine
learning algorithm in such cases is to emulate this
behaviour to assign the correct tags or decisions to
unseen inputs based on the examples.

unsupervised learning – Here the data is unlabelled
and the machine learning algorithm creates its own
labels or structure, for example clustering the data
into groups.

In this chapter most of the examples will be supervised,
but in the coming chapters we will see examples of unsu-
pervised techniques including self-organising maps and
clustering.

https://alandix.com/glossary/aibook/self-organising maps
https://alandix.com/glossary/aibook/clustering

Machine Learning ■ 61

FIGURE 5.2 Machine learning avoids the bottleneck.

Some people add a third category reinforcement
learning, which occurs when the learning has to happen
while interacting with some kind of environment: real
or virtual, such as playing a game or controlling a robot.
This is often classed as a special case of unsupervised
learning, but we shall see when we discuss reinforcement
learning in more detail in Chapter 16, it also has elements
of supervised learning.

In the rest of this section, we will look in turn at the in-
puts to training (the training set and existing background
knowledge) and the outputs (the new knowledge learnt).
First, however, we’ll look at how rote learning fits into
this picture.

5.3.2 Rote Learning and the Importance of
Generalisation

The simplest kind of learning is rote learning. In this
case examples of correct behaviour are stored, and when
a new situation is encountered, it is matched with the
learnt examples. If one of the examples matches, the rele-
vant response is given. In this kind of learning there is no
prior knowledge. Training consists simply of memorisa-
tion, and the output of training is just the stored training
set. For example, the system may be given the following
set of stimulus–response pairs:

24∘C – 75∘F
−3∘C – 26∘F
176∘F – 80∘C
17∘C – 62∘F
41∘F – 5∘C
89∘F – 32∘C
0∘C – 32∘F

From these it might be able to respond to a stimulus
“41∘F” and give the response “5∘C”. However, it would
not be able to respond to an unseen stimulus such as

“15∘C”. Rote learning is clearly a very limited form of
learning and is arguably not “real” learning at all.

Real learning involves some form of generalisation.
We would like a system to infer that when a stimulus of
the form “<a number>∘C” is received, it should mul-
tiply the number by 9/5 and add 32. Note how this is
not a simple arithmetic rule. The system would have to
learn that different formulae should be used depending
on whether the stimulus included “∘C” or “∘F”. In fact, in
most of the learning algorithms we will discuss, the rules
learnt will be symbolic rather than numeric.

However, one should not underestimate the impor-
tance of rote learning. After all, the ability to remem-
ber vast amounts of information is one of the advantages
of using a computer, and it is especially powerful when
combined with other techniques. For example, heuris-
tic evaluation functions are often expensive to compute;
during a search the same node in the search tree may be
visited several times and the heuristic evaluation waste-
fully recomputed. Where sufficient memory is available
a rote learning technique called memorising can help.
The first time a node is visited the computed value can
be remembered. When the node is revisited, this value
is used instead of recomputing the function. Thus the
search proceeds faster, and therefore more complex (and
costly) evaluation functions can be used.

5.3.3 Inputs to Training

In Figure 5.3, we identified two inputs to the training
process: the training set and existing knowledge. Most
of the learning algorithms we will describe are heavily
example based; however, pure deductive learning (Sec-
tion 5.4) uses no examples and only makes use of ex-
isting knowledge. There is a continuum (Figure 5.4) be-
tween knowledge-rich methods that use extensive do-
main knowledge and those that use only simple domain-
independent knowledge. The latter is often implicit in the

https://alandix.com/glossary/aibook/rote learning
https://alandix.com/glossary/aibook/memorising
https://alandix.com/glossary/aibook/deductive learning
https://alandix.com/glossary/aibook/domain-independent knowledge
https://alandix.com/glossary/aibook/domain-independent knowledge

62 ■ Artificial Intelligence

FIGURE 5.3 Phases of machine learning.

FIGURE 5.4 Knowledge continuum.

algorithms; for example, inductive learning is based on
the knowledge that if something happens a lot, it is likely
to be generally true.

Where examples are being used it is important to
know what the source is. The examples may be simply
measurements from the world, for example transcripts of
grandmaster chess tournaments. If so, do they represent
“typical” sets of behaviour or have they been filtered to
be “representative”? If the former is true, then we can
infer information about the relative probability from
the frequency in the training set. However, unfiltered
data may also be noisy, have errors, etc., and examples

from the world may not be complete, since infrequent
situations may simply not be in the training set.

Alternatively, the examples may have been generated
by a teacher. In this case we can assume that they are a
helpful set, covering all the important cases and includ-
ing near miss examples. Also, one can assume that the
teacher will not be deliberately ambiguous or misleading.
For example, a helpful teacher trying to teach a relation-
ship between numbers would not give the example (2, 2,
4), as this might be multiplication or addition.

Finally, the system itself may be able to generate
examples by performing experiments on the world (for
robots), asking an expert, or using an internal model of
the world.

We also have to decide on a representation for the
examples. This may be partly determined by the context,
but often we will have some choice. Often the choice
of representation embodies quite a lot of the domain
knowledge.

A common representation is as a set of attribute values.
For example, in Section 5.5.1, we will describe children’s

https://alandix.com/glossary/aibook/inductive learning

play tiles using four attributes: shape, colour, size and
material. A particular example could be: triangle, blue,
large, wood. In vision applications (see Chap. 12), the
representation is often even cruder – simply a bitmap.
On the other hand, more knowledge-rich learning often
uses more expressive descriptions of the structure of the
examples, using predicate logic or semantic networks.

5.3.4 Outputs of Training

To a large extent the outputs of learning are determined
by the application. What is it we want to do with our new
knowledge? Many machine learning systems are classi-
fiers. The examples they are given are from two or more
classes, and the purpose of learning is to determine the
common features in each class. When a new unseen ex-
ample is presented, the system then uses the common
features to determine in which class the new example be-
longs. The new knowledge is thus effectively in the form
of rules such as

if example satisfies condition
then assign it to class X

In machine learning, this job of concept classification
is often called concept learning (see Section 5.5.1). The
simplest case is when there are only two classes, of which
one is seen as the desired “concept” to be learnt and the
other is everything else. In this case we talk about positive
and negative examples of the concept. The “then” part of
the rules is then always the same and so the learnt rule is
simply a predicate describing the concept.

The form of this predicate, or of the condition part of
a more complex rule, varies between machine learning
algorithms. In some it is an arbitrary logical predicate,
but more commonly its form is much simpler. In Sec-
tion 5.5.1 we will consider predicates that are of the form

attribute1 = value1 and attribute2 = value2
and …

That is, conjunctions of simple tests on attributes. In Sec-
tion 5.5.2 more complex predicates in the form of deci-
sion trees will be considered. We will see that there is a
trade-off between the allowable set of rules and the com-
plexity of the learning process. The desire for simple rules
is determined partly by computational tractability but
also by the application of Occam’s razor – always prefer
simpler explanations: they are more likely to be right and
more likely to generalise.

Machine Learning ■ 63

Not all learning is simple classification. In applications
such as robotics one wants to learn appropriate actions.
In this case, the knowledge may be in terms of produc-
tion rules or some similar representation. More complex
rules also arise in theorem provers and planning systems.

An important consideration for both the content
and representation of learnt knowledge is the extent to
which explanation may be required for future actions.
In some cases the application is a black-box. For
example, in speech recognition, one would not ask for
an explanation of why the system recognises a particular
word or not, one just wants it to work! However, as
we shall see in Chapters 18 and 21, many applications
require that the system can give a justification for
decisions. Imagine you asked an expert system “is my
aircraft design safe” and it said “yes”. Would you be
happy? Probably not. Even worse, imagine you asked
it to generate a design – it might do a very good job,
but unless it could justify its decisions would you be
happy? Because of this, the learnt rules must often be
restricted to a form that is comprehensible to humans.
This is another reason for having a bias towards simple
rules.

5.3.5 The Training Process

As we noted, real learning involves some generalisation
from past experience and usually some coding of mem-
ories into a more compact form. Achieving this gener-
alisation requires some form of reasoning. In Chapter 3,
we discussed the difference between deductive reason-
ing and inductive reasoning. This is often used as the pri-
mary distinction between machine learning algorithms.
Deductive learning works on existing facts and knowl-
edge and deduces new knowledge from the old. In con-
trast, inductive learning uses examples and generates hy-
potheses based on similarities between them. In addi-
tion, abductive reasoning may be used and also reason-
ing by analogy (see Chap. 3).

Imagine we are analysing road accidents. One
report states that conditions were foggy, another that
visibility was poor. With no deductive reasoning it
would be impossible to see the similarity between these
cases. However, a bit of deduction based on weather
knowledge would enable us to reason that in both cases
visibility was poor. Indeed, abductive reasoning would
suggest that visibility being poor probably means that
it was foggy anyway, so the two descriptions are in
fact identical. However, using this sort of reasoning

https://alandix.com/glossary/aibook/predicate logic
https://alandix.com/glossary/aibook/semantic networks
https://alandix.com/glossary/aibook/concept learning
https://alandix.com/glossary/aibook/Occam's razor
https://alandix.com/glossary/aibook/robotics
https://alandix.com/glossary/aibook/deductive reasoning
https://alandix.com/glossary/aibook/deductive reasoning
https://alandix.com/glossary/aibook/inductive reasoning
https://alandix.com/glossary/aibook/abductive reasoning
https://alandix.com/glossary/aibook/reasoning by analogy
https://alandix.com/glossary/aibook/reasoning by analogy

64 ■ Artificial Intelligence

is expensive both during learning and because it is
dependent on having coded much of the background
knowledge. If learning is being used to reduce the costs
of knowledge elicitation, this is not acceptable. For this
reason many machine learning systems depend largely
on inductive reasoning based on simple attribute–value
examples.

One way of looking at the learning process is as
search. One has a set of examples and a set of possible
rules. The job of the learning algorithm is to find suitable
rules that are correct with respect to the examples and
existing knowledge. If the set of possible rules is finite,
one could in principle exhaustively search to find the
best rule. We will see later in this chapter that the sizes
of the search spaces make this infeasible. We could use
some of the generic search methods from Chapter 4. For
example, genetic algorithms have been used for rule
learning. In practice, the structure of rules suggests
particular forms of the algorithms. For example, the
version-space method (Section 5.5.1) can be seen as
a special case of a branch and bound search. This
exhaustive search works because the rules used by
version spaces are very limited. Where the rule set
is larger exhaustive search is not possible and the
search must be extensively heuristic driven with little
backtracking. For example, the inductive learning
algorithm ID3 discussed in Section 5.5.2 will use an
entropy-based heuristic.

5.4 DEDUCTIVE LEARNING
Deductive Learning works on existing facts and
knowledge and deduces new knowledge from the old.
For example, assume you know that Alison is taller than
Clarise and that Brian is taller than Alison. If asked
whether Brian is taller than Clarise, you can use your
knowledge to reason that he is. Now, if you remember
this new fact and are asked again, you will not have to
reason it out a second time, you will know it – you have
learnt.

Arguably, deductive learning does not generate “new”
knowledge at all, it simply memorises the logical con-
sequences of what you know already. However, by this
argument virtually all of mathematical research would
not be classed as learning “new” things. Note that,
whether or not you regard this as new knowledge, it
certainly can make a reasoning system more efficient. If
there are many rules and facts, the search process to find
out whether a given consequence is true or not can be

very extensive. Memorisng previous results can save this
time.

Of course, simple memorisation of past results would
be a very crude form of learning, and real learning also
includes generalisation. A proof system has been asked
to prove that 3 + 3 = 2 × 3. It reasons as follows:

3 + 3 = 1 × 3 + 1 × 3
(because for any number n, 1 × n = n)
= (1 + 1) × 3
(distributivity of ×)
= 2 × 3

Although this looks trivial, a real proof system might find
it quite difficult. The step that uses the fact that 3 can be
replaced by 1 × 3 is hardly an obvious one to use! Rather
than simply remembering this result, the proof system
can review the proof and try to generalise. One way to
do this is simply to attempt to replace constants in the
proof by variables. Replacing all the occurrences of “3”
by a variable a gives the following proof:

a + a = 1 × a + 1 × a
(because for any number a, 1 × a = a)
= (1 + 1) × a
(distributivity of ×)
= 2 × a

The proof did not depend on the particular value of 3;
hence the system has learnt that in general a + a = 2 ×
a. The system might try other variables. For example,
it might try replacing 2 with a variable to get 3 + 3 =
b × 3 but would discover that for this generalisation the
proof fails. Hence, by studying the way it has used par-
ticular parts of a situation, the system can learn general
rules. We will see further examples of deductive learn-
ing in Chapter 15, when we consider planning, and in
Chapter 22, in the SOAR architecture. In this chapter, we
will not look further at pure deductive learning, although
explanation-based learning (Section 5.6) and case-based
reasoning (Chap. 3) both involve elements of deductive
learning.

5.5 INDUCTIVE LEARNING
Rather than starting with existing knowledge, inductive
learning takes examples and generalises. For example,
having seen many cats, all of which have tails, one
might conclude that all cats have tails. This is of course a
potentially unsound step of reasoning, and indeed Manx

https://alandix.com/glossary/aibook/search
https://alandix.com/glossary/aibook/genetic algorithms
https://alandix.com/glossary/aibook/version-space
https://alandix.com/glossary/aibook/branch and bound search
https://alandix.com/glossary/aibook/ID3
https://alandix.com/glossary/aibook/Deductive Learning
https://alandix.com/glossary/aibook/SOAR
https://alandix.com/glossary/aibook/explanation-based learning
https://alandix.com/glossary/aibook/case-based reasoning
https://alandix.com/glossary/aibook/case-based reasoning
https://alandix.com/glossary/aibook/inductive learning
https://alandix.com/glossary/aibook/inductive learning

cats have no tails. However, it would be impossible
to function without using induction to some extent.
Indeed, in many areas it is an explicit assumption.
Geologists talk about the “principle of uniformity”
(things in the past work the same as they do now), and
cosmologists assume that the same laws of physics apply
throughout the universe. Without such assumptions it is
never possible to move beyond one’s initial knowledge –
deductive learning can go a long way (as in mathematics)
but is fundamentally limited. So, despite its potential
for error, inductive reasoning is a useful technique
and has been used as the basis of several successful
systems.

One major subclass of inductive learning is concept
learning. This takes examples of a concept, say exam-
ples of fish, and tries to build a general description of the
concept. Often the examples are described using simple
attribute–value pairs. For example, consider the fish and
non-fish in Table 5.1.

TABLE 5.1 Fish and Non-fish.
swims has fins flies has lungs is fish

herring yes yes no no
cat no no no yes
pigeon no no yes yes
flying fish yes yes yes no
otter yes no no yes
cod yes yes no no
whale yes yes no yes

There are various ways we can generalise from these
examples of fish and non-fish. The simplest description
(from the examples) is that a fish is something that does
not have lungs. No other single attribute would serve to
differentiate the fish. However, it is dangerous to opt for
too simple a classification. From the first four examples
we might have been tempted to say that a fish was some-
thing that swims, but the otter shows that this is too gen-
eral a description. Alternatively, we might use a more
specific description. A fish is something that swims, has
fins and has no lungs. However, being too specific also
has its dangers. If we had not seen the example of the
flying fish, we might have been tempted to say that a fish
also did not fly. This trade-off between learning an over-
general or overspecific concept is inherent in the prob-
lem.

Notice also the importance of the choice of attributes.
If the “has lungs” attribute were missing, it would be im-
possible to tell that a whale was not a fish.

Machine Learning ■ 65

The two inductive learning algorithms described in
detail in this section – version spaces and ID3 – are
examples of concept learning. However, inductive
learning can also be used to learn plans and heuristics.
The final part of this section will look at some of the
problems of rule induction.

5.5.1 Version Spaces

When considering the fish, we used our common sense
to find the rule from the examples. In an AI setting we
need an algorithm. This should take a set of examples
such as those above and generate a rule to classify new
unseen examples. We will look first at concept learning
using version spaces, which uses examples to home in on
a particular rule [199].

Consider again Table 5.1. Imagine we have only seen
the first four examples so far. There are many different
rules that could be used to classify the fish. A simple class
of rules are those that consist of conjunctions of tests of
attributes:

if attribute1 = value1
and attribute2 = value2 …

then is a fish

Even if we restrict ourselves to these, there are seven dif-
ferent rules that correctly classify the fish in the first four
examples:

R1. if swims = yes
then is a fish

R2. if has fins = yes
then is a fish

R3. if has lungs = no
then is a fish

R4. if swims = yes and has fins = yes
then is a fish

R5. if swims = yes and has lungs = no
then is a fish

R6. if has fins = yes and has lungs = no
then is a fish

R7. if swims = yes and has fins = yes
and has lungs = no

then is a fish

If we only had the first four examples, what rule should
we use? Notice how rules R1 and R2 are more general
than rule R4, which is in turn more general than R7. (By
more general, one means that the rule is true more often.)
One option is to choose the most specific rule that covers

https://alandix.com/glossary/aibook/concept learning
https://alandix.com/glossary/aibook/concept learning
https://alandix.com/glossary/aibook/concept learning

66 ■ Artificial Intelligence

FIGURE 5.5 Rule lattice.

all the positive examples, in this case R7. Alternatively,
we could look for the most general rule. Unfortunately,
there is no single most general rule. The three rules R1,
R2 and R3 are all “most” general in that there is no cor-
rect rule more general than them, but they are all “most”
general in different ways. Figure 5.5 shows these rules as
a lattice with the most general rules at the top and the
most specific at the bottom.

Further examples may restrict this set of possible rules
further. If one takes the next example, the otter, it swims,
but is not a fish. Therefore rule R1 can be removed from
the set of candidate rules. This gives rise to an algorithm:

1. start off with the set of all rules
2. for each positive example p

2.1. remove any rules which p doesn’t satisfy
3. for each negative example n

3.1. remove any rules which n does satisfy
4. if there are no rules left FAIL
5. when there is one rule left it is the result

The only problem with this algorithm is that you have
to keep track of all rules. If there are n attributes with m
values each, then there are (m + 1)n rules! Clearly this is
infeasible for any realistic problem.

Version spaces reduce this number by only keeping
track of the most specific and most general rules: all
the other possible rules lie somewhere between these.
Positive examples change the set of most specific rules,
forcing them to become more general in order to
include the new examples. Negative examples change
the set of the most general rules, forcing them to
become more specific in order to exclude the new
examples.

In addition, because we are looking for a single final
rule we can further prune the two sets. After a positive
example we examine the set of most general rules (G) and
remove any that are not above (more general than) any of

those in the set of most specific examples (S). Similarly,
after a negative example we can prune S to remove any
which are not below some rule in G.

An Example

Let’s see how this would work when given the examples
of tiles in Table 5.2. As a shorthand, rules will be rep-
resented by a tuple of the attributes they select. For ex-
ample, the rule “if colour = blue and material = wood”
is represented by the tuple (?,blue,?,wood). The question
marks denote attributes which the rule doesn’t test. The
most general rule is (?,?,?,?), which doesn’t care about any
of the attributes.

TABLE 5.2 Example Tiles.

shape colour size material
ex1 triangle blue large wood
ex2 square blue small wood
ex3 triangle blue small plastic
ex4 triangle green large plastic

After seeing the first example, the most specific rule is
(triangle,blue,large,wood), which only matches ex1. The
most general rule is (?,?,?,?), which matches anything.
This is because we have not seen any negative examples
yet and so cannot rule out anything. The state of the al-
gorithm can thus be summarised:

set of most specific rules (S)
= { (triangle,blue,large,wood) }

set of most general rules (G)
= { (?,?,?,?) }

The second example is negative and so the set of most
general rules must be modified to exclude it. However,
the new most general rules should not contradict the pre-
vious examples, and so only those that are more general
than all those in S are allowed. This gives rise to a new
state:

set of most specific rules (S)
= { (triangle,blue,large,wood) }

set of most general rules (G)
= { (triangle,?,?,?), (?,?,large,?),

(?,?,?,wood) }

The third example is positive. It does not satisfy (trian-
gle,blue,large,wood), so S is generalised (again consistent
with G):

set of most specific rules (S)
= { (triangle,blue,?,?) }

However, at this stage we can also use the pruning rules
to remove the second two rules from (G), as neither is
more general than (triangle,blue,?,?):

set of most general rules (G)
= { (triangle,?,?,?) }

Finally, we look at the fourth example, which is nega-
tive. It satisfies (triangle,?,?,?), so we must make G more
specific. The only rule that is more specific than (trian-
gle,?,?,?), but that is also more general than those in S, is
(triangle,blue,?,?). Thus this becomes the new G. The set
S is not changed by this new example.

set of most specific rules (S)
= { (triangle,blue,?,?) }

set of most general rules (G)
= { (triangle,blue,?,?) }

At this point S = G, and so we can finish successfully –
which is just as well as we have reached the end of our
examples!

Different Kinds of Rules – Bias

The version-space algorithm depends on being able to
generate rules that are just a little more or less specific
than a given rule. In fact, any class of rules which have a
method of making them slightly more or less specific can
be used, not just the simple conjunctions that we have
dealt with so far. So, if an attribute has values that them-
selves have some form of generalisation hierarchy, then
this can be used in the algorithm. For example, assume
the shape attribute has a hierarchy as in Figure 5.6. We
can then generalise from two rules (circle,?,small,?) (el-
lipse,?,small,?) to get (rounded?,small,?).

The rules can get even more complicated. With full
boolean predicates generalisation can be achieved by
adding disjunctions or turning constants into variables;
specialisation by adding conjunctions or turning
variables into constants. This sounds like a very general
learning mechanism – but wait. If we allow more
complicated rules, then the number of examples needed
to learn those rules increases. If we are not careful, we
end up with rules like

if new example = ex1 or new example = ex2
or …

Machine Learning ■ 67

FIGURE 5.6 Shape taxonomy.

These are not only difficult to learn but fairly useless –
rote learning again. This problem is called overfitting,
when the rules seem to reflect accidental aspects of the
training data rather than generalisable features.

A learning algorithm must have some bias – a ten-
dency to choose certain types of rules rather than oth-
ers. This reduces the set of possible rules, and in so doing
makes the learning task both tractable and useful. Re-
stricting the rules in the version-space method to con-
junctions introduced just such a bias and so enabled the
algorithm to learn. However, the downside of a bias is
that it means that some sorts of rule cannot be learnt. In
this case, we would not be able to learn rules of the form

if shape = triangle or colour = blue

Noise and Other Problems

The version-space method has several problems. It is
very sensitive to noise – if any wrong examples are given,
the algorithm will fail completely. It also demands a
complete set of examples, in the sense that there must
be exactly one rule that classifies them all. Finally, it is
not well suited to multi-way classification (e.g. sorting
animals into fish/bird/mammal). One must effectively
treat these as several yes/no distinctions.

5.5.2 Decision Trees

Decision trees are another way of representing rules. For
example, Figure 5.7 shows a decision tree for selecting all
blue triangles. Imagine a tile coming in at the top of the
tree. If it satisfies the condition at the top node, it passes
down the yes (Y) branch; if it doesn’t, it passes down the
no (N) branch. It is passed down node by node until it
comes to one of the leaves, which then classifies the tile.

Several algorithms learn by building decision trees in a
top-down fashion. The most well known is the ID3 [226]

https://alandix.com/glossary/aibook/overfitting
https://alandix.com/glossary/aibook/bias
https://alandix.com/glossary/aibook/Decision trees
https://alandix.com/glossary/aibook/ID3

68 ■ Artificial Intelligence

FIGURE 5.7 Decision tree.
FIGURE 5.9 Completed tree.

FIGURE 5.8 Starting to build a decision tree.

and its successor C4.5 [228], which use information en-
tropy measures to choose the best decision at each stage.
The example that follows uses the ID3 process.

5.5.2.1 Building a Binary Tree

Consider again the tiles in Table 5.2. We start off
with the four examples and choose some condition to
be the root of the tree, say “shape = triangle”. Three
of the tiles (ex1, ex3 and ex4) satisfy this, and one
doesn’t (ex2). The N branch has all negative examples,
and so no further action is taken on that branch.
The Y branch has a mixture of positive and negative
examples, and so the same procedure is taken recursively
(Figure 5.8).

We now choose another condition for this branch, say
“colour = blue”. The three examples are sorted by this
condition and now both branches have examples of one
type. At this point we stop and label the leaves in the ob-
vious manner (Figure 5.9).

A different choice of condition at the root would lead
to a different tree. For example, if we had instead cho-
sen “material = wood”, we would get to the stage in Fig-
ure 5.10. This time both branches have mixed examples,
and we must build subtrees at each.

FIGURE 5.10 Starting a different tree.

FIGURE 5.11 A different decision tree.

If we chose the same condition “size = large” for each
branch, we would end up with the decision tree in Fig-
ure 5.11.

Note that this not only is a different tree from Fig-
ure 5.9 but also represents a completely different rule:

if material = wood and size = large
or material ≠ wood and size ≠ large

as opposed to the original rule

if shape = triangle and colour = blue

How do we choose between these?

https://alandix.com/glossary/aibook/C4.5
https://alandix.com/glossary/aibook/information entropy
https://alandix.com/glossary/aibook/information entropy

Machine Learning ■ 69

FIGURE 5.12 Contingency tables for different choices.

Well, one way would be to find the smallest tree (or
at least one of the smallest). Unfortunately, the number
of trees is huge and so an exhaustive search would be
impractical. Instead, the algorithms are careful about the
choice of condition at each node and use a condition that
looks as though it will lead to a good tree (but might
not). This decision is usually based on the numbers of
positive and negative examples that are sent to the Y and
N branches.

In Figure 5.12 these are tabulated for the two top-level
conditions “shape = triangle” and “material = wood”. In
the first table, we see that the Y branch has two positive
examples and one negative example giving three in total.
The N branch has no positive examples and one negative
example. In comparison the “material = wood” condi-
tion is very even handed with one positive and one neg-
ative example down each branch.

Of the two, the first is a more promising candidate as it
makes the branches more uneven. Unevenness is impor-
tant because we want the final tree to be very uneven –
leaves must be either totally positive or totally negative.
Indeed, one would expect a totally irrelevant attribute to
give rise to an even split, as in the second table. Algo-
rithms use different measures of this unevenness and use
this to choose which condition to use at the node.

ID3 uses an entropy-based measure. The entropy of a
collection of probabilities pi is given by

entropy = −∑ pi log2(pi)

We calculate the entropy of each branch and then the
average entropy (weighted by the number of examples
sent down each branch). For example, take the “shape =
triangle” table. The Y branch has entropy

−[2/3 × log2(2/3) + 1/3 × log2(1/3)] = 0.918

The N branch has entropy

−[0 × log2(0) + 1 × log2(1)] = 0

The average entropy is thus

3/4 × 0.918 + 1/4 × 0 = 0.689

(NB: When calculating entropy one assumes that 0 ×
log2(0) = 0. This usually has to be treated as a special
case to avoid an overflow error when calculating log2(0).)

In contrast, the entropy of the “material = wood” de-
cision is:

2/4 × −[0.5 × log2(0.5) + 0.5 × log2(0.5)]
+2/4 × −[0.5 × log2(0.5) + 0.5 × log2(0.5)]

= − log2(0.5) = 1

Small values of entropy correspond to greatest disorder;
hence the first decision would be chosen.

5.5.2.2 More Complex Trees

The original ID3 algorithm did not use simple yes/no
conditions at nodes; instead it chose an attribute and gen-
erated a branch for each possible value of the attribute.
However, it was discovered that the entropy measure has
a bias towards attributes with large numbers of values.
Because of this, some subsequent systems used binary
conditions at the nodes (as in the above examples). How-
ever, it is also possible to modify the entropy measure to
reduce the bias. Other systems use completely different
measures of unevenness similar to the 𝜒2 statistical test.
In fact, the performance of decision tree inductive learn-
ing has been found to be remarkably independent of the
actual choice of measure.

As with the version-space method, decision tree build-
ing is susceptible to noise. If wrongly classified examples
are given in training, then the tree will have spurious
branches and leaves to classify these. Two methods have
been proposed to deal with this. The first is to stop the
tree growing when no condition yields a suitable level of
unevenness. The alternative is to grow a large tree that
completely classifies the training set, and then to prune
the tree, removing nodes that appear to be spurious. The
second option has several advantages, as it allows one to
use properties of the whole tree to assess a suitable cut-off
point, and is the preferred option in most modern tree-
building systems.

The original ID3 algorithm only allowed splits based
on attribute values. Subsequent algorithms have used a
variety of conditions at the nodes, including tests of nu-
merical attributes and set membership tests for attribute

https://alandix.com/glossary/aibook/ID3
https://alandix.com/glossary/aibook/entropy
https://alandix.com/glossary/aibook/ID3
https://alandix.com/glossary/aibook/pruning

70 ■ Artificial Intelligence

values. However, as the number of possible conditions
increases, one again begins to hit computational prob-
lems in choosing even a single node condition. Set mem-
bership tests are particularly bad, as an attribute with m
values gives rise to 2m−1 different possible set tests! The
Query-by-Browsing example later in this chapter allows
comparisons between attributes, which again increases
the number of potential conditions.

While Quinlan’s C4.5 algorithm and its variants are
widely used, there are also alternative ways to create de-
cision trees. For example, the decision tree can be con-
structed using a genetic algorithm rather than top-down,
especially useful if the choices at each stage become com-
plex. An increasingly popular alternative is forms of ran-
dom decision forests [31, 134] where large numbers of
trees are constructed using random subsets of attributes
and the results combined.

5.5.3 Rule Induction and Credit Assignment

In both the version-space method and decision tree
induction, the rules that are learnt are of the form “if
condition then classify”. The training can see whether
a rule works simply by seeing whether the response it
gives matches the desired response – that is, it classifies
correctly. However, in more complicated domains it is
not so easy to see whether a particular rule is correct.
A classic example is pole balancing (Figure 5.13). The
task is to move the railway carriage so that the upright
pole does not fall over and so that the carriage stays
between the buffers. At each moment, the system must
choose whether to move the carriage to the right or left
depending on its position and the position and velocity
of the pole. However, if the pole falls over, which rule
is held “responsible” – the last rule applied? In fact, in
such tasks the mistake often happened much earlier,
and subsequent rules might be good ones.

This problem is called the credit assignment problem.
It arises in many domains. For example, in computer
chess – if the computer won, which moves were the
good ones? If it lost, which should be blamed? A
human expert might be needed at this stage to analyse
the game in order to tell the computer what went
wrong.

There is no simple solution to this problem. The hu-
man expert will be useful in some circumstances, but of-
ten the nature of the problem makes this undesirable or
impractical – for example a human expert would find it

FIGURE 5.13 Pole balancing.

hard to assign credit in the pole-balancing problem. If
the problem domain is internal to the computer, it may
be able to backtrack to each decision point and try alter-
natives. However, this approach will often be computa-
tionally infeasible. Sometimes there are special solutions
dependent on the domain. For example, LEX, a theorem-
proving program, searches for minimal proofs of mathe-
matical propositions. All the heuristics that give rise to a
minimal proof are deemed “good” – LEX assigns credit
uniformly.

Humans can be equally bad at this, and one source of
superstition is when we link an irrelevant thing we have
done to a subsequent good or bad outcome. However,
we do have means that help us including the way that
events that are unusual or have obvious connection to
the outcomes are more salient and more likely to be
included in both conscious or unconscious learning.
We will return to the lessons of human cognition for AI
in Chapter 22 including the way regret can help focus
learning.

5.6 EXPLANATION-BASED LEARNING
Algorithms for inductive learning usually require a very
large number of examples in order to ensure that the
rules learnt are reliable. Explanation-based learning ad-
dresses this problem by taking a single example and at-
tempting to use detailed domain knowledge in order to
explain the example. Those attributes which are required
in the explanation are thus taken as defining the concept.

Imagine you are shown a hammer for the first time.
You notice that it has a long wooden handle with a heavy
metal bit at the end. The metal end has one flat surface
and one round one. You are told that the purpose of a
hammer is to knock in nails. You explain the example as
follows. The handle is there so that it can be held in the

https://alandix.com/glossary/aibook/Query-by-Browsing
https://alandix.com/glossary/aibook/random decision forests
https://alandix.com/glossary/aibook/random decision forests
https://alandix.com/glossary/aibook/pole balancing
https://alandix.com/glossary/aibook/credit assignment problem
https://alandix.com/glossary/aibook/computer chess
https://alandix.com/glossary/aibook/computer chess
https://alandix.com/glossary/aibook/LEX
https://alandix.com/glossary/aibook/salient
https://alandix.com/glossary/aibook/regret

hand. It is long so that the head can be swung at speed
to hit the nail. One surface of the hammer must be flat to
hit the nail with. So, the essential features extracted are: a
long handle of a substance that is easy to hold, and a head
with at least one flat surface, made of a substance hard
enough to hit nails without damage. A couple of years
ago, one of the authors bought a tool in Finland. It was
made of steel with rubber covering the handle. The head
had one flat surface and one flat sharp edge (for cutting
wood, a form of adze). Despite the strange shape and not
having a wooden handle it is recognisably a hammer.

Notice how explanation-based learning makes up for
the small number (one!) of examples by using extensive
domain knowledge: how people hold things; the hard-
ness of nails; the way long handles can allow one to swing
the end at speed. If the explanation is complete, then
one can guarantee that the description is correct (or at
least not overinclusive). Of course, with all that domain
knowledge, a machine could, in theory, generate a design
for a tool to knock in nails without ever seeing an ex-
ample of a hammer. However, this suffers both from the
search cost problem and because the concepts deduced
in isolation may not correspond to those used by people
(but it might be an interesting tool!).

In addition, explanations may use reasoning steps that
are not sound. Where gaps are found in the explanation
an EBL system may use abduction or induction to fill
them. Both forms of reasoning are made more reliable
by being part of an explanation.

Consider abduction first. Imagine one knows that hit-
ting a nail with a large object will knock it into wood.
If we have not been shown the hammer in use, merely
told its function, we will have to use an abductive step to
reason that the heavy metal head is used to knock in the
nail. However, the match between features of the exam-
ple and the possible cause makes it far more likely that
the abductive step is correct than if we looked at causes
in general (e.g. that the nail is driven into the wood by
drilling a hole and then pushing it gently home).

Similarly, the inductive steps can be made with greater
certainty if they are part of an explanation. Often sev-
eral examples with very different attributes require the
same assumption in order to explain them. One may thus
make the inductive inference that this assumption is true
in general.

Even if no non-deductive steps are made, explanation-
based learning gives an important boost to deductive
learning – it suggests useful things to learn. This is

Machine Learning ■ 71

especially true if the explanation is based on a low-level,
perhaps physical, model. The process of looking at
examples of phenomena and then explaining them can
turn this physical knowledge into higher-level heuristics.
For example, given the example of someone slipping on
ice, an explanation based on physical knowledge could
deduce that the pressure of the person melted the ice
and that the presence of the resulting thin layer of water
allowed the foot to move relative to the ice. An analysis
of this explanation would reveal, among other things,
that thin layers of fluid allow things to move more easily
– the principle of lubrication.

5.7 EXAMPLE: QUERY-BY-BROWSING
As an example of the use of machine learning techniques
we will look briefly at Query-by-Browsing (QbB). This is
an experimental “intelligent” interface for database that
uses an extension of ID3 to generate queries for the user.
This means that the user need only be able to recognise
the right query, not actually produce it.

5.7.1 What the User Sees

Initially Query-by-Browsing shows the user a list of all
the records in the database. The user browses through the
list, marking each record either with a tick if it is wanted
or a cross if it is not (see Figure 5.14). After a while the
system guesses what sort of records the user wants, high-
lights them and generates a query (in SQL or an appro-
priate query method). The query is shown in a separate
window so that the user can use the combination of the
selected records and the textual form of the query to de-
cide whether it is right (Figure 5.15).

Whereas so-called Query-by-Example works by mak-
ing the user design a sort of answer template, Query-by-
Browsing is really “by example” – the user works from
examples of the desired output.

5.7.2 How It Works

The form of examples used by ID3, attribute–value
tuples, is almost exactly the same as that of the records
found in a relational database. It is thus an easy job
to take the positive and negative examples of records
selected by the user and feed them into the ID3
algorithm. The output of ID3, a decision tree, is also
reasonably easy to translate into a standard database
query.

https://alandix.com/glossary/aibook/EBL
https://alandix.com/glossary/aibook/Query-by-Browsing
https://alandix.com/glossary/aibook/QbB
https://alandix.com/glossary/aibook/database
https://alandix.com/glossary/aibook/ID3
https://alandix.com/glossary/aibook/ID3
https://alandix.com/glossary/aibook/relational database

72 ■ Artificial Intelligence

FIGURE 5.14 Query-by-Browsing – user ticks interesting records.

FIGURE 5.15 Query-by-Browsing – system highlights inferred selection.

In fact, QbB uses a variant of the standard ID3
algorithm in that it also allows branches based on
cross-attribute tests (e.g. “overdraft > overdraft-limit”)
as these are deemed important for effective queries.
Otherwise the implementation of the basic system is
really as simple as it sounds.

5.7.3 Problems

Even a very simple implementation of QbB works very
well – when the system gets it right. When it doesn’t,
things are rather more complicated. First of all the
algorithm produces some decision tree which correctly
classifies the records. However, there are typically many
such trees. Sometimes the system produces a “sensible”
answer, sometimes not. Although the answers are always
“correct”, they are not always the sort a reasonable
human expert would produce. When QbB gets the

wrong answer, the user can tell it and give more
examples to help clarify the desired result. At some
point the system generates a new query. However, the
algorithm used starts from scratch each time, and so
there may be no obvious relationship between the first
attempt and subsequent guesses. Although the earlier
queries were wrong, the resulting behaviour can appear
odd and reduce one’s confidence in the system.

The above problems can be tackled by modifying the
algorithm in various ways, but the lesson they give us is
that applications of machine learning must do more than
work, they must work in a way that is comprehensible
to those who use them. Sometimes the machine intel-
ligence can be hidden away in a “black-box”, where the
mechanisms are invisible and hence don’t matter, but
more often than not someone will have to understand
what is going on. This is a point we shall return to in
Chapter 21.

https://alandix.com/glossary/aibook/QbB
https://alandix.com/glossary/aibook/decision tree

5.8 SUMMARY
In this chapter, we have discussed the importance of
machine learning, its general pattern and some of the
issues that arise. Several specific machine learning
methods have been described, including deductive
learning, inductive learning and explanation-based
learning. In particular we have examined two inductive
learning algorithms: the version-space method and
ID3. We ended the chapter with a discussion of an
experimental system that uses machine learning in an
intelligent database interface.

5.1 Apply the version spaces algorithm in Sec-
tion 5.5.1 to the ‘Fish and non-fish’ training data
in Table 5.1.

5.2 Consider the following vignette.
“The cook book said to use a whisk to beat egg
white in a bowl until it is fluffy. I didn’t have whisk,
but the book had a picture of one alongside other
tools. I could see it was similar in length to table
cutlery. One end is tightly wrapped in wire, and
looked easiest to hold. The other has wire loops
with gaps. I guessed that you hold the tight end
and then use your wrist to move the end with the
loops quickly so that it mixes the egg white and
gets air into it. Although I hadn’t got a whisk, a
fork looks a similar size and has gaps between the
prongs, so I used that instead.”
Identify the explanation-based learning applied
in the vignette and the sources of background
knowledge being applied.

Machine Learning ■ 73

5.3 In this exercise you will build decision tables using
the ‘Fish and non-fish’ training data in Table 5.1.

a. First use the different column criteria in the
order they appear: ‘swims’ for the top level de-
cision, ‘has fins’ for the next, etc.

b. Now calculate the contingency table for each
column and use this to choose the top-level
decision.

c. Which gives the better tree?

FURTHER READING

J. D. Kelleher, B. Mac Namee, and A. D’arcy. Fundamentals
of machine learning for predictive data analytics: Algo-
rithms, worked examples, and case studies. Cambridge,
MA: MIT Press, 2020.
A structured overview of machine learning techniques, il-
lustrated throughout with concrete examples and cases
studies.

Y. Anzai. Pattern recognition and machine learning. Academic
Press San Diego, 1992.
Classic book that deals in detail with many of the algo-
rithms discussed here including concept learning and de-
cision trees.

V. Maini and S. Sabri. Machine learning for humans, 2017.
https://everythingcomputerscience.com/books/Machin
e%20Learning%20for%20Humans.pdf
A short (approx. 100 pages) overview of machine learning.
It is not as detailed as the other ML books but is very ac-
cessible and free to download.

https://alandix.com/glossary/aibook/deductive learning
https://alandix.com/glossary/aibook/deductive learning
https://alandix.com/glossary/aibook/inductive learning
https://alandix.com/glossary/aibook/explanation-based learning
https://alandix.com/glossary/aibook/explanation-based learning
https://alandix.com/glossary/aibook/version-space
https://alandix.com/glossary/aibook/ID3
https://alandix.com/glossary/aibook/version spaces
https://alandix.com/glossary/aibook/explanation-based learning
https://alandix.com/glossary/aibook/decision tables
https://alandix.com/glossary/aibook/contingency table
https://everythingcomputerscience.com/books/Machine%20Learning%20for%20Humans.pdf
https://everythingcomputerscience.com/books/Machine%20Learning%20for%20Humans.pdf

6 CHAP T ER

Neural Networks

6.1 OVERVIEW
The earliest forms of AI focused on higher level human
thinking, such as problem solving and tasks such as chess
playing or mathematical proofs, which were thought to
embody the highest forms of human intelligence. Some
would still reserve the term AI for this kind of system.
However, from the late 1980s and early 1990s a new form
of AI took shape, based on a connectionist model of cog-
nition and known as neural networks. These are now so
common that for many people they are the first thought
when the term “AI” is mentioned.

Rather than attempting to model the cognitive archi-
tecture and processing of the human mind, these systems
use the physical architecture of the brain as inspiration.
Supporters of this approach argue that we do not under-
stand enough about cognitive processes to model them
effectively. However, we do know how the brain oper-
ates at this lower, physical level. The idea is that if we
can simulate the way the human brain operates, we may
achieve some of its power in complex problem solving.
Whether or not they faithfully emulate the way the brain
actually works, neural nets have certainly proved effec-
tive in practical applications.

There are many kinds of neural network. In this chap-
ter we will consider four early models: the multi-layer
perceptron, associative memory, Boltzmann machines
and Kohonen’s self-organising network. These form the
basic units of more complex networks. In Chapter 8 we
will look at deep learning, which has, in large part, been

the technology which has established the idea of AI as an
almost universal solution.

6.2 WHY USE NEURAL NETWORKS?
The brain consists of billions of small, basic processing
units, called neurones. Each is connected to thousands of
others, forming a rich network. The basic operations per-
formed by each neurone are simple: summing the inputs
received in some way and “reacting” if these exceed a cer-
tain level. The connections between neurons can adapt to
reinforce those that are successful and to degrade those
that are not. The power of the brain, therefore, is not in
complex processing units but in the parallel operation of
billions of simple units and the ability to adapt the config-
uration of these. Neural networks attempt to model this
brain architecture, although current networks comprise
hundreds rather than billions of neurons.

Connectionist models account for aspects of human
thinking such as parallelism, the ability to do more than
one thing at once, and graceful degradation, where the
mind is able to operate even if impaired by fatigue or
damage. Like the brain, a neural network consists of a
network of simple processing units, all interconnected.
Learning occurs through changes in the connections,
and the configuration of connections constitutes the
knowledge of the system. Because this knowledge is
distributed among the units, the network is fault tolerant
and performance degrades only gradually with damage.

6.3 THE PERCEPTRON
The roots of neural networks date back to 1960s when
early neuroscience was beginning to piece together
the behaviour of neurons and realise that they had
parallels with electronic computers [112]. This lead
to the idea of a perceptron (a single artificial neuron)

DOI: 10.1201/9781003082880-8 74

https://alandix.com/glossary/aibook/chess
https://alandix.com/glossary/aibook/human intelligence
https://alandix.com/glossary/aibook/connectionist model of cognition
https://alandix.com/glossary/aibook/connectionist model of cognition
https://alandix.com/glossary/aibook/cognitive architecture
https://alandix.com/glossary/aibook/cognitive architecture
https://alandix.com/glossary/aibook/brain architecture
https://alandix.com/glossary/aibook/multi-layer perceptron
https://alandix.com/glossary/aibook/multi-layer perceptron
https://alandix.com/glossary/aibook/associative memory
https://alandix.com/glossary/aibook/Boltzmann machines
https://alandix.com/glossary/aibook/self-organising network
https://alandix.com/glossary/aibook/neurones
https://alandix.com/glossary/aibook/neurone
https://alandix.com/glossary/aibook/brain architecture
https://alandix.com/glossary/aibook/Connectionist models
https://alandix.com/glossary/aibook/parallelism
https://alandix.com/glossary/aibook/graceful degradation
https://alandix.com/glossary/aibook/fault tolerant
https://alandix.com/glossary/aibook/perceptron
https://alandix.com/glossary/aibook/neuron
http://dx.doi.org/10.1201/9781003082880-8

Neural Networks ■ 75

as in Figure 6.1 [198]. Each input is multiplied by the
weight on its connection, which is set randomly to start
with. The weighted inputs are summed by the neuron
and compared with a threshold value. The simplest
thresholding function is the step function where the
response is “on” if the threshold is exceeded and “off”
otherwise. The perceptron learns by adjusting the
weights to reinforce a correct decision and discourage
an incorrect one.

However, the single perceptron has major limitations
and can only solve very simple problems. To illustrate
this, imagine you have a group of dogs, some of which
work as rescue dogs, some as sheep dogs. Your job
is to assign them to the correct “class”. Thinking
about the characteristics of these two groups, you may
decide that weight and speed are suitable measures
to distinguish them, given that rescue dogs, often St
Bernards and Newfoundlands, tend to be larger and
slower than sheep dogs (assume that you do not have
information about the dogs’ breeds). You could plot
the weight and speed of each dog on a graph as in
Figure 6.2.

Looking at this graph, you can see two definite clusters
(which you assume represent your two classes). You can
in fact draw a straight line between these clusters and
say that any point on one side of the line represents a
sheep dog and every point on the other a rescue dog (as
in Figure 6.3). The problem is linearly separable (see also
Chap 7).

Unfortunately life is rarely as simple as that. In reality
our pattern space is unlikely to be so neat and ordered.
We may find when we ask our dogs’ owners to identify
their dogs’ occupations that some of those we identified
as sheep dogs are in fact rescue dogs (perhaps search and
rescue collies). Similarly, some we thought were rescue
dogs may in fact work as flock protection sheep dogs and
so be on the larger side. So our graph may really look like
Figure 6.4.

It is no longer possible to draw a straight line between
the two groups; the problem has become linearly insepa-
rable. Our simple perceptron can solve problems that are
linearly separable but not those which are linearly insep-
arable, by far the more significant group.

6.3.1 The XOR Problem

One problem that is linearly inseparable is the exclusive
OR or XOR function. Given two inputs (X and Y), which

can be true or false, the XOR function returns true if
either of the inputs is true, but false if both are true or
both are false.

X Y Output
True True False
True False True
False True True
False False False

If we plot this on a graph, we will quickly see that it is lin-
early inseparable. In the graph in Figure 6.5 we represent
true as 1 and false as 0.

Because this captures such a basic limitation of the
perceptron, the so-called ‘XOR problem’ stalled further
work on artificial neurons as a computational mecha-
nism for many years.

6.4 THE MULTI-LAYER PERCEPTRON
The renaissance of neural networks came more than
20 years later in the 1980s with the development of the
multi-layer perceptron [186] and the backpropagation
learning algorithm.

The solution is two-fold: (i) link perceptrons together
in layers so that different units can solve small parts of
the problem, and (ii) combine the results and use a non-
linear thresholding function where the neuron’s value is
not just 1 or 0 but can take values within a range. The
resulting model is the multi-layer perceptron.

The standard multi-layer perceptron model has three
layers: an input layer, an output layer and a single hidden
layer that is not directly connected to inputs or outputs
(see Figure 6.6). In the simplest case every input node is
connected to every hidden node, and every hidden node
is connected to every output node (fully connected), but
there are alternatives with sparse connections.

The output and hidden layer units act like perceptrons
(but with a new thresholding function); the input layer
distributes the inputs through the network and so does
not threshold. This implementation is able to solve lin-
early inseparable problems.

Crucially a multi-layer perceptron can solve the XOR
problem. A simple network which does this is shown in
Figure 6.7. It has two input units (for the two inputs X
and Y) and one output unit (the output is either 0 or 1).
The network also has two hidden units. Work through
the network by hand and convince yourself that it does
indeed solve the XOR problem (in this case the weights
are multiplicative and the threshold function is a simple

https://alandix.com/glossary/aibook/neuron
https://alandix.com/glossary/aibook/threshold
https://alandix.com/glossary/aibook/thresholding function
https://alandix.com/glossary/aibook/threshold
https://alandix.com/glossary/aibook/perceptron
https://alandix.com/glossary/aibook/perceptron
https://alandix.com/glossary/aibook/rescue dogs
https://alandix.com/glossary/aibook/sheep dogs
https://alandix.com/glossary/aibook/clusters
https://alandix.com/glossary/aibook/clusters
https://alandix.com/glossary/aibook/linearly separable
https://alandix.com/glossary/aibook/sheep dogs
https://alandix.com/glossary/aibook/rescue dogs
https://alandix.com/glossary/aibook/linearly inseparable
https://alandix.com/glossary/aibook/linearly inseparable
https://alandix.com/glossary/aibook/perceptron
https://alandix.com/glossary/aibook/linearly separable
https://alandix.com/glossary/aibook/linearly inseparable
https://alandix.com/glossary/aibook/linearly inseparable
https://alandix.com/glossary/aibook/linearly inseparable
https://alandix.com/glossary/aibook/exclusive OR problem
https://alandix.com/glossary/aibook/exclusive OR problem
https://alandix.com/glossary/aibook/XOR problem
https://alandix.com/glossary/aibook/linearly inseparable
https://alandix.com/glossary/aibook/linearly inseparable
https://alandix.com/glossary/aibook/perceptron
https://alandix.com/glossary/aibook/XOR problem
https://alandix.com/glossary/aibook/multi-layer perceptron
https://alandix.com/glossary/aibook/backpropagation
https://alandix.com/glossary/aibook/perceptrons
https://alandix.com/glossary/aibook/thresholding function
https://alandix.com/glossary/aibook/multi-layer perceptron
https://alandix.com/glossary/aibook/multi-layer perceptron
https://alandix.com/glossary/aibook/fully connected
https://alandix.com/glossary/aibook/sparse connections!neural network
https://alandix.com/glossary/aibook/perceptrons
https://alandix.com/glossary/aibook/thresholding function
https://alandix.com/glossary/aibook/threshold
https://alandix.com/glossary/aibook/linearly inseparable
https://alandix.com/glossary/aibook/linearly inseparable
https://alandix.com/glossary/aibook/multi-layer perceptron
https://alandix.com/glossary/aibook/XOR problem
https://alandix.com/glossary/aibook/XOR problem
https://alandix.com/glossary/aibook/XOR problem
https://alandix.com/glossary/aibook/threshold function

76 ■ Artificial Intelligence

FIGURE 6.1 A single perceptron.

FIGURE 6.2 Sheep dogs or rescue dogs?

step function – if the sum is greater than the threshold
output 1, otherwise output 0).

An early application was NETtalk [251] which used
a multi-layer perceptron to pronounce English text. The
network had 203 input units, 80 hidden units and 26 out-
put units. The output units represented phonemes, the
basic sound unit of the language. The network was pre-
sented with text in blocks of seven letters and learnt to
pronounce the middle letter. It used the surrounding let-
ters as context to distinguish between different sounds
for the same letter. During the training phase the system
appeared to mimic the speech sounds of young children.
When the weights are random, the sounds are mean-
ingless babble. As the network learnt it first produced
the main sounds of English, finally producing intelligi-
ble speech. Listening to a tape recording of NETtalk in
training is not unlike listening to a child learning to talk
– speeded up of course!

In some ways modern language models, such as
OpenAI’s GPT-3 [34], are merely bigger versions of this,

albeit vastly larger both in numbers of network units
(175 billion parameters for GPT-3 compared with about
20,000 for NETtalk). However, the crucial difference is
that language models now include many hidden layers
(96 for GPT-3 compared with a single hidden layer);
that is they are deep neural networks.

6.5 BACKPROPAGATION
We said there were two aspects that enabled the multi-
layer perceptron to work effectively. The first was the hid-
den layer(s) that enabled more complex problems to be
solved. The other was the non-linear threshold function,
this enabled the creation of an effective learning algorithm
– backpropagation (often abbreviated as backprop).

Figure 6.8 shows on the left a simple step threshold
function; if the input is below a certain value, it is zero,
if it is higher, it is one. On the right is a sigmoid activa-
tion function that rises smoothly from zero to one, more
steeply towards the centre, but without any discontinu-
ous steps. The term ‘sigmoid’ comes because it is vaguely
like a squashed ‘S’.

This particular sigmoid is a logistic function, given by
the equation:

1S(x) = 1 + e−x

However, there are other variants. They are usually ro-
tationally symmetric S(x) = −S(−x) but critically have
the following properties:

monotonic – rise from a lower to an upper bound, for
neural networks usually zero to one.

asymptotic – become flat for large positive or negative
inputs. This means that even quite substantial

https://alandix.com/glossary/aibook/threshold
https://alandix.com/glossary/aibook/NETtalk
https://alandix.com/glossary/aibook/multi-layer perceptron
https://alandix.com/glossary/aibook/training phase
https://alandix.com/glossary/aibook/NETtalk
https://alandix.com/glossary/aibook/OpenAI
https://alandix.com/glossary/aibook/GPT-3
https://alandix.com/glossary/aibook/GPT-3
https://alandix.com/glossary/aibook/NETtalk
https://alandix.com/glossary/aibook/GPT-3
https://alandix.com/glossary/aibook/deep neural networks
https://alandix.com/glossary/aibook/multi-layer perceptron
https://alandix.com/glossary/aibook/multi-layer perceptron
https://alandix.com/glossary/aibook/threshold function
https://alandix.com/glossary/aibook/backpropagation
https://alandix.com/glossary/aibook/backprop
https://alandix.com/glossary/aibook/threshold function
https://alandix.com/glossary/aibook/threshold function
https://alandix.com/glossary/aibook/sigmoid activation function
https://alandix.com/glossary/aibook/sigmoid activation function
https://alandix.com/glossary/aibook/sigmoid
https://alandix.com/glossary/aibook/sigmoid
https://alandix.com/glossary/aibook/logistic function
https://alandix.com/glossary/aibook/upper bound

Neural Networks ■ 77

FIGURE 6.3 A linearly separable problem.

FIGURE 6.4 The actual pattern space.

FIGURE 6.5 XOR problem (diagram after Beale & Jackson (1990)).

78 ■ Artificial Intelligence

FIGURE 6.6 A multi-layer perceptron architecture.

FIGURE 6.7 A simple multi-layer perceptron to solve the
XOR problem.

changes in the inputs make little difference when
they are at one or other extreme.

linear centre – have a steep but near-linear region
towards the centre, creating a ‘soft’ threshold. In
this region changes in the input make proportionate
differences to the output.

continuity – have no sharp step changes.

Backpropagation is a supervised learning algorithm,
which uses these properties to train the network given
examples of input and desired outputs.

6.5.1 Basic Principle

Initially the weights are randomly assigned and the
network is trained through repeated presentations of
expected input and output. It learns by adapting the
weights on the inputs to reinforce connections that

result in the correct output, until all the outputs are
correct. The weights then remain stable, and the network
is able to work on unseen input.

Each time an example input–output pair is presented
to the network, the algorithm compares the actual
output of the network from the given inputs with the
desired output and calculates the difference (the error
or delta). This says how much we’d have liked each
output node to have been different and thus gives the
information to start to change the weights. This is fairly
straightforward for the final output layer but more
complicated for hidden layers. To make this tractable
backpropagation first works out the weight changes
needed at the output layer but also calculates how the
outputs of the layer below should change. The process is
then repeated for each layer, at each stage propagating
the error and desired change backward through the
network.

Note that backpropagation is a form of hill climbing
algorithm where one is trying to make small adjustments
in the best direction to improve the results (get higher on
the hill).

6.5.2 Backprop for a Single Layer Network

Let’s look first at a single node with weights Wk, inputs
Ik and desired output Target. The difference between the
desired and actual output (the error or delta) is

𝛿 = Target − S(∑ WkIk)
Ideally we would like 𝛿 to be zero, and in order to make
it smaller we adjust each of the weights a small amount
Ŵ k to reduce it. However, given the sigmoid activation
function S is flatter at the extremes, we need to make

https://alandix.com/glossary/aibook/threshold
https://alandix.com/glossary/aibook/Backpropagation
https://alandix.com/glossary/aibook/supervised learning
https://alandix.com/glossary/aibook/delta
https://alandix.com/glossary/aibook/backpropagation
https://alandix.com/glossary/aibook/backpropagation
https://alandix.com/glossary/aibook/hill climbing algorithm
https://alandix.com/glossary/aibook/hill climbing algorithm
https://alandix.com/glossary/aibook/delta
https://alandix.com/glossary/aibook/sigmoid activation function
https://alandix.com/glossary/aibook/sigmoid activation function

Neural Networks ■ 79

FIGURE 6.8 Different threshold functions.

bigger adjustments at those ends. To do this we calculate
the slope (in mathematical terms differential) of S and
then use this to work out how much each weight should
change:

𝜆 × 𝛿 Ŵ k =
slope × Ik

Note that the change is bigger if 𝛿 is larger, because we
want to make a bigger change in the output. However,
it is smaller when the slope is larger, that is when we
are close to the threshold and smaller changes make
a greater difference. The change in the weight is also
smaller when its associated input, Ik, is larger as this
again means small differences in the weight have a larger
impact.

The value 𝜆 is known as a relaxation term. It is usu-
ally quite small and determines how fast we change the
weights. If we change them too slowly, we need to present
the same examples many, many times before the network
learns. However, if we set it too large, there is a danger
that the weights may overshoot and the network bounce
around and never settle down (converge) to a stable set
of weights.

For a single-layer neural network this can be applied
to every node.

6.5.3 Backprop for hidden layers

The above method works for the output layer, but what
about the hidden layer?

Note that the single-layer step worked by comparing
the desired output with the actual output to give a desired
change. The outputs for the hidden layer are the inputs to
the output layer.

We can use the same method that we used for calcu-
lating the change in the weights to see how much we’d

like the inputs to the output layer to change in order to
reduce the final error.

𝛿 Ik̂ =
slope × Wk

Of course a single hidden layer node may be the
input to many (or all) of the output layers, some of
which might like it larger, some smaller. The above
values are summed for the node to give an overall
desired direction of travel (using the hill-climbing
analogy) for the hidden layer’s output. This is then used
as the ‘delta’ value for the hidden nodes.

If there are multiple hidden layers, this process can be
repeated again. However, for early networks it was rare
to have more than one hidden layer, unless the other lay-
ers used different forms of algorithm for training. One
reason for this is obvious, each layer adds more nodes
and more weights, thus increasing computational cost.
More critically, as the layers get ‘further’ from the input
and output, they are typically less stable and less likely to
converge to a final value. This is partly because the hid-
den layers are often underdetermined, there are many
different ways in which the hidden layer weights could
be assigned that give equally good answers; in particular
for a fully connected network any shuffling of the hidden
layer nodes is as good as any other. One can think of this a
bit like moving furniture with a friend. When you move
the bookshelf, it may be heavy but is easy to manoeu-
vre, but when moving the mattress, it is all floppy in the
middle.

It is possible to adjust for this by using a very small
value of the relaxation constant, or vary this dependent
on the layer or dynamically during training. However,
this then means you need many more presentations of
the training data or very big data sets.

https://alandix.com/glossary/aibook/differential (calculus)
https://alandix.com/glossary/aibook/threshold
https://alandix.com/glossary/aibook/relaxation term
https://alandix.com/glossary/aibook/converge
https://alandix.com/glossary/aibook/hill-climbing
https://alandix.com/glossary/aibook/analogy
https://alandix.com/glossary/aibook/delta
https://alandix.com/glossary/aibook/converge
https://alandix.com/glossary/aibook/underdetermined
https://alandix.com/glossary/aibook/fully connected
https://alandix.com/glossary/aibook/big data

80 ■ Artificial Intelligence

6.6 ASSOCIATIVE MEMORIES
Association of ideas is a familiar concept to us. We may
associate a particular piece of music with a person or
event, or we may associate a person with an activity.
There are many examples in everyday life where we
use association to remember things. Indeed, it is
fundamental to models of human memory such as
semantic networks.

An associative memory is a neural network that mod-
els the associative nature of human memory, by which
a particular stimulus triggers a particular response [4,
155]. In the associative memory model, an input is stored
with the required output, in such a way that when this
input (or an incomplete version of it) is presented to the
memory, the appropriate output is recovered.

There are two types of associative memory: heteroas-
sociative memory, where input is associated with a
different output pattern; and autoassociative memory,
where the input is associated with itself.

In a heteroassociative memory, the input pattern is
associated with a different output pattern, for example
a class identifier. In this case, when the input pattern is
encountered again, the class with which it is associated is
returned, allowing the network to perform effectively in
classification problems.

An autoassociative memory can be used to filter
and “clean up” distortion in images, the latter for
classification problems. In an autoassociative memory,
the network is trained with the same pattern as both
input and expected output. When this pattern (or a
partial version of it) is presented to the memory, the
stored pattern is retrieved. This allows the memory to
deal with noise and distortion in patterns, as in Figure 6.9
below.

In more recent literature, especially concerning
deep neural networks, an autoassociative memory is
also called an autoencoder and these have become a
central part of several practical technologies. If the
autoencoder has some sort of layer or set of neurons
that is smaller than the input space, then it can be used
as a form of compressed representation of the input.
This is often useful as an input to other layers of a
network.

The ability to regenerate images from partial images is
also a key part of deep fakes, both in the negative sense of
fraudulent or exploitative imagery (see Chapter 20), but
also legitimate uses in entertainment to allow dead actors
to be ‘brought back to life’ in new films.

6.6.1 Boltzmann Machines

Boltzmann machines are an early form of neural net-
work that is often used as an autoencoder [1]. They are
important analytically because of their strong mathe-
matical basis related to the spin glass models in physics,
theoretically because of their mapping to plausible brain
mechanisms, and practically because they are often used
as a first stage of multi-layer neural networks.

In a Boltzmann machine nodes are normally binary
valued (0/1) and are split into two classes:

visible – this includes both inputs and outputs, or in
autoencoder mode, an image to be remembered.

hidden – used as part of the process of reconstructing
the visible nodes during recall.

In the simplest Boltzmann machine, the visible and hid-
den nodes are all fully connected to each other (see Fig-
ure 6.10), not arranged in layers like a multi-layer neural
network. The connections each carry a weight, and this is
effectively the memory of the neural network. These are
initially randomly assigned.

Training consists of two phases.
In the first phase the visible nodes are clamped to an

example input and the hidden nodes modified so that
the network settles into a ‘lowest energy’ state. After this
phase, when a visible node and a hidden node are both
active (value = 1), this is treated as a positive association
between the nodes.

In the second phase both visible and hidden nodes are
allowed to alter, again settling into a ‘lowest energy’ state.
This can be repeated with different random initial val-
ues for the nodes. After this phase if a visible and hidden
node are both active, this is regarded as a negative asso-
ciation.

The ‘lowest energy’ state is related to the analogy with
physical systems including the way magnetic poles par-
tially align when a ferrous metal is cooled quickly; how-
ever, there is also a neural analogy. If the sum of weighted
inputs to a neuron is higher than a certain threshold, then
it (is likely to) change to an active state, thus influencing
the inputs of others. With some additional mechanisms
to ensure convergence, the system settles into a steady
state.

After these phases have been applied to one or more
examples, the weights are updated, incrementing them
where there is positive association and decrementing
them where there is negative association. The former

https://alandix.com/glossary/aibook/event
https://alandix.com/glossary/aibook/human memory
https://alandix.com/glossary/aibook/semantic networks
https://alandix.com/glossary/aibook/associative memory
https://alandix.com/glossary/aibook/human memory
https://alandix.com/glossary/aibook/triggers
https://alandix.com/glossary/aibook/associative memory
https://alandix.com/glossary/aibook/memory
https://alandix.com/glossary/aibook/associative memory
https://alandix.com/glossary/aibook/heteroassociative memory
https://alandix.com/glossary/aibook/heteroassociative memory
https://alandix.com/glossary/aibook/autoassociative memory
https://alandix.com/glossary/aibook/heteroassociative memory
https://alandix.com/glossary/aibook/autoassociative memory
https://alandix.com/glossary/aibook/autoassociative memory
https://alandix.com/glossary/aibook/deep neural networks
https://alandix.com/glossary/aibook/autoassociative memory
https://alandix.com/glossary/aibook/autoencoder
https://alandix.com/glossary/aibook/autoencoder
https://alandix.com/glossary/aibook/deep fakes
https://alandix.com/glossary/aibook/Boltzmann machines
https://alandix.com/glossary/aibook/autoencoder
https://alandix.com/glossary/aibook/spin glass models
https://alandix.com/glossary/aibook/multi-layer neural networks
https://alandix.com/glossary/aibook/Boltzmann machine
https://alandix.com/glossary/aibook/autoencoder
https://alandix.com/glossary/aibook/Boltzmann machine
https://alandix.com/glossary/aibook/fully connected
https://alandix.com/glossary/aibook/neuron
https://alandix.com/glossary/aibook/threshold

Neural Networks ■ 81

FIGURE 6.9 Associative memory.

has an obvious biological analogy to Pavlovian learning
– neurons that fire together stay together. The latter is
often regarded as a kind of sleeping, where the mind is
free to meander without sensory input [2, 225]. If nodes
are associating based on random inputs, they are not
storing ‘useful’ information, so their relationship should
be weakened.

After the Boltzmann machine has been trained, it can
be used to reconstruct partial inputs (often images) by
clamping the known visible units to the known part of
the input and letting the remaining visible units settle
into reconstructed values using the same energy minimi-
sation process as used in training.

If there are fewer hidden nodes than visible nodes,
the values of the hidden nodes when the visible nodes
are clamped can be regarded as a compressed or more
abstract representation of the visible nodes.

A restricted Boltzmann machine (RBM) is identical
except that the nodes are not fully connected [132, 133].
Instead, just the visible nodes are fully connected to the
hidden nodes (see Figure 6.11), but there are no inter-
nal connections within the visible nodes, nor between
the hidden nodes. This at first appears similar to a multi-
layer perceptron, but in the RBM, the connections are
two way. This does not matter during the phase when
the visible nodes are clamped to the inputs but makes

a difference during the sleeping phase or during recon-
struction.

The layered structure means that RBMs can be stacked
with the hidden nodes of one layer forming the visible
nodes of the next layer. These can be used to create lay-
ers of abstraction. However, an RBM can also be used
as the input layer to other forms of neural network or
machine learning, notably as the first stage of a deep neu-
ral network (Chap. 8).

6.6.2 Kohonen Self-organising Networks

The previous methods we have encountered are all forms
of supervised learning, because they are trained with
an input and its desired output. In contrast, Kohonen
networks are a form of unsupervised learning. Kohonen
networks cluster the inputs into classes, according to
common features [155] without any need to pre-label the
inputs. This is often called a self-organising map or self-
organising network. The idea is to emulate the ability of
the human mind to make sense of unknown situations.

In a Kohonen network, neurons are not arranged in
layers but in a flat grid (Figure 6.12), and all inputs are
effectively connected to all nodes. The aim is that areas
of the network form local neighbourhoods that act as
feature classifiers (clusters or classifications) for the input

https://alandix.com/glossary/aibook/Pavlovian learning
https://alandix.com/glossary/aibook/sleeping phase
https://alandix.com/glossary/aibook/Boltzmann machine
https://alandix.com/glossary/aibook/restricted Boltzmann machine
https://alandix.com/glossary/aibook/RBM
https://alandix.com/glossary/aibook/fully connected
https://alandix.com/glossary/aibook/fully connected
https://alandix.com/glossary/aibook/multi-layer perceptron
https://alandix.com/glossary/aibook/multi-layer perceptron
https://alandix.com/glossary/aibook/RBM
https://alandix.com/glossary/aibook/sleeping phase
https://alandix.com/glossary/aibook/RBM
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/deep neural network
https://alandix.com/glossary/aibook/deep neural network
https://alandix.com/glossary/aibook/supervised learning
https://alandix.com/glossary/aibook/Kohonen networks
https://alandix.com/glossary/aibook/Kohonen networks
https://alandix.com/glossary/aibook/unsupervised learning
https://alandix.com/glossary/aibook/Kohonen networks
https://alandix.com/glossary/aibook/Kohonen networks
https://alandix.com/glossary/aibook/self-organising map
https://alandix.com/glossary/aibook/self-organising network
https://alandix.com/glossary/aibook/self-organising network
https://alandix.com/glossary/aibook/Kohonen network
https://alandix.com/glossary/aibook/clusters

82 ■ Artificial Intelligence

FIGURE 6.10 Boltzmann machine.

FIGURE 6.11 Restricted Boltzmann machine.

data and that close classes tend to end up close on the 2D
grid.

At the start of training the network is initialised, usu-
ally with random weight vectors. During training each
training example is compared with the weight vector at
each of the nodes and the closest match ‘wins’. A ‘match’
here can be that the vectors are close to one another or
it may use an indirect measure such as a similarity ma-
trix. The weight vector at the winning node is moved
closer to the training example, and also neighbours are
moved closer but by a lesser amount. The exact spread
among neighbouring nodes may have a classic Mexican
hat shape, growing smaller further away, and may some-
times have negative weights, that is close but not im-
mediate neighbours may be moved further away to help
reinforce distinctions. As training progresses the diam-
eter of the neighbourhood may also be reduced so that
early learning is quite vague and fuzzy but becomes more
precise as the training progresses.

An early application of Kohonen’s self-organising net-
work was to perform speech recognition, in the form
of a phonetic typewriter, a typewriter that could pro-
duce text from dictation. The network was used to cluster
the phonemes into similar sounds, which could then be
manually labelled. The phonetic typewriter is an example
of an application that uses both neural and more con-
ventional knowledge-based techniques, the neural net-
work being used to preprocess the input to facilitate use
of the knowledge base. This demonstrates an important
point about connectionist models: although they were
proposed as models of cognition, like production sys-
tems they can also be used for practical AI problem solv-
ing.

6.7 LOWER-LEVEL MODELS
Neural networks take inspiration from the function
of human and other brains but typically simplify or
ignore certain details. For example, it was found that to

https://alandix.com/glossary/aibook/similarity matrix
https://alandix.com/glossary/aibook/similarity matrix
https://alandix.com/glossary/aibook/self-organising network
https://alandix.com/glossary/aibook/self-organising network
https://alandix.com/glossary/aibook/speech recognition
https://alandix.com/glossary/aibook/phonetic typewriter
https://alandix.com/glossary/aibook/phonetic typewriter
https://alandix.com/glossary/aibook/knowledge base
https://alandix.com/glossary/aibook/connectionist models

Neural Networks ■ 83

FIGURE 6.12 Kohonen self-organising network.

model the function of a single cortical neurone a deep
neural network was required with 5–8 layers and many
thousands of artificial neurons – clearly a real neurone is
more complicated than the simple sum-then-threshold
perceptron.

Those interested in modelling actual brain function
will often employ models that do involve greater levels
of neural fidelity, and also these can sometimes be used
to inspire variations in practical neural networks. We’ll
take a quick look at a few of these features.

6.7.1 Cortical Layers

When you look at the surface of the brain, it has a deeply
folded structure. This is because the outer part, the cere-
bral cortex, is effectively a large sheet of neurons, a bit like
a deflated balloon. The sheet of neurons is arranged in
six rough layers, with different kinds of neurons in each
layer. The majority of the neurone cell bodies in the brain
(grey matter) are found within these layers.

At first this biological arrangement seems to justify
multi-layer neural models and especially deep neural
networks, which we’ll see more of in Chapter 8.
However, the patterns of connection are both more
structured and more complicated than those usually
found in artificial neural networks.

Within the cortex the cells have a column-like struc-
ture, where the connections are relatively local either up
and down the columns or side-to-side, but the former
are not limited to connecting to the ‘next’ layer. Fur-
thermore as well as connections within this grey matter,
there is a mass of nerve fibres deeper inside the brain, the

white matter, which enables long distance connectivity
between regions of the brain.

There are ongoing attempts to map and understand
these rich patterns of interconnections and fMRI scans
are revealing some of the complexity of cortical layering
[160]. There are also attempts to model this computa-
tionally, in particular the large EU-funded Human Brain
Project [183]. Crucially as the second edition of this book
is being written, the first exascale computers have come
online. This is the computational power that in principle
would allow the real-time modelling of a complete hu-
man brain.

At a smaller scale, others have attempted to emulate
the column-like structure both as a general purpose
neural-network architecture [26] and for specific
purposes including visual object recognition [125].

6.7.2 Inhibition

In most multi-layer neural networks the weights between
layers can be negative, leading to a level of inhibition,
where the firing of one neuron prevents the firing of
another. The (fully connected) Boltzmann machine
has potentially negatively weighted connections within
a layer which allows a level of lateral inhibition as
does the shape of the reinforcement function in a
Kohonen network. However, by and large, rich con-
nections within layers in general and lateral inhibition
within a layer in particular are rare in many artificial
neural networks, largely because of the complexity of
learning.

However, it has long been known in neural science
that inhibition structures are critical for many aspects
of human motor control and perception [113]. Crucially
patterns of neurons with mutual inhibition can give rise
to spontaneous oscillations that are crucial for internal
functions such as heart beat and external activity includ-
ing locomotion and muscle control. Lateral inhibition is
also central in efforts to use neural networks to under-
stand the human visual system [39].

If we think back to the network reasoning structures
in Chapter 3, there are negative associations between
concepts. Furthermore, when we are attempting
to disambiguate meanings of words or identify an
object, it is important that alternative meanings
compete with one another. That is, for the structures
we need for semantic meaning mutual inhibition
is key.

https://alandix.com/glossary/aibook/neurone
https://alandix.com/glossary/aibook/deep neural network
https://alandix.com/glossary/aibook/deep neural network
https://alandix.com/glossary/aibook/neurone
https://alandix.com/glossary/aibook/perceptron
https://alandix.com/glossary/aibook/cerebral cortex
https://alandix.com/glossary/aibook/cerebral cortex
https://alandix.com/glossary/aibook/neurone
https://alandix.com/glossary/aibook/grey matter
https://alandix.com/glossary/aibook/deep neural networks
https://alandix.com/glossary/aibook/deep neural networks
https://alandix.com/glossary/aibook/artificial neural networks
https://alandix.com/glossary/aibook/grey matter
https://alandix.com/glossary/aibook/white matter
https://alandix.com/glossary/aibook/fMRI
https://alandix.com/glossary/aibook/Human Brain Project
https://alandix.com/glossary/aibook/Human Brain Project
https://alandix.com/glossary/aibook/neural-network architecture
https://alandix.com/glossary/aibook/object recognition
https://alandix.com/glossary/aibook/multi-layer neural networks
https://alandix.com/glossary/aibook/inhibition
https://alandix.com/glossary/aibook/neuron
https://alandix.com/glossary/aibook/fully connected
https://alandix.com/glossary/aibook/Boltzmann machine
https://alandix.com/glossary/aibook/lateral inhibition
https://alandix.com/glossary/aibook/reinforcement function
https://alandix.com/glossary/aibook/Kohonen network
https://alandix.com/glossary/aibook/lateral inhibition
https://alandix.com/glossary/aibook/artificial neural networks
https://alandix.com/glossary/aibook/artificial neural networks
https://alandix.com/glossary/aibook/inhibition
https://alandix.com/glossary/aibook/perception
https://alandix.com/glossary/aibook/mutual inhibition
https://alandix.com/glossary/aibook/Lateral inhibition
https://alandix.com/glossary/aibook/mutual inhibition

84 ■ Artificial Intelligence

6.7.3 Spiking Neural Networks

The behaviour of a single perceptron and the connec-
tions between neurons on neural networks emulate the
way that if a neuron has sufficient stimulus, it ‘fires’,
triggering or inhibiting other neurons. In most artificial
networks this firing is in lock-step with all neurons
effectively firing simultaneously, and furthermore
the firing is given a continuous value representing its
strength.

The reality is a lot more messy! When a neuron is
sufficiently excited, it does start to fire across a synapse to
another neuron, but this is not a single coordinated value,
rather a series of bursts of ionic activity, or spikes. It is
the rate of these spikes which determines the amount
of activation being transferred from one neuron to
another. Furthermore there are often temporal dynam-
ics, for instance hysteresis effects whereby if a spike is
delivered across a synapse for a while it is easier for the
next burst of activation to transfer, and then over slightly
longer timescales chemicals deplete so it becomes harder
to transmit for a while.

Spiking neural networks attempt to capture some
of this complexity by emulating the dynamic spiking
activity between neurons. The area was particularly
active in the mid-2000s in the hiatus before deep neural
networks began to deliver results, and so alternative
forms of neural networks were being investigated.
However, work in the area has continued at a lower but
more sustained level. We will see in Chapter 22 that
spiking neural networks alongside mutual inhibition
may hold promise for disambiguation in rich semantic
networks.

6.8 HYBRID ARCHITECTURES
Sometimes a single form of machine learning is used for a
problem, but more often for practical uses a combination
of techniques are used. Some parts may involve machine
learning, others may be rule-based. Most often these
hybrid architectures (or hybrid systems) involve
some form of neural network, though not necessarily
so.

Note the term hybrid simply means a combination
of two things and so has other uses even within AI.
Crucially data that includes a combination of discrete
and continuous values may also be referred to as hybrid.
However, the full term hybrid architecture should be
unambiguous within AI.

6.8.1 Hybrid Layers

Often systems are organised as layers or a pipeline where
the outputs of one layer feed into the next. The layers may
use very different forms of AI or other algorithms.

In some cases the first layer acts as a form of data trans-
formation. The lower layer adds additional richness to
each data item in terms of non-linear combinations of
the features. This means that a machine learning layer
above can be relatively simple in terms of the kinds of
things it can do. In Chapter 7, we will see examples of
this, where both support vector machines (SVM) and
reservoir computing use two layers with very different
computational properties; in these cases, it is fundamen-
tal to the respective paradigms, as the lower layer does
not in itself learn.

Another frequent form of hybrid architecture is to use
some form of self-organising map (SOM), clustering or
unsupervised learning at a lower level that acts as a kind
of data reduction. This is particularly useful for datasets
where each item is very large, such as an image or, as
in the example below, a finely sampled time series. The
resulting classes (e.g. in the case of clustering) or vector of
values (e.g. for Kohonen nets) are then fed into an algo-
rithm that works well with smaller numbers of features,
such as a decision tree.

We saw how an early example of the use of Kohonen
nets was to reduce sound sequences to phonemes. Fig-
ure 6.13 shows the main stages of processing and data at
each level. There are a few things to note from this exam-
ple that are common in hybrid architectures:

1. The input to the Kohonen network was not raw
sound but transformed into a form of frequency
space (using a variant of Fourier analysis) – that
is there may be multiple layers of different com-
plexity.

2. The phoneme labelling for the Kohonen network
was added by hand, so that the vector output was
reduced to a classification. This need not be the
case and the whole process may be automatic,
but this mixed machine–human training process
(hybrid in a different sense of the word) is very
common.

3. The low-level transformation (into frequency
space) and the high-level recognition (phoneme
sequences to words) are also hand-crafted rather

https://alandix.com/glossary/aibook/perceptron
https://alandix.com/glossary/aibook/neuron
https://alandix.com/glossary/aibook/neuron
https://alandix.com/glossary/aibook/neuron
https://alandix.com/glossary/aibook/spikes
https://alandix.com/glossary/aibook/spikes
https://alandix.com/glossary/aibook/neuron
https://alandix.com/glossary/aibook/Spiking neural networks
https://alandix.com/glossary/aibook/deep neural networks
https://alandix.com/glossary/aibook/deep neural networks
https://alandix.com/glossary/aibook/spiking neural networks
https://alandix.com/glossary/aibook/mutual inhibition
https://alandix.com/glossary/aibook/disambiguation
https://alandix.com/glossary/aibook/semantic\protect \penalty -\@M networks
https://alandix.com/glossary/aibook/semantic\protect \penalty -\@M networks
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/hybrid architectures
https://alandix.com/glossary/aibook/hybrid systems
https://alandix.com/glossary/aibook/hybrid
https://alandix.com/glossary/aibook/hybrid architecture
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/support vector machines
https://alandix.com/glossary/aibook/SVM
https://alandix.com/glossary/aibook/reservoir computing
https://alandix.com/glossary/aibook/hybrid architecture
https://alandix.com/glossary/aibook/self-organising map
https://alandix.com/glossary/aibook/clustering
https://alandix.com/glossary/aibook/unsupervised learning
https://alandix.com/glossary/aibook/data reduction
https://alandix.com/glossary/aibook/clustering
https://alandix.com/glossary/aibook/Kohonen nets
https://alandix.com/glossary/aibook/decision tree
https://alandix.com/glossary/aibook/Kohonen nets
https://alandix.com/glossary/aibook/Kohonen nets
https://alandix.com/glossary/aibook/hybrid architectures
https://alandix.com/glossary/aibook/Kohonen network
https://alandix.com/glossary/aibook/frequency space
https://alandix.com/glossary/aibook/frequency space
https://alandix.com/glossary/aibook/Fourier analysis
https://alandix.com/glossary/aibook/phoneme labelling
https://alandix.com/glossary/aibook/Kohonen network
https://alandix.com/glossary/aibook/frequency space
https://alandix.com/glossary/aibook/frequency space

Neural Networks ■ 85

FIGURE 6.13 Example of a hybrid architecture.

FIGURE 6.14 Does this network solve the XOR problem?

than using machine learning. The final system is
fully automated, but many of the choices in the
learning are human.

Even if the process is fully automated at the level of
learning (no additional human labelling of intermediate
representations), it will often be the case that the
lowest level of transformation is predetermined (e.g.
SVM, frequency space), the mid level is generating
some sort of Gestalt understanding of the input as a
whole, rather like the way we see a scene and recognise
people’s faces without consciously being aware of it,
and the higher levels are using methods that are more
comprehensible (e.g. decision trees, simple rule-systems
or linear discriminant).

6.8.2 Neurosymbolic AI

Neurosymbolic AI is the general term used when
symbolic and sub-symbolic aspects are combined in the

same system. This may include systems, such as those
described above, where there are layers or modules
interacting loosely, but usually suggests much deeper
integration. There are several styles including:

data transformation – In the example of hybrid layers
above, a neural net can be used as a form of data
reduction layer for symbolic AI.

sub-symbolic heuristic – We have seen in Chapter 4
how heuristics can guide search. A neural net can
be trained to do this, for example to help a math-
ematical theorem prover to choose which axioms
or lemmas to use next in generating a proof. We
will also see in Chapter 11 that heuristics are very
important for game playing and how AlphaGo
[260] used neural networks as heuristics to guide
Monte Carlo search.

symbolic guide – The symbolic AI may be used to guide
the training of a neural network, for example an
expert system to help decide on network parame-
ters such as number or kinds of layers. In Chap-
ter 22 we will see how a computational form of re-
gret can use high-level counterfactual reasoning in
order to guide the training of a sub-symbolic ‘emo-
tion’ module.

symbolic learning – Sub-symbolic methods are also
being used to reproduce aspects of reasoning that
would normally be associated with symbolic AI,
for example logical implication. This may use a
symbolic representation, for example using genetic
programming or similar techniques to create
logical expression, but may also involve ‘vanilla’ or
specially designed neural networks trained on lots
of logical formulae.

https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/human labelling
https://alandix.com/glossary/aibook/SVM
https://alandix.com/glossary/aibook/frequency space
https://alandix.com/glossary/aibook/Gestalt
https://alandix.com/glossary/aibook/decision trees
https://alandix.com/glossary/aibook/linear discriminant
https://alandix.com/glossary/aibook/Neurosymbolic AI
https://alandix.com/glossary/aibook/sub-symbolic
https://alandix.com/glossary/aibook/hybrid layers
https://alandix.com/glossary/aibook/data reduction
https://alandix.com/glossary/aibook/data reduction
https://alandix.com/glossary/aibook/symbolic AI
https://alandix.com/glossary/aibook/heuristics
https://alandix.com/glossary/aibook/search
https://alandix.com/glossary/aibook/heuristics
https://alandix.com/glossary/aibook/game playing
https://alandix.com/glossary/aibook/AlphaGo
https://alandix.com/glossary/aibook/Monte Carlo search
https://alandix.com/glossary/aibook/symbolic AI
https://alandix.com/glossary/aibook/expert system
https://alandix.com/glossary/aibook/regret
https://alandix.com/glossary/aibook/regret
https://alandix.com/glossary/aibook/counterfactual reasoning
https://alandix.com/glossary/aibook/sub-symbolic
https://alandix.com/glossary/aibook/emotion
https://alandix.com/glossary/aibook/emotion
https://alandix.com/glossary/aibook/Sub-symbolic
https://alandix.com/glossary/aibook/symbolic AI
https://alandix.com/glossary/aibook/genetic programming
https://alandix.com/glossary/aibook/genetic programming

86 ■ Artificial Intelligence

FIGURE 6.15 Does this network work?

It is likely that this area will grow substantially in the
coming years, and it is a crucial next step for AI if it is to
address the next level of challenging problems.

6.9 SUMMARY
In this chapter we have seen how neural networks emu-
late the physical properties of the brain to provide par-
allelism and fault tolerance. We have seen several types
of neural network, which in many ways are similar with
nodes and connections between those nodes. However,
they differ (i) architecturally in terms of the pattern of
connections and (ii) algorithmically in terms of the ways
in which node values and weights on connections are
updated. These apparently subtle differences affect the
kinds of applications for which they are suitable. Differ-
ent kinds of neural network can be combined together or
with other forms of AI in hybrid architectures.

Simple neural networks are particularly suited to clas-
sification and pattern recognition tasks. They have also
been used in many applications where their ability to
learn from examples and generalise to new cases is ben-
eficial. However, their disadvantages should also be ac-
knowledged: they can take a long time to learn, be dif-
ficult to update quickly, and, perhaps most important,
there is no explicit representation of the decision mech-
anism and therefore no explanation facility. The former
can be addressed by using greater computing power (al-
beit with financial and environmental costs), and this has
made possible the very large and deep networks that have
transformed AI and will be discussed in Chapter 8. The

latter, the need for explanation and interpretation, is a
more fundamental problem which we shall return to in
Chapter 21.

6.1 Does the network in Figure 6.14 solve the XOR
problem? Show the outputs of the network to sup-
port your answer.

6.2 In the UK dogs are classified into six groups
according to breed. Each group contains a
number of different breeds. Given two breeds of
dog the neural network in Figure 6.15 is required
to indicate whether or not they belong to the
same group. The two breeds of interest at any
time are indicated by setting their input nodes
to 1. All other input nodes are set to 0. Note
that Maremma, Bernese and Border Collie are
all members of the working group; Flat Coat
Retriever, Pointer and Field Spaniel all belong to
the gundog group.

a. Does the network classify the dogs correctly?

b. If not, how might you fix it?

c. How do weights, thresholds and hidden units
operate in this problem solution?

6.3 A student decides to create flash cards to help
revise their knowledge of neural networks. They
make a board with areas labelled by different
kinds of neural network:

https://alandix.com/glossary/aibook/parallelism
https://alandix.com/glossary/aibook/parallelism
https://alandix.com/glossary/aibook/fault tolerance
https://alandix.com/glossary/aibook/hybrid architectures
https://alandix.com/glossary/aibook/classification
https://alandix.com/glossary/aibook/classification
https://alandix.com/glossary/aibook/pattern recognition
https://alandix.com/glossary/aibook/XOR problem
https://alandix.com/glossary/aibook/XOR problem

Neural Networks ■ 87

• perceptron

• multi-layer perceptron

• Boltzmann machine

• restricted Boltzmann machine

• Kohonen self-organising map

They then make cards for each area listing
the qualities of each network, so that they
can test themselves by placing the cards into
the areas. Unfortunately they shuffle the cards
before making a note of which card goes with
which network. Here is what is written on each
card:

• 2D layout

• auto-associative

• backpropagation training

• bi-directional connections between layers

• can solve XOR problem

• can’t solve XOR problem

• form of clustering

• fully connected

• hard threshold

• hidden layer

• inspired by physics of spin glass

• modelled on single human neurone

• no connections within layers

• no connections within layers (two cards)

• one-way connections between layers

• sleeping phase

• two layers

• uses sigmoid

• winner takes all during training

Can you match the cards to the networks?

FURTHER READING

C. Aggarwal. Neural networks and deep learning. Springer,
Cham, 2018.
Most recent version of classic textbook on neural networks.

R. Beale and T. Jackson. An introduction to neural computing.
Adam Hilger Bristol, 1990.
An early book, but still in print. A readable in-
troduction to neural networks which provides details
and algorithms for most major classes of connectionist
models.

https://alandix.com/glossary/aibook/connectionist\protect \penalty -\@M models
https://alandix.com/glossary/aibook/connectionist\protect \penalty -\@M models

7 CHAP T ER

Statistical and Numerical Techniques

7.1 OVERVIEW
By its nature advanced AI often includes aspects of a
numerical or mathematical nature. In this book, we
have tried to minimise more mathematical aspects as we
are aware many find this difficult or even frightening.
However, some techniques that are either used on
their own or in conjunction with other forms of AI or
ML have a statistical or mathematical nature, so this
chapter attempts to introduce them without assuming a
mathematical background.

7.2 LINEAR REGRESSION
One of the most common techniques for simple data
analysis is linear regression. At its simplest this is about
drawing a best fit line between points. For example, Fig-
ure 7.1 shows the time taken for afternoon walks of dif-
ferent lengths as recorded on a fitness tracker. Each point
represents a single walk, for example the point marked
A denotes a walk of 2.7 miles that took 71 minutes. The
dots are quite scattered with walks of different lengths.
The line through the middle is at 25 minutes per mile.
Some walks are above the line, taking longer than this,
perhaps more strenuous countryside, or just taken more
leisurely, some are below representing faster walks. The
solid line is a ‘best fit’ and can allow us to predict how
long it might take for, say, a 3-mile walk (1 hour and 15
mins) or how many miles one might walk in 2 hours (4.8

miles). By looking at the typical spread above and below
the line, one can also obtain a measure of uncertainty.

Note that one point lies well above the line and far
away from the rest of the data. These extreme values
are called outliers and can often skew the best fit line
depending on the method used to calculate it. In this
case it could represent a ‘true’ value where the walk was
simply very difficult and slow, but might be where the
user forgot to tell the fitness tracker the walk was over.

Mathematically the regression line is of the form:

y = mx + c

where (by convention) the y axis is the vertical axis,
in this case time taken, and x is the horizontal axis, dis-
tance walked. The number m is the slope of the line, in
this case miles per minute, and c is the intercept where
the line crosses the y axis, the value of y when x is zero.
Here the intercept, c, represents the time taken to walk
no miles at all, which feels as though it should be zero,
but perhaps represents the time it takes after the fitness
tracker is turned on to put on boots, lock the house or
car, etc.

The normal way to calculate this best fit is using the
formula:

∑(yi − ̄ ̄y) × (xi − x)
m = ∑(xi − x̄)2

c = y ̄ − mx̄

where x̄ and y ̄ are the average value of the x and y
coordinates respectively and the sums are taken over all
of the points.

This formula minimises the sum of the squares of the
residuals, that is the distances between the points and the

DOI: 10.1201/9781003082880-9 88

https://alandix.com/glossary/aibook/linear regression
https://alandix.com/glossary/aibook/measure of uncertainty
https://alandix.com/glossary/aibook/outliers
https://alandix.com/glossary/aibook/regression line
https://alandix.com/glossary/aibook/intercept
https://alandix.com/glossary/aibook/intercept
https://alandix.com/glossary/aibook/residuals
http://dx.doi.org/10.1201/9781003082880-9

Statistical and Numerical Techniques ■ 89

FIGURE 7.1 Linear regression for short walks: solid line ignoring the outlier, dotted line including all data.

line. In general, these least-squares methods are used fre-
quently in various forms of statistical data analysis and
model fitting. They work particularly well with data that
fits the Normal distribution but also tend to have easy
mathematical treatments. However, they tend to be sen-
sitive to outliers and so sometimes extreme values are
removed from the data prior to applying linear regres-
sion. Note that in Figure 7.1, the solid line is the regres-
sion having removed the outlier. The dotted line shows
the regression line including the outlier. See how this dis-
torts the line, meaning it no longer fits the rest of the data
very well at all. Ideally outlier removal should be based on
predetermined rules, to avoid simply removing elements
until the data fits one’s preconceived ideas.

This is a simple case where there is a single indepen-
dent variable, the thing you know (in this case the length
of the walk) and a single dependent variable, the thing
that is measured or to be predicted (in this case how long
it takes).

In general, you may want to predict several things, that
is several dependent variables, perhaps both time taken
and average heart rate while walking. This is a simple
extension, you just create a separate best fit line for each
thing you want to predict.

A more complex case is when you have more than one
independent variable, for example you know both the
distance and average gradient of a route and use both of
these to predict the time taken. That is you attempt to
obtain a prediction equation of the form:

y = mx + nz + c

where, in this case, x is the time taken and z the
gradient. Note that this is a plane in 3D space that for
any x, z values (distance, gradient) gives the time taken.
This is called multi-linear regression, and it is possible to
work out the general formula for this for any number of
independent variables, but we omit this here (see web
resources for more details).

Figure 7.1 was for short walks only. Figure 7.2 is
extended to also include longer walks. However, now
note that the single best fit line (solid) is a poor fit
for the overall data. The two dashed lines are separate
regressions, one for the shorter walks and a second one
for the longer walks. Clearly the two short lines fit the
data better than the single long one.

Thinking about actual walks, the reason is obvious.
For longer walks one often stops for a lunch break,
and indeed the short and long walks have nearly
the same slope, but the long-walk intercept is larger,
corresponding to around a one-hour lunch! In practice
this is quite common, many phenomena are locally
linear, that is linear models fit well so long as you restrict
yourself to a small area, or a single cluster. One can
often create piecewise linear models that fit the data
well, even for curves if the patches are chosen small
enough.

Note too the importance of visualising data. It would
be easy to take the numerical data from Figure 7.2 and fit
the single regression line, without ever looking at it. The
single line would have been a predictor of the data but
clearly misses a critical aspect of the data that allows the
far better piecewise linear fit.

https://alandix.com/glossary/aibook/least-squares
https://alandix.com/glossary/aibook/Normal distribution
https://alandix.com/glossary/aibook/outliers
https://alandix.com/glossary/aibook/linear regression
https://alandix.com/glossary/aibook/linear regression
https://alandix.com/glossary/aibook/regression line
https://alandix.com/glossary/aibook/independent variable
https://alandix.com/glossary/aibook/independent variable
https://alandix.com/glossary/aibook/dependent variable
https://alandix.com/glossary/aibook/dependent variables
https://alandix.com/glossary/aibook/independent variable
https://alandix.com/glossary/aibook/multi-linear regression
https://alandix.com/glossary/aibook/intercept
https://alandix.com/glossary/aibook/piecewise linear models
https://alandix.com/glossary/aibook/visualising data
https://alandix.com/glossary/aibook/regression line
https://alandix.com/glossary/aibook/piecewise linear fit

90 ■ Artificial Intelligence

FIGURE 7.2 Piecewise-linear regression – longer walks.

7.3 VECTORS AND MATRICES
In physics, vectors represent things that have both a
value and a direction, for example a moving car has both
a speed and a direction it is moving in. Vectors in 2D can
be represented as a direction angle and length (called
radial coordinates), but more generally as a series of
two or three numbers representing components in each
direction, for example a northwards and eastwards speed
for a car. The same representation is used for Cartesian
coordinates in space, such as latitude/longitude on a map
(ignoring for the moment the curvature of the earth).
Both can be two-dimensional (as in the lat/long, or car’s
velocity) or three-dimensional (aircraft lat/long+height).
In computing the word ‘vector’ is often used simply for a
list or array of numbers. For example, in a recommender
system for a media streaming platform, we might have
an array MT where MT[person_id] is the number
of movies each person has watched on a streaming
platform. This corresponds roughly to the generalisation
mathematicians make when talking about vectors with
very large numbers of dimensions, not just two or three.
In the movie example, the dimension of this vector is
the number of people, which could be enormous.

Sometimes it can be useful to think about the geomet-
ric analogy between data arrays and vectors in physics,
and we will use diagrams that follow this analogy. How-
ever, there are limitations to this as both the diagrams
and our ability to conceptualise vectors are usually lim-
ited to three dimensions, and there are also sometimes
crucial differences in behaviour for larger dimensions.

If you do not find this physical analogy helpful, you can
think of these structures purely algorithmically.

Of course, a movie platform has many people (say
26952) and many movies (say 13575), and we may
be interested in data about each movie. For this we
might use a data structure M[person_id][movie_id]
(see Figure 7.3). Mathematically this is regarded as a
26952 × 13575 matrix.

If you encountered matrices in school, they are likely
to have been 2×2 or 3×3 matrices representing transfor-
mations of coordinates in 2D or 3D space. For example,
the following matrix represents a clockwise rotation of
about 37 degrees.

(0.8 −0.6
0.6 0.8

)

Given an (x,y) coordinate pair each row of the matrix
is multiplied by the corresponding coordinate values
and added up to give new coordinates. In this case the
new x is 0.8x − 0.6y, and the new y is 0.6x + 0.8y, so that
(3,1) is transformed to (1.8,2.6). These 2×2 matrices can
be added, subtracted and multiplied (and in some cases
divided), somewhat like ordinary numbers. The same is
true of more general N×M matrices (like our movies–
people one), and many complex algorithms that involve
embedded loops can be represented more concisely
in this ‘matrix algebra’ form, albeit with care to make
dimensions match up. Furthermore, we can exploit lots
of known mathematical properties of matrices in order
to both create algorithms and analyse their properties.

https://alandix.com/glossary/aibook/Cartesian coordinates
https://alandix.com/glossary/aibook/Cartesian coordinates

Statistical and Numerical Techniques ■ 91

FIGURE 7.3 Matrix representing number of times a specific movie has been seen by each person.

Note too that in 2 × 2 rotation matrix, both rows and
columns correspond in a sense to the same x–y space.
In contrast in the people–movies matrix, the rows and
columns are indexed by different things. Matrices that
have the same number of dimensions in both directions
are called square matrices (for obvious reasons). Square
matrices (say people × people, or movie × movie)
have particularly powerful mathematical properties,
and so it is quite common to manipulate data to create
square matrices even if the original data is not square.
For example, we might start with a people × movies
matrix, L[person_id,movie_id] that has a positive
number if the person has watched and liked it, a
negative number if the person watched and disliked
it, and zero if the person hasn’t watched it at all. We
might then transform this into a measure of similarity
between people S[person_id1,person_id2] by
summing the product of likes and dislikes for shared
movies:

for p_id1 = 1 to nos_people
for p_id2 = 1 to nos_people
sum = 0
for m_id = 1 to nos_movies
sum = sum + L[P_id1][m_id]

* L[P_id2][m_id]
S[p_id1][p_id1] = S[p_id1][p_id1] + sum

Note that if both users dislike the same film, the prod-
uct is positive, so adding to their similarity. If one likes it
and the other doesn’t, it is negative hence reducing their
similarity (maybe making it negative, a dissimilarity). If
either of the people has not watched the film, then the
product is zero, so has no effect on the similarity mea-
sure. In matrix algebra terms this can be written as:

S = L × LT

where LT is the transpose of L, the same as L
with rows and columns swapped and ‘×’ is matrix
multiplication. See how much more succinct it is!
Note that this similarity matrix is symmetric, that is
L[p1][p2] = L[p2][p1]. Symmetric matrices have
yet more useful properties.

7.4 EIGENVALUES AND PRINCIPAL
COMPONENTS

In the case of 2 × 2 rotation matrices, every vector
(location as pair of coordinates), except (0,0), is
moved to a new direction. However, for some forms
of transformations vectors retain their direction and
simply get longer or shorter. For example, the following
matrix represents a shearing and stretching of 2D
shapes.

(3
2

1
2)

Consider the vector (1,1), it is transformed to (4,4),
similarly any multiple of (1,1) is transformed to a vector
precisely four times as big (e.g. (3,3) becomes (12,12)).
If we now look at the vector (1,-2), it is transformed to
itself, as are multiples of (1,-2) such as (7,-14).

These vectors (1,1) and (1,-2) that preserve their direc-
tion are called eigenvectors, and the multipliers (4 and 1)
are called the corresponding eigenvalues. Crucially it is
possible (with certain conditions) to transform the orig-
inal data and represent it in terms of these eigenvectors.

2For example, (1,0) is (1, 1) +
1 (1, −2).

3 3
For symmetric matrices these eigenvectors are also

orthogonal (at 90 degrees) to one another, which makes
it particularly easy to re-represent the original data items
in terms of eigenvectors.

The 2 × 2 matrix had two eigenvectors and in general
(with some caveats) an N × N matrix has N eigenvectors,

https://alandix.com/glossary/aibook/square matrices
https://alandix.com/glossary/aibook/Square matrices
https://alandix.com/glossary/aibook/Square matrices
https://alandix.com/glossary/aibook/square matrices
https://alandix.com/glossary/aibook/similarity measure
https://alandix.com/glossary/aibook/similarity measure
https://alandix.com/glossary/aibook/similarity measure
https://alandix.com/glossary/aibook/transpose
https://alandix.com/glossary/aibook/similarity matrix
https://alandix.com/glossary/aibook/symmetric matrix
https://alandix.com/glossary/aibook/Symmetric matrices
https://alandix.com/glossary/aibook/eigenvectors
https://alandix.com/glossary/aibook/eigenvalues
https://alandix.com/glossary/aibook/eigenvectors
https://alandix.com/glossary/aibook/symmetric matrices
https://alandix.com/glossary/aibook/eigenvectors
https://alandix.com/glossary/aibook/eigenvectors
https://alandix.com/glossary/aibook/eigenvectors
https://alandix.com/glossary/aibook/eigenvectors

92 ■ Artificial Intelligence

although occasionally some of the eigenvalues for these
may be identical. For matrices that represent some form
of correlation or similarity measure, the large eigenvalues
represent directions where there is a lot of change or dif-
ference. If one selects the eigenvectors corresponding to
the largest few eigenvalues, then these in some way rep-
resent the aspects of the data that are potentially most
important (as in vary a lot). These are called principal
components.

In statistical analysis, principal components analysis
is based on the correlation matrix between features/-
columns. The validity depends on aspects of the data,
notably the mean of each data item is deducted and only
residuals multiplied to give the correlation. Also if the
level of variation of features is not consistent, some sort
of normalisation may be performed.

For example, for the matrix of people × movie likes,
some people may have watched a lot more movies, some
may tend to be very positive and some very negative. We
might pre-whiten the data by, for example, subtracting
the mean score for the person from each rating and then
dividing by their average or total ratings, so that everyone
ends up with scores in a similar range. For very large
datasets this kind of thing may sometimes be omitted as
things ‘average out’, but it is worth checking whether this
seems valid for a particular dataset, either analytically or
by trying out normalised and unnormalised data analysis
on test datasets.

The principal components can simply be used to
help think about the data. In the movies and people
example, a principal component might represent aspects
of the dataset such as “people who love/hate thrillers”.
However, not all principal components can be easily
described.

In addition, if you choose the top P principal compo-
nents, these can be used to reduce the people dimension
of your dataset so that instead of having a like score for
every person for a given movie, you end up with P num-
bers for each movie, for example, the extent to which
people on the “loves/hates thrillers” dimension like this
film. This reduced data can then be used in other ma-
chine learning techniques, such as clustering (to create
emergent movie genres) or neural networks (see Chap. 8
for more details).

Note we could have instead created a movies × movies
similarity matrix and then used that to create reduced
representations for each user and then, for example, cre-
ated clusters of users which could be used for recommen-

dations or even suggested new contacts in a movie social
network.

7.5 CLUSTERING AND K-MEANS
Look at Figure 7.5. It is easy to see that there are two clus-
ters of points. Furthermore it is possible to simply draw
a line that separates them (more generally in two dimen-
sions this might be a plane and in higher dimensions
a hyperplane). Where this is the case, there are various
algorithms to find the lines that separate clusters. How-
ever, if we have principal components, then it is often
the case that a hyperplane orthogonal to the first prin-
cipal component (the one with the largest eigenvalue) is
a good separation between clusters. In general, finding
such a separating line is called linear discriminant anal-
ysis.

However, things are rarely that simple! Figure 7.6
shows a more complex set of points, which again we
can see by eye are in a number of clusters, but where no
simple straight line can be used to make the distinction
(they are not linearly separable) and there are even
places where clear clusters slightly overlap. We have
seen these issues of linear separability before when we
discussed the move from perceptrons to multi-layer
neural networks (Chap. 6).

There are more complex variants of linear separation
using multiple hyperplanes, but also other techniques,
that have fewer assumptions about the statistical prop-
erties of the data and can deal with non-numeric data.

One of the most common forms of clustering is to use
variants of the k-means algorithm. The idea is fairly sim-
ple.

1 (humanly) choose how many clusters you’d like to
identify; that is the value for ‘k’.

2 (algorithmically) choose k of the data points at
random, to act as ‘seeds’, and for each:

2.1 create an initial cluster with its ‘centre’ at the
random data point

3 For each data point d

3.1 find the closest cluster to d, call it c
3.2 add d to c
3.3 recalculate the centre of c – for numeric data

this is the average point (centroid), but for

https://alandix.com/glossary/aibook/eigenvalues
https://alandix.com/glossary/aibook/similarity measure
https://alandix.com/glossary/aibook/eigenvalues
https://alandix.com/glossary/aibook/eigenvectors
https://alandix.com/glossary/aibook/eigenvalues
https://alandix.com/glossary/aibook/principal components
https://alandix.com/glossary/aibook/principal components
https://alandix.com/glossary/aibook/principal components analysis
https://alandix.com/glossary/aibook/correlation matrix
https://alandix.com/glossary/aibook/residuals
https://alandix.com/glossary/aibook/pre-whiten
https://alandix.com/glossary/aibook/principal components
https://alandix.com/glossary/aibook/principal components
https://alandix.com/glossary/aibook/principal components
https://alandix.com/glossary/aibook/principal components
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/clustering
https://alandix.com/glossary/aibook/neural networks
https://alandix.com/glossary/aibook/similarity matrix
https://alandix.com/glossary/aibook/clusters
https://alandix.com/glossary/aibook/clusters
https://alandix.com/glossary/aibook/clusters
https://alandix.com/glossary/aibook/clusters
https://alandix.com/glossary/aibook/principal components
https://alandix.com/glossary/aibook/clusters
https://alandix.com/glossary/aibook/linear discriminant analysis
https://alandix.com/glossary/aibook/linear discriminant analysis
https://alandix.com/glossary/aibook/clusters
https://alandix.com/glossary/aibook/linearly separable
https://alandix.com/glossary/aibook/clusters
https://alandix.com/glossary/aibook/linear separability
https://alandix.com/glossary/aibook/perceptrons
https://alandix.com/glossary/aibook/neural networks
https://alandix.com/glossary/aibook/clustering
https://alandix.com/glossary/aibook/k-means algorithm
https://alandix.com/glossary/aibook/centroid

Statistical and Numerical Techniques ■ 93

FIGURE 7.4 Principal components showing directions of maximum variation in the dataset. Adapted from Nicoguaro, CC BY
4.0, via Wikimedia Commons.

FIGURE 7.5 Linearly separable clusters.
non-numeric data alternatives can be used
such as the data element that is most central
in the cluster

4 Potentially, iterate 3 retaining the centre from the
previous round, but re-allocating the data points.

Choosing k (step 1) can be critical. Sometimes there is
an obvious value based on the details of the situation, but
more commonly it is something we need to find out. If k
is too large, we may end with lots of small and irrelevant
clusters; if it is too small, we may not make important
distinctions. Often the process is repeated with different
values of k and the best chosen based on the tightness of
the clusters. Of course, this choice process can itself be
automated.

An alternative way to more inductively determine sen-
sible numbers of clusters is to operate hierarchically. A
clustering algorithm, such as k-means or linear separa-
tion, is used to find a small number of large initial clusters
(possibly a binary split into two clusters). The data points
allocated to each cluster are then clustered themselves,

creating a tree of smaller and smaller clusters. The recur-
sive process stops when clusters fail to be sufficiently dis-
tinct.

7.6 RANDOMNESS
In data analysis we often have to deal with data that
has random or statistical properties, including noise. In
addition, many algorithms also explicitly or implicitly
use randomness to make them work.

7.6.1 Simple Statistics

Advanced statistical techniques are used in a number of
areas, especially in machine learning. However, it is also
common to see quite simple methods used, especially in
early data preparation and in evaluation of models. You
will almost certainly have encountered measures such as
the mean, median and standard deviation. Here we’ll just
recap these common measures of centrality and spread.

The term ‘average’ is often seen in both media and
technical reports but has two principal meanings, which
are often substantially different:

https://alandix.com/glossary/aibook/clusters
https://alandix.com/glossary/aibook/clusters
https://alandix.com/glossary/aibook/clusters
https://alandix.com/glossary/aibook/clustering algorithm
https://alandix.com/glossary/aibook/k-means
https://alandix.com/glossary/aibook/clusters
https://alandix.com/glossary/aibook/clusters
https://alandix.com/glossary/aibook/clusters
https://alandix.com/glossary/aibook/clusters
https://alandix.com/glossary/aibook/statistical techniques
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/standard deviation

94 ■ Artificial Intelligence

FIGURE 7.6 More complex clusters.

mean – the sum of the data items divided by the number
of items. This is sometimes referred to as the arith-
metic mean and often written as 𝜇 (Greek mu).

median – the ‘half way’ value where 50% of the items
are smaller than the value and 50% bigger.

In general, if you hear the term ‘average’ be alert to the
two meanings. Note too that, despite the ambiguity, if you
use a spreadsheet, the function called AVERAGE is usually
the arithmetic mean.

For some kinds of data, for example heights of people,
the two are effectively the same, but for other kinds of
data, especially ‘long tail’ data (see below), there can be a
substantial difference. Most commonly when they differ,
the mean is bigger than the median, but not always.

Figure 7.7 shows the distribution of weekly incomes in
the UK for the financial year 2011/12. The mean income
for the year is £528 per week, but the median income is
£427. Usually when incomes are mentioned in the press
or government statistics, the ‘average income’ is the me-
dian as this makes more sense practically – half of people
earn more, half earn less.

Note also that the peak (smoothing out the bumpiness
of the distribution) is around £300 per week. This value
is called the mode, but distributions can have more than
one peak, especially if there is a mix of two sources of
data with different distributions – imagine the incomes
of people working in a Wall Street or City of London
office; there will be one peak at the lower end for cleaners
and security staff and another at the upper end for the
bankers.

The median is usually a more stable measure and bet-
ter to use, but the mean has better mathematical proper-
ties. The means ‘add up’ in the sense that if you have sev-
eral groups of data items and know the mean and num-
ber of items in each (𝜇g, ng), you can work out the overall
mean as the ‘weighted average’:

∑ 𝜇g × ngg=𝜇overall ∑g ng

There is no equivalent easy way to obtain an overall
median from the parts.

As well as hearing about ‘average’ income, you
will often hear about the top 5% or bottom 10%.
These are called percentiles and a special case are
the quarter way points, the bottom and top 25%,
which are called the lower and upper quartile,
respectively.

In addition, you will encounter the term residual in
data analysis. Indeed, we have already seen this used
when discussing linear regression earlier in this chapter.
In general the residual is the difference between a data
item and some sort of model or fitted value. In the case
of linear regression this was the difference between the
data points and the line, but it can be used more widely.
Often as a first stage of data analysis one works out
the mean and then subtracts this from every data item
leaving ‘residuals’.

As well as these measures of the middle, or ‘central
tendency’, there are equivalent measures of spread or
variability:

https://alandix.com/glossary/aibook/arithmetic mean
https://alandix.com/glossary/aibook/arithmetic mean
https://alandix.com/glossary/aibook/arithmetic mean
https://alandix.com/glossary/aibook/smoothing
https://alandix.com/glossary/aibook/mode
https://alandix.com/glossary/aibook/percentiles
https://alandix.com/glossary/aibook/quartile
https://alandix.com/glossary/aibook/residual
https://alandix.com/glossary/aibook/linear regression
https://alandix.com/glossary/aibook/residual
https://alandix.com/glossary/aibook/linear regression
https://alandix.com/glossary/aibook/residuals

Statistical and Numerical Techniques ■ 95

FIGURE 7.7 UK income distribution 2011/12. Source: Office of National Statistics [216].

standard deviation – This is the square root of the vari-
ance (below) and is typically written as 𝜎 (Greek
sigma).

variance – The arithmetic average of the sum of the
squares of the residuals, often written as 𝜇2 .

interquartile range – This is the difference between the
upper and lower quartile, that is the range from the
bottom 25% to top 25%.

In more detail for the variance, one first of all works
out the difference between each data item and the mean,
then squares those values and then works out the arith-
metic mean of those squares. If there are N data items xi,
the formula is

∑i (xi − 𝜇)2

𝜎2 = N
As with mean and median, the interquartile range is

the more stable measure, but the variance ‘adds up’. As
with the means, if we have several groups of data items
with mean, variance and number of items in each group
(𝜇g, 𝜎g, ng), the overall variance is given by:

∑ 𝜎2 × nggg𝜎2 = overall ∑ ngg

Although it is the variances that add up, we most
commonly quote the standard deviation as a measure
as the variance is in square units. For example, if we
look at males or females (not the mixed distribution),
the standard deviation of each is around 6cm; however,
the variance is 36 square cm – not very meaningful! Of
course it is easy to move back and forth between the
two.

7.6.2 Distributions and Long-tail Data

Most readers will be familiar with the bell shape of
the Normal distribution (also called the Gaussian
distribution), which is common in many natural
phenomena, such as human heights, and often also areas
such as exam marks. It shows that values are clustered
around the mean value (𝜇) but spread symmetrically
in both directions, with about 70% of the data within a
single standard deviation (𝜎) either side and more than
95% of the values within two standard deviations.

The Normal distribution is a continuous distribution,
in that it shows the probability (strictly probability den-
sity) for any value (Figure 7.8). You may also encounter
discrete distributions where the variable you are consid-
ering only takes on discrete values. For example, the dis-
tribution of number of goals scored by a football team:
in what proportion of games does it score nil, one, two,
etc.

However, even discrete distributions start to look like
the Normal distribution, especially if they are based on
the sum or average of lots of small things. In particu-
lar, if you look at the arithmetic means of many kinds
of things, they will be nearly Normal. Indeed, the Nor-
mal distribution is so ubiquitous, at least for means, that
a large proportion of statistical techniques assume an ap-
proximately Normal distribution, and you will see many
machine learning algorithms described in terms of Gaus-
sian assumptions.

However, not every distribution is like this. Recall the
income distribution by in Figure 7.7. It is clearly not Nor-
mal itself, as it is asymmetric, but worse than that even if
you take the mean income of large groups of people, the
result is not approximately Normal either. This is because

https://alandix.com/glossary/aibook/standard deviation
https://alandix.com/glossary/aibook/variance
https://alandix.com/glossary/aibook/variance
https://alandix.com/glossary/aibook/variance
https://alandix.com/glossary/aibook/residuals
https://alandix.com/glossary/aibook/interquartile range
https://alandix.com/glossary/aibook/quartile
https://alandix.com/glossary/aibook/variance
https://alandix.com/glossary/aibook/arithmetic mean
https://alandix.com/glossary/aibook/arithmetic mean
https://alandix.com/glossary/aibook/interquartile range
https://alandix.com/glossary/aibook/variance
https://alandix.com/glossary/aibook/variance
https://alandix.com/glossary/aibook/variance
https://alandix.com/glossary/aibook/standard deviation
https://alandix.com/glossary/aibook/variance
https://alandix.com/glossary/aibook/standard deviation
https://alandix.com/glossary/aibook/variance
https://alandix.com/glossary/aibook/Normal distribution
https://alandix.com/glossary/aibook/Gaussian distribution
https://alandix.com/glossary/aibook/Gaussian distribution
https://alandix.com/glossary/aibook/standard deviation
https://alandix.com/glossary/aibook/standard deviations
https://alandix.com/glossary/aibook/Normal distribution
https://alandix.com/glossary/aibook/continuous distribution
https://alandix.com/glossary/aibook/probability
https://alandix.com/glossary/aibook/probability density
https://alandix.com/glossary/aibook/probability density
https://alandix.com/glossary/aibook/discrete distributions
https://alandix.com/glossary/aibook/discrete distributions
https://alandix.com/glossary/aibook/Normal distribution
https://alandix.com/glossary/aibook/Normal distribution
https://alandix.com/glossary/aibook/Normal distribution
https://alandix.com/glossary/aibook/statistical techniques
https://alandix.com/glossary/aibook/Normal distribution
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/asymmetric distribution

96 ■ Artificial Intelligence

FIGURE 7.8 Normal distribution. Source: By Ainali–Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.ph
p?curid=3141713.

it is a long-tail distribution. While the Normal distribu-
tion does allow values very far from the mean, these are
so exceedingly unlikely they have little impact on most
calculations. In contrast, the small number of extremely
large incomes do have an impact on incomes.

Figure 7.9 expands the income distribution by
looking at larger and more extreme examples. Each
line zooms into the graph by an order of magnitude
(×10). In 2011/12 the income of the average company
director was around £100,000 per annum, the Prime
Minister £142,500 per annum (£2000 and £2800 per
week respectively). A few years after (when UK salaries
were still relatively similar) there was considerable
publicity about the salary of the Vice Chancellor of the
University of Bath, which was around three times the
Prime Minister’s salary, and in the bottom line (300
times expanded from the original Figure 7.7), we see the
highest paid footballer at the time. Of course, this graph
doesn’t include hedge-fund managers, CEOs of large
companies, let alone the Royal Family.

These small numbers of large incomes can make a sig-
nificant difference when we sample, leading to appar-
ent outliers, but in particular make a huge difference to
the variance, indeed for many practical purposes income
distributions have no well defined variance.

This is not an isolated example, as many phenomena
where there are complex feedback effects end up with
long-tail distributions. This includes natural phenomena
such as the sizes of earthquakes but also network phe-
nomena such as friendship groups in social media or
page links on the web [35, 202].

This is really important if the technique you are
planning to use (e.g. linear regression or principal
components) assumes a Normal or otherwise ‘well-

behaved’ distribution. It is possible to transform the
data to make it more Normal-like, for example simply
capping large values or transforming data into percentile
values. It is crucial, however, that one is aware that some
adaptation may be necessary whenever long-tail data is
encountered.

7.6.3 Least Squares

We’ve already mentioned that linear regression is a
least-squares method; that is it minimises the sum
of the squares of the difference between the actual
values and the fitted values. Many algorithms either
explicitly or implicitly follow this rule, for example
the variant of gradient descent that is embodied in
the backpropagation learning algorithm for neural
networks is effectively minimising the average square
difference during training between the current outputs
of the net and the outputs expected in the training
set.

Least squares methods are common because:

• just like the arithmetic mean and variance, they
have nice mathematical properties, which make
them easy to calculate and analyse

• they are closely related to the Normal distribution

• they often arise almost accidentally, as with back-
propagation

Sometimes there can be more than one way to calcu-
late least squares depending on what you take to be the
gap between the fitted value and actual value. For linear
regression, it is assumed that the x values are precise and
all the noise or error is in the y value. It then minimises

https://commons.wikimedia.org/w/index.php?curid=3141713
https://commons.wikimedia.org/w/index.php?curid=3141713
https://alandix.com/glossary/aibook/long-tail distribution
https://alandix.com/glossary/aibook/Normal distribution
https://alandix.com/glossary/aibook/Normal distribution
https://alandix.com/glossary/aibook/outliers
https://alandix.com/glossary/aibook/variance
https://alandix.com/glossary/aibook/variance
https://alandix.com/glossary/aibook/feedback effects
https://alandix.com/glossary/aibook/long-tail distributions
https://alandix.com/glossary/aibook/social media
https://alandix.com/glossary/aibook/linear regression
https://alandix.com/glossary/aibook/principal components
https://alandix.com/glossary/aibook/principal components
https://alandix.com/glossary/aibook/linear regression
https://alandix.com/glossary/aibook/least-squares
https://alandix.com/glossary/aibook/gradient descent
https://alandix.com/glossary/aibook/backpropagation
https://alandix.com/glossary/aibook/neural networks
https://alandix.com/glossary/aibook/neural networks
https://alandix.com/glossary/aibook/Least squares
https://alandix.com/glossary/aibook/arithmetic mean
https://alandix.com/glossary/aibook/variance
https://alandix.com/glossary/aibook/Normal distribution
https://alandix.com/glossary/aibook/backpropagation
https://alandix.com/glossary/aibook/backpropagation
https://alandix.com/glossary/aibook/least squares
https://alandix.com/glossary/aibook/linear regression
https://alandix.com/glossary/aibook/linear regression

Statistical and Numerical Techniques ■ 97

FIGURE 7.9 Long tail of large incomes. Source: Statistics for HCI [83], adapted from Office of National Statistics [216].

the sum of squares of the y error. You can do it the other
way round, working out the regression line for:

′ x = m ′ x + c

This minimises the sum of squares of the x distances and
so gives a slightly different fit line (see Figure 7.10), which
can be confusing as both are in a sense ‘best fits’. The
difference is due to what you count as ‘error’.

We noted when discussing principal components that
often the top P components can be used to reduce the
dimensionality of the data (see also Chap. 8). The hy-
perspace spanned by these is the best in the sense that if
points are projected into the hyperplane the square of the
component orthogonal to the hyperplane is minimised.
If P-dimensional hyperplanes are a little hard to imag-
ine, consider the case of the single top principal compo-
nent in 2D space (a line). The first principal component
is based on the shortest distance between the points and
the line (rather than x or y difference alone), and it typi-
cally lies between the two regression lines in Figure 7.10.

7.6.4 Monte Carlo Techniques

In the description of k-means we need to choose ran-
dom data points to start with. This is because data often
comes to you part-ordered, so that if you chose the first
k data points, they might all naturally belong in the same
cluster. In fact for k-means and many machine learning
algorithms, it is a good idea to mix up data items by ran-
domising the order before presenting them to the algo-
rithms.

Various random features such as this are often essen-
tial to ensure that algorithms do not encounter Byzan-

tine conditions, that is particular orders of data items that
cause poor behaviour. Of course, a random order of data
items might just, by sheer chance, have all of the items
that belong to a particular cluster or are similar in some
other way together, but it is exceedingly unlikely. In con-
trast, the natural data order is far more likely to exhibit
patterns that can be problematic.

Randomness can be used even more centrally in AI
algorithms, either to make them more resilient, gener-
alisable or efficient. For example, simulated annealing
(Chap. 5) depends on making semi-random choices at
each step, effectively a sort of drunkards walk across the
space of possible solutions. Also in certain circumstances
random vectors have been shown to perform nearly as
well as principal components for data reduction.

At an extreme, we can have an algorithm that simply
chooses values at random until one ‘works’. For example,
if you are trying to find the set of parameters that give the
highest value for a function F, you simply choose lots of
random parameters, p, work out F(p) for each one and
keep track of the best so far. If the search space is rela-
tively small, or F is very complex, this may even be an
efficient algorithm, but it is usually combined with other
algorithms.

We saw an example of this with hill climbing in Chap-
ter 4. A key problem of hill climbing is that it gets stuck at
local maxima, small peaks rather than the overall maxi-
mum. One way to address this is hill-climbing with ran-
dom start points. For this, you start at an initial point
and hill climb from there; you then choose another start
point at random and redo the hill climb, and so on. At
each step you record the best result so far and then stop
when you seem to be making little further progress or

https://alandix.com/glossary/aibook/regression line
https://alandix.com/glossary/aibook/principal components
https://alandix.com/glossary/aibook/k-means
https://alandix.com/glossary/aibook/k-means
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/randomising the order
https://alandix.com/glossary/aibook/randomising the order
https://alandix.com/glossary/aibook/Byzantine conditions
https://alandix.com/glossary/aibook/Byzantine conditions
https://alandix.com/glossary/aibook/simulated annealing
https://alandix.com/glossary/aibook/drunkards walk
https://alandix.com/glossary/aibook/principal components
https://alandix.com/glossary/aibook/data reduction
https://alandix.com/glossary/aibook/search space
https://alandix.com/glossary/aibook/hill climbing
https://alandix.com/glossary/aibook/hill climbing
https://alandix.com/glossary/aibook/local maxima
https://alandix.com/glossary/aibook/hill-climbing

98 ■ Artificial Intelligence

FIGURE 7.10 Linear regression as least squares – different ways to do it.

when you run out of time. If you think of the geographic
analogy, your first start point may be in the middle of a
large plain and so you end up on a tiny hill, but sooner or
later a random start point will put you somewhere in the
Himalayas and you’ll get to the top of a big mountain.

Another application is in Monte Carlo tree search [55],
which has been used especially for board games includ-
ing Go. The search methods described in Chapter 4 and
those we will see for games in Chapter 11 are deter-
ministic, following fixed paths through the tree, guided
potentially by heuristics. However, if the breadth of the
tree is very large, it becomes impossible to follow more
than a few paths. Monte Carlo tree search efficiently
chooses lots of random paths and then uses this to create
a probabilistic heuristic.

7.7 NON-LINEAR FUNCTIONS FOR
MACHINE LEARNING

K-means and other forms of clustering explicitly
break the data space into parts, but often we want less
discrete non-linear behaviour. For example, the curve
in Figure 7.11 has been approximated by linear patches,
but we might wish for methods that can account for the
curvature more directly.

To some extent deep neural networks (Chap. 8) can
create quite complex non-linearities by simply having
sufficient layers, but each stage of complexity requires
more training data, so other methods are often used,
sometimes as part of hybrid architectures.

FIGURE 7.11 Piecewise linear fit, where non-linear function
would be better.

7.7.1 Support Vector Machines

Support vector machines (SVM) achieve non-linear
learning by applying a large number of fixed non-linear
functions to the original inputs and then using these as
the input to other forms of simpler machine learning.
The idea is that with sufficient non-linearity to start
with, any actual function between input and output can
be approximated by the system.

Thinking back to the linear regression earlier in
the chapter, one can imagine that instead of simply
fitting y = mx + x, one could include x2 , x3 terms, etc.

https://alandix.com/glossary/aibook/Monte Carlo tree search
https://alandix.com/glossary/aibook/Go
https://alandix.com/glossary/aibook/search methods
https://alandix.com/glossary/aibook/deterministic search
https://alandix.com/glossary/aibook/deterministic search
https://alandix.com/glossary/aibook/heuristics
https://alandix.com/glossary/aibook/Monte Carlo tree search
https://alandix.com/glossary/aibook/K-means
https://alandix.com/glossary/aibook/clustering
https://alandix.com/glossary/aibook/linear patches
https://alandix.com/glossary/aibook/deep neural networks
https://alandix.com/glossary/aibook/hybrid architectures
https://alandix.com/glossary/aibook/Support vector machines
https://alandix.com/glossary/aibook/SVM
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/linear regression

However, just as with piecewise linear fitting, more
patch-like matching works better. For example, for
image data, the patches are often based on ‘Mexican
hat’-like functions, rather like wavelets, that create a
weighted sum with a lot at the centre and with smaller
and smaller values moving outwards, rather like viewing
the raw image, but also blurred with different scales of
blurring.

The family of non-linear patches are often chosen so
that they form what is known as a kernel, which allows
detailed mathematical analysis and sometimes proofs of
optimality under certain conditions.

More pragmatically, the crucial thing is to add lots
of derived data based on many non-linear transforma-
tions of selections of the features. The formal use of an
SVM kernel ensures a good spread and avoids redun-
dant derived features, but other methods can also work
especially where the non-linear derived data is in some
way cheap to evaluate. For example, some early machine
learning algorithms for black-and-white image analysis
applied address decoders to random selections of pix-
els, basically turning 011 into 00001000 (8 bits with bit
3 turned on). As this could be done in hardware with
decoders and FPGAs, it was very efficient compared to
more exact methods.

7.7.2 Reservoir Computing

The idea of using hardware-derived non-linearity has
resurfaced in the form of reservoir computing.

The fundamental idea is quite simple. You choose
some sort of biological or physical system (the reservoir)
where the relationship between input and output is
complex and non-linear. The reservoir itself is then
surrounded by relatively simple input and output
transformation layers, the former is usually a minimal
transformation of the overall inputs into a form
suitable for the reservoir (e.g. maybe applying multiple
thresholds if the reservoir requires binary input). The
output transformation (the readout) employs some
sort of machine learning, for example a simple 2- or
3-layer neural network. It is trained so that when a
training input value is applied, the raw reservoir output
is transformed into desired training set output.

The hope is that if the reservoir’s internal processes
are sufficiently rich, among the outputs are combinations
of values that can relatively simply match any desired
non-linear function. Virtual reservoirs, that is random

Statistical and Numerical Techniques ■ 99

mappings implemented in software, can be used, but for
many the goal is to use hardware or biological processes
that can rapidly react in a massively parallel way faster,
cheaper or more energy efficiently than software alone.

One example of a hardware reservoir uses tiny
nanoparticles deposited on a wafer [148]. After a while
the nanoparticles start to connect and create patches or
routes across the medium. If the deposition continues
too long, then the wafer simply becomes a conductor,
but at a critical point, just before that, there are no fully
connected paths, but instead lots of near-connections. At
this critical point a combination of quantum tunnelling
and diffusion of atoms due to potential differences can
create complex patterns of partial conductance.

These nanoparticle-based systems are not only non-
linear but also have a level of time dependence as ar-
eas where there has been conductance in the past can be
more likely to conduct in the future, a form of memris-
tor [50]. Where this is the case the readout transforma-
tion needs to be a form of machine learning that can work
on time series data (Chap. 14).

7.7.3 Kolmogorov-Arnold Networks

Kolmogorov-Arnold Networks (KAN) can be thought of
as a variation of a multi-layer perceptron. However, in-
stead of a fixed sigmoid activation function and trained
weights, the KAN adjusts and learns the shape of the acti-
vation function itself (which is typically not a sigmoid). It
is based on the Kolmogorov-Arnold representation the-
orem which says that any non-linear function of multiple
variables (including the output of any neural network no
matter how deep) can be constructed using two layers of
sums of non-linear functions of single variables. Further-
more the hidden layer needs at most 2N +1 nodes where
N is the number of inputs.

While theoretically interesting, the actual non-linear
functions can be discontinuous and so complex that they
are effectively unlearnable; so for many years this was
merely an interesting theoretical result. However, work
being published as this edition was being completed has
changed this picture, proposing the KAN as a potentially
practical machine learning method [172]. This is partly
by using more than the absolute minimum number of
nodes, and further by using B-splines, a restricted class
of non-linear functions. B-splines glue together several
polynomials to create an approximation of a continu-
ous non-linear function; rather like an generalisation of

https://alandix.com/glossary/aibook/piecewise linear
https://alandix.com/glossary/aibook/wavelets
https://alandix.com/glossary/aibook/linear patches
https://alandix.com/glossary/aibook/kernel
https://alandix.com/glossary/aibook/optimality
https://alandix.com/glossary/aibook/non-linear transformations
https://alandix.com/glossary/aibook/non-linear transformations
https://alandix.com/glossary/aibook/SVM
https://alandix.com/glossary/aibook/kernel
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/FPGAs
https://alandix.com/glossary/aibook/reservoir computing
https://alandix.com/glossary/aibook/readout
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/neural network
https://alandix.com/glossary/aibook/critical point
https://alandix.com/glossary/aibook/fully connected
https://alandix.com/glossary/aibook/fully connected
https://alandix.com/glossary/aibook/critical point
https://alandix.com/glossary/aibook/time dependence
https://alandix.com/glossary/aibook/memristor
https://alandix.com/glossary/aibook/memristor
https://alandix.com/glossary/aibook/reservoir computing!readout
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/Kolmogorov-Arnold Networks
https://alandix.com/glossary/aibook/KAN
https://alandix.com/glossary/aibook/multi-layer perceptron
https://alandix.com/glossary/aibook/sigmoid activation function
https://alandix.com/glossary/aibook/activation function
https://alandix.com/glossary/aibook/activation function
https://alandix.com/glossary/aibook/sigmoid
https://alandix.com/glossary/aibook/Kolmogorov-Arnold representation theorem
https://alandix.com/glossary/aibook/Kolmogorov-Arnold representation theorem
https://alandix.com/glossary/aibook/non-linear functions
https://alandix.com/glossary/aibook/discontinuous
https://alandix.com/glossary/aibook/B-splines
https://alandix.com/glossary/aibook/B-splines

100 ■ Artificial Intelligence

FIGURE 7.12 Reservoir computing – main stages.

a piecewise linear approximation. B-splines are used ex-
tensively in graphics. Because they are parameterised,
they can be trained as part of a KAN.

At the time of writing, Kolmogorov-Arnold Networks
have proved successful on smaller data, but struggle
with scale. However, research is very active and may
have changed considerably by the time you read this.

7.8 SUMMARY
This chapter has covered several statistical techniques
that you are likely to encounter in AI algorithms. Linear
regression, principal components and eigenvectors
are particularly likely to occur in the description of
how other algorithms work, emphasising the need
for a basic understanding of matrices. Variants of
the k-means algorithm are widely used, but also it is
a good introduction to the concepts in other more
complex clustering algorithms. We have discussed
probabilities in earlier chapters of the book, and some
level of uncertainty is often inherent in training data
or in the environment in which AI is deployed. Data
corresponding to the Normal distribution is especially
common, leading in particular to the popularity of
least-squares methods. But it is also important to be
aware that many forms of computational data, including
social network connections and web page links, have
long-tail distributions, where a small number of very
extreme values can skew results unless care is taken.
However, we can also make use of randomness; many
of the algorithms we use in AI have some stochastic
elements and even purely Monte Carlo techniques can
be surprisingly effective. We can also ‘mix up’ input data

using non-linear functions including carefully crafted
mathematical functions in support vector machines;
near-random physical or biological effects in reservoir
computing; or B-splines in Kolmogorov-Arnold
Networks.

7.1 Consider the following, treating all three columns
as a single x,y dataset.

x y x y x y

0.434 12.093 5.427 13.621 15.927 4.927
0.933 8.339 6.631 16.523 16.111 28.064
1.525 6.206 7.818 10.234 17.948 38.146
1.933 10.257 9.197 16.603 20.392 28.586
2.718 6.38 10.727 15.408 22.977 26.639
3.684 15.637 12.14 20.464 25.868 37.821
4.294 24.493 13.998 17.66

a. Plot the data (by hand or digitally)

b. Using the formulae in Section 7.2, calculate m
and c for the regression line y = mx + c

c. Draw the line on your data plot. Are there any
outliers?

d. Repeat steps (b) and (c), but this time comput-
ing the regression the other way round, that is
swapping the x,y values. Note that when you
plot the line, you will need to be careful to plot
the right x and y coordinates!

7.2 Consider the following matrix:

(9 2
−2 6)

https://alandix.com/glossary/aibook/piecewise linear
https://alandix.com/glossary/aibook/Linear regression
https://alandix.com/glossary/aibook/Linear regression
https://alandix.com/glossary/aibook/principal components
https://alandix.com/glossary/aibook/eigenvectors
https://alandix.com/glossary/aibook/k-means algorithm
https://alandix.com/glossary/aibook/clustering algorithms
https://alandix.com/glossary/aibook/uncertainty
https://alandix.com/glossary/aibook/Normal distribution
https://alandix.com/glossary/aibook/long-tail distributions
https://alandix.com/glossary/aibook/Monte Carlo techniques
https://alandix.com/glossary/aibook/support vector machines
https://alandix.com/glossary/aibook/reservoir computing
https://alandix.com/glossary/aibook/reservoir computing
https://alandix.com/glossary/aibook/Kolmogorov-Arnold Networks
https://alandix.com/glossary/aibook/Kolmogorov-Arnold Networks
https://alandix.com/glossary/aibook/regression line
https://alandix.com/glossary/aibook/outliers

Statistical and Numerical Techniques ■ 101

a. Try to find an eigenvector by hand (you can
look up methods for this, or just use trial and
error).

b. What is its eigenvalue?

c. As this is a symmetric matrix, the other eigen-
vector is orthogonal to the one you have found,
so if your eigenvector is (a,b), the other eigen-
vector is (b,−a). What is the eigenvalue of this
second eigenvector?

d. Which is the principal eigenvector?

7.3 Consider the following matrix.

(3 1
2 2)

You already know from Section 7.4 that its eigen-
vectors are (1,1) and (1,-2), but use the following
iterative method to find the first eigenvector. You
can do this by hand or with a calculator, but it will
be easier if you either code it or use a spreadsheet
with successive calculations flowing from row to
row.

1. Start with any seed vector
2. Multiply the vector by the matrix
3. Normalise the resulting vector (x,y)

by dividing it by sqrt(x*x + y*y)
4. Repeat 2 and 3 until the vector

doesn't change much (or use a fixed
number of iterations, such as 10)

If you are doing this by hand, you might find it
easier to normalise by dividing by |x| + |y| at step
(3); this will mean you’ll end up with a slightly

different multiple of the same vector as the algo-
rithm.

a. Try this with the following seed vectors: (1,0),
(1,0), (1,1), (1,-2), (1.1,1), (1.1,-2). Document
your results.

b. Does this always give the principal eigenvec-
tor?

FURTHER READING

Alan Dix. Statistics for HCI: Making sense of quantitative data.
Morgan & Claypool, 2020. https://alandix.com/statistics
/book/
This book deals with the things that aren’t in a standard
statistical textbook. It focuses on what statistical concepts
and terms mean rather than how to calculate them.

Christopher M. Bishop. Pattern recognition and machine learn-
ing. Springer, New York, 2006. ISBN:0-387-31073-8

Mathematical treatment of statistical machine learning al-
gorithms coming from an engineering perspective.

G. James, D. Witten, T. Hastie, and R. Tibshirani. An introduc-
tion to statistical learning. New York, NY: Springer STS
112, 2013.
As well as offering a detailed overview of statistical ma-
chine learning techniques from regression to SVM, the book
has code examples with variants of the book for R and
Python. The book’s website https://www.statlearning.com/
includes links to downloadable PDF versions of the books.

William H. Press, Saul A. Teukolsky, William T. Vetterling,
and Brian P. Flannery. Numerical recipes 3rd edition: The
art of scientific computing. Cambridge University Press,
Cambridge, 2007.
The Numerical Recipes series is the definitive reference
for implementing numeric methods such as matrix algo-
rithms.

https://alandix.com/glossary/aibook/eigenvector
https://alandix.com/glossary/aibook/symmetric matrix
https://alandix.com/glossary/aibook/eigenvector
https://alandix.com/glossary/aibook/eigenvector
https://alandix.com/glossary/aibook/eigenvector
https://alandix.com/glossary/aibook/eigenvector
https://alandix.com/glossary/aibook/eigenvector
https://alandix.com/glossary/aibook/principal eigenvector
https://alandix.com/glossary/aibook/eigenvectors
https://alandix.com/glossary/aibook/eigenvectors
https://alandix.com/glossary/aibook/eigenvector
https://alandix.com/glossary/aibook/principal eigenvector
https://alandix.com/glossary/aibook/principal eigenvector
https://alandix.com/statistics/book/
https://alandix.com/statistics/book/
https://alandix.com/glossary/aibook/SVM
https://alandix.com/glossary/aibook/Python
https://www.statlearning.com/

8 CHAP T ER

Going Large: Deep Learning and Big
Data

8.1 OVERVIEW
As we discussed in the introduction, the inflection
point, during the 2010s, in the widespread adoption of
AI was due in large part to the growing availability of
large datasets (big data) and cloud computation. This
has allowed various forms of large-scale processing,
including the recommender systems that are widespread
in internet shopping and social media. However,
perhaps most well-known has been deep learning,
which uses vast amounts of computational power
(leading to environmental concerns) in order to train
networks with billions of connections.

Deep learning requires lots of data, so sometimes it is
necessary to grow the dataset; this can include generat-
ing data or using adversarial techniques so that networks
learn from each other. More often we actually have too
much data and so need various forms of data reduction,
either in terms of the size of each data item or the number
of data items we choose to process.

Even though computation is fast, often large numbers
of processors are needed, and so it is important to be
able to process data in parallel across lots of machines.
Some forms of data are particularly difficult to process
in volume; this includes data that has some sort of
internal structure, notably graphs and temporal data,
and also real-time data where the volume of sensed data

may mean that it is impossible to store all of the data for
later processing.

8.2 DEEP LEARNING
One of the drivers of the resurgence of AI since the late
2010s has been deep learning. It is a term that is not
just known in academic and technical circles but in the
popular press too. Crucially, one of the most well-known
early deep learning systems, AlphaGo, achieved one of
the milestones of AI in 2016 when it defeated the Go
world champion Lee Sedol. In some ways this paralleled
the success of IBM’s Deep Blue in 1996 when it beat
Garry Kasparov at chess. However, while much of Deep
Blue’s success came through brute force, evaluating vast
numbers of possible moves, this was impossible for Go.
A game of Go may take hundreds of moves each of
which has hundreds of possibilities, the search space is
enormous.

While AlphaGo brought deep learning to popular
attention, fundamentally deep learning was not a
new technological breakthrough in the sense that
backpropagation allowed the move from single-layer
perceptrons to multi-layer neural networks. Indeed, all
deep learning means is a neural network with many
layers.

In principle this was possible for many years as back-
propagation algorithms do not have a fundamental limit
on the number of layers. However, in practice computa-
tional power limited the number of layers that was pos-
sible, especially for larger problems such as image recog-
nition.

Things have changed, the combination of faster
processors and cloud computing have transformed this

DOI: 10.1201/9781003082880-10 102

https://alandix.com/glossary/aibook/big data
https://alandix.com/glossary/aibook/cloud computation
https://alandix.com/glossary/aibook/recommender systems
https://alandix.com/glossary/aibook/social media
https://alandix.com/glossary/aibook/deep learning
https://alandix.com/glossary/aibook/Deep learning
https://alandix.com/glossary/aibook/adversarial techniques
https://alandix.com/glossary/aibook/data reduction
https://alandix.com/glossary/aibook/deep learning
https://alandix.com/glossary/aibook/AlphaGo
https://alandix.com/glossary/aibook/Go
https://alandix.com/glossary/aibook/Lee Sedol
https://alandix.com/glossary/aibook/IBM
https://alandix.com/glossary/aibook/Deep Blue
https://alandix.com/glossary/aibook/Garry Kasparov
https://alandix.com/glossary/aibook/chess
https://alandix.com/glossary/aibook/Go
https://alandix.com/glossary/aibook/Go
https://alandix.com/glossary/aibook/search space
https://alandix.com/glossary/aibook/AlphaGo
https://alandix.com/glossary/aibook/deep learning
https://alandix.com/glossary/aibook/deep learning
https://alandix.com/glossary/aibook/perceptrons
https://alandix.com/glossary/aibook/neural networks
https://alandix.com/glossary/aibook/deep learning
https://alandix.com/glossary/aibook/neural network
https://alandix.com/glossary/aibook/backpropagation
https://alandix.com/glossary/aibook/backpropagation
https://alandix.com/glossary/aibook/image recognition
https://alandix.com/glossary/aibook/image recognition
http://dx.doi.org/10.1201/9781003082880-10

picture, allowing networks with many layers. Figure 8.1
shows an example of a five-layer network taking image
pixels as input and producing some form of classification
as output.

As is evident even from this image, there are many
choices in terms of the number of layers, number
of nodes at each layer and the way in which weights
between the nodes are arranged. However, before
looking at these choices, it is worth considering why
deep networks were so computationally expensive in the
first place, as this helps guide architectural choices and
potential use.

8.2.1 Why Are Many Layers so Difficult?

To some extent it is obvious that if there are more layers,
there are more nodes, so it is harder.

Suppose you have the simplest three-layer network
with input–hidden–output. If all the layers have N
nodes and the network is fully connected, then there are
N(N − 1)/2 weights for the first layer and N(N − 1)/2
weights for the second layer, N(N − 1) weights in
total. However, if there are M layers, then there are
(M − 1)N(N − 1)/2 weights in total. This sounds as if it
only grows linearly with M, but in practice if you have
twice as many nodes, algorithms take more than twice
as long, so it may get worse far faster than the number of
layers at first suggests.

In fact, there are more fundamental problems than
simple number of weights, as we saw when we first
encountered multi-layer perceptrons in Chapter 6.

First, the weights for the inner layers are under-
determined, that is there are many configurations of
weights that will give equivalent results. This is true
even of a three-layer network, any permutation of
the inner nodes will be equally good. However, the
range of possibilities grows with the depth, not just the
number.

This can lead to over-fitting; more weights mean more
likelihood you will just be matching ‘accidents’ of the
training dataset rather than creating generalisable solu-
tions. This means that more training data is needed, that
takes longer to process.

Even more problematic the inner layers of deep net-
works are poorly constrained. During training in a three-
layer network, the input and output layers have known
values, so each middle node is only one step away from
a known fixed or target value. In contrast in a four-layer

Going Large: Deep Learning and Big Data ■ 103

network, the inner layers only have one known side, the
other is being learnt, and for deeper networks the inner-
most layers are trying to train themselves when the lay-
ers, either side are themselves in flux.

If the rate of training is too great, this will lead to
instabilities, the inner layers ‘flopping about’, rather like
carrying a flexible mattress. This means that the training
rate parameters have to be set very low leading to slower
learning and more iterations of the training data.

These problems could potentially be solved by throw-
ing more computation and data at the training; however,
the greater capabilities of deep learning also mean that
more complex problems become tractable: more com-
plex games such as Go, larger images or video. Under-
standing the fundamental computational issues behind
deep learning can help guide more effective solutions to
these tough challenges.

8.2.2 Architecture of the Layers

Let’s look again at Figure 8.1. The very first layer is con-
nected to the inputs; in the case of an image, this will
be the pixels, but for other examples, such as the Go
board position, some encoding of the data is needed.
The output may be some form of single classification or
score (e.g. the emotion of a face), a slightly more complex
decision or move (as in Go), or even a complete image.
The last is a special case, so we’ll assume initially that the
output layer is relatively small.

There are many choices in a deep learning network
including:

the number of layers – Usually relatively small,
although there are ‘very deep’ networks with tens
to hundreds of layers.

the number of nodes in each layer – This is typically
not uniform, with some layers having fewer
than others; these pinch points can be critical
architecturally.

the connections between layers – The simplest choice
is to fully connect, but other choices such as a
smaller number of random connections or local
connections may be used (see Figure 8.2).

the learning rule – The simplest choice is to use back-
propagation everywhere, but other forms are possi-
ble, including forms of unsupervised learning.

https://alandix.com/glossary/aibook/fully connected
https://alandix.com/glossary/aibook/perceptrons
https://alandix.com/glossary/aibook/underdetermined
https://alandix.com/glossary/aibook/underdetermined
https://alandix.com/glossary/aibook/poorly constrained
https://alandix.com/glossary/aibook/instabilities
https://alandix.com/glossary/aibook/deep learning
https://alandix.com/glossary/aibook/Go
https://alandix.com/glossary/aibook/deep learning
https://alandix.com/glossary/aibook/Go
https://alandix.com/glossary/aibook/emotion
https://alandix.com/glossary/aibook/Go
https://alandix.com/glossary/aibook/deep learning
https://alandix.com/glossary/aibook/pinch points
https://alandix.com/glossary/aibook/backpropagation
https://alandix.com/glossary/aibook/backpropagation
https://alandix.com/glossary/aibook/unsupervised learning

104 ■ Artificial Intelligence

FIGURE 8.1 Deep learning architecture – multiple layers, with varying connection topologies.

FIGURE 8.2 Different kinds of connection patterns between
layers.

the order of learning – Again the simple choice is sim-
ply to start it all randomly and let rip, but where
there are unsupervised learning layers, these may be
trained first, or the network may be built up succes-
sively adding layers/nodes.

Together these choices comprise the architecture of the
network. The choice of these can be quite principled, or
more a matter of trial and error. Those working with a
particular type of data or in a particular domain can be-
come expert at choosing an appropriate architecture but

may not be able to fully justify every decision. Sometimes
another layer of AI, such as a genetic algorithm, is used
to choose the best parameters for the network.

In the end this is a bit of an art, not an exact science.
However, there are some general principles that can help
understand existing networks and also help you design
your own. Even when the layers are all using the same
learning rules, the different layers often achieve different
parts of the machine learning task. This is very like our
brains, where individual neurons are relatively similar,
but the way they are interconnected leads to parts of the
brain having specialised purposes.

Early Layers – Data Transformation

When the input is quite large, such as an image, the first
few layers are often performing a level of dimension
reduction. In particular the first two layers often form
a restricted Boltzmann machine (Chap. 6). This has the
property that it can be run backwards to reconstruct
(closely) the input, so that the second layer is effectively
a compressed coding of the input. This can reduce
the number of nodes without substantially losing
information.

These early layers may also implicitly create non-linear
combinations of inputs, rather like support vector ma-
chines (Chap. 7). Alternatively, some form of kernel such

https://alandix.com/glossary/aibook/unsupervised learning
https://alandix.com/glossary/aibook/deep neural network!architecture
https://alandix.com/glossary/aibook/deep neural network!architecture
https://alandix.com/glossary/aibook/genetic algorithm
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/dimension reduction
https://alandix.com/glossary/aibook/dimension reduction
https://alandix.com/glossary/aibook/restricted Boltzmann machine
https://alandix.com/glossary/aibook/support vector machines
https://alandix.com/glossary/aibook/support vector machines
https://alandix.com/glossary/aibook/kernel

Going Large: Deep Learning and Big Data ■ 105

as radial basis functions or recoding such as a wavelet
transformation (Chap. 14) may be explicitly included.

In some ways the early layers perform a similar
function to hand-coded data preparation and trans-
formation, and it can be possible to solve problems
by just ‘adding more layers’. However, sometimes
more bespoke pre-processing can be helpful. This may
use non-linear transformations (Chap. 7), dimension
reduction (Section 8.4.1), or the media specific methods
we’ll see in Part III.

Middle Layers – Feature Identification

The middle layer in Figure 8.1 is shown with a smaller
number of nodes. This hourglass shape is in fact quite
a common choice. These intermediate nodes often em-
body a form of feature space. For example, in images of
landscapes are they sunny days or cloudy, mountains or
seascapes, have people in or none? It is not that individ-
ual nodes represent these features, the representation is
likely to be distributed across the nodes, but more that
the important features of the images are being captured.

If the pinch-point is too small, there may not be
enough dimensionality to encode all of the information
needed to produce the output. This will typically lead
to poor learning, especially for smaller classes. On the
other hand, if there are too many nodes at this point, the
opposite may occur with too much ‘freedom’ leading to
over-training and poor generalisation.

Later Layers – Feature Combination and Higher-Level
Features

The later layers between the pinch point and the out-
put are then sufficient to create a final decision based on
non-linear combinations of the features. This is again
very like a support vector machine with the penultimate
layer creating the non-linear combinations of features
and the final layer the discrimination surfaces.

Of course when we look at a picture or consider a
problem, we may build concepts on top of concepts: see
eyes and mouths to make faces, see many faces to see a
crowd.

For these deeper networks it is common to see a sort of
rippling shape, with a few wider layers punctuated with
pinch points. Sometimes the strict layers may be bro-
ken by copying the lower level ‘features’ further along the
pipeline (see Figure 8.3).

But Really Just Lots of Nodes

Thinking of the deep network in terms of functions at
different levels can be helpful, in particular this can help
one decide where to vary the number of nodes in a layer.
However, if the deep net were simply performing known
predetermined functions at each layer, it would proba-
bly be best to swap the layer for one that is specifically
designed for the purpose. One of the strengths of deep
networks is that they ‘sort of ’ do the jobs above but also
can do the unexpected. This is particularly the case with
deeper networks.

8.3 GROWING THE DATA
Deep learning has lots of weights to learn, that is many
degrees of freedom. In order to avoid overfitting and
ensure generalisation it therefore needs lots of data on
which to train.

Sometimes this is not a problem, for example social
media companies have massive numbers of profile pic-
tures and other shared pictures, many with tags to say
who is who. However, there is not always enough real
data. Furthermore as trained models get bigger and big-
ger there is a worry that even all the world’s texts will not
be sufficient for adequate training [289].

Happily, it may be possible to fill gaps in solid data by
generating synthetic data. There are different ways to do
this, although all require a substantial amount of domain
knowledge and carry the risk of training a system on un-
real data.

8.3.1 Modifying Real Data

Sometimes we can work out ways in which data could
have been a little different, small tweaks we can make to
real data that are plausible but different.

The simplest case is to add a little noise, for ex-
ample, given numerical data, we might simply add
a small amount to each reading. For images we can
take a high-resolution high-quality image and then
add noise in different ways, perhaps blurring it or
adding small optical distortions. It is important to
understand the algorithm you are using when adding
noise; for example, adding noise to the training
data of many kinds of neural network can improve
generalisation, but adding linear noise before linear
regression reduces the accuracy without any gain in
generalisation.

https://alandix.com/glossary/aibook/radial basis functions
https://alandix.com/glossary/aibook/wavelet transformation
https://alandix.com/glossary/aibook/wavelet transformation
https://alandix.com/glossary/aibook/pre-processing
https://alandix.com/glossary/aibook/non-linear transformations
https://alandix.com/glossary/aibook/dimension reduction
https://alandix.com/glossary/aibook/dimension reduction
https://alandix.com/glossary/aibook/pinch-point
https://alandix.com/glossary/aibook/generalisation
https://alandix.com/glossary/aibook/pinch point
https://alandix.com/glossary/aibook/support vector machine
https://alandix.com/glossary/aibook/pinch points
https://alandix.com/glossary/aibook/Deep learning
https://alandix.com/glossary/aibook/degrees of freedom (data)
https://alandix.com/glossary/aibook/overfitting
https://alandix.com/glossary/aibook/generalisation
https://alandix.com/glossary/aibook/social media
https://alandix.com/glossary/aibook/social media
https://alandix.com/glossary/aibook/synthetic data
https://alandix.com/glossary/aibook/domain knowledge
https://alandix.com/glossary/aibook/domain knowledge
https://alandix.com/glossary/aibook/neural network
https://alandix.com/glossary/aibook/generalisation
https://alandix.com/glossary/aibook/linear regression
https://alandix.com/glossary/aibook/linear regression
https://alandix.com/glossary/aibook/accuracy
https://alandix.com/glossary/aibook/generalisation

106 ■ Artificial Intelligence

FIGURE 8.3 Combining high- and low-level features in deep learning.

We might also be able to use knowledge about the do-
main to create slight variants. For example, with ECG
data (heart monitoring), we might detect the gaps be-
tween beats and then slightly shift the beats, or slightly
stretch a single beat. For images, we might crop the im-
age in slightly different ways or slightly magnify or shrink
it. In all these cases, there is a danger that the modifica-
tions might affect the underlying data in ways that in-
terfere with the things for which we are trying to train
the network. Moving the image is fine if the aim is to be
able to identify the person, as shifting an image doesn’t
change who the person is. However, if a heart condition
is marked by irregular rhythms, shifting the beats may
interfere with training.

8.3.2 Virtual Worlds

We might be able to go further and create data. For ex-
ample, if we have a model of how the heart works, we can
simulate different kinds of anomalies and then generate
ECG traces from the model.

This technique has been used for training robots and
also self-driving cars. Gathering data for either takes a
long time and also can run safety risks to the equipment
or the environment in which they are being trained. Fur-
thermore, we may want to train for situations that are
rare and hazardous.

For example, for the autonomous car, we would
like to train the car how to behave if a child runs
into the road. Happily this does not occur often, but
if it does we do not want to use this as a ‘training
opportunity’. Training and testing the guidance software

in a virtual world means we can try out these difficult
situations.

In addition, when we run a simulation, we can
generate simulated video and run recognition or
guidance software with that as input. However, we also
know ‘ground truth’, what is ‘really’ in the simulated
video, hence we can more easily use supervised learning.

8.3.3 Self-Learning

When the designers of AlphaGo wanted to train their
deep learning network, there was only a limited amount
of training data available. It could be fed all the records
of major Go tournaments, and for a human reader this
would seem like a lot of data (around 30 million moves),
but for the deep network, it was not nearly enough.

To supplement the training from real games, versions
of AlphaGo were pitted against each other (see Chap. 11).
That is the same underlying code but trained with slightly
different random perturbations in their training. Each
variant tried to outwit the other, training themselves on
the games they played. Effectively the ML was in an arms
race against itself. Each variant getting better but against
an opponent that was also improving. There can be far
more computer–computer games than have ever been
played in human tournaments.

While this appears to be only suited for games, in
fact the same principle of adversarial learning is used
elsewhere. In particular, image generation networks
are trained by having one network attempt to create
realistic images and a second, ‘playing against’ it,
that is trying to distinguish the fake images from real

https://alandix.com/glossary/aibook/ECG
https://alandix.com/glossary/aibook/ECG
https://alandix.com/glossary/aibook/robots
https://alandix.com/glossary/aibook/autonomous car
https://alandix.com/glossary/aibook/ground truth
https://alandix.com/glossary/aibook/supervised learning
https://alandix.com/glossary/aibook/AlphaGo
https://alandix.com/glossary/aibook/deep learning
https://alandix.com/glossary/aibook/Go
https://alandix.com/glossary/aibook/AlphaGo
https://alandix.com/glossary/aibook/adversarial learning

images. This internal arms race between generation and
discrimination networks, called generative adversarial
networks (GAN), leads to better and better image
generation [116].

8.4 DATA REDUCTION
The great thing about big data is that there is a lot of it,
so it is easy to use it to find patterns and learn rules. The
difficult thing about big data is that there is a lot of it,
so it is hard to run algorithms over it all. One of the first
stages of any big data analysis is often data reduction, that
is in various ways reducing the total size of the dataset we
are going to deal with. This might reduce it to a size that
can be managed on a single computer. However, even if
we still need to break the problem up so that it can be
executed in parallel on lots of machines, at least there will
be less of it.

Stated like this, data reduction sounds like a necessary
evil; however, sometimes it can actually make things bet-
ter. Having smaller data for machine learning can some-
times lead to more comprehensible and more general-
isable rules. Precise methods of data reduction vary for
different kinds of data such as graph data, event streams
and image sets. However, general rules apply reducing
the number of items you need to consider by some form
of selection or abstraction and reducing the complexity
of the data about each item.

We’ll primarily consider a large table with N record-
s/rows (perhaps records representing users or web
pages) and C columns of features/properties of them.
Both are typically large, but we’ll assume N, the number
of rows/records, is extremely large, several millions or
even billions, and C, the number of columns, is at least
in the thousands.

There are a number of options for this:

1. reduce the complexity of the information consid-
ered for each item (reduce C) – often called di-
mensionality reduction

2. reduce the total number of data items we consider
(reduce N)

3. reduce the number of data items considered by
one processor at one time

Even when we have massive computation available, we
may still use the two strategies, especially (1), as this

Going Large: Deep Learning and Big Data ■ 107

makes each computation more effective. Also note that
while option (3) is primarily used to allow parallelism
(working with lots of processors at the same time), it can
also be used sequentially on a single machine as a means
to ensure that it can have all data in memory.

We’ll look at a few options for each in turn.

8.4.1 Dimension Reduction

When data is numeric, the C data features can be thought
of as coordinates in a C dimensional space ℝC . The term
dimension reduction is about trying to find a smaller set
of features, so that the space has a smaller number of
dimensions. However, the term may also be used when
the features are non-numeric.

8.4.1.1 Vector Space Techniques

When the features are numeric, we can apply statistical
techniques to find a smaller dimensional space that re-
tains as much as possible of the variation of the origi-
nal data. Commonly one looks for a collection of B ‘basis
vectors’ b1, b2, ..., bB, in the same C-dimensional vector
space as the item features, where B is a lot smaller than C,
the original number of dimensions. For each data item d,
we construct B new features f1, f2, ..., fB using the vector
dot product:

fi = bi • d

The features fi are then used as the new B-dimensional
representation of the data item. Mathematically this is
projecting the C-dimensional space into the smaller
space that is spanned by the vectors bi.

One way of choosing the basis vectors (and hence
the C-dimensional subspace) is by choosing the first B
principal components. These are the directions in which
the data varies most (see Chap. 7). They can be derived
by calculating the eigenvectors and eigenvalues of the
correlation matrix between the original C features. This
gives the optimal space in the sense that the data loss
is smallest in terms of ‘least squares’, the sum of the
squares of the distance of the points from the chosen
subspace.

Thinking in terms of B-dimensional subspaces of C-
dimensional feature spaces when C may be many thou-
sands and B still dozens of dimensions can be a bit mind
blowing, so Figure 8.4 shows this in two dimensions, with
a 1-dimensional subspace being chosen. See how the first

https://alandix.com/glossary/aibook/generative adversarial networks
https://alandix.com/glossary/aibook/generative adversarial networks
https://alandix.com/glossary/aibook/GAN
https://alandix.com/glossary/aibook/big data
https://alandix.com/glossary/aibook/big data
https://alandix.com/glossary/aibook/big data
https://alandix.com/glossary/aibook/data reduction
https://alandix.com/glossary/aibook/data reduction
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/data reduction
https://alandix.com/glossary/aibook/event streams
https://alandix.com/glossary/aibook/dimensionality reduction
https://alandix.com/glossary/aibook/dimensionality reduction
https://alandix.com/glossary/aibook/parallelism
https://alandix.com/glossary/aibook/dimension reduction
https://alandix.com/glossary/aibook/statistical techniques
https://alandix.com/glossary/aibook/statistical techniques
https://alandix.com/glossary/aibook/principal components
https://alandix.com/glossary/aibook/eigenvectors
https://alandix.com/glossary/aibook/eigenvalues
https://alandix.com/glossary/aibook/correlation matrix
https://alandix.com/glossary/aibook/optimal
https://alandix.com/glossary/aibook/least squares

108 ■ Artificial Intelligence

FIGURE 8.4 Projecting into subspace defined by principal
components. Adapted from Nicoguaro – CC BY 4.0, https://
commons.wikimedia.org/wiki/File:GaussianScatterPCA.svg.

principal component points along the direction where
the data varies most.

Calculating principal components when the vector
space is very large can be computationally expensive as
the correlation matrix is C × C, so typically contains
many millions of elements. Although the principal
components are optimal, choosing a few more ‘good
enough’ vectors can work nearly as well. Indeed, even
completely random vectors may be sufficient.

Another possibility is to calculate principal compo-
nents for smaller collections of features that are in some
way linked, for example working on the engine charac-
teristics of a car separately to the appearance and internal
comfort features. Because the algorithms use scale with
powers of C, doing, say, 3 lots of C/3 features typically is
substantially less time consuming than dealing with all C
together.

Finally, the calculation of principal components relies
on each individual feature having roughly similar vari-
ability. Sometimes the library functions you use will deal
with this, but if not, you may need to scale features before
performing the analysis.

8.4.1.2 Non-numeric Features

Some forms of non-numerical data can be used in vector-
based approaches by taking simple 0/1 indicator vari-
ables for categorical data or other transformations. How-
ever, this is not always possible. In such cases one can
take subsets of features and use some form of unsuper-
vised clustering or similar technique to reduce several
features into one or more categories.

If you did this for all of the data at the same time,
you would hit the same learning problems that you are
trying to avoid by using data reduction, but operating on
small groups of features can make this manageable. In
addition, some techniques, notably multi-dimensional
scaling (MDS) can transform similarity data into
two-dimensional (or other) spaces preserving distance.
Using an algorithm such as this can mean a group of
non-numerical features can be transformed into two or
more numeric fields.

8.4.2 Reduce Total Number of Data Items

8.4.2.1 Sampling

A simple way to reduce the number of data items
is to sample. When the data does not start digital,
this is common practice: except for an occasional
census or tax return, one rarely gathers information
about every person in a country, but academic or
market researchers will interview a sample of people
and then use these to estimate figures for the overall
population.

When the data is digital, it almost feels wrong to ignore
some of it, but you can use a similar process. For exam-
ple, you could randomly choose 20,000 records from the
complete dataset and perform a machine learning algo-
rithm on these. So long as the sample size is large and the
sampling does not create any bias (don’t just pick the first
20,000!), this may give good results, certainly for more
general characteristics.

The downside of this approach is that it may not work
so well if there are relatively small parts of the dataset
with special characteristics. For example, if the data
is based on users of a sporting website, sampling may
give good results for popular pastimes such as football,
but less so for more niche ones such as cockroach
racing. One way to deal with this problem is to use a
form of boosting. You first train on a (relatively) small
sample, then check this against a larger sample. You
then select some of the examples on which it behaves
less well, add these to the training set and try again (see
Figure 8.5).

Alternatively the records that are poorly matched
could be taken as the basis of a completely different
machine learning phase, training rules specifically for
them. This is a form of segmentation, which we’ll look
at in more detail below.

https://commons.wikimedia.org/wiki/File:GaussianScatterPCA.svg
https://commons.wikimedia.org/wiki/File:GaussianScatterPCA.svg
https://alandix.com/glossary/aibook/principal components
https://alandix.com/glossary/aibook/correlation matrix
https://alandix.com/glossary/aibook/principal components
https://alandix.com/glossary/aibook/principal components
https://alandix.com/glossary/aibook/optimal
https://alandix.com/glossary/aibook/principal components
https://alandix.com/glossary/aibook/principal components
https://alandix.com/glossary/aibook/principal components
https://alandix.com/glossary/aibook/unsupervised
https://alandix.com/glossary/aibook/unsupervised
https://alandix.com/glossary/aibook/clustering
https://alandix.com/glossary/aibook/data reduction
https://alandix.com/glossary/aibook/multi-dimensional scaling
https://alandix.com/glossary/aibook/multi-dimensional scaling
https://alandix.com/glossary/aibook/MDS
https://alandix.com/glossary/aibook/similarity
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/bias
https://alandix.com/glossary/aibook/boosting
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/segmentation

Going Large: Deep Learning and Big Data ■ 109

FIGURE 8.5 Pseudocode for boosting niche record sets.

8.4.2.2 Aggregation

Rather than ignoring some records, we can collect to-
gether records that have some form of common charac-
teristic and create one or more summary records. This
can be done using some pre-existing criterion, or exam-
ple geographic region for people or genre for music, or it
can be derived from the data, such as the poorly matched
records above, or a clustering algorithm.

For numeric data the summary for the aggregate may
be the sum or average value (mean or median), maybe
with some measure of spread such as min/max quartiles
or standard deviation. For example, we may have global
geographic data with data for many small regions which
we are collecting to give a single record for each country.
The summary might have the sum of the region popula-
tion figures, but the average rainfall (maybe weighted by
region area).

For non-numeric data it is often less clear how to form
a summary. In such cases the many individual records
could be replaced by a small number of records chosen
to be ‘typical’ of the group as a whole. This is often a
good choice for text or image data where, for example,
an ‘average’ image may just be a grey smudge.

8.4.3 Segmentation

One way to reduce the number of records is through seg-
mentation, that is simply dividing the large dataset D into
a number of smaller datasets and then working on them
all, but separately. This does not reduce the total amount
of data but means that it can more easily be processed

in parallel. In addition some of the techniques make it
possible to incrementally add batches of data (time of
availability acting as the segmentation rule) rather than
completely re-training when new data becomes available.

As with sampling, some of the segmentation meth-
ods rely on each segment of the data being in some way
representative of the dataset as a whole. Where this is
the case, random segmentation may be sufficient, but
with the same limitations we saw for sampling when the
dataset is unbalanced.

8.4.3.1 Class Segmentation

One way to divide the data is if it falls into natural classes.
As with aggregation, this can use a pre-existing criterion,
or be derived from the data, through some form of unsu-
pervised learning. Machine learning can then be applied
to each of the segments yielding rules for each. When we
want to deal with a fresh input, the same criterion is ap-
plied to choose the appropriate rule set (see Figure 8.6).

8.4.3.2 Result Recombination

Some algorithms can process parts of the data and
then combine the results. This is particularly the case
for several kinds of statistical processing including
calculating minima, maxima, sums, and averages
(below), and a similar technique can be used for more
complex calculations creating correlations between
fields and n-grams (multi-word word frequencies in
text).

1. split dataset D into N segments D_1 ... D_N
2. for each D_i

https://alandix.com/glossary/aibook/boosting
https://alandix.com/glossary/aibook/clustering algorithm
https://alandix.com/glossary/aibook/quartiles
https://alandix.com/glossary/aibook/standard deviation
https://alandix.com/glossary/aibook/segmentation
https://alandix.com/glossary/aibook/segmentation
https://alandix.com/glossary/aibook/segmentation rule
https://alandix.com/glossary/aibook/segmentation
https://alandix.com/glossary/aibook/random segmentation
https://alandix.com/glossary/aibook/unsupervised learning
https://alandix.com/glossary/aibook/unsupervised learning
https://alandix.com/glossary/aibook/Machine learning

110 ■ Artificial Intelligence

FIGURE 8.6 Segmentation of training set into classes to allow dedicated classifiers for each.

2.1 calculate the minimum, maximum,
sum and count of items

2.2 store these as mn_i, mx_i, s_i
and ct_i respectively

3. take the stored results and calculate:
3.1 D_min = minimum of the mn_i
3.2 D_max = minimum of the mx_i
3.3 D_sum = sum of the s_i
3.4 D_ct = sum of the ct_i
3.5 D_avg = D_sum / D_ct

Some ensemble algorithms including random forests
deliberately segment the dataset in order to create
diversity (see Chap. 16). Here the combination rule is
part of the fundamental algorithm. For example, for
random forests each segment creates a single decision
tree, and these are simply gathered together into a forest.

Both this and class-based segmentation are particu-
larly appropriate for processing by MapReduce (see Sec-
tion 8.5.3 below).

8.4.3.3 Weakly Communicating Partial Analysis

Other algorithms lend themselves to parallel execution
on parts of the dataset but with some low-volume inter-
actions. A good example is genetic algorithms. Subsets
of data, perhaps selected randomly, are sent to different
processors which individually use a GA to work out rules
for their sample of the data. Occasionally the processors
share a few of their top ranked rules with each other and
swap some of their data sample for fresh data.

You can think of this a bit like animals breeding in
small valleys, with natural selection happening locally
in each. Occasionally a few of the stronger individuals
make it over into neighbouring valleys and so spread
good genes in the global gene pool.

8.5 PROCESSING BIG DATA

8.5.1 Why It Is Hard – Distributed Storage and
Computation

When we looked at recommender systems in Chapter 7,
we discussed a simple way of constructing product–
product scores from the matrix M of user–product
engagement scores (films liked by each user). This was
effectively computed by multiplying an N × P matrix by
its own transpose, where N is the number of users and P
is the number of products. The pseudocode for this is:

score(product A, product B)
sum = 0
foreach user u
sum = sum + M(u,A) * M(u,B)

return sum

When we are looking at web data, N, the number of
users could be anything from a few million to billions,
and P, the number of products, could be from tens
of thousands to millions. That is the matrix M may
range from 10s of billions to more than a quadrillion
(1,000,000,000,000,000) entries; that is from about a

https://alandix.com/glossary/aibook/ensemble algorithms
https://alandix.com/glossary/aibook/random forests
https://alandix.com/glossary/aibook/random forests
https://alandix.com/glossary/aibook/decision tree
https://alandix.com/glossary/aibook/decision tree
https://alandix.com/glossary/aibook/segmentation
https://alandix.com/glossary/aibook/MapReduce
https://alandix.com/glossary/aibook/genetic algorithms
https://alandix.com/glossary/aibook/natural selection
https://alandix.com/glossary/aibook/genes
https://alandix.com/glossary/aibook/recommender systems
https://alandix.com/glossary/aibook/transpose

hundred gigabytes to more than a petabyte of data. The
simple algorithm above would take around P × P × N
iterations of its inner loop to calculate every product–
product entry, that is 100s of trillions of times even for
the smaller end.

It is clear that

1. The data needs to be stored in ways that take ad-
vantage that it is sparse (most entries are zero)

2. Even when reduced, the data still needs to be split
over many data stores (disks/memory) – often
called sharding

3. The computation needs to be divided among
many processors

4. The computation needs to be organised so that it
accesses the data in efficient ways

If each user engages with on average E products, maybe
a few hundred, then a sparse representation of M (point
1) could take space proportional to N × E, that is ‘only’
billions to trillions of entries. At the lower end, we might
just fit into a single machine, but if not, (2) is essential.

Storage for the sparse matrix will tend to either group
all the product entries for a single user together on a sin-
gle disk, or all the user entries for a given product. If they
are stored the first way round, it is easy to do something
to all the product entries for a given user but hard to
find all users that have engaged with a particular prod-
uct. Whichever way round it is done, the code above will
be very slow and involve a lot of network traffic shunting
small packets of data around.

If there are more users than products, it is most likely
that the entries for a single user are clumped together.
Given this, it is more efficient to organise the code by first
of all looping over all users:

S = PxP matrix // product-product score
foreach user u
foreach pair of product A, B
add M(u,A) * M(u,B) to S(A,B)

If each user’s entries are together on the same disk, then
this is efficient grabbing all the entries for a single user
and working on them at once. That is the code is local –
accessing data that is stored physically close to one an-
other.

Going Large: Deep Learning and Big Data ■ 111

Notice that this code does something to lots of
entries about the same user and then adds up results.
Furthermore the order of adding up doesn’t matter,
making it easy to combine results of smaller calculations.
That is we can create a separate product–product score
for each shard (portion of the dataset stored on a single
device), and then add up the S(A,B) value from each
individual shard to give an overall product–product
score.

This is a fairly common pattern. For example, n-gram
calculation can be performed by computing all the
n-gram frequencies for a group of web pages and then
pooling the results.

This pattern has led to a particular style of cloud com-
puting called MapReduce [71].

8.5.2 Principles behind MapReduce

MapReduce is based on two concepts that themselves
have their origins in the AI language LISP and later func-
tional programming languages (see Figure 8.7).

In LISP map is a higher-order function, it takes a func-
tion and a list of values and applies the function to each
item in the list returning a new list:

map(f, [a, b, c, d, ..., z])
= [f(a), f(b), f(c), f(d), ..., f(z)]

For example:

function square(x) return x * x;

map (square, [1, 2, 7, 42, 6])
= [1, 4, 49, 1764, 36]

Notice how this ‘does the same thing’ to lots of dif-
ferent entries, just as we needed to process each user’s
entries.

The other part of MapReduce is based on another
higher-order function, reduce, which is a generalisation
of operations such as ‘sum’ that add up all the entries in
a list. It takes a function that can combine two values and
then applies it successively to create a sort of running
total:

reduce(g, init, [a, b, c, d, ..., z])
= g(z, g(...

g(d,g(c,g(b,g(a,init))))
...))

https://alandix.com/glossary/aibook/sharding
https://alandix.com/glossary/aibook/sparse matrix
https://alandix.com/glossary/aibook/local data access
https://alandix.com/glossary/aibook/shard
https://alandix.com/glossary/aibook/n-gram
https://alandix.com/glossary/aibook/n-gram
https://alandix.com/glossary/aibook/MapReduce
https://alandix.com/glossary/aibook/MapReduce
https://alandix.com/glossary/aibook/LISP
https://alandix.com/glossary/aibook/LISP
https://alandix.com/glossary/aibook/map!lisp
https://alandix.com/glossary/aibook/higher-order function
https://alandix.com/glossary/aibook/MapReduce
https://alandix.com/glossary/aibook/higher-order function
https://alandix.com/glossary/aibook/lisp!reduce

112 ■ Artificial Intelligence

FIGURE 8.7 Pseudocode for map and reduce in functional programming.

For example:

reduce ('+', 0, [1, 2, 7, 42, 6])
= 6 + 42 + 7 + 2 + 1 + 0

Many operations can be accomplished by combining
the two, for example to compute the sum of squares:

sum_of_squares(entries)
= reduce ('+', 0, map(square, entries))

8.5.3 MapReduce for the Cloud

The versions of map and reduce for cloud computing are
different but borrow loosely from this pattern. The key
difference is that instead of operating in sequences or
lists, they operate using hashes. The hash of a value is a
way of mapping values to near unique, shorter versions
that are effectively randomly spread. One example for a
string of letters would be to take their numeric values,
add them together and then take the last two digits. This
would map every text string, no matter how long, onto a
number between 0 and 99. Real hashes ‘shuffle’ the values
up a little more.

The reason for using hashes in large-scale data pro-
cessing is that if, for example, you use the actual val-
ues and these have some pattern (perhaps lots of names
start with ‘A’), then the data is spread unevenly leading
to bottlenecks. Let’s assume that the data in M is ini-
tially stored collected in a field called pscore in user
records and these records are stored in lots of different
data stores. We first define a function (Figure 8.8.i) that

is executed on whatever processor is convenient, possi-
bly the user records are sent in batches to processors, or
perhaps the code is sent to a processor that is attached to
the data store of the user records. Crucially this code can
run in parallel by different processors on different user
records.

The output consists of a hash code plus a data packet.
The hash codes are allocated arbitrarily to a number of
processing units for the reduce stage. Say we have de-
cided to use 37 processors for this stage, we would simply
send all the packets with hash code h to processor h mod
37. Because the hash function is designed to mix up the
values, we can be confident that this will create a fairly
even balance between processors.

The data packets with the same hash code are then col-
lected together and passed to a task-specific reduce func-
tion (Figure 8.8.ii), which combines all of the individual
user results for a particular product pair. Because each
data packet for a pair A, B goes to the same hash, they
will all end up in the same processor, and so there will be
only one processor generating a particular A–B value as
output.

The outputs from this stage can be used as input for
further MapReduce phases, or can be collected together,
as they would in this example to generate the product–
product scores matrix.

8.5.4 If It Can Go Wrong – Resilience for Big
Processing

Figure 8.9 summarises the main steps in MapReduce.
There are two innovative and essential aspects of

https://alandix.com/glossary/aibook/MapReduce
https://alandix.com/glossary/aibook/MapReduce

Going Large: Deep Learning and Big Data ■ 113

FIGURE 8.8 Pseudocode for map and reduce in cloud computing framework.

MapReduce cloud computing framework over and
above the Lisp/functional programming foundations in
Section 8.5.2. The first, which we’ve already discussed,
is the use of the hash to enable balanced distribution
over processors. The second is that both Google’s own
implementation and alternatives, such as the Apache
Hadoop framework, are built to be robust to failure.

When you write code, you probably assume the com-
puter will do what you ask it to. You will of course have
bugs or parts of your code with behaviour you don’t quite
understand, but you will normally assume that the com-
puter works reliably.

Indeed, if your computer does develop a fault, it is
most likely to show up in the failure of one of the other
programs that are executing such as the operating system
or web browser, before you notice a problem in your own
code. If something does go wrong with your computer,
you send it for repairs and restart a failed computation
from scratch (when it is fixed). In other words you treat
your computer as though it is always perfectly correct,
or completely broken, and happily the latter is rare and
exceptional.

However, a data centre may have tens of thousands of
computers and a single computation may be executing
on large numbers of them. At this scale, failure isn’t
an exception but normal. It will typically be the
case that some processors in the data centre have a
fault.

Happily MapReduce lends itself well to fault-tolerant
computing. There is no communication between proces-
sors within each stage, and so if a processor fails, its cal-
culations can simply be repeated. If the partial results
have already been distributed, the framework keeps track
of this and re-executes any knock-on reduce or gathering
stages as necessary.

Dealing with this kind of failure is complex, and one
of the reasons for the success of MapReduce is that it
deals with all of this for you. Of course you have to be
able to transform your chosen algorithm into an equiv-
alent MapReduce form, and this might mean modify-
ing it slightly. However, where possible it can be a rel-
atively rapid way to create systems that can be deployed
at scale.

8.6 DATA AND ALGORITHMS AT SCALE

8.6.1 Big Graphs

A lot of web data is in the form of graphs: the links be-
tween pages, friendship connections in social media, the
triples of RDF and the Semantic Web (Chap. 17). Most
web graphs, and indeed many large graphs, have two key
properties:

Long–tail distribution – Some web pages have vast
numbers of links inwards, or outwards, but the vast
majority have few; similarly in a social network

https://alandix.com/glossary/aibook/MapReduce
https://alandix.com/glossary/aibook/Apache Hadoop
https://alandix.com/glossary/aibook/Apache Hadoop
https://alandix.com/glossary/aibook/robust to failure
https://alandix.com/glossary/aibook/MapReduce
https://alandix.com/glossary/aibook/fault-tolerant
https://alandix.com/glossary/aibook/MapReduce
https://alandix.com/glossary/aibook/MapReduce
https://alandix.com/glossary/aibook/social media
https://alandix.com/glossary/aibook/RDF
https://alandix.com/glossary/aibook/Semantic Web
https://alandix.com/glossary/aibook/Long--tail distribution

114 ■ Artificial Intelligence

FIGURE 8.9 MapReduce distributed computation pipeline.

a small number of people have vast numbers of
contacts, where most have few.

Small world – You may have heard of ‘six degrees of
separation’, everyone you meet in the world is typ-
ically linked by a chain of six or more friends of
friends; social networks naturally then follow this
pattern. Web pages are the same with any pair of
pages connected by a relatively small number of link
hops.

The first of these means that you have to be very care-
ful of algorithms that work with averages or samples, as
the small number of exceptional pages/people can skew
results. It also means that one has to be careful that algo-
rithms do not fail when they hit these highly connected
individuals, especially when thinking about load balanc-
ing over processors.

The second means that any form of ‘local crawl’, start-
ing at an individual and then looking at friends, friends-
of-friends, etc. will grow very rapidly. Effectively they
have poor locality, with links rapidly cross-cutting be-
tween regions of the web.

In addition, all forms of graph processing have an ad-
ditional problem:

Combinatorial explosion – The number of possible
links between nodes increases with the square of
the size of the graph, the number of paths between
nodes, even faster. For example, a graph of size 10

has 90 possible directed links, while one of size
1000 has nearly a million.

Because of this, graph theorists in mathematics joke (yes
mathematicians do have a sense of humour!) that prob-
lems on graphs with less than four nodes are trivial, those
with four or five nodes are challenging and those with
six or more impossible. Of course, we may be looking at
graphs with millions or billions of nodes!

Processing big graphs therefore poses equally big chal-
lenges. MapReduce allows massive-scale processing be-
cause the data can be broken up and processed separately
– it exploits locality, but because graphs have links every-
where, some problems we’d like to address are inherently
non-local.

Happily, there are exceptions and important ones, no-
tably the PageRank algorithm [32] used by Google has a
MapReduce implementation. Indeed this was one of the
reasons for developing MapReduce in the first place.

For smaller graphs there are special systems for storing
the data, such as triple stores, discussed in Chapter 17.
Typically these make it easy to do ‘link chasing’ algo-
rithms, for example finding all the friends of a person,
and some support forms of reasoning, such as under-
standing that ‘descendant of ’ is transitive so that if A is
a descendant of B and B is a descendant of C, then A is
also a descendant of C.

Truly scalable graph processing frameworks are
harder as they inevitably have to deal with non-locality,

https://alandix.com/glossary/aibook/locality
https://alandix.com/glossary/aibook/Combinatorial explosion
https://alandix.com/glossary/aibook/MapReduce
https://alandix.com/glossary/aibook/locality
https://alandix.com/glossary/aibook/PageRank
https://alandix.com/glossary/aibook/Google
https://alandix.com/glossary/aibook/MapReduce
https://alandix.com/glossary/aibook/MapReduce
https://alandix.com/glossary/aibook/non-locality

but can help, for example with fault tolerance, and
packaging up messages between vertices. Some are built
as specialised systems from the ground up, others built
over existing big-data frameworks such as MapReduce.

Sometimes the uneven, clumpy nature of graphs can
be an advantage and used to create an abstraction of the
overall graph. It may be possible to cluster nodes and
then look at the graph of clusters, for example looking
at the graph of websites rather than web pages. These
clusters may be based on predetermined features, such
as the domain name of a URL or geographic location of
a person, but clustering algorithms can be used to detect
cliques. Alternatively in a social network it may be pos-
sible to focus on the highly connected individuals that
arise because of the long tail nature of networks.

Local patterns can be used as features for non-
graph algorithms. For example, the number of friends
(connectedness), how many of those friends are friends
of each other (cliquiness). Of course, these properties
themselves can recursively be used, for example is
someone friends with lots of highly connected people.
Although more sophisticated than this, social networks
largely use this form of local processing as it is impossible
to perform complete analysis of graphs of billions of
nodes.

8.6.2 Time Series and Event Streams

There are special issues and algorithms when dealing
with time series or event stream data (see Chap. 14).
Some techniques are based on windowing (working on
sections of the data stream) and so are naturally parallel
algorithms, but others depend on processing data
serially and are thus hard to deal with using multiple
processors.

8.6.2.1 Multi-scale with Mega-windows

In some cases, even if the underlying algorithms need to
process the data in a serial fashion, it may be possible to
break the data into large windows, process each serially
and then bring the different parts together in some way.
In particular, parallel algorithms can be used as the first
part of a multi-stage/scale algorithm (see Chap. 14). For
example, millisecond sample data can be split into large
windows, say an hour for each window. Each hour’s data
is used by an unsupervised algorithm to build classifiers
for short, say one minute, sections. It is usually easier to
test a classifier than build it, so the resulting rules can

Going Large: Deep Learning and Big Data ■ 115

be shared with other processors and the most successful
overall used by each processor to classify their data into
one-minute regions. The classified one-minute chunks
then form a much smaller sequence that can be collected
together and processed using small-data techniques.

8.6.2.2 Untangling Streams

Event streams often have some natural form of source or
topic that can be used to disentangle the single stream
into multiple smaller streams. For example, separating a
Twitter (X) stream based on people or tags. Alternatively,
some form of classifier can be used to classify each event
into streams. Note that this fits well into a MapReduce
framework. The input event stream is split into chunks
or randomly routed to multiple servers. Each performs a
map operation (the classification) assigning a hash based
on the class or topic. The reduce stage collects together
the events for a single topic, sorts them based on time of
arrival and then processes the event stream using stan-
dard techniques.

8.6.2.3 Real-time Processing

A pinch point in gathering any form of time-series
big-data is the initial arrival of data. Sometimes this will
mean some very fast data reduction simply to make it of
a scale that can be stored. For example, the detectors in
the particle accelerator at CERN have to deal with 600
million events per second, with substantial data for each
event [42]. Dedicated processors use fast hand-written
algorithms to discard uninteresting events and reduce
this to about 100,000 events per second. Second stage
algorithms then further process this and reduce this to a
few hundred events per second. It is only then that data
is stored and passed on for higher-level processing.

8.7 SUMMARY
We have seen that while in some ways deep learning is
just about neural networks with lots of nodes and lots
of layers, it is also evident that the behaviour of these
networks has a distinct nature and feels as though it is
not just more but also different. We can see how the vari-
ous layers in the network may embody levels of abstrac-
tion and that we can tune this for various applications
by making appropriate architectural choices as to sizes,
connectivity and learning rules of each layer.

We saw a similar story for other forms of big data anal-
ysis, at some point a change in quantity can lead to a

https://alandix.com/glossary/aibook/big-data
https://alandix.com/glossary/aibook/MapReduce
https://alandix.com/glossary/aibook/clusters
https://alandix.com/glossary/aibook/clusters
https://alandix.com/glossary/aibook/clustering
https://alandix.com/glossary/aibook/time series
https://alandix.com/glossary/aibook/event stream
https://alandix.com/glossary/aibook/windowing
https://alandix.com/glossary/aibook/unsupervised
https://alandix.com/glossary/aibook/Event streams
https://alandix.com/glossary/aibook/event
https://alandix.com/glossary/aibook/MapReduce
https://alandix.com/glossary/aibook/event stream
https://alandix.com/glossary/aibook/event stream
https://alandix.com/glossary/aibook/time-series
https://alandix.com/glossary/aibook/big-data
https://alandix.com/glossary/aibook/data reduction
https://alandix.com/glossary/aibook/CERN
https://alandix.com/glossary/aibook/deep learning
https://alandix.com/glossary/aibook/neural networks
https://alandix.com/glossary/aibook/big data

116 ■ Artificial Intelligence

change in the qualitative nature of results produced in-
cluding apparently intelligent behaviour from simple sta-
tistical techniques.

Sometimes the data is insufficient for certain forms of
deep learning, so we need to use ways to grow the dataset.
Adversarial techniques have proved particularly useful
in a number of applications, not least game playing. More
often we need to look for ways to reduce the volume of
data that we have to consider in total or by any single
processor. We have seen in particular that MapReduce
has proved powerful in allowing robust large-scale
computation of data that is far too big for a single
computer.

Some forms of big data have particular problems;
notably graphs, such as social network data, do not
have good locality making it hard to divide over
processors. Time-based data can also be complicated,
especially large quantities of real-time data that
may need to perform data reduction close to the
source.

8.1 A large dataset contains school records for every
pupil in the country over several years. As well as
basic demographics and subject-by-subject exam
results, it also includes social data such as lists of
friends. The data is proving too large to process as
a unit, so several strategies are being considered:

(i) Take all the pupils in a school class and aver-
age the values for exam results and other ap-
propriate fields, resulting in one record per
class.

(ii) Process the data from each region of the
country separately.

(iii) choose 5000 pupils at random and perform
the analysis only on their records.

a. For each of the above identify the kind
of data reduction being employed.

b. Can you think of advantages or disad-
vantages to any of these options, maybe
for particular kinds of analysis?

8.2 School records include exam data for each pupil
in the form subject:score in the first and second
semesters:

semester_1: { maths:53, history: 67,
geography: 63, ... }

semester_2: { maths:82, history: 71,
geography: 59, ... }

Following the pattern in Figure 8.8, write
MapReduce pseudocode to calculate the average
improvement for each subject between semesters
1 and 2 over all pupils. (That is the semester 2
score minus the semester 1 score for the subject.)

8.3 It is hypothesised that friends will tend to
improve in the same subjects. Consider how
you might process the very large school dataset
to investigate this. Which aspects are easy and
which are difficult? If you think of a suitable
strategy, write pseudocode for your solution.
Note, this may be a good exercise to work on in a
pair or small group.

FURTHER READING

I. Goodfellow, Y. Bengio, and A. Courville. Deep learning.
Adaptive computation and machine learning. MIT Press,
2017.
This includes both more statistical approaches and also
deep learning including aspects such as convolutional neu-
ral networks, which we’ll encounter in later chapters.

J. Luengo, D. García-Gil, S. Ramírez-Gallego, S. García, and F.
Herrera. Big data preprocessing. Springer, Cham, 2020.
This book covers in depth many of the issues in this chapter
including data reduction and the use of processing frame-
works such as MapReduce and Hadoop.

M. Nielsen. Neural networks and deep learning, 2019. http://ne
uralnetworksanddeeplearning.com/
A short free online book that offers an accessible overview
of neural networks and deep learning including examples
in Python.

J. Dean and S. Ghemawat. MapReduce: Simplified data pro-
cessing on large clusters. Communications of the ACM,
51(1):07–113, 2008.
This is the definitive paper on MapReduce. The paper not
only explains the framework but is written by developers
who had extensive experience building distributed algo-
rithms and therefore can attest to the value of the infras-
tructure.

https://alandix.com/glossary/aibook/statistical techniques
https://alandix.com/glossary/aibook/statistical techniques
https://alandix.com/glossary/aibook/deep learning
https://alandix.com/glossary/aibook/Adversarial techniques
https://alandix.com/glossary/aibook/game playing
https://alandix.com/glossary/aibook/MapReduce
https://alandix.com/glossary/aibook/big data
https://alandix.com/glossary/aibook/locality
https://alandix.com/glossary/aibook/data reduction
https://alandix.com/glossary/aibook/data reduction
https://alandix.com/glossary/aibook/MapReduce
https://alandix.com/glossary/aibook/convolutional neural networks
https://alandix.com/glossary/aibook/convolutional neural networks
https://alandix.com/glossary/aibook/data reduction
https://alandix.com/glossary/aibook/MapReduce
https://alandix.com/glossary/aibook/Hadoop
http://neuralnetworksanddeeplearning.com/
http://neuralnetworksanddeeplearning.com/
https://alandix.com/glossary/aibook/Python
https://alandix.com/glossary/aibook/MapReduce

9 CHAP T ER

Making Sense of Machine Learning

9.1 OVERVIEW
We’ve seen various examples of machine learning
techniques including classic knowledge-rich methods
(Chap. 5), neural networks (Chap. 6) and statistical
techniques (Chap. 7). In this chapter we’ll reflect on
some of the broader issues that cut across many of
these techniques. The chapter starts with a recap of the
main stages of machine learning: training, validation
and application, looking at general principles and
issues for each. It then looks at properties of the fitness
landscape and how understanding this can both help
choose an appropriate algorithm and then guide its
application. Finally we will look at some of the potential
complexities and pitfalls you may encounter in using
machine learning.

9.2 THE MACHINE LEARNING PROCESS
In Chapter 5 we saw that machine learning has three
main phases (Figure 5.3):

training – Building some sort of collection rules or
other representation based on a training set of
examples.

validation – In some way check that the rules generated
are operating satisfactorily.

application – Using the rules to address new situations
or data beyond those in the training set.

FIGURE 9.1 Training phase of machine learning.

We’ll first look at these in more detail before exploring
other issues.

9.2.1 Training Phase

The training phase (Figure 9.1) usually starts on some set
of existing data, the training set. In Chapter 5, we saw
that there were two main classes of algorithm, supervised
and unsupervised learning, depending on whether the
data has some sort of pre-existing label. We have seen
examples of each:

supervised learning – When the training set comes
pre-labelled with some form of classification or
expected response. Examples we’ve seen include
version spaces, decision trees and, of course, many
kinds of neural networks.

unsupervised learning – When the data is unlabelled
and the algorithm creates its own labels or structure.
Examples we’ve seen include Kohonen nets, princi-
pal components and k-means.

DOI: 10.1201/9781003082880-11 117

https://alandix.com/glossary/aibook/neural networks
https://alandix.com/glossary/aibook/statistical techniques
https://alandix.com/glossary/aibook/statistical techniques
https://alandix.com/glossary/aibook/fitness landscape
https://alandix.com/glossary/aibook/fitness landscape
https://alandix.com/glossary/aibook/training phase
https://alandix.com/glossary/aibook/supervised learning
https://alandix.com/glossary/aibook/unsupervised learning
https://alandix.com/glossary/aibook/supervised learning
https://alandix.com/glossary/aibook/version spaces
https://alandix.com/glossary/aibook/decision trees
https://alandix.com/glossary/aibook/neural networks
https://alandix.com/glossary/aibook/unsupervised learning
https://alandix.com/glossary/aibook/Kohonen nets
https://alandix.com/glossary/aibook/principal components
https://alandix.com/glossary/aibook/principal components
https://alandix.com/glossary/aibook/k-means
http://dx.doi.org/10.1201/9781003082880-11

118 ■ Artificial Intelligence

The learning algorithm also usually needs some form
of fitness function (sometimes called an objective
function), that says how well the algorithm is doing. For
supervised learning this is usually how close the algo-
rithm is to giving the right answer. For a binary yes/no
categorisation this may simply be a count of how many
times the algorithm gets the right answer. However,
in other cases the fitness function needs to capture a
measure of “how close am I?”. For unsupervised learning
the fitness is more about the coherence of the grouping
or classification, for example, if there is some measure of
similarity between items in the training set, this might
compare the average similarity of items put in the same
category to the average similarity of those in different
categories.

The fitness function may not be explicit, but there
is usually something that the algorithm is trying to
be good at. Sometimes you may need to provide this
directly yourself, or sometimes things that contribute to
it (e.g. a similarity measure). In addition, you may often
need to provide additional configuration parameters for
the algorithm, such as the number of nodes in a neural
network.

The output of the learning phase is usually some form
of rule set. These may be very clearly ‘rules’, for exam-
ple IF–THEN rules, or a decision tree, but may also be
represented more abstractly, for example as weights in a
neural network.

9.2.2 Application Phase

During the application phase (Figure 9.2) the rules are
used to classify or process unseen examples, for example
images to be classified, or board positions in the middle
of a game. A recognition algorithm takes the rule set and
the unseen example and allocates the class label or de-
cides the next move.

In the case of supervised learning, this will be from
the original set of labels used during training, in
the case of unsupervised learning the categories, or
other representation created by the learning algorithm
itself.

In some cases, for example in many neural networks,
the training and recognition algorithms look very simi-
lar, but this need not be the case. For example, a genetic
algorithm may be used to create a set of IF–THEN rules,
which are later converted into raw code to run on a tar-
get platform. The learning algorithm must in some sense

FIGURE 9.2 Application phase of machine learning.

know about the eventual recognition algorithm as it is
creating the rules for it, but this can be relatively indirect.

9.2.3 Validation Phase

In Chapter 5, we noted that this stage may be omitted
or not explicitly present. This is especially the case when
further learning is taking place after deployment, for
example the speech recognition in a home assistant
that is constantly adapting to the voices of the home
occupants. There are two different reasons one may
want to validate a system:

Evaluation – checking how successful the learning has
been

Interpretation – making sense of the rules generated

We will look at evaluation in more detail below (Sec-
tion 9.3).

In the case of supervised learning, we might simply
be happy with the evaluation, it does what it should.
However, sometimes we want to understand in more
detail. This can be trivial, for example a small set of
IF–THEN rules, or apparently impossible, for example
a billion weights in a large neural network. Even if we
understand the rules, making sense of how they came
about, the learning process, may be important. This
issue of explainable AI is a topic in itself and we will
return to it in Chapter 21.

For unsupervised learning, there are three broad ways
the output may be used (see Figure 9.3).

Visualisation and understanding – Here the end
point is to help a user make sense of the data.
There may never be a further application phase.

https://alandix.com/glossary/aibook/fitness function
https://alandix.com/glossary/aibook/objective function
https://alandix.com/glossary/aibook/objective function
https://alandix.com/glossary/aibook/supervised learning
https://alandix.com/glossary/aibook/fitness function
https://alandix.com/glossary/aibook/unsupervised learning
https://alandix.com/glossary/aibook/similarity measure
https://alandix.com/glossary/aibook/similarity
https://alandix.com/glossary/aibook/similarity
https://alandix.com/glossary/aibook/fitness function
https://alandix.com/glossary/aibook/similarity
https://alandix.com/glossary/aibook/configuration parameters
https://alandix.com/glossary/aibook/neural network
https://alandix.com/glossary/aibook/neural network
https://alandix.com/glossary/aibook/learning phase
https://alandix.com/glossary/aibook/decision tree
https://alandix.com/glossary/aibook/neural network
https://alandix.com/glossary/aibook/application phase
https://alandix.com/glossary/aibook/supervised learning
https://alandix.com/glossary/aibook/unsupervised learning
https://alandix.com/glossary/aibook/neural networks
https://alandix.com/glossary/aibook/genetic algorithm
https://alandix.com/glossary/aibook/genetic algorithm
https://alandix.com/glossary/aibook/speech recognition
https://alandix.com/glossary/aibook/supervised learning
https://alandix.com/glossary/aibook/neural network
https://alandix.com/glossary/aibook/explainable AI
https://alandix.com/glossary/aibook/unsupervised learning
https://alandix.com/glossary/aibook/Visualisation
https://alandix.com/glossary/aibook/application phase

The techniques for this are similar to those for
explainable AI when the output is also used in an
application (see Chap. 21).

Expert labelling – In some cases, the machine learning
algorithm is used to allocate the data into groups/-
clusters or perhaps create a representation in terms
of a small number of features. An expert then looks
at these and labels them (see also Chap 18). Later,
when a new data item is seen it can be allocated
the expert label. For example, suppose patients
have been grouped by ML based on symptoms, a
doctor then looks at the groups and labels each
group by potential ailments. Later when a new
patient arrives, the recognition algorithm allocates
the patient to one of the learnt groups, and then
this is used to associate them with the relevant
ailment.

Pre-processing – The second way unsupervised
machine learning is used is as a pre-processor for
data that is then passed into another supervised
machine learning algorithm. Revisiting the medical
example, we may actually have a diagnosis for each
patient in the training set, but initially ignore this
to perform unsupervised learning. The label for
each patient is then re-attached to the reduced
representation created by the unsupervised
algorithm and this is fed into another learning
algorithm. This sounds a little indirect, but the
unsupervised algorithm is effectively simplifying
the data.

9.3 EVALUATION
For supervised learning we want to know whether the
machine learning has been successful. There are two sep-
arate questions:

1. How well does it do on the training set?

2. How well does it do on unseen examples?

Sometimes you will see both figures quoted. However,
we would normally expect better response on the train-
ing set than on unseen examples, so it is the latter that
is most critical as this tells us how well our learnt rules
generalise.

Making Sense of Machine Learning ■ 119

FIGURE 9.3 Three ways of using the output of unsupervised
learning.

9.3.1 Measures of Effectiveness

The most obvious measure is accuracy, how often the
predicted classification or label is correct. However, this
may be a very poor measure, particularly if the base rate
of the thing you are interested in is low. For example, just
under 10% of people worldwide have diabetes (the base
rate). If a diagnostic test for diabetes always says “No” it
will be 90% accurate ...but utterly useless. For Fabry dis-
ease affecting about 1 in 40,000 the simple “No” answer
will be 99.975% accurate, so whenever you see an accu-
racy figure on its own, think base rate!

For a simple binary classification such as “Has diabetes
Yes/No?”, there are four numbers which between them
define the effectiveness of the learning.

https://alandix.com/glossary/aibook/explainable AI
https://alandix.com/glossary/aibook/Expert labelling
https://alandix.com/glossary/aibook/Pre-processing
https://alandix.com/glossary/aibook/unsupervised machine learning
https://alandix.com/glossary/aibook/unsupervised machine learning
https://alandix.com/glossary/aibook/pre-processor
https://alandix.com/glossary/aibook/supervised machine learning
https://alandix.com/glossary/aibook/supervised machine learning
https://alandix.com/glossary/aibook/unsupervised learning
https://alandix.com/glossary/aibook/unsupervised algorithm
https://alandix.com/glossary/aibook/unsupervised algorithm
https://alandix.com/glossary/aibook/unsupervised algorithm
https://alandix.com/glossary/aibook/supervised learning
https://alandix.com/glossary/aibook/accuracy
https://alandix.com/glossary/aibook/base rate
https://alandix.com/glossary/aibook/base rate
https://alandix.com/glossary/aibook/base rate
https://alandix.com/glossary/aibook/accuracy
https://alandix.com/glossary/aibook/accuracy
https://alandix.com/glossary/aibook/base rate

120 ■ Artificial Intelligence

True positives (TP) – the test says “yes” and this is right

False positives (FP) – the test says yes, but it is wrong
(in statistics called a Type I error)

False negatives (FN) – the test says “no”, but it should
have said “yes” (in statistics called a Type II error)

True negatives (TN) – the test says “no” and it is right!

Ideally FP and FN are both zero, but of course that is
rarely the case. The simple accuracy measure is (TP +
TN)/Total, but as we saw this is a poor measure if there
is a large discrepancy between the number of people/data
items in the two classes.

Two measures that are often quoted are:

Precision – the proportion of times that a data item with
a positive test result really is positive
= TP/(TP+FP)

Recall – the proportion of times that a data item that
really is positive has a positive test result
= TP/(TP+FN)

In the diabetes example, precision is addressing the ques-
tion “if the ML system says someone has diabetes, how
likely is it to be right”, whereas recall addresses the ques-
tion “if someone has diabetes, how likely is it the ML sys-
tem will diagnose them?”.

Sometimes these are combined into a single measure,
the F score:

F = 2PR/(P + R)
This F score can be useful as a quick summary, but while
this is better than the simplistic accuracy measure, do
always look at the details, not just the single score.

9.3.2 Precision–Recall Trade-off

Often you can make choices that trade-off precision
against recall. The simplest example is when the learning
system outputs an “evidence for diabetes” score rather
than a simple “yes/no”. This can be converted into a
“yes/no” by using a threshold. If the threshold is high,
you reduce false positives, so precision is high, but also
increase false negatives, so recall goes down. You may
get similar effects by varying parameters for the learning
system, such as the number of nodes in hidden layers of
a neural network.

FIGURE 9.4 ROC curve – trade-off between false positive and
false negative rates.

As you vary the threshold, or other parameter, you
can plot precision vs recall on a graph and see a curve,
called the Receiver Operating Characteristic (ROC)
curve, where increasing precision reduces recall and
vice versa. Figure 9.4 shows an example ROC curve.
Note that the axes in a ROC curve are usually shown as
true positive rate (same as recall) on the y-axis and ‘false
negative rate’ (one minus the precision) on the x-axis.
That is a small value on the x-axis is best and a large
value on the y-axis is best.

Ideally we would have 100% precision (no false
positives) and 100% recall, but that is rarely the case!
The ROC curve can be used to answer questions such as
“if I want precision to be at least 90% what is the best
recall”, or to make cost–benefit trade-offs. The curve in
Figure 9.4 is typical, choosing a high value for precision
means recall is low and vice versa. Often we choose a
point somewhere on the middle of the ROC curve.

The ROC curve can also be used to compare different
machine learning algorithms, say A and B. If you just test
with a single threshold for each, it can be hard to com-
pare the different precision and recall as neither may be
better on both, but if you plot the ROC curve for them
(Figure 9.5) and the A curve lies above the B one, you
know that whatever parameter values you chose for B,
there will be a choice of A parameter that will beat it on
both criteria. As A is uniformly better than B, it would
be the best choice between the two. Often things are not
so easy. Suppose we want to choose between classifiers B
and C; B is better than C if we require high recall, but
it is worse when we want high precision. In addition,
other considerations need to be taken into account, such

https://alandix.com/glossary/aibook/accuracy measure
https://alandix.com/glossary/aibook/Precision
https://alandix.com/glossary/aibook/Recall
https://alandix.com/glossary/aibook/precision
https://alandix.com/glossary/aibook/F score
https://alandix.com/glossary/aibook/F score
https://alandix.com/glossary/aibook/accuracy measure
https://alandix.com/glossary/aibook/precision
https://alandix.com/glossary/aibook/recall
https://alandix.com/glossary/aibook/threshold
https://alandix.com/glossary/aibook/threshold
https://alandix.com/glossary/aibook/false positives
https://alandix.com/glossary/aibook/precision
https://alandix.com/glossary/aibook/false negatives
https://alandix.com/glossary/aibook/recall
https://alandix.com/glossary/aibook/neural network
https://alandix.com/glossary/aibook/threshold
https://alandix.com/glossary/aibook/precision
https://alandix.com/glossary/aibook/Receiver Operating Characteristic
https://alandix.com/glossary/aibook/ROC
https://alandix.com/glossary/aibook/precision
https://alandix.com/glossary/aibook/recall
https://alandix.com/glossary/aibook/ROC curve
https://alandix.com/glossary/aibook/ROC curve
https://alandix.com/glossary/aibook/true positive
https://alandix.com/glossary/aibook/recall
https://alandix.com/glossary/aibook/false negative
https://alandix.com/glossary/aibook/false negative
https://alandix.com/glossary/aibook/precision
https://alandix.com/glossary/aibook/precision
https://alandix.com/glossary/aibook/false positives
https://alandix.com/glossary/aibook/false positives
https://alandix.com/glossary/aibook/ROC curve
https://alandix.com/glossary/aibook/precision
https://alandix.com/glossary/aibook/cost--benefit
https://alandix.com/glossary/aibook/precision
https://alandix.com/glossary/aibook/recall
https://alandix.com/glossary/aibook/ROC curve
https://alandix.com/glossary/aibook/ROC curve
https://alandix.com/glossary/aibook/threshold
https://alandix.com/glossary/aibook/precision
https://alandix.com/glossary/aibook/recall
https://alandix.com/glossary/aibook/ROC curve
https://alandix.com/glossary/aibook/recall
https://alandix.com/glossary/aibook/precision

FIGURE 9.5 ROC curve – choosing between classifiers.

as computational cost of the classifiers and the relative
harms of false positives and false negatives.

Sometimes the area under the curve on a ROC
diagram is used as an overall measure of how well an
algorithm is performing. Note that a completely
random classifier that tossed a coin or rolled a dice to
choose between the options would have an equal true
positive and true negative rate. By choosing a different
probability we can shift recall and precision, but they are
exactly trading off one another. This random classifier
has an area under the curve of a half, so an algorithm
should be a lot better than that.

9.3.3 Data for Evaluation

In order to evaluate the output of a machine learning sys-
tem, we need something to evaluate it against, that is data
with a known label. It is tempting to use all your labelled
data on training, especially if your dataset is not large.
However, this means you have nothing left for evalua-
tion and you can’t tell if the algorithm can generalise to
unseen examples.

To address this you normally ‘hold out’ some data for
evaluation. A typical value is 10% of your data. You then
train on the remaining 90% and evaluate on the hold out
data items.

A slightly more complex variation on this is cross-
validation. You split the data into ten random subsets,
D1, D2, ..., D10 (or in general k subsets, known as k-fold
cross-validation). You start by holding out D1 and train-
ing on the other 90% of the data (D2, D3, ..., D10) and
evaluate the learnt model against D1. However, you then
do the same for the other nine subsets in turn, holding

Making Sense of Machine Learning ■ 121

out D2, and training on (D1, D3, ..., D10); then holding
out D3 and so on. By the time you have finished you have
run the algorithm 10 times against different subsets of
the data and evaluated it against every data item.

Of course with cross-validation you end up with 10
different rule sets. It is really more about evaluating the
algorithm itself rather than a specific rule set.

9.3.4 Multi-stage Evaluation

A little extra care needs to be taken when dealing with
‘meta’ algorithms, high-level algorithms that apply mul-
tiple techniques, or the same technique with different
tuning parameters. For example, in a multi-layer neu-
ral network, one might apply a higher level algorithm
to choose the number of nodes at each layer. Similarly,
a random forest algorithm might evaluate each of the
individual decision trees in the forest to work out a best
weighting between them.

The high-level algorithm is likely to use some vari-
ant of k-fold cross-validation to do its internal optimi-
sation, and so it can be tempting to think this is good
enough. However, this can be susceptible to the same is-
sues of overfitting and lack of generalisation as the lower-
level base algorithms on which it is working. You must
apply the same principles to the high-level meta algo-
rithm, holding back a portion of the training set for eval-
uation, even though you know the algorithm will do the
same to the reduced set when it works with the lower-
level algorithms.

9.4 THE FITNESS LANDSCAPE
The fitness function says how well the learning algorithm
is doing. It is usually the sum or average of the individual
fit of each data item, that is how close the algorithm is
to correctly predicting the class label. Sometimes this is
arranged so that larger values are better, but sometimes
the other way round particularly when some sort of error
is measured so that zero is the perfect score.

This is often visualised in terms of a landscape, ei-
ther an energy landscape when the goal is to minimise
error/energy or a fitness landscape when the goal is to
maximise fitness. The coordinates of the landscape are
the parameter values that are being learnt (e.g. weights in
a neural network) and the height/depth is the fitness or
error. When the parameters are two numbers, this looks
just like a physical landscape with high mountains (opti-
mal values) and deep valleys (low fitness). In reality there

https://alandix.com/glossary/aibook/false positives
https://alandix.com/glossary/aibook/false negatives
https://alandix.com/glossary/aibook/area under the curve
https://alandix.com/glossary/aibook/ROC
https://alandix.com/glossary/aibook/true positive
https://alandix.com/glossary/aibook/true positive
https://alandix.com/glossary/aibook/true negative
https://alandix.com/glossary/aibook/probability
https://alandix.com/glossary/aibook/recall
https://alandix.com/glossary/aibook/precision
https://alandix.com/glossary/aibook/area under the curve
https://alandix.com/glossary/aibook/hold out
https://alandix.com/glossary/aibook/hold out
https://alandix.com/glossary/aibook/cross-validation
https://alandix.com/glossary/aibook/cross-validation
https://alandix.com/glossary/aibook/k-fold cross-validation
https://alandix.com/glossary/aibook/k-fold cross-validation
https://alandix.com/glossary/aibook/cross-validation
https://alandix.com/glossary/aibook/multi-layer neural network
https://alandix.com/glossary/aibook/multi-layer neural network
https://alandix.com/glossary/aibook/random forest
https://alandix.com/glossary/aibook/decision trees
https://alandix.com/glossary/aibook/k-fold cross-validation
https://alandix.com/glossary/aibook/optimisation
https://alandix.com/glossary/aibook/optimisation
https://alandix.com/glossary/aibook/overfitting
https://alandix.com/glossary/aibook/generalisation
https://alandix.com/glossary/aibook/fitness function
https://alandix.com/glossary/aibook/energy landscape
https://alandix.com/glossary/aibook/fitness landscape
https://alandix.com/glossary/aibook/neural network
https://alandix.com/glossary/aibook/optimal
https://alandix.com/glossary/aibook/optimal

122 ■ Artificial Intelligence

are typically large numbers of parameters, and these may
be discrete, binary or even structured like a decision tree,
so the image breaks down at that point, but if you think
of the physical landscape you can obtain some useful
insights.

In these terms learning is simply an optimisation task,
find the parameters (weights, rules) so that the fitness is
maximised (or error minimised). That is, find the highest
point in the fitness landscape.

All algorithms make some implicit assumptions about
the structure of the landscape. If there were no structure,
then no algorithm could perform better than a Monte
Carlo search, simply choosing parameters at random
and selecting the best guess. Many algorithms assume
some sort of locality, if one choice of parameters is good,
then small changes in the parameters are also likely to be
good; that is they assume that the landscape is relatively
smooth, with few discontinuities

9.4.1 Hill-Climbing and Gradient Descent/Ascent

When you examine the internal mechanism of many
algorithms, they are in part doing a form of ‘hill
climbing’, looking for small changes from the current
location that are better. You can explicitly choose to
use hill climbing, but often this is implicit, for example
mutation in genetic algorithms or the backpropagation
rules in neural networks.

We need to work out the best direction to take. On a
hill this is the direction that gives the most rapid height
gain. Sometimes this direction is approximated by eval-
uating a number of possible small steps and choosing the
one that gives the best result – imagine feeling with your
foot in dense fog to work out which direction is best.
However, if the fitness function has suitable properties,
it can be calculated exactly by differentiating (finding the
slope of) the fitness function with respect to the various
parameters. Using this optimal direction is called gradi-
ent descent (or gradient ascent for maximising).

Backpropagation is just such a gradient-descent algo-
rithm that is seeking to minimise the sum of squares of
the differences between the actual and desired outputs.
The multi-layer neural network can be seen as a series
of function applications where each layer is a function of
the previous layer and the weights of connections. Dif-
ferentiating this gives precisely the chains of backpropa-
gated errors in the algorithm. Strictly the exact gradient
descent would work out the small weight changes due

FIGURE 9.6 Hill climbing may get stuck at local maximum.

to the entire training set and apply them together. The
incremental algorithm that updates the weights for each
training example can be seen as an approximation to the
optimal direction if the changes are all very small.

9.4.2 Local Maxima and Minima

A common problem in any optimisation is getting stuck
in local minima/maxima as we saw when we first dis-
cussed hill climbing in Chapter 4. You want to get to the
top of the highest mountain on a foggy day, you keep
climbing upward until you get to the summit of what
appears to be the highest point, but it is really just a small
hill in the middle of a plain (Figure 9.6). If you look at a
map, or the fog clears, it is obvious that the real mountain
top is on the horizon. Sometimes to get higher you have
to initially go downhill, but locally it is impossible to tell.

The learning algorithm can have exactly the same
problem. It finds a selection of parameter values, a
location in the fitness landscape, that performs better
than any close location. If it is working by small
increments, then nothing it tries is better, so it thinks
it has got the best solution. You can think of the search
problem as being in two main parts:

global search – finding a good overall region (Hi-
malayas rather than the Netherlands);

local search – finding the best point within the region.

Algorithms get around this in different ways. For exam-
ple, some have lots of attempts from different random
starting points. In some cases this needs to be explicitly
considered and parameters carefully chosen, but in some
algorithms this happens almost as an accident of the na-
ture of the algorithm.

https://alandix.com/glossary/aibook/decision tree
https://alandix.com/glossary/aibook/optimisation
https://alandix.com/glossary/aibook/fitness landscape
https://alandix.com/glossary/aibook/Monte Carlo search
https://alandix.com/glossary/aibook/Monte Carlo search
https://alandix.com/glossary/aibook/locality
https://alandix.com/glossary/aibook/hill climbing
https://alandix.com/glossary/aibook/hill climbing
https://alandix.com/glossary/aibook/hill climbing
https://alandix.com/glossary/aibook/genetic algorithms
https://alandix.com/glossary/aibook/backpropagation
https://alandix.com/glossary/aibook/neural networks
https://alandix.com/glossary/aibook/fitness function
https://alandix.com/glossary/aibook/fitness function
https://alandix.com/glossary/aibook/optimal
https://alandix.com/glossary/aibook/gradient descent
https://alandix.com/glossary/aibook/gradient descent
https://alandix.com/glossary/aibook/gradient ascent
https://alandix.com/glossary/aibook/Backpropagation
https://alandix.com/glossary/aibook/gradient-descent
https://alandix.com/glossary/aibook/multi-layer neural network
https://alandix.com/glossary/aibook/gradient descent
https://alandix.com/glossary/aibook/gradient descent
https://alandix.com/glossary/aibook/optimal
https://alandix.com/glossary/aibook/optimisation
https://alandix.com/glossary/aibook/local minima/maxima
https://alandix.com/glossary/aibook/hill climbing
https://alandix.com/glossary/aibook/fitness landscape
https://alandix.com/glossary/aibook/global search
https://alandix.com/glossary/aibook/local search

Making Sense of Machine Learning ■ 123

In particular, the overall average effect of all the
backpropagation steps in neural net training is a pure
hill climb, but the fact that these are performed incre-
mentally for each training item means the algorithm is
taking a slightly wiggly path rather than directly down-
hill (to minimise error). In fact, this slightly wiggly path
can be beneficial as it is adding an element of noise and
makes it less likely that the network gets stuck in a local
minima.

One algorithm that makes explicit use of these effects
is simulated annealing (Chap. 4), which effectively tries
random steps, and probabilistically decides whether to
proceed based on how much better or worse the new po-
sition is; it is more likely to choose the better position
but may also choose a worse one. The algorithm has a
‘temperature’ setting that determines how likely it is to
take a step even if the new position is worse. The sys-
tem starts off hot, so it is more likely to move near ran-
domly around the landscape, but spending more time in
the ‘better’ parts (global search). Over time the temper-
ature is reduced, meaning it is less likely to take these
speculative moves and instead ends up taking small steps
more like a simple hill-climb (local search).

Genetic algorithms can similarly be seen as a form
of gradient descent. Mutations effectively take small
steps and the best individuals survive, but rather than
following a single route, they are effectively trying
multiple paths in parallel and with a lot of random
choices. In addition, the inter-breeding in genetic
algorithms allow sharing of partial knowledge of the
fitness landscape (see Section 9.4.4).

9.4.3 Plateau and Ridge Effects

A related problem is plateaux, large areas of the fitness
landscape where there is little if any improvement. That
is, configurations of the parameters being learnt where
no small local changes make any improvement at all.

A plateau often happens at poor points where certain
combinations of parameters are so bad they make the
whole solution poor. For example, a particular set of hat,
coat, scarf and gloves where every colour clashes with
every other colour, no small change makes it any bet-
ter! There can also be ridges, where some small changes
do make things much worse (stepping sideways off the
ridge), but among the changes that don’t make it worse,
there is no clear direction. This may happen when the
model’s degrees of freedom are too large, so that lots of

different model parameters all lead to reasonably good
solutions.

In both cases, the problem is there is no clear direc-
tion. It might be that you simply end up with one of
many ‘good enough’ solutions, but in fact it might be that
beyond the plateau or at one or other end of the ridge,
there are higher regions; it is just impossible to tell how
to get there. The impact of the plateau or ridge in the fit-
ness landscape is a corresponding plateau in the learning
rate; you will see a long period of time with no overall
improvement.

Furthermore it is possible that given the lack of clear
global direction, the algorithm locally optimises to some
irrelevant pattern (a local maxima); such patterns can of-
ten be a spurious feature of the training sets (overfitting).

It may be possible to automatically identify these
issues arising within an algorithm, for example if the
‘best so far’ doesn’t improve for a while, it may be
possible to ‘kick’ the algorithm, increase mutation rate
in a genetic algorithm or temperature for simulated
annealing. Alternatively you might simply restart the
algorithm entirely. The algorithm can always keep track
of the ‘best seen’, so that if the radical move does not
make any improvement, it can still return the solution
in the plateau.

In addition, as this can be a sign of overfitting, it can
be a clue that the architecture of the model needs to be
changed, perhaps reducing the number of nodes in a
layer of a neural network.

9.4.4 Local Structure

Genetic algorithms in addition make use of the fact that
the ‘shape’ of the landscape is similar in different places so
that if a subset of parameters are optimised for particular
values of the rest of the parameters, they may well still
be a good choice if one or more of the other parameters
changes. This typically occurs when some of the choices
are only weakly dependent on others.

For example, imagine trying to work out the best set
of clothes to wear. If a particular choice of hat, scarf and
gloves work together with one pair of boots, then even if
you change your mind and wear a different pair of boots,
the effort of working out that the hat, scarf and gloves
look good together is not wasted. Of course, it might
sometimes be that the boot colour clashes with the scarf,
so you have to rethink, but for many boot choices, the
rest of the outfit works.

https://alandix.com/glossary/aibook/backpropagation
https://alandix.com/glossary/aibook/local\protect \penalty -\@M minima
https://alandix.com/glossary/aibook/local\protect \penalty -\@M minima
https://alandix.com/glossary/aibook/simulated annealing
https://alandix.com/glossary/aibook/global search
https://alandix.com/glossary/aibook/local search
https://alandix.com/glossary/aibook/Genetic algorithms
https://alandix.com/glossary/aibook/gradient descent
https://alandix.com/glossary/aibook/genetic algorithms
https://alandix.com/glossary/aibook/genetic algorithms
https://alandix.com/glossary/aibook/fitness landscape
https://alandix.com/glossary/aibook/plateaux
https://alandix.com/glossary/aibook/fitness landscape
https://alandix.com/glossary/aibook/fitness landscape
https://alandix.com/glossary/aibook/plateau
https://alandix.com/glossary/aibook/ridge
https://alandix.com/glossary/aibook/plateau
https://alandix.com/glossary/aibook/ridge
https://alandix.com/glossary/aibook/plateau
https://alandix.com/glossary/aibook/ridge
https://alandix.com/glossary/aibook/fitness landscape
https://alandix.com/glossary/aibook/fitness landscape
https://alandix.com/glossary/aibook/plateau
https://alandix.com/glossary/aibook/learning rate
https://alandix.com/glossary/aibook/learning rate
https://alandix.com/glossary/aibook/local maxima
https://alandix.com/glossary/aibook/overfitting
https://alandix.com/glossary/aibook/genetic algorithm
https://alandix.com/glossary/aibook/simulated annealing
https://alandix.com/glossary/aibook/simulated annealing
https://alandix.com/glossary/aibook/plateau
https://alandix.com/glossary/aibook/overfitting
https://alandix.com/glossary/aibook/architecture of the model
https://alandix.com/glossary/aibook/neural network
https://alandix.com/glossary/aibook/Genetic algorithms

124 ■ Artificial Intelligence

9.4.5 Approximating the Landscape

Many algorithms do not use this local structure, in
which case it may not matter if the landscape is in a
sense slightly smoothed or fuzzy. When you choose
your mountain climbing holiday, you may initially use
a small-scale map, where the whole mountain region
simply appears as a clump, but as you start to climb a
specific mountain you will use a large-scale map that
shows individual peaks and paths.

One variant of this is to use a small sample from the
training dataset in early stages of learning and then use
more of the data later for fine tuning – here using fewer
training data items initially is giving a less precise fitness
landscape. Some image processing algorithms start off
using lower resolution copies of the image and gradually
move to higher resolution – here it is the accuracy of the
individual training data items that is being manipulated.

If the training data is provided by a simulation, as in
some Industry 4.0 applications, then there may be choice
in the simulation that can make it more or less accu-
rate. For example, many simulations are themselves it-
erative, so taking fewer iterations gives a less precise an-
swer, which can save time in the early stages of learning.

In each case, the smoothing of the fitness landscape
due to the poorer quality of the early training data
not only makes this faster and more efficient but
may also, paradoxically, make the global search stage
better, more likely to end up with robust generalisable
solutions.

9.4.6 Forms of Fitness Function

As noted, most commonly the fitness function can be
seen as the sum or average of the accuracy of each data
item:

fitness(params) = ∑ diff(v, algparams(d))
(d,v)∈Training set

Here the difference function, diff, may take various
forms depending on the algorithm and data. In the case
of classification algorithms, it may simply be a binary
1 for matches, 0 for doesn’t match. For more numeric
outputs, it could be the absolute difference or, very
commonly, the squared distance.

The fact that the fitness function is effectively the sum
of lots of little per-data-item costs is crucial for many
machine learning algorithms that present the training set
item by item and modify the parameters slightly for each

item. The net effect is similar to a single gradient descent
over the landscape as a whole.

However, the fitness function does not always split into
lots of per-data-item costs but may also involve aspects
that relate to the algorithm or dataset as a whole:

algorithm metrics – Often there are measures of com-
plexity of the rules or structures generated by the
training. We may want to penalise more complex
cases (e.g. a very large decision tree) in order to
improve generalisation and explanation.

cohort metrics – In some cases we may want to take
into account the joint outputs of multiple data
points. This is particularly the case for unsuper-
vised algorithms, for example, the coherence of the
clusters. Alternatively we may want to ensure that
the algorithm behaves fairly for different classes
of people, for example working equally well for
women and men.

Some learning algorithms, for example k-means, effec-
tively build this into their normal operations. However,
others may need modification. For example, in the ID3
algorithm it is hard to modify the entropy-based learning
steps for the decision tree, so additional pruning stages
are often added after initial training to simplify the tree.
Alternatively one might more radically change the learn-
ing mechanism, for example retain decision trees as the
outcome, but use genetic programming to create suitable
trees as it is easy to add extra factors in the genetic algo-
rithms fitness function.

9.5 DEALING WITH COMPLEXITY
Many factors can increase the complexity of the machine
learning process. Some are specific to particular algo-
rithms, but we’ll look at a few of the more common fac-
tors here.

9.5.1 Degrees of Freedom and Dimension
Reduction

Do you remember school geometry? Euclid’s first postu-
late is that a straight line can be drawn between any two
points.

Imagine you have been collecting data on butterfly
numbers every day for three years. You have over
a thousand points, and they run close to a straight
line; you can reasonably believe that you have found

https://alandix.com/glossary/aibook/fitness landscape
https://alandix.com/glossary/aibook/fitness landscape
https://alandix.com/glossary/aibook/accuracy
https://alandix.com/glossary/aibook/Industry 4.0
https://alandix.com/glossary/aibook/smoothing
https://alandix.com/glossary/aibook/fitness landscape
https://alandix.com/glossary/aibook/global search
https://alandix.com/glossary/aibook/fitness function
https://alandix.com/glossary/aibook/accuracy
https://alandix.com/glossary/aibook/fitness function
https://alandix.com/glossary/aibook/gradient descent
https://alandix.com/glossary/aibook/fitness function
https://alandix.com/glossary/aibook/decision tree
https://alandix.com/glossary/aibook/generalisation
https://alandix.com/glossary/aibook/unsupervised algorithms
https://alandix.com/glossary/aibook/unsupervised algorithms
https://alandix.com/glossary/aibook/coherence of clusters
https://alandix.com/glossary/aibook/clusters
https://alandix.com/glossary/aibook/k-means
https://alandix.com/glossary/aibook/ID3
https://alandix.com/glossary/aibook/entropy
https://alandix.com/glossary/aibook/decision tree
https://alandix.com/glossary/aibook/pruning
https://alandix.com/glossary/aibook/decision trees
https://alandix.com/glossary/aibook/genetic programming
https://alandix.com/glossary/aibook/genetic algorithms
https://alandix.com/glossary/aibook/genetic algorithms
https://alandix.com/glossary/aibook/fitness function

a pattern. Even if you collect three or four days’ data
and they lie exactly on a line, you might feel this is
suggestive. However, if you have just two days’ data, it is
not interesting at all that they are connected by a line; it
is bound to be the case.

Looking at this in terms of numbers, if you have two
observations on day 1 and day 2, that is just two num-
bers. The equation of a line is y = mx + a, it has two
parameters: m – the slope and a – the intercept. You have
two numbers in your data and two parameters to adjust,
hardly surprising you can make them fit.

Roughly speaking, if you have N parameters you can
exactly fit data with N independent numbers. However,
this rarely represents anything interesting, an extreme
form of overfitting. An interesting generalisable pattern
needs to have a lot more data than the number of param-
eters being fitted.

In statistics the term for the number of independent
things that are being fitted in the data is the degrees
of freedom. If this is not substantially larger than the
degrees of freedom in the model being fitted, then you
are likely to get overfitting. This is when the model
is not creating a general pattern but simply matching
potentially arbitrary aspects of the particular training
set.

For example, if we have N items in the training dataset
d1, d2, ..., dN with a classification c1, c2, ..., cN, respectively,
then we could create the rule set:

Classify(x)
IF x =
IF x =

d1
d2

THEN
THEN

c1
c2

...
IF x = dN THEN cN

Totally accurate on the training dataset but unlikely to be
useful for later use.

For machine learning models it is very easy to have lots
of parameters being fitted. For example, if you have a fully
connected neural net with 3 layers: 10 inputs, 10 outputs
and 20 nodes in a hidden layer, this will have 400 weights
to be fitted. In this case, and often, the number of weights
grows with the square of the size of the input. This means
that typically you need to have a lot more training items
than the number of fields or columns in each data item.

At first this may not seem too daunting, but it is easy to
exceed these numbers. Imagine you are doing interviews
for medical research – you may have dozens of questions

Making Sense of Machine Learning ■ 125

for each person and interview several hundred people.
That sounds fine. However, maybe only 10% of people
have ailments that you are interested in with perhaps 5%,
4% and 1% with three different variants of the disease.
The data looks good for distinguishing ill/well, but once
you look at the finer distinctions between the variants of
the illnesses you have too few people to avoid overfitting.

This is even worse when data is gathered auto-
matically. In the UK, the Met Office has 200 weather
stations gathering data including “air temperature;
atmospheric pressure; rainfall; wind speed and direction,
humidity; cloud height and visibility”. That is at least 1600
readings. These are gathered every minute, but there
will be a high correlation between subsequent readings;
so, in terms of new data, maybe an equivalent of about
50 independent readings a day. At least a month’s data
is needed before one can start to have any confidence in
fitting of the data.

If you are dealing with image data, then there are
millions of pixels in a medium resolution image and 8K
TV at 60Hz frame rate is about 3.5 billion RGB channel
values in a minute of video. You would need a lot of
training data for that! In practice there are ways to reduce
this, crucially in those 3.5 billion RGB values neighbour-
ing pixels and successive frames won’t be so different.
We looked at ways to harness this through dimension
reduction in more detail in Chapter 8. However, this
does explain why unsupervised machine learning is
sometimes used as a pre-processing stage to simplify
data.

9.5.2 Constraints and Dependent Features

A complication we have seen in some applications is that
there are constraints – not all parameter values are pos-
sible. For example, imagine you are using a genetic algo-
rithm to design a kitchen, and each appliance is allocated
a position in the kitchen. We might need the sink to be
within a metre of the water connections, and an electric
cooker to be at least a certain distance from the sink.

We’ve seen that machine learning can be seen as an
optimisation problem, finding the highest point on the
fitness landscape. In this context one often talks about
solutions in terms of feasibility and optimality:

Feasibility – Does the proposed solution satisfy the
constraints?

Optimality – Is the proposed solution the best among
those that satisfy the constraints?

https://alandix.com/glossary/aibook/intercept
https://alandix.com/glossary/aibook/overfitting
https://alandix.com/glossary/aibook/degrees of freedom (data)
https://alandix.com/glossary/aibook/degrees of freedom (data)
https://alandix.com/glossary/aibook/overfitting
https://alandix.com/glossary/aibook/fully connected
https://alandix.com/glossary/aibook/fully connected
https://alandix.com/glossary/aibook/overfitting
https://alandix.com/glossary/aibook/frame rate
https://alandix.com/glossary/aibook/frame of video
https://alandix.com/glossary/aibook/dimension reduction
https://alandix.com/glossary/aibook/dimension reduction
https://alandix.com/glossary/aibook/unsupervised machine learning
https://alandix.com/glossary/aibook/pre-processing
https://alandix.com/glossary/aibook/constraints
https://alandix.com/glossary/aibook/genetic algorithm
https://alandix.com/glossary/aibook/genetic algorithm
https://alandix.com/glossary/aibook/optimisation problem
https://alandix.com/glossary/aibook/fitness landscape
https://alandix.com/glossary/aibook/feasibility
https://alandix.com/glossary/aibook/optimality
https://alandix.com/glossary/aibook/Feasibility
https://alandix.com/glossary/aibook/constraints
https://alandix.com/glossary/aibook/Optimality
https://alandix.com/glossary/aibook/constraints

126 ■ Artificial Intelligence

In some application areas, such as timetabling, the
core requirement is finding any feasible solution. Indeed,
constraint satisfaction is a whole area of study with its
own specialised algorithms (see Chap. 4). However, it is
also a potential application of some forms of AI: recall
that genetic algorithms are able to make use of repeated
or similar structures within the problem space, which is
precisely a feature of constraint satisfaction problems.

Assuming you have found a feasible solution, an
obvious approach is to look for close solutions that are
also feasible. However, this suffers a similar problem to
local maxima. If one thinks of the fitness landscape, but
with areas covered with water representing the infeasible
solutions, the areas of feasible solutions may well form
separate islands. If you only perform local search within
these islands, but the best solution is in a different
island, you are stuck. The author is writing this in Wales,
and the highest point reachable from here without
crossing the sea is Ben Nevis in Scotland at a height of
1,345 metres, somewhat short of Mount Everest at 8,849
metres.

There are various ways around this problem.
Sometimes the constraints can be removed by repa-

rameterising the problem. For example, a financial plan-
ning application might include the constraint that a bank
balance always exceeds the overdraft limits:

balance >= limit

This is a constraint between the two variables.
However, we could instead represent these as a limit

plus available cash, that is:

available = balance - limit

The original limit can be recreated if needed (balance
= limit + available), so no information is lost, but
this reparameterisation no longer has any constraints
between parameters, available can be any non-negative
number. Another way is to treat solutions that break
constraints as bad but not completely off limits. We do
this by incorporating the constraints into the fitness
function. Imagine the original fitness function is fit(x),
this takes a potential solution x and says how good it is.
However, in addition there are N constraints c1(x), c2(x),
..., cN(x) that all have to be true. We create a modified
fitness function:

fitnew(x) = sig(fit(x)) + number of ci(x) that are true

where sig(z) is a sigmoid function that maps the original
fitness function to the range (0,1).

This modified function has the properties that

1. reducing the number of broken constraints always
increases fitnew(x), irrespective of fit(x)

2. for the same number of violated constraints, im-
proving fit(x) improves fitnew(x).

The first means that an optimal solution always satisfies
as many constraints as possible. The second means
that it gets the best possible value of fit(x). So if this
modified fitness function is given to a machine learning
algorithm, it will seek a solution that is both feasible and
optimal.

A special kind of constraint is a dependent feature,
where some field of a data record only exists, or is only
relevant, when other fields have particular values. For
example, one project used various forms of constraint
solving and optimisation for early submarine design. The
overall layout of the submarine depends critically on the
chosen fuel source. If it is diesel, then there need to be
fuel and air tanks and the means to exhaust gasses. If nu-
clear, then there needs to be extensive shielding between
the reactor and crew quarters. If the data-representation
of each data record is flat, then some of the fields are irrel-
evant, rather like junk DNA; this is in one sense wasteful,
especially if the volume of data is large, but for certain
algorithms can be a positive feature.

Various algorithms were used including a commercial
constraint solving system, modified hill-climbing and
(most successful) a genetic algorithm. In the latter
the dependent fields for diesel (tank size, placement,
etc.) were present even when the nuclear option
was active and similarly fields pertaining to nuclear
power (shielding thickness, placement) were in the
representation when diesel was selected. This meant
that work optimising the dependent options for one fuel
type was not ‘lost’ from the gene pool even if the fuel
type switched and so was still there if the reverse switch
happened later.

Note that for a genetic algorithm both constraints and
dependent features can be used as a guide to have more
efficient breeding rules. Often when two individuals are
combined in a genetic algorithm, the new artificial genes
are randomly chosen from the ‘parents’. However, in real
genetics the chromosomes break and recombine at a few
specific points (cross-over). Over many millennia genes

https://alandix.com/glossary/aibook/feasible solution
https://alandix.com/glossary/aibook/constraint satisfaction
https://alandix.com/glossary/aibook/genetic algorithms
https://alandix.com/glossary/aibook/constraint satisfaction
https://alandix.com/glossary/aibook/feasible solution
https://alandix.com/glossary/aibook/feasible
https://alandix.com/glossary/aibook/local maxima
https://alandix.com/glossary/aibook/fitness landscape
https://alandix.com/glossary/aibook/feasible solutions
https://alandix.com/glossary/aibook/constraints
https://alandix.com/glossary/aibook/reparameterising
https://alandix.com/glossary/aibook/reparameterising
https://alandix.com/glossary/aibook/reparameterisation
https://alandix.com/glossary/aibook/constraints
https://alandix.com/glossary/aibook/constraints
https://alandix.com/glossary/aibook/constraints
https://alandix.com/glossary/aibook/fitness function
https://alandix.com/glossary/aibook/fitness function
https://alandix.com/glossary/aibook/fitness function
https://alandix.com/glossary/aibook/constraints
https://alandix.com/glossary/aibook/fitness function
https://alandix.com/glossary/aibook/sigmoid function
https://alandix.com/glossary/aibook/fitness function
https://alandix.com/glossary/aibook/optimal solution
https://alandix.com/glossary/aibook/constraints
https://alandix.com/glossary/aibook/fitness function
https://alandix.com/glossary/aibook/feasible
https://alandix.com/glossary/aibook/optimal
https://alandix.com/glossary/aibook/dependent feature
https://alandix.com/glossary/aibook/constraint solving
https://alandix.com/glossary/aibook/constraint solving
https://alandix.com/glossary/aibook/optimisation
https://alandix.com/glossary/aibook/junk DNA
https://alandix.com/glossary/aibook/hill-climbing
https://alandix.com/glossary/aibook/genetic algorithm
https://alandix.com/glossary/aibook/genetic algorithm
https://alandix.com/glossary/aibook/constraints
https://alandix.com/glossary/aibook/dependent features
https://alandix.com/glossary/aibook/genetic algorithm
https://alandix.com/glossary/aibook/genes
https://alandix.com/glossary/aibook/genes

that code for highly related features have migrated to be
close on the chromosome and thus are more likely to be
inherited as a single unit. Genes that work together breed
together.

In the case of the submarine example, if two individu-
als have the same fuel type, then the fuel specific features
can be inter-mingled, but all of the ‘junk’ fields for the
unselected fuel type should be taken as a unit from one
parent or the other. If they differ in the fuel type, then the
dependent fields of the relevant parent would normally
be copied intact. For constraints a similar principle can
be applied. Fields that are closely related via constraints
can be biased so that they are most often inherited as a
unit from one or other parent, with only occasional mix-
ing.

9.5.3 Continuity and Learning

Note how encoding constraints into the fitness function
changes a binary “feasible vs not feasible”, into a softer
“more or fewer constraints”. This can make it easier for
machine learning algorithms to work, incrementally
improving initially infeasible solutions towards ones
where all the constraints are satisfied.

It is rather like the child’s game of “hunt the thimble”.
The parent hides a thimble and the child starts to look:
“cold”, says the adult as the thimble is far away, and then
as the child hunts further “warmer”, “warmer”, “colder”,
“warmer”, “hot”, “you’ve found it!”. Imagine instead that
the adult simply says, “no”, “no”, “no” unless the child
is exactly where the thimble is hidden. It would not be
much of a fun game and also it would be a lot harder to
play. In general, whether in human or machine learning,
continuity helps, if there are shades between “not right”
and “got it”, it is easier to find the right direction to im-
prove.

Another very successful example of this is the sigmoid
activation functions used in backpropagation in neural
networks (see Figure 6.8). Early perceptrons simply had
a hard threshold. If the inputs exceeded the threshold
the artificial neuron ‘fired’, otherwise nothing happened.
There was no difference except at the exact point when
the input passed the threshold. The sigmoid function still
has a roughly similar shape, but slightly softened. If the
inputs are nearly at the threshold, the node fires a little, if
they are only just over, it fires slightly less than when it is
fully on. When the backpropagation learning step works
out the differential (slope) of the sigmoid function, it is

Making Sense of Machine Learning ■ 127

effectively saying “what is the impact of a small change”,
and this is used to shift the weights towards a better
solution.

Look out for these effects in different algorithms.
Sometimes hard edges are softened by the shape of
functions, as in the sigmoid, sometimes by adding
probabilities: each toss of a coin is either a head or a tail,
but over time the probabilities can shift continuously.
If you are creating your own algorithms, think about
whether it is possible to deliberately introduce these soft
boundaries.

If you are using a pre-packaged algorithm, you may
not be able to change the algorithm’s internal behaviour,
but, as with the constraint satisfaction example, you may
be able to choose a fitness function that is better for learn-
ing.

If we revisit the fitnew function for constraint satisfac-
tion, there are still quite hard boundaries at the point
when each constraint changes from not satisfied to satis-
fied. In some cases this can be further softened by adding
levels of ‘nearly satisfied’. For example, the sink has to be
within 1 metre of the water, so we give a score of 1 for
this, but maybe we can give a score of 0.5 if it is 1.1 metres
away, and possibly even give it slightly less than a full 1
out of 1, if it is just at the limit, say 99cm away. In the end
we want all of the constraints to be fully satisfied, but by
softening the constraints it is easier to find the solution.

Note that if soft constraints like these are used, the first
of the properties is no longer true for fitnew as given, but
there are ways of dealing with this, the simplest is simply
to make the overall fitness function a weighted sum of the
constraint satisfaction score (css(x)) of each item x:

overall fitness(x)
= fit(x) + penalty * css(x)

The penalty can be gradually increased during learning,
so that the algorithm is initially quite relaxed about a few
broken constraints but gets more strict as it gets closer to
a chosen solution.

9.5.4 Multi-objective Optimisation

The problem we faced with the precision–recall trade-off
is that both are important. Depending on where we set
the threshold, we might make one better but the other
worse. In fact this is also often an issue with the problems
we are solving with AI algorithms. Consider a company

https://alandix.com/glossary/aibook/Genes
https://alandix.com/glossary/aibook/constraints
https://alandix.com/glossary/aibook/constraints
https://alandix.com/glossary/aibook/constraints
https://alandix.com/glossary/aibook/fitness function
https://alandix.com/glossary/aibook/feasible
https://alandix.com/glossary/aibook/feasible
https://alandix.com/glossary/aibook/constraints
https://alandix.com/glossary/aibook/continuity in learning
https://alandix.com/glossary/aibook/sigmoid activation functions
https://alandix.com/glossary/aibook/sigmoid activation functions
https://alandix.com/glossary/aibook/backpropagation
https://alandix.com/glossary/aibook/neural networks
https://alandix.com/glossary/aibook/neural networks
https://alandix.com/glossary/aibook/perceptrons
https://alandix.com/glossary/aibook/hard threshold
https://alandix.com/glossary/aibook/threshold
https://alandix.com/glossary/aibook/neuron
https://alandix.com/glossary/aibook/threshold
https://alandix.com/glossary/aibook/sigmoid function
https://alandix.com/glossary/aibook/threshold
https://alandix.com/glossary/aibook/backpropagation
https://alandix.com/glossary/aibook/differential (calculus)
https://alandix.com/glossary/aibook/sigmoid
https://alandix.com/glossary/aibook/constraint satisfaction
https://alandix.com/glossary/aibook/fitness function
https://alandix.com/glossary/aibook/constraint satisfaction
https://alandix.com/glossary/aibook/constraint satisfaction
https://alandix.com/glossary/aibook/constraints
https://alandix.com/glossary/aibook/soft constraints
https://alandix.com/glossary/aibook/soft constraints
https://alandix.com/glossary/aibook/fitness function
https://alandix.com/glossary/aibook/constraint satisfaction
https://alandix.com/glossary/aibook/constraints
https://alandix.com/glossary/aibook/precision--recall trade-off
https://alandix.com/glossary/aibook/threshold

128 ■ Artificial Intelligence

FIGURE 9.7 Potential solutions in multi-objective optimisa-
tion.

trying to optimise productivity while minimising envi-
ronmental impact, or a country trying to offer the best
healthcare and education while keeping taxes low.

These are called multi-objective optimisation
problems. Instead of a single fitness function, we have
several, one for each aspect we want to optimise.
Typically improving one may reduce another. We
have already seen a special case of this in the ROC
curve where precision and recall are two competing
optimisation criteria.

Figure 9.7 shows multiple potential solutions of
a multi-objective optimisation problem with two
objectives A and B. Solution S1 is better than S2 on all
objectives, so there is no problem choosing between
them. Similarly, S4 is better than S3 on every objective,
so we would not choose S3. When choosing between S1
and S4 (or between S2 and S3), things are far less clear.
S1 is better than S4 on objective A, but worse than S4 on
objective B.

Looking more closely there is no solution that is uni-
formly better than S1 and similarly no solution that is
uniformly better than S4. Solutions S5 and S6 also share
this property. We call such solutions Pareto-optimal after
the Italian economist Vilfredo Pareto who first identified
the issue in the 19th century. It is clear that we would pre-
fer to have a Pareto-optimal solution as any of the others
can be improved upon for all objectives. However, the
choice between Pareto-optimal solutions is far less clear.

Sometimes there is a clear hierarchy, for example in
Figure 9.7 we may decide objective A is most important
in which case S1 is the chosen solution. In the case of
constraints, we needed to ensure that as many constraints
as possible are satisfied before worrying about optimising
the target metric. The function fitnew(x) captured this, but

this is only possible because the number of constraints
satisfied is discrete. If the primary objective is continu-
ous, then there may be never-ending tiny improvements
one can make to the primary objective, so that one never
worries about the other at all. For example, if objective B
were the primary criterion in Figure 9.7, then we would
choose solution S6; yet it makes a very small improve-
ment for objective B compared with S5, while being only
half as good at objective A – is this really what we want?

Another approach is to add a weight to each objec-
tive and create the overall fitness function as a weighted
sum of the fitness of each one. This effectively gives a
value to the level of preference between the objectives.
The dashed line in Figure 9.7 shows a 2:1 trade-off where
objective A is given twice the weight of objective B. With
this weighting S4 comes out best.

There are also algorithms that seek to find all Pareto-
optimal solutions (the Pareto frontier), especially if they
can then be visualised as an aid to human decision mak-
ing.

9.5.5 Partially Labelled Data

We have seen that algorithms are normally divided into
supervised and unsupervised learning, depending on
whether the training data is or is not labelled with classes
or intended outputs. However, sometimes we may need
to perform semi-supervised learning when the dataset
is only partially labelled.

If there are only a few unlabelled items, then we
may simply discard these and use a fully supervised
technique. Similarly if the labelled data is too small,
we might simply ignore the labels and use a full
unsupervised technique. However, where we have some
form of partial labelling it may seem wasteful either to
discard the unlabelled data or to discard the labels from
the rest. Ideally we use all the available data.

There are two forms of partially labelled data:

partial outcome labelling – Here we have the desired
output labelled for some of the data. For example,
we might have some ECG traces that have been
labelled by a heart specialist as in danger of
imminent heart attack, or as less critical, but also
have a large bank of unlabelled ECG traces from
elsewhere.

intermediate value labelling – Here we may have par-
tial or complete labelling of some derived features

https://alandix.com/glossary/aibook/multi-objective optimisation
https://alandix.com/glossary/aibook/fitness function
https://alandix.com/glossary/aibook/ROC curve
https://alandix.com/glossary/aibook/ROC curve
https://alandix.com/glossary/aibook/precision
https://alandix.com/glossary/aibook/recall
https://alandix.com/glossary/aibook/optimisation criteria
https://alandix.com/glossary/aibook/multi-objective optimisation
https://alandix.com/glossary/aibook/Pareto-optimal
https://alandix.com/glossary/aibook/Vilfredo Pareto
https://alandix.com/glossary/aibook/Pareto-optimal
https://alandix.com/glossary/aibook/Pareto-optimal solutions
https://alandix.com/glossary/aibook/constraints
https://alandix.com/glossary/aibook/constraints
https://alandix.com/glossary/aibook/constraints
https://alandix.com/glossary/aibook/fitness function
https://alandix.com/glossary/aibook/Pareto-optimal solutions
https://alandix.com/glossary/aibook/Pareto-optimal solutions
https://alandix.com/glossary/aibook/Pareto frontier
https://alandix.com/glossary/aibook/supervised
https://alandix.com/glossary/aibook/unsupervised learning
https://alandix.com/glossary/aibook/semi-supervised learning
https://alandix.com/glossary/aibook/supervised technique
https://alandix.com/glossary/aibook/supervised technique
https://alandix.com/glossary/aibook/unsupervised technique
https://alandix.com/glossary/aibook/partial labelling
https://alandix.com/glossary/aibook/ECG
https://alandix.com/glossary/aibook/ECG
https://alandix.com/glossary/aibook/labelling

that are deemed to be of interest for the final out-
come as well as (complete or incomplete) labelling
of outcomes. For example, some or all of the ECG
traces might be labelled as having different forms of
arrhythmia.

In the former case, partially labelled outcomes, we can
adopt a two-phase approach. First use an unsupervised
approach on the large unlabelled dataset in order to cre-
ate some form of data reduction, perhaps clusters or prin-
cipal components. Then use this to reduce the dimen-
sionality of the labelled data provided as input to a su-
pervised algorithm.

Alternatively, we may be able to modify the algorithm
itself. For example, with k-means we can initially seed the
clusters with both an initial central data item and a clas-
sification. Unlabelled data items are simply added to the
nearest cluster. For a labelled item, if the closest cluster
has the right label, it is also simply added in. However,
if the closest cluster has the wrong label, its centroid is
‘pushed away’ from the data item and the item is added
instead to the closest matching cluster.

The case of intermediate labels can likewise be
approached in different ways.

One approach is two-stage. First some form of super-
vised or semi-supervised learning builds a classifier for
the intermediate feature based on the raw inputs. Then
a second classifier is built for the final outcome where
the intermediate feature is added as an additional input
(maybe more heavily weighted).

Alternatively, we may seek to embed the intermediate
labelling into an existing algorithm. For example,
assume we are using some form of deep learning
with a pinch-point layer. We can choose an arbitrary
node in that layer and ‘clamp’ it to the value of the
label (or for more complicated values choose a small
collection of nodes). That is, downstream (between
pinch point and output) it is treated as though that was
the value of the node(s) for generating the output and
subsequent backpropagation, and upstream (between
pinch point and input) it is treated as the target output
for the node(s) for backpropagation. When the label
is not present the node functions as normal in the
backpropagation learning process.

9.6 SUMMARY
In this chapter we’ve taken a high-level view of machine
learning, complementing the more specific approaches

Making Sense of Machine Learning ■ 129

discussed in earlier chapters and drawing out general is-
sues. Some of this, such as the supervised–unsupervised
distinction, has acted as a principled recap of material
presented previously in a piecemeal fashion. Other mate-
rial has been new including the in-depth analysis of accu-
racy metrics and trade-offs using the ROC curve. The fit-
ness landscape is a crucial part of the conceptual under-
standing of machine learning. It can be used as a vocabu-
lary to discuss issues arising during practical application,
as a way to suggest criteria for algorithm selection and
as an inspiration for the development of new techniques.
We have also looked at a number of issues that can be par-
ticularly difficult in applying machine learning including
dealing with excess dimensionality, constraints, continu-
ity, multiple optimisation criteria and partially labelled
data.

9.1 A new early test has been developed for tantili-
tis, a condition which is not usually diagnosed un-
til symptoms appear. In order to validate the test,
10,000 volunteers were administered the new test.
Of these one hundred tested positive and of these
80% went on to develop the condition. Of those
who tested negative, the vast majority (95%) were
indeed disease free. Calculate:

a. The numbers who were true positive (TP),
false positive (FP), false negative (FN), and
true negative (TN).

b. The Precision and Recall.

c. The F score.

9.2 Eight employees are being considered for a new
post of head of design. They have each been eval-
uated against three criteria: diligence, efficiency
and creativity. The scores are as follows:

Diligence Efficiency Creativity

Anderson 90 60 50
Brown 70 70 40
Clark 40 30 50
Davies 20 90 20
Evans 80 60 20
Fraser 30 30 90
Gordon 10 60 90
Hughes 60 50 40

a. Which employees would be Pareto-optimal
choices for the position?

https://alandix.com/glossary/aibook/labelling
https://alandix.com/glossary/aibook/ECG
https://alandix.com/glossary/aibook/unsupervised approach
https://alandix.com/glossary/aibook/unsupervised approach
https://alandix.com/glossary/aibook/data reduction
https://alandix.com/glossary/aibook/clusters
https://alandix.com/glossary/aibook/principal components
https://alandix.com/glossary/aibook/principal components
https://alandix.com/glossary/aibook/supervised algorithm
https://alandix.com/glossary/aibook/supervised algorithm
https://alandix.com/glossary/aibook/k-means
https://alandix.com/glossary/aibook/clusters
https://alandix.com/glossary/aibook/centroid
https://alandix.com/glossary/aibook/supervised
https://alandix.com/glossary/aibook/supervised
https://alandix.com/glossary/aibook/semi-supervised learning
https://alandix.com/glossary/aibook/labelling
https://alandix.com/glossary/aibook/deep learning
https://alandix.com/glossary/aibook/pinch-point layer
https://alandix.com/glossary/aibook/pinch point
https://alandix.com/glossary/aibook/backpropagation
https://alandix.com/glossary/aibook/pinch point
https://alandix.com/glossary/aibook/backpropagation
https://alandix.com/glossary/aibook/backpropagation
https://alandix.com/glossary/aibook/supervised
https://alandix.com/glossary/aibook/unsupervised
https://alandix.com/glossary/aibook/accuracy metrics
https://alandix.com/glossary/aibook/accuracy metrics
https://alandix.com/glossary/aibook/ROC curve
https://alandix.com/glossary/aibook/fitness landscape
https://alandix.com/glossary/aibook/fitness landscape
https://alandix.com/glossary/aibook/constraints
https://alandix.com/glossary/aibook/optimisation criteria
https://alandix.com/glossary/aibook/partially labelled data
https://alandix.com/glossary/aibook/partially labelled data
https://alandix.com/glossary/aibook/true positive
https://alandix.com/glossary/aibook/false positive
https://alandix.com/glossary/aibook/false negative
https://alandix.com/glossary/aibook/true negative
https://alandix.com/glossary/aibook/Precision
https://alandix.com/glossary/aibook/Recall
https://alandix.com/glossary/aibook/F score
https://alandix.com/glossary/aibook/Pareto-optimal

130 ■ Artificial Intelligence

FIGURE 9.8 Pinch-point node clamped to intermediate label in semi-supervised learning.

FIGURE 9.9 ROC curve for Exercise 9.3.

b. To resolve the choice one suggestion is to sim-
ply sum the scores. Given this, which candi-
date is optimal?

c. Because of the nature of the job, there is an ar-
gument to weight the criteria in the ratio 1:2:3.
Which is the optimal choice given this weight-
ing?

9.3 Three diagnostic tests (A, B and C) are being con-
sidered for early screening for tantilitis. Each is
capable of giving a strength reading, so can be

adjusted for sensitivity. Figure 9.9 shows the ROC
curves for each diagnostic test.

a. Your colleague suggests diagnostic B as it
seems more consistent – what do you think?

b. Another colleague suggests using area under
the curve. If you follow this advice, which test
would you choose?

c. Assume that the vast majority of people do not
have tantilitis, and the follow-up tests to ver-
ify a potential diagnosis are very unpleasant
and costly. Given this which test would you
choose and how would you adjust its sensitiv-
ity threshold?

d. Assume instead that follow-up tests are cheap
and easy but that the health consequence of
missing a diagnosis is very severe. Given this
which test would you choose, and how would
you adjust its sensitivity threshold?

Although the concepts introduced in this chapter are fa-
miliar vocabulary for those working in machine learning
and neural networks, it is hard to find detailed works fo-
cused on these topics.

https://alandix.com/glossary/aibook/optimal
https://alandix.com/glossary/aibook/optimal
https://alandix.com/glossary/aibook/ROC
https://alandix.com/glossary/aibook/area under the curve
https://alandix.com/glossary/aibook/area under the curve

FURTHER READING

S. Sinai and E. Kelsic. A primer on model-guided explo-
ration of fitness landscapes for biological sequence de-
sign. arXiv:2010.10614, 2020.
Although targeted at those working in biological science,
this is an accessible article that has lessons for anyone want-
ing to apply machine learning in practice. It systematically

Making Sense of Machine Learning ■ 131

covers ways to make informed choices about appropriate
methods using a fitness-landscape-oriented approach.

K. Traoré A. Camero and X. Zhu. Fitness landscape footprint:
A framework to compare neural architecture search
problems. arXiv:2111.01584, 2021.
A more mathematical treatment of the fitness landscape.

CHAP T ER 1 0

Data Preparation

10.1 OVERVIEW
In this book we normally use examples crafted for the
particular representation or algorithm being presented.
This is of course designed to be helpful for you to learn
about each, but the real world is often somewhat more
complicated. Data is rarely in exactly the right place or
form that is needed for a particular algorithm, there is
almost always some form of manipulation required,
sometimes fairly systematic, others more ‘hacking’. This
manipulation is often called data wrangling.

In this chapter we’ll look at some of the typical stages
and processes used.

10.2 STAGES OF DATA PREPARATION
Figure 10.1 shows some typical stages in preparing data
for machine learning or another form of AI algorithm.
However, each dataset has its own quirks, and so the pro-
cesses needed and the order in which they apply will vary
substantially. In some ways it is better to think about a
data preparation toolkit, a set of tools, techniques and
heuristics to use at various points and not necessarily in
the same order for any particular datasets.

Raw data is found in various places: sometimes it is
relatively well processed for algorithmic manipulation in
existing data files or feeds, but often it is more raw or
unstructured, gathered from web pages or data streams.

Once the data is extracted from its sources and
gathered together there will be various stages of
normalisation, transformation and data cleaning, some

dealing with errors or omissions in the data and some
changing it into formats and types that are suitable for
subsequent processing.

Problems with the data may not be apparent at once,
and so there is often a degree of iteration, where sanity
checks or data validation at a later stage may highlight
changes to earlier processing. This may highlight prob-
lems or properties of the initial data, but it is also impor-
tant to make sure that data transformations are appropri-
ate and correct. It is too easy to apply automated trans-
formations without fully understanding their impact.

10.3 CREATING A DATASET
Sometimes you are given a well-described and well-
managed dataset to analyse, or you may have control
of the initial collection yourself. However, often you
need to bring the data together from multiple sources,
of varying quality.

10.3.1 Extraction and Gathering of Data

If you are fortunate, data will be in a semi-structured
form such as CSV, tab-separated files or even a database.
Care may still be needed, for example to convert dates to
a standard format. Names and addresses also often have
very different storage formats – for example a single field
vs. separate given and family name fields. You may find
examples where several things are encoded in the same
field, perhaps a list of hobbies delimited by commas or
semicolons.

Often some form of data cleaning is necessary as data
may have been mis-entered or even entered using dif-
ferent character encodings. Some may be impossible to
detect except by going back to original sources; how-
ever, often it is possible to create validation rules. This
can include simple face-validity or sanity checks, such as

DOI: 10.1201/9781003082880-12 132

https://alandix.com/glossary/aibook/data wrangling
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/heuristics
https://alandix.com/glossary/aibook/normalisation
https://alandix.com/glossary/aibook/data cleaning
https://alandix.com/glossary/aibook/sanity checks
https://alandix.com/glossary/aibook/sanity checks
https://alandix.com/glossary/aibook/data validation
https://alandix.com/glossary/aibook/database
https://alandix.com/glossary/aibook/data cleaning
https://alandix.com/glossary/aibook/validation rules
https://alandix.com/glossary/aibook/sanity checks
http://dx.doi.org/10.1201/9781003082880-12

Data Preparation ■ 133

FIGURE 10.1 Typical data preparation stages.

checking that the date is in the right format, but may also
include deeper semantic integrity, for example in histor-
ical records checking that the date of birth precedes the
death date and that the age is not more than 150 years (to
catch century digit errors).

In other cases the raw data is in free text or semi-
structured text such as web pages. The experienced data
wrangler becomes expert at a range of Python or similar
scripts to process text looking for patterns; these typically
include a combination of:

Known structure – for example, CSS classes on web
pages, or row/column location on an old 80x25
screen-based system.

Keyword matching – for example, “Bibliography” to
mark the beginning of the references section of an
academic paper, or “ISBN” before the 10 or 13 digit
ISBN of a book.

Regular expressions – for example, the following regu-
lar expression to find possible names:
/[A-Z][a-z]+ [A-Z][a-z]+/

Hand crafted parsers – for example, looking for a line
containing a number and a street word such as
‘Road’, ‘Street’ or ‘Avenue’.

The semi-structured data may be obtained from human-
readable output of a legacy data-based system targeted at

the web or old-style terminals. In such cases one usually
refers to this process as web scraping or screen scraping.

This process may also itself use AI or machine learn-
ing, for example there are parsers for academic citation
lists based on string-learning models.

Special care is needed when a single output dataset is
composed from several different sources as there may
be differences in collection style. For example, historic
climate data is based on a variety of instruments,
and so care is needed to ensure that this does not
give rise to anomalies. In some cases there is overlap
between datasets, which can be used for automatic
cross-calibration, but in other cases this will need to be
hand-coded.

10.3.2 Entity Reconciliation and Linking

If data comes from a single source and has been carefully
constructed, there will be some form of unique identi-
fier for each object in the data. However, real data may
come from a variety of sources each of which may refer
to the same thing in a different way. For example, the
author is @alanjohndix on X/Twitter, “Alan Dix” on
most academic papers and “Alan John Dix” on his birth
certificate. In addition, at the time of writing, there is an
Alan Dix who is a governor of the Leeds Playhouse, so
the same apparent identifier in two different datasources
may refer to different people or things. Matching enti-
ties between different datasources is thus a critical part
of many data gathering exercises.

https://alandix.com/glossary/aibook/semantic integrity
https://alandix.com/glossary/aibook/Python
https://alandix.com/glossary/aibook/scripts
https://alandix.com/glossary/aibook/Keyword matching
https://alandix.com/glossary/aibook/ISBN
https://alandix.com/glossary/aibook/Regular expressions
https://alandix.com/glossary/aibook/semi-structured data
https://alandix.com/glossary/aibook/web scraping
https://alandix.com/glossary/aibook/screen scraping
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/unique identifier
https://alandix.com/glossary/aibook/unique identifier

134 ■ Artificial Intelligence

Having the same entity linked across datasources
is an important first step for many large-scale AI or
ML processes. However, AI may also be used as part
of the process. Typically, there is a combination of
coded rules, and weighted similarity metrics. These may
be hand-crafted or use a machine learning algorithm
either to create matching rules or choose weights of
hand-crafted features.

The process will often be iterative, with rules used to
match parts of the dataset, which are then checked by
hand either by sampling or focusing on those where the
algorithm has low confidence. This will identify misiden-
tification and lead to either fresh hand-crafted rules or
feedback to an ML algorithm.

Case Study: SAIL Databank

Swansea University is home to the SAIL Databank, which
stores archives of health histories of nearly every per-
son in Wales linked via a pseudonymised unique iden-
tifier for each person [104]. The databank is heavily used
(with extensive privacy preserving protocols) for health
and social research and policy purposes. This data has
been collected over a period of more than 15 years us-
ing a wide variety of health-related datasets from differ-
ent health services and government sources across Wales.
That is, it is coming from heterogeneous sources and thus
requires substantial work to connect the records.

Each individual has a unique health service number
and National Insurance number, but few people know
these in the UK; so if someone visits a hospital, the record
will have a combination of name, address and their nor-
mal doctor’s surgery ... again if known. Of course ad-
dresses change, postcodes may be entered incorrectly,
and in general linking these records to the same person is
not trivial. The expertise and algorithms to do this link-
ing have become one of the core capabilities of the centre
and one of the reasons it has become a world leader in the
area [180].

10.3.3 Exception Sets

Crucial to many early data preparation tasks are excep-
tion sets. These are sets of specific examples where the
rules do not apply. For example, matching datasets of
18th- and 19th-century concert venues in London was
complex because Almack’s Assembly Room had changed
its name to Willis’ Rooms [85, 86]. No amount of AI or
human intelligence could guess this, so it is entered as a

special case. Other examples would be whether a name
has been misspelt in a record, or unusual formats such
as the postcode for the former Girobank in the UK “GIR
0AA”, which doesn’t obey the normal rules for a UK post-
code.

If the exception set gets too large, one might seek more
generic rules for some of the items, so that the exception
set may shrink as well as grow. For example, when look-
ing for valid names in a UK/US context, one might start
looking for pairs of words, each starting with a capital.
After a time, one might start to build exceptions such as
“Leonardo da Vinci”. If there are enough of them, one
might change the rule to include family name prefixes
such as ‘da’, ‘de la’ or ‘van’. The exception set entries for
these can then be pruned. However, later still exceptions
such as “Henry VIII” might start to proliferate and a new
rule for Queen/King names might be added.

10.4 MANIPULATION AND
TRANSFORMATION OF DATA

Often the values that you have for features of your
data are not of the kind needed by an algorithm, so
various forms of transformation are needed. You may
also need to make decisions about missing values
(where there is simply no value collected/stored for the
feature) or outliers (data values that seem in some way
extreme).

10.4.1 Types of Data Value

First of all, get to know the data you are working with, do
not just ‘throw’ it at an algorithm and hope for the best.

Typical kinds of data you might encounter include:

Binary – Where there are exactly two possible values;
e.g. true/false, 0/1, adult/child;

Categorical/enumerated – Where the data comes
from a finite set of known values; e.g. blood type
O/A/B/AB, class of employment;

Integer – Whole numbers: e.g. 0, 1, 2, 3, -42;

Continuous – Where the data takes on any numeric
value: e.g. 3.142;

String – Where the data is alphanumeric, but relatively
short: e.g. names;

Text – Longer alphanumeric data, sometimes in known
meaningful language; e.g. the text of this section;

https://alandix.com/glossary/aibook/similarity metrics
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/confidence in output
https://alandix.com/glossary/aibook/SAIL Databank
https://alandix.com/glossary/aibook/pseudonymised
https://alandix.com/glossary/aibook/unique identifier
https://alandix.com/glossary/aibook/unique identifier
https://alandix.com/glossary/aibook/privacy
https://alandix.com/glossary/aibook/heterogeneous sources
https://alandix.com/glossary/aibook/National Insurance number
https://alandix.com/glossary/aibook/exception sets
https://alandix.com/glossary/aibook/exception sets
https://alandix.com/glossary/aibook/human intelligence
https://alandix.com/glossary/aibook/outliers

Data Preparation ■ 135

Rich text – HTML, RTF or other formats include fonts,
character styles (such as bold) and possibly sections
which can be used to help parse the text;

Hierarchical categorisation – Some form of class/sub-
class, part-whole, or taxonomic categorisation, for
example the Dewey decimal code in a library, or a
file path;

Images/media – These may be static such as a picture or
time varying such as audio or video;

Temporal data – For example an ECG trace, climate
data or sampled audio (see Chap. 14);

External links – Identifiers of other data items; e.g.
URIs in linked data, external keys in a relational
database;

Structured data – A single value might contain
structured data such as XML or JSON encoded as a
string;

Special formats – For example medical equipment or
geographic information systems have their own
data formats.

In addition, numeric data may be bounded, for example
positive or in a particular range such as [0,1] for probabil-
ities, and string data may be in particular formats, such as
dates or ISBNs. Also data may be coded numerically but
may really be categorical (e.g. multiple choice options).

This looks like a relatively easy distinction to make,
but an integer might represent a number, time stamp or
database identifier. Consult documentation (if there is
any!) or talk to the people who collected the data or gave
it to you so that you understand how the values you are
seeing relate to the real-world things they encode.

For numeric data plot the values. Are there large num-
bers of zeros? If so, does this really mean zero, or a miss-
ing value indicator? If the numbers are integers and they
are exactly or almost continuous over a range, then this
is a good clue that they represent a database id or se-
quence number. For string fields, try sorting by the field
and/or calculating counts for each value. This may help
you see whether they are unique (and maybe an identifier
field), only take on a small number of values (in which
case they might be categorical) or have a small number
of very frequent values, which may be a special code (e.g.
‘unknown’ in an address field).

10.4.2 Transforming to the Right Kind of Data

The particular algorithm you want to use, or the
implementation of it that is easily available, may
require a particular kind of data. For example, some
genetic algorithms need binary data, statistical analysis
usually requires numeric data. Typically, you will find
yourself making data that is in some ways smaller
or more constrained, for example turning string
data into categorical data, or continuous data into
binary.

Sometimes the algorithm you are using will perform
transformations itself. For example, decision trees
(Section 5.5.2) are usually based on binary decisions at
each branch point. The algorithm will accept categorical
or continuous data but create binary decisions based on
these (e.g. “salary > 5, 000”). If this is the case, it is still
helpful to understand these processes in order to make
sense of outputs (e.g. sharp changes in behaviour at a
salary of 5,000). Other times you will need to perform
data conversions yourself. Here are some common
things you may need to do:

Numeric to binary – Choose a threshold T and use x ≤
T vs x > T

Integer to categorical – If the integer values are
bounded (say 1 to 7), simply treat each number
as a category label: 1 → cat_1, 4 → cat_4, etc. If
the values are unbounded, then you may need to
have catch-all categories for those bigger than some
maximum value (another threshold choice).

Continuous to integer – Round to the closest whole
number or use ‘floor’ to get the integer part of
the value, for example 3.142 → 3. More generally,
choose multiple thresholds that split the data into
a small number ranges; e.g. if the thresholds are
0,1,2,4,8,16,32,64..., then 42 → 6.

String, text or link to categorical – Use some sort of
clustering algorithm on the values or a pre-existing
classification (e.g. language of text).

Categorical to binary – One option is to generate indi-
cator variables: an “is it in category A” variable for
each category A. This technique is used by many
traditional statistical packages. Another option is
subset-based where the variables are “is it one of
{A,B,C}” for some subset of categories.

https://alandix.com/glossary/aibook/ECG
https://alandix.com/glossary/aibook/linked data
https://alandix.com/glossary/aibook/relational database
https://alandix.com/glossary/aibook/relational database
https://alandix.com/glossary/aibook/XML
https://alandix.com/glossary/aibook/JSON
https://alandix.com/glossary/aibook/geographic information systems
https://alandix.com/glossary/aibook/time stamp
https://alandix.com/glossary/aibook/database identifier
https://alandix.com/glossary/aibook/database id
https://alandix.com/glossary/aibook/genetic algorithms
https://alandix.com/glossary/aibook/decision trees
https://alandix.com/glossary/aibook/threshold
https://alandix.com/glossary/aibook/threshold
https://alandix.com/glossary/aibook/clustering algorithm

136 ■ Artificial Intelligence

FIGURE 10.2 Bimodal distribution with natural break point
(adapted from Qwfp at English Wikipedia, CC BY-SA 3.0, ht
tps://commons.wikimedia.org/wiki/File:BimodalAnts.png).

Sometimes there may be domain knowledge that can
help, for example in weather data known temperature
ranges that are better or worse for plant growth.
Alternately if you examine the data, there may be clear
patterns. For example, Figure 10.2 shows a bimodal
distribution; if we need binary data, it seems sensible
to choose a threshold in the gap between the peaks.
Effectively we are doing clustering by eye.

Similarly, when you are transforming categorical data
into binary using subsets, it is always possible to create a
minimal representation of a set of n items as log2n subset
indicator variables. However, not all subsets are equally
meaningful. You may have some idea that some cate-
gories are more similar than others, so it is more sen-
sible to group these into a single variable. Even if you
are going to push this into a very general machine learn-
ing algorithm, it does no harm to ‘help’ the algorithm,
although you might need to be careful about building
in your own prejudices (see Chapter 20). Furthermore,
if the initial coding is more meaningful, it is more likely
that the eventual output of the algorithm will also be eas-
ier to interpret.

10.5 NUMERICAL TRANSFORMATIONS

10.5.1 Information

Many data transformations lose information. This is
common, indeed the essence of much of learning is
precisely discarding the irrelevant or unnecessary in
order to concentrate on the important features. Of

FIGURE 10.3 Normally distributed data split into four equally
probable categories at upper and lower quartiles and median.

course, the danger is that some of the information
you lose is precisely the relevant parts! This is where
it is important to know your data. Often algorithms
work better when there are roughly similar amounts
of data in each category, or 50:50 for binary data. This
can be used as a guide for choosing thresholds. If you
choose the median, then 50% of the data is below and
50% above. Similarly, if you want N categories, you
choose thresholds so that approximately 1/N of the
data is in each range; for example Figure 10.3 shows
the Normal distribution split into four equally probable
categories.

This equal split also minimises information loss
as measured by entropy. Entropy, as an information
measure, is defined as:

−∑ pi × log2pi

This is at its largest (most information) when all the pi
are equal.

A similar technique can be used for categorical data
that is part of a hierarchy or tree, for example taxonomic
categories of animals, or files on a disk. If you need a flat
set of categories for the algorithm, an obvious choice is
to chop off at some level, either just the top-level cate-
gorisation or some fixed depth. However, a better choice
may be to keep on subdividing the larger categories, so
that you end up with approximately equal sized bins as
shown in Figure 10.4.

10.5.2 Normalising Data

The use of balanced thresholds is a form of pre-
whitening, transforming the data so that it is in a form
that is statistically better for future processing steps.
It is especially important for data with a few extreme

https://commons.wikimedia.org/wiki/File:BimodalAnts.png
https://commons.wikimedia.org/wiki/File:BimodalAnts.png
https://alandix.com/glossary/aibook/domain knowledge
https://alandix.com/glossary/aibook/threshold
https://alandix.com/glossary/aibook/clustering
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/Normal distribution
https://alandix.com/glossary/aibook/entropy
https://alandix.com/glossary/aibook/Entropy
https://alandix.com/glossary/aibook/information
https://alandix.com/glossary/aibook/pre-whitening
https://alandix.com/glossary/aibook/pre-whitening

FIGURE 10.4 Taxonomy of animals in pet shop with cut-off
nodes chosen to have (very) roughly similar sizes.

but important values such as power-law data, or where
the data is clustered very tightly, as a simple choice
of thresholds or even passing the raw data into an
algorithm may lead to poor results. The equally spaced
thresholds effectively make the data more like a uniform
distribution (one where the probability of all outcomes
is equal), but you may also want to transform the data to
make it look more like a Normal distribution, especially
where statistical algorithms are going to be used; for
example a logarithmic transform is often used for data
such as delay times as this is often closer to a Normal
distribution.

For numerical data you may also want to scale the
data. Imagine if you have one field representing monthly
income and another representing height in metres; the
income figure will typically be hundreds of times bigger
than the height figure. For some algorithms this may
not matter, but for others this may effectively make the
income figure count much more than height in learning
rules. This is particularly true for algorithms that use
statistical methods, such as principal components
analysis.

For data that is reasonably well spread over a finite
range, you can simply scale each value so that the range
of each is the same, say [0,1]. Figure 10.5 shows this, first
calculating the minimum and maximum value of each
column/facet and then using this to translate and scale
the data values X[i,j]. For more spread data, such as Nor-
mally distributed values, you can translate the data to
make the average zero and fixed variance. Figure 10.6
shows this, at first calculating the mean and standard de-
viation of each data facet/column and then using this to
transform the data.

Data Preparation ■ 137

10.5.3 Missing Values – Filling the Gaps

Missing values can occur when data is collected, but not
recorded, because of a fault (e.g. a sensor failed), or be-
cause in an interview or similar process someone forgets
to ask a question. We can think of these as true miss-
ing values. They may also occur because the data is be-
ing re-used and the original process did not need the
particular feature. For example, the record of one hospi-
tal visit may include the value of a particular blood test,
whereas for other visits this was not necessary. Similarly
one might only have French exam results for pupils who
sat the French exam. These are perhaps better regarded
as optional values, rather than true missing values, but
for many purposes behave the same: (i) they are equally
not available for processing, but (ii) there is probably a
potential value that we simply do not know – what the
blood test would have been, what the person would have
got in the French exam.

It is important to distinguish these missing values
from a zero or null value. A user’s profile might have
an empty list of interests meaning they have none, or
they may simply never have filled in the field (say if
they are a new user). The first is definitive knowledge
about lack of interests, the latter is lack of knowledge
about interests. Ideally “no interests” should be recorded
differently from “not filled in”, or perhaps even “don’t
want to say”, but often they are all represented as a blank
field. In these situations, there is no easy answer, so it is
important that early data cleaning or reading does not
accidentally conflate these.

When you encounter a missing value, there are three
main alternatives:

1. Leave it as a missing value if the algorithm you
want to use deals with them itself.

2. Skip the record entirely, especially during learning
phases.

3. Attempt to fill in the value using the average or
default value for the feature, or attempt to fill it in
from the others using a statistical or ML process.

The first of these is the preferred option where
possible, but unfortunately many algorithms cannot deal
with data that is at all ‘messy’. Some machine learning
algorithms may not be able to cope with missing values

https://alandix.com/glossary/aibook/uniform distribution
https://alandix.com/glossary/aibook/uniform distribution
https://alandix.com/glossary/aibook/probability
https://alandix.com/glossary/aibook/Normal distribution
https://alandix.com/glossary/aibook/logarithmic transform
https://alandix.com/glossary/aibook/Normal distribution
https://alandix.com/glossary/aibook/Normal distribution
https://alandix.com/glossary/aibook/principal components
https://alandix.com/glossary/aibook/Normally distributed
https://alandix.com/glossary/aibook/Normally distributed
https://alandix.com/glossary/aibook/variance
https://alandix.com/glossary/aibook/arithmetic mean
https://alandix.com/glossary/aibook/standard deviation
https://alandix.com/glossary/aibook/standard deviation
https://alandix.com/glossary/aibook/optional values
https://alandix.com/glossary/aibook/data cleaning
https://alandix.com/glossary/aibook/machine learning

138 ■ Artificial Intelligence

FIGURE 10.5 Normalising data to a fixed range.

FIGURE 10.6 Normalising data to a fixed variance.

during learning but are able to use them when the rules
are applied.

The last of these feels like a bit of a kludge ... and it is,
but sometimes it is all that is possible. For some types
of algorithms, it is possible to use this in a bootstrap
fashion. For example, some auto-associative neural net-
works, in particular restricted Boltzmann machines, can
be used to recreate inputs from partial outputs (Chap. 6).
In these one can use a simple filling in, such as a default
value, for a first pass of the learning algorithm, then use
the rules produced to fill in values and use this revised
data for a second pass, and so on. For some statistical al-
gorithms this iterative algorithm turns out to be the least
squares estimate of the missing value, so is theoretically
satisfying as well as practically useful.

Note that the implicit assumption underlying most
ways of dealing with missing values is that the fact that a
value is missing is not correlated in any way with items
of interest. However, this may not always be the case.
For example, medical records of rough sleepers may
well have more missing values than those of professional
workers. That is missing values can lead to a form of
sampling bias. The counter to this is that in such cases
it may be possible to use the fact that a value is missing
as a feature in its own right; for example, the fact that a
blood test has not been ordered indicates that a doctor

had deemed it unnecessary. That is the presence or
absence of the test is an implicit record of a clinical
judgement.

Missing values are often viewed as exceptional cases
that can largely be ignored, and many algorithms will
only work with complete data. However, there are many
domains, not least medical records, when missing values
may be the norm rather than the exception. Indeed, for
medical records, you may not even know that an event
is missing, for example if someone visits a hospital while
abroad on holiday and this does not get entered in their
local doctor’s records.

So, if you are ever creating your own novel algorithms
for AI or ML, do think about whether it is possible to
account for missing values.

10.5.4 Outliers – Dealing with Extremes

Outliers are values which are in some way unusual or
extreme, such as the very slow walk in Figure 7.1 when
we discussed linear regression in Chapter 7. If you are
eyeballing data, this may simply be something that sticks
out from the rest of the values, but in automated algo-
rithms some rule is used, for example a data value that
is more than three standard deviations away from the
mean.

https://alandix.com/glossary/aibook/bootstrap
https://alandix.com/glossary/aibook/auto-associative
https://alandix.com/glossary/aibook/restricted Boltzmann machines
https://alandix.com/glossary/aibook/least squares estimate
https://alandix.com/glossary/aibook/least squares estimate
https://alandix.com/glossary/aibook/sampling bias
https://alandix.com/glossary/aibook/Outliers
https://alandix.com/glossary/aibook/linear regression
https://alandix.com/glossary/aibook/standard deviations

Outliers are normally associated with numeric data,
but it is also possible to have extreme forms of other
data. For example, a black and white image among
colour ones, a person’s name that isn’t in two parts such
as ‘Madonna’, or a place name that is very long such as
“Llanfairpwllgwyngyllgogerychwyrndrobwllllantysilio-
gogogoch”.

Outliers occur for two main reasons:

1. Some form of fault or failure, for example a sensor
that is misbehaving or an overflow in numerical
processing.

2. A real value that is just unusual, such as Llanfairp-
wll station above or Robert Wadlow who was 2.72
metres tall.

The former clearly need dealing with as they are false
data. Sometimes they are particularly obvious, especially
when due to numerical overflow as they may then be
orders of magnitude larger than real data. However, it
is important to realise that not all faults show up in this
way; if a sensor is stuck or sluggish, the values may look
normal but still be wrong.

The latter, unusual real values are typically less ex-
treme and do represent the true data. However, often one
has to manipulate these both because they may not be
distinguishable from faulty data and because some nu-
merical algorithms behave badly when there are extreme
values.

Algorithms that use some form of averaging can react
particularly badly especially when given completely er-
roneous data. For example, many time-series algorithms
use some form of moving average to smooth data prior
to other forms of processing, these effectively average the
data over a time period before (see Chap. 14). If there is a
really massive spike, this can affect processing for a long
time afterwards, known as infinite impulse response.

It is also easy to make assumptions about the sizes of
inputs, especially when optimising code for constrained
computation such as on IoT devices or mobile phones.
The impact of unexpectedly large values can be dramatic.
In 1996 the Ariadne 5 rocket exploded less than a minute
after take-off. The cause turned out to be a horizontal
velocity that was too big for a 16 bit integer [171].

Extreme values can also be problematic as part
of a learning set, even if they are true values. Many
algorithms implicitly treat the training set as though it

Data Preparation ■ 139

FIGURE 10.7 Sigmoid function smoothly limits extreme val-
ues.

is a typical sample, so a single extreme value could skew
the rules, which are then applied in perpetuity.

There are several ways of dealing with extreme values:

1. Treat it as a missing value, this is particularly
appropriate when the missing value is assumed
to be a fault.

2. Cap the value in some way. For example, for
numerical data with an acceptable range [-
500,500] a value of -3792 is turned into -500.

3. Use a bounding function that retains difference
but restricts the range. For example the sigmoid
functions that are heavily used in neural networks
are linear in their middle ranges, but cap the size
of very large values in a smooth fashion (see Fig-
ure 10.7).

4. Leave the value as it is, but mark it in some way
for the algorithm. For example, it may be possible
to allocate it a lower weighting.

In some kinds of data extreme values can be normal, in
particular long-tail distributions as found in social net-
works (Chap. 7). In such cases the problem for machine
learning may not be having unwanted extreme values
but that a random sample may have none. This is not
just a web issue but happens in medical data. Most peo-
ple are well or have common ailments, rare diseases may
each only affect a very small number of people, even
though between them they are very important. In such
cases it may be important to deliberately look for data
items with extreme values, but then to be able to tell the
algorithm their expected prevalence. Not all algorithms
allow this, especially generic implementations found in
machine learning libraries.

https://alandix.com/glossary/aibook/Outliers
https://alandix.com/glossary/aibook/Outliers
https://alandix.com/glossary/aibook/Llanfairpwll
https://alandix.com/glossary/aibook/Llanfairpwll
https://alandix.com/glossary/aibook/Robert Wadlow
https://alandix.com/glossary/aibook/moving average
https://alandix.com/glossary/aibook/infinite impulse response
https://alandix.com/glossary/aibook/IoT
https://alandix.com/glossary/aibook/sigmoid functions
https://alandix.com/glossary/aibook/sigmoid functions
https://alandix.com/glossary/aibook/neural networks
https://alandix.com/glossary/aibook/long-tail distributions
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/machine learning

140 ■ Artificial Intelligence

10.6 NON-NUMERIC TRANSFORMATIONS

10.6.1 Media Data

When dealing with image or video data you may need
to transform the colour space. Although monitors use
RGB, a transformation to HSV may often be more ef-
fective as shape information is often available in the grey
levels. If you are dealing with any sort of library functions
designed for images, they may deal with this themselves
or may suggest the best format to use.

The image may be just a single feature among many
others, for example the profile picture among other
elements on a social media profile such as interests,
number of friends or age. In such cases treating the
image pixels as values alongside the rest of the features
will not work well as the image data will swamp the rest,
and algorithms or neural networks for images tend to
be specialised. In such cases it may be best to process
the images first, perhaps using some form of clustering
or other unsupervised learning mechanisms, to reduce
the image to a small number of category labels and then
use this smaller feature set as part of the overall profile
data.

Images of printed text can also be turned into text
using optical character recognition (OCR). However,
this may need additional human processing to deal with
difficult cases. Often forms of crowdsourcing or human
computation are used for this, that is large numbers of
people perform relatively small parts of the overall task
(see Chapter 17 for more details). Handwriting can also
sometimes be recognised and turned into text, especially
if there is substantial writing by the same hand, or if the
writer is deliberately trying to be clear, for example digits
on cheques. Historical handwriting and old fonts can
add to challenges, especially as spellings and grammar
may be different from modern text. Furthermore, for
languages with fewer speakers and especially those with
non-Latin scripts, OCR can be poor or non-existent.

Audio data can also be processed either as
an audio stream, as discussed in more detail
in Chapter 14, or through automated or human
transcription.

Note for both audio and image transcription it is not
always important that recognition is 100% accurate.
If there is sufficient data, it may be more effective
to use imperfect automated transcription for vast
quantities of data compared to relatively small volumes
of hand-transcribed data.

10.6.2 Text

Some algorithms treat text as a raw character stream,
but for others the text has to be reduced to something
with more structure, or even reduced to numeric values.
Sometimes this may involve bespoke pattern matching
as described in Section 10.3, or natural language process-
ing, which we’ll deal with in more detail in Chapter 13.

Often string or text data may need some form
of normalisation, for example if different character
encodings are used or if one data file uses all-caps for
names whereas another uses mixed case (e.g. ‘ALAN
DIX’ vs. ‘Alan Dix’). Ideally one should retain the
maximum information (e.g. initial caps tell us more
than all upper or all lower case), but often it is easier to
simply reduce everything to lower case for subsequent
processing. Special care is often needed if text has been
prepared for human reading, for example the text may
include ligatures such as ‘ff ’ as a single character that
needs to be broken into separate characters.

Care may also be needed if text has had line breaks
inserted. For example, a frequent early tidying operation
is to remove leading and trailing spaces from strings, but
in RTF trailing spaces at the end of lines are significant as
they denote a word break, whereas lines without a trail-
ing space need to be joined without a space. Hyphens
at line ends can also be problematic as sometimes it de-
notes hyphenation inserted to break a long word at the
line end, whereas at other times it may be a real hyphen
that should be retained.

Many techniques for reducing text to some sort
of signature or metric require comparison of words
and phrases in the text with typical frequencies in the
corpus in order to identify the more unusual ones.
This may even include applying some sort of statistical
or neural network to a corpus to create a reduced
representation. If there is sufficient data, this can be
done relative to the text in the dataset itself. This is
because, say, a phrase such as ‘principal components’
will be less unusual in texts about machine learning
than in day-to-day language. However, this does require
substantial quantities of text, and so often comparisons
have to be made largely against generic corpora, or using
pre-produced lists of word frequencies.

A special case of this form of processing is simply
removing the most common words, known as stop
words, from the text before further processing. Exam-
ples of typical stop words include ‘a’, ‘the’, ‘and’ and ‘or’,

https://alandix.com/glossary/aibook/social media
https://alandix.com/glossary/aibook/neural networks
https://alandix.com/glossary/aibook/clustering
https://alandix.com/glossary/aibook/unsupervised learning
https://alandix.com/glossary/aibook/optical character recognition
https://alandix.com/glossary/aibook/OCR
https://alandix.com/glossary/aibook/crowdsourcing
https://alandix.com/glossary/aibook/human computation
https://alandix.com/glossary/aibook/human computation
https://alandix.com/glossary/aibook/OCR
https://alandix.com/glossary/aibook/pattern matching
https://alandix.com/glossary/aibook/natural language processing
https://alandix.com/glossary/aibook/natural language processing
https://alandix.com/glossary/aibook/neural network
https://alandix.com/glossary/aibook/principal components
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/stop words
https://alandix.com/glossary/aibook/stop words
https://alandix.com/glossary/aibook/stop words

although these of course depend on the language of the
text.

Sometimes reduced forms of the text are used directly
by subsequent algorithms, but often text fields are used
to create similarity measures between corresponding text
fields in different data records. Two common ways to do
this are Jaccard similarity and cosine similarity.

Jaccard similarity uses the bag of words in each text,
that is the set of words ignoring their frequency (call
them words1 and words2 respectively). It then looks at
the relative proportion of shared words by dividing the
size of the intersection (number of common words) by
the size of the union (total words in either text):

| words1 ∩ words2 |Jaccard_similarity(doc1, doc2) = | words1 ∪ words2 |

Note that in set theory |S| means cardinality of the set S,
that is the number of items in the set.

If the documents A and B have no words in common,
the Jaccard similarity is zero. In contrast if they have ex-
actly the same words, it is one, so intuitively this is a
sensible measure. Note however that by random chance
larger documents end up with larger Jaccard similarity.
Also, as it ignores the frequency, two short documents
that both mention an obscure word such as ‘accipiter’
multiple times would be treated as no more similar due
to it than two large documents that each used it once.

Cosine similarity treats the frequency of words within
the two texts as if it were a very large dimensional vec-
tor (call them f1 and f2 respectively) and then calculates
the cosine of the angle between the vectors using the dot
product (•).

∑i f1i • f2icosine_similarity(doc1, doc2) = |f1| • |f2|

Here |v| is used in its vector theory sense of the length of
the vector:

|v| = ∑ v2
i

√ i

Note that both set theory and vector theory use |A| to
mean the ‘size’ of A, but in different senses.

Arguably while Jaccard similarity does not take multi-
ple occurrences of words into account, cosine similarity

Data Preparation ■ 141

may be swayed too strongly by a few very frequent words.
Sometimes variants are used, such as the cosine metric
applied to logarithms of the counts rather than the raw
frequencies (typically log(1 + count) to avoid log 0). This
means that two occurrences of a word count more than
one, but less than twice as much.

Frequently both metrics may be modified by removing
stop words first and/or weighting by overall corpus fre-
quencies. Choosing these metrics is a bit of an art rather
than an exact science as what appears to be the ‘opti-
mal’ mathematical metrics often end up slightly fragile
in practice.

10.6.3 Structure Transformation

As well as transforming individual fields, it may
be necessary to look at transformations involving
multiple fields in the same data record, or even
more radical transformations of the structure of the
dataset.

An example of the former, which we’ve already dis-
cussed, is where two fields are the given name and family
name of the same person and so need to be treated as a
unit for name lookups. Similarly latitude–longitude may
be two fields but represent a single entity. We may also
want to introduce additional fields based on calculations,
such as the available cash as the difference between bank
balance and overdraft limit in Chapter 9. This might just
be a boolean indicator such as is_overdrawn. While
some algorithms may be able to find these things out for
themselves given sufficient data, others may need a little
help.

More radical transformations may look across
data items. For example, the text similarity measures
mentioned above could be used to transform table-
like data into a network with similarity measures on
each network connection. This can then be used in
similar ways to those discussed for recommender
systems in Chapter 8. Alternatively given a network,
it is possible to work out local metrics on the network
nodes, for example the number of friends in a social
network, or, for a web page, the words used as the
anchor text on hyperlinks pointing to it. This can
then be used to create a more tabular representation
which is more suitable for large-scale cloud processing
(Chap. 8).

https://alandix.com/glossary/aibook/similarity measures
https://alandix.com/glossary/aibook/Jaccard similarity
https://alandix.com/glossary/aibook/cosine similarity
https://alandix.com/glossary/aibook/Jaccard similarity
https://alandix.com/glossary/aibook/bag of words
https://alandix.com/glossary/aibook/set theory
https://alandix.com/glossary/aibook/cardinality of set
https://alandix.com/glossary/aibook/Jaccard similarity
https://alandix.com/glossary/aibook/Jaccard similarity
https://alandix.com/glossary/aibook/Cosine similarity
https://alandix.com/glossary/aibook/set theory
https://alandix.com/glossary/aibook/Jaccard similarity
https://alandix.com/glossary/aibook/cosine similarity
https://alandix.com/glossary/aibook/stop words
https://alandix.com/glossary/aibook/optimal
https://alandix.com/glossary/aibook/optimal
https://alandix.com/glossary/aibook/similarity measures
https://alandix.com/glossary/aibook/similarity measures
https://alandix.com/glossary/aibook/recommender systems
https://alandix.com/glossary/aibook/recommender systems

142 ■ Artificial Intelligence

10.7 AUTOMATION AND
DOCUMENTATION

It is easy to get lost in the process of data analysis and
forget what one has done to get to the cleaned data. How-
ever, it is important to keep track of this for two reasons.

documentation – You may need to tell others what you
have done, whether in an internal report or for ex-
ternal publication. This may have important legal
consequences if, for example, the data is later used
as part of personal information processing (see also
Chap. 20).

repeatability – You may need to re-run the analysis on
the new data or re-run the processing on the same
data.

The last of these, the need to repeat steps on the same
data, is less obvious than new data or documentation for
reporting. However, it is very common.

We already discussed validation rules and sanity
checks for early data gathering and extraction from raw
sources. However, there may be additional checks that
may need to be carried out that were impossible earlier
as they depend on the analysis and transformations.

For example, as part of processing the OCR of an old
gazetteer, one stage identified the names of places start-
ing each entry, based partly on capitalisation. After this
stage the alphabetic order of the entries was checked.
Sometimes this was wrong because the original editor
has misordered the entries, sometimes because there was
an error in the OCR of the entry and sometimes because
some capitalisation or OCR errors in the middle of an
entry made the entry-detection algorithm think a new
entry was starting. The different forms of misorder re-
quired different kinds of changes; some, such as correct-
ing the OCR, entailed re-running the entire processing
pipeline.

In addition, processing may accidentally introduce er-
rors. A classic form of this is when global substitutions
capture unintended strings. For example, in a historic
text one might encounter the name ‘Henry the FifthIII’ –
not because it was in the original text but because a global
substitution to transform ‘Henry V’ to ‘Henry the Fifth’
accidentally matched ‘Henry VIII’. The substitution rule
can easily be corrected to only begin and end at word
breaks, but if this is only noticed later in the process, the
analysis pipeline may need to be re-run from when the
substitution was performed.

FIGURE 10.8 Jupyter Notebook showing replayable Python
code (Image: Andrey Yakimchik – CC BY 4.0, https://comm
ons.wikimedia.org/w/index.php?curid=97158987).

In some cases tools you are using can help this process.
You may be able to use a notebook-style interface, such as
Jupyter (Figure 10.8), which automatically records your
actions and allows you to edit and replay [154]. Alterna-
tively, if you are using some form of command-line shell
(Unix or DOS), you can make sure you save the transcript
after every session. Interactive tools can make this more
difficult as many do not have easy ways to record the ac-
tions you have performed let alone to replay them.

Even when you have recorded and can replay by hand
or automatically what you have done, it is important to
ensure you are able to recreate the environment. If the
datafiles or online data have changed since you originally
processed the data, then the outputs will be different.
This may not matter, if you simply want the most up-to-
date results, but can be a problem if you want to be able
to reproduce previous analysis. Where possible it can be
useful to make time-stamped copies of critical datafiles,
or make zip archives of folders of data, although this may
not be possible for very large datafiles and various forms
of deltas (files recording differences) may be needed.

When heavy computation is needed, it may also be
worth making copies of intermediate files to avoid com-
pletely re-running processing pipelines but with care to
recompute them if anything has changed on earlier stages
of processing. If you are not using an environment that
supports this for you, you should create your own pro-
cesses, file naming conventions, etc. and document the
main steps you are following.

If you create bespoke analysis code, you should
consider using a version control system such as GitHub

https://alandix.com/glossary/aibook/information processing
https://alandix.com/glossary/aibook/validation rules
https://alandix.com/glossary/aibook/sanity checks
https://alandix.com/glossary/aibook/sanity checks
https://alandix.com/glossary/aibook/OCR
https://alandix.com/glossary/aibook/OCR
https://alandix.com/glossary/aibook/OCR
https://alandix.com/glossary/aibook/OCR
https://commons.wikimedia.org/w/index.php?curid=97158987
https://commons.wikimedia.org/w/index.php?curid=97158987
https://alandix.com/glossary/aibook/deltas

Data Preparation ■ 143

TABLE 10.1 Data Used in Exercise 10.2.

mountain height source
Everest 8,850 meters https://education.nationalgeographic.org/resource/mount-everest/
Yr Wyddfa 3,560 feet https://www.britannica.com/place/Snowdon
Agiocochook 6,288.3 ft https://en.wikipedia.org/wiki/Mount_Washington
Kilimanjaro 5895 m https://www.statista.com/statistics/1237791/highest-mountains-in-africa/

so that changes made to the code are recorded, and
maybe factoring the code into a core execution engine
(that changes rarely) plus rules (that change more
often). If you are making an interactive tool, then
make sure there is some way to save the actions and/or
configuration of the system so that it can be replayed!

File systems are good at storing datafiles, but poor at
the meta-information about the files. Do make sure you
use a system to record data documentation such as the
format of different datafiles and what the columns mean
in a CSV file, and also the provenance including which
program created it, what versions of input data were
used, and parameters supplied. This all seems obvious at
the time but can be obscure even a few weeks later.

10.8 SUMMARY
This has been a chapter about the messy side of AI, with
lots of practical advice as well as more overarching meth-
ods and processes. We have looked at the main stages
of preparing data for use in AI and machine learning.
This started with extracting and gathering the data, po-
tentially from separate sources including cleaning and
validating it. This is then followed by various forms of
data transformation and manipulation to put it in a form
suitable for the chosen algorithm. This can be relatively
straightforward, for example transforming data values
from continuous to discrete values, but may require sub-
stantial structural changes to the dataset. We saw various
places where AI may itself be used during this data prepa-
ration, including entity recognition and data reduction
of media resources.

10.1 Place the following into the data type categories in
Section 10.4.1:

a. “Hello World!”
b. a photo of Everest
c. 42
d. {mountain:"Everest";height:8849}
e. false

f. https://alandix.com/

10.2 In the data fragment { mountain:"Everest";
height:8849 } the height is given in metres.
How might you preprocess data with mixed units
such as in Table 10.1.

10.3 Consider the following data – ignore the three
columns: treat it as a single x–y dataset. This data
is also available in the chapter web resources.

x y x y x y

82.092 2.480 65.875 2.691 35.956 4.989
24.601 4.521 64.667 2.010 34.963 4.971
8.120 5.065 76.328 2.493 73.086 2.508
72.420 7.975 80.725 8.000 56.624 2.219
15.439 4.589 58.251 2.268 28.790 4.418
21.561 4.488 30.578 5.115 86.419 7.521
72.306 2.715 67.602 1.347 23.260 3.865
65.517 7.597 36.831 5.433 82.545 7.707

Using a spreadsheet, code or by hand:

a. Calculate the minimum, maximum, mean and
standard deviation for x and y

b. Use the min-max to normalise by range

c. Use the mean-std’dev to normalise by standard
deviation

d. Use quartiles to create an information-
oriented classification of x and y into four
categories (i.e. code 1 for lower quartile, 2
for lower quartile to median, 3 for median
to upper quartile and 4 for larger than upper
quartile)

e. Calculate contingency tables for x quartile vs
y quartile

f. Plot a histogram for x and y and look for nat-
ural breakpoints in each

https://education.nationalgeographic.org/resource/mount-everest/
https://www.britannica.com/place/Snowdon
https://en.wikipedia.org/wiki/Mount_Washington
https://www.statista.com/statistics/1237791/highest-mountains-in-africa/
https://alandix.com/glossary/aibook/data documentation
https://alandix.com/glossary/aibook/provenance
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/entity recognition
https://alandix.com/glossary/aibook/data reduction
https://alandix.com

144 ■ Artificial Intelligence

g. Using the natural breakpoint for x, create a
Low-High class for the x values and create a
contingency table for x-breakpoint vs y quar-
tiles

h. Do you spot any patterns in (e) or (g)?

FURTHER READING

Although there is lots of scattered information on the web,
it is hard to find a coherent text in this area.

R. Mitchell. Web scraping with Python: Data extraction from the
modern web. O’Reilly, Sebastopol, CA, 2015.
Latest edition of this popular O’Reilly title, offering practi-
cal methods for dealing with web data.

A. Doan, A. Halevy, and Z. Ives. Principles of data integration.
Elsevier, Waltham, MA, 2012.
The book is rooted in an organisational database context
of how to integrate the mass of unstructured web data with
structured databases. However, the methods and issues
covered are just the same as those needed when preparing
data for AI use.

J. D. Kelleher, B. Mac Namee, and A. D’arcy. Fundamentals
of machine learning for predictive data analytics: Algo-
rithms, worked examples, and case studies. MIT Press,
Cambridge, MA, 2020.
This book is in part a general overview of machine learning
techniques, but a particular strength is the practical focus
through concrete examples and case studies including dis-
cussions of issues such as data quality and data prepara-
tion.

III
Specialised Areas

https://taylorandfrancis.com/

CHAP T ER 1 1

Game Playing

11.1 OVERVIEW
Game playing has been an important part of the history
of AI. The techniques for game playing can also be ap-
plied to other situations where factors are unknown but
will be discovered only after action is taken. This chap-
ter will consider algorithms for playing standard games
(non-probabilistic, open, two-person, turn-taking, zero-
sum games). Such games include chess, draughts, tic-tac-
toe and Go. In particular, we will look at minimax search
techniques and alpha–beta pruning. This builds on the
search techniques studied in Chapter 4. The chapter will
also consider other types of game where co-operation is
important, where players can take simultaneous moves
and where random events happen (such as the throw of
a die). We will see in Chapter 15 that acting in the pres-
ence of uncertainty is essential for robotics and other
practical planning tasks, and this chapter will show how
game-playing algorithms can be used to tackle such non-
gaming problems. Neural networks have been success-
fully used alongside other game-playing algorithms to
tackle some problems that were previously thought to be
nearly impossible for machines.

11.2 INTRODUCTION
Game playing has always been an important part of AI.
Indeed, the earliest attempts at game-playing computer
programs predate the field. Even Babbage considered
programming his Analytical Engine to play chess.

Games have been seen as a good testing ground for
two reasons. First, because the mixture of reasoning and
creative flair seems to epitomise the best of human in-
telligence. Secondly, because the constrained environ-
ment of play with clearly formulated rules is far more
conducive to computation than the confused and open
problems of everyday life. This advantage is also a weak-
ness of game playing as a measure of intelligence. Instead
human intelligence is regarded as being more thoroughly
expressed in the complexity of open problems and the
subtlety of social relationships. Arguably the brute force
approaches that were so effective for chess are no longer
mainstream AI.

This critique of game playing should not detract from
its own successes and its enormous importance in the
development of the field of AI. When chess programs
were still struggling at club level, they were regarded as a
challenge to AI; now they compete at grandmaster level.
Game-playing programs have also led to the develop-
ment of general purpose AI algorithms; for example, it-
erative deepening (discussed in Chap. 4) was first used
in CHESS 4.5 [261]. Game playing has also been a fertile
ground for experiments in machine learning, in partic-
ular adversarial learning which has been adopted across
other areas of AI.

The single problem that has received most attention from
the artificial intelligence community is the playing of
chess, a game whose whole attraction is that it runs to
precise rules within which billions of games are possible.
As Stephen Rose, the British brain biologist, says, getting
a computer to do this is not too great a wonder. Get one
to play a decent game of poker, he says, and he might be
more impressed.

Martin Ince, THES (1994)

DOI: 10.1201/9781003082880-14 147

https://alandix.com/glossary/aibook/chess
https://alandix.com/glossary/aibook/Go
https://alandix.com/glossary/aibook/minimax search
https://alandix.com/glossary/aibook/alpha--beta pruning
https://alandix.com/glossary/aibook/search techniques
https://alandix.com/glossary/aibook/uncertainty
https://alandix.com/glossary/aibook/robotics
https://alandix.com/glossary/aibook/Neural networks
https://alandix.com/glossary/aibook/Babbage
https://alandix.com/glossary/aibook/Analytical Engine
https://alandix.com/glossary/aibook/chess
https://alandix.com/glossary/aibook/human intelligence
https://alandix.com/glossary/aibook/human intelligence
https://alandix.com/glossary/aibook/human intelligence
https://alandix.com/glossary/aibook/chess
https://alandix.com/glossary/aibook/chess
https://alandix.com/glossary/aibook/iterative deepening
https://alandix.com/glossary/aibook/iterative deepening
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/adversarial learning
http://dx.doi.org/10.1201/9781003082880-14

148 ■ Artificial Intelligence

Most interesting games defy pure brute force
approaches because of the sheer size of their branching
factor. In chess there are typically around 30 legal moves
at any time (although only a few “sensible” ones), and
it is estimated around 1075 legal chess games. We say
“legal” games, as few would be sensible games. In order
to deal with this enormous search space the computer
player must be able to recognise which of the legal moves
are sensible and which of the reachable board positions
are desirable. Search must be heuristic driven, and the
formulation of these heuristics means that the programs
must capture, to some extent, the strategy of a game.

These factors are exemplified by the game of Go. Its
branching factor is nearly 400, with as many moves.
Furthermore, the tactics of the game involve both local
and global assessment of the board position, making
heuristics very difficult to formulate. However, effective
heuristics are essential to the game. The moves made in
the early part of the game are critical for the final stages;
effectively one needs to plan for the end game, hundreds
of moves later. But the huge branching factor clearly
makes it impossible to plan for the precise end game; in-
stead one makes moves to produce the right kind of end
game.

Applying machine learning and neural networks to Go
also encounters problems as the tactical advantage of a
move is partly determined by its absolute position on
the board (easy to match) but partly also by the local
configuration of pieces. We will see in Chapter 12 that
position independence is a major problem for pattern
matching, and so this is not a parochial problem for game
playing.

For these reasons the success of AlphaGo in 2016, al-
ready discussed in the introduction (Chap. 1), was not
just surprising but shocking to many. Crucially, this suc-
cess was not just about brute force. Although the deep
learning networks were very large, they were not large
enough to encode every game play but were clearly en-
coding some form of strategy and tactics, even though of
a different form to a human player.

Perhaps even more surprising have been games that
require a level of understanding of human players includ-
ing poker [200] and web-based Diplomacy [140]. For the
latter natural language models were combined with game
playing as a critical part of the game is chat-based nego-
tiations. The AI is even capable of levels of deceit, with-
holding critical information.

11.3 CHARACTERISTICS OF GAME PLAYING
Game playing has an obvious difference from the
searches in Chapter 4: while you are doing your best to
find the best solution, your adversary is trying to stop
you! One consequence of this is that the distinction
between planning and acting is stronger in game play.
When working out how to fill out a magic square,
one could always backtrack and choose a different
solution path. However, once one has made a choice
in a game there is no going back. Of course, you can
look ahead, guessing what your opponent’s moves will
be and planning your responses, but it remains a guess
until you have made your move and your opponent has
responded – it is then too late to change your mind.

The above description of game playing is in fact only
of a particular sort of game: a non-probabilistic, open,
two-person, turn-taking, zero-sum game.

• non-probabilistic – no dice, cards or any other ran-
dom effects.

• open – each player has complete knowledge of
the current state of play, as opposed to games like
“battleships” where different players have different
knowledge.

• two-person – no third adversary and no team play-
ing on your side, as opposed to say bridge or foot-
ball.

• turn-taking – the players get alternate moves, as
opposed to a game where they can take multiple
moves, perhaps based on their speed of play.

• zero-sum – what one player wins, the other loses.

In addition, the games considered by AI are normally
non-physical, but there are also game-playing robots, in-
cluding an annual RoboCup for robotic football. With
a bit of effort one can think of games that have alterna-
tives to all the above, but the “standard” style of game has
been most heavily studied, with the occasional addition
of some randomness (e.g. backgammon).

As with deterministic search, we can organise the
possible game states into trees or graphs, with the
nodes linked by moves. However, we must also label
the branches with the player who can make the choice
between them. In a game tree alternate layers will be
controlled by different players.

https://alandix.com/glossary/aibook/branching factor
https://alandix.com/glossary/aibook/branching factor
https://alandix.com/glossary/aibook/chess
https://alandix.com/glossary/aibook/chess
https://alandix.com/glossary/aibook/search space
https://alandix.com/glossary/aibook/heuristics
https://alandix.com/glossary/aibook/Go
https://alandix.com/glossary/aibook/branching factor
https://alandix.com/glossary/aibook/heuristics
https://alandix.com/glossary/aibook/heuristics
https://alandix.com/glossary/aibook/branching factor
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/neural networks
https://alandix.com/glossary/aibook/Go
https://alandix.com/glossary/aibook/pattern matching
https://alandix.com/glossary/aibook/pattern matching
https://alandix.com/glossary/aibook/AlphaGo
https://alandix.com/glossary/aibook/deep learning
https://alandix.com/glossary/aibook/deep learning
https://alandix.com/glossary/aibook/magic square
https://alandix.com/glossary/aibook/zero-sum game
https://alandix.com/glossary/aibook/robots
https://alandix.com/glossary/aibook/deterministic search
https://alandix.com/glossary/aibook/game tree
https://alandix.com/glossary/aibook/game tree

Game Playing ■ 149

Like deterministic search problems, the game trees can
be very big and typically have large branching factors.
Indeed, if a game tree is not complex, the game is likely to
be boring. Even a trivial game like noughts and crosses
(tic-tac-toe) has a game tree far too big to demonstrate
here. Because of the game tree’s size it is usually only
possible to examine a portion of the total space.

Two implications can be drawn from the complexity of
game trees. First, heuristics are important – they are of-
ten the only way to judge whether a move is good or bad,
as one cannot search as far as the actual winning or los-
ing state. Secondly, the choice of which nodes to expand
is critical. A human chess player only examines a small
number of the many possible moves but is able to identify
those moves that are “interesting”. This process of choos-
ing directions to search is knowledge rich and therefore
expensive. More time spent examining each node means
fewer nodes examined – in fact, the most successful chess
programs have relatively simple heuristics but examine
vast numbers of moves. They attain grandmaster level
and are clearly “intelligent”, but the intelligence is cer-
tainly “artificial”. In contrast, AlphaGo, which leans more
heavily on complex learnt heuristics, is perhaps more
human-like, although still plays very differently from a
human player.

11.4 STANDARD GAMES

11.4.1 A Simple Game Tree

In order to demonstrate a complete game tree, we con-
sider the (rather boring) game of “placing dominoes”.
Take a squared board such as a chess board. Each player
in turn places a domino that covers exactly two squares.
One player always places pieces right to left, the other
always places them top to bottom. The player who can-
not place a piece loses. The complete game tree for this
when played on a 3× 3 board is shown in Figure 11.1. In
fact, even this tree has been simplified to fit it onto the
page, and some states that are equivalent to others have
not been drawn. For example, there are two states similar
to b and four similar to c.

The adversaries are called Alison and Brian. Alison
plays first and places her pieces left to right. Consider
board position j. This is a win for Alison, as it is Brian’s
turn to play, and there is no way to play a piece top to
bottom. On the other hand, position s is a win for Brian,
as although neither player can place a piece, it is Alison’s
turn to play.

We can see some of the important features of game
search by looking at this tree. The leaves of the tree are
given scores of +1 (win for Alison) or −1 (win for Brian
– Alison loses). This scoring would of course be replaced
by a heuristic value where the search is incomplete. The
left-hand branch is quite simple – if Alison makes this
move, Brian has only one move (apart from equivalent
ones) and from there anything Alison does will win. The
right branch is rather more interesting. Consider node m:
Brian has only one possible move, but this leads to a win
for him (and a loss for Alison). Thus position m should
be regarded as a win for Brian and could be labelled “−1”.
So, from position e Alison has two choices, either to play
to l – a win – or to play to m – a loss. If Alison is sensible,
she will play to l. Using this sort of argument, we can
move up the tree marking nodes as win or lose for Alison.

In a win–lose game either there will be a way that the
first player can always win, or alternatively the second
player will always be able to force a win. This game is a
first-player win game; Alison is a winner! If draws are
also allowed, then there is the third alternative that two
good players should always be able to prevent each other
from winning – all games are draws. This is the case for
noughts and crosses, and it is suspected that the same is
true in chess. The reason that chess is more interesting to
play than noughts and crosses is that no one knows, and
even if it were true that in theory the first player would
always win, the limited ability to look ahead means that
this does not happen in practice.

11.4.2 Heuristics and Minimax Search

In the dominoes game we were able to assign each leaf
node as a definite win either for Alison or for Brian. By
tracing back we were able to assign a similar value for
each intermediate board position. As we have discussed,
we will not usually have this complete information and
will have to rely instead on heuristic evaluation. As with
deterministic search, the form of this will depend on the
problem. Examples are

• chess – One can use the standard scoring system
where a pawn counts as 1, a knight as 3 and so on.

• noughts and crosses – One can use a sum based on
the value of each square where the middle counts
most, the corners less and the sides least of all. You
add up the squares under the crosses and subtract
those under the noughts.

https://alandix.com/glossary/aibook/deterministic search
https://alandix.com/glossary/aibook/game trees
https://alandix.com/glossary/aibook/game tree
https://alandix.com/glossary/aibook/noughts and crosses
https://alandix.com/glossary/aibook/game tree
https://alandix.com/glossary/aibook/game tree
https://alandix.com/glossary/aibook/game trees
https://alandix.com/glossary/aibook/game playing!heuristics
https://alandix.com/glossary/aibook/chess
https://alandix.com/glossary/aibook/knowledge-rich search
https://alandix.com/glossary/aibook/chess programs
https://alandix.com/glossary/aibook/chess programs
https://alandix.com/glossary/aibook/heuristics
https://alandix.com/glossary/aibook/AlphaGo
https://alandix.com/glossary/aibook/heuristics
https://alandix.com/glossary/aibook/Game Tree
https://alandix.com/glossary/aibook/game tree
https://alandix.com/glossary/aibook/placing dominoes
https://alandix.com/glossary/aibook/chess
https://alandix.com/glossary/aibook/game tree
https://alandix.com/glossary/aibook/noughts and crosses
https://alandix.com/glossary/aibook/chess
https://alandix.com/glossary/aibook/chess
https://alandix.com/glossary/aibook/noughts and crosses
https://alandix.com/glossary/aibook/dominoes
https://alandix.com/glossary/aibook/heuristic evaluation
https://alandix.com/glossary/aibook/deterministic search
https://alandix.com/glossary/aibook/chess
https://alandix.com/glossary/aibook/noughts and crosses

150 ■ Artificial Intelligence

FIGURE 11.1 Game tree for “placing dominoes”.

Note that these heuristics may give values outside the
range 1 to −1, so one must either suitably scale them
or choose large enough values to represent winning and
losing positions.

Figure 11.2 shows an example termgame tree with
heuristic values for each position. The heuristic values
are the unbracketed numbers (ignore those in brackets
for the moment). Alison’s moves are shown as solid
lines, and Brian’s moves are dashed. This is not the
whole game tree, which would extend beyond the nodes
shown. We will also ignore for now the difficult issue of
how we decided to search this far in the tree and not, for
example, to look at the children of node k. The portion
of the tree that we have examined is called the search
horizon.

It is Alison’s move. There are obviously some good po-
sitions for her (with scores 5 and 7) and some very bad
ones (−10). But she cannot just decide to take the path
to the best position, node j, as some of the decisions are
not hers to make. If she moves to position c, then Brian
might choose to move to position g rather than to f. How
can she predict what Brian will do and also make her own
decision?

We can proceed up the tree rather as we did with
the dominoes game. Consider position i. It is Brian’s

move, and he will obviously move to the best position
for him, that is the child with the minimum score, n.
Thus, although the heuristic value at node i was 2, by
looking ahead at Brian’s move we can predict that the
actual score resulting from that move will be −3. This
number is shown in brackets. Look next at node d. It is
Alison’s move. If she has predicted Brian’s move (using
the argument above), her two possible moves are to h
with score −2 or to i with score −3. She will want the
best move for her, that is the maximum score. Thus the
move made would be to h and position d can be given
the revised score of −2. This process has been repeated
for the whole tree. The numbers in brackets show the
revised scores for each node, and the solid lines show
the chosen moves from each position.

With this process one alternately chooses the mini-
mum (for the adversary’s move) and the maximum (for
one’s own move). The procedure is thus called minimax
search. Pseudocode for minimax is shown in Figure 11.3.

Note that the numbers on the positions are the worst
score that you can get assuming you always take the in-
dicated decisions. Of course you may do better if your
adversary makes a mistake. For example, if Alison moves
to c and Brian moves to f, Alison will be able to respond
with a move to j, giving a score of 7 rather than the worst

https://alandix.com/glossary/aibook/heuristics
https://alandix.com/glossary/aibook/game tree
https://alandix.com/glossary/aibook/search horizon
https://alandix.com/glossary/aibook/search horizon
https://alandix.com/glossary/aibook/dominoes
https://alandix.com/glossary/aibook/minimax search
https://alandix.com/glossary/aibook/minimax search
https://alandix.com/glossary/aibook/minimax

Game Playing ■ 151

FIGURE 11.2 Minimax search on a game tree.

FIGURE 11.3 Minimax pseudocode.

case score of 1. However, if you don’t take the indicated
moves, a good opponent will fight down your score to
below the minimax figure. Minimax is thus a risk averse
search.

11.4.3 Horizon Problems

It is important to remember that the portion of tree
examined in determining the next move is not the whole
tree. So although minimax gives the worst case score
given the nodes that have been examined, the actual score
may be better or worse as the game proceeds, and one
gets to previously unconsidered positions. For example,
imagine that Alison looks ahead only two moves, to the
level d–g. A minimax search at this level gives scores of
5 to b and −7 to c, so Alison will move to b, whereas by
looking further ahead we know that c would be better.

FIGURE 11.4 Horizon effect – simple heuristics can be wrong!

Looking even further ahead, our choice might change
again. These rapid changes in fortune are a constant
problem in determining when to stop in examining the
game tree. Figure 11.4 shows a particularly dramatic
example. The white draught is crowned, so it can jump in
any direction, and it is white’s move. A simple heuristic
would suggest that black is unassailable, but looking
one move further we find that white jumps all black’s
draughts and wins the game!

Look again at Figure 11.2. Positions a, b, d and e all
have the same heuristic score. That is, they form a plateau
rather like we saw in hill climbing. While we only look at
the positions within a plateau, minimax can tell us noth-
ing. In the example tree, the search horizon went beyond
the plateau, and so we were able to get a better estimate

https://alandix.com/glossary/aibook/minimax
https://alandix.com/glossary/aibook/Minimax
https://alandix.com/glossary/aibook/minimax
https://alandix.com/glossary/aibook/minimax search
https://alandix.com/glossary/aibook/game tree
https://alandix.com/glossary/aibook/plateau
https://alandix.com/glossary/aibook/hill climbing
https://alandix.com/glossary/aibook/plateau
https://alandix.com/glossary/aibook/minimax
https://alandix.com/glossary/aibook/search horizon
https://alandix.com/glossary/aibook/plateau

152 ■ Artificial Intelligence

of the score for each position. In fact, if you examine the
suggested chess heuristic, this only changes when a piece
is taken. There are likely to be long play sequences with
no takes, and hence plateaux in the game tree.

Plateaux cause two problems. First, as already noted,
minimax cannot give us a good score. Secondly, and
perhaps more critically, it gives us no clue as to which
nodes to examine further. If we have no other knowledge
to guide our search, the best we can do is examine the
tree around a plateau in a breadth first manner. In fact,
one rule for examining nodes is to look precisely at
those where there is a lot of change – that is, ignore the
plateaux. This is based on the observation that rapid
changes in the heuristic evaluation function represent
interesting parts of the game.

11.4.4 Alpha–beta Pruning

The minimax search can be speeded up by using branch
and bound techniques. Look again at Figure 11.2. Imag-
ine we are considering moves from d. We find that h has
score −2. We then go on to look at node i – its child n
has score −3. So, before we look at o, we know that the
minimax score for i will be no more than −3, as Brian will
be minimising. Thus Alison would be foolish to choose
i, as h is going to be better than i whatever score o has.

We can see similar savings on the dominoes game tree
(Figure 11.1). Imagine we are trying to find the move
from position c. We have evaluated e and its children and
f, and are about to look at the children of nodes g and h.
From Brian’s point of view (minimisation), f is best so
far. Now as soon as we look at node n we can see that
the minimax score for g will be at least 1 (as Alison will
play to maximise), so there is no reason to examine node
o. Similarly, having seen node f, nodes p and q can be
skipped. In fact, if we look a bit further up, we can see that
even less search is required. Position b has a minimax
score of 1. As soon as we have seen that node f has score
“−1” we know that Brian could choose this path and that
the minimax score of c is at most −1. Thus nodes g and h
can be ignored completely. This process is called alpha–
beta pruning and depends on carrying around a best-so-
far (𝛼) value for Alison’s choices and a worst-so-far (𝛽)
for Brian’s choices.

11.4.5 The Imperfect Opponent

Minimax and alpha–beta search both assume that the
opponent is a rational player using the same sort of

reasoning as the algorithm. Imagine two computers,
AYE and BEE, playing against one another. AYE is
much more powerful than BEE and is to move first.
There are two possible moves. If one move is taken,
then a draw is inevitable. If the other move is taken,
then, by looking ahead 20-ply, AYE can see that BEE
can force a win. However, all other paths lead to a win
for AYE. If AYE knows that BEE can only look ahead
10-ply, then AYE should probably play the slightly
risky move in the knowledge that BEE will not know
the correct moves to make and so almost certainly
lose.

For a computer to play the same trick on a hu-
man player is far more risky. Even though human
players can consider nowhere near as many moves
as computers, they may look very far ahead down
promising lines of moves (actually computers do so
too). Because AYE knew that BEE’s search horizon
was fixed, it could effectively use probabilistic rea-
soning. The problem with human opponents, or less
predictable computer ones, is that they might pick
exactly the right path. Assuming random moves from
your opponent under such circumstances is clearly
foolhardy, but minimax seems somewhat unadven-
turous. In preventing the worst, it throws away golden
opportunities.

11.5 NON-ZERO-SUM GAMES AND
SIMULTANEOUS PLAY

In this section we will relax some of the assumptions
of the standard game. If we have a non-zero-sum game,
there is no longer a single score for each position. Instead,
we have two values representing how good the position is
for each player. Depending on the rules of play, different
players control different choice points, and they seek to
maximise their own score. This formulation allows one
to consider not only competitive but also co-operative
situations, where the choices are made independently,
but where the players’ ideas of “good” agree with one an-
other. This leads into the area of distributed AI, where one
considers, for example shop-floor robots co-operating in
the building of a motor car (see Chap. 16). However,
there we will consider the opposite extreme, where all
parties share a common goal. In this section we will con-
sider the in-between stage when the players’ goals need
not agree but may do so. We will also examine simul-
taneous play, that is when both parties make a move in
ignorance of each other’s choice.

https://alandix.com/glossary/aibook/chess heuristic
https://alandix.com/glossary/aibook/plateaux
https://alandix.com/glossary/aibook/game tree
https://alandix.com/glossary/aibook/Plateaux
https://alandix.com/glossary/aibook/minimax
https://alandix.com/glossary/aibook/plateau
https://alandix.com/glossary/aibook/breadth first
https://alandix.com/glossary/aibook/plateaux
https://alandix.com/glossary/aibook/heuristic evaluation function
https://alandix.com/glossary/aibook/minimax search
https://alandix.com/glossary/aibook/branch and bound
https://alandix.com/glossary/aibook/branch and bound
https://alandix.com/glossary/aibook/minimax score
https://alandix.com/glossary/aibook/dominoes
https://alandix.com/glossary/aibook/game tree
https://alandix.com/glossary/aibook/minimax score
https://alandix.com/glossary/aibook/minimax score
https://alandix.com/glossary/aibook/minimax score
https://alandix.com/glossary/aibook/minimax score
https://alandix.com/glossary/aibook/alpha--beta pruning
https://alandix.com/glossary/aibook/alpha--beta pruning
https://alandix.com/glossary/aibook/Minimax
https://alandix.com/glossary/aibook/alpha--beta search
https://alandix.com/glossary/aibook/search horizon
https://alandix.com/glossary/aibook/probabilistic reasoning
https://alandix.com/glossary/aibook/probabilistic reasoning
https://alandix.com/glossary/aibook/minimax
https://alandix.com/glossary/aibook/non-zero-sum game
https://alandix.com/glossary/aibook/distributed AI
https://alandix.com/glossary/aibook/robots

Game Playing ■ 153

FIGURE 11.5 The prisoner’s dilemma.

11.5.1 The Prisoner’s Dilemma

A classic problem in game theory is the prisoner’s
dilemma. There are several versions of this. The one
discussed in Section 11.5.4 is the most common,
but we will deal with a more tractable version first!
This comes in several guises, and the most common
is as follows. Imagine two bank-robbers have been
arrested by the police and are being questioned
individually. The police have no evidence against them,
and can only prosecute if one or the other decides to
confess.

Before they were arrested, the criminals made a pact
to say nothing. Each now has the choice either to re-
main silent – and trust their colleague will do the same
– or to renege on their promise. Is there honour among
thieves?

If neither confesses, then the police will eventually
have to let them go. If both confess, then they will each
get a long, five-year sentence. However, the longest
sentence will be for a prisoner who doesn’t confess when
the other does. If the first prisoner confesses, then the
other prisoner will get a ten-year sentence, whereas
the first prisoner will only be given a short, one-year
sentence. Similarly, if the second prisoner confesses and
the first does not, the first will get the ten-year sentence.
The situation is summarised in Figure 11.5. In each
square the first prisoner’s sentence is in the upper right
and the second in the lower left.

Let’s consider the first prisoner’s options. If he trusts
his colleague, but she reneges, then he will be in prison
for ten years. However, if he confesses, reneging on his
promise, then the worst that can happen to him is a five-
year sentence. A minimax strategy would suggest reneg-
ing. The second prisoner will reason in exactly the same
way – so both confess.

FIGURE 11.6 Game tree for prisoner’s dilemma.

11.5.2 Searching the Game Tree

The above problem was drawn as a matrix rather than a
tree, because neither prisoner knew the other’s moves.
If instead the two ‘played’ in turn, then the situation
would be far better. In this case we can draw the
prisoner’s dilemma as a game tree (see Figure 11.6). At
each terminal node we put the two values and use a
minimax-like algorithm on the tree.

Imagine the first prisoner has decided not to confess,
and the second prisoner knows this. Her options are then
to remain silent also and stay out of prison, or to renege
and have a one-year sentence. Her choice is clear. On the
other hand, if the first prisoner has already reneged, then
it is clear that she should also do so (honour aside!). Her
choices are indicated by bold lines, and the middle nodes
have been given pairs of scores based on her decisions.

Assuming the first prisoner can predict his partner’s
reasoning, he now knows the scores for each of his op-
tions. If he reneges, he gets five years; if he stays silent, he
walks away free – no problem!

Notice that although this is like the minimax algo-
rithm, it differs when we consider the second prisoner’s
moves. She does not seek to minimse the first prisoner’s
score, but to maximise her own. More of a maximax al-
gorithm?

So, the game leads to a satisfactory conclusion (for the
prisoners) if the moves are open, but not if they are se-
cret (which is why the police question them separately).
In real-life decision making, for example many business
and diplomatic negotiations, some of the choices are se-
cret. For example, the Cuban missile crisis can be cast in
a similar form to the prisoner’s dilemma. The “renege”
option here would be to take pre-emptive nuclear action.

https://alandix.com/glossary/aibook/game theory
https://alandix.com/glossary/aibook/prisoner's dilemma
https://alandix.com/glossary/aibook/prisoner's dilemma
https://alandix.com/glossary/aibook/minimax
https://alandix.com/glossary/aibook/Game Tree
https://alandix.com/glossary/aibook/game tree
https://alandix.com/glossary/aibook/prisoner's dilemma
https://alandix.com/glossary/aibook/game tree
https://alandix.com/glossary/aibook/minimax algorithm
https://alandix.com/glossary/aibook/minimax algorithm
https://alandix.com/glossary/aibook/minimax algorithm
https://alandix.com/glossary/aibook/Cuban missile crisis
https://alandix.com/glossary/aibook/prisoner's dilemma

154 ■ Artificial Intelligence

Happily, the range of options and the level of communi-
cation were substantially higher.

Although there are obvious differences, running
computer simulations of such games can be used to give
some insight into these complex real-world decisions. In
the iterated prisoner’s dilemma, the same pair of players
are constantly faced with the same secret decisions.
Although in any one game they have no knowledge
of the other’s moves, they can observe their partner’s
previous behaviour. A successful strategy for the iterated
prisoner’s dilemma is tit-for-tat, where the player “pays
back” the other player for reneging. So long as there
is some tendency for the players occasionally to take a
risk, the play is likely to end up in extended periods of
mutual trust.

11.5.3 No Alpha–Beta Pruning

Although the slightly modified version of the minimax
algorithm works fine on non-zero-sum games, alpha–
beta pruning cannot be used. Consider again the game
tree in Figure 11.6. Imagine this time that you consider
the nodes from right to left. That is, you consider each
renege choice before the corresponding trust choice. The
third and fourth terminal nodes are considered as be-
fore, and the node above them scored. Thus the first pris-
oner knows that reneging will result in five years in jail.
We now move on to the second terminal node. It has a
penalty of ten years for the first prisoner. If he applied
alpha–beta pruning, he would see that this is worse than
the reneging option and so not bother to consider the
first node at all.

Why does alpha–beta fail? The reason is that it de-
pends on the fact that in zero-sum games the best move
for one player is the worst for the other. This holds in
the right-hand branch of the game tree but not in the
left-hand branch. When the first prisoner has kept silent,
then the penalties for both are minimised when the sec-
ond prisoner also remains silent. What’s good for one is
good for both.

11.5.4 Pareto-optimality

In the form of the prisoner’s dilemma discussed above,
the option when both remain silent was best for both.
However, when there is more than one goal, it is not
always possible to find a uniformly best alternative.
Consider the form of the prisoner’s dilemma in
Figure 11.7. This might arise if the police have evidence

FIGURE 11.7 Modified prisoner’s dilemma.

FIGURE 11.8 Non-Pareto-optimal solution.

of a lesser crime, perhaps possession of stolen goods,
so that if neither prisoner confesses they will still both
be imprisoned for two years. However, if only one
confesses, that prisoner has been promised a lenient
sentence on both charges.

This time, there is no uniformly optimal solution.
Neither prisoner will like the renege–renege choice, and
the trust–trust one is better for both. However, it is not
best overall as each prisoner would prefer the situation
when only they confess. The trust–trust situation is
called Pareto-optimal. This means that there is no other
situation that is uniformly better. In general, there may
be several different Pareto-optimal situations favouring
one or other party.

Now see what happens when the prisoners make their
choices. The first prisoner wonders what the second pris-
oner might do. If she reneges, then he certainly ought to
as well. But if she stays silent, it is still better for him to
renege as this will reduce his sentence from two years to
one. The second prisoner reasons similarly and so they
end up in the renege–renege situation.

This time, having an open, turn-taking game does not
help. Figure 11.8 shows the game tree for this version

https://alandix.com/glossary/aibook/prisoner's dilemma
https://alandix.com/glossary/aibook/prisoner's dilemma
https://alandix.com/glossary/aibook/minimax algorithm
https://alandix.com/glossary/aibook/minimax algorithm
https://alandix.com/glossary/aibook/non-zero-sum games
https://alandix.com/glossary/aibook/alpha--beta pruning
https://alandix.com/glossary/aibook/alpha--beta pruning
https://alandix.com/glossary/aibook/game tree
https://alandix.com/glossary/aibook/game tree
https://alandix.com/glossary/aibook/alpha--beta pruning
https://alandix.com/glossary/aibook/game tree
https://alandix.com/glossary/aibook/prisoner's dilemma
https://alandix.com/glossary/aibook/prisoner's dilemma
https://alandix.com/glossary/aibook/optimal solution
https://alandix.com/glossary/aibook/Pareto-optimal
https://alandix.com/glossary/aibook/Pareto-optimal
https://alandix.com/glossary/aibook/game tree

of the dilemma, which also leads to the renege–renege
option. Even though both prisoners would prefer the
Pareto-optimal trust–trust option to the renege–renege
one, the latter is still chosen. Furthermore, if they both
did decide to stay silent, but were later given the option
of changing their decision, both would do so. The
Pareto-optimal decision is, in this case, unstable.

The lesson is that, in order to get along, both comput-
ers and people have to negotiate and be able to trust one
another. It is thus crucial for some applications that soft-
ware agents (see Chap. 16) have an idea of trust.

11.5.5 Multi-party Competition and Co-operation

The above can easily be extended to the case of multiple
players. Instead of two scores, one gets a tuple of scores,
one for each player. The modified minimax algorithm
can again be used. At each point, as we move up the tree,
we assume each player will maximise their own part of
the tuple. The same problems arise with secret moves and
non-Pareto-optimal results.

11.6 THE ADVERSARY IS LIFE!
Game playing is similar to interacting with the physical
environment – as you act, new knowledge is found, or
circumstances change to help or hinder you. In such cir-
cumstances the minimax algorithm can be used where
the adversary is replaced by events from the environ-
ment. This effectively assumes that the worst thing will
always happen.

Consider the following coin-weighing problem:
King Alabonzo of Arbicora has nine golden coins. He

knows that one is a counterfeit (but not which one). He
also knows that fake coins are slightly lighter than true
ones. The local magician Berzicaan has a large and accu-
rate balance but demands payment in advance for each
weighing required. How many weighings should the king
ask for and how should he proceed?

Figure 11.9 shows the search space, expanded to one
level. The numbers in bags represent the size of the pile
that has the heavier coin in it. This starts off as size 9.
The king can weigh two coins (one on each side of the
balance), four, six or eight. If the balance is equal, the coin
must be in the remaining pile; if unequal, he can confine
his search to the heavier pile.

For example, imagine the king chose to weigh four
coins. If the balance was unequal, he would know that
the lighter side had the fake coin in it; hence the pile to

Game Playing ■ 155

test would now consist of only two coins. If, on the other
hand, the balance had been equal, the king would know
that the fake coin was among the five unweighed coins.
Thus if we look at the figure, the choice to weigh four
coins has two branches, the “=” branch leading to a five-
coin bag and the “≠” branch leading to a two-coin bag.

The balance acts as the adversary, and we assume it
“chooses” to weigh equal or unequal to make things as
bad as possible for King Alabonzo! Alabonzo wants the
pile as small as possible, so he acts as minimiser, while
the balance acts as maximiser. Based on this, the inter-
mediate nodes have been marked with their minimax
values. We can see that, from this level of look-ahead, the
best option appears to be weighing six coins first. In fact,
this is the best option, and, in this case, the number of
coins remaining acts as a very good heuristic to guide us
quickly to the shallowest solution.

11.7 PROBABILITY
Many games contain some element of randomness, per-
haps the toss of a coin or the roll of a die. Some of the
choice points are replaced by branches with probabilities
attached. This may be done both for simple search trees
and for game trees. There are various ways to proceed.
The simplest is to take the expected value at each point
and then continue much as before.

In the example of Alabonzo’s coins we deliberately
avoided probabilities by saying he had to pay in advance
for the number of weighings, so only the worst case
mattered. If instead he paid per weighing when required,
he might choose to minimise the expected cost. This
wouldn’t necessarily give the same answer as minimax.
Figure 11.10 shows part of the tree starting with five
coins. The lower branches have been labelled with the
probability that they will occur. For example, if two
coins are weighed, then there is a probability of 2/5
that one of them will be the counterfeit and 3/5 that it
will be one of the three remaining coins. At the bottom
of the figure, the numbers in square brackets are the
expected number of further weighings needed to find
the coin. In the case of one coin remaining, that must
be the counterfeit and so the number is zero. In the
cases of two or three coins, one further weighing is
sufficient.

With five coins the king can choose to weigh either
two or four coins. The average number of weighings for
each has been calculated. For example, when weighing
two coins, there is that weighing, and if the scales are

https://alandix.com/glossary/aibook/Pareto-optimal
https://alandix.com/glossary/aibook/Pareto-optimal decision
https://alandix.com/glossary/aibook/software agents
https://alandix.com/glossary/aibook/software agents
https://alandix.com/glossary/aibook/minimax algorithm
https://alandix.com/glossary/aibook/Pareto-optimal
https://alandix.com/glossary/aibook/minimax algorithm
https://alandix.com/glossary/aibook/coin-weighing problem
https://alandix.com/glossary/aibook/King Alabonzo of Arbicora
https://alandix.com/glossary/aibook/search space
https://alandix.com/glossary/aibook/minimax
https://alandix.com/glossary/aibook/search trees
https://alandix.com/glossary/aibook/game trees
https://alandix.com/glossary/aibook/minimax
https://alandix.com/glossary/aibook/probability
https://alandix.com/glossary/aibook/probability

156 ■ Artificial Intelligence

FIGURE 11.9 Minimax search for King Alabonzo’s counterfeit coin.

equal (with a probability of 0.6), then a further weighing
is required, giving an average number of 1.6.

See how the average number of weighings required is
1.6 when two coins are weighed and 1.8 when four are
weighed. So, it is better to weigh two. However, if the
number of coins in the piles is used as a heuristic, the
minimax score is better for four weighings. In general the
two methods will not give the same answer, as minimax
will concentrate on the worst outcome no matter how
unlikely its occurrence.

One problem with calculating the average pay-off is
that it leads to a rapid increase in the search tree. For
example, in a two-dice game, like backgammon, one has
to investigate game situations for all 21 different pairs of
die faces (or 13 sums). One way to control this is by using
a probability-based cut-off for the search. It is not worth
spending a lot of effort on something that is very unlikely
to happen.

Averages are not the only way to proceed. One might
prefer a choice with a lower average pay-off (or higher
cost), if it has less variability – that is, a strategy of risk
avoidance. On the other hand, a gambler might prefer a
small chance of a big win. This may not be wise against a
shrewd opponent with no randomness but may be per-
fectly reasonable where luck is involved.

FIGURE 11.10 Probabilistic game tree for King Alabonzo’s
counterfeit coin.

https://alandix.com/glossary/aibook/probability
https://alandix.com/glossary/aibook/minimax
https://alandix.com/glossary/aibook/minimax
https://alandix.com/glossary/aibook/search tree
https://alandix.com/glossary/aibook/probability-based cut-off
https://alandix.com/glossary/aibook/risk avoidance
https://alandix.com/glossary/aibook/risk avoidance

Because of the problem with calculating probabilities,
game-playing programs usually use complex heuristics
rather than deep searches. So, a backgammon program
will play more like a human than a chess program.
However, there are some games where the calculation
of probabilities can make a computer a far better player
than a person. In casinos, the margin towards the house
is quite narrow (otherwise people would lose their
money too quickly!), so a little bit of knowledge can
turn a slow loss into a steady win. In card games, the
probability of particular cards occurring changes as the
pack is used up. If you can remember every card that
has been played, then you can take advantage of this
and win. But don’t try it! Counting (as this is called) is
outlawed. If the management suspects, it will change
the card packs, and anyone found in the casino using a
pocket computer will find themselves in the local police
station – if not wearing new shoes at the bottom of the
river!

11.8 NEURAL NETWORKS FOR GAMES
Neural networks have been applied to games for many
years [47, 223, 270]; however, as mentioned previously,
it was the application of deep learning in AlphaGo that
gave a new impetus not only to games applications but
to deep learning in general. The success of AlphaGo was
based on classic techniques, including game searches and
Monte Carlo tree search, combined with multiple neural
networks and adversarial techniques [260]

We will use AlphaGo as the running example, but the
techniques are general.

11.8.1 Where to Use a Neural Network

The most obvious use of a neural network in games
is to ask the question, “what move do I make next”, or
perhaps more broadly, given the board position, “which
moves seem most promising?” However, game search
algorithms effectively answer this question by looking
ahead in the game tree. Effectively this means thinking
about each potential move and then asking two subse-
quent questions “what move do I think my opponent
will make?” and when one has reached a particular
depth of lookahead “how good or bad is the board
state”.

AlphaGo tackled these questions by training two
deep neural networks on different kinds of heuristics
(Figure 11.11):

Game Playing ■ 157

FIGURE 11.11 Policy and value networks to guide search in
the game tree.

policy network – given a board position with the oppo-
nent to move, estimate the probability of what move
the opponent will make next.

value network – given a board position and which
player is next to move, estimate the probability that
the game will end up as a win.

Given these two networks it is fairly straightforward to
apply Monte Carlo tree search using minimax criteria,
as shown in Figure 11.12. There are variants for this,
for example one can apply the value network to the
board position after step 2.1 to decide whether to
just use the heuristic itself or to expand the search in
step 2.2.

Note too that similar techniques can be used in other
domains. For example, in a mathematical proof, the
valid steps are well defined (like moves in a game),
making it relatively easy to check a proof. Normally
the human mathematician chooses which valid rule to
attempt at any point in time; however, a neural network
can be trained to generate heuristics in a similar way
[174].

Note that both the policy network and the value
network can be trained on examples of games played to
completion so that the final outcome is known. However,
the value network can also be trained inductively. If
one has an existing heuristic (say the value network
from a previous iteration), then for any board position
a one-step or two-step minimax lookahead can be used
to create a revised heuristic value for the board (in a
similar way to Figure 11.12). This can then be used
as training data for the next generation of the value
network.

https://alandix.com/glossary/aibook/heuristics
https://alandix.com/glossary/aibook/chess program
https://alandix.com/glossary/aibook/probability
https://alandix.com/glossary/aibook/Neural networks
https://alandix.com/glossary/aibook/deep learning
https://alandix.com/glossary/aibook/AlphaGo
https://alandix.com/glossary/aibook/deep learning
https://alandix.com/glossary/aibook/AlphaGo
https://alandix.com/glossary/aibook/Monte Carlo tree search
https://alandix.com/glossary/aibook/neural networks
https://alandix.com/glossary/aibook/neural networks
https://alandix.com/glossary/aibook/adversarial
https://alandix.com/glossary/aibook/AlphaGo
https://alandix.com/glossary/aibook/neural network
https://alandix.com/glossary/aibook/game tree
https://alandix.com/glossary/aibook/AlphaGo
https://alandix.com/glossary/aibook/deep neural networks
https://alandix.com/glossary/aibook/heuristics
https://alandix.com/glossary/aibook/policy network
https://alandix.com/glossary/aibook/probability
https://alandix.com/glossary/aibook/value network
https://alandix.com/glossary/aibook/probability
https://alandix.com/glossary/aibook/Monte Carlo tree search
https://alandix.com/glossary/aibook/minimax
https://alandix.com/glossary/aibook/value network
https://alandix.com/glossary/aibook/neural network
https://alandix.com/glossary/aibook/heuristics
https://alandix.com/glossary/aibook/policy network
https://alandix.com/glossary/aibook/value network
https://alandix.com/glossary/aibook/value network
https://alandix.com/glossary/aibook/value network
https://alandix.com/glossary/aibook/value network
https://alandix.com/glossary/aibook/minimax
https://alandix.com/glossary/aibook/value\protect \penalty -\@M network
https://alandix.com/glossary/aibook/value\protect \penalty -\@M network

158 ■ Artificial Intelligence

FIGURE 11.12 Pseudocode for Monte Carlo tree search using policy and value networks.

11.8.2 Training Data and Self Play

Initially the deep neural networks that powered AlphaGo
were bootstrapped using datasets of large numbers of hu-
man tournaments. However, there have been too few hu-
man games to train sufficiently large networks.

To deal with this, self play techniques were used to ex-
pand training data as described in Chapter 8. Variants of
the AlphaGo network were played against one another,
each learning from the matches they played and each
getting better and better (Figure 11.13). With sufficient
computer resources far more computer–computer tour-
naments can be generated than have ever been played in
the history of human Go. In AlphaGo, this started based
on human tournaments, but AlphaGo Zero did not use
any human games but learnt entirely from the rules of Go
and lots of adversarial learning.

Lee Sedol eventually retired as a Go player because AI
“cannot be defeated” [19]. However, it is worth noting
that Lee Sedol learnt his Go based on a tiny fraction of
the games that AlphaGo played virtually against itself.
While the AI defeated Lee Sedol, the way in which it did
so is very different, and in many ways far less efficient,
than the human grandmaster, an issue we will return to
in Chapter 22.

11.9 SUMMARY
In this chapter we have looked at algorithms for playing
standard games (non-probabilistic, open, two-person,
turn-taking, zero-sum games). Such games include

FIGURE 11.13 Self play.

chess, draughts, tic-tac-toe and Go. We considered
minimax search techniques and alpha–beta pruning,
which relate to the search techniques studied in
Chapter 4. We also discussed games where co-operation
is important, where players can take simultaneous
moves and where random events happen (such as the
throw of a die). Finally, we have seen how deep learning
has transformed the level of computer game playing
but still makes use of the fundamentals. We will see in
Chapter 15 that acting in the presence of uncertainty is
essential for robotics and other practical planning tasks,
and that chapter will show how game-playing algorithms
can be used to tackle such non-gaming problems.

11.1 Consider the alternatives to the “standard”
game (the non-probabilistic, open, two-person,

https://alandix.com/glossary/aibook/deep neural networks
https://alandix.com/glossary/aibook/AlphaGo
https://alandix.com/glossary/aibook/bootstrapped
https://alandix.com/glossary/aibook/self play
https://alandix.com/glossary/aibook/AlphaGo
https://alandix.com/glossary/aibook/AlphaGo
https://alandix.com/glossary/aibook/AlphaGo Zero
https://alandix.com/glossary/aibook/Go
https://alandix.com/glossary/aibook/adversarial learning
https://alandix.com/glossary/aibook/Lee Sedol
https://alandix.com/glossary/aibook/Go
https://alandix.com/glossary/aibook/Lee Sedol
https://alandix.com/glossary/aibook/AlphaGo
https://alandix.com/glossary/aibook/Lee Sedol
https://alandix.com/glossary/aibook/chess
https://alandix.com/glossary/aibook/minimax search
https://alandix.com/glossary/aibook/alpha--beta pruning
https://alandix.com/glossary/aibook/search techniques
https://alandix.com/glossary/aibook/deep learning
https://alandix.com/glossary/aibook/uncertainty
https://alandix.com/glossary/aibook/robotics

FIGURE 11.14 Hex-lines.

turn-taking, zero-sum game). Confining yourself
to turn-taking games, consider all possible
combinations of game types, and attempt to find
a game to fit in each category. Only worry about
the “zero-sum” property for two-person games;
this means you should have 12 categories in all.
For example, find a game that is probabilistic,
open and not two person.

11.2 Consider the three-person game hex-lines, a
variant of “placing dominoes”. A piece of paper
is marked with dots in a triangular pattern.
Different sizes and shapes of playing area give
rise to different games. Each person in turn
connects two adjacent points. However, they
are only allowed to use points that have not yet
been used. The players each have a direction and
are only allowed to draw lines parallel to their
direction. We’ll assume that the first player draws
lines sloping up (/), the second horizontal (—)
and the third sloping down (\). If players cannot
draw their direction of line, then they are out of
the game. When no player can draw a line, the
lines for each player are counted, giving the final
score.
Consider an example game on a small hexago-
nal playing area. The board positions through the
game are shown in Figure 11.14. The initial con-
figuration is (i).

a. First player draws sloping up (ii).

b. Second player draws horizontal (iii).

c. Third player cannot play and is out.

d. First player cannot play either and is out.

e. Second player draws again giving (iv).

The final score is thus [1,2,0] (1 for the first player,
2 for the second and 0 for the third).

Game Playing ■ 159

Taking the same initial configuration draw the
complete game tree. Could the first player have
done better?

11.3 In the game of Nim there are a number of piles
of stones. Each player takes turns to choose a pile
and take as many stones from the pile as they like.
The winner is the person who takes the last stone.

a. Draw a game tree for the game of Nim starting
with three piles one with two stones in and
the other two piles with just one stone each,
You could write this “(2,1,1)”. Think carefully
about symmetries. This will reduce the size of
your game tree considerably as was the case for
‘placing dominoes’ in Figure 11.1.

b. Calculate the minimax values for each state,
scoring +1 for a win by the first player (say A)
and −1 for a win by the second player (say B).

c. Is there a winning move for the first player?

d. Repeat the minimax, but instead using the
difference in the number of stones taken by
each player as the score. That is, if player A
has taken three stones and player B one stone,
the score is 2 in favour of A.

e. Does this change player A’s strategy?

11.4 Repeat the above exercise, but this time assume
the second player, player B, is entirely random in
the sense that among all possible next moves, they
choose randomly between them. Instead of mini-
max, use expected scores.

FURTHER READING

G. Yannakakis and J. Togelius. Artificial intelligence and games.
Springer, Cham, 2018.
An entire book dedicated to the use of AI in games. The
earlier parts cover broad algorithms including both clas-
sic algorithms such as minimax and stochastic tree search
and also the use of genetic algorithms and neural networks.
The book has a website https://gameaibook.org/ with ad-
ditional resources.

J. Pearl. Heuristics: Intelligent search strategies for computer
problem solving. Addison-Wesley, Reading, MA, 1984.
Part 3 of this book concentrates on game-playing strategies
and heuristics.

https://alandix.com/glossary/aibook/zero-sum game
https://alandix.com/glossary/aibook/placing dominoes
https://alandix.com/glossary/aibook/game tree
https://alandix.com/glossary/aibook/game tree
https://alandix.com/glossary/aibook/game tree
https://alandix.com/glossary/aibook/placing dominoes
https://alandix.com/glossary/aibook/minimax
https://alandix.com/glossary/aibook/minimax
https://alandix.com/glossary/aibook/minimax
https://alandix.com/glossary/aibook/minimax
https://alandix.com/glossary/aibook/minimax
https://alandix.com/glossary/aibook/stochastic tree search
https://alandix.com/glossary/aibook/genetic algorithms
https://alandix.com/glossary/aibook/neural networks
https://gameaibook.org/

160 ■ Artificial Intelligence

D. Silver, A. Huang, C. Maddison, et al. Mastering the game of The paper by the creators of AlphaGo that can be seen as
Go with deep neural networks and tree search. Nature, marking the start of the current phase of deep-learning-
529:484–489, 2016. DOI:10.1038/nature16961 based AI.

https://alandix.com/glossary/aibook/AlphaGo
https://alandix.com/glossary/aibook/deep-learning-based AI
https://alandix.com/glossary/aibook/deep-learning-based AI

CHAP T ER 1 2

Computer Vision

12.1 OVERVIEW
Computer vision is one way for a computer system to
reach beyond the data it is given and find out about the
real world. There are many important applications, from
robotics to airport security. However, it is a difficult
process. This chapter starts with an overview of the typi-
cal phases of processing in computer vision. Subsequent
sections (12.3–12.9) then follow through these phases in
turn. At each point deeper knowledge is inferred from
the raw image. Neural networks are used extensively
in computer vision, augmenting or replacing some of
these stages, although often using specialised networks
based on understanding from the more algorithmic
techniques. Finally, in Section 12.11, we look at the spe-
cial problems and opportunities that arise when we have
moving images or input from several cameras or moving
images.

In this chapter we shall assume that the cameras are
passive – we interpret what we are given. In Chapter 15
we shall look at active vision, where the camera can move
or adjust itself to improve its understanding of a scene.

12.2 INTRODUCTION

12.2.1 Why Computer Vision Is Difficult

The human visual system makes scene interpretation
seem easy. We can look out of a window and can make
sense of what is in fact a very complex scene. This
process is very difficult for a machine. As with natural

language interpretation, it is a problem of ambiguity.
The orientation and position of an object changes its
appearance, as does different lighting or colour. In
addition, objects are often partially hidden by other
objects.

In order to interpret an image, we need both low-level
information, such as texture and shading, and high-level
information, such as context and world knowledge. The
former allows us to identify the object, the latter to inter-
pret it according to our expectations.

12.2.2 Phases of Computer Vision

Because of these multiple levels of conformation, most
traditional computer vision is based on a hierarchy of
processes, starting with the raw image and working
towards a high-level model of the world. Each stage
builds on the features extracted at the stage below.
Typical stages are (see Figure 12.1):

• digitisation: either the image is captured digitally or
an analogue image is converted into a digital image

• signal processing: low-level processing of the digital
image in order to enhance significant features

• edge and region detection: finding low-level features
in the digital image

• three-dimensional or two-dimensional object recog-
nition: building lines and regions into objects

• image understanding: making sufficient sense of the
image to use it

Note, however, that not all applications go through all
the stages. The higher levels of processing are more com-
plicated and time consuming. In any real situation one

DOI: 10.1201/9781003082880-15 161

https://alandix.com/glossary/aibook/robotics
https://alandix.com/glossary/aibook/moving images
https://alandix.com/glossary/aibook/active vision
https://alandix.com/glossary/aibook/ambiguity!in computer vision
https://alandix.com/glossary/aibook/digitisation
https://alandix.com/glossary/aibook/signal processing
https://alandix.com/glossary/aibook/edge detection
https://alandix.com/glossary/aibook/region detection
https://alandix.com/glossary/aibook/object recognition
https://alandix.com/glossary/aibook/object recognition
https://alandix.com/glossary/aibook/image understanding
http://dx.doi.org/10.1201/9781003082880-15

162 ■ Artificial Intelligence

FIGURE 12.1 Phases of computer vision.

would want to get away with as low a level of processing
as possible. Neural networks may be used for different
parts of this pipeline.

The rest of this chapter will follow these levels of pro-
cessing, and we will note where applications exist at each
level.

12.3 DIGITISATION AND SIGNAL
PROCESSING

The aim of computer vision is to understand some scene
in the outside world. This may be captured using a video
camera but may come from a scanner (e.g. optical char-
acter recognition). Indeed, for experimenting with com-
puter vision it will be easier to use digital photographs
than to work with real-time video. Also, it is not neces-
sary that images come from visible light. For example,
satellite data may use infrared sensing. For the purposes
of exposition, we will assume that we are capturing a vis-
ible image with a video camera. This image will need to
be digitised so that it can be processed by a computer
and also “cleaned up” by signal processing software. The
next section will discuss signal processing further in the
context of edge detection.

12.3.1 Digitising Images

For use in computer vision, the image must be repre-
sented in a form that the machine can read. The analogue
image is converted into a digital image. For born-digital
media this may happen within the camera as the image
is focused onto a CCD array; however, for older paper
or film media, this may be performed separately by some
form of scanner or video digitiser. The digital image is
basically a stream of numbers, each corresponding to a
small region of the image, a pixel. In the case of ‘black
and white’ (really grey) images there is a single number
for each pixel, which measures the light intensity at the
pixel, the grey level. The range of possible grey levels is
called a grey-scale (hence grey-scale images). If the grey
scale consists of just two levels (really black or white), the
image is a binary image.

Figure 12.2 shows an image (ii) and its digitised form
(i). There are ten grey levels from 0–white to 9–black.
More typically there will be 256 or more grey levels rather
than ten and often 0 is black (no light). However, the
digits 0–9 fit better into the picture. Also, in order to print
it, the image (ii) is already digitised and we are simply
looking at a coarser level of digitisation.

https://alandix.com/glossary/aibook/Neural networks
https://alandix.com/glossary/aibook/optical character recognition
https://alandix.com/glossary/aibook/optical character recognition
https://alandix.com/glossary/aibook/signal processing
https://alandix.com/glossary/aibook/signal processing
https://alandix.com/glossary/aibook/edge detection
https://alandix.com/glossary/aibook/grey-scale
https://alandix.com/glossary/aibook/grey-scale images
https://alandix.com/glossary/aibook/grey scale
https://alandix.com/glossary/aibook/grey scale
https://alandix.com/glossary/aibook/binary image
https://alandix.com/glossary/aibook/digitisation

Computer Vision ■ 163

FIGURE 12.2 Digitised image.

Most of the algorithms used in computer vision
work on simple grey-scale images. However, some-
times colour images are used. In this case, there are
usually three or four values stored for each pixel,
corresponding to either primary colours (red, blue
and green) or some other colour representation
system.

Look again at Figure 12.2. Notice how the right-hand
edge of the black rectangle translates into a series of
medium grey levels. This is because the pixels each
include some of the black rectangle and some of the
white background. What was a sharp edge has become
fuzzy.

As well as this blurring of edges, other effects conspire
to make the grey-scale image inaccurate. Some cameras
may not generate parallel lines of pixels, the pixels may
be rectangular rather than square (the aspect ratio) or the
relationship between darkness and grey scale recorded
may not be linear. However, the most persistent problem
is noise: inaccurate readings of individual pixels due to
electronic fluctuations, dust on the lens or even a foggy
day!

12.3.2 Thresholding

Given a grey-scale image, the simplest thing we can do is
to threshold it; that is, select all pixels whose greyness ex-
ceed some value. This may select key significant features
from the image.

In Figure 12.3, we see an image (i) thresholded at three
different levels of greyness. The first (ii) has the lowest
threshold, accepting anything that is not pure white. The
pixels of all the objects in the image are selected with
this threshold. The next threshold (iii) accepts only the
darker grey of the circle and the black of the rectangle.
Finally, the highest threshold (iv) accepts only pure black

FIGURE 12.3 Thresholding.

pixels and hence only those of the obscured rectangle are
selected.

This can be used as a simple way to recognise objects.
For example, [175] shows how faults in electrical plugs
can be detected using multiple threshold levels. At some
levels the wires are selected, allowing one to check that
the wiring is correct; at others the presence of the fuse
can be verified. In an industrial setting one may be able
to select lighting levels carefully in order to make this
possible.

One can also use thresholding to obtain a simple
edge detection. One simply follows round the edge of
a thresholded image. One can do this without actually
performing the thresholding as one can simply follow
pixels where the grey changes from the desired value.
This is called contour following.

However, more generally, images resist this level of in-
terpretation. Consider Figure 12.4. To the human eye,
this also consists of three objects. However, see what two
levels of thresholding, (ii) and (iii), do to the image. The
combination of light and shadows means that the regions
picked out by thresholding show areas of individual ob-
jects instead of distinguishing the objects. Indeed, even
to the human eye, the only way we know that the sphere
is not connected to the black rectangular area is because
of the intervening pyramid.

Contour following would give the boundary of one of
these images – not really a good start for image under-
standing. The more robust approaches in the next section

https://alandix.com/glossary/aibook/grey-scale images
https://alandix.com/glossary/aibook/grey-scale image
https://alandix.com/glossary/aibook/aspect ratio
https://alandix.com/glossary/aibook/grey scale
https://alandix.com/glossary/aibook/grey-scale image
https://alandix.com/glossary/aibook/image thresholding
https://alandix.com/glossary/aibook/threshold
https://alandix.com/glossary/aibook/thresholding
https://alandix.com/glossary/aibook/edge detection
https://alandix.com/glossary/aibook/thresholding
https://alandix.com/glossary/aibook/contour following
https://alandix.com/glossary/aibook/thresholding
https://alandix.com/glossary/aibook/thresholding
https://alandix.com/glossary/aibook/Contour following
https://alandix.com/glossary/aibook/image understanding
https://alandix.com/glossary/aibook/image understanding

164 ■ Artificial Intelligence

FIGURE 12.4 A difficult image to threshold.

will instead use the rate of change in intensity – slope
rather than height – to detect edges. However, even that
will struggle on this image. The last image (iv) in Fig-
ure 12.4 shows edges obtained by looking for sharp con-
trasts in greyness. See how the dark side of the sphere has
merged into the black rectangle, and how the light shin-
ing on the pyramid has lost part of its boundary. There is
even a little blob in the middle where the light side of the
pyramid meets the dark at the point.

In fact, as a human rather than a machine, you will
have inferred quite a lot from the image. You will see it
as a three-dimensional image where the sphere is above
the pyramid and both lie above a dark rectangle. You will
recognise that the light is shining somewhere from the
top left. You will also notice from the shape of the fig-
ures and the nature of the shading that this is no pho-
tograph, but a generated image. The algorithms we will
discuss later in this chapter will get significantly beyond
thresholding, but still nowhere near your level of sophis-
tication!

12.3.3 Digital Filters

We have noted some of the problems of noise, blurring
and lighting effects that make image interpretation diffi-
cult. Various signal processing techniques can be applied
to the image in order to remove some of the effects of
noise or enhance other features, such as edges. The ap-
plication of such techniques is also called digital filter-

ing. This is by analogy with physical filters, which enable
you to remove unwanted materials, or to find desired
material. Thresholding is a simple form of digital filter,
but whereas thresholding processes each pixel indepen-
dently, more sophisticated filters also use neighbouring
pixels. Some filters go beyond this and potentially each
pixel’s filtered value is dependent on the whole image.
However, all the filters we will consider operate on a fi-
nite window – a fixed-size group of pixels surrounding
the current pixel.

12.3.3.1 Linear Filters

Many filters are linear. These work by having a series of
weights for each pixel in the window. For any point in the
image, the surrounding pixels are multiplied by the rele-
vant weights and added together to give the final filtered
pixel value.

In Figure 12.5 we see the effect of applying a filter with
a 3 × 3 window. The filter weights are shown at the top
right. The initial image grey levels are at the top left. For
a particular pixel the nine pixel values in the window are
extracted. These are then multiplied by the correspond-
ing weights, giving in this case the new value 1. This value
is placed in the appropriate position in the new filtered
image (bottom left).

The pixels around the edge of the filtered image have
been left blank. This is because one cannot position
a window of pixels 3 × 3 centred on the edge pixels.
So, either the filtered image must be smaller than the
initial image, or some special action is taken at the
edges.

Notice also that some of the filtered pixels have
negative values associated with them. Obviously this
can only arise if some of the weights are negative. This
is not a problem for subsequent computer processing,
but the values after this particular filter cannot easily be
interpreted as grey levels.

A related problem is that the values in the final image
may be bigger than the original range of values. For ex-
ample, with the above weights, a zero pixel surrounded
by nines would give rise to a filtered value of 36. Again,
this is not too great a problem, but if the result is too large
or too small (negative), then it may be too large to store –
an overflow problem. Usually, the weights will be scaled
to avoid this. So, in the example above, the result of ap-
plying the filter would be divided by 8 in order to bring
the output values within a similar range to the input grey

https://alandix.com/glossary/aibook/thresholding
https://alandix.com/glossary/aibook/signal processing
https://alandix.com/glossary/aibook/digital filtering
https://alandix.com/glossary/aibook/digital filtering
https://alandix.com/glossary/aibook/Thresholding
https://alandix.com/glossary/aibook/thresholding
https://alandix.com/glossary/aibook/linear filters
https://alandix.com/glossary/aibook/grey scales

FIGURE 12.5 Applying a digital filter.

scales. The coefficients are often chosen to add up to a
power of 2, as dividing can then be achieved using bit
shifts, which are far faster.

12.3.3.2 Smoothing

The simplest type of filter is for smoothing an image. That
is, surrounding pixels are averaged to give the new value
of a pixel. Figure 12.6 shows a simple 2 × 2 smoothing
filter applied to an image. The filter window is drawn in
the middle, and its pivot cell (the one which overlays the
pixel to which the window is applied) is at the top left. The
filter values are all ones, and so it simply adds the pixel
and its three neighbours to the left and below and aver-
ages the four (note the ÷4). The image clearly consists
of two regions, one to the left with high (7 or 8) grey-
scale values and one to the right with low (0 or 1) values.
However, the image also has some noise in it. Two of the
pixels on the left have low values and one on the right a
high value. Applying the filter has all but removed these
anomalies, leaving the two regions far more uniform, and
hence suitable for thresholding or other further analysis.

Because only a few pixels are averaged with the 2 × 2
filter, it is still susceptible to noise. Applying the filter
would only reduce the magnitude by a factor of 4. Larger
windows are used if there is more noise, or if later analy-
sis requires a cleaner image. A larger filter will often have
an uneven distribution of weights, giving more impor-

Computer Vision ■ 165

tance to pixels near the chosen one and less to those far
away.

There are disadvantages to smoothing, especially
when using large filters. Notice in Figure 12.6 that the
boundary between the two regions has become blurred.
There is a line of pixels that are at an average value
between the high and low regions. Thus, the edge can
become harder to trace. Furthermore, fine features such
as thin lines may disappear altogether. There is no easy
answer to this problem – the desire to remove noise
is in conflict with the desire to retain sharp images. In
the end, how do you distinguish a small but significant
feature from noise?

12.3.3.3 Gaussian Filters

The Gaussian filter is a special smoothing filter based
on the bell-shaped Gaussian curve, well known in
statistics as the “Normal” distribution (Chap. 7). One
imagines a window of infinite size, where the weight,
w(x, y), assigned to the pixel at position x, y from the
centre is

w(x, y) = 1 2 + y2)/2𝜎2]
2𝜋𝜎2

exp[−(x

The constant 𝜎 is a measure of the spread of the
window – how much the image will be smeared by the
filter. A small value of 𝜎 will mean that the weights
in the filter will be small for distant pixels, whereas
a large value allows more distant pixels to affect the
new value of the current pixel. If noise affects groups
of pixels together, then one would choose a large
value of 𝜎.

Although the window for a Gaussian filter is theoret-
ically infinite, the weights become small rapidly, and so,
depending on the value of 𝜎, one can ignore those outside
a certain area and so make a finite windowed version.
For example, Figure 12.7 shows a Gaussian filter with a
5 × 5 window. Notice how it is symmetric and how the
weights decrease towards the edge. This filter has weights
totalling 256, but this took some effort! The theoretical
weights are not integers, and the rounding errors mean
that in general the sum of weights will not be a nice num-
ber.

One big advantage of Gaussian filters is that the
parameter 𝜎 can be set to any value yielding finer or
coarser smoothing. Simple smoothing methods tend
only to have versions getting “bigger” at fixed intervals
(3 × 3, 5 × 5, etc.). The Gaussian with 𝜎 = 0.7 would

https://alandix.com/glossary/aibook/grey scales
https://alandix.com/glossary/aibook/grey scales
https://alandix.com/glossary/aibook/smoothing
https://alandix.com/glossary/aibook/smoothing filter
https://alandix.com/glossary/aibook/smoothing filter
https://alandix.com/glossary/aibook/grey-scale
https://alandix.com/glossary/aibook/grey-scale
https://alandix.com/glossary/aibook/thresholding
https://alandix.com/glossary/aibook/smoothing
https://alandix.com/glossary/aibook/Gaussian filter
https://alandix.com/glossary/aibook/smoothing filter
https://alandix.com/glossary/aibook/Normal distribution
https://alandix.com/glossary/aibook/Gaussian filter
https://alandix.com/glossary/aibook/Gaussian filter
https://alandix.com/glossary/aibook/Gaussian filters
https://alandix.com/glossary/aibook/smoothing
https://alandix.com/glossary/aibook/smoothing

166 ■ Artificial Intelligence

FIGURE 12.6 Applying a 2 × 2 smoothing filter.

FIGURE 12.7 Gaussian filter with 𝜎 = 0.8.

also fit on a 5 × 5 window but would be weighted more
towards the centre (less smoothing).

12.3.3.4 Practical Considerations

We have already discussed problems of overflow when
computing filtered images, and in general there are var-
ious computational factors that influence the choice of
filter. Indeed, the cost of image processing can be so high
that it is often better to use a simple method rather than
an optimal one. It’s no good an industrial robot recognis-
ing a nut ten seconds after it has passed by on the con-
veyor belt.

Images are large. Even a small 512 × 512 image with
256 grey levels consumes 256 kilobytes of memory. This
is expensive in terms of storage, but also those 262 144
pixels take a long time to process one by one. A linear
filter with a 2 × 2 window takes four multiplications per
pixel, a 3 × 3 window takes nine and 5 × 5 takes 25!
Also, a simple filter with coefficients of ±1 or powers of
2 can be calculated by simple adds and shifts, further
reducing the cost. So, the simple 2 × 2 smoothing filter
in Figure 12.6, although crude, only takes 1 million

additions, whereas the Gaussian filter in Figure 12.7
takes over 6 million multiplications. A higher resolution
colour image, say 4K x 2K pixels, takes 24 million
bytes to store and correspondingly more operations to
process.

One solution is to use special hardware, DSP (Digital
Signal Processing) chips or parallel processing, or to use
the Graphics Processing Unit (GPU) found in most desk-
top computers. Indeed, your brain works in something
like this fashion, with large areas committed to specific
tasks such as line detection. It processes the whole image
at once, rather than sequentially point by point. Whether
or not this is available, care in the choice of processing
method is essential.

The large amounts of storage required make it imper-
ative that algorithms do not generate lots of intermedi-
ate images (unless you have masses of memory!). One
way to achieve this is to overwrite the original image as
it is filtered. But beware – look again at the 3 × 3 filter
in Figure 12.5. If the image is processed from the top left
downwards, then by the time a pixel is processed those
pixels above and to the left of it will have been overwrit-
ten. With some very simple filters (such as the averaging
filter in Figure 12.6) this is not a problem, but in general
one must be careful to avoid overwriting pixels that will
be needed. It is possible with care! An alternative way to
avoid intermediate storage is to work out the effects of
multiple steps and to compute them in one step. We see
an example of this in the next section, in the calculation
of the Laplacian-of-Gaussian filter.

12.4 EDGE DETECTION
Edge detection is central to most computer vision. There
is also substantial evidence that edges form a key part of
human visual understanding. An obvious example is the

https://alandix.com/glossary/aibook/smoothing
https://alandix.com/glossary/aibook/linear filter
https://alandix.com/glossary/aibook/linear filter
https://alandix.com/glossary/aibook/smoothing filter
https://alandix.com/glossary/aibook/Gaussian filter
https://alandix.com/glossary/aibook/DSP
https://alandix.com/glossary/aibook/Digital Signal Processing
https://alandix.com/glossary/aibook/Digital Signal Processing
https://alandix.com/glossary/aibook/parallel processing
https://alandix.com/glossary/aibook/Graphics Processing Unit
https://alandix.com/glossary/aibook/GPU
https://alandix.com/glossary/aibook/Laplacian-of-Gaussian filter
https://alandix.com/glossary/aibook/Edge detection

FIGURE 12.8 Different gradient filters.

ease with which people can recognise sketches and car-
toons. A few lines are able to invoke the full two- or three-
dimensional image. Edge detection consists of two sub-
processes. First of all, potential edge pixels are identified
by looking at their grey level compared with surround-
ing pixels. Then these individual edge pixels are traced to
form the edge lines. Some of the edges may form closed
curves, while others will terminate or form a junction
with another edge. Some of the pixels detected by the
first stage may not be able to join up with others to form
true edges. These may correspond to features too small
to recognise properly or simply be the result of noise.

12.4.1 Identifying Edge Pixels

The grey-level image is an array of numbers (grey levels)
representing the intensity value of the pixels. It can be
viewed as a description of a hilly landscape where the
numbers are altitudes. So a high number represents a
peak and a low number a valley. Edge detection involves
identifying ridges, valleys and cliffs. These are the edges
in the image. We can use gradient operators to perform
edge detection by identifying areas with high gradients.
A high gradient i.e. a sudden change in intensity) indi-
cates an edge. There are a number of different gradient
operators in use.

12.4.1.1 Gradient Operators

If you subtract a pixel’s grey level from the one immedi-
ately to its right, you get a simple measure of the horizon-
tal gradient of the image. This two-point filter is shown
in Figure 12.8(i), together with two alternatives: a four-
point filter (ii), which uses a 2×2 window, and a six-point
filter (iii), which uses a 3×3 window. The vertical version
of the six-point filter is also shown (iv).

The effects of the six-point filters are shown in Fig-
ure 12.9. The image shows the corner of a rectangular
region in the bottom right-hand corner. Notice how the
horizontal gradient operator picks out the left edge of the

Computer Vision ■ 167

region and the vertical operator picks out the upper edge.
Both operators would detect a diagonal edge, but less ef-
ficiently than one in their preferred direction. So, in Fig-
ure 12.10, the pixel values are large, but the filtered values
at the edge are smaller and more smeared.

These operators can be useful if edges at a particular
orientation are important, in which case one can simply
threshold the filtered image and treat pixels with large
gradients as edges. However, neither operator on its own
detects both horizontal and vertical edges.

12.4.1.2 Robert’s Operator

Robert’s operator uses a 2 × 2 window. For each position
(x, y), a gradient function, G(x, y), is calculated by

G(x, y) = |f(x, y) − f(x + 1, y − 1)|
+ |f(x + 1, y) − f(x, y − 1)|

where f(x, y) is the intensity of the pixel at that position.
Notice that this is not a simple linear filter, as it involves
calculating the absolute value of the difference between
diagonally opposite pixels. This is necessary in order to
detect lines in all directions.

The results of the gradient function can be compared
with a predetermined threshold to detect a local edge.
Consider the various examples in Figure 12.11(i–iv):

(i) G = |3 − 3| + |3 − 3|
= |0| + |0| = 0

(ii) G = |7 − 2| + |3 − 8|
= |5| + |−5| = 10

(iii) G = |5 − 6| + |7 − 1|
= |−1| + |6| = 7

(iv) G = |7 − 8| + |1 − 2|
= |−1| + |−1| = 2

A threshold of 5 would detect (ii) and (iii) as edges, but
not (i) or (iv). Let’s look at each example. The first is a
constant grey level: there are no edges, and none are de-
tected whatever threshold is chosen. The second is a very
clear edge running up the image, and it gets the highest
gradient of the four examples. The third example also has
quite a strong gradient. It appears to represent an edge
running diagonally across the image. The final example
has dramatic changes in intensity but a low gradient. This
is because there is little overall slope in the image. It rep-
resents a sort of ridge going across the picture. This might
be a line a single pixel wide but not an edge between re-
gions.

https://alandix.com/glossary/aibook/Edge detection
https://alandix.com/glossary/aibook/Edge detection
https://alandix.com/glossary/aibook/gradient operators
https://alandix.com/glossary/aibook/edge detection
https://alandix.com/glossary/aibook/gradient operators
https://alandix.com/glossary/aibook/gradient operators
https://alandix.com/glossary/aibook/threshold
https://alandix.com/glossary/aibook/Robert's operator
https://alandix.com/glossary/aibook/linear filter
https://alandix.com/glossary/aibook/threshold
https://alandix.com/glossary/aibook/threshold
https://alandix.com/glossary/aibook/threshold
https://alandix.com/glossary/aibook/ridge

168 ■ Artificial Intelligence

FIGURE 12.9 Applying gradient filters.

FIGURE 12.10 Gradient filter on a diagonal edge.

FIGURE 12.11 Robert’s operator.

Robert’s operator has the advantage of simplicity but
suffers from being very localised and therefore easily
affected by noise. For example, (ii) got a high gradient
reading and would have been detected as a potential
edge, but this is largely based on the bottom right pixel.
If this one pixel were wrong, perhaps as a result of
random noise, a spurious edge would be detected.

12.4.1.3 Sobel’s Operator

Sobel’s operator uses a slightly larger 3×3 window, which
makes it somewhat less affected by noise. Figure 12.12 la-
bels the grey levels of the nine pixels. The gradient func-
tion is calculated as

https://alandix.com/glossary/aibook/Robert's operator
https://alandix.com/glossary/aibook/Sobel's operator

Computer Vision ■ 169

FIGURE 12.12 Sobel’s operator.

G = |(c + 2f + i) − (a + 2d + g)|
+ |(g + 2h + i) − (a + 2b + c)|

Again, this can be thresholded to give potential edge
points.

Notice that the grey level at the pixel itself, e, is not
used: the surrounding pixels give all the information. We
can see the operator as composed of two terms, a hori-
zontal and a vertical gradient:

H = (c + 2f + i) − (a + 2d + g)
V = (g + 2h + i) − (a + 2b + c)
G = |H| + |V|

The first term, H, compares the three pixels to the right
of e with those to the left. The second, V, compares those
below the pixel with those above. In fact, if you look back
at the six-point gradient filters in Figure 12.8, you will see
that V and H are precisely the absolute values of the out-
puts of those filters. An edge running across the image
will have a large value of V, one running up the image
a large value of H. So, once we have decided that a pixel
represents an edge point, we can give the edge an orienta-
tion using the ratio between H and V. Although we could
follow edges simply by looking for adjacent edge pixels,
it is better to use edge directions (as we shall see later).

Note that it is also possible to give an orientation with
Robert’s operator, as the two terms in it correspond to
a northwesterly and northeasterly gradient respectively.
However, this estimate of direction would be even more
subject to noise.

Note also that Sobel’s operator uses each pixel value
twice, either multiplying it by two (the side pixels: f, d, h
and b) or including it in both terms (the corner pixels: a,
c, g and i). However, an error in one of the corner pixels
might cancel out, whereas one in the side pixels would
always affect the result. For this reason, some prefer a
modified version of Sobel’s operator:

FIGURE 12.13 Approximations to the Laplacian.

G = |(c + f + i) − (a + d + g)|
+ |(g + h + i) − (a + b + c)|

On the other hand, there are theoretical reasons for pre-
ferring the original operator, so the choice of operator in
a particular application is rather a matter of taste!

12.4.1.4 Laplacian Operator

An alternative to measuring the gradient is to use the
Laplacian operator. This is a mathematical measure
(written ▽) of the change in gradient. Its mathematical
definition is in terms of the second differential in the
x and y direction (where the first differential is the
gradient):

d2f +
d2▽f =

dy2 dy2

However, for digital image processing, linear filters are
used which approximate to the true Laplacian. Approxi-
mations are shown in Figure 12.13 for a 2 × 2 grid and a
3 × 3 grid.

To see how they work, we will use a one-dimensional
equivalent to the Laplacian which filters a one-
dimensional series of grey levels using the weights
(1,−2,1). The effect of this is shown in Figure 12.14.
Notice how the edge between the nines and ones is
converted into little peaks and troughs. The actual edge
detection then involves looking for zero crossings, places
where the Laplacian’s values change between positive
and negative.

Notice that in Figure 12.14 the boundary between the
nines and the ones is a 5. The one-dimensional image is
slightly blurred. When Robert’s or Sobel’s operators en-
counter such an edge, they are likely to register several
possible edge pixels either side of the actual edge. The
Laplacian will register a single pixel in the middle of the
blurred edge.

https://alandix.com/glossary/aibook/gradient filters
https://alandix.com/glossary/aibook/Robert's operator
https://alandix.com/glossary/aibook/Sobel's operator
https://alandix.com/glossary/aibook/Sobel's operator
https://alandix.com/glossary/aibook/Laplacian operator
https://alandix.com/glossary/aibook/differential (calculus)
https://alandix.com/glossary/aibook/differential (calculus)
https://alandix.com/glossary/aibook/linear filters
https://alandix.com/glossary/aibook/edge detection
https://alandix.com/glossary/aibook/edge detection
https://alandix.com/glossary/aibook/Robert's operator
https://alandix.com/glossary/aibook/Sobel's operator

170 ■ Artificial Intelligence

FIGURE 12.14 Using the Laplacian.

The Laplacian also has the advantage that it is a linear
filter and can thus be easily manipulated with other fil-
ters. A frequent combination is to use a Gaussian filter to
smooth the image, and then follow this with a Laplacian.
Because both are linear filters, they can be combined into
a single filter called the Laplacian-of-Gaussian (LOG) fil-
ter.

Note that the Laplacian does not give any indication
of orientation. If this is required, then some additional
method must be used once an edge has been detected.

12.4.1.5 Successive Refinement and Marr’s Primal
Sketch

We saw earlier that images are very large and hence cal-
culations over the whole image take a long time. One way
to avoid this is to operate initially on coarse versions of
the image and then successively use more detailed images
to examine potentially interesting features. For example,
we could divide a 512 × 512 image into 8 × 8 cells and
then calculate the average grey level over the cell. Treat-
ing each cell as a big “pixel”, we get a much smaller 64×64
image. Edge detection is then applied to this image using
one of the methods suggested above. If one of the cells is
registered as an edge, then the pixels comprising it are in-
vestigated individually. Assuming that only a small pro-
portion of the cells are potential edges then the savings
in computation are enormous – the only time we have to
visit all the pixels is when the cell averages are computed.
This method of successive refinement can be applied to
other parts of the image processing process, such as edge
following and region detection (discussed later).

One representation of images, Marr’s primal sketch
[184], uses similar methods to detect features at different
levels of detail, but for a very different reason. Instead

of averaging over cells, Laplacian-of-Gaussian filters are
used with different standard deviations, where small
standard deviations correspond to fine detail. Recall that
Gaussians use large windows, so this is definitely not
a cost-cutting route to image processing! The concept
of different levels of detail is central to the model. The
primal sketch is divided into edges, terminations (ends
of edges), bars (regions between parallel edges) and
blobs (small isolated regions). In particular, blobs are
regions of pixels that register as edges (zero crossings of
the Laplacian) at fine resolution but disappear at high
resolution. Look at the room and then screw up your
eyes. If you can see it when your eyes are open, but not
when they are screwed up, then it is a blob.

12.4.2 Edge Following

We have now identified pixels that may lie on the edges
of objects. We are not there yet! The next step is to string
those pixels together to make lines, that is to identify
which groups of pixels make up particular edges. The ba-
sic rule of thumb is that if two suspected edges are con-
nected, then they form a single line. However, this needs
to be modified slightly for three reasons:

• because of noise, shadows and so on, some edges
will contain gaps

• noise may cause spurious pixels to be candidate
edges

• edges may end at junctions with other lines.

The first means that we may have to look more than one
pixel ahead to find the next edge point. The other two
mean that we have to use the edge orientation informa-
tion in order to reject spurious edges or detect junctions.

A basic edge-following algorithm is then as follows:

1. Choose any suspected edge pixel that has not al-
ready been used.

2. Choose one direction to follow first.

3. Look for an adjoining pixel in the right general
direction.

4. If the orientation of the pixel is not too different,
then accept it.

https://alandix.com/glossary/aibook/linear filter
https://alandix.com/glossary/aibook/linear filter
https://alandix.com/glossary/aibook/Gaussian filter
https://alandix.com/glossary/aibook/linear filters
https://alandix.com/glossary/aibook/Laplacian-of-Gaussian filter
https://alandix.com/glossary/aibook/Laplacian-of-Gaussian filter
https://alandix.com/glossary/aibook/Edge detection
https://alandix.com/glossary/aibook/successive refinement
https://alandix.com/glossary/aibook/edge following
https://alandix.com/glossary/aibook/edge following
https://alandix.com/glossary/aibook/region detection
https://alandix.com/glossary/aibook/Marr's primal sketch
https://alandix.com/glossary/aibook/Laplacian-of-Gaussian filters
https://alandix.com/glossary/aibook/standard deviations
https://alandix.com/glossary/aibook/standard deviations
https://alandix.com/glossary/aibook/edge-following

FIGURE 12.15 Following edges.

5. If there is no adjoining pixel, scan those one or
two pixels away.

6. If an acceptable pixel has been found, repeat from
3.

7. If no acceptable pixel is found, repeat the process
for the other direction.

The pixels found during a pass of this algorithm are re-
garded as forming a single edge. The whole process is re-
peated until all edge pixels have been considered.

A few of the steps in this algorithm need unpacking
slightly. First, in step 2, a line has two ends, so one has
to choose which to follow first. As both will eventually
be traced, the choice is unimportant and some default,
say towards the right, can be chosen. Remember, though,
that the orientation of the edge is at 90∘ to the line of max-
imum slope. At step 3, one only bothers to look for pixels
that are in the general direction of the edge. For exam-
ple, if the orientation is northeast, one would look at the
pixels to the top right, right and top. Similarly at step 5,
one only looks slightly further in the relevant directions.
Figure 12.15 shows a typical order in which pixels are
scanned. You have to look at quite a wide swath of pixels,
as even a straight line is quite jagged when digitised and
also the edge may bend. Note that the figure includes the
additional pixels searched at step 5. The threshold used
to decide whether two edge pixels have a “close enough”
orientation will depend somewhat on the sort of images,
noise levels and so on. However, a typical rule might be
to accept if the orientations lie within 60∘of one another.

The output of this algorithm is a collection of edges,
each of which consists of a set of pixels. The end points

Computer Vision ■ 171

of each edge segment will also have been detected at step
7. If the end point is isolated, then it is a termination;
if several lie together, or if it lies on another edge, then
the end point is at a junction. This resulting set of edges
and junctions will be used by Waltz’s algorithm in the
next section to infer three-dimensional properties of the
image.

However, before passing these data on to more
knowledge-rich parts of the process, some additional
cleaning up is possible. For example, very short edges
may be discarded as they are likely either to be noise
or to be unimportant in the final image (e.g. texture
effects). Also, one can look for edges that terminate close
to one another. If they are collinear and there are no
intervening edges, then one may join them up to form a
longer edge. Also, if two edges with different orientation
terminate close together, or an edge terminates near
the middle of another edge, then this can be regarded
as a junction. One problem with too much guessing
at lower levels is that it may confuse higher levels (the
source of optical illusions in humans). One solution is
to annotate edges and junctions with certainty figures.
Higher levels of processing can then use Bayesian-style
inferencing and accept or reject these guesses depending
on higher-level semantic information. However, for the
purposes of exposition, we will assume that the output
of this level of analysis is perfect.

12.5 REGION DETECTION
In the previous section we likened edge detection to
understanding a cartoon. In contrast, an oil painting
will not have lines drawn at the edges but will consist
of areas of different colours. An alternative to edge
detection is to concentrate on the regions composing
the image. We considered this briefly when we discussed
thresholding but will now look at a more sophisticated
algorithm.

12.5.1 Region Growing

A region can be regarded as a connected group of pix-
els whose intensity is almost the same. Region detection
(or segmentation) aims to identify the main shapes in an
image. This can be done by identifying clusters of similar
intensities. The main process is as follows:

• group identical pixels into regions

https://alandix.com/glossary/aibook/threshold
https://alandix.com/glossary/aibook/Waltz's algorithm
https://alandix.com/glossary/aibook/texture
https://alandix.com/glossary/aibook/Bayesian reasoning
https://alandix.com/glossary/aibook/Bayesian reasoning
https://alandix.com/glossary/aibook/edge detection
https://alandix.com/glossary/aibook/edge detection
https://alandix.com/glossary/aibook/edge detection
https://alandix.com/glossary/aibook/thresholding
https://alandix.com/glossary/aibook/Region detection
https://alandix.com/glossary/aibook/segmentation
https://alandix.com/glossary/aibook/clusters

172 ■ Artificial Intelligence

FIGURE 12.16 Region merging.

• examine the boundaries between these regions – if
the difference is lower than a threshold, merge the
regions.

The result is the main regions of the image.
This process is demonstrated in Figure 12.16. The

first image (i) shows the original grey levels. Identical
pixels are merged giving the initial regions in (ii). The
boundaries between these are examined and in (iii)
those where the intensity is less than 3 are marked for
merging. The remainder, those where the difference in
intensity is more than 2, are retained, giving the final
regions in (i).

12.5.2 The Problem of Texture

Texture can cause problems with all types of image
analysis, but region growing has some special problems.

If the image is unprocessed, then a textured surface will
have pixels of many different intensities. This may lead
to many small island regions within each large region.
Alternatively, the texture may “feather” the edges of
the regions so that different regions get merged. The
obvious response is to smooth the image so that textures
become greys. However, if the feathering is bad, then
sufficient smoothing to remove the texture will also blur
the edge sufficiently that the regions will be merged
anyway. In a controlled environment, where lighting
levels can be adjusted, one may be able to adjust the
various parameters (level of smoothing, threshold for
merging) so that recognition is possible, but where such
control is not easily possible region merging may fail
completely.

https://alandix.com/glossary/aibook/threshold
https://alandix.com/glossary/aibook/Texture
https://alandix.com/glossary/aibook/region growing
https://alandix.com/glossary/aibook/texture
https://alandix.com/glossary/aibook/smoothing
https://alandix.com/glossary/aibook/texture
https://alandix.com/glossary/aibook/smoothing
https://alandix.com/glossary/aibook/threshold

12.5.3 Representing Regions – Quadtrees

In the previous section we represented regions by sim-
ply drawing lines round them on the page. In a com-
puter program it is not that straightforward! The sim-
plest representation would be to keep a list of all the pix-
els in each region. However, this would take an enor-
mous amount of storage. There are various alternatives
to reduce this overhead. One popular representation is
quadtrees. These make use of the fact that images often
have large areas with the same value – precisely the case
with regions. We will describe the algorithm in terms of
storing a binary image and then show how it can be used
for recording regions.

Start off with a square image where the width in pix-
els is some power of 2. Examine the image. Is it all black
or white? If so, stop. If not, then divide the image into
four quarters and look at each quarter. If any quarter is
all black or white, then leave it alone, but if any quarter
is mixed, then split it into quarters. This continues un-
til either each region is of one colour, or else one gets
to individual pixels – which must be one colour by def-
inition. This process is illustrated in Figure 12.17. The
first part (i) shows the original image, perhaps part of
a black circle. This is then divided and subdivided into
quarters in (ii). Finally, in (iii) we see how this can be
stored in the computer as a tree data structure. See how
the 64 pixels of the image are stored in five tree nodes. Of
course the tree nodes are more complicated than simple
bitmaps and so for this size of image a quadtree is a lit-
tle over the top, but for larger images the saving can be
enormous.

This can be used to record regions in two ways. Each
region can be stored as a quadtree where a black means
that the pixel is part of the region. Alternatively, one can
use a multi-coloured version of a quadtree where each re-
gion is coded as a different colour. In either case, regions
can easily be merged using the quadtree representation.

Variants of quadtrees are also used in geographic
information systems (GIS) to store spatial information,
and 3D equivalents, octrees, can be used for voxel data,
for example to store the output of an ultrasound scan.

12.5.4 Computational Problems

Region growing is very computationally expensive, in-
volving many passes over the digitised image. Operat-
ing on reduced representations such as quadtrees can
reduce the number of operations, but at the expense of

Computer Vision ■ 173

more complicated data structures. For this reason, [288]
suggests that region growing is not generally applicable
in industrial contexts. Instead, edge detection methods
are preferred. The contrast is easy to see – a 100 × 100
pixel square has 10 000 interior pixels, but only 400 on
the boundary! However, against this one should note that
region growing is easily amenable to parallel process-
ing and so the balance between different techniques may
change.

12.6 RECONSTRUCTING OBJECTS

12.6.1 Inferring Three-Dimensional Features

Edge and region detection identify parts of an image. We
need to establish the objects that the parts depict. We can
use constraint satisfaction algorithms to determine what
possible objects can be constructed from the lines given.
First, we need to label the lines in the image to distin-
guish between concave edges, convex edges and obscur-
ing edges. An obscuring edge occurs where a part of one
object lies in front of another object or in front of a differ-
ent part of the same object. The convention is to use a “+”
to label a convex edge, a “−” for a concave edge and an
arrow for an obscuring edge. The object that the edge is
”attached” to lies to the right of the arrow; the obscured
object lies to its left. Figure 12.18 shows an object with
the lines in the image suitably labelled.

How do we decide which labels to use for each line?
Lines meet each other at vertices. If we assume that cer-
tain degenerate cases do not occur, then we need only
worry about trihedral vertices (in which exactly three
lines meet at a vertex). There are four types of such ver-
tices, called L, T, fork (or Y) and arrow (or W). There are
208 possible labellings using the four labels available, but
happily only 18 of these are physically possible (see Fig-
ure 12.19). We can therefore use these to constrain our
line labelling. Waltz proposed a method for line labelling
using these constraints.

Waltz’s Algorithm

Waltz’s algorithm [294] basically starts at the outside
edges of the objects and works inward using the
constraints. The outside edges must always be obscuring
edges (where it is the background that is obscured).
Therefore, these can always be labelled with clockwise
arrows. The algorithm has the following stages:

1. Label the lines at the boundary of the scene.

https://alandix.com/glossary/aibook/quadtrees
https://alandix.com/glossary/aibook/binary image
https://alandix.com/glossary/aibook/data structure
https://alandix.com/glossary/aibook/quadtree
https://alandix.com/glossary/aibook/quadtree
https://alandix.com/glossary/aibook/quadtree
https://alandix.com/glossary/aibook/quadtree
https://alandix.com/glossary/aibook/quadtrees
https://alandix.com/glossary/aibook/geographic information systems
https://alandix.com/glossary/aibook/geographic information systems
https://alandix.com/glossary/aibook/GIS
https://alandix.com/glossary/aibook/octrees
https://alandix.com/glossary/aibook/voxel
https://alandix.com/glossary/aibook/Region growing
https://alandix.com/glossary/aibook/quadtrees
https://alandix.com/glossary/aibook/region growing
https://alandix.com/glossary/aibook/edge detection
https://alandix.com/glossary/aibook/region growing
https://alandix.com/glossary/aibook/parallel processing
https://alandix.com/glossary/aibook/parallel processing
https://alandix.com/glossary/aibook/region detection
https://alandix.com/glossary/aibook/constraint satisfaction
https://alandix.com/glossary/aibook/line labelling
https://alandix.com/glossary/aibook/line labelling
https://alandix.com/glossary/aibook/constraints
https://alandix.com/glossary/aibook/Waltz's algorithm
https://alandix.com/glossary/aibook/constraints
https://alandix.com/glossary/aibook/labelling

174 ■ Artificial Intelligence

FIGURE 12.17 Quadtree representation of image.

FIGURE 12.18 Scene with edges labelled.

FIGURE 12.19 Possible trihedral vertices – T junctions (T1–
T4), arrows (A1–A3), forks (F1–F5) and L junctions (L1–L6).

2. Find vertices where the currently labelled lines are
sufficient to determine the type of the vertex.

3. Label the rest of the lines from those vertices ac-
cordingly.

Steps 2 and 3 are repeated either until there are no un-
labelled lines (success) or until there are no remaining
vertices which are completely determined (failure).

We will follow through the steps of this algorithm at-
tempting to label the object in Figure 12.18. We start
by naming the vertices and labelling the boundary lines.
This gives the labelling in Figure 12.20(i).

We now perform the first pass of steps 2 and 3. No-
tice how a, c , f and h are arrow vertices with the two
side arms labelled as boundaries (“>”). Only type A6

matches this, so the remaining line attached to each of
these vertices must be convex (“+”). Similarly, the T ver-
tex d must be of type T4; hence the line d–k is a bound-
ary. Vertices e and i are already fully labelled, so add
no new information. The results of this pass are shown
in (ii).

On the second pass of steps 2 and 3 we concentrate on
vertices j, k and l. Unfortunately, vertex k is not deter-
mined yet; it might be of type L1 or L5 and we have to
wait until we have more information. However, vertices
j and l are more helpful: they are forks with one concave
line. We see that if one line to a fork is concave, it must be
of type F1 and so all the lines from it are concave. These
are marked in (iii).

Computer Vision ■ 175

FIGURE 12.20 Applying Waltz’s algorithm.

As we start the third pass, we see that k is still not
determined, but m is an arrow with two concave arms. It
is therefore of type A3 and the remaining edge is concave.
This also finally determines that k is of type L5. The fully
labelled object (iv) now agrees with the original labelling
in Figure 12.18.

12.6.1.1 Problems with Labelling

Waltz’s algorithm will always find the unique correct
line labelling if one exists. However, there are scenes
for which there are multiple labellings, or for which
no labelling can be found. Figure 12.21 shows a scene
with an ambiguous line labelling. The first labelling
corresponds to the upper block being attached to the
lower one. In the second labelling the upper block is
“floating” above the lower one. If there were a third block
between the other two, we would be able to distinguish
the two, but with no further information we cannot do

so. With this scene, Waltz’s algorithm would come to
an impasse at stage 2, when it would have unlabelled
vertices remaining, but none that are determined from
the labelled edges. At this stage, you could make a guess
about edge labelling, but whereas the straightforward
algorithm never needs to backtrack, you might need
to change your guesses as you search for a consistent
labelling.

Figure 12.22(i) shows the other problem, a scene that
cannot be labelled consistently. In this case Waltz’s algo-
rithm would get stuck at step 3. Two different vertices
would each try to label the same edge differently. The
problem edge is the central diagonal. Reasoning from the
lower arm, the algorithm thinks it is convex, but reason-
ing from the other two arms it thinks it is concave. To
be fair, the algorithm is having exactly the same prob-
lem as you have with this image. It is locally sensible,

https://alandix.com/glossary/aibook/Waltz's algorithm
https://alandix.com/glossary/aibook/line labelling
https://alandix.com/glossary/aibook/line labelling
https://alandix.com/glossary/aibook/Waltz's algorithm
https://alandix.com/glossary/aibook/Waltz's algorithm
https://alandix.com/glossary/aibook/Waltz's algorithm

176 ■ Artificial Intelligence

FIGURE 12.21 Scene with ambiguous labelling.

FIGURE 12.22 Improper scene.

but there is no reasonable interpretation of the whole
scene.

Given only the set of vertex labellings from Fig-
ure 12.19, there are also sensible scenes that cannot be
labelled. A pyramid that has four faces meeting at the
top cannot be labelled using trihedral vertices. Even
worse, a piece of folded cloth may have a cusp, where a
fold line disappears completely. These problems can be
solved by extending the set of vertex types, but as one
takes into account more complex vertices and edges, the
number of cases does increase dramatically.

Note also that the algorithm starts with the premise
that lines and vertices have been identified correctly.
Given what you know about edge detection, you will see
that this is not necessarily a very robust assumption. If
the edge detection is not perfect, then one might need
to use uncertain reasoning while building up objects.
Consider Figure 12.22 (ii) – a valid scene that can be
labelled consistently. However, if the image is slightly
noisy at the top right vertex, it might be uncertain
whether it is a T, an arrow or a Y vertex. If it chose
the last of these, it would have the same problems as
with the first, inconsistent Figure If the edge detection
algorithm instead gave probabilities, one could use
these with Bayesian reasoning to get the most likely line
labelling.

FIGURE 12.23 Two objects or three?

However, the search process would be somewhat more
complicated than Waltz’s algorithm!

12.6.2 Using Properties of Regions

Edge detection simply uses lines of rapid change but
discards the properties of the regions between the lines.
However, there is a lot of information in these regions
that can be used to understand the image or to identify
objects in the image. For example, in Figure 12.23, it
is likely that the regions labelled A and B are part of
the same object partly obscured by the darker object.
We might have guessed this from the alignment of the
two regions, but the fact that they are the same colour
reinforces this conclusion.

Also, the position and nature of highlights and shad-
ows can help to determine the position and orientation of
objects. If we have concluded that an edge joins two parts
of the same object, then we can use the relative brightness
of the two faces to determine which is facing the light. Of
course, this depends on the assumption that the faces are
all of similar colour and shade. Such heuristics are often
right but can sometimes lead us to misinterpret an image
– which is precisely why we can see a two-dimensional
picture as if it had depth.

Once we know the position of the light source (or
sources), we can work out which regions represent
possible shadows of other objects and hence connect

https://alandix.com/glossary/aibook/edge detection
https://alandix.com/glossary/aibook/edge detection
https://alandix.com/glossary/aibook/uncertain reasoning
https://alandix.com/glossary/aibook/edge detection
https://alandix.com/glossary/aibook/Bayesian reasoning
https://alandix.com/glossary/aibook/line\protect \penalty -\@M labelling
https://alandix.com/glossary/aibook/line\protect \penalty -\@M labelling
https://alandix.com/glossary/aibook/Waltz's algorithm
https://alandix.com/glossary/aibook/Edge detection
https://alandix.com/glossary/aibook/heuristics

Computer Vision ■ 177

FIGURE 12.24 Shadows and highlights.

them to the face to which they belong. For example, in
Figure 12.24, we can see from the different shadings that
the light is coming from above, behind and slightly to
the left. It is then obvious that the black region is the
shadow of the upper box and so is part of the top face of
the lower box.

Shadows and lighting can also help us to disambiguate
images. If one object casts a shadow on another, then it
must lie between that object and the light. Also, the shape
of a shadow may be able to tell us about the distance of
objects from one another and whether they are touch-
ing. Recall in Figure 12.21 how the edges had no unam-
biguous line labelling. However, looking at the shadow
in Figure 12.24 it is clear that the upper box is in contact
with the lower one.

Lighting effects can also help us to interpret curved
objects. For example, in Figure 12.4 at the beginning of
this chapter, the sphere gets darker and darker until it be-
comes indistinguishable from the black rectangle in the
background. However, we have no trouble identifying it
as a sphere as we infer a boundary based on the rate of
change of colour. A similar rule can be built into an im-
age analysis program.

12.7 IDENTIFYING OBJECTS
Finally, having extracted various features from an image,
we need to establish what the various objects are. The
output of this will be some sort of symbolic representa-
tion at the semantic level. We will discuss three ways of
doing this that operate on different sorts of lower-level
representation.

12.7.1 Using Bitmaps

The simplest form of object identification is just to take
the bitmap, suitably thresholded, and match it against

FIGURE 12.25 Simple template matching.

various templates of known objects. One can simply
count the number of pixels that disagree and use this as
a measure of fit. The best match is chosen, and so long
as its match exceeds a certain threshold it is accepted.

This form of matching can work well where one can
be sure that shapes are not occluded and where lighting
levels can be chosen to ensure clean thresholded images.
However, in many situations the match will be partial,
either because of noise, or because the object is partly ob-
scured by another object. Simply reducing the threshold
for acceptability will not work. Consider the two images
in Figure 12.25. They have a similar amount of pixels in
common, but the first is clearly a triangle like the tem-
plate whereas the latter is not.

If a neural network is trained using noisy as well as
perfect images, it may be able to deal with noisy pat-
tern matching. After training, when the network is pre-
sented with an image, it identifies the object it thinks it
matches, sometimes with an indication of certainty. Neu-
ral networks can often give accurate results even when
there is a large amount of noise, but without some of
the unacceptable spurious matches from crude template
matching. One reason for this is that many nets effec-
tively match significant features (such as the corners and
edges of the triangle). This is not because they have any
particular knowledge built in but simply because of the
low-level way that they learn. We’ll look at the use of neu-
ral networks for image processing in more detail in Sec-
tion 12.9.

One problem with both template matching and neural
networks is that they are looking for the object at a par-
ticular place in the image. They have problems when the
object is at a different location or orientation than the ex-
amples with which they are taught. One solution is to use
lots of examples at different orientations. For template
matching this increases the cost dramatically (one test for
each orientation). For neural nets, the way in which the
patterns are stored reduces this cost to some extent, but if

https://alandix.com/glossary/aibook/line labelling
https://alandix.com/glossary/aibook/object identification
https://alandix.com/glossary/aibook/template matching
https://alandix.com/glossary/aibook/threshold
https://alandix.com/glossary/aibook/threshold
https://alandix.com/glossary/aibook/neural network
https://alandix.com/glossary/aibook/pattern matching
https://alandix.com/glossary/aibook/pattern matching
https://alandix.com/glossary/aibook/Neural networks
https://alandix.com/glossary/aibook/Neural networks
https://alandix.com/glossary/aibook/template matching
https://alandix.com/glossary/aibook/template matching
https://alandix.com/glossary/aibook/neural networks
https://alandix.com/glossary/aibook/neural networks
https://alandix.com/glossary/aibook/template matching
https://alandix.com/glossary/aibook/neural networks
https://alandix.com/glossary/aibook/neural networks
https://alandix.com/glossary/aibook/template matching
https://alandix.com/glossary/aibook/template matching

178 ■ Artificial Intelligence

too many patterns are taught without increasing the size
of the network, the accuracy will eventually decay.

An alternative approach is to move the object so that
it is in the expected location. In an industrial situation
this can often be achieved by using arrangements of
chutes and barriers that force the object into a particular
position and orientation. Where this is not possible,
an equivalent process can be carried out on the image.
If one is able to identify which region of the image
represents an object, then this can be moved so that it
lies at the bottom left-hand corner of the image, and
then matched in this standard position. This process is
called normalisation. A few stray pixels at the bottom or
left of the object can upset this process, but alternative
normalisation methods are less susceptible to noise, for
example moving the centre of gravity of the object to the
centre of the image.

Similar methods can be used to standardise the orien-
tation and size of the object (the size may be different if it
is closer or farther away than the examples). The general
idea is to find a co-ordinate system relative to the object
and then use this to transform the object into the stan-
dard co-ordinate system used for the matching. A typical
algorithm works like this:

1. Select a standard point on the object (say its centre
of gravity).

2. Choose the direction in which the object is
“widest”; make this the x-axis.

3. Take the axis orthogonal to the x-axis as the y-axis.

4. Scale the two axes so that the object “fits” within
the unit square.

The definitions of “widest” and also “fits” from steps
2 and 4 can use the simple extent of the object, but are
more often based on measures which are less noise sensi-
tive. The process is illustrated in Figure 12.26. The result-
ing x and y axes are called an object-centred co-ordinate
system. Obviously all the example images must be trans-
formed in a similar fashion so that they match!

12.7.2 Using Summary Statistics

An even simpler approach than template matching is to
use simple statistics about the objects in the image, such
as the length and width of the object (possibly in the

FIGURE 12.26 Choosing an object-centred co-ordinate sys-
tem.

object-centred system), the number of pixels with vari-
ous values and so on. For example, if one were trying to
separate nuts and bolts on a production line, then those
objects with an aspect ratio (ratio of length to width)
greater than some critical value would be classified as
nuts. Another example would be a line producing wash-
ers where you are trying to reject those that have not had
their centres properly removed. Those objects with too
many pixels would be rejected as defects.

12.7.3 Using Outlines

We saw when discussing template matching that issues
of location, orientation and size independence cause
some problems. These get far worse when we have to
consider three-dimensional rotations. At this point
techniques using higher-level features, such as those
generated by Waltz’s algorithm, become very attractive.
In essence one is still template matching, but now the
templates are descriptions of the connectivity of various
edges. Of course, the same object will have different
edges visible depending on its orientation. However, one
can generate a small set of representative orientations
whereby any object matches one or other after a certain
amount of deformation.

Figure 12.27 shows some of the representative orienta-
tions of a simple geometric object. The example set of all
possible orientations can be generated by hand, or (ide-

https://alandix.com/glossary/aibook/accuracy
https://alandix.com/glossary/aibook/normalisation
https://alandix.com/glossary/aibook/normalisation
https://alandix.com/glossary/aibook/template matching
https://alandix.com/glossary/aibook/aspect ratio
https://alandix.com/glossary/aibook/template matching
https://alandix.com/glossary/aibook/Waltz's algorithm
https://alandix.com/glossary/aibook/template matching

FIGURE 12.27 Different orientations of an object.

FIGURE 12.28 Matching an object.

ally) automatically using a three-dimensional geometric
model of the object. The number of orientations can be
reduced dramatically if one can make any assumptions,
say that the object’s base stays on the ground, or that the
camera position is within certain bounds.

When an object is to be recognised, it is matched
against the representatives of all known objects.
Each vertex and edge in the image object is matched
with a corresponding one in the example. If such a
correspondence can be found, then the match succeeds.
The exact positions of the vertices and edges don’t
matter, but the relative geometric constraints must
match. For example, in Figure 12.28, image (ii) matches
the template (i). However, (iii) doesn’t because vertex d
is a fork-type junction rather than an arrow.

The matching process can be more or less precise. As
well as the types of junctions, it may use information such
as whether certain lines are parallel or vertical. However,
adding constraints tends to mean that there are more

Computer Vision ■ 179

cases to consider when producing the set of all represen-
tative orientations.

Note that this type of method can be used to match
more complicated objects. If an object consists of vari-
ous pieces, then the pieces can be individually identified
by the above method and then a description of the con-
nectivity of the pieces within the object can be matched
against the known objects. This allows one to detect ob-
jects which change their shape, such as people.

12.7.4 Using Paths

Finally in this section we look at the special case of hand-
writing and gesture recognition. Reading human hand-
writing has been a long-term aim of AI (as well as many
of the authors’ friends) and is now commonplace, albeit
not perfect. Pen-based systems recognise both charac-
ters (to enter data) and gestures (such as a scribble to
mean “delete”). These systems either demand that the
writer uses very stylised letters or that new writers spend
some time training the system. Even when the system
is trained, the writer must write each character individ-
ually. Reliable and flexible writer-independent recogni-
tion of connected writing is not yet with us.

One way to approach handwritten text is to take the
bitmap generated by the path of the pen and then process
it. Some applications demand this approach, for example
if you want to interpret proof corrections written onto
paper copies and then scan these in, or if you want to
transcribe historic hand-written correspondence. How-
ever, for an interactive system this throws away too much
useful information. If we trace the path of the pen, we
not only have the lines already separated from the back-
ground (why bother to detect them again!), but we also
know the direction of the strokes and the order in which
they were written.

These path data differ from the grey-scale or bitmap
images we have considered so far. Instead of a set of in-
tensities at positions, we have a set of positions of the pen
at various times. We can match the strokes in the im-
age against those learnt for the particular writer. How-
ever, handwritten letters and gestures are never exactly
the same and so we must accept some variation. There
are various approaches to this.

One way is to look for characteristic shapes of strokes:
lines, curves, circles and so on. Characters and gestures
are then described using this “vocabulary”. A letter “a”
might be described as either “a circle with a line con-

https://alandix.com/glossary/aibook/geometric constraints
https://alandix.com/glossary/aibook/constraints
https://alandix.com/glossary/aibook/handwriting recognition
https://alandix.com/glossary/aibook/handwriting recognition
https://alandix.com/glossary/aibook/gesture recognition
https://alandix.com/glossary/aibook/Pen-based systems
https://alandix.com/glossary/aibook/object identification!bitmaps
https://alandix.com/glossary/aibook/grey-scale image
https://alandix.com/glossary/aibook/bitmap image

180 ■ Artificial Intelligence

FIGURE 12.29 Handwriting recognition – warping the sam-
ple.

nected to the right” or “a semi-closed curve with a line
closing it to the right”.

An alternative is to try and match the strokes against
examples stored during training. However, not only may
the written characters vary but also the points at which
the pen is sampled may differ between the training ex-
ample and the one to be recognised. One therefore has
to “warp” the points on the path and find intermediate
points that match most closely the example. The idea is
to choose points that were not in the sample, but might
have been!

The process is illustrated in Figure 12.29. The sample
points on the original template and the character that
needs to be matched are shown in (i) and (ii). The tem-
plate sample points are overlaid as closely as possible (iii),
and then intermediate points (the warp points) are cho-
sen on the lines connecting the sample points. These are
chosen so as to be as close to the template points as pos-
sible. At the ends of the stroke the warp points must be
chosen on the extrapolation of the last lines. Now the
warped points are used rather than the originals in de-
ciding whether or not the character really matches the
template.

12.8 FACIAL AND BODY RECOGNITION
Facial recognition is found in many applications: to label
family and friends in your photo album, as a way to un-
lock phones, and by police to find suspects in CCTV im-
ages. Similarly body and pose recognition is used widely
in game controllers to allow full-body movement digital
sports, in the film industry to blend human action and
CGI and by airport security to detect suspicious activity.
As is evident, the applications range from the frivolous
to some that are very worrying from a privacy point of
view – we will return to these issues in Chapter 23.

In some cases the applications use standard pipelines
of video processing or use large quantities of images to
train neural networks. However, often both facial and
body pose recognition use some form of model of the
human face or body in order to create more knowledge-
informed systems.

Facial recognition can be used for various purposes:

identification – Whose face is this?

authentication – Is this your face?

attention – Where is this person looking?

emotion – What are they feeling?

The first two are about matching a face to a person,
the last two about understanding the facial expression
irrespective of who it is, something humans can do with
strangers as well as friends.

For matching, the number of faces you want to match
to makes the job easier or harder. The Chinese govern-
ment’s Skynet Project matches people from tens of thou-
sands of CCTV cameras with a database of hundreds of
thousands of police suspects – a small false positive rate
of even a few per cent would lead to thousands of false
identifications every day. In contrast you may have hun-
dreds of friends to be matched against the photographs
in your album, and just you for your mobile to authenti-
cate and unlock the phone (or more often not!). Clearly
the last is easiest.

Often face-based systems work by identifying key fea-
tures: eyes, mouth, nose, cheeks, and then either mor-
phing the image to match other images or using metrics
such as nose-to-mouth or eye-to-eye distance. Identifi-
cation and authentication applications simply use these
to match known faces. Facial expression recognition will
look in more detail at fine features such as micro-muscle

https://alandix.com/glossary/aibook/Facial recognition
https://alandix.com/glossary/aibook/privacy
https://alandix.com/glossary/aibook/neural networks
https://alandix.com/glossary/aibook/Facial recognition
https://alandix.com/glossary/aibook/Skynet Project
https://alandix.com/glossary/aibook/database
https://alandix.com/glossary/aibook/false positive

movements. In fact exactly the things that facial recog-
nition wants to ignore as it is still the same face whether
happy or sad, looking left or right.

Oddly, computer emotion recognition can be better
in some ways than humans as there are certain muscles
that are involuntary, so a computer system may be able
to distinguish a false smile (deliberately formed) from a
real one. However, a level of complicit deceit is part of
the normal patterns of human intercourse; it is often a
bad idea if the person asking ‘how do I look today’ can
tell if the answer is honest. So some emotions are best left
undetected, even when detection is possible.

For film production actors may wear special suits
with either reflective dots or miniature radio-location
devices to record movements which can later be used to
render false bodies. Similarly sports players may wear
such devices in order to gather data for research or for
coaches to help them improve their performance. This
special equipment generates precise 3D coordinates for
each limb position.

However, often an equivalent job is needed without
the person wearing special clothes or devices, for exam-
ple, when playing virtual sports games. For this vision
systems use combinations of plain and depth cameras.
Sometimes, structured light may also be used; that is pat-
terns of infra-red light projected on the scene to allow
easy 3D depth detection.

These systems detect key features such as the head
or elbows. This is combined with models of the human
body both to help eliminate impossible interpretations
(the neck is not connected to the ankle), and, once
disambiguated, to make an accurate 3D virtual skeleton
including arm and leg positions and head angle. Often
such systems use a hybrid architecture (Chap. 6)
combining multiple types of AI approach; for example
a system might use statistical signal processing at a low
level, neural networks for key feature identification and
model-based approaches with Bayesian reasoning to
create the final skeleton.

12.9 NEURAL NETWORKS FOR IMAGES
Neural networks have been used for various forms of
image categorisation or reconstruction since the earliest
days and many of the neural net examples in this book in-
volve images. The classical image processing techniques
presented in this chapter are quite complex, but when we
look at a scene or a face we just ‘get it’, we have some

Computer Vision ■ 181

immediate impression or recognition. We don’t feel as
though we are going through many stages because the
processing is unconscious and virtually instantaneous.

The knowledge-rich techniques described already are
of course all performed unconsciously in our brains, and
many are based on psychological experiments that seek
to unpack these conscious processes. However, much of
what is going on in our own brains is still not understood.
Neural networks have therefore always been an obvious
approach, especially for those hard to codify aspects –
you just know a photo is a 1950s city scene rather than
contemporary, but it may be hard to pin that down to
lines, shapes or textures.

For many applications generic networks are simply ap-
plied to an image, setting the pixels as input and some
classification as output. This may be preceded by some
form of image-specific pre-processing such as threshold-
ing, or a wavelet transform (Chap. 14), but otherwise is a
straightforward application of a generic algorithm.

However, there are some algorithms that have been
specifically designed for images or have been particu-
larly closely connected. We will discuss two, convolu-
tional neural networks and autoencoders.

12.9.1 Convolutional Neural Networks

Many of the techniques we’ve seen in this chapter in-
volve doing the same thing across every pixel position in
an image. Some of them look at a single pixel at a time,
notably thresholding, but others look at a region around
the pixel. These include simple smoothing and Gaussian
filters, and also gradient filters and Sobel’s operator for
edge detection. In mathematical terms these are called
convolutions and are also applied to linear data such as
time series.

The strength of convolutions is that they operate uni-
formly, no particular area of an image is any different
to any other. In contrast a ‘vanilla’ application of neu-
ral networks to an image regards every pixel as com-
pletely different. This may mean that a car is only de-
tected if it lies in exactly the same spot as in an exam-
ple image. There are some aspects of images where this
may be appropriate, for example landscape pictures have
sky at the top, passport photos have a face in the middle.
However, typically we want more position independent
recognition.

Convolutional neural networks achieve this by adopt-
ing the same techniques as convolutional filters. The im-
age is divided up into potentially overlapping patches

https://alandix.com/glossary/aibook/facial recognition
https://alandix.com/glossary/aibook/facial recognition
https://alandix.com/glossary/aibook/emotion recognition
https://alandix.com/glossary/aibook/hybrid architecture
https://alandix.com/glossary/aibook/signal processing
https://alandix.com/glossary/aibook/neural networks
https://alandix.com/glossary/aibook/Bayesian reasoning
https://alandix.com/glossary/aibook/Neural networks
https://alandix.com/glossary/aibook/Neural networks
https://alandix.com/glossary/aibook/pre-processing
https://alandix.com/glossary/aibook/thresholding
https://alandix.com/glossary/aibook/thresholding
https://alandix.com/glossary/aibook/wavelet transform
https://alandix.com/glossary/aibook/convolutional neural networks
https://alandix.com/glossary/aibook/convolutional neural networks
https://alandix.com/glossary/aibook/autoencoders
https://alandix.com/glossary/aibook/thresholding
https://alandix.com/glossary/aibook/smoothing
https://alandix.com/glossary/aibook/Gaussian filters
https://alandix.com/glossary/aibook/Gaussian filters
https://alandix.com/glossary/aibook/gradient filters
https://alandix.com/glossary/aibook/Sobel's operator
https://alandix.com/glossary/aibook/edge detection
https://alandix.com/glossary/aibook/convolutions
https://alandix.com/glossary/aibook/time series
https://alandix.com/glossary/aibook/convolutions
https://alandix.com/glossary/aibook/neural networks
https://alandix.com/glossary/aibook/neural networks
https://alandix.com/glossary/aibook/position independent
https://alandix.com/glossary/aibook/Convolutional neural networks

182 ■ Artificial Intelligence

FIGURE 12.30 Convolutional neural network.

(called the receptive field) and the same (relatively small)
neural network is applied to every patch. This is then
used as the input layer of a deep neural network (see Fig-
ure 12.30).

The training of the convolutional part can still use the
error values fed back from a standard backpropagation
algorithm, but as the same weights are used in multiple
places, the change in each weight is an average of all the
changes generated at each patch independently.

In some implementations this is achieved by replicat-
ing the initial network, once for each patch, to create the
first layer(s) of processing, but then ‘clamping’ the corre-
sponding weights together. Here backpropagation would
be applied as normal, but at the end of each cycle of learn-
ing each weight in the convolution layer would be set to
the average of all its corresponding weights.

While this technique is especially used for images, it
can also be applied to other forms of 2D data or indeed
1D data such as time series data or more complex 3D
or forms of graph data that have some sort of regular
structure.

12.9.2 Autoencoders

Recall from Chapter 6, an autoencoder is a form of au-
toassociative memory where the input and output are the
same. Some of the early connectionist systems, in partic-
ular Hopfield networks and Boltzmann machines, func-
tioned as autoassociative memory and have been used for
image construction, but the term ‘autoencoder’ is most
often used where there is a clear internal encoding that
is much smaller than the original images, as can be the

FIGURE 12.31 Autoencoder.

case with a restricted Boltzmann machine when there are
fewer hidden units than visible units.

As with all AI there are many variations, but typically
an autoencoder is a deep neural network where:

1. The input and output layers are intended to be the
same image (or other form of data),

2. There is a narrow hidden layer that acts as the en-
coding,

3. Where there are additional layers, the architecture
is often symmetric.

Figure 12.31 shows these features. In the simplest case
the network is trained by simply presenting the same ex-
ample image in both input and output during standard
training. However, one of the uses is to ‘clean up’ noisy
data or to fill in where there is a gap in an image. To
achieve this as well as training the net on exact matching
pairs, the input may have noise added so that the network
learns how to associate a noisy image with its clean equiv-
alent and thus with enough training examples learns in
general how to remove noise.

In its basic form this is unsupervised learning and so is
especially useful when large numbers of untagged images
are available, as is the case with many images on the web.
However, after unsupervised training, the encoding layer
can also be used as a reduced dimension version of the
image for other kinds of learning.

For example, if a small proportion of the images have
some form of human tagging, the encoded version of

https://alandix.com/glossary/aibook/receptive field
https://alandix.com/glossary/aibook/neural network
https://alandix.com/glossary/aibook/deep neural network
https://alandix.com/glossary/aibook/backpropagation
https://alandix.com/glossary/aibook/backpropagation
https://alandix.com/glossary/aibook/time series
https://alandix.com/glossary/aibook/autoencoder
https://alandix.com/glossary/aibook/autoassociative memory
https://alandix.com/glossary/aibook/autoassociative memory
https://alandix.com/glossary/aibook/connectionist systems
https://alandix.com/glossary/aibook/Hopfield networks
https://alandix.com/glossary/aibook/Boltzmann machines
https://alandix.com/glossary/aibook/autoassociative memory
https://alandix.com/glossary/aibook/autoencoder
https://alandix.com/glossary/aibook/restricted Boltzmann machine
https://alandix.com/glossary/aibook/autoencoder
https://alandix.com/glossary/aibook/deep neural network
https://alandix.com/glossary/aibook/neural network!architecture
https://alandix.com/glossary/aibook/unsupervised learning
https://alandix.com/glossary/aibook/unsupervised training

each together with the tag can be used as input–output
pairs to train a classifier. As the encoded layer is a lot
smaller than the original image, this is possible to do
robustly with far fewer tagged examples than would be
needed with the raw image data. Once trained in this
way, the classifier can be applied to the encoded form of
unseen images.

Other uses include using random values for the encod-
ing or perturbing it and then letting the decoding part of
the network generate realistic images. The ability of this
and more sophisticated forms of autoencoder to generate
or clean up images can also be potentially problematic
in the generation of deep fakes. For example, if the face
of a politician is placed over the body of someone doing
something illegal and then this image is presented as in-
put to an autoencoder, the join between face and body
would be ‘tidied up’ so that it might look as though it
were a real photograph of the politician.

12.10 GENERATIVE ADVERSARIAL
NETWORKS

Autoencoders can generate very realistic images but
also ones that are manifestly unreal, for example placing
facial features in unnatural positions. One approach to
deal with this is to use generative adversarial networks
(GANs). This takes inspiration from game playing,
in particular the idea of a zero-sum game where one
player’s gains are the other player’s loss. For image
generation one AI acts as generator and is trained to
create artificial images that mimic as closely as possible
the properties of real ones; another AI acts as critic and
is trained to distinguish real images from those that are
artificially generated. The AI generator ‘wins’ if it fools
the AI critic and vice versa. The process of generation
and testing leads to vast numbers of training examples,
and so machine learning can be used to improve both
the generator and the critic, a form of artificial arms
race.

This is a general machine learning technique that can
be used for different kinds of data and problems but is
most widely known for its applications in image genera-
tion.

12.10.1 Generated Data

In Chapter 8 we saw that deep neural networks may need
generated or virtual data in order to have sufficient ex-
amples from which to learn. This is particularly true for

Computer Vision ■ 183

FIGURE 12.32 Training a diffusion model.

machine learning on image or video data. The problem
is typically not about getting sufficient data – for exam-
ple Google have thousands of hours of street-mapping
video, but about getting sufficient labelled data. Crowd-
sourcing techniques can help, but often there are limits,
particularly when dealing with rare or dangerous situa-
tions, such as potential accidents for autonomous cars.

We have already mentioned adding noise to data as a
way to grow the labelled dataset – every time we have an
image labelled ‘Eiffel Tower’ we can generate hundreds
more: shifted, resized, rotated or with noise added.

In addition engines designed for virtual reality or im-
mersive games create high fidelity images of their virtual
worlds. These are based on models of the world, so that
effectively they have ground truth. We know precisely
where each person, building and car is positioned in the
environment, and so can train vision systems to recreate
the model world from the generated image.

12.10.2 Diffusion Models

Diffusion models use this technique as a primary mech-
anism [61]. Instead of simply using noise to expand the
datasets, they are trained to gradually remove noise from
images. Crucially they do not try to remove the noise in
a single step, but rather reduce the noise step by step by
modifying each pixel of the noisy image in a way that
moves it in the direction most likely to be a real image
(Figure 12.32). This is a form of gradient descent as dis-
cussed in Chapter 9 (Section 9.4.1).

The system can then be presented with an image con-
sisting of nothing but noise and is asked to remove the
noise first assuming very high amounts of noise, and then

https://alandix.com/glossary/aibook/autoencoder
https://alandix.com/glossary/aibook/deep fakes
https://alandix.com/glossary/aibook/autoencoder
https://alandix.com/glossary/aibook/Autoencoders
https://alandix.com/glossary/aibook/generative adversarial networks
https://alandix.com/glossary/aibook/GAN
https://alandix.com/glossary/aibook/game playing
https://alandix.com/glossary/aibook/zero-sum game
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/deep neural networks
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/Google
https://alandix.com/glossary/aibook/Crowdsourcing
https://alandix.com/glossary/aibook/Crowdsourcing
https://alandix.com/glossary/aibook/ground truth
https://alandix.com/glossary/aibook/Diffusion models
https://alandix.com/glossary/aibook/gradient descent

184 ■ Artificial Intelligence

FIGURE 12.33 Using a diffusion model to generate images
from prompts.

assuming smaller and smaller amounts of noise. In the
early steps large-scale structures start to emerge, say a
face or tree, and then in later steps these get refined (de-
tails of eyes or leaves).

This kind of image can be trained on a particular class
of image, say landscapes, and then run to produce com-
pletely new images that appear to come from the original
class. However, their full power is exploited when the dif-
fusion model is trained on all possible images, class-free,
so that it is a general purpose de-noising process. Left to
its own devices, this would produce plausible images but
they could be of anything. Instead, the step-wise process
of image re-construction can be guided using a classifier
nudging towards images that have that particular clas-
sification (Figure 12.33). Furthermore, the classifier do-
ing the guiding can use descriptions that combine several
simple classes that are maybe never found together in a
training image, such as ‘teddies’ and ‘technology’.

It is this process that caught public attention in systems
such as OpenAI’s Dall-E, which are able to create realistic
images based on text descriptions, even in the style of a
particular artist [229, 230].

12.10.3 Bottom-up and Top-down Processing

Note that while this chapter is principally about process-
ing and understanding visual images as input, diffusion
models create images as output. In traditional computing
terms this is perhaps more the domain of graphics, but in
AI the two start to come together. This is not altogether
surprising as this is exactly what happens in the human
visual system when we try to imagine something or when
we dream. ‘Seeing’ in a dream or in our mind’s eye is not
the same as seeing with our real eyes, indeed many peo-
ple cannot conjure up a clear mental image at will, but

brain scans do show that our visual cortex is activated in
a very similar way when imagining a scene as when we
actually see it. These top-down processes are important
also when we are awake and alert as they help our per-
ception to rapidly make sense of otherwise ambiguous or
partial senses.

Most of the techniques we have described are bottom-
up, moving from sensation (raw sensory input) to
perception (meaning attached to images). However, one
of the general lessons of both human perception and
AI, in many areas including text and speech as well as
vision, is that bottom-up processes are usually mixed
with top-down processes ... we already know what we
expect to see or read and this guides our lower-level
processes.

12.11 MULTIPLE IMAGES
So far, we have looked at single images. This may be all
we have to work on, for example a single photograph of a
scene. However, in some circumstances we have several
images, which together can be used to interpret a scene.
On the one hand, this can make life more difficult (lots of
images to process!). On the other hand, we may be able
to extract information from the combined images that is
not in any single image alone. These multiple images may
arise from various sources:

1. Different sensors may be viewing the same scene.

2. Two cameras may be used simultaneously to give
stereo vision.

3. We may have continuous video of a changing
scene.

4. A fixed camera may be panning (and possibly
zooming) over a scene.

5. The camera may be on a moving vehicle or
mounting.

The first of these, the combination of different sorts of
data (e.g. infrared and normal cameras), is called data fu-
sion. It is especially important for remote sensing appli-
cations, such as reconstructing images from satellite data.
Different sensors may show up different features; hence
edges and regions in the two images may not correspond
in a one-to-one fashion. If the registration between the

https://alandix.com/glossary/aibook/diffusion models
https://alandix.com/glossary/aibook/diffusion models
https://alandix.com/glossary/aibook/human perception
https://alandix.com/glossary/aibook/human perception
https://alandix.com/glossary/aibook/sensation
https://alandix.com/glossary/aibook/perception
https://alandix.com/glossary/aibook/human perception
https://alandix.com/glossary/aibook/multiple images
https://alandix.com/glossary/aibook/stereo vision
https://alandix.com/glossary/aibook/data fusion
https://alandix.com/glossary/aibook/data fusion

Computer Vision ■ 185

FIGURE 12.34 Stereo vision.

sensors is known (i.e. one knows how they overlap), then
the images can simply be overlaid and the information
from each combined. Often this registration process is
the most difficult part and the high-level data may be
used to aid this process. For example, terrain-following
cruise missiles rely on the matching of ground features
with digital maps to calculate their course and position.

The last three sources of multiple images have some-
what different characteristics but are similar enough to
discuss together. We will therefore look at stereo vision
(Figure 12.34) and moving images in more detail.

12.11.1 Stereo Vision

Look out into the room and hold a finger in front of your
face. Now close each eye in turn. Your finger appears to
move back and forth across the room. Because your eyes
are at different positions they see slightly different views
of the world. This is especially important in determin-
ing depth. If you have not tried it before, here’s another
simple experiment. Hold a pencil in one hand and try
to touch the tip of the finger of your other hand with
the point of the pencil. No problem? Try it with one eye
closed. The properties of stereo vision are one of the clues
our eyes use to determine how far away things are.

One way to determine depth is to use triangulation in
a similar way to a surveyor. Assuming you have been able
to identify the same feature in both images, you can work
out the angle between the two and hence the distance

FIGURE 12.35 Triangulation.

from the camera (see Figure 12.35). To use this method
to give exact distances, you need very accurate calibra-
tion of the cameras. However, even without such accu-
racy, one can use this method to obtain relative distances
(which is probably what your eye is doing with the pen
and finger).

In fact, it is not necessary to do any explicit calcu-
lations in order to obtain qualitative estimates of rela-
tive distance. Notice in Figure 12.34 how the cone moves
back and forth relative to the cube. This effect is called
parallax. If the amount of movement between the two
views is great, then we know there is a considerable dis-
tance between the two objects.

So far we have assumed that we know which objects
are the same in each image. However, this matching
of objects between images is a difficult problem in
itself. One can attack it at various levels. On the one
hand, we can simply look for patterns of pixels that
match one another in the grey-scale image. To do this,
we work out the correlation (a measure of similarity)
between groups of pixels in the two images at small
offsets from one another. Where the correlation is large,
we assume that there is some feature in common. The
size of the offset then tells us the disparity in angle
between the two images. Note that this will usually
highlight the boundaries of objects, as the faces often
have near constant intensity. Alternatively, one can wait
until objects have been identified in each image and
then match the objects. The low-level approach has the
advantage that the information from both images can be
used for subsequent analysis. For example, parallax can
allow us to label lines ready for Waltz’s algorithm and,
indeed, is a very good edge indicator in its own right.

https://alandix.com/glossary/aibook/multiple images
https://alandix.com/glossary/aibook/stereo vision
https://alandix.com/glossary/aibook/moving images
https://alandix.com/glossary/aibook/stereo vision
https://alandix.com/glossary/aibook/parallax
https://alandix.com/glossary/aibook/grey-scale image
https://alandix.com/glossary/aibook/correlation
https://alandix.com/glossary/aibook/similarity measure
https://alandix.com/glossary/aibook/parallax
https://alandix.com/glossary/aibook/Waltz's algorithm

186 ■ Artificial Intelligence

12.11.2 Moving Pictures

Recall that we listed three types of movement: objects
may move in the scene, the camera may pan or zoom, and
the camera may be mounted on a moving vehicle. These
all lead to similar but slightly different effects. For exam-
ple, an object moving towards the camera will have a sim-
ilar effect to zooming the camera, or moving the camera
closer to the object. Of course, several or all of the above
effects may occur and we may even have stereo cameras
and multiple sensors! To simplify the discussion, we will
consider principally the case of a single stationary cam-
era.

One special advantage of a stationary camera is that it
may be possible to calibrate the camera when the scene
is “empty”. For example, if the camera is used for surveil-
lance in an airport departure lounge, we can take an im-
age when the lounge is empty. This will contain the fixed
furniture, pillars and so on. Then, when we look at an im-
age of the lounge in use, we will be able to match it with
the fixed image and so identify the additional objects. In
fact, it is not quite so easy! Changes in lighting levels, or
indeed automatic light level controls in the camera, mean
that one has to perform some adjustment to remove the
fixed background.

Whether or not one has removed part of the image,
some parts of the image change more rapidly than others.
It is these regions of change that correspond to the mov-
ing objects. As with stereo vision, one can use local cor-
relation to determine where groups of pixels in the im-
age correspond to the same feature. This optical flow can
be performed at a high level, matching whole objects, or
at a low level, similar to edge detection, yielding a pixel-
level flow pattern. With stereo vision we need only look
for change in one direction, parallel to the separation of
the “eyes”; however, in contrast, the objects in video may
move in any direction. Furthermore, when an object gets
closer or further away, the edges of the object move in
different directions as the image of the object expands
or contracts. Note also that we can usually only calculate
the direction of movement orthogonal to the edge. Any
movement parallel to the edge is (at least locally) invisi-
ble. Again, in the stereo case, this is only a problem when
a long flat object is being viewed.

This all sounds quite complicated. Happily some
things are easier! Because we have many images in
sequence we can trace known objects. That is, once
we have identified an object moving in a particular
direction, we have a pretty good idea where to find it

in the next image. Furthermore, the optical flow field
can be used as an additional level of input for other
bottom-up algorithms such as edge detection, or as
input to neural networks.

It is worth noting for both moving images and stereo
vision the magnitude of change that is likely between im-
ages. Imagine we are tracking someone walking across
the airport lounge. Assume that the person is 10 me-
tres from the camera and walking at a brisk 1.5 m/s. At
15 frames per second the person will move through an
angle of 0.01 of a radian (about half a degree) between
frames. If the camera has a 60∘viewing angle and we are
capturing it at a low resolution of 512 × 512 pixels, the
person will move five pixels between frames. So, we have
to do comparisons at one, two, three, four and five pixel
offsets to be able to detect such movements – calculated
all over the image 15 times per second! Even then, what
about someone moving closer to the camera or a high-
resolution image? Clearly, one has to design the algo-
rithms carefully in order to save some of this work.

12.12 SUMMARY
The processing in a typical computer vision system con-
sists of several phases:

• digitisation and signal processing

• edge and region detection

• object recognition

• image understanding

Not all will be present in any one system, as often accept-
able results may be obtained with fewer levels of process-
ing.

The raw image is usually digitised into pixels and may
often be thresholded to give a simple black and white
image. The image may be affected by noise. Digital fil-
ters can be used to smooth the image, which reduces
noise, but can also blur edges. Different filters, includ-
ing Robert’s, Sobel’s and the Laplacian, can be used to
emphasise edges. Large digital filters can be expensive to
apply, and so the simplest filter that gives acceptable re-
sults is used.

Having identified potential edge pixels, an edge-
following algorithm must be used to collect them into
lines. Some pixels may at this stage be discarded as noise
if they fail to fit into any line. Alternatively, similar pixels
can be collected together to form regions. Representing

https://alandix.com/glossary/aibook/camera!pan
https://alandix.com/glossary/aibook/camera!zoom
https://alandix.com/glossary/aibook/stereo vision
https://alandix.com/glossary/aibook/optical flow
https://alandix.com/glossary/aibook/edge detection
https://alandix.com/glossary/aibook/stereo vision
https://alandix.com/glossary/aibook/optical flow
https://alandix.com/glossary/aibook/bottom-up algorithms
https://alandix.com/glossary/aibook/edge detection
https://alandix.com/glossary/aibook/neural networks
https://alandix.com/glossary/aibook/moving images
https://alandix.com/glossary/aibook/stereo vision
https://alandix.com/glossary/aibook/stereo vision
https://alandix.com/glossary/aibook/frame of video
https://alandix.com/glossary/aibook/frame of video
https://alandix.com/glossary/aibook/digitisation
https://alandix.com/glossary/aibook/signal processing
https://alandix.com/glossary/aibook/region detection
https://alandix.com/glossary/aibook/object recognition
https://alandix.com/glossary/aibook/image understanding
https://alandix.com/glossary/aibook/edge-following
https://alandix.com/glossary/aibook/edge-following

FIGURE 12.36 For exercise 4.

regions can use a lot of space, and quadtrees are one way
of efficiently storing regions.

Waltz’s algorithm labels edges and vertices in a con-
sistent manner, allowing lines to be built up into objects.
However, some images are difficult to label unambigu-
ously or may have one object split by an occluding ob-
ject. Additional knowledge such as the use of shadows
can help to resolve such ambiguity.

Identifying objects can be difficult because objects
may be partly occluded, viewed at different angles or be
in different positions from their templates. Techniques
based on fuzzy matching of bitmaps, including the
use of neural networks, can identify partially obscured
objects, and the use of an object-centred co-ordinate
system can help to reduce the effects of positioning. In
some situations crude identification based on summary
statistics may be sufficient. For more complex shapes
matching of edges can be used to accommodate different
viewing angles, but for paths without obvious vertices,
such as handwriting, warping must be used to allow
matching. For others, including face and body pose
recognition, more model-based techniques can be
used that use knowledge of human anatomy to guide
algorithms.

Neural networks are also heavily used in vision-based
systems. Sometimes vanilla networks are used, but sev-
eral neural techniques are especially designed for or use-
ful for images, notably autoencoders and convolutional
neural networks. Multiple images from moving cameras
or stereo vision can be used to obtain more information
but can involve more processing time. Stereo vision can
be used to calculate the relative distance of objects. Also,
by tracking objects between frames of a moving image
the object’s speed can be calculated.

12.1 Take the digitised image in Figure 12.3(i). Thresh-
old it at each of the following levels: 1, 5 and 8.
Record your results on squared or graph paper,

Computer Vision ■ 187

marking each square that exceeds the threshold.
In fact, the threshold values above are not ran-
dom. What does the picture look like thresholded
at 6?

12.2 Again using Figure 12.3(i), apply Sobel’s operator
and then, choosing an appropriate threshold plot,
draw the results.

12.3 Filters often lose information. To see this
experiment with any popular image manipu-
lation application such as Adobe Photoshop.
These allow you to apply different kinds of
smoothing and sharpening filters to captured
images. Unfortunately you are not usually told
the exact mathematical filter being applied,
but they can give you a good feel for the
possibilities of filtering. Compare the results of
different filters. Try repeatedly applying smooth-
ing and then sharpening filters to the same
image.

12.4 Apply Waltz’s algorithm to the image in Fig-
ure 12.36(i). Does it give the line labelling you
would expect? What happens if you apply Waltz’s
algorithm to Figure 12.36(ii). Do you have any
problems interpreting it?

FURTHER READING

R. Szeliski. Computer vision: Algorithms and applications.
Springer, Cham, 2022.
A comprehensive textbook that includes state-of-the-art
techniques in computer vision.

D. Andina, A. Voulodimos, N. Doulamis, A. Doulamis,
and E. Protopapadakis. Deep learning for com-
puter vision: A brief review. Computational In-
telligence and Neuroscience, 2018:7068349, 2018.
DOI: 10.1155/2018/7068349

A short review article that also acts an introductory primer
for some of the major steps in the application of neural
networks in computer vision.

D. Vernon. Machine vision: Automated visual inspection
and robot vision. Prentice Hall, Hemel Hempstead,
1991. https://homepages.inf.ed.ac.uk/rbf/BOOKS/VER
NON/vernon.htm

An early textbook that covers many of the more traditional
algorithms of computer vision. Now available as an open
access publication.

https://alandix.com/glossary/aibook/quadtrees
https://alandix.com/glossary/aibook/Waltz's algorithm
https://alandix.com/glossary/aibook/neural networks
https://alandix.com/glossary/aibook/Neural networks
https://alandix.com/glossary/aibook/autoencoders
https://alandix.com/glossary/aibook/convolutional neural networks
https://alandix.com/glossary/aibook/convolutional neural networks
https://alandix.com/glossary/aibook/Multiple images
https://alandix.com/glossary/aibook/stereo vision
https://alandix.com/glossary/aibook/Stereo vision
https://alandix.com/glossary/aibook/frame of video
https://alandix.com/glossary/aibook/Threshold
https://alandix.com/glossary/aibook/Threshold
https://alandix.com/glossary/aibook/Sobel's operator
https://alandix.com/glossary/aibook/threshold
https://alandix.com/glossary/aibook/smoothing
https://alandix.com/glossary/aibook/sharpening filters
https://alandix.com/glossary/aibook/smoothing
https://alandix.com/glossary/aibook/smoothing
https://alandix.com/glossary/aibook/sharpening filters
https://alandix.com/glossary/aibook/Waltz's algorithm
https://alandix.com/glossary/aibook/line labelling
https://alandix.com/glossary/aibook/Waltz's algorithm
https://alandix.com/glossary/aibook/Waltz's algorithm
https://homepages.inf.ed.ac.uk/rbf/BOOKS/VERNON/vernon.htm
https://homepages.inf.ed.ac.uk/rbf/BOOKS/VERNON/vernon.htm

CHAP T ER 1 3

Natural Language Understanding

13.1 OVERVIEW
Natural language understanding is one of the most
popular applications of artificial intelligence portrayed
in fiction and the media. The idea of being able to control
computers by talking to them in our own language is
very attractive. Today this kind of speech control is
no longer science fiction, but in everyday items from
home automation controls to mobile phones; text-based
understanding of language is common in chatbots as well
as a key part of knowledge mining on the web. However,
human language is ambiguous, which makes natural lan-
guage
understanding particularly difficult. In this chapter
we examine the major stages of natural language
understanding – syntactic analysis, semantic analysis
and pragmatic analysis – and some of the techniques
that are used to make sense of this ambiguity. Big data
and large-language models have had a major impact on
many practical applications and appear to bypass some
of this stepwise process, particularly at lower-levels.

13.2 WHAT IS NATURAL LANGUAGE
UNDERSTANDING?

Whenever computers are represented in science fiction,
futuristic literature or film, they invariably have the
ability to communicate with their human users in
natural language. By “natural language”, we mean a
language for human communication such as English,

French, Swahili or Urdu, as opposed to a formal
“created” language (e.g. a programming language
or Morse code). Unlike computers in films, which
understand spoken language, we will concern ourselves
primarily with understanding written language, rather
than speech, and on analysis rather than language
generation. As we shall see, this will present enough
challenges for one chapter! Understanding speech shares
the same difficulties but has additional problems with
deciphering the sound signal and identifying word
parts.

13.3 WHY DO WE NEED NATURAL
LANGUAGE UNDERSTANDING?

Before we consider how natural language understanding
can be achieved, we should be clear about the benefits
that it can bring. There are a number of areas that
can be helped by the use of natural language. The
first is human–computer interaction, by the provision
of interfaces for the user. This allows the user to
communicate with computer applications in their own
language, rather than in a command language or using
menus. There are advantages and disadvantages to this:
it is a natural form of communication that requires
no specialised training, but it is inefficient for expert
users and less precise than a command language. It
may certainly be helpful in applications that are used
by casual users (e.g. tourist information) or for novice
users, and also for circumstances where hands free
interactions are required, either through necessity (e.g.
while driving a car) or preference (e.g. while sitting on a
sofa).

A second area is information management, where nat-
ural language processing enables automatic management
and processing of information, by interpreting its con-

DOI: 10.1201/9781003082880-16 188

https://alandix.com/glossary/aibook/home automation
https://alandix.com/glossary/aibook/chatbots
https://alandix.com/glossary/aibook/syntactic analysis
https://alandix.com/glossary/aibook/semantic analysis
https://alandix.com/glossary/aibook/pragmatic analysis
https://alandix.com/glossary/aibook/Big data
https://alandix.com/glossary/aibook/large-language models
https://alandix.com/glossary/aibook/human--computer interaction
https://alandix.com/glossary/aibook/natural language interfaces
https://alandix.com/glossary/aibook/natural language processing!information management
http://dx.doi.org/10.1201/9781003082880-16

tent. If the system understands the meaning of a docu-
ment, it can, for example, store it with other similar doc-
uments.

A third possibility is to provide an intuitive means
of database access. At present most databases can be
accessed through a query language. Some of these are
very complex, demanding considerable expertise to
generate even relatively common queries. Others are
based on forms and menus, providing a simpler access
mechanism. However, these still require the user to have
some understanding of the structure of the database.
The user, on the other hand, is usually more familiar
with the content of the database or at least its domain.
By allowing the user to ask for information using natural
language, queries can be framed in terms of the content
and domain rather than the structure. We will look
at a simple example of database query using natural
language later in the chapter.

13.4 WHY IS NATURAL LANGUAGE
UNDERSTANDING DIFFICULT?

The primary problem with natural language processing
is the ambiguity of language. There are a number of lev-
els at which ambiguity may occur in natural language (of
course a single sentence may include several of these lev-
els). First, a sentence or phrase may be ambiguous at a
syntactic level. Syntax relates to the structure of the lan-
guage, the way the words are put together. Some word se-
quences make valid sentences in a given language, some
do not. However, some sentence structures have more
than one correct interpretation. These are syntactically
ambiguous. Secondly, a sentence may be ambiguous at a
lexical level. The lexical level is the word level, and am-
biguity here occurs when a word can have more than
one meaning. Thirdly, a sentence may be ambiguous at
a referential level. This is concerned with what the sen-
tence (or a part of the sentence) refers to. Ambiguity oc-
curs when it is not clear what the sentence is referring
to or where it may legally refer to more than one thing.
Fourthly, a sentence can be ambiguous at a semantic level,
that is at the point of the meaning of the sentence. Some-
times a sentence is ambiguous at this level: it has two dif-
ferent meanings. Indeed this characteristic is exploited
in humour, with the use of double entendre and innu-
endo. Finally, a sentence may be ambiguous at a prag-
matic level, that is at the level of interpretation within
its context. The same word or phrase may have different

Natural Language Understanding ■ 189

interpretations depending on the context in which it oc-
curs. To make things even more complicated some sen-
tences involve ambiguity at more than one of these levels.
Consider the following sentences; how many of them are
ambiguous and how?

1. I hit the man with the hammer.

2. I went to the bank.

3. He saw her duck.

4. Fred hit Joe because he liked Harry.

5. I went to the doctor yesterday.

6. I waited for a long time at the bank.

7. There is a drought because it hasn’t rained for a
long time.

8. Dinosaurs have been extinct for a long time.

How did you do? In fact all the sentences above have
some form of ambiguity. Let’s look at them more closely.

• I hit the man with the hammer.
Was the hammer the weapon used or was it in the
hand of the victim? This sentence contains syntactic
ambiguity: there are two perfectly legitimate ways of
interpreting the sentence structure.

• I went to the bank.
Did I visit a financial institution or go to the river
bank? This sentence is ambiguous at a lexical level:
the word “bank” has two meanings, either of which
fits in this sentence.

• He saw her duck.
Did he see her dip down to avoid something or
the web-footed bird owned by her? This one is
ambiguous at a lexical and a semantic level. The
word “duck” has two meanings and the sentence
can be interpreted in two completely different
ways.

• Fred hit Joe because he liked Harry.
Who is it that likes Harry? This is an example of
referential ambiguity. Who does the pronoun “he”
refer to, Fred or Joe? It is not clear from this sentence
structure.

https://alandix.com/glossary/aibook/natural language processing!database access
https://alandix.com/glossary/aibook/database
https://alandix.com/glossary/aibook/database
https://alandix.com/glossary/aibook/database
https://alandix.com/glossary/aibook/ambiguity!syntactic
https://alandix.com/glossary/aibook/ambiguity!lexical
https://alandix.com/glossary/aibook/ambiguity!referential
https://alandix.com/glossary/aibook/ambiguity!semantic
https://alandix.com/glossary/aibook/ambiguity!pragmatic
https://alandix.com/glossary/aibook/ambiguity!pragmatic

190 ■ Artificial Intelligence

• I went to the doctor yesterday.
When exactly was yesterday? This demonstrates
pragmatic ambiguity. In some situations this
may be clear but not in all. Does yesterday refer
literally to the day preceding today or does it refer
to another yesterday (imagine I am reading this
sentence a week after it was written, for example).
The meaning depends on the context.

• I waited for a long time at the bank.
There is a drought because it hasn’t rained for a long
time.
Dinosaurs have been extinct for a long time.
The last three sentences can be considered together.
What does the phrase for a long time mean? In
each sentence it clearly refers to a different
amount of time. This again is pragmatic ambiguity.
We can only interpret the phrase through our
understanding of the sentence context.

In addition to these major sources of ambiguity, language
is problematic because it is imprecise, incomplete, inac-
curate and continually changing. Think about the con-
versations you have with your friends. The words you
use may not always be quite right to express the mean-
ing you intend, you may not always finish a sentence,
you may use analogies and comparisons to express ideas.
As humans we are adept at coping with these things, to
the extent that we can usually understand each other if
we speak the same language, even if words are missed
out or misused. We usually have enough knowledge in
common to disambiguate the words and interpret them
correctly in context. We can also cope quickly with new
words. This is borne out by the speed with which slang
and street words can be incorporated into everyday us-
age. All of this presents an extremely difficult problem
for the computer.

13.5 AN EARLY ATTEMPT AT NATURAL
LANGUAGE UNDERSTANDING:
SHRDLU

We met SHRDLU briefly in the Introduction. If you re-
call, SHRDLU is the natural language processing system
developed by Winograd at MIT in the early 1970s [301].
It is used for controlling a robot in a restricted “blocks”
domain. The robot’s world consists of a number of blocks
of various shapes, sizes and colours, which it can ma-
nipulate as instructed or answer questions about. All in-
structions and questions are given in natural language,

and even though the robot’s domain is so limited, it still
encounters the problems we have mentioned. Consider
for example the following instructions:

Find a block that is taller than the one you are
holding and place it in the box

How many blocks are on top of the green
block?
Put the red pyramid on the block in the box

Does the shortest thing the tallest pyramid’s
support supports support anything green?

What problems did you spot? Again each instruction
contains ambiguity of some kind. We’ll leave it to you to
figure them out! (The answers are given at the end of the
chapter in case you get stuck.)

However, SHRDLU was successful because it could be
given complete knowledge about its world and ambigu-
ity could be reduced (it only recognises one meaning of
“block” for instance and there is no need for contextual
understanding since the context is given). It is therefore
no use as a general natural language processor. However,
it did provide insight into how syntactic and semantic
processing can be achieved. We will look at techniques
for this and the other stages of natural language under-
standing next.

13.6 HOW DOES NATURAL LANGUAGE
UNDERSTANDING WORK?

So given that, unlike SHRDLU, we are not able to
provide complete world knowledge to our natural
language processor, how can we go about interpreting
language? There are three primary stages in natural
language processing: syntactic analysis, semantic
analysis and pragmatic analysis. Sentences can be
well-formed or ill-formed syntactically, semantically
and pragmatically. Take the following responses to the
question: Do you know where the park is?

• The park is across the road. This is syntactically,
semantically and pragmatically well-formed, that
is it is a correctly structured, meaningful sentence
which is an appropriate response to the question.

• The park is across the elephant. This is syntactically
well-formed but semantically ill-formed. The sen-
tence is correctly structured, but our knowledge of
parks and elephants and their characteristics shows
it is meaningless.

https://alandix.com/glossary/aibook/pragmatic ambiguity
https://alandix.com/glossary/aibook/pragmatic ambiguity
https://alandix.com/glossary/aibook/SHRDLU
https://alandix.com/glossary/aibook/SHRDLU
https://alandix.com/glossary/aibook/Winograd, Terry
https://alandix.com/glossary/aibook/robot
https://alandix.com/glossary/aibook/robot
https://alandix.com/glossary/aibook/SHRDLU
https://alandix.com/glossary/aibook/SHRDLU
https://alandix.com/glossary/aibook/syntactic analysis
https://alandix.com/glossary/aibook/semantic analysis
https://alandix.com/glossary/aibook/semantic analysis
https://alandix.com/glossary/aibook/pragmatic analysis

Natural Language Understanding ■ 191

• The park across the road is. This is syntactically ill-
formed. It is not a legal sentence structure.

• Yes. This is pragmatically ill-formed: it misses the
intention of the questioner.

At each stage in processing, the system will determine
whether a sentence is well-formed. These three stages are
not necessarily always separate or sequential. However, it
is convenient to consider them as such.

Syntactic analysis determines whether the sentence is
a legal sentence of the language, or generates legal sen-
tences, using a grammar and lexicon, and, if so, returns a
parse tree for the sentence (representing its structure).
This is the process of parsing. Take a simple sentence,
“The dog sat on the rug.” It has a number of constituent
parts: nouns (“dog” and “rug”), a verb (“sat”), determin-
ers (“the”) and a preposition (“on”). We can also see that
it has a definite structure: noun followed by verb followed
by preposition followed by noun (with a determiner as-
sociated with each noun). We could formalise this obser-
vation:

sentence = determiner noun verb preposition
determiner noun

Such a definition could then be tested on other sentences.
What about “The man ran over the hill.”? This too fits our
definition of a sentence. Looking at these two sentences,
we can see certain patterns emerging. For instance, the
determiner “the” always seems to be attached to a noun.
We could therefore simplify our definition of a sentence
by defining a sentence component called noun_phrase.

noun_phrase = determiner noun

Our sentence definition would then become

sentence = noun_phrase verb preposition
noun_phrase

This is the principle of syntactic grammars. The
grammar is built up by examining legal sentence
structures and a lexicon is produced identifying the
constituent type of each word. In our case our lexicon
would include

dog : noun

the : determiner
rug : noun

sat : verb

and so on. If a legal sentence is not parsed by the
grammar, then the grammar must be extended to
include that sentence definition as well. Although
our grammar looks much like a standard English
grammar, it is not. Rather, we create a grammar that
exactly specifies legal constructions of our language.
In practice such grammars do bear some resemblance
to conventional grammar, in that the symbols that are
chosen to represent sentence constituents often reflect
conventional word types but do not confuse this with
any grammar you learned at school!

Semantic analysis takes the parse tree for the sentence
and interprets it according to the possible meanings of
its constituent parts. A representation of semantics may
include information about different meanings of words
and their characteristics. For example, take the sentence
“The necklace has a diamond on it.” Our syntactic anal-
ysis of this would require another definition of sentence
than the one we gave above:

sentence = noun_phrase verb noun_phrase
prepositional_phrase

prepositional_phrase = preposition pronoun

This gives us the structure of the sentence, but the mean-
ing is still unclear. This is because the word diamond has
a number of meanings. It can refer to a precious stone, a
geometric shape, even a baseball field. The semantic anal-
ysis would consider each meaning and match the most
appropriate one according to its characteristics. A neck-
lace is jewellery and the first meaning is the one most
closely associated with jewellery, so it is the most likely
interpretation.

Finally, in pragmatic analysis, the sentence is inter-
preted in terms of its context and intention.

For example, a sentence may have meanings provided
by its context or social expectations that are over and
above the semantic meaning. In order to understand the
intention of sentences it is important to consider these.
To illustrate, consider the sentence “He gave her a di-
amond ring.” Semantically this means that a male per-
son passed possession of a piece of hand jewellery made
with precious stones over to a female person. However,
there are additional likely implications of this sentence.
Diamond rings are often (though of course not exclu-
sively) given to indicate engagement, for example, so the
sentence could mean the couple got engaged. Such ad-
ditional, hidden meanings are the domain of pragmatic
analysis.

https://alandix.com/glossary/aibook/Syntactic analysis
https://alandix.com/glossary/aibook/grammar
https://alandix.com/glossary/aibook/lexicon
https://alandix.com/glossary/aibook/parse tree
https://alandix.com/glossary/aibook/sentence parsing
https://alandix.com/glossary/aibook/syntactic grammars
https://alandix.com/glossary/aibook/lexicon
https://alandix.com/glossary/aibook/lexicon
https://alandix.com/glossary/aibook/grammar
https://alandix.com/glossary/aibook/Semantic analysis
https://alandix.com/glossary/aibook/parse tree
https://alandix.com/glossary/aibook/syntactic analysis
https://alandix.com/glossary/aibook/syntactic analysis
https://alandix.com/glossary/aibook/semantic analysis
https://alandix.com/glossary/aibook/semantic analysis
https://alandix.com/glossary/aibook/pragmatic analysis
https://alandix.com/glossary/aibook/pragmatic analysis
https://alandix.com/glossary/aibook/pragmatic analysis

192 ■ Artificial Intelligence

13.7 SYNTACTIC ANALYSIS
Syntactic analysis is concerned with the structure of the
sentence. Its role is to verify whether a given sentence is
a valid construction within the language, and to provide
a representation of its structure, or to generate legal sen-
tences. There are a number of ways in which this can be
done.

Perhaps the simplest option is to use some form
of pattern matching. Templates of possible sen-
tence patterns are stored, with variables to allow
matching to specific sentences. For example, the
template

< the ** rides ** >

(where ** matches anything) fits lots of different
sentences, such as the show-jumper rides a clear round
or the girl rides her mountain bike. These sentences have
similar syntax (both are basically noun_phrase verb
noun_phrase), so does this mean that template matching
works? Not really. What about the sentence the theme
park rides are terrifying? This also matches the template
but is clearly a very different sentence structure to the
first two. For a start, in the first two sentences “rides”
is a verb, whereas here it is a noun. This highlights
the fundamental flaw in template matching. It has no
representation of word types, which essentially means it
cannot ensure that words are correctly sequenced and
put together.

Template matching is the method used in ELIZA
[299], which, as we saw in the Introduction, fails to cope
with ambiguity and so can accept (and generate) garbage.
These are problems inherent in the approach: it is too
simplistic to deal with a language of any complexity.
However, it is a simple approach that has proved useful
in constrained environments (whether such a restricted
use of language could be called “natural” is another
issue).

A more viable approach to syntactic analysis is
sentence parsing. Here the input sentence is con-
verted into a hierarchical structure indicating the
sentence constituents. Parsing systems have two main
components:

1. a grammar: a declarative representation of the
syntactic facts about the language

2. a parser: a procedure to compare the input sen-
tence with the grammar.

Parsing may be top-down, in which case it starts with the
symbol for a sentence and tries to map possible rules
to the input (or target) sentence, or bottom-up, where
it starts with the input sentence and works towards the
sentence symbol, considering all the possible represen-
tations of the input sentence. The choice of which type of
parsing to use is similar to that for top-down or bottom-
up reasoning; it depends on factors such as the amount of
branching each will require and the availability of heuris-
tics for evaluating progress. In practice, a combination is
sometimes used. There are a number of parsing methods.
These include grammars, transition networks, context-
sensitive grammars and augmented transition networks.
As we shall see, each has its benefits and drawbacks.

13.7.1 Grammars

We have already met grammar informally. A grammar is
a specification of the legal structures of a language. It is
essentially a set of rewrite rules that allow any element
matching the left-hand side of the rule to be replaced by
the right-hand side. So for example,

A → B

allows the string XAX to be rewritten XBX. Unlike tem-
plate matching, it explicitly shows how words of different
types can be combined and defines the type of any given
word. In this section we will examine grammars more
closely and demonstrate how they work through an ex-
ample.

A grammar has three basic components: terminal
symbols, non-terminal symbols and rules. Terminal
symbols are the actual words that make up the language
(this part of the grammar is called the lexicon). So
“cat”, “dog” and “chase” are all terminal symbols.
Non-terminal symbols are special symbols designating
structures of the language. There are three types:

• lexical categories, which are the grammatical cate-
gories of words, such as noun or verb

• syntactic categories, which are the permissible
combinations of lexical categories, for instance
“noun_phrase”, “verb_phrase”

• a special symbol representing a sentence (the
start_symbol).

The third component of the grammar is the rules, which
govern the valid combinations of the words in the lan-

https://alandix.com/glossary/aibook/Syntactic analysis
https://alandix.com/glossary/aibook/pattern matching
https://alandix.com/glossary/aibook/template matching
https://alandix.com/glossary/aibook/template matching
https://alandix.com/glossary/aibook/Template matching
https://alandix.com/glossary/aibook/ELIZA
https://alandix.com/glossary/aibook/syntactic analysis
https://alandix.com/glossary/aibook/sentence parsing
https://alandix.com/glossary/aibook/sentence parsing!systems
https://alandix.com/glossary/aibook/grammar
https://alandix.com/glossary/aibook/parser
https://alandix.com/glossary/aibook/grammar
https://alandix.com/glossary/aibook/sentence parsing!top down
https://alandix.com/glossary/aibook/sentence parsing!bottom up
https://alandix.com/glossary/aibook/bottom-up reasoning
https://alandix.com/glossary/aibook/bottom-up reasoning
https://alandix.com/glossary/aibook/heuristics
https://alandix.com/glossary/aibook/heuristics
https://alandix.com/glossary/aibook/sentence parsing methods
https://alandix.com/glossary/aibook/grammars
https://alandix.com/glossary/aibook/transition networks
https://alandix.com/glossary/aibook/context-sensitive grammars
https://alandix.com/glossary/aibook/context-sensitive grammars
https://alandix.com/glossary/aibook/augmented transition networks
https://alandix.com/glossary/aibook/grammar
https://alandix.com/glossary/aibook/grammar
https://alandix.com/glossary/aibook/template matching
https://alandix.com/glossary/aibook/template matching
https://alandix.com/glossary/aibook/grammars
https://alandix.com/glossary/aibook/grammar
https://alandix.com/glossary/aibook/terminal symbols
https://alandix.com/glossary/aibook/terminal symbols
https://alandix.com/glossary/aibook/non-terminal symbols
https://alandix.com/glossary/aibook/grammar!rules
https://alandix.com/glossary/aibook/Terminal symbols
https://alandix.com/glossary/aibook/Terminal symbols
https://alandix.com/glossary/aibook/grammar
https://alandix.com/glossary/aibook/lexicon
https://alandix.com/glossary/aibook/terminal symbols
https://alandix.com/glossary/aibook/Non-terminal symbols
https://alandix.com/glossary/aibook/grammar

guage. Rules are sometimes called phrase structure rules.
A rule is usually of the form

S → NP VP

where S represents the sentence, NP a noun_phrase and
VP a verb_phrase. This rule states that a noun_phrase
followed by a verb_phrase is a valid sentence.

The grammar can generate all syntactically valid sen-
tences in the language and can be implemented in a num-
ber of ways, for example as a production system imple-
mented in Prolog. We will look at how a grammar is gen-
erated and how it parses sentences by considering a de-
tailed example.

13.7.2 An Example: Generating a Grammar
Fragment

Imagine we want to produce a grammar for database
queries on an employee database. We have examples of
possible queries. We can generate a grammar fragment
by analysing each query sentence. If the sentence can
be parsed by the grammar we have, we do nothing. If
it can’t, we can add rules and words to the grammar
to deal with the new sentence. For example, take the
queries:

Who belongs to a union?
Does Sam Smith work in the IT Department?

In the case of the first sentence, Who belongs to a union?,
we would start with the sentence symbol (S) and generate
a rule to match the sentence in the example. To do this
we need to identify the sentence constituents (the non-
terminal symbols). Remember that the choice of these
does not depend on any grammar of English we may have
learned at school. We can choose any symbols, as long
as they are used consistently. We designate the symbol
RelP to indicate a relative pronoun, such as “who”, “what”
(a lexical category) and the symbol VP to designate a
verb_phrase (a syntactic category). We then require rules
to show how our lexical categories can be constructed.
In this case VP has the structure V (verb) PP (preposi-
tional phrase), which can be further decomposed as P,
a preposition, followed by NP, a noun_phrase. Finally
the NP category is defined as Det (determiner) followed
by N (noun). The terminal symbols are associated with
a lexical category to show how they can fit together in a
sentence. We end up with the grammar fragment in Fig-
ure 13.1.

Natural Language Understanding ■ 193

FIGURE 13.1 Initial grammar fragment.

FIGURE 13.2 Parse tree for the first sentence.

This will successfully parse our sentence, as shown in
the parse tree in Figure 13.2, which represents the hierar-
chical breakdown of the sentence. The root of the tree is
the sentence symbol. Each branch of the tree represents
a non-terminal symbol, either a syntactic category or a
lexical category. The leaves of the tree are the terminal
symbols.

However, our grammar is still very limited. To extend
the grammar, we need to analyse many sentences in this
way, until we end up with a very large grammar and lex-
icon. As we analyse more sentences, the grammar be-
comes more complete and, we hope, less work is involved
in adding to it.

We will analyse just one more sentence. Our second
query was Does Sam Smith work in the IT Department?
First, we check whether our grammar can parse this sen-
tence successfully. If you recall, our only definition of a
sentence so far is

S → RelP VP

Taking the VP part first, work in the IT Department does
meet our definition of a word phrase, if we interpret IT

https://alandix.com/glossary/aibook/grammar
https://alandix.com/glossary/aibook/production system
https://alandix.com/glossary/aibook/Prolog
https://alandix.com/glossary/aibook/grammar
https://alandix.com/glossary/aibook/grammar
https://alandix.com/glossary/aibook/natural language processing!database queries
https://alandix.com/glossary/aibook/natural language processing!database queries
https://alandix.com/glossary/aibook/database
https://alandix.com/glossary/aibook/grammar fragment
https://alandix.com/glossary/aibook/non-terminal symbols
https://alandix.com/glossary/aibook/non-terminal symbols
https://alandix.com/glossary/aibook/terminal symbols
https://alandix.com/glossary/aibook/grammar fragment
https://alandix.com/glossary/aibook/sentence parsing
https://alandix.com/glossary/aibook/parse tree
https://alandix.com/glossary/aibook/terminal symbols
https://alandix.com/glossary/aibook/terminal symbols
https://alandix.com/glossary/aibook/grammar
https://alandix.com/glossary/aibook/grammar
https://alandix.com/glossary/aibook/lexicon
https://alandix.com/glossary/aibook/lexicon
https://alandix.com/glossary/aibook/grammar

194 ■ Artificial Intelligence

FIGURE 13.3 Further grammar rules.

FIGURE 13.4 Parse tree for the second sentence.

Department loosely as a noun. However, Does Sam Smith
is certainly not a RelP. We therefore need another defini-
tion of a sentence. In this case a sentence is an auxiliary
verb (AuxV) followed by an NP followed by a VP. Since
Sam Smith is a proper noun we also need an additional
definition of NP, and for good measure we will call IT
Department a proper noun as well, giving us a third def-
inition of NP. The additional grammar rules are shown
in Figure 13.3.

Note that we do not need to add a rule to define VP
since our previous rule fits the structure of this sentence
as well. A parse tree for this sentence using this grammar
is shown in Figure 13.4.

Grammars such as this are powerful tools for natural
language understanding. They can also be used to gen-
erate legal sentences, constructing them from the sen-
tence symbol down, using appropriate terminal symbols
from the lexicon. Of course, sentence generation is not
solely a matter of syntax; it is important that the sentence
also makes sense. Therefore semantic analysis is also im-
portant. We shall consider this shortly. First we will look
briefly at another method of parsing, the transition net-
work.

FIGURE 13.5 Transition network.

13.7.3 Transition Networks

The transition network is a method of parsing that repre-
sents the grammar as a set of finite state machines. A fi-
nite state machine is a model of computational behaviour
where each node represents an internal state of the sys-
tem and the arcs are the means of moving between the
states. In the case of parsing natural language, the arcs
in the networks represent either a terminal or a non-
terminal symbol. Rules in the grammar correspond to
a path through a network. Each non-terminal is repre-
sented by a different network. To illustrate this we will
represent the grammar fragment that we created earlier
using transition network. All rules are represented but
to save space only some lexical categories are included.
Others would be represented in the same way.

In Figure 13.5 each network represents the rules for
one non-terminal as paths from the initial state (I) to
the final state (F). So, whereas we had three rules for
NP in our grammar, here we have a single transition
network, with three possible paths through it represent-
ing the three rules. To move from one state to the next
through the network the parser tests the label on the arc.
If it is a terminal symbol, the parser will check whether

https://alandix.com/glossary/aibook/grammar rules
https://alandix.com/glossary/aibook/parse tree
https://alandix.com/glossary/aibook/grammar
https://alandix.com/glossary/aibook/Grammars
https://alandix.com/glossary/aibook/terminal symbols
https://alandix.com/glossary/aibook/lexicon
https://alandix.com/glossary/aibook/semantic analysis
https://alandix.com/glossary/aibook/transition network
https://alandix.com/glossary/aibook/transition network
https://alandix.com/glossary/aibook/transition network
https://alandix.com/glossary/aibook/grammar
https://alandix.com/glossary/aibook/finite state machines
https://alandix.com/glossary/aibook/finite state machine
https://alandix.com/glossary/aibook/finite state machine
https://alandix.com/glossary/aibook/terminal symbols
https://alandix.com/glossary/aibook/non-terminal symbols
https://alandix.com/glossary/aibook/non-terminal symbols
https://alandix.com/glossary/aibook/grammar!rules
https://alandix.com/glossary/aibook/grammar fragment
https://alandix.com/glossary/aibook/transition network
https://alandix.com/glossary/aibook/grammar
https://alandix.com/glossary/aibook/transition network
https://alandix.com/glossary/aibook/transition network
https://alandix.com/glossary/aibook/parser
https://alandix.com/glossary/aibook/parser

FIGURE 13.6 Navigation through transition network.

it matches the next word in the input sentence. If it is a
non-terminal symbol, the parser moves to the network
for that symbol and attempts to find a path through that.
If it finds a path through that network, it returns to the
higher-level network and continues. If the parser fails
to find a path at any point, it backtracks and attempts
another path. If it succeeds in finding a path, the sen-
tence is a valid one. So to parse our sentence Who be-
longs to a union? the parser would start at the sentence
network and find that the first part of a sentence is RelP.
It would therefore go to the RelP network and test the
first word in the input sentence “who” against the ter-
minal symbol on the arc. These match, so that network
has been traversed successfully and the parser returns to
the sentence network able to cross the arc RelP. Parsing
of the sentence continues in this fashion until the top-
level sentence network is successfully traversed. The full
navigation of the network for this sentence is shown in
Figure 13.6.

The transition network allows each non-terminal to
be represented in a single network rather than by nu-
merous rules, making this approach more concise than
grammars. However, as you can see from the network
for just two sentences, the approach is not really tenable
for large languages since the networks would become un-
workable. Another disadvantage over grammars is that
the transition network does not produce a parse tree for
sentences and tracing the path through the network can
be unclear for complex sentences. However, the transi-

Natural Language Understanding ■ 195

tion network is an example of a simple parsing algorithm
that forms the basis of more powerful tools, such as aug-
mented transition networks, which we will consider in
Section 13.7.6.

13.7.4 Context-sensitive Grammars

The grammars considered so far are context-free gram-
mars. They allow a single non-terminal on the left-hand
side of the rule. The rule may be applied to any instance
of that symbol, regardless of context. So the rule

A → B

will match an occurrence of A whether it occurs in the
string ABC or in ZAB. The context-free grammar cannot
restrict this to only instances where A occurs surrounded
by Z and B. In order to interpret the symbol in context, a
context-sensitive grammar is required. This allows more
than one symbol on the left-hand side and insists that the
right-hand side is at least as long as the left-hand side. So
in a context-sensitive grammar, we can have rules of the
form

ZAB → ZBB

Context-free grammars are not sufficient to represent
natural language syntax. For example, they cannot dis-
tinguish between plural and singular nouns or verbs. So
in a context-free grammar, if we have a set of simple def-
initions

S → NP VP

NP → Det N

VP → V

and the following lexicon

dog : N

guide : V

the : Det
dogs : N

guides : V

a : Det

we would be able to generate the sentences the dog guides
and the dogs guide, both legal English sentences. How-
ever, we would also be able to generate sentences such as
a dogs guides, which is clearly not an acceptable sentence.

https://alandix.com/glossary/aibook/parser
https://alandix.com/glossary/aibook/parser
https://alandix.com/glossary/aibook/parser
https://alandix.com/glossary/aibook/parser
https://alandix.com/glossary/aibook/transition network
https://alandix.com/glossary/aibook/grammars
https://alandix.com/glossary/aibook/transition network
https://alandix.com/glossary/aibook/parse tree
https://alandix.com/glossary/aibook/transition network
https://alandix.com/glossary/aibook/transition network
https://alandix.com/glossary/aibook/augmented transition networks
https://alandix.com/glossary/aibook/augmented transition networks
https://alandix.com/glossary/aibook/grammars
https://alandix.com/glossary/aibook/context-free grammars
https://alandix.com/glossary/aibook/context-free grammars
https://alandix.com/glossary/aibook/context-free grammar
https://alandix.com/glossary/aibook/context-sensitive grammar
https://alandix.com/glossary/aibook/context-sensitive grammar
https://alandix.com/glossary/aibook/Context-free grammars
https://alandix.com/glossary/aibook/context-free grammar
https://alandix.com/glossary/aibook/lexicon

196 ■ Artificial Intelligence

FIGURE 13.7 Grammar fragment for context-sensitive gram-
mar.

By incorporating the context of agreement into the
left-hand side of the rule we can provide a grammar
which can resolve this kind of problem.

An example is shown in Figure 13.7.
The use of the symbols “Sing” and “Plur”, to indicate

agreement, does not allow generation of sentences that
violate consistency rules. For example, using the gram-
mar in Figure 13.7 we can derive the sentence “a dog
guides” but not “a dogs guides”. The derivation of the for-
mer is shown using the following substitutions:

S

NP VP

Det AGR N VP

Det Sing N VP

a Sing N VP

a dog Sing VP

a dog Sing V

a dog guides

Unfortunately context sensitivity increases the size of the
grammar considerably, making it a complex method for
a language of any size. Feature sets and augmented tran-
sition networks are alternative approaches to solving the
context problem.

13.7.5 Feature Sets

Another approach to incorporating context in syntactic
processing is the use of feature sets. Feature sets provide a
mechanism for subclassifying syntactic categories (noun,

verb, etc.) in terms of contextual properties such as num-
ber agreement and verb tense. The descriptions of the
syntactic categories are framed in terms of constraints.
There are many variations of feature sets, but here we
shall use one approach to illustrate the general princi-
ple – that of Pereira and Warren’s Definite Clause Gram-
mar [222]. In this grammar each syntactic category has
an associated feature set, together with constraints that
indicate what context is allowable. So, for example,

S → NP (agreement = ?a)
VP (agreement = ?b): a = b

Feature sets are a relatively efficient mechanism for
representing syntactic context. However, we have still
not progressed to understanding any semantics of the
sentence. Augmented transition networks provide an
approach that begins to bridge the gap between syntactic
and semantic processing.

13.7.6 Augmented Transition Networks

The augmented transition network provides context
without an unacceptable increase in complexity [302].
It is a transition network that allows procedures to
be attached to arcs to test for matching context. All
terminals and non-terminals have frame-like structures
associated with them that contain their contextual
information. To traverse an arc, the parser tests
whatever contextual features are required against these
stored attributes. For example, a test on the V arc may be
to check number (i.e. plural or singular). The structure
for the word guides would contain, among other things,
an indication that the word is singular. The sentence is
only parsed successfully if all the contextual checks are
consistent. Augmented transition networks can be used
to provide semantic information as well as syntactic,
since information about meaning can also be stored
in the structures. They are therefore a bridge between
syntactic analysis and the next stage in the process,
semantic analysis.

13.7.7 Taggers

We saw earlier that words can be ambiguous in terms
of what they refer to “bank” as a financial institution or
edge of a river. However, we also saw words that can be
different parts of speech: “duck” can be the bird, a noun,
or the act of dropping down, a verb. Indeed “bank” can
also be used as a verb: “I’ll bank the cheque”.

https://alandix.com/glossary/aibook/grammar
https://alandix.com/glossary/aibook/grammar
https://alandix.com/glossary/aibook/grammar
https://alandix.com/glossary/aibook/context sensitivity
https://alandix.com/glossary/aibook/Feature sets
https://alandix.com/glossary/aibook/augmented transition networks
https://alandix.com/glossary/aibook/augmented transition networks
https://alandix.com/glossary/aibook/feature sets
https://alandix.com/glossary/aibook/Feature sets
https://alandix.com/glossary/aibook/constraints
https://alandix.com/glossary/aibook/feature sets
https://alandix.com/glossary/aibook/Pereira, F.
https://alandix.com/glossary/aibook/Warren, D.
https://alandix.com/glossary/aibook/Definite Clause Grammar
https://alandix.com/glossary/aibook/Definite Clause Grammar
https://alandix.com/glossary/aibook/grammar
https://alandix.com/glossary/aibook/constraints
https://alandix.com/glossary/aibook/Feature sets
https://alandix.com/glossary/aibook/Augmented transition networks
https://alandix.com/glossary/aibook/augmented transition network
https://alandix.com/glossary/aibook/transition network
https://alandix.com/glossary/aibook/frame
https://alandix.com/glossary/aibook/parser
https://alandix.com/glossary/aibook/Augmented transition networks
https://alandix.com/glossary/aibook/syntactic analysis
https://alandix.com/glossary/aibook/semantic analysis

This can get even more complicated, consider the sen-
tence, “I’ll base my travel plans on the weather, either take
a helicopter from the air base or climb from base camp.”
The first use of the word “base” is as a verb, the second as
a noun and the third as an adjective.

When all the meanings are of the same syntactic
category, disambiguation can be left to later stages
of analysis, but if the same word has multiple pos-
sible syntactic categories, then ideally this level of
disambiguation needs to happen at the syntactic
stage.

Some forms of syntactic analysis can deal with this
ambiguity as part of their normal functioning, but for
others this is made easier or possible by prior use of a
part-of-speech tagger, which allocates a POS (part-of-
speech) category to each word. These often start with
large digital dictionaries, such as WordNet [193, 194],
which has multiple meanings of the word including the
syntactic category of each. This provides a set of initial
possible part-of-speech tags for each word. Figure 13.8
shows some of the meanings of the word “base” in Word-
Net; it can be a noun, verb or adjective, with sub-classes
of each (e.g. ‘noun.artifact’).

These initial classifications may be augmented by word
frequencies taken from large corpora to establish initial
likelihoods for each meaning. This is followed by the use
of techniques that can include partial semantic analysis,
but also more sequence-of-words methods such as hid-
den Markov models, discussed in more detail in Chap-
ter 14.

Figure 13.9 shows an example output of the CLAWS
web tagger [232] on the (mistyped) sentence, “I’ll base by
travel plans on the weather, either take a helicopter from
the air base or climb from base camp”. Note how the first
use of “base” is tagged “base_VVI” (infinitive of lexical
verb) and the second “base_NN1” (singular noun). The
third use of “base” is either tagged “base_SENT” or
“base_NN1” depending on whether a full stop is added
after the word “camp”, but not “base_AJ0” (adjective);
indeed CLAWS appears to struggle with most of the
adjectival versions of “base” listed in WordNet. This
is partly a matter of interpretation, note that “air” in
“air base” is also tagged as a noun as it is effectively
a noun used as adjective like “fish” in “fish market”
... even linguists disagree sometimes – the important
thing is that the grammar and POS tagger use the same
tagset.

Natural Language Understanding ■ 197

FIGURE 13.8 Sample entries for the word “base” in WordNet.

FIGURE 13.9 Example output of CLAWS WWW tagger with
three meanings for ‘base’. Note that the tagger copes with the
typing error ‘by’.

13.8 SEMANTIC ANALYSIS
Syntactic analysis shows us that a sentence is correctly
constructed according to the rules of the language. How-
ever, it does not check whether the sentence is mean-
ingful, or give information about its meaning. For this
we need to perform semantic analysis. Semantic analy-
sis enables us to determine the meaning of the sentence,
which may vary depending on context. So, for example,
a system for understanding children’s stories and a nat-
ural language interface may assign different meanings to
the same words. Take the word “run”, for example. In a
children’s story this is likely to refer to quick movement,
while in a natural language interface it is more likely to be

https://alandix.com/glossary/aibook/disambiguation
https://alandix.com/glossary/aibook/disambiguation
https://alandix.com/glossary/aibook/syntactic analysis
https://alandix.com/glossary/aibook/part-of-speech tagger
https://alandix.com/glossary/aibook/semantic analysis
https://alandix.com/glossary/aibook/hidden Markov models
https://alandix.com/glossary/aibook/hidden Markov models
https://alandix.com/glossary/aibook/POS tagger
https://alandix.com/glossary/aibook/natural language processing!tagset
https://alandix.com/glossary/aibook/Syntactic analysis
https://alandix.com/glossary/aibook/semantic analysis
https://alandix.com/glossary/aibook/Semantic analysis
https://alandix.com/glossary/aibook/Semantic analysis

198 ■ Artificial Intelligence

an instruction to execute a program. There are two levels
at which semantic analysis can operate: the lexical level
and the sentence level.

Lexical processing involves looking up the meaning
of the word in the lexicon. However, many words have
several meanings within the same lexical category (e.g.
the noun “square” may refer to a geometrical shape
or an area of a town). In addition, the same word
may have further meanings under different lexical
categories: “square” can also be an adjective meaning
“not trendy”, or a verb meaning “reconcile”. The latter
cases can be disambiguated syntactically but the former
rely on reference to known properties of the different
meanings. Ultimately, words are understood in the
context of the sentences in which they occur. Therefore
lexical processing alone is inadequate. Sentence-level
processing on the other hand does take context into
account. There are a number of approaches to sentence-
level processing. We will look briefly at two: semantic
grammars and case grammars.

13.8.1 Semantic Grammars

As we have seen, syntactic grammars enable us to parse
sentences according to their structure and, in the case of
context-sensitive grammar, such attributes as number
and tense. However, syntactic grammars provide no
representation of the meaning of the sentence, so it
is still possible to parse nonsense if it is written in
correctly constructed sentences. In a semantic grammar
[37], the symbols and rules have semantic as well as
syntactic significance. Semantic actions can also be
associated with a rule, so that a grammar can be used to
translate a natural language sentence into a command
or query. Let us take another look at our database query
system.

13.8.1.1 An Example: A Database Query Interpreter
Revisited

Recall the problem we are trying to address. We want to
produce a natural language database query system for an
employee database that understands questions such as
Who belongs to a union? and Does Sam Smith work in the
IT Department? We have already seen how to generate a
syntactic grammar to deal with these sentences, but we
really need to derive a grammar that takes into account
not only the syntax of the sentences but their meaning. In
the context of a query interpreter, meaning is related to

the form of the query that we will make to the database
in response to the question. So what we would like is a
grammar that will not only parse our sentence but in-
terpret its meaning and convert it into a database query.
This is exactly what we can do with a semantic grammar.

In the following grammar, a query is built up as part
of the semantic analysis of the sentence: when a rule is
matched, the query template associated with it (shown
in square brackets) is instantiated. The grammar is gen-
erated as follows. First, sentence structures are identified.
Our sentences represent two types of question: the first is
looking for information (names of union members), the
second for a yes/no answer. So we define two legal sen-
tence structures, the first seeking information and pre-
ceded by the word “who”, the second seeking a yes/no
response, preceded by the word “does”. The action asso-
ciated with these rules is to set up a query which will be
whatever is the result of parsing the INFO or YN struc-
tures. Having done this we need to determine the struc-
ture of the main query parts. We will concentrate on the
INFO category to simplify matters but the YN category
is generated in the same way. Words are categorised in
terms of their meaning to the query (rather than, for
example, their syntactic category). Therefore, the words
“belong to” and “work in” are semantically equivalent,
because they require the same query (but with different
information) to answer. Both are concerned with who
is in what organisation. Similarly, “union” and “depart-
ment” are also classed as semantically equivalent: they
are both examples of a type of organisation. Obviously,
such an interpretation is context dependent. If, instead of
a query interpreter, we wanted our natural language pro-
cessing system to understand a political manifesto, then
the semantic categories would be very different. INFO
is therefore a structure that consists of an AFFIL_VB
(another category) followed by an ORG. Its associated
action is to return the query that results from parsing
AFFIL_VB. The rest of the grammar is built up in the
same way down to the terminals, which return the val-
ues matched from the input sentence. The full grammar
is shown in Figure 13.10.

Using this grammar we can get the parses

query: is_in(PERSON, org(NAME, union))
query: is_in(Sam Smith, org(IT, Department))

for the above sentences respectively. Parse trees for these
sentences are shown in Figures 13.11 and 13.12. These
show how the query is built up at every stage in the parse.

https://alandix.com/glossary/aibook/semantic analysis
https://alandix.com/glossary/aibook/Lexical processing
https://alandix.com/glossary/aibook/lexicon
https://alandix.com/glossary/aibook/lexical processing
https://alandix.com/glossary/aibook/Sentence-level processing
https://alandix.com/glossary/aibook/Sentence-level processing
https://alandix.com/glossary/aibook/sentence-level processing
https://alandix.com/glossary/aibook/sentence-level processing
https://alandix.com/glossary/aibook/semantic grammars
https://alandix.com/glossary/aibook/semantic grammars
https://alandix.com/glossary/aibook/case grammars
https://alandix.com/glossary/aibook/syntactic grammars
https://alandix.com/glossary/aibook/context-sensitive grammar
https://alandix.com/glossary/aibook/syntactic grammars
https://alandix.com/glossary/aibook/semantic grammar
https://alandix.com/glossary/aibook/grammar
https://alandix.com/glossary/aibook/database
https://alandix.com/glossary/aibook/natural language database query
https://alandix.com/glossary/aibook/database
https://alandix.com/glossary/aibook/syntactic grammar
https://alandix.com/glossary/aibook/grammar
https://alandix.com/glossary/aibook/query interpreter
https://alandix.com/glossary/aibook/database
https://alandix.com/glossary/aibook/database query
https://alandix.com/glossary/aibook/semantic grammar
https://alandix.com/glossary/aibook/grammar
https://alandix.com/glossary/aibook/semantic analysis
https://alandix.com/glossary/aibook/grammar
https://alandix.com/glossary/aibook/query interpreter
https://alandix.com/glossary/aibook/grammar

Natural Language Understanding ■ 199

FIGURE 13.10 Semantic grammar fragment.

FIGURE 13.11 Parse tree for the first sentence.

Instantiation of the query components works from the
bottom of the tree and moves up.

13.8.2 Case Grammars

Semantic grammars are designed to give a structural and
semantic parse of the sentence. Grammars can get very
big as a result. Case grammars represent the semantics in
the first instance, ignoring the syntactic, so reducing the
size of the grammar [102]. For example, a sentence such
as Joe wrote the letter would be represented as

wrote (agent(Joe), object(letter))

FIGURE 13.12 Parse tree for the second sentence.
This indicates that Joe was the active participant, the
agent, who performed the action “wrote” on the object
“letter”. The passive version The letter was written by
Joe would be represented in the same way, since the
meaning of the sentences is identical.

Case grammars rely on cases, which describe
relationships between verbs and their arguments. A
number of cases are available to build case grammar
representations. The following list is not exhaustive. Can
you think of other cases?

• Agent – the person or thing performing the action.

• Object – the person or thing to which something is
done.

• Instrument – the person or thing which allows an
agent to perform an action.

• Time – the time at which an action occurs.

• Beneficiary – the person or thing benefiting from an
action.

• Goal – the place reached by the action.

So, for example, the sentence At 1 pm, Paul hit the gong
with the hammer for lunch would be parsed as

hit(time(1pm), agent(Paul), object(gong),
instrument(hammer),
goal(lunch))

If we changed the sentence to At 1 pm, Paul hit the gong
with the hammer for his father, the case representation
would be

https://alandix.com/glossary/aibook/Semantic grammars
https://alandix.com/glossary/aibook/Case grammars
https://alandix.com/glossary/aibook/Case grammars
https://alandix.com/glossary/aibook/case grammar

200 ■ Artificial Intelligence

hit(time(1pm), agent(Paul), object(gong),
instrument(hammer),
beneficiary(his father))

The case structures can be used to derive syntactic
structures, by using rules to map from the seman-
tic components that are present to the syntactic
structures that are expected to contain these com-
ponents. However, case grammars do not provide
a full semantic representation, since the resulting
parse will still contain English words that must be
understood.

13.9 PRAGMATIC ANALYSIS
The third stage in understanding natural language is
pragmatic analysis. As we saw earlier, language can often
only be interpreted in context. The context that must be
taken into account may include both the surrounding
sentences (to allow the correct understanding of
ambiguous words and references) and the receiver’s
expectations, so that the sentence is appropriate for
the situation in which it occurs. There are many
relationships that can exist between sentences and
phrases that have to be taken into account in pragmatic
analysis. For example:

• A pronoun may refer back to a noun in a previous
sentence that relates to the same object. John had an
ice cream. Joe wanted to share it.

• A phrase may reference something that is a compo-
nent of an object referred to previously. She looked
at the house. The front door was open.

• A phrase may refer to something that is a compo-
nent of an activity referred to previously. Jo went on
holiday. She took the early train.

• A phrase may refer to agents who were involved in
an action referred to previously. My car was stolen
yesterday. They abandoned it two miles away.

• A phrase may refer to a result of an event referred to
previously. There have been serious floods. The army
was called out today.

• A phrase may refer to a subgoal of a plan referred to
previously. She wanted a new car. She decided to get
a new job.

• A phrase may implicitly intend some action. This
room is cold (expects an action to warm the room).

One approach to performing this pragmatic analysis is
the use of scripts [243]. We met in Chapter 2. In scripts,
the expectations of a particular event or situation are
recorded and can be used to fill in gaps and help to
interpret stories. The main problem with scripts is that
much of the information that we use in understanding
the context of language is not specific to a particular
situation but generally applicable. However, scripts have
proved useful in interpreting simple stories.

13.9.1 Speech Acts

When we use language, our intention is often to achieve
a specific goal that is reached by a set of actions. The
acts that we perform with language are called speech acts
[249]. Sentences can be classified by type. For example,
the statement “I am cold” is a declarative sentence. It
states a fact. On the other hand, the sentence “Are you
cold?” is interrogative: it asks a question. A third sen-
tence category is the imperative: “Shut the window”. This
makes a demand. One way to use speech acts in prag-
matic analysis is to assume that the sentence type indi-
cates the intention of the sentence. Therefore, a declar-
ative sentence makes an assertion, an interrogative sen-
tence asks a question and an imperative sentence issues
a command.

This is a simplistic approach, which fails in situations
where the desired action is implied. For example, the sen-
tence “I am hungry” may be simply an assertion or it
may be a request to hurry up with the dinner. Similarly,
many commands are phrased as questions (“Can you tell
me what time it is?”). However, most commercial natural
language processing systems ignore such complexity and
use speech acts in the manner described above.

Such an approach can be useful in natural language in-
terfaces since assertions, questions and commands map
clearly onto system actions. So if I am interacting with a
database, an assertion results in the updating of the data
held, a question results in a search and a command re-
sults in some operation being performed.

13.10 GRAMMAR-FREE APPROACHES
Sometimes it is possible to perform natural-language
processing without the use of a formal grammar.

https://alandix.com/glossary/aibook/case grammars
https://alandix.com/glossary/aibook/pragmatic analysis
https://alandix.com/glossary/aibook/pragmatic analysis
https://alandix.com/glossary/aibook/pragmatic analysis
https://alandix.com/glossary/aibook/pragmatic analysis
https://alandix.com/glossary/aibook/scripts
https://alandix.com/glossary/aibook/scripts
https://alandix.com/glossary/aibook/scripts
https://alandix.com/glossary/aibook/scripts
https://alandix.com/glossary/aibook/speech acts
https://alandix.com/glossary/aibook/speech acts
https://alandix.com/glossary/aibook/pragmatic analysis
https://alandix.com/glossary/aibook/pragmatic analysis
https://alandix.com/glossary/aibook/speech acts
https://alandix.com/glossary/aibook/database
https://alandix.com/glossary/aibook/formal grammar

13.10.1 Template Matching

We noted earlier that the template matching used in
ELIZA [299] has limitations in both accepted input
language (it will attempt to interpret gibberish) and
output. However, despite this minimal grammar these
template matching algorithms have proved remarkably
powerful, especially in chatbots which are widely used
on the web.

In fact, both spoken language and instant-message-
style conversations not only often include utterances
which are formally ‘ungrammatical’, but this is the
norm. Our own parsing of the things we hear and
read is based partly on formal grammar but also many
other mechanisms. Indeed, some orally based language
teaching programmes, such as the “SaySomethingin”
courses [263], make heavy use of small patterns that can
be used with simple substitutions.

Various open source and commercial chatbots are
available and allow you to both add to generic templates
with domain-specific terms and phrases and also create
structured conversations where needed.

Some systems force a restricted language, for example
text-based chatbots may only allow you to create phrases
using canned expressions, such as “I want to know
about”. Here the user is doing all of the work, and
there is no real AI behind the language comprehension.
However, even when the system has true AI behind
it, for example in speech-based home automation
systems such as Alexa, users soon learn the acceptable
language and, often without realising, modify their
speech patterns to suite the capabilities of the system ...
just as we do when speaking with a small child.

13.10.2 Keyword Matching

At an even more basic level, simple keyword matching
can be used to trigger actions or at least start more
directed dialogues. One very early system for pre-
consultation health discussions used an off-the-shelf
chatbot but augmented it with a simple topic model.
Keywords were used to determine what topics the patient
had talked about and then, when there was a natural
break in the conversation, the chatbot introduced topics
that were still to be covered [218].

More complex versions of keyword matching can in-
clude LEGO-style language, where words have linked ca-
pabilities. For example if you hear “bone dog ate”, you
have no difficulty in recognising that it is the dog not the

Natural Language Understanding ■ 201

bone that is doing the eating. This is effectively a prag-
matic level of understanding: a dog is a thing that does
eating and a bone something that can be eaten. If you are
a home automation system and hear someone say a series
of words including “light” and “on”, then (in the absence
of obvious negatives) this would be interpreted as “turn
the light on” where the light in question would be the
one closest to the person unless there is an obvious room
word such as “kitchen”.

In some ways this is far more primitive language than
full grammars – perhaps the way early humans first de-
veloped linguistic communication. However, in terms of
the levels of language this is actually closer to pragmatics
– the relatively simple keyword and association match-
ing is understanding the user’s intent, what they want
to achieve. Ultimately language is about getting things
done, not perfect grammar.

13.10.3 Predictive Methods

Other chapters deal with large-scale text processing and
web search (Chaps. 8 and 17). Traditionally areas such as
this were regarded as not real AI as they applied statistical
techniques. However, these techniques have been found
to be surprisingly powerful in some cases as alternatives
to more semantically rich NLP or to supplement it. We
have already seen this in the way that word frequency
data can be used to help drive word disambiguation in
POS taggers.

Many email systems and other forms of text entry offer
suggestions of the next few words you might want to en-
ter. These are often uncannily accurate and yet based on a
very simple principle, the n-gram. A large corpus is anal-
ysed and frequencies calculated for every single word, ev-
ery word pair (2-gram), every triple (3-gram) and maybe
larger groups too. Then when you type “I want” the sug-
gested ext word might be “a”, “to” or “the” as the 3-grams
“I want a”, “I want to” and “I want the” are very frequent.

Large-language models such as GPT-3 [34] can be
thought of as more sophisticated versions of the same
thing. Rather than simply n-gram frequency a large
sliding window (discussed in more detail in Chapter 14)
is used to train a deep neural network that can then
predict the next word. By iterating this the next 2, 3 or
more words can be predicted or even running text.

These models are trained on vastly big corpora, but
are also designed so that they are foundation models,
that is the generic network can be used to generate more

https://alandix.com/glossary/aibook/template matching
https://alandix.com/glossary/aibook/ELIZA
https://alandix.com/glossary/aibook/grammar
https://alandix.com/glossary/aibook/template matching
https://alandix.com/glossary/aibook/chatbots
https://alandix.com/glossary/aibook/grammar
https://alandix.com/glossary/aibook/chatbots
https://alandix.com/glossary/aibook/restricted language
https://alandix.com/glossary/aibook/chatbots
https://alandix.com/glossary/aibook/home automation
https://alandix.com/glossary/aibook/keyword matching
https://alandix.com/glossary/aibook/trigger
https://alandix.com/glossary/aibook/chatbot
https://alandix.com/glossary/aibook/chatbot
https://alandix.com/glossary/aibook/keyword matching
https://alandix.com/glossary/aibook/pragmatic
https://alandix.com/glossary/aibook/pragmatic
https://alandix.com/glossary/aibook/home automation
https://alandix.com/glossary/aibook/natural language processing!intent
https://alandix.com/glossary/aibook/web search
https://alandix.com/glossary/aibook/statistical techniques
https://alandix.com/glossary/aibook/statistical techniques
https://alandix.com/glossary/aibook/NLP
https://alandix.com/glossary/aibook/disambiguation
https://alandix.com/glossary/aibook/POS taggers
https://alandix.com/glossary/aibook/n-gram
https://alandix.com/glossary/aibook/Large-language models
https://alandix.com/glossary/aibook/GPT-3
https://alandix.com/glossary/aibook/n-gram
https://alandix.com/glossary/aibook/deep neural network
https://alandix.com/glossary/aibook/foundation models

202 ■ Artificial Intelligence

bespoke or domain specific models by a (relatively)
small amount of additional training. This is possible
because the set of network weights have in some way
learnt general properties of language, not simply the
specific word they have been exposed to. It appears that
concepts such as parts of speech, and grammar, while
not explicitly coded are, in some way, present as the text
that is created is, on the whole, well-formed grammar.

There is ongoing debate as to whether larger and
larger models with more and more parameters will
be able to emulate all aspects of natural language
understanding or whether there are fundamental limits
at which more knowledge-rich methods will always be
required. Possibly the answer is somewhere between
with low-level network architectures that are in some
way pre-programmed not with specific language rules,
but with structures that are tuned to be particularly
capable for different kinds of linguistic purpose.

These more statistical and data-driven machine learn-
ing techniques can certainly be used as part of more be-
spoke language systems, for example one could train a
neural network to do POS tagging. In addition parts of
neural-based language or text models can be used.

13.10.4 Statistical Methods

We have seen in other chapters the way principal
components can be used to create reduced dimensional
representations for recommender systems. A similar
technique can be used for texts. A text is initially
represented as a vector of word frequencies, possibly
weighted by overall corpus frequency, as discussed in
Chapter 10. Principal components or a similar method
is used to create a lower-dimensional vector that acts a
signature for the text, a process called latent semantic
analysis [96]. The reduced dimensional space no longer
represents words as such but in some way captures
overall meanings, where documents that refer to similar
topics lie closer in the latent space.

For document retrieval this is then used to help match
search terms to documents based not on whether they di-
rectly contain the word, but more on the closeness of the
overall gist of the query and document. More generally,
this can be used for topic analysis, for example taking a
500-word sliding window over a document and creating
a signature vector for each window in the latent space.
Rapid movement in the latent space then corresponds to
topic shifts in the text.

A similar technique, word2vec uses an internal layer
of a neural network that has been trained to predict the
close co-occurrence of words in a corpus [191]. This in-
ternal layer can be treated as a form of latent space (often
called a word vector), that in a sense captures the mean-
ing of a word. Crucially relationships are often main-
tained, so that the vector difference between Madrid and
Spain is similar to that between Paris and France. These
word vectors can be used instead of the original word as
part of other language processing techniques.

13.11 SUMMARY
In this chapter we have looked at the issue of ambigu-
ity, which makes natural language understanding so dif-
ficult. We have considered the key stages of natural lan-
guage understanding: syntactic analysis, semantic anal-
ysis and pragmatic analysis. We have looked at gram-
mars and transition networks as techniques for syntac-
tic analysis; semantic and case grammars for semantic
analysis; and scripts and speech acts for pragmatic anal-
ysis. We have also seen how levels of apparent language
understanding can be achieved without the user of for-
mal grammars using simple template and word matching
or more complex large-language models and statistical
methods.

13.1 For each of the sentences below generate the fol-
lowing:

• a syntactic grammar and parse tree

• a transition network

• a semantic grammar and parse tree

• a case grammar

What additional features would you represent if
you were generating context-sensitive grammars
for these sentences?

• My program was deleted by Brian

• I need a print-out of my program file

• The system administrator removed my files

• I want to create a new document file

13.2 Identify the ambiguity in each of the following
sentences and indicate how it could be resolved.

https://alandix.com/glossary/aibook/grammar
https://alandix.com/glossary/aibook/grammar
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/neural network
https://alandix.com/glossary/aibook/POS tagging
https://alandix.com/glossary/aibook/principal components
https://alandix.com/glossary/aibook/principal components
https://alandix.com/glossary/aibook/recommender systems
https://alandix.com/glossary/aibook/Principal components
https://alandix.com/glossary/aibook/latent semantic analysis
https://alandix.com/glossary/aibook/latent semantic analysis
https://alandix.com/glossary/aibook/latent space
https://alandix.com/glossary/aibook/document retrieval
https://alandix.com/glossary/aibook/latent space
https://alandix.com/glossary/aibook/latent space
https://alandix.com/glossary/aibook/word2vec
https://alandix.com/glossary/aibook/neural network
https://alandix.com/glossary/aibook/latent space
https://alandix.com/glossary/aibook/word vector
https://alandix.com/glossary/aibook/natural language understanding
https://alandix.com/glossary/aibook/syntactic analysis
https://alandix.com/glossary/aibook/semantic analysis
https://alandix.com/glossary/aibook/semantic analysis
https://alandix.com/glossary/aibook/pragmatic analysis
https://alandix.com/glossary/aibook/grammars
https://alandix.com/glossary/aibook/grammars
https://alandix.com/glossary/aibook/transition networks
https://alandix.com/glossary/aibook/syntactic analysis
https://alandix.com/glossary/aibook/syntactic analysis
https://alandix.com/glossary/aibook/case grammars
https://alandix.com/glossary/aibook/semantic analysis
https://alandix.com/glossary/aibook/semantic analysis
https://alandix.com/glossary/aibook/scripts
https://alandix.com/glossary/aibook/speech acts
https://alandix.com/glossary/aibook/pragmatic analysis
https://alandix.com/glossary/aibook/pragmatic analysis
https://alandix.com/glossary/aibook/language understanding
https://alandix.com/glossary/aibook/language understanding
https://alandix.com/glossary/aibook/formal grammars
https://alandix.com/glossary/aibook/formal grammars
https://alandix.com/glossary/aibook/large-language models
https://alandix.com/glossary/aibook/statistical methods
https://alandix.com/glossary/aibook/statistical methods
https://alandix.com/glossary/aibook/syntactic grammar
https://alandix.com/glossary/aibook/parse tree
https://alandix.com/glossary/aibook/transition network
https://alandix.com/glossary/aibook/semantic grammar
https://alandix.com/glossary/aibook/parse tree
https://alandix.com/glossary/aibook/case grammar
https://alandix.com/glossary/aibook/context-sensitive grammars

Natural Language Understanding ■ 203

• She was not sure if she had taken the drink

• Joe broke his glasses

• I saw the boy with the telescope

• They left to go on holiday this morning

13.3 Devise a script for visiting the doctor, and indicate
how this would be used to interpret the statement:
“Alison went to the surgery. After seeing the doc-
tor she left.”

FURTHER READING

N. Indurkhya and F. Damerau, editor. Handbook of natural
language processing. CRC Press, Boca Raton, FL, 2010.
An edited handbook covering the complete process of NLP
with experts in each area contributing the relevant chap-
ters. It was published before the emergence of effective big
data and deep learning techniques but is an in-depth and
comprehensive view of traditional approaches to NLP.

D. Jurafsky and J. Martin. Speech and language processing (3rd
edition, 2024 draft). (Update of 2nd edition, pub. Prentice
Hall 2008). https://web.stanford.edu/ jurafsky/slp3/
This popular textbook has been updated to include lat-
est developments including large-language models. The up-
dated material is available through the authors’ website.

T. Winograd and F. Flores. Understanding computers and cog-
nition. Addison-Wesley, Ablex Corporation Norwood,
NJ, 1987.
Includes a discussion of speech act theory and other aspects
of natural language understanding from a more philosoph-
ical standpoint.

13.12 SOLUTION TO SHRDLU PROBLEM
1. Find a block that is taller than the one you are

holding and place it in the box. This is referential
ambiguity. What does the word “it” refer to?

2. How many blocks are on top of the green block?
This is perhaps more tricky, but it involves seman-
tic ambiguity. Does ‘‘on top of” mean directly on
top of or above (i.e. it could be on top of a block
that is on top of the green block)?

3. Put the red pyramid on the block in the box. This
is syntactic ambiguity. Is it the block that is in the
box or the red pyramid that is being put into the
box?

4. Does the shortest thing the tallest pyramid’s
support supports support anything green?
This is lexical: there are two uses of the word
“support”!

https://alandix.com/glossary/aibook/script
https://alandix.com/glossary/aibook/NLP
https://alandix.com/glossary/aibook/big data
https://alandix.com/glossary/aibook/big data
https://alandix.com/glossary/aibook/deep learning
https://alandix.com/glossary/aibook/NLP
https://alandix.com/glossary/aibook/speech act theory
https://web.stanford.edu

CHAP T ER 1 4

Time Series and Sequential Data

14.1 OVERVIEW
The moves in a game of chess, annual Arctic ice extent
since the beginning of the industrial era, words in a
sentence, finger and hand positions during a mid-air
gesture, hospital admissions reports for a patient –
there are many types of data where it is not only the
values of data items that matter but also the order in
which they occur. Often, but not always, the sequence
order reflects an underlying time order. Thinking of
time order we’ll often use the term ‘event’ for one of
the sequential items, but this should be interpreted
liberally to include, for example a word in written
text.

There are some specific techniques used for particular
domains, for example speech processing or games, but
also some common features and techniques that can be
applied across a number of domains.

In this chapter we look first at some of the general
properties of temporal and sequential data and then
at three main classes of algorithm: probability-based
methods; grammar or pattern matching; neural
networks and statistical methods. Grammars are, by
their nature, specific to sequential data; however, we
will see specialised techniques in all of these classes.
Finally, we will see that data may often be viewed
at multiple granularities (e.g. raw audio, phonemes,
words), and different methods may be applied at each
level.

14.2 GENERAL PROPERTIES

14.2.1 Kinds of Temporal and Sequential Data

Often more critical than the application domain are the
characteristics of the data.

First we can look at the timing or sequence order of
each data item, it may be:

Discrete events – for example hospital admissions, or
words spoken. These may have times or periods in
which they occurred, but there may also be gaps
when nothing happens.

Samples of continuous time – for example hourly air
temperature readings, where the air has a temper-
ature between readings.

For discrete events, we may have a complete record of
every event (e.g. each word in text) or may have an in-
complete record with missing events, such as hospital vis-
its that for some reason were not recorded. Note that
in the latter case we may not even know that they are
missing.

For sampled data we may have a uniform sampling
rate, every second, hour or day, or the samples may be
sporadic, perhaps only when some other event happens
that triggers a reading. Missing vales are often more ob-
vious but still cause problems with analysis.

If we look at the values associated with each event,
these may be:

Homogeneous – Each event has the same type of data.
For example, a word or a temperature reading.

Heterogeneous – Some events have different data
associated with them than others. For example,

DOI: 10.1201/9781003082880-17 204

https://alandix.com/glossary/aibook/chess
https://alandix.com/glossary/aibook/sequence order
https://alandix.com/glossary/aibook/sequence order
https://alandix.com/glossary/aibook/event
https://alandix.com/glossary/aibook/probability
https://alandix.com/glossary/aibook/grammar
https://alandix.com/glossary/aibook/pattern matching
https://alandix.com/glossary/aibook/neural networks
https://alandix.com/glossary/aibook/neural networks
https://alandix.com/glossary/aibook/statistical methods
https://alandix.com/glossary/aibook/Grammars
https://alandix.com/glossary/aibook/sequence order
https://alandix.com/glossary/aibook/event
https://alandix.com/glossary/aibook/uniform sampling rate
https://alandix.com/glossary/aibook/uniform sampling rate
https://alandix.com/glossary/aibook/sporadic sample
https://alandix.com/glossary/aibook/event
https://alandix.com/glossary/aibook/triggers
https://alandix.com/glossary/aibook/event
https://alandix.com/glossary/aibook/event
http://dx.doi.org/10.1201/9781003082880-17

Time Series and Sequential Data ■ 205

there may be different test results taken at different
hospital visits.

In many scientific, engineering and economic appli-
cations one has homogeneous numeric data collected at
a uniform sample rate, and there is a rich set of statistical
and signal processing techniques targeted at these. In
some cases, AI and ML algorithms offer alternatives for
these, but in others the two work alongside each other,
often with some form of numerical pre-processing of
data.

Often data can be mixed, with different kinds of data
in the same application, for example, in sales forecasting
the daily or weekly sales of products form a uniform nu-
merical time series, which is analysed using relatively ba-
sic statistical techniques. However, there are also unusual
points, for example where there has been an advertising
campaign. Here the analysts make adjustments based on
their experience [9] – an obvious point also where a hy-
brid AI/statistical system could be useful.

14.2.2 Looking through Time

As with any form of data, one should always spend some
time getting to know temporal data. Here are some be-
haviours you might notice:

Stationarity – Although the precise values change, the
kinds of behaviour are relatively similar at any time.

Trends – Things get bigger or smaller over time, for ex-
ample long-term inflation.

Periodicity – Some aspect of a process that repeats (pos-
sibly with small variation/noise) at fixed intervals,
for example seasonal variations in ice cream sales.

Quasi-periodicity – Where changes have a nearly fixed
timescale of change, but not tied to a precise ‘tick’
time. The 11-year sunspot ‘cycle’ is like this, and it is
often the sign of a dynamic system with feedback.

Discontinuities – Points of sudden or unusual change,
the cause of which may or may not be known. For
example, a known or expected change would be the
impact of an advertising campaign on sales, whereas
an unexpected one would be the 1987 stock market
crash (see Figure 14.1).

Phase changes – Points where the characteristics of
the process change. For example, in finance it is

relatively easy to predict future stock values during
either bull or bear markets, but the transitions
between bull and bear are where fortunes are made
and lost.

Substructure – Portions of the signal may have charac-
teristics of their own. For example, ECG data con-
sists of a time series of electrical signals sampled at
from 50Hz to 5kHz depending on the apparatus.
However, within that it is the roughly once a second
heart rate signal that is of most interest, and also the
shape of this, as different shapes can reveal particu-
lar heart problems.

In addition, if you look at the same data at different
timescales you might see different forms of activity. For
example, if you look at stock values during a bull market
they may appear to have an upwards trend, but if you
look at a larger timeframe you will see flips between bull
and bear markets. Similarly, if you look at ice cream
sales from August through to October, you might detect
a downward trend, but zooming out to view several
years’ sales you begin to see annual periodicity.

Although any actual dataset is finite, often what
you have represents a portion of a longer, possibly
indefinitely long series. For example, you might be
processing a 20-minute ECG trace from a patient, who
hopefully lives a lot longer. However, sometimes the
underlying phenomenon has finite length, for example
the stroke making up a character in handwriting
recognition.

14.2.3 Processing Temporal Data

In the following sections we will look at algorithms of
very different kinds but with underlying similarities. In
the end all are trying to transform the indefinite sequence
into a collection of finite data problems. The goal is usu-
ally to either predict the next data item from what came
before or to classify the whole or part of the time series.
Typically, they use one of two general techniques:

windowing – splitting the data into sub-sequences of a
fixed length

hidden state – processing is more event-to-event, but
assuming some underlying unobservable state

In addition, for certain sorts of data, particularly audio,
the data may be transformed from time domain (event-
by-event data points) into frequency domain (signal

https://alandix.com/glossary/aibook/signal processing
https://alandix.com/glossary/aibook/pre-processing
https://alandix.com/glossary/aibook/statistical techniques
https://alandix.com/glossary/aibook/hybrid AI/statistical system
https://alandix.com/glossary/aibook/hybrid AI/statistical system
https://alandix.com/glossary/aibook/Stationarity
https://alandix.com/glossary/aibook/Trends
https://alandix.com/glossary/aibook/Periodicity
https://alandix.com/glossary/aibook/Quasi-periodicity
https://alandix.com/glossary/aibook/feedback
https://alandix.com/glossary/aibook/Discontinuities
https://alandix.com/glossary/aibook/Phase changes
https://alandix.com/glossary/aibook/Substructure
https://alandix.com/glossary/aibook/ECG
https://alandix.com/glossary/aibook/time series
https://alandix.com/glossary/aibook/ECG
https://alandix.com/glossary/aibook/handwriting\protect \penalty -\@M recognition
https://alandix.com/glossary/aibook/handwriting\protect \penalty -\@M recognition
https://alandix.com/glossary/aibook/time series
https://alandix.com/glossary/aibook/windowing
https://alandix.com/glossary/aibook/hidden state
https://alandix.com/glossary/aibook/event
https://alandix.com/glossary/aibook/event
https://alandix.com/glossary/aibook/time domain
https://alandix.com/glossary/aibook/event
https://alandix.com/glossary/aibook/event
https://alandix.com/glossary/aibook/frequency domain

206 ■ Artificial Intelligence

FIGURE 14.1 Stock market leading up to and after Black Monday, 19th October 1987 (adapted from https://commons.wikime
dia.org/wiki/File:Black_Monday_Dow_Jones.svg).

strength at different frequencies). We’ll look at each of
these in more detail.

14.2.3.1 Windowing

The sequence is broken into a number of short pieces
of fixed length. These can then, in principle, be fed into
pretty much any algorithm.

Some algorithms will use non-overlapping windows,
for example chopping the data sequence into one-hour
segments. However, more common is to use moving
windows, that is the last N items. For example, Covid
case data was often presented as a 7-day moving average,
which basically means take the last 7 days’ figures and
show the average of these.

Effectively algorithms using this technique are trying
to work out:

last N steps ⇒ output
(classification / prediction of next step)

Occasionally the windows may be centred over regions
of interest. For example, with ECG data, one might
attempt to detect the peaks and centre the window over
them. Also there may be start and end adjustments
to prevent anomalies; for example a short linear ramp
in/out.

Algorithms based on windowing have what is called
finite impulse response (FIR), that is the effects of any
sample point, no matter how extreme, only affect out-
puts for the next N steps. However, note that N can be
extremely large; for example ChatGPT4 has a 128K token
window and Google Gemini up to one million tokens –
finite but for many practical purposes unbounded.

14.2.3.2 Hidden State

The algorithm assumes there is some additional state that
is not immediately apparent in the observed data but
which affects its behaviour. For example, the tempera-
ture and heart rate (observed data) of a patient will de-
pend on the progress of the infection (hidden state).

Algorithms using hidden state are effectively trying to
work out a function of the form:

current step × hidden state
→ output × new hidden state

In general, it is a lot harder for machine learning algo-
rithms to learn this function as it depends on the hidden
state, which, by definition, is not known!

In principle, it is sufficient to only use one step at a
time as input – anything the algorithm ‘wants’ to remem-
ber can be stored in hidden state. However, as it is hard

https://commons.wikimedia.org/wiki/File:Black_Monday_Dow_Jones.svg
https://commons.wikimedia.org/wiki/File:Black_Monday_Dow_Jones.svg
https://alandix.com/glossary/aibook/non-overlapping windows
https://alandix.com/glossary/aibook/moving average
https://alandix.com/glossary/aibook/ECG
https://alandix.com/glossary/aibook/windowing
https://alandix.com/glossary/aibook/finite impulse response
https://alandix.com/glossary/aibook/FIR
https://alandix.com/glossary/aibook/ChatGPT4
https://alandix.com/glossary/aibook/Google Gemini
https://alandix.com/glossary/aibook/hidden state
https://alandix.com/glossary/aibook/hidden state
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/hidden state
https://alandix.com/glossary/aibook/hidden state
https://alandix.com/glossary/aibook/hidden state

to learn the hidden state, it may sometimes be better to
combine it with windowing, effectively finding a func-
tion of the form:

last N steps × hidden state
→ output × new hidden state

The hidden state can be simpler as it only has to ‘remem-
ber’ long-term things beyond the window’s time frame.

Hidden-state techniques usually have an infinite
impulse response (IIR), that is the effect of a single
data item can last an indefinitely long time, albeit often
typically becoming less significant the longer you wait.
This is often what you want, as you are trying to account
for long-lasting effects, but does mean that any sporadic
mis-reading or extreme reading can affect performance
for a long time to come.

14.2.3.3 Non-time Domain Transformations

Sequences of the form: data at t = 0, data at t = 1,
... where the index of the data values is a time value, is
called time domain data and some algorithms work best
on this form of data. However, sometimes the data is bet-
ter transformed to replace or augment the raw data as an
aid to subsequent processing.

There are many ways to do this, but the two most com-
mon are Fourier and wavelet transforms.

Fourier transforms are a more detailed version of what
you see in the little bars on a high-quality sound system
equaliser showing the bass and treble response in differ-
ent ranges. The Fourier transform takes a signal and splits
it into frequency components based on the power in par-
ticular frequency ranges. For example, a low-frequency
Fourier transform might give 16 outputs: one average
(0Hz); two at each of 1Hz power, 2Hz power, ... 7 Hz
power; one at 8Hz. Note there are two components at
each of the intermediate levels corresponding to cos and
sin components, or, equivalently, the fact that a wave has
a phase (where it starts) as well as a wavelength (how
wide it is).

A Fourier transform can be calculated for a complete
time series, but more commonly windows are used,
usually having 2M items for some choice of M as the fast
Fourier transform (FFT) algorithm works best with a
power of two length.

Figure 14.2 shows an example of a voice spectrogram,
which is often used as the first stage of speech recognition
systems. Here small windows of a fraction of a second are

Time Series and Sequential Data ■ 207

divided into 32 frequency bands from 0Hz to 10Hz. The
gaps between words are very clear as are differences in
the frequency characteristics of the various syllables.

Wavelet transforms also have a frequency element
creating some outputs that are about the large-
scale/slow structure. However, while the high-frequency
components of a Fourier transform are about the
whole of a time series, or window, the high-frequency
components of Wavelet transforms are about short
snippets of the signal. Basically, a signal is broken into
a few slow-changing parts that capture the large-scale
structure, plus a larger number of small short-timescale
parts.

Figure 14.3 shows a family of wavelets, called the Haar
wavelets, first proposed over a hundred years ago by Al-
fréd Haar [120]. It is easy to see that a discrete signal
of length 8 can be broken into a constant part plus a
sum of the wavelets. However, wavelets do not have to
have sharp edges, and smoother wavelets are more often
used as they have better mathematical properties but also
more complex mathematical formulae.

14.3 PROBABILITY MODELS
One way to look at a time series is as a probabilistic pro-
cess, where the probability of the next thing that happens
depends on what has gone before. These are used particu-
larly when the data values are discrete and finite, notably
for text, and most common approaches are based around
variants of Markov models.

14.3.1 Markov Model

The original Markov model, named after the Russian
mathematician Andrey Andreyevich Markov, is specifi-
cally for systems with no memory, where the probability
of the next item in a sequence is purely determined by
the current item.

Here’s a sequence of letters from the restricted alpha-
bet A,B,C.

AAACCACCCCABBABBACAAAAACCACACACAACACAB

These were generated by the transition probabilities in
Table 14.1. Reading through this table, row by row: if the
current state is A, then there is a 1 in 2 chance it will stay
as an A, and a 1 in 4 chance that the next will be a B and
a 1 in 4 that it will be a C; if the current state is B, there is
a 1 in 2 chance it will go back to an A and a 1 in 2 chance
it will stay as B; finally if the current state is C, then there

https://alandix.com/glossary/aibook/hidden state
https://alandix.com/glossary/aibook/windowing
https://alandix.com/glossary/aibook/hidden state
https://alandix.com/glossary/aibook/Hidden-state
https://alandix.com/glossary/aibook/infinite impulse response
https://alandix.com/glossary/aibook/infinite impulse response
https://alandix.com/glossary/aibook/IIR
https://alandix.com/glossary/aibook/time domain data
https://alandix.com/glossary/aibook/wavelet transforms
https://alandix.com/glossary/aibook/Fourier transforms
https://alandix.com/glossary/aibook/Fourier transform
https://alandix.com/glossary/aibook/Fourier transform
https://alandix.com/glossary/aibook/phase
https://alandix.com/glossary/aibook/wavelength
https://alandix.com/glossary/aibook/Fourier transform
https://alandix.com/glossary/aibook/time series
https://alandix.com/glossary/aibook/fast Fourier transform
https://alandix.com/glossary/aibook/fast Fourier transform
https://alandix.com/glossary/aibook/FFT
https://alandix.com/glossary/aibook/spectrogram
https://alandix.com/glossary/aibook/speech recognition
https://alandix.com/glossary/aibook/Wavelet transforms
https://alandix.com/glossary/aibook/Fourier transform
https://alandix.com/glossary/aibook/time series
https://alandix.com/glossary/aibook/Wavelet transforms
https://alandix.com/glossary/aibook/wavelets
https://alandix.com/glossary/aibook/Haar wavelets
https://alandix.com/glossary/aibook/Haar wavelets
https://alandix.com/glossary/aibook/wavelets
https://alandix.com/glossary/aibook/wavelets
https://alandix.com/glossary/aibook/wavelets
https://alandix.com/glossary/aibook/time series
https://alandix.com/glossary/aibook/probabilistic process
https://alandix.com/glossary/aibook/probabilistic process
https://alandix.com/glossary/aibook/probability
https://alandix.com/glossary/aibook/Markov model
https://alandix.com/glossary/aibook/Andrey Andreyevich Markov
https://alandix.com/glossary/aibook/probability

208 ■ Artificial Intelligence

FIGURE 14.2 Digitally produced spectrogram of a male voice saying ‘nineteenth century’ (https://commons.wikimedia.org/wi
ki/File:Spectrogram-19thC.png).

is a 1 in 2 chance it will go to A and a 1 in 2 chance it will
stay as C.

TABLE 14.1 Markov Model (upper) Transition Probability
Table; (lower) Drawn as a Network.

Next letter
Current letter A B C

A 0.5 0.25 0.25
B 0.5 0.5 0
C 0.5 0 0.5

You can imagine building similar rules for the
weather. Indeed a popular saying in Britain is “Rain
before seven shine before eleven”, which basically says
that if you take four-hourly measurements the weather
is likely to change!

Generating the sequence from the rules is easy (toss
a coin!), but we need to first be able to learn the rules
from the data. Happily this is simple for a Markov Model.

First you just count how often each pair appears in the
sequence.

Raw frequencies Totals
AA: 7 AB: 3 AC: 9 start with A: 19
BA: 2 BB: 2 BC: 0 start with B: 4
CA: 9 CB: 0 CC: 5 start with C: 14

These are then converted into estimated transition
probabilities by dividing by the frequency it is in the
relevant start state. For example, there were 19 times
the sequence was an A in the current state and of these
9 times the next step was C (AC frequency), so the
estimated transition probability is 9/19 (= 0.474). In
full this gives us the estimated transition probabilities in
Table 14.2.

TABLE 14.2 Estimated Transition Probabilities Based on Ob-
served Transition Frequencies.

Next letter
Current letter A B C

A 0.368 0.158 0.474
B 0.500 0.500 0.000
C 0.643 0.000 0.357

Note how this is not exactly the same as the actual
transition probabilities that were used to generate the se-
quence. These are random rules, so short sequences can
vary markedly. A far longer sequence is required to give
robust probability estimates.

https://commons.wikimedia.org/wiki/File:Spectrogram-19thC.png
https://commons.wikimedia.org/wiki/File:Spectrogram-19thC.png
https://alandix.com/glossary/aibook/Markov Model
https://alandix.com/glossary/aibook/transition probabilities
https://alandix.com/glossary/aibook/transition probabilities
https://alandix.com/glossary/aibook/transition probabilities

Time Series and Sequential Data ■ 209

FIGURE 14.3 A simple family of wavelets – the Haar Wavelet.

Of course, the restriction of having no memory at all is
a little unrealistic for many applications, indeed even the
British weather is not that variable!

14.3.2 Higher-order Markov Model

Higher order Markov models allow one to peek slightly
further back. Here’s another sequence of letters, this time
just As and Bs:

ABBAAAABBAAAABBABBABAAABBAAA
BABAAAABBAAAAABBABABBABABABA

The transition probabilities that generated this are in Ta-
ble 14.3. Note that this time the last two letters are used to
generate the probability of the next letter. This is rather
like using yesterday’s weather as well as today’s to pre-
dict the weather tomorrow, or if you are reading text, the
words “it is” are likely to be followed by an adjective or
gerund (‘-ing’ form of verb).

TABLE 14.3 Markov Model Transition Probability Based on
Previous Two Letters.

Next letter
Last 2 letters A B

AA 0.75 0.25
AB 0.5 0.5
BA 0.25 0.75
BB 1 0

You can use the same methods to learn the two-step
transitions, first of all counting the 3-grams:

Raw frequencies Totals
AAA: 11 AAB: 6 starting with AA: 17
ABA: 7 ABB: 8 starting with AB: 15
BAA: 6 BAB: 8 starting with BA: 14
BBA: 8 BBB: 0 starting with BB: 8

Then these are used to generate the estimate of the
probabilities in Table 14.4. Note that again the estimates
are in several cases well away from the actual values used
to generate the sequence.

TABLE 14.4 Observed Transition Probabilities for Order 2
Markov Model.

Next letter
Last 2 letters A B

AA 0.647 0.353
AB 0.467 0.533
BA 0.429 0.571
BB 1.000 0.000

For language comprehension a two-step version like
this is unlikely to be very useful, but you can grow the
number of previous steps you take into account. Indeed,
Google’s text suggestions are based on models rather like
this.

When you start growing the window, the number of
entries in the transition table increases rapidly. In Ta-
ble 14.3, we have an alphabet size (the number of values
in each state) of two and a window size of two (in Markov
model terms this is called the ‘order’ of the model). This
led to eight (23) probabilities. In general, with an alpha-

https://alandix.com/glossary/aibook/Markov Model
https://alandix.com/glossary/aibook/transition probabilities
https://alandix.com/glossary/aibook/Markov model
https://alandix.com/glossary/aibook/Markov model

210 ■ Artificial Intelligence

bet size of N and a window size of W, we have NW+1 prob-
ability entries in the table. Unless you are dealing with
massive corpora, it becomes increasingly hard to have
sufficient data to estimate the probabilities with any de-
gree of accuracy.

Variable-order Markov models deal with this by hav-
ing a window size that varies depending on the previ-
ous items. This is especially helpful if some items are
a lot more frequent than others. In English text ‘is’ is
a very common word, so one might have a simple ta-
ble of one-step transitions for every word pair like in
Table 14.1. However, in addition, there may additional
probabilities for two-step sequences ending with ‘is’, for
example.

‘on’ p = 0.3⎧⎪‘purring’ p = 0.2
‘cat is’ → ⎨‘eating’ p = 0.2⎪

⎩‘sleeping’ p = 0.3

Sometimes there is some kind of classification of the al-
phabet; for example in language the part of speech of a
word (verb, noun, etc.). In such cases it may be possible
to build a Markov model at the abstract level of the clas-
sifications: for example how likely it is that a verb is fol-
lowed by a noun, this can then be supplemented by more
detailed rules for more common words. Note that these
are all window-based variations of the Markov Model
and so have finite impulse response; that is there is no
long-term memory.

14.3.3 Hidden Markov Model

The hidden Markov model allows longer term memory
by adding a hidden state. This is an additional state that
is assumed to be present but not visible in the observed
items.

As an example, Table 14.5 shows a simple model of
weather in a British summer. The observable weather is
either Sun or Rain, but in addition the weather has gen-
eral tendency to be Changeable or Wet that affects the
current weather. Try generating some weather sequences
from this ... although do be warned they are likely to be
depressingly wet!

Although it is just as easy to generate sequences
from this kind of probability transition table, the
fact that the Changeable/Wet state is hidden makes
it harder to learn. As you don’t know the state, you

TABLE 14.5 Hidden Markov Model for British Summer
Weather – Hidden State in Brackets (Changeable/Wet).

Tomorrows weather
Current weather Sun Rain Sun Rain

(Changeable) (Changeable) (Wet) (Wet)
Sun (Changeable) 0.3 0.4 0.1 0.2
Rain (Changeable) 0.3 0.3 0 0.4

Sun (Wet) 0.2 0.1 0.1 0.6
Rain (Wet) 0 0.1 0 0.9

cannot create transition frequencies for the obser-
vations. In general, you don’t even know how many
hidden states you need. There are various specialised
algorithms for learning mostly based on iterative
techniques.

Even when you know the model, applying it to ob-
served data is also a little more complicated as you have
to both work out the hidden state and use it to predict
the future observations. However, it is often precisely this
hidden state that is the most important thing. For exam-
ple, from observations of a patient’s day-to-day symp-
toms inferring whether or not their underlying ailment
is improving.

14.4 GRAMMAR AND PATTERN-BASED
APPROACHES

Instead of working out probabilities of various se-
quences, we may simply want to work out what is
possible, the pattern or grammar underlying the
sequence.

14.4.1 Regular Expressions

Look at the following (familiar) sequence:

AAACCACCCCABBABBACAAAAACCACACACAACACAB

Based on this alone, it looks like there are just As, Bs and
Cs, and that while there can be various length runs of
each, a C never follows a B, nor vice versa. Expressed as
a regular expression (and assuming starting with an A),
this is:

(A+(B+|C+))*A*

This says “one or more As, followed by either one or more
Bs or one or more Cs; repeat that any number of times
and then possibly some As at the end”. Note, in a regu-
lar expression ‘+’ after any item means ‘one or more’, ‘*’

https://alandix.com/glossary/aibook/Variable-order Markov models
https://alandix.com/glossary/aibook/Markov model
https://alandix.com/glossary/aibook/Markov Model
https://alandix.com/glossary/aibook/finite impulse response
https://alandix.com/glossary/aibook/hidden Markov model
https://alandix.com/glossary/aibook/hidden state
https://alandix.com/glossary/aibook/probability transition
https://alandix.com/glossary/aibook/hidden state
https://alandix.com/glossary/aibook/hidden state
https://alandix.com/glossary/aibook/grammar
https://alandix.com/glossary/aibook/regular expression
https://alandix.com/glossary/aibook/regular expression
https://alandix.com/glossary/aibook/regular expression

means zero or more, brackets group and vertical bar ‘|’
designates alternatives.

In real applications, one would look at many such
sequences, or for a single ongoing data stream a much
longer sequence. It may be that in a longer sequence
there are occasions with BC or CB, and also in the short
sequence there are never more than 2 Bs in a row – is
this part of the pattern or just accident?

Regular expressions are one of the simplest forms of
grammar; yet it is still impossible to know for certain
from a finite number of examples whether you have
found exactly the regular expression that generated
the examples. However, it is possible to infer relatively
simple regular expressions that are consistent with
available data.

The difficulty is finding a sensible point between a reg-
ular expression that is clearly too specific:

AAACCACCCCABBABBACAAAAACCACACACAACACAB

and one that is clearly too general:

(A|B|C)*

Every regular expression can be expressed as a finite
state machine, rather like the hidden Markov model
(HMM) but where there are no transition probabilities,
merely possibilities: can it happen or not.

S0 => <A,S1>
at least one A at start

S1 => <A,S1> | <B,S2> | <C,S3>
anything

S2 => <A,S1> | <B,S2>
B followed by B or A

S3 => <A,S1> | <C,S3>
C followed by C or A

As with learning Markov models, one can start with
the n-grams (Chap. 13), only here the question is
about what is possible, so all one cares about is which
sequences occur, and which never do. The aim is then to
find the simplest possible state machine that can, from
some state, generate every observed n-gram and never
generate those that are absent. Although in many ways
less complicated than a HMM, this is still not an easy
task.

In some cases there are only positive examples. Non-
presence is the only way to infer bad examples, but this

Time Series and Sequential Data ■ 211

becomes more difficult if the vocabulary grows as it be-
comes more likely that a particular sequence has never
occurred by chance. In other applications there might be
explicit negative examples, which can help a learning al-
gorithm.

In text processing tasks there are often classes of sym-
bols that are known to usually behave similarly such as
letters and digits. Ideally the regular expression gener-
ated should use these when possible. For example, imag-
ine you are given lots of names such as Jane, or Keith,
but where none of them start with a ‘Z’. Even though
([A-Y][a-z]+) might be a reasonable regular expres-
sion that matches every example, it would not match the
name Zoe. The more general ([A-Z][a-z]+) should be
preferred so long as there are no counter examples.

In some ways this bias towards ‘sensible’ regular ex-
pressions can make things more complicated, but it can
easily be built into the fitness function of some ML algo-
rithms. Also, it can help with the problems when there
is insufficient learning data, as an example such as Jane
is effectively treated as equivalent to all four-letter se-
quences of letters starting with a capital.

14.4.2 More Complex Grammars

Regular expressions are powerful and can match many
kinds of data, such as email addresses or many kinds
of identification codes. However, they cannot represent
more complex linguistic structures such as nested
classes, not even those found in programming languages
or expression, such as matching brackets, which are
often described with grammars such as this:

expr ::= number | expr ‘+' expr
| expr ‘-' expr | ‘(' expr ‘)'

number ::= digit | digit number

The extra expressive power of these hierarchical gram-
mars makes them more powerful but correspondingly
even harder to learn from examples.

One way is to operate bottom-up. A first pass looks
for several relatively simple rules (such as regular expres-
sions or simpler) where each rule matches multiple por-
tions of the data sequence. A rule is deemed good if it
is:

• reasonably simple

• matches reasonably long sequences

• matches many sub-sequences

https://alandix.com/glossary/aibook/Regular expressions
https://alandix.com/glossary/aibook/grammar
https://alandix.com/glossary/aibook/regular expression
https://alandix.com/glossary/aibook/regular expression
https://alandix.com/glossary/aibook/regular expression
https://alandix.com/glossary/aibook/finite state machine
https://alandix.com/glossary/aibook/finite state machine
https://alandix.com/glossary/aibook/hidden Markov model
https://alandix.com/glossary/aibook/HMM
https://alandix.com/glossary/aibook/n-gram
https://alandix.com/glossary/aibook/HMM
https://alandix.com/glossary/aibook/regular expression
https://alandix.com/glossary/aibook/regular expression
https://alandix.com/glossary/aibook/regular expression
https://alandix.com/glossary/aibook/bias
https://alandix.com/glossary/aibook/regular expressions
https://alandix.com/glossary/aibook/regular expressions
https://alandix.com/glossary/aibook/fitness function
https://alandix.com/glossary/aibook/Regular expressions
https://alandix.com/glossary/aibook/grammars
https://alandix.com/glossary/aibook/hierarchical grammars
https://alandix.com/glossary/aibook/hierarchical grammars
https://alandix.com/glossary/aibook/bottom-up algorithm
https://alandix.com/glossary/aibook/regular expressions
https://alandix.com/glossary/aibook/regular expressions

212 ■ Artificial Intelligence

• and doesn’t overlap with other rules (or there is a
precedence).

Once a good rule set has been developed, each rule is
given a name, and portions of the data matching the rules
are replaced with a single symbol based on the name. The
process is then repeated on this abstracted sequence.

On its own this will generate multiple rules for each
level:

expr4 ::= expr3 | expr3 ‘+' expr3
| expr3 ‘-' expr3
| ‘(' expr3 ‘)'

expr3 ::= expr2 | expr2 ‘+' expr2
| expr2 ‘-' expr2
| ‘(' expr2 ‘)'

expr2 ::= expr1 | expr1 ‘+' expr1
| expr1 ‘-' expr1
| ‘(' expr1 ‘)'

expr1 ::= numb | numb ‘+' numb
| numb ‘-' numb
| ‘(' numb ‘)'

numb ::= digit | digit number

So, some form of matching phase is then needed to
generalise these rules. This would see that expr1, expr2,
expr3 and expr4 all have similar expansions and merge
them into a single non-terminal expr. Another approach
is to use genetic programming. This is a form of genetic
algorithm, but instead of simple ‘gene’ sequences, the
individuals have program code, often represented as a
tree. There are many variants of this. Typically, mutation
may prune a whole subtree or take a node and expand
it. Cross-over of two parent trees would take a subtree of
one parent and use it to replace a subtree of the other.
The fitness function will typically involve some form of
simplicity as well as accuracy. One advantage of genetic
approaches is that it is easy to incorporate known infor-
mation such as the letter classes for regular expressions,
or previous common patterns that can then be used as
potential things to incorporate during mutation stages.

14.5 NEURAL NETWORKS

14.5.1 Window-based Methods

The simplest approach to using neural networks for tem-
poral or sequential data is through windowing. The data
is split into fixed or sliding windows and the resulting
data used as input to a neural network.

If the aim is future predictions, then the output of the
network needs to be the next item in the sequence. In
other words, if the data sequence is d1, d2, … , dt, … , dN

and the window size is W, the sequence is treated as if
it were the following N−W training examples:

input output
d1, d2, … , dW dW+1

d2, d3, … , dW+1 dW+2

...
dt−W, dt−W+1, … , dt−1 dt
...
dN−W, dN−W+1, … , dN−1 dN

For numeric data the input may be pre-processed us-
ing Fourier or wavelet transformation, but this may be
omitted in deep neural networks depending on the struc-
ture of early layers. Classification for sequential data has
some extra complications.

If the aim is to identify particular subsequences,
for example instances of names in text, then we may
use a binary classification labelling a window as “ends
in a name” or not. Alternately we may simply have
a label “contains a name”. The former would be a
more natural choice if you are using a sliding window
as this will not only find parts of the sequence that
contain names but pinpoint their exact location (see
Figure 14.4).

If the classification is more diffuse, for example “po-
etic language” for text or “walking” for human activity
data, there are likely to be portions of the data that are
clearly labelled, and also portions that are in-between
or perhaps bridging two kinds of classification (see Fig-
ure 14.5). Windows where the classification is less clear
may either be omitted from the training set entirely or
given a special ‘transition’ label. As we’ll discuss later,
these points of transition may be the most important as-
pect of a data stream.

These classifications can be given as part of supervised
training, but classification algorithms may also learn in
an unsupervised manner, looking for patterns in the
data.

14.5.2 Recurrent Neural Networks

There are also forms of neural networks specifically de-
signed for temporal data usually including some element
of additional hidden state. These are collectively termed
recurrent neural networks (RNN).

https://alandix.com/glossary/aibook/genetic programming
https://alandix.com/glossary/aibook/genetic algorithm
https://alandix.com/glossary/aibook/genetic algorithm
https://alandix.com/glossary/aibook/fitness function
https://alandix.com/glossary/aibook/accuracy
https://alandix.com/glossary/aibook/regular expressions
https://alandix.com/glossary/aibook/neural networks
https://alandix.com/glossary/aibook/windowing
https://alandix.com/glossary/aibook/neural network
https://alandix.com/glossary/aibook/wavelet transformation
https://alandix.com/glossary/aibook/deep neural networks
https://alandix.com/glossary/aibook/supervised
https://alandix.com/glossary/aibook/unsupervised
https://alandix.com/glossary/aibook/neural networks
https://alandix.com/glossary/aibook/hidden state
https://alandix.com/glossary/aibook/recurrent neural networks
https://alandix.com/glossary/aibook/RNN

Time Series and Sequential Data ■ 213

FIGURE 14.4 Locating sub-sequences in longer sequence.

FIGURE 14.5 Diffuse classification of regions.

The simplest form of this simply takes the value of
some output nodes at one time step and feeds these back
into the input for the next time step. On the left of Fig-
ure 14.6 is a standard neural network, with inputs that
feed into some sort of network of nodes and produce out-
puts. On the right is the recurrent neural network. The
same number of extra input and output nodes are added
and then the extra output nodes are fed back into the in-
puts. These extra nodes effectively form a state for the
network.

Figure 14.7 illustrates this process once the RNN has
been trained. We’ll assume a starting state s0. The data
items for each time step are read from the input stream
one at a time. The first item d1 along with the initial state
s0 is fed as input to the network. This yields an output for
this step o1 and also a value for the ‘state’ output nodes
s1. The process is then repeated with d2 and s1 giving o2

and s2 and the process continues.
The state output at each time step becomes the state

input for the next.
As with hidden Markov models, adding this state

makes learning a lot more difficult as it is not known
up front. The state can be initialised randomly or the
net can be bootstrapped by starting with a windowed

neural network and then gradually replacing the
oldest data items with state nodes. Learning can be
performed one step at a time, or by looking at several
steps simultaneously, effectively pushing error terms
backwards through time.

Note that as this is a state-based method it has infinite
impulse response. In principle the effects of data items
can be recalled indefinitely.

14.5.3 Long-term Short-term Memory Networks

Having some level of history in a neural network can
significantly improve performance on time series.
However, there are times when it is useful to forget and
start again, for example, when there is a change in the
stock market from bull to bear or some major event (see
Figure 14.1).

Long-term short-term memory networks (LTSM) get
round this problem by having special memory nodes that
as well as an input and output also have a ‘forget’ in-
put that resets the node. The neural analogy for this is
long-term potentiation, chemical changes in cells that
last from minutes to hours. They are longer lasting than
the moment-to-moment flux of electrical activity but less

https://alandix.com/glossary/aibook/neural network
https://alandix.com/glossary/aibook/recurrent neural network
https://alandix.com/glossary/aibook/RNN
https://alandix.com/glossary/aibook/hidden Markov models
https://alandix.com/glossary/aibook/bootstrapped
https://alandix.com/glossary/aibook/neural network
https://alandix.com/glossary/aibook/infinite impulse response
https://alandix.com/glossary/aibook/infinite impulse response
https://alandix.com/glossary/aibook/neural network
https://alandix.com/glossary/aibook/time series
https://alandix.com/glossary/aibook/event
https://alandix.com/glossary/aibook/Long-term short-term memory networks
https://alandix.com/glossary/aibook/LTSM
https://alandix.com/glossary/aibook/long-term potentiation

214 ■ Artificial Intelligence

FIGURE 14.6 Recurrent neural network (RNN).

FIGURE 14.7 Running a recurrent neural network on data stream d1, d2, d3, …

so than true long-term memory encoded physically in
synapse weights.

14.5.4 Transformer Models

Recall the LEGO-style matching for language described
in Chapter 13; as a human reading text we are partly
influenced by the last few words, but also parts of the
text from much further back if they connect in mean-
ing, like matching LEGO blocks, to the thing we are cur-
rently reading. For example, if we read the words “ate the
bone”, the immediately preceding text may be a very long
subordinate clause, but our attention skips the clause and
connects to the words “the dog” even though they are far
back in the sentence.

Attention mechanisms try to emulate this by matching
tokens to previous tokens, often at lower levels in a layer
architecture. Each token has a ‘key’ and ‘query’ attached
to it, where the key captures some aspect of the meaning
of the token and the query the kind of things it wants
to attach to. Both keys and queries are represented as
vectors so the matching is imprecise.

Attention mechanisms can be combined with other
sequence learning algorithms such as recurrent neural
networks. However, transformer models, built almost
solely using these attentional mechanisms, have proved
both powerful and efficient [287] on language trans-
lation tasks. While originally developed for language
processing, variants of transformer models have been
used in other domains where there is sequential
structure including predicting folding structures of
proteins in AlphaFold2 [30].

14.6 STATISTICAL AND NUMERICAL
TECHNIQUES

There are a wide range of highly successful statistical and
numerical techniques used in time series analysis and
signal processing. Often these are alternatives to AI and
ML techniques and may be better for pure numerical
data. However, in addition they may be used alongside
AI-based techniques, for example as pre-processing
stages as we’ve already discussed with Fourier and
Wavelet transforms.

https://alandix.com/glossary/aibook/long-term memory
https://alandix.com/glossary/aibook/synapse weights
https://alandix.com/glossary/aibook/LEGO-style matching
https://alandix.com/glossary/aibook/Attention mechanisms
https://alandix.com/glossary/aibook/neural network!architecture
https://alandix.com/glossary/aibook/Attention mechanisms
https://alandix.com/glossary/aibook/recurrent neural networks
https://alandix.com/glossary/aibook/recurrent neural networks
https://alandix.com/glossary/aibook/transformer models
https://alandix.com/glossary/aibook/transformer models
https://alandix.com/glossary/aibook/AlphaFold2
https://alandix.com/glossary/aibook/time series analysis
https://alandix.com/glossary/aibook/signal processing
https://alandix.com/glossary/aibook/pre-processing
https://alandix.com/glossary/aibook/Wavelet transforms

14.6.1 Simple Data Cleaning Techniques

Often raw time series data looks very noisy, sometimes
due to random effects, sometimes more systematic ones.
Figure 14.8 shows daily reported Covid-19 in the UK
during 2020. Often weekend deaths did not get officially
reported until sometime in the following week, leading
to very noisy data. However, the solid line is a seven-day
moving average. This is simply taking the last seven days’
raw data and averaging that. The trends and patterns are
immediately far more evident. It is the simplest example
of a smoothing function.

Other examples of simple transformations are
seasonal adjustment and trend removal.

Seasonal adjustments are applied when there is some
form of fixed period often over a year, or week, that af-
fects the data. For example, differing business district
coffee sales between weekdays and weekends or woolly
hat sales between summer and winter. We’ll think of this
in terms of monthly differences over the year, but a sim-
ilar technique can be applied for any period.

To adjust for these one can take long-term averages
over many years comparing each month with the
overall year average. This month effect can then be
subtracted from the observed data to remove the
seasonal effect. It is then easier to see the impact of
other changes, for example, if there is a September sales
promotion on woolly hats, are increases in sales due to
the promotion or just what you’d expect at that time of
year?

Trend adjustments or de-trending are used when there
is a long-term upwards or downward trend in the data.
The aim is to in some way separate out the overall trend
from finer-grain changes. One way to deal with this is to
fit the line using linear regression and then remove this
to leave the fluctuations from the trend. This works well
in some circumstances but can suffer from sensitivity to
outliers and effectively assumes the same trend lasts for-
ever. Although, by definition, a trend is a long-term phe-
nomenon, that may not mean forever. There are ways to
update trend estimates incrementally and also to reduce
the impact of outliers.

Often a simpler way to de-trend a time series is to focus
instead on the difference between successive data items
(first-order difference), how much it has increased or de-
creased. That is, you turn the data series d1, d2, … , dt, …
into d2− d1, d3−d2, … , dt+1 − dt, …. The linearly growing
part is effectively cancelled out.

Time Series and Sequential Data ■ 215

Sometimes this difference data still has a trend, for ex-
ample when a car is accelerating, the velocity (change in
position) is itself increasing. The differencing process can
be repeated to yield second- or third-order differences,
and many series that start off looking complex can be
tamed this way. Indeed, this is precisely the principle be-
hind Charles Babbage’s Difference Engine!

14.6.2 Logarithmic Transformations and
Exponential Growth

Many processes exhibit exponential growth or expo-
nential decay, for example infections during the early
stages of an epidemic, economic growth or feedback in
a sound system. For these processes taking any order of
differences still yields an exponential process. This is be-
cause they are fundamentally multiplicative rather than
additive processes. The rate of growth is proportional to
the level of disease, size of the economy or volume of
noise.

It is possible to explicitly model the exponential
part and remove it, similar to de-trending or seasonal
adjustment. However, an easier approach and often
more suited to pre-processing for other ML tech-
niques is to perform a logarithmic transformation of
the data. That is turn the series d1, d2, … , dt, … into
log(d1), log(d3), ..., log(dt), …

The choice of base of the logarithm (common values
2,e,10) does not really matter as the logarithms are all just
multiples of one another, and this scale factor is usually
‘dealt with’ by later stages of processing. In some cases
a type of data suggests the most meaningful transforma-
tion: base 2 for computer-related data such as storage ca-
pacity, natural logarithm (base e) for biological processes
and base 10 for acoustic data where the decibel (ten times
log10) is a common measure.

After a logarithmic transformation, exponential
growth or decay becomes a simple linear upward or
downward trend and so additional de-trending (and
possibly seasonality adjustments) can be applied. The
first-order difference of a logarithmic transformation is
effectively proportional to a percentage increase figure,
like a inflation figure.

Even where there is no clear exponential trend, it can
often be the case that the variability in data is propor-
tional to the size. For example, fluctuations in an adult’s
weight of a few pounds over holiday periods are quite
common, but if a new-born baby were to vary by a similar

https://alandix.com/glossary/aibook/time series
https://alandix.com/glossary/aibook/moving average
https://alandix.com/glossary/aibook/smoothing function
https://alandix.com/glossary/aibook/seasonal adjustment
https://alandix.com/glossary/aibook/trend removal
https://alandix.com/glossary/aibook/Seasonal adjustments
https://alandix.com/glossary/aibook/Trend adjustments
https://alandix.com/glossary/aibook/de-trending
https://alandix.com/glossary/aibook/linear regression
https://alandix.com/glossary/aibook/outliers
https://alandix.com/glossary/aibook/outliers
https://alandix.com/glossary/aibook/time series
https://alandix.com/glossary/aibook/first-order difference
https://alandix.com/glossary/aibook/Charles Babbage
https://alandix.com/glossary/aibook/Difference Engine
https://alandix.com/glossary/aibook/exponential growth
https://alandix.com/glossary/aibook/exponential decay
https://alandix.com/glossary/aibook/exponential decay
https://alandix.com/glossary/aibook/feedback
https://alandix.com/glossary/aibook/de-trending
https://alandix.com/glossary/aibook/seasonal adjustment
https://alandix.com/glossary/aibook/seasonal adjustment
https://alandix.com/glossary/aibook/pre-processing
https://alandix.com/glossary/aibook/logarithmic transformation
https://alandix.com/glossary/aibook/base of the logarithm
https://alandix.com/glossary/aibook/natural logarithm
https://alandix.com/glossary/aibook/decibel
https://alandix.com/glossary/aibook/logarithmic transformation
https://alandix.com/glossary/aibook/exponential growth
https://alandix.com/glossary/aibook/exponential growth
https://alandix.com/glossary/aibook/de-trending
https://alandix.com/glossary/aibook/first-order difference
https://alandix.com/glossary/aibook/logarithmic transformation

216 ■ Artificial Intelligence

FIGURE 14.8 Covid-19 deaths for UK in 2020 – daily data is very noisy, but a 7-day moving average is far more stable (adapted
from: https://coronavirus.data.gov.uk/details/deaths).

amount, one might be worried. This might also suggest a
logarithmic transformation.

In both cases of exponential processes and scale-
related variability, an alternative to a full loga-
rithmic transformation is to actually work out a
proportionate increase/decrease at each step, that
is transform the data series d1, d2, … , dt, … into
d2/d1 − 1, d3/d2 − 1, … , dt+1/dt − 1, …. If the changes
are relatively small, this is effectively equivalent to the
first-order differences of logarithmic data but may be
easier to interpret.

14.6.3 ARMA Models

One of the most common types of standard statistical
modelling is auto-regressive moving average (ARMA)
models. There are lots of variations, but the basic
assumption is that given an observed data series, the
current value is determined by a combination of

• recent past states of the observed series. For exam-
ple, your bank balance today is related to your bank
balance yesterday.

• an unobserved series of random fluctuations. For
example, all of those midnight internet purchases.

Following convention, we’ll call the unobserved (hid-
den) series 𝜖1, 𝜖2, … , 𝜖t, … and these are assumed to be
independent of each other and typically Normally dis-
tributed (Chap. 7).

This leads to two types of model, which can be com-
bined to give the full ARMA model.

Moving average models assume that the data we see is
a weighted average of the last M items of the unobserved
series. That is:

dt = w1𝜖t + w2𝜖t−1 + ..., +wM𝜖t−(M−1)

Because this is a finite window, the impact of a sin-
gle unusually large or small 𝜖t only persists for M time
steps, that is the process generated by this has finite im-
pulse response. The types of data produced by this kind of
model therefore have local structure but no longer term
behaviour.

Auto-regressive models assume that the data we see
is a linear combination of the previous N items plus
a single error/noise term from the unobserved series.
That is:

dt = a1dt−1 + a2dt−2 + ..., +aNdt−N + 𝜖t
In this case although the term 𝜖t appears to only

influence the current dt, this in turn is fed back
into dt, which in turn influences dt+1. The impact
tends to decay exponentially, but has no fixed end,
it is an infinite impulse response process. Auto-
regressive models often create processes with larger
scale pattern-like properties including quasi-periodic
data.

Note that in both cases these are models of how the
data is produced rather than how we process it to create
predictions. In particular, the moving average model is a
moving average of the unobserved series, so it is different
from calculating a moving average of observed data in
order to smooth it.

https://coronavirus.data.gov.uk/details/deaths
https://alandix.com/glossary/aibook/logarithmic transformation
https://alandix.com/glossary/aibook/scale-related variability
https://alandix.com/glossary/aibook/scale-related variability
https://alandix.com/glossary/aibook/logarithmic transformation
https://alandix.com/glossary/aibook/logarithmic transformation
https://alandix.com/glossary/aibook/auto-regressive moving average
https://alandix.com/glossary/aibook/ARMA
https://alandix.com/glossary/aibook/Normally distributed
https://alandix.com/glossary/aibook/Normally distributed
https://alandix.com/glossary/aibook/ARMA
https://alandix.com/glossary/aibook/Moving average models
https://alandix.com/glossary/aibook/finite impulse response
https://alandix.com/glossary/aibook/finite impulse response
https://alandix.com/glossary/aibook/Auto-regressive models
https://alandix.com/glossary/aibook/infinite impulse response
https://alandix.com/glossary/aibook/Auto-regressive models
https://alandix.com/glossary/aibook/Auto-regressive models
https://alandix.com/glossary/aibook/quasi-periodic
https://alandix.com/glossary/aibook/moving average model
https://alandix.com/glossary/aibook/moving average
https://alandix.com/glossary/aibook/moving average

Time Series and Sequential Data ■ 217

FIGURE 14.9 Using statistical processing as pre-processor for
other AI techniques.

Auto-regressive models are easy to fit using a window-
ing technique, you simply take a training series, split it
into windows of size N+1 and then apply standard lin-
ear modelling to find the coefficients ai. Although they
seem simpler, moving average models are a little more
complicated as they involve the unseen series 𝜖t. How-
ever, there are ways to calculate these too and also mixed
ARMA models.

Two final things to note. First the values for N and
M in an ARMA model are often relatively small com-
pared to the windows we are likely to use for many neu-
ral network or other machine-learning algorithms. Sec-
ond these models are often fitted after seasonality adjust-
ments and trend removal.

14.6.4 Mixed Statistics/ML Models

As noted a common use of statistical methods in AI is
as pre-processing for other ML algorithms (Figure 14.9).
There are three reasons for this, one, two or all of which
may apply to a given application:

clearer – They are often easier to interpret than a series
of weights in a neural network. By restricting AI-
based ML techniques to aspects where they are most
needed, we can end up with more explainable AI
(see also Chapter 21).

better – If the transformations applied are based on
real understanding of the data, they effectively feed
knowledge into the ML process leading to more
accurate and generalisable results.

faster – Sufficiently complex deep neural networks may
well be able to learn for themselves the equivalent
of the transformations produced by statistical
techniques. However, appropriate pre-processing

FIGURE 14.10 Using ML to choose parameters for statistical
processing.

can reduce the complexity and hence learning
time.

There are also downsides, they need more expert
knowledge up front and also may run the risk of biasing
the ML towards standard ways of viewing the data.
The latter is mitigated if the transformations applied
are information preserving; for example, if you sum
first-order differences, you retrieve the original data
series.

Another way to combine ML with statistical tech-
niques is where the data is intrinsically well suited to
traditional statistics, but where some form of choices
are needed that usually require a statistical expert’s
judgement, or some form of trial and error. For example,
in ARMA models the choice of N and M is critical
in creating a good model but is a combination of
experience, art and pure guesswork.

In these cases, an AI system can be used to make those
choices, effectively functioning as a surrogate expert
(Figure 14.10). This may be an expert system based on
heuristics and rules of thumb derived from professional
statisticians or can use machine learning tuned to a
particular application area. This might include changing
these parameters or switching models for different
portions of the data (see below).

14.7 MULTI-STAGE/MULTI-SCALE
We’ve noted that data may have structure at different
scales. This is true of numerical data, for example, the
bull/bear market phases in Figure 14.1 and the heart
beats in Figure 14.11, but also for textual data, for

https://alandix.com/glossary/aibook/Auto-regressive models
https://alandix.com/glossary/aibook/windowing
https://alandix.com/glossary/aibook/windowing
https://alandix.com/glossary/aibook/moving average models
https://alandix.com/glossary/aibook/ARMA
https://alandix.com/glossary/aibook/ARMA
https://alandix.com/glossary/aibook/neural network
https://alandix.com/glossary/aibook/neural network
https://alandix.com/glossary/aibook/machine-learning
https://alandix.com/glossary/aibook/seasonality adjustments
https://alandix.com/glossary/aibook/seasonality adjustments
https://alandix.com/glossary/aibook/trend removal
https://alandix.com/glossary/aibook/pre-processing
https://alandix.com/glossary/aibook/neural network
https://alandix.com/glossary/aibook/explainable AI
https://alandix.com/glossary/aibook/deep neural networks
https://alandix.com/glossary/aibook/statistical techniques
https://alandix.com/glossary/aibook/statistical techniques
https://alandix.com/glossary/aibook/pre-processing
https://alandix.com/glossary/aibook/expert knowledge
https://alandix.com/glossary/aibook/expert knowledge
https://alandix.com/glossary/aibook/biasing
https://alandix.com/glossary/aibook/information preserving
https://alandix.com/glossary/aibook/statistical techniques
https://alandix.com/glossary/aibook/statistical techniques
https://alandix.com/glossary/aibook/ARMA
https://alandix.com/glossary/aibook/surrogate expert
https://alandix.com/glossary/aibook/expert system
https://alandix.com/glossary/aibook/heuristics
https://alandix.com/glossary/aibook/machine learning

218 ■ Artificial Intelligence

example the words in this sentence, the topic of the
paragraph and the way these fit into the overall structure
of the book.

It is possible to simply throw this kind of data into a
complex enough machine learning algorithm. Some are
designed to seek this form of multi-scale structure, but
if not they may either struggle to work at all or be need-
lessly large with correspondingly long learning times.

Often a slightly more curated approach is adopted, or
automated based on high-level heuristics. Let’s look at
the ECG data in Figure 14.11 and consider one way to
process it.

1. We write custom code to identify the peaks in the
signals

2. The time difference between this and the previous
peak gives an inter-beat time for each

3. A moving average of the inter-beat is calculated to
give a heart rate

4. Fixed-sized windows are extracted around each
peak

5. These windows are treated as independent data
items for training an unsupervised classifier

6. The classifier is then applied to every beat yielding
a beat ‘type’

7. The time difference, ‘beat’ and heart rate then
form a new data sequence where each data item
represents a single labelled heartbeat in order

8. This new time series is fed into one of the other
techniques we’ve dealt with (e.g. HMM, RNN)

Note a few things about this process:

• It combines some expert knowledge such as the way
the peak identifies a beat, the use of a moving av-
erage as peak-to-peak times can be quite variable,
being affected by breathing or movement.

• It also allows the AI/ML to seek its own patterns at
steps 5 and 8.

• It has turned fine-grained (kHz) samples of contin-
uous time data into coarser (∼1Hz) sequential dis-
crete events which are more suitable input for many
kinds of network.

Think of your own variations on this: for example,
could an expert be brought in at step 5 to label the types
identified or maybe some database of unusual heart pat-
terns used?

Of course this process can be repeated, the ML algo-
rithm at step 8 might identify different kinds of periods,
some representing normal activity of different kinds (re-
laxed, strenuous exercise), but some abnormal, such as
periods of arrhythmia. Applying this to time series data
could reduce it further into even coarser sequential data
such as in Table 14.6.

TABLE 14.6 High-level Classification of Periods of Data as a
Coarse-grained Time Series.
D-723 high-rate, normal pattern (strenuous ac- – 15 mins

tivity)
D-724 low-heart rate (rest) – 30 mins

D-725 tachycardia (problem) – 2 mins

...

Another layer of ML could then identify patterns in
this, for example whether there are particular combina-
tions of activity that are more or less likely to lead to ar-
rhythmia.

This is an example of a bottom-up process with low-
level data being used to create higher-level abstractions.
There can also be top-down processes.

Imagine we have trained a stock market predictor A
that works well during bull markets and a predictor B
that works well on bear markets. We can use these predic-
tors as (retrospective) classifiers by keeping track of how
well each would predict the current market state based on
previous days. If over a period A is better, we are proba-
bly in a bull market, if B is better, we are likely in a bear
market. So far this is a bottom-up process, but it has given
us a classification of the current market condition, which
we can then use to choose which of the predictors A or
B to use to estimate the next day’s stock prices and so
inform investment decisions.

Similar bottom-up and top-down approaches can be
used in other sequential data such as text processing.
Here’s an example of such a process:

1. The origin of a document (e.g. web page domain)
gives a default language and location

https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/heuristics
https://alandix.com/glossary/aibook/ECG
https://alandix.com/glossary/aibook/moving average
https://alandix.com/glossary/aibook/unsupervised classifier
https://alandix.com/glossary/aibook/time series
https://alandix.com/glossary/aibook/HMM
https://alandix.com/glossary/aibook/RNN
https://alandix.com/glossary/aibook/expert knowledge
https://alandix.com/glossary/aibook/moving average
https://alandix.com/glossary/aibook/moving average
https://alandix.com/glossary/aibook/database
https://alandix.com/glossary/aibook/time series data

Time Series and Sequential Data ■ 219

FIGURE 14.11 Extract of ECG trace (adapted from Ptrump16 – Own work, CC BY-SA 4.0, https://commons.wikimedia.org/
w/index.php?curid=77817932).

2. This is used to select a dictionary, date and num-
ber formats, and maybe specialised lookups such
as common names (top-down processing)

3. Text is split into ‘word’ units at spaces and punc-
tuation

4. Units that are all alphabetic (probable words) are
looked up in a dictionary

5. Units are matched against text patterns such as ‘all
letters’, ‘initial capitals’ and also patterns such as
dates or telephone numbers.

6. The resulting units are then coded: in/not in dic-
tionary; all lower case/all caps/initial caps/mixed;
etc. (coarser scale data series)

7. Higher level pattern recognisers (hand-coded or
automatic) are applied, for example, initial caps
words not in a dictionary suggest names, lists of
names with dates and other words with initial cap-
itals might be an article citation. (bottom-up pro-
cessing)

Again, you might think of variants of this, for example
using high-level items recognised at step 7 to feed back
into revised context.

14.8 SUMMARY
We have looked at methods of analysing and predicting
temporal and sequential data based on probability
theory, in particular variants of Markov models; various
forms of grammar; the use of generic and specialised
neural networks, including recurrent and long-term

short-term networks; and also statistical methods for
more numeric data. Some of these are very specific,
but there are also common aspects such as the use of
windowing or hidden state. Crucially these methods
are often combined, including different methods and
different levels of abstraction in an event stream.

14.1 Generate weather sequences based on a hidden
Markov model of the British weather as suggested
in Section 14.3.3. If you are using a six-sided
die, you can use the transition probabilities
in Table 14.7, which has been modified from
Table 14.5 so that the probabilities are multiples
of 1/6 to make it easier.

TABLE 14.7 Weather Transition Probabilities for Use in Exer-
cise 14.1

Tomorrow’s weather
Current weather Sun Rain Sun Rain

(Changeable) (Changeable) (Wet) (Wet)
Sun (Changeable) 1/3 1/3 1/6 1/6
Rain (Changeable) 1/3 1/3 0 1/3
Sun (Wet) 1/6 1/6 1/6 1/2
Rain (Wet) 0 1/6 0 5/6

14.2 Given the following sequences

(i) AAACCA

(ii) AAACCAB

(iii) AAACCBA

(iv) AAACCACCCCABBABBBACAAAAA

CCACACCACAAACCACCAB

https://commons.wikimedia.org/w/index.php?curid=77817932
https://commons.wikimedia.org/w/index.php?curid=77817932
https://alandix.com/glossary/aibook/probability theory
https://alandix.com/glossary/aibook/probability theory
https://alandix.com/glossary/aibook/grammar
https://alandix.com/glossary/aibook/neural networks
https://alandix.com/glossary/aibook/windowing
https://alandix.com/glossary/aibook/hidden state
https://alandix.com/glossary/aibook/event stream
https://alandix.com/glossary/aibook/hidden Markov model
https://alandix.com/glossary/aibook/hidden Markov model

220 ■ Artificial Intelligence

(v) AAACCACCCCABBABBBACAAAAC

CACACCACAAACCACCAB

(vi) AAACCACCCCABBABBBACCAAAA

ACCACACCACAAACCACCAB

Which of the following regular expressions match
them all?

a. (A+(B+|C+))*A*
b. (A+(C+(B+|A+))*B
c. (A+(B+|C+))*A*
d. (A+B+C+))*B
e. ((AA)*A+(B+|C+))*
f. ((AA)*A+(B+|(CC)+))*

Don’t just use an online regular expression
matcher! Try to understand why.

14.3 For this exercise use the sequence (iv) of As, Bs
and Cs from Exercise 14.2.

a. Calculate the Markov model current-
letter–next-letter probabilities similar to
Table 14.1 using the technique described in
Section 14.3.1.

b. Using an online random number app, spread-
sheet or code, generate a sequence based on
the measured probabilities.

c. Recalculate Markov model probabilities based
on your generated sequence. How similar is
this to step (a)?

14.4 As in the previous exercise, use the sequence (iv)
of As, Bs and Cs from Exercise 14.2.

a. This time calculate the higher-order Markov
model with a window of size two. That is pre-
vious two letters to next letter probabilities as
in Table 14.3.2 in Section 14.4.

b. Were there any problems calculating this?

c. How confident would you be in the probabili-
ties?

d. Repeat this using your generated sequence
from Exercise 14.3, step (b).

e. Do things look different, and if so why?

FURTHER READING

C. Chatfield and H. Xing. The analysis of time series: An intro-
duction with R. CRC Press, New York, NY, 2019.
In-depth coverage of statistical methods in time series anal-
ysis such as ARMA.

B. Lim and S. Zohren. Time-series forecasting with deep learn-
ing: A survey. Philosophical Transactions of the Royal So-
ciety A, 379(2194):20200209, 2021.
A short overview of state of the art of more neural network–
related approaches to time series data.

A. Vaswani, N. Shazeer, et al. Attention is all you need. arXiv
1706.03762, 2017. DOI:10.48550/ARXIV.1706.03762

The paper that introduces the transformer model.

https://alandix.com/glossary/aibook/regular expressions
https://alandix.com/glossary/aibook/regular expression
https://alandix.com/glossary/aibook/time series analysis
https://alandix.com/glossary/aibook/time series analysis
https://alandix.com/glossary/aibook/ARMA
https://alandix.com/glossary/aibook/neural network
https://alandix.com/glossary/aibook/time series
https://alandix.com/glossary/aibook/transformer model

CHAP T ER 1 5

Planning and Robotics

15.1 OVERVIEW
In order to act in the world, we need to plan what
to do. The same is true for computers and robots.
Planning has long been an important part of artificial
intelligence, and this chapter initially looks at two main
aspects: planning actions and planning movements.
Planning usually involves manipulating a model of the
world in order to decide what actions will bring about the
desired effects. However, in the real world we cannot
model all the outcomes of our actions, either because the
world is too complex, or because of external events over
which we have no control, or both. We have already seen
aspects of this when discussing games. Local planning
deals with those situations where we can only plan so far
ahead but must then respond to the circumstances we
observe and the events that occur. In the next chapter
we will look at software agents that act in the electronic
world where planning is also necessary. However,
designing robots that act in the physical world means
we have to live within the limitations of reality. We will
discuss some of the implications of this for cybernetics
research and industrial robotics.

15.2 INTRODUCTION

15.2.1 Friend or Foe?

Robots have intrigued people since before the word
existed. Plans were produced for clockwork and

steam-powered humanoids, while moving manikins
and automata adorn both fairgrounds and cathedral
clock towers. The word “robot” means worker (or even
‘serf ’ or forced labourer) and indeed they have become a
major part of modern factory production.

However, popular images of robots are not so prosaic.
Humanoid robots hold a particular fascination, with
the promise of tireless service and even, like Data in
Star Trek or R2D2 in Star Wars, friendship. However,
there is a dark side as well, and in science fiction robots
are often the mortal enemy of humankind (with the
added frisson of not being mortal!). It is interesting to
note that the most dreaded enemies have been those
that are only partly robot: Frankenstein’s creation in
Mary Shelley’s novel was constructed from dead flesh
and the Daleks have something slimy within. In Karel
Čapek’s play “R.U.R.”, in which the term ‘robot’ was
coined, the robots were android slaves, and ended up
rebelling against their human overlords [40]. Strangely
enough, artificial life (albeit mostly virtual) has become
a respectable area of AI!

For the foreseeable future there is little danger from
independently malevolent robots; although much
research in robotics has military funding, and
semi-autonomous drones and battlefield robots are
increasingly common. Outside a human war zone,
for most of us, accidents and misadventure are a far
more likely danger. Isaac Asimov foresaw this with his
Laws of Robotics, setting limits on robots’ freedom to
act [10]. Although real-life robots do not wield ray guns,
they often have lasers, and an encounter with a ton
of industrial robot, whether “armed” or not, could be
unfortunate. In fact, it is likely that the less intelligent
the robot, the greater the danger – it will not be able to
tell the difference between drilling a hole in an engine
block or in your head!

DOI: 10.1201/9781003082880-18 221

https://alandix.com/glossary/aibook/Local planning
https://alandix.com/glossary/aibook/software agents
https://alandix.com/glossary/aibook/industrial robotics
https://alandix.com/glossary/aibook/Frankenstein
https://alandix.com/glossary/aibook/Shelley, Mary
https://alandix.com/glossary/aibook/Daleks
https://alandix.com/glossary/aibook/artificial life
https://alandix.com/glossary/aibook/robotics!military
https://alandix.com/glossary/aibook/Asimov, Isaac
https://alandix.com/glossary/aibook/Laws of Robotics
http://dx.doi.org/10.1201/9781003082880-18

222 ■ Artificial Intelligence

15.2.2 Different Kinds of Robots

The simplest industrial robots obey a pre-programmed
sequence of commands. They have no intelligence
whatsoever – although AI might be used in planning
their movements. An example of this is spray painting of
cars. An operator initially trains the robot by moving an
instrumented robot arm to perform the task. The
movements are recorded and then the production line
robot repeats the movements indefinitely – rote learning.
The lack of intelligence becomes obvious when there is
any change in the circumstances. If there is a gap in the
production line, the robot will happily spray thin air!
Although such robots do not include any intelligence,
they are very important in industrial applications.

A slightly more complex example would be a drilling
machine. The machine needs to detect when a drill bit
breaks in order to report the damage to a human opera-
tor (as there may be a part-drilled hole or a piece of drill
bit left on the work piece) and load a new bit. This be-
haviour is pre-programmed but may involve some plan-
ning – perhaps using a different drilling machine when
one goes offline.

Finally, we get to robots where the need for AI is
obvious. These may be stationary: for example, on
a production line where parts come in different
orientations (vision needed), perhaps piled on top of
one another, and the robot needs to select parts to
assemble. Alternatively, they may need to move around
in their environment: for example, an automated forklift
moving things around a factory, a smart vacuum cleaner
in the home, or an autonomous car on the road.

In the first edition, the reviewers thought the authors
at very best quaint for suggesting that readers might
be inside a robot (referring to a lift) before they met
one. However, now while lifts still have the autonomous
quality of a moving robot (albeit restricted), examples
of robots that surround us are far more common: some
moving, autonomous road vehicles as well as lifts and
auto-piloted planes; or stationary, smart buildings and
cities. On the latter HAL, the AI in 2001 Space Odyssey,
was controlling the whole space ship or perhaps was the
whole space ship. At present while you talk to a home
automation system such as Alexa, and ask it to do things
for you, it is normally seen as an actor external to the
devices themselves, so more a software agent as will be
discussed in Chapter 16. However, as more parts of your
home are automated and sensed, and the relationships

FIGURE 15.1 Blocks world.

between them become more complicated, at what point
does it feel more as if the whole house is an intelligent
entity?

15.3 GLOBAL PLANNING

15.3.1 Planning Actions – Means–Ends Analysis

When we have considered state space search with moves
between states, we have simply assumed that there is
some oracle that gives us the set of possible moves
from a given state. In fact, many problems are far more
structured than that.

One general class of problems can be attacked by a
technique called means–ends analysis. This is based on
operators that transform the state of the world. Given a
description of the desired state of the world (the end) it
works backwards working out operators that will achieve
it (the means). This is not done as a single step, but in-
stead works incrementally: in order to apply operators
which would achieve the goal state, conditions must ap-
ply to the previous state and so the algorithm is applied
recursively. Note that this is a special sort of knowledge-
rich search as discussed in Chapter 4.

States are described in some structured way (e.g. by
predicates), and moves are performed by the operators.
Each operator has a precondition, which constrains the
states it can be used in, and a postcondition, which says
what will be true when it has finished. In a state described
by predicates the postcondition must say both what is
additionally true and what ceases to be true in the new
state.

As an example, consider a blocks world similar to that
used as the domain of the historic natural language AI
program SHRDLU [301]. This world consists of blocks
of different shapes and colours, which can be piled on
top of one another or placed on a table top. An imagi-
nary robot inhabits this world and can pick up and move

https://alandix.com/glossary/aibook/rote learning
https://alandix.com/glossary/aibook/computer vision
https://alandix.com/glossary/aibook/autonomous car
https://alandix.com/glossary/aibook/HAL
https://alandix.com/glossary/aibook/home automation
https://alandix.com/glossary/aibook/home automation
https://alandix.com/glossary/aibook/state space search
https://alandix.com/glossary/aibook/means--ends analysis
https://alandix.com/glossary/aibook/goal state
https://alandix.com/glossary/aibook/knowledge-rich search
https://alandix.com/glossary/aibook/knowledge-rich search
https://alandix.com/glossary/aibook/SHRDLU

blocks to try and get to any desired state. The states can
be displayed graphically (Figure 15.1) or described using
predicates. Our world has two kinds of shapes, pyramids
and boxes, in various colours.

on_table(blue_pyramid)
on_top(red_pyramid,green_box)
on_top(blue_box,red_box)
on_table(green_box)
on_table(red_box)

The predicate “on_top(A,B)” says that block A is on
top of block B and “on_table(A)” is self-explanatory. We
also require another predicate “in_hand(A)” which says
that A is in the robot’s (single) hand. There are four op-
erators with the pre- and postconditions shown in Ta-
ble 15.1.

TABLE 15.1 Blocks World Operations.

operation precondition postcondition

pick_up(A) on_table(A)
∧¬ on_top(C,A)
∧¬ in_hand(X)

in_hand(A)
∧¬ on_table(A)

put_down(A) in_hand(A) on_table(A)
∧¬ in_hand(A)

pick_off(A,B) on_top(A,B)
∧¬ on_top(C,A)
∧¬in_hand(X)

in_hand(A)
∧¬ on_top(A,B)

put_on(A,B) in_hand(A)
∧¬ on_top(C,B)

on_top(A,B)
∧¬ in_hand(A)

As an example, we can read the first rule as saying:

In order to pick up the block A, it must be on
the table, must have nothing on top of it and
there must be nothing in the robot’s hand.
When it has been picked up, the block A is in
the robot’s hand and no longer on the table.

Notice how the first operator (pick_up(A)) makes
some things true that weren’t before (in_hand(A)),
and some things false that were previously true
(on_table(A)). These are called the add list and the
delete list, respectively.

In order to simplify the rules, there are two operators
to pick things up, one to pick up things from the table
“pick_up” and one from other blocks “pick_off ”.

Now imagine that our goal is to have a pile on the table
consisting of the blue triangle on top of the red box. We
don’t care about any of the other blocks:

Planning and Robotics ■ 223

on_top(blue_triangle,red_box) ∧ on_table(red_box)

Now the operator information could be used to do a
simple depth or breadth first search for this goal state.
From the start state we could generate all operators
whose precondition was true of the current state, and
then search the children in the manner determined
by the search. However, this does not effectively use
the structural knowledge in this representation. For
example, we would examine useless moves like moving
the red triangle off the green box.

Means–ends analysis does use this knowledge. It looks
at the current state and the goal state and works out the
difference between them – not just a numeric measure
of distance as used in heuristic search, but an analysis of
which things need to be changed. Consider the current
state. We see that “on_table(red_box)” is already true, so
the difference from the goal state is

on_top(blue_triangle,red_box)

We can then match this difference against the
postconditions and look for an operator that reduces
the difference. In the example this can be achieved
by “put_on(blue_triangle,red_box)”. We check its
preconditions against the current state. Unfortunately,
they are not met. So we make these preconditions a new
goal state, calculate the difference and look for a new
operator.

This movement from the goal state towards the current
state is called backward chaining. In this example, it is
more efficient than moving from the current state to the
goal (forward chaining), as the forward branching factor
is much larger than the backward branching factor.

If we look at the next stage in this means–ends analy-
sis, we find there are two terms in the new goal state:

in_hand(blue_triangle) ∧¬ on_top(C,red_box)

We can either work on both simultaneously or
instead work out a way to get to each part separately.
For example, we could first work out a way to achieve
“in_hand(blue_triangle)”:

pick_up(blue_triangle)

and then seek to achieve “¬ on_top(C,red_box)” by

pick_off(blue_box,red_box)

https://alandix.com/glossary/aibook/breadth first search
https://alandix.com/glossary/aibook/goal state
https://alandix.com/glossary/aibook/Means--ends analysis
https://alandix.com/glossary/aibook/goal state
https://alandix.com/glossary/aibook/heuristic search
https://alandix.com/glossary/aibook/goal state
https://alandix.com/glossary/aibook/goal state
https://alandix.com/glossary/aibook/goal state
https://alandix.com/glossary/aibook/backward chaining
https://alandix.com/glossary/aibook/forward chaining
https://alandix.com/glossary/aibook/forward branching factor
https://alandix.com/glossary/aibook/backward branching factor
https://alandix.com/glossary/aibook/means--ends analysis
https://alandix.com/glossary/aibook/means--ends analysis
https://alandix.com/glossary/aibook/goal state

224 ■ Artificial Intelligence

FIGURE 15.2 Navigation challenge for a robot.

Unfortunately in this case we cannot simply combine
these plans, as they interfere with one another. This will
not always be the case, and splitting up a problem into
subproblems (divide and conquer) is a powerful solution
technique. Even where interference is found, it is often
more efficient to produce two interfering subplans and
then modify them than to work on the whole problem at
once.

The process of finding a single sequence of operators
that follow one after the other is called linear planning. In
contrast, non-linear planning builds a partially ordered
collection of actions. The actions are each application of
operators, and dependencies are recorded between ac-
tions. This reduces the amount of backtracking required
while searching for a plan. However, in the end even non-
linear plans must be reduced to a linear sequence of op-
erators to be performed. This is done by finding a linear
ordering that is consistent with the dependencies in the
plan.

15.3.2 Planning Routes – Configuration Spaces

Suppose the little triangular robot in Figure 15.2 wants
to get across the room from the place marked start to
the one marked finish. In the room are two obstacles. A
straight-line path between the two points will not work
– the robot will collide with the obstacles. One cannot
simply find a line that avoids the obstacles because the
robot is wide and may not be able to squeeze through
every gap. When we plan a path through the obstacles, we
must take into account the size and shape of the robot at
each point. This makes the planning task quite difficult.

One way to tackle this is using a configuration space.
Recall how in Chapter 2 we saw how a change in repre-
sentation can make a hard problem easier. The configu-
ration space is just such a change of representation. Each

FIGURE 15.3 Using a configuration space to plan a route.

object is expanded so that we can regard the robot as a
single point and then we can find a simple path across
the room.

Figure 15.3 shows the stages of route planning using a
configuration space. First, a reference point is chosen on
the robot (i). We then imagine moving the robot around
each object tracing the path of the reference point. This
is shown for a single object in (i). We then regard these
paths as being the boundaries of the expanded objects (ii)
and plan a path past these. The shortest path must graze
past some of the objects and hence must pass through
a series of vertices of the expanded objects. Three such
routes are shown in (iii), and some search algorithm,
such as A∗ (Chap. 4), can be used to select the shortest
route.

https://alandix.com/glossary/aibook/divide and conquer
https://alandix.com/glossary/aibook/linear planning
https://alandix.com/glossary/aibook/non-linear planning
https://alandix.com/glossary/aibook/backtracking
https://alandix.com/glossary/aibook/configuration space
https://alandix.com/glossary/aibook/configuration space
https://alandix.com/glossary/aibook/configuration space
https://alandix.com/glossary/aibook/route planning
https://alandix.com/glossary/aibook/configuration space
https://alandix.com/glossary/aibook/A* algorithm

Planning and Robotics ■ 225

FIGURE 15.4 Circle-based configuration space.

The above algorithm depends on the robot maintain-
ing its orientation. This can lead to it being both opti-
mistic and pessimistic in its chosen paths. We all know
that twisting an object round can make it easier to get
through an opening. However, some robots may only be
able to move forward. The configuration space solution
might include the robot moving sideways, crab-like, and
so be impossible. The first problem, finding out whether
some combination of movements and rotations can get
an object past obstacles, is very difficult. However, we
can tackle the second by modifying the configuration
space.

In Figure 15.4, we see a configuration space based on
a circumscribed circle drawn around the robot. The cen-
tre of the circle has been chosen so as to make it as small
as possible. If the robot can only turn about a particular
point, then this should be chosen instead. The circle is
then used to generate the expanded obstacles and new
paths can be chosen round these. One of these paths is
drawn in (ii). Notice how the path between the two ob-
jects is not possible in this configuration space. This is
because the gap was wide enough for the triangle to nav-
igate sideways, but not point first. The circle-based space
is conservative. If you find a path through it, you can def-

FIGURE 15.5 Corridors and rooms between obstacles.

initely do it, but it may disallow some paths that are pos-
sible. For example, if the robot were long and narrow, like
a truck, it would say that corridors (roads) need to be as
wide as the length of the truck!

One way to get round this is to examine the paths
based on circles and those based on unexpanded objects.
The former is very pessimistic, the latter optimistic. If a
promising path exists in the latter, but not the former,
one can use more sophisticated methods to check
whether the route is possible or not given the particular
movements available to the robot.

A similar approach is to generate possible paths based
on the narrowest points between obstacles; that is, to
concentrate on the gaps rather than the obstructions.
Some of these gaps will be so small that they can’t
possibly be navigated: they can effectively be “filled
in” and ignored. Other gaps will be narrow enough
that care is needed (say, narrower than the diameter
of the circumscribed circle). Finally, some gaps will be
so large that they can be considered as rooms – large
enough that free movement is possible. The meetings
between these gaps can be thought of as doors between
the corridors and rooms. Possible routes criss-cross
the rooms going from door to door. One can work out
which are navigable and which turns are possible and
then use a search algorithm to choose a route. This
has the advantage that paths can be constructed to
run as far as possible from obstacles and so avoid near
misses. It also means that we can use different heuristics
for navigating across rooms and down corridors
(Figure 15.5).

https://alandix.com/glossary/aibook/configuration space
https://alandix.com/glossary/aibook/configuration\protect \penalty -\@M space
https://alandix.com/glossary/aibook/configuration\protect \penalty -\@M space
https://alandix.com/glossary/aibook/configuration space
https://alandix.com/glossary/aibook/configuration space
https://alandix.com/glossary/aibook/heuristics

226 ■ Artificial Intelligence

15.4 LOCAL PLANNING

15.4.1 Local Planning and Obstacle Avoidance

Get up and walk across the room. Did you use one of the
algorithms above? Probably not! Your behaviour will be
more like the following:

• Determine approximate direction to take.

• Walk in that direction.

• If an obstacle is encountered, walk around it.

Notice how this sort of route planning has two phases:
global planning – when you determine the approximate
route – and local planning – overcoming obstacles as
they occur. The same sort of thing happens at other lev-
els. If you are planning a mountain walk, you may plan
the route using maps and guides, but you still have to
watch where you are going.

In real life, one does not preplan all one’s activities. In-
stead there is a hierarchy of plans at different levels rang-
ing from overall goals of life to automatic reactions. The
global level of planning has to know what is reasonable
to expect at the local level but does not have to plan the
low-level details. However, there has to be some sort of
monitoring to revise global plans should problems occur
at the lower level. For example, when hill walking you
might find that a path has been washed away and have to
replan your route to avoid the unforeseen obstacle.

Planning at multiple levels has computational advan-
tages (several small problems rather than one large one)
and is also far more flexible, especially if the environment
changes. It is not only useful in route finding but also in
other problems such as assembly tasks.

One way to handle local planning is to give a robot a
desired direction of travel and a set of avoidance rules for
obstacles. For example, a rule could be:

1. where possible move towards target
2. if you encounter an obstacle:

2.1. move back 1 unit
2.2. move sideways for 5 units
2.3. resume preferred direction

By “back” and “sideways” we mean that the robot de-
termines (with sensors) in which direction the obstruct-
ing object lies and moves first directly away from it (back)
and then at 90∘ to it (sideways). Such a path is illustrated
in Figure 15.6.

FIGURE 15.6 Local planning to avoid obstacles.

Notice how this algorithm could get stuck in a deep
alcove. If it entered an alcove (concavity), the backward
movement at step 2.1 might not be enough to get it out,
and so the robot would never escape. It is precisely this
behaviour that would have to be detected in order to
restart global planning.

In the above example, the robot only noticed the ob-
stacle when it hit it. This may be sufficient in some appli-
cations, but more generally some remote sensing would
be employed, perhaps vision or sonar. This is particularly
important if the obstacles are not stationary. It is no good
avoiding a bus after it has hit you! In fact, local avoidance
algorithms can be adapted quite easily to handle moving
objects. The exact form of the algorithm will depend on
the sensors available. Let’s assume that the robot can de-
tect objects that are within a certain distance of it and
can determine their speed and direction. An avoidance
algorithm could be:

1. where possible move towards target
2. when an object is detected and a collision

is imminent
2.1 either (i) move directly away from it

(escaping)
or (ii) move normal to it

(dodging)
2.2 when the collision has been avoided

resume preferred direction

First of all, when an object is detected, the robot must
determine whether a collision is likely. This depends on
the velocity of the object and the current velocity of the
robot. It may be that the object will not cross the robot’s
path or that the robot can move in front of the object
before the object arrives. One way to perform this calcu-

https://alandix.com/glossary/aibook/route planning
https://alandix.com/glossary/aibook/global planning
https://alandix.com/glossary/aibook/local planning
https://alandix.com/glossary/aibook/local planning
https://alandix.com/glossary/aibook/global planning
https://alandix.com/glossary/aibook/obstacle avoidance
https://alandix.com/glossary/aibook/obstacle avoidance
https://alandix.com/glossary/aibook/computer vision
https://alandix.com/glossary/aibook/sonar

Planning and Robotics ■ 227

FIGURE 15.7 Avoiding moving objects.
lation is to use configuration space techniques to expand
the object and then to subtract the two velocities to give
the velocity of the robot relative to the object. If the line in
the direction of the relative velocity meets the expanded
object, then a collision would occur. The distance to the
meeting and the magnitude of the velocity (speed) allow
one to work out how soon the collision will occur. There
may be several potential collisions, so rule 2.1 is applied
to the most imminent.

At step 2.1, two alternative avoidance mechanisms are
suggested. These are illustrated in Figure 15.7. The first
tries to get away from the oncoming object as fast as pos-
sible. It may not be optimal, but it is generally a good ap-
proximation to the fastest escape. The second is less dras-
tic: avoiding the path of the oncoming object rather than
running away. The second is more like stepping back
onto the pavement when you see a bus coming rather
than running down the road in front of it. It is suggested
[8] that (i) is better when a collision is imminent whereas
(ii) is better when the collision is some way off (and hence
one has more time to avoid it).

Notice how these local algorithms are all more
approximate than the global ones (which themselves
were inexact). They are reactive and rely on heuristics
rather than using prepared plans based on models of
the world. The local algorithms must typically execute
in real time; hence the need for simplicity. Also these
vague algorithms are more likely to be robust when the
assumptions they are based on are violated.

15.4.2 Finding Out about the World

Global planning algorithms depend on a model of the
world. Local algorithms do not build a global model, but
they react to local information. However, consider what
happens when the local algorithm reaches an impasse,

FIGURE 15.8 The real world and the model world.

say if the robot enters an alcove. At this stage some more
model-based planning is again required. However, it
must make use of the additional information gained
during the robot’s movements. Thus we see that the
robot’s model of the world is not static but changes as
it encounters and senses the environment. This sensing
could be deliberate (looking around) or a side effect of
locally planned movement.

The robot’s knowledge of the world grows as it senses
but is constantly getting out of date. Things move or
change, and so objects sensed some time ago may not
be where they were or even exist at all. The model is
therefore uncertain as well as incomplete. We can see
these two processes are constantly working against
one another: knowledge increases through sensing and
decays through ageing.

https://alandix.com/glossary/aibook/configuration space
https://alandix.com/glossary/aibook/avoidance mechanisms
https://alandix.com/glossary/aibook/heuristics
https://alandix.com/glossary/aibook/Global planning
https://alandix.com/glossary/aibook/robotics!sensing

228 ■ Artificial Intelligence

In Figure 15.8 we see these processes in action. The
robot in (i) initially can only see the two moving spheres
and the cubes. Its model of the world in (ii) is thus in-
complete. The robot then rotates to its right and the cone
comes into view. The robot’s model of the world is up-
dated accordingly. However, the spheres are moving and
so a few moments later the situation is as depicted in (iv).
Both spheres have moved and hence the robot’s model
of the world is now incorrect. Furthermore, one of the
spheres has just moved into the robot’s range of vision. Is
it the same sphere as before?

Obviously the robot’s model of the world must include
not only the objects’ positions but also their speeds and
some estimate as to whether these are likely to stay
constant. If watching a game of snooker, the table is
likely to stay where it is, the balls will keep moving in the
same direction until they hit something, but the players
may change their positions and speeds erratically. For a
mobile factory floor robot, information about the floor
layout and other fixtures (shelves, etc.) can be explicitly
given and amended when necessary. However, other
environments are less predictable. One use of robots is
in hazardous environments, perhaps after some nuclear
or chemical accident. In such a situation, floor plans are
at best tentative: walls or even the floor itself may have
collapsed!

The representation within the robot’s memory is
clearly far more complex than when the environment
is fixed and known. The exact choice of representation
will depend on a variety of factors, not only the internal
AI-related ones (reasoning style, search algorithms, etc.)
but also external factors (the types of objects in the envi-
ronment, the nature and accuracy of sensors). However,
we can consider two broad classes of representation:
historical and current state.

A historical representation will keep track of what has
been observed and when, together with the accuracy of
sensor. At any moment, the robot can estimate the cur-
rent positions of any objects based on their known past
locations. For example, the model of the world at step
(iv) in Figure 15.8 could be represented as a collection
of location and velocity data for each object, as shown in
Table 15.2.

Notice how the position and velocity of each object
have accuracy measures. In this case, the error in velocity
is greater for most objects, presumably because the sen-
sor is less accurate at measuring velocity. Both the box
and the cone have a measured velocity of zero, but the

TABLE 15.2 Object Location and Velocity Data. (Note error
values also recorded for each.)
time object id type position velocity

(x,y) error (x,y) error
1 #317 ball (3.3,3.2) 0.1 (−0.5,1.0) 0.2
1 #318 ball (2.8,2.0) 0.1 (0,−0.5) 0.2
1 #319 box (3.7,1.7) 0.1 — 0.0
2 #320 cone (1.5,0.5) 0.1 (0,0) 0.2
3 #321 ball (2.7,0.7) 0.1 (0.1,−0.8) 0.2

box’s error figure for velocity is zero because (in this en-
vironment) it is known that boxes never move, whereas
the cone is a potentially mobile object that just happens
to be (sensed as) stationary.

In the alternative, current state representation, the
robot would keep similar information, but at each time
step, it would update the current position of each object
based on its last known velocity.

For example, at time 2, the state of ball #318 would be
recorded as:

id type position velocity
(x,y) error (x,y) error

#318 ball (2.8,1.5) 0.3 (0,−0.5) 0.2

See how the position of the object has been updated
by adding the velocity. However, its error figure has also
been increased as the velocity itself is uncertain. Notice
that the representation does not keep track of the time
the object was observed. This is unnecessary as the pas-
sage of time is recorded implicitly in the updated po-
sition. The updates in estimated position and velocity
might be more complicated. For example, some objects
(such as people or other robots) are likely to change ve-
locity spontaneously and for such objects the uncertainty
in velocity would increase accordingly.

With the historical representation, one is never com-
mitted permanently to an interpretation of the evidence.
If at time 3 the robot decided that balls #318 and #321
were the same object, it could still change its mind when
at time 4 another ball (even more similar to #318) ap-
peared in view. In contrast, a single model of the world
constantly commits the robot to particular interpreta-
tions. Once it had decided that the new ball was the same
as #318, it would simply update ball #318’s position and
velocity to reflect the new observation. All memory of
the original two observations would be lost.

However, the historical representation is very ineffi-
cient. It requires the robot constantly to recalculate the

https://alandix.com/glossary/aibook/robotics!memory
https://alandix.com/glossary/aibook/sensor accuracy
https://alandix.com/glossary/aibook/robotics!historical representation
https://alandix.com/glossary/aibook/robotics!current state representation
https://alandix.com/glossary/aibook/historical representation
https://alandix.com/glossary/aibook/sensor accuracy
https://alandix.com/glossary/aibook/sensor accuracy
https://alandix.com/glossary/aibook/accuracy
https://alandix.com/glossary/aibook/current state representation
https://alandix.com/glossary/aibook/uncertainty
https://alandix.com/glossary/aibook/historical representation
https://alandix.com/glossary/aibook/historical representation

same projections from past data. Also, at some point it
will need to forget past observations. The current state
representation has some pruning problems in that it can’t
track every object it has ever seen but it is clearly far eas-
ier and more efficient to manage.

In practice, a system might involve a combination of
a model of the current state for rapid real-time response
together with some limited historical information in case
it needs to reconsider past judgements. What about you?
Which representation do you use as you walk in a busy
street or drive a car?

15.5 LIMBS, LEGS AND EYES
We have discussed how robots plan how to perform tasks
involving picking up and moving objects, how they plan
how to move about in the world and how they look at
different parts of the world in order to build up their
knowledge. Each of these activities involves the control
of physical transponders and sensors. The construction
of these is a significant engineering problem, especially
where the robot is expected to operate in a hostile envi-
ronment. However, this is general robotics and beyond
AI, so we will just consider the issues of control.

15.5.1 Limb Control

Consider a simple robot arm as illustrated in Figure 15.9.
This has three main degrees of freedom: the arm is
mounted on a rotating section of the robot which can be
set to any angle 𝜃, the arm can move up and down by an
angle 𝜙 and can extend by moving the smaller cylinder
in and out of the larger by a distance b. In addition, the
“hand” at the end can open and close. Other important
dimensions are marked on the diagram: the radius
of the centre section r, the length of the unextended
arm a and the height h of the centre section from the
floor.

In order to pick up an object we need to move it to
a particular position in space. We can calculate the co-
ordinates of the end of the arm using trigonometry:

x = [r + (a + b) cos 𝜙] sin 𝜃
y = [r + (a + b) cos 𝜙] cos 𝜃
z = h + (a + b) sin 𝜙

Thus, if we have a particular position we want to move
to, we can solve these equations to find the right values
of 𝜃, 𝜙 and b. This is messy but not too difficult:

Planning and Robotics ■ 229

FIGURE 15.9 Calculating limb positions.

𝜃 = arctan(x/y)

𝜙 = arctan[(z − h)/(√x2 + y2 − r)]

b = √(√x2 + y2 − r)2 + (z − h)2 − a

Unfortunately, it gets worse. This is the very simplest
an arm can be; you need at least three degrees of
freedom to have any chance of reaching within a
three-dimensional world. In addition, one often needs
some control of the orientation of the hand at the end
– some kind of wrist. Let’s assume we add some more
movement at the wrist. Say we want to pick up a suitcase.
The hand must be pointing directly down and opened
so that the “fingers” close on the handle. However, it is
no good simply turning the wrist at 90∘ to the arm. We
need to take into account the angle 𝜙 of the arm. Also,
the robot on which this diagram is based has two arms,
offset from one another (see Figure 15.10), each with a
full ball joint instead of just up and down movement.
To make matters worse, the robot will move about and
change its orientation.

Working out the final position and orientation of the
hand, given all these movements, is a nightmare. Revers-
ing the process to work out the desired movements to get

https://alandix.com/glossary/aibook/current state representation
https://alandix.com/glossary/aibook/current state representation
https://alandix.com/glossary/aibook/pruning
https://alandix.com/glossary/aibook/degrees of freedom (robotics)
https://alandix.com/glossary/aibook/degrees of freedom (robotics)
https://alandix.com/glossary/aibook/degrees of freedom (robotics)

230 ■ Artificial Intelligence

FIGURE 15.10 Robot with two limbs.

to any position is even worse! The problem can be simpli-
fied by breaking the process down into steps using differ-
ent co-ordinate systems. You start with a position in the
world’s co-ordinate system. You then take into account
the position and orientation of the robot to work out the
desired position relative to the robot. If the robot has sev-
eral joints, you translate the position into co-ordinates
relative to each joint in turn, eventually getting the po-
sition relative to the hand. Similarly, you can reverse the
process to work out the position of the hand in the world.
There are special languages for programming industrial
robots that include particular constructs for moving be-
tween different co-ordinate systems.

Translation between co-ordinate systems does not
solve the problem entirely. The equations for calculating
the relevant joint angles and extensions for any desired
position are still complicated. However, even if one
solves the equations exactly the results may not be
perfect. Joints have play in them, limbs may flex under
strain. When people pick things up, they rely not so
much on accurate calculation but on feedback. We are
constantly monitoring and correcting our behaviour.
Preplanning everything is called open-loop control,
whereas relying on feedback is called closed-loop
control. If the environment is very controlled and
predictable, say on some production line robots, open-
loop control can be effective. However, in general,
closed-loop control is far more robust.

For a robot, there are two kinds of feedback: local
feedback on a particular joint, which can be used to
ensure that the joint is positioned as you want; and
global feedback, perhaps through visual sensors, of
the relative position of the hand and the target. Local
feedback is effectively giving you a more accurate and
reliable motor, so does not dramatically affect the style
of planning. Global feedback, however, allows more
goal-directed behaviour. It is often easier to solve the
reverse equations for small movements, and so one

FIGURE 15.11 Compliant motion.

can incrementally move the hand towards the desired
position.

Of special importance is the pressure feedback
when the hand grasps an object or when a held object
is being placed. Imagine picking up an egg without
such feedback! If such sensors are too expensive, or
impractical because of the environment, the robot’s
hands must be padded or sprung to avoid damage
to itself or the work piece. Effective use of this feed-
back can make positioning of objects far easier. For
example, to place a peg in a hole, one can push the
peg along the surface until it catches in the hole (see
Figure 15.11), and then rotate it until it slides in.
Without pressure feedback the robot would gouge the
peg into the surface! This use of feedback to allow
things to be naturally slid into place is called compliant
motion.

15.5.2 Walking – On One, Two or More Legs

The robot featured in Figures 15.8–15.10 moves around
skimming the ground using electrostatic levitation.
Other robots use wheels or tracks. However, all have
a distinct problem with stairs, and there has long
been an interest in various designs of robots with legs.
Pragmatically, this allows the robot to manage in very
rough terrain, but also the study of robots with large

https://alandix.com/glossary/aibook/feedback
https://alandix.com/glossary/aibook/open-loop control
https://alandix.com/glossary/aibook/feedback
https://alandix.com/glossary/aibook/closed-loop control
https://alandix.com/glossary/aibook/closed-loop control
https://alandix.com/glossary/aibook/open-loop control
https://alandix.com/glossary/aibook/open-loop control
https://alandix.com/glossary/aibook/closed-loop control
https://alandix.com/glossary/aibook/robotics!feedback
https://alandix.com/glossary/aibook/local feedback
https://alandix.com/glossary/aibook/local feedback
https://alandix.com/glossary/aibook/global feedback
https://alandix.com/glossary/aibook/Local feedback
https://alandix.com/glossary/aibook/Local feedback
https://alandix.com/glossary/aibook/Global feedback
https://alandix.com/glossary/aibook/pressure feedback
https://alandix.com/glossary/aibook/pressure feedback
https://alandix.com/glossary/aibook/compliant\protect \penalty -\@M motion
https://alandix.com/glossary/aibook/compliant\protect \penalty -\@M motion

numbers of legs has given some insight into the way
lower animals function. One can identify four styles of
robot by counting legs:

one leg – good for trying out ideas but not very practical

two legs – for humanoid robots and animations

four to eight – practical robots for difficult terrain

lots of legs – study of lower animals and distributed
control

The earliest attempts at walking robots used detailed
physical models of the robots’ dynamics. If one knows
the masses of all the components that make up the robot
and can control the forces that it exerts on the floor, then
it is possible to predict how a particular movement of the
legs will move the robot as a whole and hence work out
which forces on which joints will make the robot walk in
a particular direction. Of course, as in the case of limbs,
this involves co-ordinate translations based on all the
joint angles and lots of trigonometry.

The robots usually fell over.
In fact humans fall over too, but we are expecting it

and can catch ourselves before we go too far. Indeed, one
way of thinking about walking is that you are constantly
standing on one leg and falling over in the right direction,
and then moving the other leg forward to catch yourself
before you fall too far. This form of reactive movement
is based again on feedback and closed-loop control and
is thus far more robust than the use of detailed dynamic
models.

The trouble is that even if a model is entirely accurate,
it is expensive to calculate in real time (if you don’t do
the calculations fast enough, you fall over!) and is diffi-
cult to adapt to changing circumstances. Consider what
happens when you pick up a heavy object, move your
arms so that your centre of gravity moves or walk out of
a building into a high wind. In each case, the dynamics
of your body have changed which, for a model, would
require extensive recalculations.

In contrast, reactive motion is based on fuzzy rules.
For example, some of the rules for standing still might
be:

• if you are falling forwards, slowly push down on the
front of your feet

Planning and Robotics ■ 231

• if you are falling sideways, take a step in the relevant
direction.

The rules are not designed to stop you from moving at
all (equilibrium) but to keep you constantly moving back
towards the desired position (homeostasis).

Detailed physical models still have a part to play in
robotic movement. Building robots is expensive and
time consuming. Furthermore, trying out new control
algorithms on possibly fragile experimental robots is
not to be recommended. A detailed model of a robot’s
dynamics can be used to simulate different designs of
robot and the effects of different control algorithms.
Indeed, sometimes the simulation is all that is required,
for example early work in this area was developed to
address the need for lifelike animations in CGI movies
[135]. However, simulations can also be used to train
algorithms which will eventually be used in physical
robots. For example, the AIs in the robots that compete
in the annual RoboCup football tournament are usually
initially trained on simulated football matches [109].

This approach is also used for training autonomous
vehicles. The vision systems for these are trained using
many thousands of hours of actual in-vehicle video, but
infrequent yet critical incidents, notably accidents, are by
their nature, and desirably, rare. Simulations based on
games and VR engines can be used to augment the train-
ing, especially for these critical incidents. This example
brings up several issues for any such simulation-based
training of robots or autonomous vehicles:

ground truth – The world in the simulation is generated
and thus known perfectly. This is in some ways bet-
ter than real-world training, where a large volume
of material is unlabelled.

sensing – While the simulator knows everything, it is
important that the robot in the simulation does not.
The simulation must therefore emulate the sensing
capabilities of the robot, including inaccuracy and
noise. For the case of autonomous cars this is usually
the video view, which VR and games engines are
designed to do anyway for the human player.

other agents – The other agents in the environment
must not only look real but behave in realistic ways
so that the training is appropriate. For example,
someone crossing the road and then noticing a car
approaching may freeze or take a step back. If the

https://alandix.com/glossary/aibook/reactive movement
https://alandix.com/glossary/aibook/feedback
https://alandix.com/glossary/aibook/closed-loop control
https://alandix.com/glossary/aibook/equilibrium
https://alandix.com/glossary/aibook/homeostasis
https://alandix.com/glossary/aibook/autonomous vehicles
https://alandix.com/glossary/aibook/autonomous vehicles
https://alandix.com/glossary/aibook/computer vision
https://alandix.com/glossary/aibook/autonomous vehicles
https://alandix.com/glossary/aibook/ground truth

232 ■ Artificial Intelligence

FIGURE 15.12 Resolving ambiguity.

simulated person simply continued at a fixed pace,
the in-vehicle system could learn behaviours (such
as cutting close behind the pedestrian) that would
be dangerous in real life. We will return to this issue
in Chapter 16.

15.5.3 Active Vision

Computer vision is discussed in detail in Chapter 12.
However, the discussion is focused on algorithms to in-
terpret an image or set of images that were presented to
them – a fait accompli. However, where the camera or
cameras are fitted on a moving robot, the movements
can be planned deliberately to aid the vision process, for
example to peek around corners. Similarly, even when
cameras are fixed, there may be some control of their di-
rection, zoom and focus.

In Chapter 12 we saw how some scenes were difficult
to interpret. In Figure 15.12 we see one such scene. The
original image on the left is ambiguous. There is no obvi-
ous three-dimensional interpretation of the scene. How-
ever, if the camera is moved slightly to the left, the result-
ing image is far more easily understood. The confusing
cross-junction in the middle has been resolved into two
separate fork junctions.

This disambiguation may occur naturally as the re-
sult of stereo vision or pre-programmed camera move-
ment, but if the vision system can control the camera, it
can deliberately seek the necessary evidence. In fact, Fig-
ure 15.12 is rather like those intriguing photographs of
everyday objects taken from strange angles. In ordinary
life one rarely encounters such effects, as when they oc-
cur one automatically moves slightly to obtain a better
perspective.

Recall that in Figure 15.8(ii), the robot moved its per-
spective in the world and was thus able to build more
complete model of the world. This change in perspec-
tive might be an accident of actions that the robot is do-
ing anyway, but might be a deliberate attempt to find out
more about the world, just like the human moving their

head. In ecological psychology this is called epistemic ac-
tion, actions in order to gain information. This might be
as simple as moving your head but might include mov-
ing around the environment to find out more. Often in
algorithms, both physical and virtual, one makes choices
between exploration and exploitation.

The scenario above used horizontal movement of the
camera. Camera heads may allow control over several
other degrees of freedom:

• fixation – the point at which the camera is “looking”

• vergence – the horizontal angle between two cam-
eras in a stereo head, which allows both cameras to
fixate on one object

• cyclotorsion – the ability to rotate the camera and
thus the horizon

• zoom – increasing the size of distant images

• focus – the distance at which objects are sharp im-
ages

• aperture – controls the amount of light entering the
camera and also the depth of field (what is in focus
simultaneously).

All of these can be used to give additional information
for image processing, or to make the raw image more eas-
ily processed. Controlling the point of fixation allows one
to track a moving object, which might otherwise move
out of view. This is especially important when it is not
easily matched, say a human figure that changes shape
as it walks. The angle of vergence when two cameras are
fixated on the same object allows easy calculation of dis-
tance by triangulation. The matching of objects in the
two stereo images is important for this and other stereo-
scopic effects. However, if the cameras are not perfectly
horizontally aligned, this can be very difficult. Cyclotor-
sion allows the cameras to compensate for inaccuracies
and any flexing in their supports in order to align the
horizon in the two images.

The remaining three effects allow one to examine par-
ticular objects in detail. Use of zoom can allow one ei-
ther to scan a large area at low resolution or to examine
a particular object in detail, as a small part of the im-
age is spread over all the pixels in the image. Controlling
the focus especially allows one to sharpen up the edges
in an object of interest and even obtain an estimate of

https://alandix.com/glossary/aibook/Computer vision
https://alandix.com/glossary/aibook/computer vision
https://alandix.com/glossary/aibook/zoom
https://alandix.com/glossary/aibook/focus
https://alandix.com/glossary/aibook/ambiguity!in computer vision
https://alandix.com/glossary/aibook/disambiguation
https://alandix.com/glossary/aibook/stereo vision
https://alandix.com/glossary/aibook/computer vision
https://alandix.com/glossary/aibook/epistemic action
https://alandix.com/glossary/aibook/epistemic action
https://alandix.com/glossary/aibook/exploration
https://alandix.com/glossary/aibook/exploitation
https://alandix.com/glossary/aibook/degrees of freedom (robotics)
https://alandix.com/glossary/aibook/fixation point
https://alandix.com/glossary/aibook/vergence
https://alandix.com/glossary/aibook/cyclotorsion
https://alandix.com/glossary/aibook/zoom
https://alandix.com/glossary/aibook/focus
https://alandix.com/glossary/aibook/aperture
https://alandix.com/glossary/aibook/depth of field
https://alandix.com/glossary/aibook/focus
https://alandix.com/glossary/aibook/vergence
https://alandix.com/glossary/aibook/Cyclotorsion
https://alandix.com/glossary/aibook/Cyclotorsion
https://alandix.com/glossary/aibook/zoom
https://alandix.com/glossary/aibook/camera!focus

depth from monocular vision. By adjusting the thresh-
olds for edge detection, the blurred edges will not be reg-
istered, hence aiding the separation of an object from
its background (called figure–ground separation). This
is enhanced if the aperture can be adjusted. Once the ob-
ject is in focus, the aperture can be opened up to make
all other objects more blurred. However, the aperture is
probably more important for level control, ensuring that
neither too little nor too much light gets to the camera. In
many cameras this is automatic, but if the aperture can be
controlled by the vision system, then it can be adjusted
to favour interesting parts of the scene. (NB: Our eyes do
not allow this degree of high-level control.)

Most camera heads do not have all of these degrees
of freedom, but many mobile phones have multiple
cameras, game controllers often have stereo cameras
for depth perception and security cameras are often
motorised to allow panning.

15.6 PRACTICAL ROBOTICS
The leading edge of robotics research is designing vehi-
cles that guide themselves over the surface of Mars or
micro-robots to travel through human arteries scraping
and cleaning, but the majority of robots are far more pro-
saic. Rather than designing general purpose robots that
can operate in unforeseen environments, it is usually bet-
ter to aim for specific jobs and to control the environ-
ment. Indeed, as we have seen, real robots may not look
like robots at all. Autonomous cars are designed to work
in the (relatively) constrained environment of a road sys-
tems, including using lane markings and other features
designed for human-controlled cars. They are pushing
the limits of AI, but you would not expect a car to wash
the dishes.

15.6.1 Controlling the Environment

We have already discussed in Chapter 12 how control of
light levels and object positioning can make industrial
vision easier and more cost effective. The same applies
to other areas of robotics. Suppose you want a robot to
move materials around in a warehouse. First of all, you
are unlikely to choose a robot with two arms and two legs.
A wheeled robot with a forklift is a much more practical
arrangement.

What about navigation? A general purpose route plan-
ner with sophisticated visual input seems like a neat idea,
but why not simply paint white lines on the floor that a

Planning and Robotics ■ 233

FIGURE 15.13 Designing for easy assembly.

trivial image processing system can follow. The only real
disadvantage of such a system is that the lines get dirty,
but there are various electronic alternatives.

There is a similar tale for manipulation tasks. Just as
with manual assembly, a simple redesign of a compo-
nent may make assembly tasks far easier. For example,
consider screwing a bolt into a threaded hole. If the hole
is simply drilled into the metal, the screw has to be po-
sitioned very accurately in order to ensure it fits prop-
erly; a slight inaccuracy to either side will mean that the
screw simply spins against the surface of the metal. How-
ever, taper the end of the screw slightly and counter-
sink the hole and suddenly the accuracy required reduces
dramatically (see Figure 15.13). Basically, one is design-
ing the system so that compliant motion is successful.
The greater margin for error means higher reliability and
cheaper robots.

There is of course a trade-off between flexibility and
economy. It is usually the case that a specialised tool
costs less than a general purpose one. But whereas
at one stage production lines involved many highly
specialised tools, now the move is towards more flexible
manufacture. Tools are still specialised, but far more
flexible and easily reprogrammed. Successful industrial
robotics requires robots that are just general enough to
do the range of tasks that they are likely to encounter.
However, as more general purpose robots become
cheaper and more reliable, the balance of economics
may swing even further along the path of generality.

15.6.2 Safety and Hierarchical Control

Industrial robots, like all industrial equipment, are dan-
gerous. They can hurt people, damage their workplace

https://alandix.com/glossary/aibook/monocular vision
https://alandix.com/glossary/aibook/edge detection
https://alandix.com/glossary/aibook/figure--ground separation
https://alandix.com/glossary/aibook/aperture
https://alandix.com/glossary/aibook/camera!focus
https://alandix.com/glossary/aibook/aperture
https://alandix.com/glossary/aibook/aperture
https://alandix.com/glossary/aibook/aperture
https://alandix.com/glossary/aibook/computer vision
https://alandix.com/glossary/aibook/depth perception
https://alandix.com/glossary/aibook/accuracy
https://alandix.com/glossary/aibook/compliant motion
https://alandix.com/glossary/aibook/industrial robotics
https://alandix.com/glossary/aibook/industrial robotics

234 ■ Artificial Intelligence

or themselves. However, they act within controlled en-
vironments where the issues of safety are at least well es-
tablished if not universally adhered to. As we begin to
consider mobile robots working among other workers,
perhaps even in the outside world, the issues of safety
become central.

First of all, this re-emphasises the importance of
feedback rather than open-loop control. Dangerous
situations are most likely to arise when the environment
changes in an unforeseen way. Furthermore, such
situations often require rapid responses; possibly
the normal planning cycles may be too slow. We
may not even trust the planning totally. As we have
seen, the best algorithms usually involve a mixture of
heuristics and uncertain reasoning. They do not always
guarantee correct behaviour even when programmed
correctly, and who really trusts several thousand lines
of LISP code, let alone a billion weights in a neural
network.

One solution is to establish a software ring-fence
around the normal planning activities. When a danger-
ous situation is detected, a high-level control process
takes over and performs some special action. This may
be some form of avoidance behaviour or most likely
stopping the machine dead. The safety sensors may be
based on proximity sensors or based on unexpected
resistance to movement. You will almost certainly have
encountered such sensors built into lift doors (another
robot to get inside of!). The important thing is that
the higher levels of control are simple and reliable. We
can afford to use clever algorithms at the lower levels
so long as we know that we are protected from their
malfunction.

15.7 SUMMARY
Real robots do not usually walk about on two legs and fire
rayguns. Most are in fixed positions on assembly lines, or
moving along marked tracks in warehouses. Many have
little “intelligence”, but obey pre-programmed actions.

Global planning operates by having a complete model
of the world, planning what to do, and only then doing
it. Means–ends analysis can be used to plan sequences of
actions to achieve a desired end state. This can include
knowledge about the positions of objects and physical
constraints. Configuration spaces can be used to plan
routes where obstacles block the way.

Local planning is more opportunistic. The robot has
a general goal and tries to move towards it reacting to

problems as they arise. Routes can be found past obsta-
cles by having a desired direction and then simply chang-
ing direction when an obstacle is encountered. Avoid-
ance rules can be added to allow for moving obstacles.
While a robot moves about, it can find out more about
the world (sensing), but also its model of the world may
become inaccurate as objects move about (ageing).

Controlling a robot’s limbs is not intrinsically difficult
but typically involves a complicated series of translations
between co-ordinate systems. Feedback can be used to
compensate for slackness and inaccuracy and also facil-
itate local planning. It allows closed-loop control, which
is more robust than preplanned open-loop control. Pres-
sure feedback is especially useful, as it allows compli-
ant motion to be used to position objects. Many mo-
bile robots use wheels or tracks, but some walk on one,
two or more legs. Again, it is usually best not to preplan
movements but instead constantly start to fall over and
recover. Active vision uses the movement of the robot
or camera adjustments to give more information about a
scene and resolve ambiguities.

In practical situations it is often better to design a suit-
able environment for a simple robot than to use a more
complicated one. Simpler robots are usually cheaper but
will be less flexible. Industrial robots can be dangerous,
and several levels of control may be necessary.

15.1 Produce an operator table for the Towers of
Hanoi problem similar to the blocks world one
in Table 15.1. To make it similar to the blocks
world think of it as the Tables of Hanoi problem
with three tables rather than three towers. Use
the same two operations as in Table 15.1, but the
“on_table” predicate will have an extra parameter:
“on_table(T,R)” where “T” will be a particular
table and “R” a ring. You will also need a predicate
“bigger_than(R1,R2)” to record which rings are
bigger and will have to ensure that you do not put
more than one object on top of another.

15.2 Use your operator table and means–ends analysis
to solve the three ring problem given the starting
state

on_table(1,big) ∧ on_top(small,middle) ∧
on_top(middle,big)
∧ bigger_than(big,middle) ∧ big-
ger_than(middle,small)
∧ bigger_than(big,small)

https://alandix.com/glossary/aibook/feedback
https://alandix.com/glossary/aibook/open-loop control
https://alandix.com/glossary/aibook/heuristics
https://alandix.com/glossary/aibook/uncertain reasoning
https://alandix.com/glossary/aibook/LISP
https://alandix.com/glossary/aibook/neural\protect \penalty -\@M network
https://alandix.com/glossary/aibook/neural\protect \penalty -\@M network
https://alandix.com/glossary/aibook/software ring-fence
https://alandix.com/glossary/aibook/Global planning
https://alandix.com/glossary/aibook/Means--ends analysis
https://alandix.com/glossary/aibook/constraints
https://alandix.com/glossary/aibook/Configuration spaces
https://alandix.com/glossary/aibook/Local planning
https://alandix.com/glossary/aibook/Avoidance rules
https://alandix.com/glossary/aibook/Avoidance rules
https://alandix.com/glossary/aibook/moving obstacles
https://alandix.com/glossary/aibook/Feedback
https://alandix.com/glossary/aibook/local planning
https://alandix.com/glossary/aibook/closed-loop control
https://alandix.com/glossary/aibook/open-loop control
https://alandix.com/glossary/aibook/Pressure feedback
https://alandix.com/glossary/aibook/Pressure feedback
https://alandix.com/glossary/aibook/compliant motion
https://alandix.com/glossary/aibook/compliant motion
https://alandix.com/glossary/aibook/Active vision
https://alandix.com/glossary/aibook/Towers of Hanoi
https://alandix.com/glossary/aibook/Towers of Hanoi
https://alandix.com/glossary/aibook/means--ends analysis

FIGURE 15.14 For exercise 3.

and goal state

on_table(2,big) ∧ on_top(small,middle) ∧
on_top(middle,big)

15.3 Consider the shaded rectangle in Figure 15.14.
Draw configuration spaces for each of the robot
shapes to the right of the rectangle.

15.4 Collect different everyday items, screws, bolts,
plugs, lids. Do they exhibit good design for
compliant motion – like the screw in the lower
illustration of Figure 9.12 or are they more like in
the top pictures! (Good class exercise)

FURTHER READING

B. Siciliano O. Khatib and T. Kröger, editor. Springer handbook
of robotics. Springer SHB:200, Berlin, 2008.
Definitive edited collection in the area, the first part
‘Robotics Foundations’ offers greater detail on the topics
covered here while succeeding parts look at more advanced

Planning and Robotics ■ 235

topics such as soft-robotics, specialised application areas
and human–robot interaction.

Newell and H. A. Simon. GPS: A program that simulates hu-
man thought. In E. A. Feigenbaum & J. Fieldman, edi-
tors, Computers and thought, pages 279–293. McGraw-
Hill, New York, 1963.

A. Newell and H. A. Simon. Human problem solving. Prentice-
Hall, Englewood Cliffs, NJ, 1972.
GPS, the General Problem Solver, was an early model that
used means–ends analysis to emulate aspects of human
planning.

R. E. Fikes and N. J. Nilsson. STRIPS: A new approach to the
application of theorem proving to problem solving. Arti-
ficial Intelligence, 2: 189–208, 1971.
STRIPS applied techniques developed in GPS to planning
in the blocks world as described in this chapter.

T. Lozano-Pérez. Spatial planning: A configuration-space ap-
proach. IEEE Transactions on Computers, 32(2), 108–
120, 1983.
Original work on configuration space.

H. I. Christensen, K. W. Bowyer, and H. Bunke, editors. Active
robot vision: Camera heads, model based navigation and
reactive control. World Scientific Singapore, 1993.
An early collection of articles that deal with both move-
ment (local planning and obstacle avoidance) and vision
(the problems and also the leverage that can be obtained
by using active vision).

Rodney A. Brooks. Cambrian intelligence: The
early history of the new AI. MIT Press, 1990.
DOI:10.7551/mitpress/1716.001.0001

An alternative view of AI from a robotic perspective, in
particular considering machines that behave intelligently
without explicit internal representations.

https://alandix.com/glossary/aibook/goal state
https://alandix.com/glossary/aibook/compliant motion
https://alandix.com/glossary/aibook/soft-robotics
https://alandix.com/glossary/aibook/means--ends analysis
https://alandix.com/glossary/aibook/configuration space
https://alandix.com/glossary/aibook/local planning
https://alandix.com/glossary/aibook/obstacle avoidance
https://alandix.com/glossary/aibook/computer vision
https://alandix.com/glossary/aibook/active vision

CHAP T ER 1 6

Agents

16.1 OVERVIEW
In the previous chapter, we considered individual robots
planning and acting in the real world. In this chapter, we
look at three related areas.

Software agents are autonomous entities that inhabit
and act on the electronic world on our behalf. Obviously
route planning is not usually necessary for such agents,
although they do need some means to choose their ac-
tions. The examples we shall consider use a mixture of
ad hoc rules and machine learning techniques.

Agents often need to be able to function in new envi-
ronments, physical and digital, by experimentation. We
shall see how reinforcement learning intersperses action
and learning.

In the last part of the chapter, we shall look at what
happens when agents (whether electronic or physical) act
together. We shall see that they are more than the sum of
their parts and can work together to achieve co-operative
purposes.

16.2 SOFTWARE AGENTS
The word robot means worker. As well as working
for us in the real world, AI can be used to develop
independent entities that work for us in the virtual
world of information spaces. These are often called
software agents, or simply agents (although the word
agent is rather overloaded in AI). The term robotic
process automation is also used in commercial systems.
These agents can be used to sort your (electronic)

mail, perform repetitive tasks, search databases for
interesting information or manage your diary. These are
all applications where the agent is “visible” to the user of
a system, a sort of helper. The word agent is also often
used where a system is split into several co-operating
subprograms or agents. We will discuss this case, where
the agents are co-operating with one another, later
in this chapter. In this section we’ll confine ourselves
to agents that interact with and work on behalf of a
computer user.

The simplest agents are not really intelligent at all.
Imagine you perform the same routine every week
to back up your computer files to an optical disk. So,
instead of performing the same actions again and
again, you write a script that is automatically invoked
at the same time each week. This is the simplest kind
of software agent. The ability to write such scripts has
been around since the earliest operating-system macro
languages and is available in various scripting systems
such as automator for MacOS. More end-user web
automation is also possible through tools such as IFTTT
(If This Then That) [141, 285], and the proliferation
of internet-connected devices (IoT – the internet
of things) will drive the need for the equivalent for
home-automation.

In the rest of this section we will consider the
reasons for the interest in agents and the different
sorts of events that trigger agents to act. We will
then look at email filtering agents as an example of
learning, and agents for searching large information
spaces.

16.2.1 The Rise of the Agent

Is the use of the word “agent” just a buzzword or sales
gimmick? In fact, there are some recent developments

DOI: 10.1201/9781003082880-19 236

https://alandix.com/glossary/aibook/robots
https://alandix.com/glossary/aibook/Software agents
https://alandix.com/glossary/aibook/agents!action
https://alandix.com/glossary/aibook/route planning
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/reinforcement learning
https://alandix.com/glossary/aibook/software agents
https://alandix.com/glossary/aibook/robotic process automation
https://alandix.com/glossary/aibook/robotic process automation
https://alandix.com/glossary/aibook/script
https://alandix.com/glossary/aibook/scripts
https://alandix.com/glossary/aibook/macro languages
https://alandix.com/glossary/aibook/macro languages
https://alandix.com/glossary/aibook/IFTTT
https://alandix.com/glossary/aibook/If This Then That
https://alandix.com/glossary/aibook/IoT
https://alandix.com/glossary/aibook/internet of things
https://alandix.com/glossary/aibook/internet of things
https://alandix.com/glossary/aibook/home-automation
https://alandix.com/glossary/aibook/trigger
https://alandix.com/glossary/aibook/agents!action
https://alandix.com/glossary/aibook/email filtering agents
http://dx.doi.org/10.1201/9781003082880-19

Agents ■ 237

that make the connotations of the word agent appropri-
ate:

• End-user orientation – Whereas the writing
of scripts in traditional operating systems was
confined to the system gurus, the emphasis is now
on the ordinary user. The user’s control may be
exercised using simple scripting languages or by
direct demonstration.

• Embodiment – Most graphical interfaces project a
very passive model. The user acts upon objects in
the interface. When the application does anything,
it is as a “tool”. However, complex and repetitive
tasks do not really fit into this model of the world.
It is thus natural to inhabit this virtual world with
agents to perform these tasks. In principle, to fit
within the model-world paradigm, these agents
should be visible. Indeed, over the years there
have been attempts to make this explicit including
Hewlett-Packard’s NewWave interface where agents
were presented as icons designed to look like a
secret agent; Microsoft’s Clippy [16] and the helpful
cat in the early programming-by-demonstration
system Eager [64]. However, none of these are still
used and successful systems seem to have textual
or graphical manifestations.

• Lostness – Most people only use and understand a
fraction of the functionality of a modern applica-
tion, and even where they know about features it is
often far from clear how to combine them to ob-
tain a particular effect. Hence the use of Wizards in
many products to guide and help the user, especially
for installation and set-up tasks. Similar trends can
be seen in information spaces. Even early hyper-
text systems, with relatively small numbers of doc-
uments, had problems with users getting lost, and
so some incorporated various forms of “guide” to
show you round. The problem is far worse on the
web and other internet information sources where
there are billions of web pages – where do you go to
find the information you want? Ask an agent.

• Intelligence – The scripting languages used for
programming agents are sometimes more like
code, sometimes more template/form-like and
sometimes more like natural language (although
the same was said of COBOL in the 1960s).

However, agents are also learning what to do in
more intelligent ways. The user may explicitly
demonstrate the required behaviour which the
agent later copies. Alternatively, the agent may
watch the user and learn the user’s habits and
preferences. It may then use this knowledge when
asked to perform a task, or even volunteer help.

Agents that address one or more of these issues are seen
by the users of a system to have some level of indepen-
dence. They are not just part of the system but act in and
on the system on behalf of the user. Where the sense of
embodiment is low but aspects of independent activity
and/or intelligence are apparent, it is perhaps better to
regard the system as exhibiting agency. For example, the
word processor being used for this chapter periodically
suggests saving the work so far. Another example is in
range selection in the Microsoft Excel spreadsheet. When
the user invokes the sum operator, the system suggests
(in the form of a highlighted selection) the range it thinks
the user wants. This is based on simple heuristics but has
the appearance of intelligent behaviour.

16.2.2 Triggering Actions

One key difference between a program or macro and an
agent is that the former only acts when told to, whereas
the latter acts independently. Another way of looking at
this is that a program is characterised by what it does,
whereas an agent is characterised by both what it does
and when it does it.

In addition, because agents have some form of con-
tinued existence over time, they usually have a persis-
tent state. Because of the similarities with object-oriented
programming, the scripts for actions that an agent per-
forms are often called methods, and the communications
between agents are called messages.

A typical life-cycle for an agent will be as follows. It
remains in a quiescent state until some event triggers it
into action. Depending on the nature of the event it then
performs one of its methods. This method will update
the internal state of the agent, and also possibly change
the state of other things, send messages to other agents
or interact with the user.

The event that triggers the method may be caused by
various things:

• User events – The user may explicitly ask the agent
to perform some task. This may result in some

https://alandix.com/glossary/aibook/scripts
https://alandix.com/glossary/aibook/agents!embodiment
https://alandix.com/glossary/aibook/NewWave interface
https://alandix.com/glossary/aibook/Microsoft Clippy
https://alandix.com/glossary/aibook/programming-by-demonstration
https://alandix.com/glossary/aibook/Eager
https://alandix.com/glossary/aibook/Wizards
https://alandix.com/glossary/aibook/hypertext
https://alandix.com/glossary/aibook/hypertext
https://alandix.com/glossary/aibook/World Wide Web
https://alandix.com/glossary/aibook/agents!action
https://alandix.com/glossary/aibook/Microsoft Excel
https://alandix.com/glossary/aibook/heuristics
https://alandix.com/glossary/aibook/object-oriented programming
https://alandix.com/glossary/aibook/object-oriented programming
https://alandix.com/glossary/aibook/scripts
https://alandix.com/glossary/aibook/agents!methods
https://alandix.com/glossary/aibook/agents!messages
https://alandix.com/glossary/aibook/event
https://alandix.com/glossary/aibook/triggers
https://alandix.com/glossary/aibook/event
https://alandix.com/glossary/aibook/triggers
https://alandix.com/glossary/aibook/User events

238 ■ Artificial Intelligence

instant action on the part of the agent (e.g.
searching a database) or may simply change the
internal state of the agent (e.g. setting criteria for
sorting incoming mail). Alternatively, the user may
engage in some action that the agent is monitoring.
For example, an intelligent tutor may notice that
a pupil has performed a task in an inefficient or
incorrect fashion and suggest alternatives.

• System events – Other events may occur that are not
directly caused by the user. For example, email may
arrive that the agent sorts into folders. Another
example would be where the user has initiated a
long-running computation (perhaps running a
large AI program!). When the execution is finished,
the agent examines its output and informs the user
if it is not as expected.

• Changes in status – The agent may constantly mon-
itor parts of the rest of the system and act when
certain changes occur. For example, if free disk
space falls below a certain level, an agent may com-
press infrequently used files. In a factory setting,
an agent may monitor various processes and warn
the operator if the values fall outside acceptable
limits.

• Timed events – The agent may perform repetitive
actions at regular intervals or at particular times.
For example, an agent may monitor your diary and
download necessary files to your laptop computer
for the next day’s meetings. Timed events may also
be used to trigger monitoring activities, such as
those discussed under the previous heading. This
polling activity should be distinguished from true
timed activity.

In addition to triggered actions, an agent may act con-
tinuously to gather information. This information may
come from the user or from the rest of the system. For ex-
ample, an agent may monitor the user’s interaction with
the system and notice frequently repeated actions. Later,
when the agent detects the user beginning a complex ac-
tion sequence, it can offer to complete the task for the
user.

16.2.3 Watching and Learning

We’ll look now at email filtering agents as an example that
you are likely to have encountered yourself. Studies of the

early introduction of email into institutions found that
there is little reduction in other forms of communication
but a continued growth in email messages. This is partly
because of the ease of replication. The photocopier and
the word processor each made their contribution to junk
mail, but neither so effectively as email! It is simply too
easy to include a large number of names when sending
an email or to mail to a distribution list of hundreds or
thousands of individuals. Sifting through the email each
morning is a major task, and that is even before looking
at numerous forms of messaging applications and social
media.

Just the job for an agent!
Most email systems allow the user to set up filters.

The email message has specific fields (“To:”, “From:”,
“Subject:”, etc.) and the user fills in a template, which
is then matched against incoming messages. If the tem-
plate matches, then whatever action the user has speci-
fied (say filing the mail in a particular folder) is carried
out. For example, a colleague of the authors got fed up
with receiving seminar announcements and so set up a
filter to delete all incoming messages that contained the
word “seminar”. Unfortunately, the agenda of an impor-
tant meeting included “seminars” as one of its items. The
announcement was discarded and the meeting missed!

Filtering may also be carried out by fixed rules. An
early research email system at Stirling University organ-
ised all mail messages into conversations – linked, often
branching, streams of messages [53]. If enough people
had had compatible mailers, these could have been used
to ensure that when a message was sent, it was added to
the appropriate conversation at the recipient’s end. How-
ever, email comes from so many disparate sources that
this was considered an over-restrictive method. Instead,
the system used simple rules to sort incoming messages
into conversations. An example rule was

if the new message (N) is ‘From:’ person A
and the last message (M) sent to person A

is in conversation C
then add N to conversation C linked after

message M

There were also rules concerning multiple recipients
so that messages from the same person to different
distribution lists could be filed successfully. Although
the rules were simple, they worked most of the time, and
the cost of a misclassified message was low (it was easy
to track all recent messages). Note that this is a general

https://alandix.com/glossary/aibook/database
https://alandix.com/glossary/aibook/System events
https://alandix.com/glossary/aibook/Changes in status
https://alandix.com/glossary/aibook/agents!action
https://alandix.com/glossary/aibook/Timed events
https://alandix.com/glossary/aibook/Timed events
https://alandix.com/glossary/aibook/trigger
https://alandix.com/glossary/aibook/agents!action
https://alandix.com/glossary/aibook/human--computer interaction
https://alandix.com/glossary/aibook/email filtering agents
https://alandix.com/glossary/aibook/social media
https://alandix.com/glossary/aibook/social media

rule – intelligent agents will not always be right, so make
sure it doesn’t matter when they are wrong (see also
Chap. 19).

Simpler versions of this kind of rule are used in Gmail
to group messages into threads, although looking at the
gap between the early work in this area and when it was
adopted in Gmail is an interesting story of the rate at
which new ideas are adopted, even in the digital world.

So, we’ve seen examples of agents that are told what to
do by the user and by the system’s designer. A more am-
bitious kind are those that attempt to work out what to do
themselves. Many email systems do this to help sort mail
into urgency categories. These are often seeded by fixed
rules, for example favouring mails with fewer recipients,
but over time they learn the user’s own preferences.

The user interacts with the mail system as normal.
Each mail message (or at least its header!) is read,
and the user performs some action to it, files it in
a particular folder, deletes it or possibly marks it as
urgent (if the system supports marking of messages).
The agent watches. After a while the system has a
collection of examples of the form: message⇒action.
This is ideal input for machine learning algorithm. The
agent can learn patterns in the user’s actions and then
automatically sort the mail – intelligent filtering

Of course, it’s not quite that simple! First, it is very im-
portant that the user retains a sense of control, especially
when the action is to delete a message! There are various
ways to achieve this. One way is for the agent to construct
filter templates and present these to the user for approval.
That is, the job of the learning agent is to simplify the task
of creating templates for the agent that does the actual
filtering. Another option is for the agent not actually to
perform the actions on the messages as they arrive but
simply to add a classification and offer a simple means
for the user to accept or reject the agent’s offered choice.
These issues of control and grace of interaction between
agent and user are common to any system that involves
learning user actions.

Another problem with learning filtering rules is
that the data within email fields are quite complicated.
The algorithm needs to be quite knowledgeable about
email addresses, since two different addresses may
refer to the same person (e.g. alan@hcibook.com and
alanjohndix@gmail.com). Also some of the fields may
contain lists of addresses or email distribution lists.
A simple application of machine learning would give
poor results without some of this information being

Agents ■ 239

taken into account. Furthermore, the most important
information is all in free text fields requiring complex
text matching algorithms. These are discussed in the
next section.

In practice these limitations mean that intelligent fil-
tering is still fairly limited, for example Gmail has four
fixed categories and Outlook only two (in addition to
spam filtering, which is managed differently). There is a
cost–benefit calculation here, missing important mails is
often worse than scanning a small number of less rele-
vant ones, so if you occasionally scan the less urgent cat-
egories, the cost of categorisation mistakes are low. Social
media filtering and ordering is much more aggressive as
the cost of failure, missing one among hundreds of posts
by contacts, is low ... until the day you miss a critical post
by a close friend.

16.2.4 Searching for Information

The amount of information available online is enormous.
The problem is finding what you want without wasting
time on the even more enormous amount of dross.
Agents have been posed as a solution to this problem,
and you may use these yourself, for example Google
alerts for interesting web content, job notifications from
employment sites or research articles recommended by
academia.edu. The remit of such agents is simple – find
interesting information and tell me about it. Satisfying
this is less straightforward. Agents can help in three
ways:

1. They can find where suitable documents are
stored.

2. They can mediate between the user and different
information sources.

3. They can choose appropriate documents from a
large document set.

The first step is necessary as there are too many infor-
mation sites to search them all in detail. An agent may
find sites by consulting a simple preferences file, perhaps
created by hand or built up as a record of sites that the
user has visited. A more sophisticated agent may consult
a directory of information sites. It will need to match the
description of what the sites contain with the interests of
the user. This process is similar to the document match-
ing in step 3. Finally, the agent may find sites by following
a trail.

https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/agents!intelligent filtering
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/agents!intelligent filtering
https://alandix.com/glossary/aibook/agents!intelligent filtering
https://alandix.com/glossary/aibook/cost--benefit
https://alandix.com/glossary/aibook/Social media
https://alandix.com/glossary/aibook/Social media
https://alandix.com/glossary/aibook/Google alerts
https://alandix.com/glossary/aibook/Google alerts
https://academia.edu
mailto:alanjohndix@gmail.com
mailto:alan@hcibook.com

240 ■ Artificial Intelligence

Consider a bibliographic search for articles on
intelligent agents. The agent looks first at the Journal of
Artificial Intelligence. It finds some articles of interest
(using step 3) and then looks at the articles cited
in their reference lists. This will yield potentially
interesting articles but also the journals and conferences
where those articles are found are good candidates
for searching. A similar process can be followed on
the World Wide Web. If you know that a particular
document is of interest, the agent can look at the
links from that document and search the sites where
those documents are found. Indeed, this is precisely
what Google effectively pre-processes in the PageRank
algorithm to build its web indices.

Another sort of trail is one based on usage. Suppose
that each document server keeps track of who looks at
what. Your information agent notices that many of the
documents that you read have also been read by another
user, so your agent asks the other user’s agent about other
sites it visits. These are then candidate sites for interesting
documents. You are effectively following the other user’s
path through information space. Although the details are
proprietary, it is likely that many search engines use this
form of algorithm, and certainly it is common for adver-
tising trackers and recommendations in internet shop-
ping.

There are of course privacy problems here. In the first
edition of this book we wrote, “it is rather like browsing
someone else’s bookshelf ”, an interesting analogy before
this became common in Amazon and then later Spotify
and other media sites. We’ll see later that there are meth-
ods to try to gain the advantages of collaborative learn-
ing without the privacy concerns. However, you could
turn the personal element to your advantage: your agent
could negotiate with advertising sites to get good deals in
exchange for your information, or ‘talk’ with other users’
agents and introduce you – computer dating?

Note that following a trail may lead to both interesting
sites and also specific documents. However, once you
find an information source you are faced with under-
standing and navigating a new interface. One of the
reasons for the success of the World Wide Web is the
common interface to all information. However, this is
not shared with other services, and online bibliographic
databases are particularly renowned for their obtuse
user interfaces. Agents can help you here too. You
ask the agent for what you want, and it converts this
into the required commands for different information

services. This is often viewed in terms of multiple
agents, one for each type of information service, and
these communicate with a single user interface agent.
For example, IFTTT has many hundreds of plugins to
integrate with different web services but offers a single
interface to the user.

There are problems of control, for example if an online
service has charging, you need to decide whether you
want to incur the costs. Also an automated agent may
not be able to understand all of your requirements, or be
able to assess the quality of a source, for example it can
be very difficult to find a hotel’s own website on search
engines among the hundreds of booking sites.

Finally, we have found an information source and can
communicate with it, but it contains thousands of docu-
ments. How can an agent work out which ones will be of
interest? Assume that the agent has access to some col-
lection of documents which you have previously found
interesting. One way to use these is to use some form of
concept learning and generate a rule for interesting files.
This would typically be based on key words or other sum-
mary information. For example, the agent might decide
that you are interested in all documents with “agent” and
“intelligent” in the key word list. However, this sort of
precise rule is often not suitable for handling imprecise
ideas such as “interesting”. For these more fuzzy forms of
matching are often preferred based on statistical meth-
ods, such as those discussed in Chapters 7 and 8. These
are often based on the complete set of words in the ab-
stract of an article or on the whole article itself. The aim is
to have some measure of closeness between documents.
Then a document is deemed interesting if it is close to one
or more of the documents you have previously found in-
teresting. Other measures of similarity may use semantic
features of the documents; for example, citations in com-
mon for articles, or links between objects in a hypertext.

Let’s look at one measure of closeness in detail. Take
two documents d1 and d2 and generate the complete list
of words in each, w1 and w2. Let the number of words in
each document be n1 and n2 and the number that are in
both n12. That is, n1 is the size of w1 and n12 is the size of
w1 ∩ w2. Then a measure of similarity is:

similarity(d1, d2) =
n12

n1 + n2 − n12

This formula has a value of 1 when the documents
have exactly the same words and 0 when they have none
in common. Similar, but more complicated, measures

https://alandix.com/glossary/aibook/bibliographic search
https://alandix.com/glossary/aibook/World Wide Web
https://alandix.com/glossary/aibook/Google
https://alandix.com/glossary/aibook/PageRank
https://alandix.com/glossary/aibook/search engines
https://alandix.com/glossary/aibook/privacy
https://alandix.com/glossary/aibook/privacy
https://alandix.com/glossary/aibook/World Wide Web
https://alandix.com/glossary/aibook/bibliographic databases
https://alandix.com/glossary/aibook/bibliographic databases
https://alandix.com/glossary/aibook/user interface agent
https://alandix.com/glossary/aibook/IFTTT
https://alandix.com/glossary/aibook/search engines
https://alandix.com/glossary/aibook/search engines
https://alandix.com/glossary/aibook/concept learning
https://alandix.com/glossary/aibook/similarity
https://alandix.com/glossary/aibook/hypertext
https://alandix.com/glossary/aibook/similarity

FIGURE 16.1 Simple reinforcement learning – single action-
learning step, repeated many times.

take into account various factors. Common words such
as “the” and “it” may be ignored or given a low weight
in the match; on the other hand, words that occur fre-
quently in both documents may count more highly. Also
the word lists may be processed to reduce words to their
simplest forms (e.g. simplest → simple) – called stem-
ming – or to equate different words for the same thing
using a thesaurus.

16.3 REINFORCEMENT LEARNING
When faced with a new situation, we sometimes have to
act without knowing in advance the best thing to do. As
we try things we gradually learn what does or does not
work well and hence learn. We can do the same with an
AI system. This may occur in a purely simulated envi-
ronment, such as playing a computer game, or in the real
world, such as a robot in a factory. The AI agent needs to
act based on the state of the world and its current rules
and then learn from the consequences of its actions; this
is called reinforcement learning, and we’ve seen an ex-
ample already with the pole balancing task in Chapter 5.

16.3.1 Single Step Learning

Figure 16.1 illustrates a single step of reinforcement
learning. The AI agent has a current rule set and observes
the state of its environment. This observation may be
perfect and complete or may in some way be partial or
noisy. Based on the observation and the current rules,
it acts. The action affects the environment and creates
some sort of reward or incurs a cost. The agent uses this
reward or cost to update its rules, reinforcing rules that
led to positive consequences and inhibiting those that
led to negative consequences. This single step is repeated
many times, with the rule set improving with each cycle.

Agents ■ 241

Reinforcement learning is often seen as a special case
of unsupervised learning as there is no prior set of classi-
fied examples on which to base the learning. However, in
pure unsupervised learning, such as the self-organising
map in Chapter 6, there is no feedback at all apart from
an internal measure of a good model. In contrast, rein-
forcement learning has an external reward (continual or
intermittent), so could be considered a form of super-
vised learning. In practice, reinforcement learning sys-
tems may use a combination of supervised and unsuper-
vised learning algorithms internally, maybe using unsu-
pervised learning methods to simplify observations, and
supervised algorithms to update the action rule set.

Note too that this is different from the email learn-
ing discussed in Section 16.2.3, which is normally based
on observing user actions and learning rules to emulate
those, so is closer to pure supervised learning. Of course,
in practice there may be a mixture of learning by obser-
vation and more experimental actions.

A very simple reinforcement learner could keep a list
of observations and actions with a weight that is incre-
mented when the response is positive and decremented
when it is negative. Here is such a table for behaviour at
traffic lights – in a virtual environment; experimentation
at real traffic lights is not recommended. We assume it
has been learning for some time and that getting across
faster is rewarded, but accidents or near-misses are pun-
ished.

observation action weight
green wait -1
green drive 10
amber wait -1
amber drive -4
red wait -1
red drive -23

Note that driving on green gets a positive reward for
speed, while waiting slows the journey, so is negative. Of
course we know that waiting on green is at best unneces-
sary and at worst annoys the car behind you, but the AI
system doesn’t know this until it has experimented. Dur-
ing training, waiting on either amber or red lights would
be given a negative weight as this slows the journey; how-
ever, the negative weight for driving on amber and red
would be greater due to the increased risk of accidents.

Note that in deterministic environments with a fixed
consequence, the table above simply needs to be filled
in with known consequences after each trial. However,

https://alandix.com/glossary/aibook/stemming
https://alandix.com/glossary/aibook/stemming
https://alandix.com/glossary/aibook/agents!action
https://alandix.com/glossary/aibook/reinforcement learning
https://alandix.com/glossary/aibook/pole balancing
https://alandix.com/glossary/aibook/reinforcement learning
https://alandix.com/glossary/aibook/reinforcement learning
https://alandix.com/glossary/aibook/Reinforcement learning
https://alandix.com/glossary/aibook/unsupervised learning
https://alandix.com/glossary/aibook/unsupervised learning
https://alandix.com/glossary/aibook/self-organising map
https://alandix.com/glossary/aibook/self-organising map
https://alandix.com/glossary/aibook/reinforcement learning
https://alandix.com/glossary/aibook/reinforcement learning
https://alandix.com/glossary/aibook/supervised learning
https://alandix.com/glossary/aibook/supervised learning
https://alandix.com/glossary/aibook/reinforcement learning
https://alandix.com/glossary/aibook/supervised
https://alandix.com/glossary/aibook/unsupervised learning
https://alandix.com/glossary/aibook/unsupervised learning
https://alandix.com/glossary/aibook/unsupervised learning
https://alandix.com/glossary/aibook/unsupervised learning
https://alandix.com/glossary/aibook/supervised
https://alandix.com/glossary/aibook/supervised learning
https://alandix.com/glossary/aibook/reinforcement learner
https://alandix.com/glossary/aibook/deterministic

242 ■ Artificial Intelligence

more often the consequences themselves are stochastic
or depend on hidden aspects of the environment, so
the observation–action mapping is about probabilities
and likely effects. Because of this, sometimes Bayesian
methods (Chap. 3) are used to work out the probable
responses based on the evidence at each stage.

16.3.2 Choices during Learning

When the environment is fully learnt, the AI agent sim-
ply needs to choose the action that has the best expected
outcome. However, earlier in learning, or when learning
in a changing environment, the agent may be faced with
more difficult decisions:

novel situations – Sometimes the situation in the
environment is completely or partially new, there
is little or no past experience on which rules are
based. Gaps may be filled at this point in different
ways. Unknown observation–action slots can be
filled with random or default values, or some
form of similarity to known results might be used
to generalise from previous situations. In some
forms of learning system, such as neural networks
(Chap. 6), the representation is more diffuse and
the network may be initialised with random values
before learning cycles start.

exploration vs. exploitation – When the agent has
encountered a situation previously with a positive
consequence, why would it ever try anything else?
Or if it has once had a negative consequence for an
action, it might avoid it ever after – a form of local
maxima. Because of this, reinforcement learning
systems may sometimes exploit past experience
by taking the best choice action, but sometimes
might instead explore, try something new or retry
something that did not previously give a good
result.

Managing the exploration–exploitation trade-off is
one of the key problems in reinforcement learning and
depends a lot on the criticality of the choice – simulated
environments offer opportunities to try and fail, but
physical environments, such as driving on real roads,
typically require a more risk-averse strategy. In fact there
is always a cost of action, this may be in terms of fuel and
risk on the road, or computational time in a simulation.
Choosing the best opportunities for experimentation is

thus critical, for example one might deliberately choose
to experiment in situations that maximise information
learnt compared with potential cost. Of course, deciding
this itself involves knowledge of the environment, which
potentially needs to be learnt.

The observation–action mapping has no understand-
ing of the system; it is based on the very simplest forms
of animal reinforcement learning in experiments such
as Pavlov’s dogs or Skinner’s pigeons. If one has some
knowledge, richer learning methods may be used, such
as those described in Chapter 5. In Chapter 22, we will
see how emulating human regret can harness complex
counterfactual reasoning to guide lower-level reinforce-
ment learning and in so doing guide the exploration–
exploitation trade-off and avoid local maxima.

16.3.3 Intermittent Rewards and Credit Assignment

The reinforcement learning process illustrated in
Figure 16.1 assumes that the reward or cost happens
immediately and is directly related to the last action
taken. In animal reinforcement learning, delays between
action and reward severely reduce the ability to learn,
and this is even true of humans, hence a dashboard fuel
consumption monitor is more effective at encouraging
eco-friendly driving than the weekly shock of the bill
when filling the tank.

Figure 16.2 illustrates the more realistic situation
where successive actions have an impact on the world,
but only intermittently create rewards or costs. The
reward at any point may not only be stochastic but is
determined by any one or a combination of past actions.
As noted in the pole balancing task in Chapter 5,
credit assignment is difficult – which actions should
be reinforced or inhibited. Typically AI agents in such
environments need some internal memory of past ob-
servations and actions, and ideally a richer model of the
environment to help connect rewards with the possible
cause.

16.4 CO-OPERATING AGENTS AND
DISTRIBUTED AI

In the previous section we talked about agents communi-
cating with one another. Also, when we discussed route
planning in Chapter 15, we noted that some of the ob-
jects one robot might encounter may be other robots. The
communication and interaction between agents is an ex-
citing area offering several interrelated benefits:

https://alandix.com/glossary/aibook/observation--action mapping
https://alandix.com/glossary/aibook/Bayesian methods
https://alandix.com/glossary/aibook/Bayesian methods
https://alandix.com/glossary/aibook/similarity
https://alandix.com/glossary/aibook/neural networks
https://alandix.com/glossary/aibook/exploration
https://alandix.com/glossary/aibook/exploitation
https://alandix.com/glossary/aibook/local maxima
https://alandix.com/glossary/aibook/local maxima
https://alandix.com/glossary/aibook/reinforcement learning
https://alandix.com/glossary/aibook/exploration--exploitation trade-off
https://alandix.com/glossary/aibook/reinforcement learning
https://alandix.com/glossary/aibook/observation--action mapping
https://alandix.com/glossary/aibook/reinforcement learning
https://alandix.com/glossary/aibook/Pavlov
https://alandix.com/glossary/aibook/Skinner
https://alandix.com/glossary/aibook/regret
https://alandix.com/glossary/aibook/counterfactual reasoning
https://alandix.com/glossary/aibook/reinforcement learning
https://alandix.com/glossary/aibook/reinforcement learning
https://alandix.com/glossary/aibook/exploration--exploitation trade-off
https://alandix.com/glossary/aibook/exploration--exploitation trade-off
https://alandix.com/glossary/aibook/local maxima
https://alandix.com/glossary/aibook/reinforcement learning
https://alandix.com/glossary/aibook/reinforcement learning
https://alandix.com/glossary/aibook/pole balancing
https://alandix.com/glossary/aibook/credit assignment
https://alandix.com/glossary/aibook/route planning
https://alandix.com/glossary/aibook/route planning
https://alandix.com/glossary/aibook/robot
https://alandix.com/glossary/aibook/robots

Agents ■ 243

FIGURE 16.2 Reinforcement learning with intermittent rewards.

• Structuring an intelligent system into several
communicating but largely independent parts
can reduce development costs, increase run-time
efficiency and ease maintenance.

• Different parts of the system may reside in physi-
cally distinct places. It may be impractical or impos-
sible to perform totally central planning.

• Maintaining separate agents may be important to
preserve personal privacy or protect commercial
data.

• The interactions between agents can give insight
into the social interactions between people or
between animals. There are also theories of
individual cognition which stress the co-operation
between semi-independent “agents” within our
own minds [197].

The study of interacting intelligent components is
called distributed artificial intelligence. When the aim is
understanding living creatures, it is even called artificial
life, although this term also includes other aspects of
computer-generated life forms.

16.4.1 Blackboard Architectures

The use of multiple semi-independent knowledge bases
is not new and predates the now ubiquitous use of the
word “agent”. As we noted, this has obvious software
engineering benefits. Each knowledge base can be built,
tested and updated individually. Furthermore, when
tackling a problem in a particular area, only the relevant

knowledge for that area is used. Each knowledge base
contains only the knowledge needed for its purpose and
may employ representations and reasoning methods
appropriate for its particular domain.

However, to solve a common problem, the knowledge
bases have to communicate. In an object-oriented archi-
tecture this is likely to be via message passing. When a
knowledge base/object/agent needs information it sends
a message to another to ask for it. When the other one
has found the answer, it sends a message in reply. This
approach can be very powerful, as can be seen in the
information-seeking agents described in the last section.
However, it has the disadvantage that each object needs
to know which other one has the required information
or knowledge.

A traditional form of co-operation that avoids this
problem is the blackboard architecture. The object-
oriented architecture is similar to lots of people working
in separate rooms occasionally sending memos to one
another. In contrast, the blackboard architecture is
rather like a group of people in the same room who
are jotting down ideas on a blackboard. As one person
writes something down another sees it, perhaps in
conjunction with other items on the blackboard, thinks
about it and then writes a new idea based on it.

As well as ideas (or solutions), the computer
blackboard will also contain unsolved problems. When
an agent sees a problem that it can tackle, it solves
it and then removes the original problem, posting
up the solution. If in trying to solve the problem the
agent hits an impasse, it can post up a subproblem
on the blackboard in the hope that another agent will

https://alandix.com/glossary/aibook/privacy
https://alandix.com/glossary/aibook/artificial life
https://alandix.com/glossary/aibook/artificial life
https://alandix.com/glossary/aibook/knowledge base
https://alandix.com/glossary/aibook/knowledge base
https://alandix.com/glossary/aibook/object-oriented architecture
https://alandix.com/glossary/aibook/object-oriented architecture
https://alandix.com/glossary/aibook/blackboard architecture
https://alandix.com/glossary/aibook/object-oriented architecture
https://alandix.com/glossary/aibook/object-oriented architecture
https://alandix.com/glossary/aibook/blackboard architecture

244 ■ Artificial Intelligence

see the problem and be able to tackle it. Unlike the
object-oriented architecture, it does not have to know
which agent can solve the subproblem, merely post it
to the board. When an agent sees that the subproblem
has been solved, it can continue to tackle the original
problem.

Figure 16.3 shows an example of a blackboard
architecture in action. The problem concerns adding up
using counting blocks. There are two kinds of blocks,
ten-blocks and one-blocks. We have three agents. One
agent, the reader, can read numbers and convert them
into blocks and vice versa. The second, the grouper,
knows how to add up blocks by simply pushing the piles
of blocks together. The third, the swapper, knows how to
swap a ten-block for ten one-blocks and back again. The
initial problem is posed in terms of numbers, “add 13 to
8”, and the answer is also required as a written number.
The initial representation is shown in the first frame of
the figure. The three agents then solve the problem in
the following steps:

1. The reader converts the numbers 13 and 8 into the
equivalent blocks.

2. The pusher clumps the two together to give an an-
swer in blocks – one ten-block and 11 one-blocks.
At this stage the reader might try to convert the
answer back into digits but would fail as there are
more than ten one-blocks.

3. However, the swapper can work on the blocks and
change ten of the one-blocks into one ten-block,
giving two ten-blocks and one one-block.

4. Finally, the reader has a pile of blocks that can be
converted into a number, 21, which is the final
answer.

Notice how no agent needs to know what the other
agents can or can’t do. However, it is important that there
is a common representation on the blackboard so that the
outputs of one agent can be recognised byanother.

One disadvantage of a pure blackboard architecture
is that there is no central control whatsoever. This can
lead to problems. For example, after stage 1, the reader
might have looked at the blackboard and thought “Ah,
piles of blocks, I’ll change them into digits”. The system
could easily have thrashed about indefinitely changing
things back and forth. As a model of cognition this is not

FIGURE 16.3 Blackboard architecture.

too far from the truth: a frequent error in mathematical
proofs is to use a series of equalities, but end up where
you began. However, when one becomes practised in a
domain, one uses higher-level heuristics. So, for adding
with blocks one would learn always to apply the agents
in the following order: reader, pusher, swapper and then
reader again. A half-way approach between pure black-
board and totally centralised control is to have some sort
of co-ordinator agent that activates different agents at
different times. The co-ordinator does not need to under-
stand everything on the blackboard but simply a high-
level plan of when to do what.

16.4.2 Distributed Control

A production line is producing cream cakes. As the cakes
go past, a machine squirts a dollop of cream onto each
one. For a few minutes there is a problem on the line and
the supply of cakes stops. However, the machine goes on
placing a dollop of cream on the line where each cake
should have been. This is perfectly understandable, the
way machines work. However, if the cream was being put
on by a human, the supervisor would be very annoyed
to see a hundred dollops of cream on the conveyor belt.
People are supposed to use some common sense even in
the most repetitive jobs. In a more enlightened factory,
the employees may be given more autonomy. Perhaps a
group of workers is given targets for the productivity of
its particular subprocess and is free to organise its work
in whatever fashion it chooses so long as its goals are
achieved. Similarly, in an army the commanders make
strategic decisions about the deployment of troops and

https://alandix.com/glossary/aibook/object-oriented architecture
https://alandix.com/glossary/aibook/blackboard architecture
https://alandix.com/glossary/aibook/blackboard architecture
https://alandix.com/glossary/aibook/blackboard architecture
https://alandix.com/glossary/aibook/heuristics
https://alandix.com/glossary/aibook/blackboard architecture

Agents ■ 245

the lines of attack; lower levels of command make tactical
decisions; but it is ultimately each soldier who decides
precisely when to pull the trigger.

The models of planning we presented in Chapter 15
were largely monolithic. Ultimately the planner knew ev-
erything. However, in a large factory such control be-
comes impractical. Attempting to preplan each machine
tool and robot will lead to problems like the cream on
the belt. Instead, the central planner must give orders to
each tool or robot that it will obey using its own plan-
ning systems. This is similar to the issues of hierarchi-
cal control we discussed in the context of a single robot,
but here we are thinking of many robots co-operating
together under some central co-ordinator. Also, unlike
the agents co-operating under the blackboard architec-
ture, the major interactions here are physical rather than
electronic.

The problem with this form of decentralised control
is that the central planner needs to be able to predict
global properties from the local properties of agents.
Imagine a factory has just two processes: baking and
dolloping. Both baker and dolloper have an average
throughput of 1800 cakes per hour. So, if both are
placed on the same production line, can one assume
that the line can produce 1800 cakes per hour? Only
if both baker and dolloper can promise a continuous
and reliable rate of one cake every two seconds. If
the machines sometimes work faster, but sometimes
have to pause to refill, then we end up with either
the line stopped for a proportion of the time or more
dollops on the conveyor belt. Clearly, the central
planner would need to have more information about
the individual machines. However, it would not need
to know about the precise details of each machine.
For example, the dolloper might use sophisticated
image processing to determine the positions of the
cakes on the line, followed by a planning algorithm to
decide the order in which to place a dollop onto the
cakes. The planner need know none of this, simply
that the machine is capable of putting a dollop on each
cake.

16.5 LARGER COLLECTIVES
Most of the agents we have discussed so far have been
relatively sophisticated. In addition there are methods
which depend on the collective behaviour of large num-
bers of quite simple agents.

16.5.1 Emergent Behaviour

In the example of the blackboard architecture, where was
the knowledge of adding up? Similarly, in the factory,
where was the knowledge of how to make a cream cake?
In neither case can we point to any particular agent and
say “that one knows”. The knowledge and ability are dis-
tributed between the agents. So, no one of the adding
agents can add up, but together they can. This is called
emergent behaviour.

Emergent behaviour is not just a feature of the elec-
tronic world but is present in nature at many levels of
life. Consider a swarm of bees building a hive. There is
no architect, no plan to follow, but the individual actions
of each bee together create a purposeful activity. Simi-
larly, when disease infects your body, there is no cen-
tral control which says “fight that organism”; instead the
various cells and chemical messengers within your body
each perform individually in a way that fulfils a common
purpose.

The same sort of emergent behaviour is found in hu-
mans. This can be seen at a gross level in crowd move-
ments, or in the flow of traffic along a road – lots of
individual decisions together giving rise to a global be-
haviour. On a smaller scale, there is a growing accep-
tance that the thinking of individuals and groups cannot
be isolated in their heads but is instead distributed be-
tween the people and even their environment. This ap-
proach is called distributed cognition [139]. It is similar
to the adding up example. In the building of a skyscraper,
where are the thought processes that lead to its construc-
tion? In the architect, the engineer, the financier? The
answer is in none individually, but in them as a group,
and not solely in the people but also in the representa-
tions they use, plans, models, even the building itself. In
the adding example, the blackboard itself is crucial in the
adding task.

16.5.2 Cellular Automata

Some computational models are built purely to study
these emergent behaviours. Groups of agents each
act out their own individual, and often very simple,
behaviours, but together give rise to complex patterns
in the large. Possibly the simplest example is Conway’s
Game of Life. In Life, the world consists of a rectangular
matrix of cells (Figure 16.4). We consider each cell to be
either populated or not. At each step we consider the
neighbours of a cell. If an empty cell has three or four

https://alandix.com/glossary/aibook/robotics!practical
https://alandix.com/glossary/aibook/robots
https://alandix.com/glossary/aibook/blackboard architecture
https://alandix.com/glossary/aibook/blackboard architecture
https://alandix.com/glossary/aibook/image processing
https://alandix.com/glossary/aibook/blackboard architecture
https://alandix.com/glossary/aibook/emergent behaviour
https://alandix.com/glossary/aibook/Emergent behaviour
https://alandix.com/glossary/aibook/emergent behaviour
https://alandix.com/glossary/aibook/distributed cognition
https://alandix.com/glossary/aibook/Conway
https://alandix.com/glossary/aibook/Game of Life

246 ■ Artificial Intelligence

FIGURE 16.4 Game of Life.

of its neighbours populated, then the cell is colonised.
However, if a populated cell has more than five of its
neighbours populated, it “dies” through competition.
It also dies if fewer than three of its neighbours are
populated – loneliness! Most readers will have seen
this game animated. Some initial configurations die out
completely, others seem to go on indefinitely changing.
Some become stable, and others, the gliders, swoop
across the screen. These patterns are not coded explicitly
into the rules but emerge from the conjoint behaviour
of all the individual cells.

Life is a simple example of a general class of models
called cellular automata. In general, the state of each
cell can be more complicated, not just populated
or not, as can the rules. Also the cells need not be
in a rectangular mesh but may have some other
topology.

16.5.3 Artificial Life

The rules used in cellular automata are usually quite sim-
ple and not very intelligent. However, there are other
models that give each agent more complex rules, often
based on social phenomena. For example, one model has
agents wandering over a rectangular playing field, meet-
ing other agents. When they meet, the agents engage in
a “prisoner’s dilemma”-style interaction. Each agent has
a different disposition to “trust” other agents and may
reinforce that trust or reduce it depending on the result
of the interaction. If the agents are able to choose where
to go, there is a tendency for trusting agents to group
together, building up mutual trust – societies in micro-
cosm.

Another system models robots in a physical environ-
ment with obstructions and also simulated locomotion
(they are pogoing robots). The individual robots all have
a desired direction to travel but also have rules to avoid

bumping into each other or getting too far apart. The
robots exhibit flocking behaviour rather like birds. The
flock moves in the general direction of travel but occa-
sionally sweeps one way or another, or a small group may
temporarily break away from the main flock. When an
obstacle is encountered, the flock divides around it and
then, when past the obstacle, the two streams criss-cross
and intermingle before merging fully.

These models are not just of theoretical interest. Mod-
els of traffic flow on motorways can improve the safety
and efficiency of roads and cars. Also, models can tell us
about phenomena that cannot be observed directly, for
example models of crowd movements in burning build-
ings. Models have even been formulated of the move-
ments and social structures of hunter-gatherers in pre-
historic France, hoping to explain some of the phenom-
ena during the change from nomadic to settled existence.
This form of simulation has been called Artificial Society.

16.5.4 Swarm Computing

We have already mentioned swarms of bees as an exam-
ple of emergent behaviour in the natural world. In fact
bees, ants and other simple animals that exhibit appar-
ently intelligent behaviour have proven a fertile ground
for many artificial algorithms. These have several defin-
ing features:

1. Large numbers of relatively simple and similar
agents.

2. Semi-independent and (initially) highly random
individual behaviour.

3. Some ability to communicate weakly with others
as to the quality of places/states they have visited.

4. Modification of individual behaviour to favour
paths/places that others have found fruitful.

Think of ants initially foraging widely and largely
randomly. One ant finds a boiled sweet, gathers a tiny
piece itself and then heads back to its nest, leaving a
this-was-good pheromone trail on the way back. Other
ants pursue their own semi-random paths, but if they
encounter the pheromone trail, may choose to follow it.
If they in turn encounter the boiled sweet, they add to
the pheromone trail on their own way back to the nest.

For bees the communication step 3 is via waggle
dances as they fly rather than crawl, but a similar

https://alandix.com/glossary/aibook/cellular automata
https://alandix.com/glossary/aibook/cellular automata
https://alandix.com/glossary/aibook/prisoner's dilemma
https://alandix.com/glossary/aibook/robots
https://alandix.com/glossary/aibook/pogoing robots
https://alandix.com/glossary/aibook/robots
https://alandix.com/glossary/aibook/obstacle avoidance
https://alandix.com/glossary/aibook/robots
https://alandix.com/glossary/aibook/flocking behaviour
https://alandix.com/glossary/aibook/Artificial Society
https://alandix.com/glossary/aibook/emergent behaviour

principle applies. In both cases the initial explorations
(step 2) may be guided by scents of vegetation in the air
or other factors, so are not entirely random.

It is important that step 4 is not about an ant always
following others to the most favoured spots, but some-
times going to and fro between good but less optimal
ones. This continued exploration means that if the envi-
ronment changes, or the best source of food is exhausted,
there are secondary sites waiting to be exploited.

Artificial versions of this, effectively following steps 1–
4 as pseudocode, have been used in applications such as
network routing. Note in this case the optimal route is the
critical feature – finding the path through the network
with least latency and best quality. The network is flooded
with small packets that follow random paths. Those that
get to their target node retrace their steps leaving a ‘trail’
on the way back.

As well as methods based on animals, lower-level bi-
ological processes have learning-like behaviours. In par-
ticular the immune system learns in order to distinguish
the many types of cells that are part of your own body
from those that shouldn’t be there – that is infections.
There are multiple mechanisms, some of which work by
building up responses after infection has started, these
are the kind that vaccines target to give them a head start
and they effectively react to examples of bad organisms
in the body and learn to attack them. However, we also
have a base immune response that works the other way
round.

The full immune system is complex, but a simplified
version is as follows. When you are born your bone mar-
row starts off in a learning mode and generates a form of
exploratory immune cells with each programmed to de-
tect a wide variety of different surface proteins. As they
circulate in the blood stream, some encounter cells that
match their target protein in your own body; those that
match then replicate and find their way back to the bone
marrow. Here their presence suppresses further genera-
tion of that kind of cell. After a period the only immune
cells produced are those that do not match any of your
own cells, and these become locked in as a form of mem-
ory and the body changes its mode of response to a de-
fence state. Now if one of the cells sent into the blood
stream encounters a matching organism, it must be for-
eign to the body and an attack is triggered.

It is evident how this kind of model can be emulated
as a form of artificial immune response. A network secu-
rity AI monitors network traffic initially generating large

Agents ■ 247

numbers of random rules for matching individual pack-
ets of sequences of packets. Assuming that in this initial
learning state, the network is benign, only those rules
that match nothing are retained. Later, during the de-
fence stage, if any of these rules match passing packets,
they are flagged as potentially malicious.

16.5.5 Ensemble Methods

In Chapter 5 we saw how decision trees could be con-
structed as a form of machine learning. For large datasets
with large numbers of features there is a danger of over-
fitting, that is the trees match the particularities of the
sample that comprises the dataset rather than the more
generalisable aspects. There are various ways to counter
this, for example limiting the depth or complexity of the
trees. However, one simple solution that has proved sur-
prisingly successful is random forests.

In random forests one randomly splits the dataset into
smaller subsets and possibly also chooses a different ran-
dom subset of features for each (Figure 16.5). A simple
decision tree algorithm is then applied to each subset of
the data items using its respective subset of features. This
yields a large number of trees, the forest, each trained
on the different fragments of the initial dataset. The in-
dividual trees are not necessarily very good when ap-
plied over the whole dataset, that is they are individually
weak learners. However, one can combine their individ-
ual outputs to create a single strong learner that is better
than any individually. This is the automated equivalent
of the wisdom of the crowds.

The methods of combination can vary. For binary clas-
sification often a simple majority is used, for more nu-
merical outputs simple weighted sums can be used. More
complex methods can be used for this combination of
many weak learners into a single strong learner, often
called boosting methods. These may use probabilistic de-
cision algorithms, neural networks or other forms of ma-
chine learning.

Another way to think about this is that the original
feature set has been replaced with the vector of outputs
of the individual trees. Seen like this it has similarities
with the various non-linear transformation techniques
we saw in Chapter 7 such as support vector machines and
reservoir computing.

The individual elements need not be decision trees,
and other ensemble methods use different forms of al-
gorithms for the lower-level learners. For example, one

https://alandix.com/glossary/aibook/network routing
https://alandix.com/glossary/aibook/optimal route
https://alandix.com/glossary/aibook/immune system
https://alandix.com/glossary/aibook/decision trees
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/overfitting
https://alandix.com/glossary/aibook/overfitting
https://alandix.com/glossary/aibook/random forests
https://alandix.com/glossary/aibook/random forests
https://alandix.com/glossary/aibook/decision tree
https://alandix.com/glossary/aibook/weak learners
https://alandix.com/glossary/aibook/strong learner
https://alandix.com/glossary/aibook/wisdom of the crowds
https://alandix.com/glossary/aibook/weak learners
https://alandix.com/glossary/aibook/strong learner
https://alandix.com/glossary/aibook/boosting
https://alandix.com/glossary/aibook/neural networks
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/support vector machines
https://alandix.com/glossary/aibook/reservoir computing
https://alandix.com/glossary/aibook/decision trees
https://alandix.com/glossary/aibook/ensemble methods

248 ■ Artificial Intelligence

FIGURE 16.5 Random forest.

might use simple regression or linear classifiers or con-
cept learning alongside or instead of decision trees. If all
of the lower-level learners are of the same kind, the sys-
tem is homogeneous, but if a mix is used, it is heteroge-
neous. A random forest is a particular example of a ho-
mogeneous ensemble.

Neural-network-based models are often monolithic,
but they can be structured in similar ways. In particu-
lar, the DeepSeek LLM uses a mixture-of-experts (MoE)
approach [173]. There is a central general-purpose por-
tion of the network that is always active, and other parts
that are specialised for different topic areas. This means
that only a relatively small portion of the network needs
to be activated for any particular query, enabling perfor-
mance comparable to other LLMs while using far lower
computing power.

16.6 SUMMARY
Software agents are at the heart of several recent and cur-
rent developments to make software easier to use and to
help people find their way through complex information
spaces. They act in response to different kinds of events
and can gather information to use later. Agents can watch
a user’s actions, use machine learning algorithms to iden-
tify common actions and then offer to do them for the
user. Agents can use knowledge about a user’s interests to
search for information and may interact with other user’s
agents in the process. Similarity measures are one tech-
nique used for identifying potentially interesting docu-
ments.

Reinforcement learning can be used when agents en-
counter new situations where they need to act in order
to obtain the information they need to learn. Critically
they need to balance exploitation (using the knowledge
they have already learnt to maximise benefits) with ex-
ploration (seeking out new knowledge).

Co-operating agents can be used to structure an
intelligent system, to divide a system between different
places or to simulate human co-operation. Blackboard
architectures can be used to allow simple agents
to solve problems co-operatively. In an industrial
setting distributed control can allow groups of simple
robots and machinery to work together without a
central planner, but some overall direction is usually
necessary. The joint actions of many simple agents
often give rise to more complex effects, called emergent
behaviour. This is observed in humans: a group of
people have a shared knowledge and ability that no
individual possesses (distributed cognition). Also
cellular automata, very simple computational agents,
can produce complex, lifelike phenomena. Applications
include the simulation of social behaviour and crowd
movements.

EXERCISES

This is another chapter where exercises are more discur-
sive, suitable for individual projects or group discussion.

16.1 Find out about web “crawlers” and “spiders”,
which rove the internet looking for useful
resources. Some are related to the major search

https://alandix.com/glossary/aibook/concept learning
https://alandix.com/glossary/aibook/concept learning
https://alandix.com/glossary/aibook/decision trees
https://alandix.com/glossary/aibook/ensemble methods!homogeneous
https://alandix.com/glossary/aibook/ensemble methods!heterogeneous
https://alandix.com/glossary/aibook/ensemble methods!heterogeneous
https://alandix.com/glossary/aibook/random forest
https://alandix.com/glossary/aibook/DeepSeek
https://alandix.com/glossary/aibook/LLM
https://alandix.com/glossary/aibook/mixture-of-experts
https://alandix.com/glossary/aibook/MoE
https://alandix.com/glossary/aibook/Software agents
https://alandix.com/glossary/aibook/agents!action
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/Similarity measures
https://alandix.com/glossary/aibook/Reinforcement learning
https://alandix.com/glossary/aibook/agents!action
https://alandix.com/glossary/aibook/exploitation
https://alandix.com/glossary/aibook/exploration
https://alandix.com/glossary/aibook/exploration
https://alandix.com/glossary/aibook/Co-operating agents
https://alandix.com/glossary/aibook/robots
https://alandix.com/glossary/aibook/emergent behaviour
https://alandix.com/glossary/aibook/emergent behaviour
https://alandix.com/glossary/aibook/distributed cognition
https://alandix.com/glossary/aibook/cellular automata
https://alandix.com/glossary/aibook/search engines

engines but you should try to find examples
of more specialised crawlers and how they
work.

16.2 Similarly, collect examples of “intelligence” in
popular applications such as word processors,
spreadsheets and drawing packages. Classify
the examples you find into those where the
intelligence is hidden or working behind the
scenes, and those where it is explicitly embodied
in some form of agent. Compare your list with
other students. Do you agree on what constitutes
intelligence and agency?

16.3 Experiment with different rules similar to the
Game of Life. You can start using paper and
pencil or draughts on a chess board but may find
it faster to write a program to do it. (It is said that
Conway used plates on a tiled kitchen floor!)

Writing on software agents is quite widely dispersed.
Papers can be found in conferences and journals
on human–computer interaction, the internet and
even sociology, as well as traditional AI sources
and proceedings of specialised conferences and
workshops on distributed AI such as the European
Conference on Multi-Agent Systems and International

Agents ■ 249

Conference on Autonomous Agents and Multiagent
Systems.

FURTHER READING

M. Wooldridge. An introduction to multiagent systems. John
Wiley & Sons, 2nd edition, 2009.
Influential textbook with a formal flavour.

R. Sutton and A. Barto. Reinforcement learning: An introduc-
tion. MIT Press, 2018.
Comprehensive treatment of reinforcement learning.

M. Minsky. The society of mind. Simon and Schuster, New York,
1985.
Classic work viewing cognition as interaction.

I. Hitoshi. AI and SWARM evolutionary approach to emer-
gent intelligence. CRC Press, Boca Raton, FL, 2020,
ISBN: 9780367136314

An accessible and beautifully illustrated overview of cur-
rent swarm intelligence.

P. Maes. Agents that reduce work and information overload.
Communications of the ACM, 37(7): 30–40, 1994.
Classic article on the promise of software agents in the user
interfaces.

https://alandix.com/glossary/aibook/search engines
https://alandix.com/glossary/aibook/Game of Life
https://alandix.com/glossary/aibook/chess
https://alandix.com/glossary/aibook/Conway
https://alandix.com/glossary/aibook/software agents
https://alandix.com/glossary/aibook/human--computer interaction
https://alandix.com/glossary/aibook/distributed AI
https://alandix.com/glossary/aibook/reinforcement learning
https://alandix.com/glossary/aibook/swarm intelligence
https://alandix.com/glossary/aibook/software agents

CHAP T ER 1 7

Web-scale Reasoning

17.1 OVERVIEW
We use AI and big-data enabled algorithms every time
we do a web search, use social media or go to an inter-
net shopping site. However, the vast volume of material
available on the web can also be used as a resource for AI.
We have seen some of this, especially the machine learn-
ing potential in Chapter 8. In this chapter we will see how
the idea of the Semantic Web allows the web to be a lo-
cus for machine reasoning, both from special machine-
readable data and from human-readable web pages with
additional markup. We will also see how various forms of
external semantics and text mining can be used to extract
information from web pages and social media to allow
them to better support our own day-to-day interactions
and also to make them available as a source of large-scale
information.

17.2 THE SEMANTIC WEB
The web now is all about video streaming, social net-
working, shopping and instant information. However,
Berners-Lee’s original design for the web was focused
primarily on the sharing of scientific data at CERN [24].
This vision of the web as a place for computer readable
data is still very much alive including in large-scale open
data initiatives by governments and others. Some of this
is simply about using the web to share data, but there
is also a more profound mission to provide a ‘web of
data’ through a range of technologies that are collectively
known as the semantic web [25].

FIGURE 17.1 The Semantic Web Stack (user: Marobi1, CC0,
via Wikimedia Commons, https://commons.wikimedia.org/
wiki/File:Semantic_web_stack.svg).

These technologies build upon one another, from
ways to represent global character sets to complex
reasoning (see Figure 17.1). However, the foundations,
the most mature, are RDF and ontologies, which
are forms of network representation as discussed in
Chapter 2.

17.2.1 Representing Knowledge – RDF and Triples

RDF, the Resource Description Framework, was origi-
nally developed to talk about properties of web pages,
for example that the author of https://alandix.com/
is Alan Dix, but has been extended to become a general
knowledge representation tool.

Core to RDF is the notion of subject–predicate–object
triples, for example:

DOI: 10.1201/9781003082880-20 250

https://alandix.com/glossary/aibook/big-data
https://alandix.com/glossary/aibook/web search
https://alandix.com/glossary/aibook/social media
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/Semantic Web
https://alandix.com/glossary/aibook/markup
https://alandix.com/glossary/aibook/external semantics
https://alandix.com/glossary/aibook/text mining
https://alandix.com/glossary/aibook/social media
https://alandix.com/glossary/aibook/Berners-Lee
https://alandix.com/glossary/aibook/scientific data
https://alandix.com/glossary/aibook/CERN
https://alandix.com/glossary/aibook/web of data
https://alandix.com/glossary/aibook/web of data
https://alandix.com/glossary/aibook/semantic web
https://commons.wikimedia.org/wiki/File:Semantic_web_stack.svg
https://commons.wikimedia.org/wiki/File:Semantic_web_stack.svg
https://alandix.com/glossary/aibook/RDF
https://alandix.com/glossary/aibook/ontologies
https://alandix.com/glossary/aibook/network representation
https://alandix.com/glossary/aibook/RDF
https://alandix.com/glossary/aibook/Resource Description Framework
https://alandix.com/glossary/aibook/RDF
https://alandix.com/glossary/aibook/subject--predicate--object triples
https://alandix.com/glossary/aibook/subject--predicate--object triples
https://alandix.com
http://dx.doi.org/10.1201/9781003082880-20

FIGURE 17.2 Encoding arbitrary length records as triples.

subject predicate object
https://alandix.com/ – has author – Alan Dix

Look back to Figure 2.6 and see how some of the prop-
erties in that could be represented in this way:

subject predicate object
Scooby Doo – instance_of – Great Dane

Dog – number_of_legs – 4

Notice that there are two kinds of triple, ones that re-
late two kinds of entity (objects or concepts) and those
that express some sort of value of a property.

Triples are very simple and yet also very expressive.
All the standard data structures can be represented in
triples. For example, where a traditional database might
have a table with many fields/columns for each row, with
triples you would give the row a unique id and then have
lots of triples, one for each field (see Figure 17.2). How-
ever, while you can represent pretty much everything
with triples, they are not always the most efficient or easy
to understand representations; sequences and arrays are
particularly difficult, with multiple representations, each
having problems.

Because RDF is a web notation, all the objects,
concepts and predicates are expressed using URIs
(Uniform Resource Identifiers). You will be familiar
with web addresses given as URLs (Uniform Resource
Locators). URIs have a similar style, but as well as
referring to web pages, images, etc., they can include

Web-scale Reasoning ■ 251

namespaces that refer to things outside the web itself.
The last three lines in Figure 17.3 show some of the
examples we’ve already discussed, expressed as RDF
triples. The document is written in Turtle, one of several
concrete syntaxes for expressing abstract RDF.

See how these examples include:

1. A URI that is an actual URL of a web page:
<https://alandix.com/>

2. Literal string value: "Alan Dix"

3. A typed string value representing an integer:
"4"^^xsd:integer

4. A ‘built-in’ RDF URI <rdf:type> (de-
fined in http://www.w3.org/1999/
02/22-rdf-syntax-ns#)

5. A URI <dc:creator> from a standard ontology,
the Dublin Core [297], which is used to represent
‘meta data’ about information resources, such as
authorship.

6. URIs from a specialised vocabulary: e.g.
<aibk:Scooby_Doo>

The namespace prefixes ‘dc:’, ‘rdf:’, ‘aibk:’ and
‘xsd:’ are shorthand for longer URI prefixes, which
would normally be defined at the start of an RDF
document. These are normally declared in the document
that contains the RDF, as can be seen in Figure 17.3.

Because URIs build on the naming system of the web,
they can be globally unique. This is very different from
notations and systems that use local names. This is partly
an ‘accident’ of the development of RDF for describing
web resources but is crucial in allowing RDF to be very
extensible, in several ways.

1. If an entity is defined in one RDF document,
say if an RDF example in this book references
<aibk:alanjohndix>, anyone can refer to this
from their own RDF document adding their own
statements.

2. In general, RDF documents can be merged as they
refer to globally defined entities.

3. As the vocabularies are also defined by URIs,
the things that can be talked about (predicates,

https://alandix.com/glossary/aibook/database
https://alandix.com/glossary/aibook/RDF
https://alandix.com/glossary/aibook/URI
https://alandix.com/glossary/aibook/Uniform Resource Identifiers
https://alandix.com/glossary/aibook/URL
https://alandix.com/glossary/aibook/Uniform Resource Locators
https://alandix.com/glossary/aibook/Uniform Resource Locators
https://alandix.com/glossary/aibook/namespaces
https://alandix.com/glossary/aibook/RDF
https://alandix.com/glossary/aibook/ontology
https://alandix.com/glossary/aibook/namespace
https://alandix.com/glossary/aibook/RDF
https://alandix.com/glossary/aibook/RDF
https://alandix.com/glossary/aibook/RDF
http://www.w3.org/1999
https://alandix.com
https://alandix.com

252 ■ Artificial Intelligence

FIGURE 17.3 Fragment of RDF document in Turtle syntax showing namespaces and triples.

classes) are also both open (new ones can
be added) and common (if two documents
refer to xsd:integer, they both mean the same
thing).

In general, RDF effectively adopts an open world
assumption. This is the opposite of the closed world
assumption adopted by Prolog in Chapter 2. In Prolog,
the list of facts was assumed to be precisely and
only what was true. If something is not stated, it is
assumed to be false. In contrast an RDF document
containing lots of RDF statements is understood to
mean that these things are asserted to be true, but
not that they are the only things that are true. Other
documents may be added at a later time that talk
about new entities or say new things about existing
entities.

17.2.2 Ontologies

In philosophy ‘ontology’ is the study of being: what
makes a cat a cat, and indeed what does it mean
to even be an ‘it’, to be talked about as a thing?
Within computing ‘ontologies’ have a more mundane
meaning as ways to express relationships between
concepts, ideas and properties. How we might ex-
press formally the kinds of relationship we saw in
Chapter 2.

As well as the basic RDF predicates defined in ‘rdf:’,
there are a larger number of predicates in RDFS (Re-
source Description Framework Schema), which include
class–subclass relationships between concepts (a dog is a
kind of animal) and the kinds of values that are accept-
able for different predicates (the number of legs is an in-
teger).

<aibk:Dog> <rdfs:subClassOf> <aibk:Animal>
<aibk:number_legs> <rdfs:range> <xsd:integer>

However, this is still fairly limited, sufficient to say that
statements in RDF are well-formed, but not for more
complex reasoning. For this a variety of more complex
ontologies have been defined, some for specific domains,
such as legal concepts, some to simply say more expres-
sive things about general statements.

The nature of RDF is to be extensible, but the more
general vocabulary is represented in the Web Ontology
Language, OWL. For example, this allows you to say that
‘is owned by’ is the opposite of ‘owns’, so that one can
infer from ‘Shaggy owns Scooby Doo’ that equivalently
‘Scooby Doo is owned by Shaggy’. In RDF triple
notation:

<aibk:owns> <owl:inverseOf> <aibk:is_owned_by>

OWL comes in several variants that vary in:

expressiveness – how complex are the things you can
specify

tractability – how hard or even possible is it to verify
statements

In general the more expressive a notation, the harder it is
to automatically check things. For example, the simplest
variants of OWL only allow you to specify that the cardi-
nality (how many values something can have) is zero, one
or unlimited. This is effectively making checking more
about binary decisions. If one is allowed to express a con-
straint such as “number of legs <= 4”, then any reason-
ing system checking the statement needs to be able to do
arithmetic proofs.

OWL inherits the open world assumption of RDF, but
some of the variants do allow you to make strong state-
ments that effectively include some level of closedness.
For example, if there is a cardinality statement that says
a dog has only one owner, we know it is not possible to
consistently have a statement in another document that
adds a second owner.

https://alandix.com/glossary/aibook/RDF
https://alandix.com/glossary/aibook/open world assumption
https://alandix.com/glossary/aibook/open world assumption
https://alandix.com/glossary/aibook/closed world assumption
https://alandix.com/glossary/aibook/closed world assumption
https://alandix.com/glossary/aibook/Prolog
https://alandix.com/glossary/aibook/Prolog
https://alandix.com/glossary/aibook/RDF
https://alandix.com/glossary/aibook/ontologies
https://alandix.com/glossary/aibook/RDF
https://alandix.com/glossary/aibook/RDFS
https://alandix.com/glossary/aibook/Resource Description Framework Schema
https://alandix.com/glossary/aibook/Resource Description Framework Schema
https://alandix.com/glossary/aibook/RDF
https://alandix.com/glossary/aibook/ontologies
https://alandix.com/glossary/aibook/RDF
https://alandix.com/glossary/aibook/Web Ontology Language
https://alandix.com/glossary/aibook/Web Ontology Language
https://alandix.com/glossary/aibook/OWL
https://alandix.com/glossary/aibook/RDF triple\protect \penalty -\@M notation
https://alandix.com/glossary/aibook/RDF triple\protect \penalty -\@M notation
https://alandix.com/glossary/aibook/OWL
https://alandix.com/glossary/aibook/OWL
https://alandix.com/glossary/aibook/OWL
https://alandix.com/glossary/aibook/open world assumption
https://alandix.com/glossary/aibook/RDF

17.2.3 Asking Questions – SPARQL

RDF can be put in a simple text file in one of the standard
formats. However, there are also a number of research
and commercial triplestores. These are like databases for
RDF.

SPARQL is the query language for RDF. It holds a sim-
ilar place to RDF and triple stores as SQL does to re-
lational databases. It was crucial in allowing Semantic
Web technology to be used in end-user applications. One
of the early examples of this was the BBC’s website for
the 2010 World Cup, which used an RDF triplestore and
SPARQL to allow different facets of the tournament data
to be easily explored [231].

SPARQL allows queries to be expressed using variables
to denote unknown entities. For example, the following
is a query to find the email addresses of all people with
the nickname “Shaggy”.

SELECT ?e
WHERE {

?p vcard:nickname "Shaggy" ,
?p vcard:hasEmail ?e .

}

Note how this query uses the vcard ontology,
developed for the transfer of information between
address books.

The query above is a simple conjunction; it effectively
matches all pairs of triples that match the two pattern
statements. The pattern variables ?p and ?e are instan-
tiated during the matching.

More complex queries are possible, including disjunc-
tions (either match this or that) and crucially negation.
Figure 17.4 shows an example of SPARQL with a nega-
tion, ‘NOT EXISTS’. This query looks for all people who
have no name specified. It is clear from this example that
this could be useful.

However, the ‘NOT’ here is adopting a negation as
failure model, like Prolog; that is, SPARQL is using a
closed world assumption. This makes sense as SPARQL
is effectively used as a query language over triplestores,
which contain a fixed set of statements. However, this
causes some conflict with the general open world na-
ture of RDF, a situation that can lead to endless academic
discussion.

Web-scale Reasoning ■ 253

17.2.4 Talking about RDF – Reification, Named
Graphs and Provenance

Sometimes we just want to say something “Scooby Doo is
a Great Dane”. However, we often also want to talk about
who said something, whether something is true, how you
know it is true. For example, I might want to say “It is
true in the film ‘Ghostbusters’ that Scooby Doo is a Great
Dane”.

There are two ways this is dealt with in RDF, the first
is reification, which basically takes a statement and treats
it as an entity in its own right, with the subject, predi-
cate and object of the statement defined as triples. This
is rather like putting “quote marks” round a statement in
text to turn it into a ‘thing’ you can talk about (as in the
paragraph above). We can then make statements about
the statement!

aibk:_stmt_42 rdf:type rdf:Statement.
aibk:_stmt_42 rdf:subject aibk:Scooby_Doo.
aibk:_stmt_42 rdf:predicate rdf:type.
aibk:_stmt_42 rdf:object aibk:Great_Dane.

aibk:_stmt_42 aibk:true_in_film
aibk:Ghostbusters.

Notice how the statement itself has been given a sort
of anonymous id, this is rather like numbering equations
in a mathematical proof. The URI is only there to en-
able us to talk about the statement, so would probably
not be given a meaningful name unless it were a spe-
cial statement such as Descartes’ [72] “I think therefore
I am”.

When RDF descriptions are created in a triplestore
or through some form of automatic tools, there will
be many of these generated URIs, even for meaningful
things. This is rather like record ids in a traditional
database. For example, Alan has a Facebook handle
alanjohndix, but internally within Facebook’s database
and API, this has an id 635054223.

This is powerful, but cumbersome – OK to talk about
one or two things, but looks like a pain if you want to talk
about everything that happens in Ghostbusters. Similarly,
if you want to import RDF statements from several doc-
uments into a triplestore, you may want to keep track of
which statements came from which document, especially
if you have different levels of confidence in the reliability
of the different sources.

https://alandix.com/glossary/aibook/RDF
https://alandix.com/glossary/aibook/triplestores
https://alandix.com/glossary/aibook/SPARQL
https://alandix.com/glossary/aibook/RDF
https://alandix.com/glossary/aibook/Semantic Web
https://alandix.com/glossary/aibook/Semantic Web
https://alandix.com/glossary/aibook/RDF triplestore
https://alandix.com/glossary/aibook/SPARQL
https://alandix.com/glossary/aibook/SPARQL
https://alandix.com/glossary/aibook/vcard ontology
https://alandix.com/glossary/aibook/SPARQL
https://alandix.com/glossary/aibook/negation as failure
https://alandix.com/glossary/aibook/negation as failure
https://alandix.com/glossary/aibook/Prolog
https://alandix.com/glossary/aibook/SPARQL
https://alandix.com/glossary/aibook/closed world assumption
https://alandix.com/glossary/aibook/SPARQL
https://alandix.com/glossary/aibook/triplestores
https://alandix.com/glossary/aibook/open world
https://alandix.com/glossary/aibook/RDF
https://alandix.com/glossary/aibook/RDF
https://alandix.com/glossary/aibook/reification
https://alandix.com/glossary/aibook/anonymous id
https://alandix.com/glossary/aibook/URI
https://alandix.com/glossary/aibook/Descartes
https://alandix.com/glossary/aibook/RDF
https://alandix.com/glossary/aibook/database
https://alandix.com/glossary/aibook/Facebook
https://alandix.com/glossary/aibook/database
https://alandix.com/glossary/aibook/RDF

254 ■ Artificial Intelligence

FIGURE 17.4 SPARQL example with negation (from https://www.w3.org/TR/sparql11-query/#negation).

To support this, many triplestores are actually
quadstores, labelling each triple with a graph identifier
... which in true RDF fashion is itself, of course, a URI.

<graph_uri> <subject_uri> <predicate_uri>
<object_uri_or_literal>

These are called ‘named graphs’, although the name
may simply be a URI. They can be used in various ways:

1. To make it easier to update the store if an RDF
document has changed and needs to be reloaded

2. To allow queries against particular graphs as well
as the whole store

3. To allow statements to be made about the named
graph as a whole

The first is just bookkeeping (albeit important). The
second can be used if, for example, you were not entirely
sure about the reliability of one of the sources, so some
queries might want to be only against the trusted source.
However, the last is the most interesting.

One can use this to talk about all the statements in the
graph, in a similar way to reified statements above:

aibk:graph_37 aibk:true_in_film
aibk:Ghostbusters.

Perhaps more important, it can be used to talk about
provenance, where the data came from, its reliability, etc.

aibk:graph_37 ex:derived_from
https:/ex.com/a_doc.rdf.

aibk:graph_37 ex:reliability "medium"

17.2.5 Linked Data – Connecting the Semantic
Web

Having URIs that represent things not actually on the
web is really powerful, they allow RDF to talk about phys-
ical things such as Mount Everest, ideas such as ‘truth’
and fictional things such as Harry Potter. However, this
does not help discoverability. We might know that the
URI aibk:alanjohndix is an unambiguous way to talk
about the particular Alan Dix who is the author of this
book, but how do we find out more?

Linked data achieves this by making URIs link to
actual web accessible documents that then contain RDF
that describes the thing. That is, Linked Data is RDF
where the URIs are URLs pointing to machine readable
data. Two of the central examples of this are GeoNames
and DBpedia.

The GeoNames website and database collects open
geographic data from a number of sources and has a
web interface and a number of APIs. Each country, city,
mountain, village and stream has a unique GeoNames
id. For example, 6077243 is the id for Montreal, and
geonames:6077243 can be used in RDF documents to
refer to Montreal. Figure 17.5 shows a portion of the
RDF available at GeoNames about Montreal.

Note that ‘geonames:’ is a common prefix, which
is short for https://sws.geonames.org/; so
geonames:6077243 expands to https://sws.geonames
.org/6077243/.

One of the entries in Figure 17.5 is a ‘see also’ link
to https://dbpedia.org/resource/Montreal,
the entry for Montreal in DBpedia. DBpedia is an
extract of the parts of Wikipedia that can be easily
codified as data. If you look at this page in an or-
dinary web browser, it will render it in a readable
manner (not raw RDF!), and you can see, among

https://www.w3.org/TR/sparql11-query/#negation
https://alandix.com/glossary/aibook/triplestores
https://alandix.com/glossary/aibook/quadstores
https://alandix.com/glossary/aibook/graph identifier
https://alandix.com/glossary/aibook/RDF
https://alandix.com/glossary/aibook/URI
https://alandix.com/glossary/aibook/named graphs
https://alandix.com/glossary/aibook/URI
https://alandix.com/glossary/aibook/RDF
https://alandix.com/glossary/aibook/provenance
https://alandix.com/glossary/aibook/URI
https://alandix.com/glossary/aibook/RDF
https://alandix.com/glossary/aibook/Linked data
https://alandix.com/glossary/aibook/URI
https://alandix.com/glossary/aibook/RDF
https://alandix.com/glossary/aibook/URI
https://alandix.com/glossary/aibook/URL
https://alandix.com/glossary/aibook/GeoNames
https://alandix.com/glossary/aibook/DBpedia
https://alandix.com/glossary/aibook/GeoNames
https://alandix.com/glossary/aibook/database
https://alandix.com/glossary/aibook/RDF
https://alandix.com/glossary/aibook/DBpedia
https://alandix.com/glossary/aibook/RDF
https://dbpedia.org/resource/Montreal
https://sws.geonames
https://sws.geonames.org
https:/ex.com/a_doc.rdf

Web-scale Reasoning ■ 255

FIGURE 17.5 Portion of RDF about Montreal (from https://sws.geonames.org/6077243/about.rdf).

other things, that there are typically 11.5 rainy days
in November (predicate dbp:novRainDays) and that
the album Queen Rock Montreal was recorded there
(dbo:recordedIn dbr:Queen_Rock_Montreal).

So, if you use the GeoNames URI as an identifier for
Montreal in your own RDF, it is possible for code to fol-
low this through to the GeoNames RDF, and from that
to the DBpedia RDF. A reasoning engine can then, if it
wants to, find that Queen Rock Montreal was recorded
there, that it was recorded in November 1981 (from its
DBpedia RDF), and that means there was approximately
a 1 in 3 chance that it was raining the day it was recorded.

GeoNames and DBpedia were two of the first datasets
in the ‘Linked Data Cloud’ in 2007, but by November
2020 there were more than 1200 listed (see Figure 17.6)
as well as many individual RDF documents that use
URIs from Linked Data without being publicly listed
themselves. In addition to more generic resources,
such as DBpedia, there are also densely interconnected
sub-clouds, for example around medical and biological
data.

The promise of this as a data source for knowledge-
rich reasoning is clear, but in practice there are additional
steps needed.

First, if you just type a Linked Data URI into a
browser you will normally get a human readable
HTML page. Code accessing the page needs to
say explicitly that it wants RDF as a response. In

the case of GeoNames, if your code asks for RDF
from https://sws.geonames.org/6077243/,
GeoNames will give an HTML 303 redirect to
https://sws.geonames.org/6077243/about.rdf
where the actual RDF about Montreal can be found.
This is so that there is a difference between the URI
that represents Montreal the city and the URL of the
file containing RDF about Montreal. These distinctions
sound subtle but make it possible, for example, to talk
about provenance.

Second, although this use of the HTTP request–
redirect is now fairly standard, there are variations
between datasets, for example some just deliver RDF
directly, some have a SPARQL endpoint. Often you need
to know a little more about the particular dataset.

Third, the RDF at the DBpedia URI tells you what DB-
pedia knows about Montreal but does not know about
every dataset that has a link to it. Even within a dataset
often the RDF at the URI only tells you the RDF state-
ments where the thing you are referring to is the sub-
ject, not those where it is the object. If the dataset has a
SPARQL endpoint, then it is easy to ask for everything
that refers to a specific URI, but not everything has this.
In general, full discovery needs an additional Semantic
Web search/index rather like Google does for the human
readable web.

Finally, GeoNames uses a ‘see also’ link to DBpedia but
doesn’t explicitly say they are the same thing. There is a

https://sws.geonames.org/6077243/about.rdf
https://alandix.com/glossary/aibook/GeoNames
https://alandix.com/glossary/aibook/URI
https://alandix.com/glossary/aibook/RDF
https://alandix.com/glossary/aibook/DBpedia
https://alandix.com/glossary/aibook/GeoNames
https://alandix.com/glossary/aibook/DBpedia
https://alandix.com/glossary/aibook/Linked Data Cloud
https://alandix.com/glossary/aibook/RDF
https://alandix.com/glossary/aibook/Linked Data
https://alandix.com/glossary/aibook/knowledge-rich reasoning
https://alandix.com/glossary/aibook/knowledge-rich reasoning
https://alandix.com/glossary/aibook/Linked Data
https://alandix.com/glossary/aibook/URI
https://alandix.com/glossary/aibook/RDF
https://alandix.com/glossary/aibook/URI
https://alandix.com/glossary/aibook/URL
https://alandix.com/glossary/aibook/provenance
https://alandix.com/glossary/aibook/RDF
https://alandix.com/glossary/aibook/SPARQL
https://alandix.com/glossary/aibook/RDF
https://alandix.com/glossary/aibook/URI
https://alandix.com/glossary/aibook/SPARQL
https://alandix.com/glossary/aibook/URI
https://alandix.com/glossary/aibook/Semantic Web
https://alandix.com/glossary/aibook/Semantic Web
https://alandix.com/glossary/aibook/Google
https://sws.geonames.org/6077243/about.rdf
https://sws.geonames.org/6077243

256 ■ Artificial Intelligence

FIGURE 17.6 Growth of the Linked Data Cloud 2007–2020 (source: https://lod-cloud.net/, CC-BY).

standard RDF predicate owl:sameAs, which means that
two URIs refer to the same thing. However, as is evident,
it is often easier to ‘mint’ your own URIs rather than refer
to one from another dataset. In general, there is a lot of
effort involved in verifying that two things are actually
identical, and datasets may differ in this judgement. For
example, GeoNames makes a distinction between Mon-
treal the city and Montreal the larger administrative re-
gion. DBpedia includes RDF owl:sameAs statements for
its Montreal URI but declares it to be the same as two
GeoNames URIs, which GeoNames would regard as dis-
tinct!

On the last point, while this is a specific issue for
Linked Data, it is also a common problem when
attempting to reason using multiple datasets. As humans
we manage to deal quite easily with concepts that are

similar but not identical. For example, when we refer to
‘Portugal’, we could be referring to the administrative
country, including Madeira and the Azores, we may
mean only the geographic region overlooking the Bay
of Biscay or we may even be referring to the Portuguese
football team. Often the distinction doesn’t matter, and
we make it unambiguous only when necessary. For
computer knowledge bases, we are often forced to be
completely unambiguous from the beginning and not
all human knowledge easily fits into such hard and fast
categories.

17.3 MINING THE WEB: SEARCH AND
SEMANTICS

Only a fraction of the information in Wikipedia is cap-
tured in DBpedia, and in general much of the web is in

https://lod-cloud.net/
https://alandix.com/glossary/aibook/RDF
https://alandix.com/glossary/aibook/URIs
https://alandix.com/glossary/aibook/Linked Data

FIGURE 17.7 Half a billion search results for ‘Montreal’, how
does Google rank more useful ones first.

human readable text that is not immediately available for
automated reasoning. Applications that want to use the
data on the web need to mine this material in some way.

17.3.1 Search Words and Links

Search engines are the most obvious way in which web
information is mined to make it more useful. The normal
purpose is to give web pages back to the user, although
similar techniques are used to help deliver effective ad-
verts.

The earliest search engines were simply indexes, web
pages are scanned, the text extracted, broken into words
and then the words used to create an index that links a
single word, say ‘Montreal’, to all web pages that contain
the word. If several words are used, then the results re-
turned are instead the set of web pages that contain some
of the words, typically sorted so that the pages that con-
tain more of the terms appear first.

For a small collection of documents, finding those that
refer to terms of interest is sufficient, but once we get
to the web with 10 billion or so pages, things get more
difficult. If you had to look through nearly 500 million
result pages to find the one you were interested in (see
Figure 17.7), the web would not be very useful! How does
Google search manage to find the most relevant ones to
put first?

One of the techniques is to use properties of the text it-
self. If you are searching for the term “Montreal bus sta-
tion”, then ‘bus’ and ‘station’ are more common words
than ‘Montreal’. The pages that mention ‘Montreal’ and
‘bus’, but not ‘station’, will get ranked more highly than
those that just mention ‘bus’ and ‘station’; even though
both have the same number of search terms, the pages
with the more rare terms get ranked more highly. Also

Web-scale Reasoning ■ 257

pages that include the words close to one another, say
the sentence starting “This bus station is not to be con-
fused ...” will count more highly than if ‘bus’ and ‘station’
appear anywhere on the page.

These techniques work for any collection of docu-
ments. However, the web is not simply a collection of
text documents, but it is a hypertext, the documents
are linked to one another. This can be used in two
ways.

First, this can be used as extra relevance information
for specific words and phrases. For example, if web page
A references web page B using a link in the text “Mon-
treal”, then this will add to the “Montreal” index for page
B as well as page A; possibly even if page B does not ex-
plicitly mention Montreal itself. The fact that for the au-
thor of page A, B is the page to go as a reference for Mon-
treal counts in page B’s favour.

Second, the link structure can be used to generate
a measure of importance of a page in general. If lots
of pages link to page A, then it suggests that page A is
an important page. In the web the link counts in and
out of pages tend to follow a power law distribution;
there is a small number of pages with lots of link
connections and a large number with far fewer, so
even this simple measure can be used to help order
pages.

Google’s PageRank algorithm takes this a step further,
by ranking the importance of incoming links by the
importance of the pages they come from. This is a
circular definition of importance, but the algorithm
deals with this by starting with a uniform measure
of importance and then iterating, this is effectively a
variant of spreading activation (Chap. 3). There are
various equivalent ways of thinking about this. One is
to imagine an army of people randomly clicking links
on pages and then keeping track of how often they end
up on different pages. Another, more mathematical,
analogy is to think about a massive matrix with one
row and one column for each page and the number in
the matrices representing the links between the pages.
The PageRank is then the principal eigenvector of the
matrix.

The actual algorithms used by Google and other
search engines add many other factors, for example,
there are some well trusted sites (such as Wikipedia),
so these can be used to boost the initial weights of
PageRank.

https://alandix.com/glossary/aibook/Search engines
https://alandix.com/glossary/aibook/search engines
https://alandix.com/glossary/aibook/Google search
https://alandix.com/glossary/aibook/search terms
https://alandix.com/glossary/aibook/hypertext
https://alandix.com/glossary/aibook/relevance information
https://alandix.com/glossary/aibook/link structure
https://alandix.com/glossary/aibook/power law distribution
https://alandix.com/glossary/aibook/PageRank
https://alandix.com/glossary/aibook/spreading activation
https://alandix.com/glossary/aibook/PageRank
https://alandix.com/glossary/aibook/principal eigenvector
https://alandix.com/glossary/aibook/Google
https://alandix.com/glossary/aibook/search engines
https://alandix.com/glossary/aibook/PageRank

258 ■ Artificial Intelligence

FIGURE 17.8 Using schema.org markup to make text meaningful for automated tools.

17.3.2 Explicit Markup

HTML pages are not just text but structured doc-
uments. This can be used to boost the text tech-
niques above, for example mentions of words in
headers will count more highly than in ordinary
paragraphs. However, the structure can be used in other
ways.

Some of this is a side effect of human readable HTML.
Tables are explicitly marked using the <table> tag, so
they can be extracted as data. Similarly form fields have
hidden names for each field, which are used by web
browsers to suggest pre-filled values. A special case of
this is password input fields which have a special tag
<input type="password"> and often the previous

input field is a user name – this is used by the browser to
save your passwords.

However, these are fairly limited, for example a com-
pany web page may well include a phone number or ad-
dress, but these are likely to be organised using the same
layout tag as ordinary tags.

In order to help search engines and other web tools,
some web pages include additional information that is
invisible to the human reader but enables automated
tools to extract structured information. A number of
specific emergent standards (called microformats) arose
to tackle specific kinds of content, such as contact details
(address, email, etc.) and events (time, place, etc.),
but these have now mostly been merged into a single
industry standard called schema.org.

https://alandix.com/glossary/aibook/search engines
https://alandix.com/glossary/aibook/microformats
https://alandix.com/glossary/aibook/schema.org
https://schema.org

Web-scale Reasoning ■ 259

Schema.org allows a web page to include markup that
is rather like (and in some cases exactly like) a form
of lightweight RDF. Existing tags in the HTML have
properties added to say what they enclose and where
additional markup is needed HTML tags are
used, which have no impact on human-readable layout,
but allows extra information to be added. Figure 17.8
shows an example of an initial paragraph describing
the publication of this book (i), as might appear in,
say, a blog or press release. The same information is
then shown (ii) with the microdata added that says
that the paragraph is talking about a book, that the
author is Alan Dix and that he was born in Cardiff.
Finally, the extracted information is shown as JSON data
in (iii).

This information can be used to help augment search-
ing but also to create structured representations of arbi-
trary web pages in a similar way to what DBpedia does
for Wikipedia pages. It would of course be a lot of work
to add this information by hand to the HTML, but au-
thoring tools can help for one off pages. Many pages are
themselves generated from databases, and in this case it
is a relatively simple matter to add this kind of markup
automatically and also to provide parallel RDF versions.

17.3.3 External Semantics

Not every web page has explicit semantic markup, so of-
ten structure has to be inferred from the outside. This
can use the structural tags of the HTML to help, for ex-
ample, a part that is set in italic, bold or given a class with
a will often represent some sort of name or title.

There are two main ways of looking for this structure,
but they often interact.

entity identification – finding representations of things
such as people’s names, book titles or dates

structured data identification – looking for structure
such as tables or relationships between entities

Named entity recognition may use lookup tables, for
example lists of people’s names or places. This may be
based on large public datasets, or local ones, such as your
address book. This can be used to tag a word or phrase as
a possible location or film title. For places or names there
are often several possible matches for the same name,
for example there is a region called Montreal in France
as well as the city in Canada, not to mention numer-

ous Montreal Hotels across the world. For some pur-
poses having a list of possible matches, or just know-
ing it is a place name is sufficient, for example if the
reader can make the selection. However, often we at least
want an order of likelihood. Context can often be used
in these cases, one starts with a weighting proportional
to common uses, so that Montreal the city in Canada is
most highly weighted, but if other entities or the page
origin suggest it is about places in France, then Montreal
the French region would gain extra weight. Given other
named places on the same page might also be ambiguous
this might be an iterative process.

Other forms of entity recognition are based on pat-
terns. This can be used to suggest possible named en-
tities, for example a series of words with initial capitals
within a body of text might suggest that it is a book or
film title. Pattern-based recognition can also be used for
various forms of non-textual codes, dates, etc. These are
often called data detectors and are found in various appli-
cations and built into the Apple operating systems since
the late 1990s.

Figure 17.9 shows an example of a pattern to match
potential ISBNs in text. It mainly consists of a regular
expression that looks for an optional prefix such as
‘ISBN10:’, followed by a suitable number of digits and
dashes and possibly a final ‘x’ in the case of older length
10 ISBNs. Note that the presence of dashes means that
the regular expression is only a possible match, and a
further verification stage is needed to count the digits
and calculate the checksum is correct; in the Snip!t
system that this example is drawn from, this additional
verification is performed by a JavaScript constructor for
the ‘isbn’ datatype.

Extensions of this technique can be used to detect
more complex structures such as tables, or lists, even
when this is not immediately apparent in the HTML
markup, or if the document is text or a PDF. For
example, if multiple lines contain a high proportion
of numbers and additional spaces or tabs, this might
trigger a table detector. Similarly if something that looks
like a personal name occurs in a paragraph with an
email address and telephone number, then this might
trigger a ‘contact’ detector, binding the various elements
together and creating an ‘add to address book’ suggested
action. This kind of detector may also use cue phrases in
the text, for example, ‘let’s meet’ close to a date or time
would cue a meeting recogniser that would look for a
place, etc. and trigger an ‘add to calendar’ suggestion.

https://alandix.com/glossary/aibook/Schema.org
https://alandix.com/glossary/aibook/markup
https://alandix.com/glossary/aibook/RDF
https://alandix.com/glossary/aibook/microdata
https://alandix.com/glossary/aibook/JSON
https://alandix.com/glossary/aibook/markup
https://alandix.com/glossary/aibook/RDF
https://alandix.com/glossary/aibook/semantic markup
https://alandix.com/glossary/aibook/Named entity recognition
https://alandix.com/glossary/aibook/entity recognition
https://alandix.com/glossary/aibook/Pattern-based recognition
https://alandix.com/glossary/aibook/data detectors
https://alandix.com/glossary/aibook/ISBN
https://alandix.com/glossary/aibook/regular expression
https://alandix.com/glossary/aibook/regular expression
https://alandix.com/glossary/aibook/regular expression
https://alandix.com/glossary/aibook/snipit
https://alandix.com/glossary/aibook/JavaScript

260 ■ Artificial Intelligence

FIGURE 17.9 Data detector for ISBNs in text (from https://snipit.org/tellmeabout/).

As well as this form of generic pattern recogniser,
hand-crafted tools are often used for scraping data
from specific websites. For example, the reference
manager Zotero has more than 500 crafted JavaScript
‘translators’ for extracting information from websites
that might mention referenceable items including those
of journals, news sites and booksellers. Figure 17.10
shows a portion of the Zotero translator for Amazon;
it is scanning the site for tags with particular names or
classes.

These various forms of pattern matching, data detec-
tors, recognisers and translators can be seen as a form of
AI in their own right. Some are simple, but others involve
complex matching algorithms or machine learning. In
addition, it is quite common for various AI or machine
learning projects to start with web scraping in order to
gather data.

17.4 USING WEB DATA
We have seen how structured data can be made available
on the web, how web pages can have additional markup

to make them more machine readable and how even
plain web pages can be analysed to extract meaning.
However, we want to use this information.

17.4.1 Knowledge-rich Applications

Both structured and unstructured data can be used as
part of human-in-the-loop applications. For example,
if you want to know the height of the Eiffel Tower, you
could be presented with several snippets of the text
from the web that appear to show the height of the
Eiffel Tower. If one of the snippets starts “This model
of the Eiffel Tower stands 3.2 metres tall ...”, the human
reader can easily skip this and move on to more relevant
results. Similarly, if a web assistant extracts fields from
a web form and presents them as a suggested calendar
entry, the user can choose to ignore or amend the fields.
It is also clear how the structured data in RDF and in
semantic markup can be used as part of a knowledge
base for automated reasoning.

Part of the power of human reasoning is our ability
to draw on a wide range of knowledge accumulated dur-

https://snipit.org/tellmeabout/
https://alandix.com/glossary/aibook/JavaScript
https://alandix.com/glossary/aibook/human-in-the-loop
https://alandix.com/glossary/aibook/semantic markup

Web-scale Reasoning ■ 261

FIGURE 17.10 Fragment of Zotero translator for scraping an Amazon product page (from
https://github.com/zotero/translators/blob/master/Amazon.js).

ing our lives, some very specific and precise (“The Eiffel
Tower is 324m high.”), some more qualitative (“The Eif-
fel Tower is a lot taller than most buildings.”) and some
more analytic (“If building A is taller than building B and
building B is taller than building C, then building A is taller
than building C.”). In early AI systems the latter was eas-
ier to create than the former. There have been a number
of projects over the years to gather declarative knowledge
of the first kind in volume (see Chap. 2), but many have
faltered due to the scale of the task. The web has changed
that.

Crucially there is a trade-off in human and AI rea-
soning between using declarative knowledge and ana-
lytic rules. For example, you might remember your mul-
tiplication tables or just work things out quickly on your
fingers. The web allows automated reasoning to have far
more knowledge and therefore rely less on analytic meth-
ods. This may make it possible for a system to produce
answers that appear to be very intelligent, without deep
understanding.

In 2011 the IBM AI program Watson beat human
contestants in Jeopardy!, a US general knowledge quiz
show. This involved techniques to understand what
was being asked [101] but also many terabytes of data
gathered from digital sources including traditional
dictionaries and encyclopaedias as well as selected
high-quality web resources, in particular Wikipedia.
It used a number of specialised natural language
processing techniques to extract useful knowledge
from free text and turn it into a form that could be
interrogated to answer questions faster than the human
contestants.

Watson was very careful in its selection of sources,
and thus could have high confidence in the answers.
However, many of the kinds of automated extraction

described in Section 17.3.3 are uncertain, offering pos-
sible data but with less confidence. This is problematic
for totally automated reasoning systems. However, the
sheer volume of web information comes to our rescue.

Imagine you have an automated reasoner that needs to
know the height of the Eiffel Tower but doesn’t have it in
high-quality sources. The system can gather web pages
that mention Eiffel Tower and scan these for the word
height near a length number. This is then used to create
a collection of ‘heights’ for the Eiffel Tower. This would
include 3.2m from the web page with the sentence “This
model of the Eiffel Tower stands 3.2 metres tall ...”, but
there would be many more that say around 324–330m.
Choosing a mid-point of the most common cluster of
values would almost certainly give a good estimate.

We can see that even very uncertain semantics can be
boosted by volume.

Note too that between the first draft of this chapter and
publication, the true figure changed from 324m to 330m
as the radio antenna at the top of the tower was replaced
with a longer one [49]. At the time of writing there were
still ten times as many Google search results for ‘height
of the Eiffel Tower 324m’ compared with ‘height of the
Eiffel Tower 330m’; however, the top results for ‘height
of the Eiffel Tower’ all show 330m as Google’s PageRank
algorithm is favouring the more up-to-date and reliable
sources. That is while volume is important, some knowl-
edge of authority can also help.

17.4.2 The Surprising Power of Big Data

This effect of volume can be used to create data-oriented
solutions to problems which would appear to need deep
understanding.

https://alandix.com/glossary/aibook/declarative knowledge
https://alandix.com/glossary/aibook/analytic rules
https://alandix.com/glossary/aibook/analytic rules
https://alandix.com/glossary/aibook/IBM
https://alandix.com/glossary/aibook/Watson
https://alandix.com/glossary/aibook/jeopardy
https://alandix.com/glossary/aibook/Eiffel Tower
https://alandix.com/glossary/aibook/PageRank
https://github.com/zotero/translators/blob/master/Amazon.js

262 ■ Artificial Intelligence

FIGURE 17.11 Search suggestions after typing ‘artificial’ into
Google. The first five suggestions will be based on popular
search terms, the last two are probably using the author’s pre-
vious browsing history.

A simple example of this is search suggestions. As you
begin to type into a search box, your typing is compared
with millions of previous search terms and the most com-
mon are reflected back as suggestions (see Figure 17.11).
This appears ‘intelligent’, guessing what you want before
you type it but in fact can be built using a simple index
(albeit very large) and counting. Similar techniques are
used to offer auto-completion when typing an email mes-
sage, although this is also often personalised.

This type of technique has proved very powerful
in tackling natural language processing tasks without
needing to create the rich grammars that are needed in
the techniques described in Chapter 13. Statistical tech-
niques have a long history in NLP, for example Hidden
Markov Models (see Chapter 14) use a probabilistic state
machine to predict the next word from the current state
and word. HMMs are trained using large amounts of
continuous text. Other methods are based on adjacency
statistics, most commonly n-gram frequencies (see also
Chap. 13).

An n-gram is simply a collection of n successive words
in the text. The simplest 1-gram is simply the frequency
of each word. For example, in the last paragraph the top
word is ‘the’ with frequency 3 followed by six words that
occur twice (a, are, in, see, state, word) and then another
50 or so that occur just once. Two-grams are word pairs;
there are no pairs that appear more than once in the pre-
vious paragraph, but at the point of writing the 2-gram
“are used” occurs five times in the chapter as a whole, so
it would be in the chapter 2-gram list with a frequency
of 5. Similarly at the same moment of time the chapter

FIGURE 17.12 Google Books Ngram Viewer (captured
28/12/2020).

contains the 3-gram “a web page” three times, including
this one.

As is evident even 2-grams (bigrams) become quite
rare unless the document or document collection is large.
Of course the web is very large, and so it is possible to ob-
tain frequency statistics for quite long n-grams. Google
also does this for n-grams in the scanned text in Google
Books. With large n-grams it is possible to perform ap-
parently intelligent tasks relatively easily. For example,
to obtain predictive text in an email, the last n words can
be looked up as the first words in the n+1-gram statis-
tics. If there is a frequent enough n+1-gram, then the
last word (or top few) is used as the next prediction. If
there are no matching n+1 grams, the last n-1 words are
considered.

Figure 17.12 shows statistics from Google Books n-
grams. You can see how there are a substantial number of
4-grams for “in the long run” (0.000344% of all 4-grams),
although far less than in the 1960s. In contrast “in the
long grass” only occurs about 1/30th as often (0.000011%
of all 4-grams). If you typed “In the long”, then “run”
would be an obvious next suggestion.

As well as text prediction n-grams can be used to build
sophisticated language models. For example imagine
clustering words based on whether they are preceded
or followed by the same words. So that “in” and “on”
might get clustered together as they are often followed
by “the” or “that”. If each cluster is given an id and then
the words are replaced by the cluster ids, we can do the
same thing to build higher level clusters. This can be
used to create emergent grammatical categories for any
language.

https://alandix.com/glossary/aibook/Statistical techniques
https://alandix.com/glossary/aibook/Statistical techniques
https://alandix.com/glossary/aibook/NLP
https://alandix.com/glossary/aibook/Hidden Markov Models
https://alandix.com/glossary/aibook/Hidden Markov Models
https://alandix.com/glossary/aibook/adjacency statistics
https://alandix.com/glossary/aibook/adjacency statistics
https://alandix.com/glossary/aibook/n-gram
https://alandix.com/glossary/aibook/text prediction

Web-scale Reasoning ■ 263

Similar techniques are used for translation services
based on corpora where there are existing translations
(say English and Welsh versions). Large numbers
of examples are used to match phrases in the two
languages, so that “bore ’ma” often occurs in the Welsh
corresponding to sentences with “this morning”. This
will not be one-to-one correspondence as the same
phrase may translate in different ways, but with a
sufficiently large number of examples, translators can be
built on a phrase-by-phrase basis. By using overlapping
phrases grammatical changes, such as different sentence
orderings, can be managed.

17.5 THE HUMAN WEB
While some of the content we see on the web is generated
directly from data, the majority of our day-to-day use will
be with material that has been crafted by human hands:
news items, Wikipedia pages and social media. However,
as social media makes clear, the web is not merely a static
output of human authoring, but a place where there is a
constant stream of human activity. Indeed the web sci-
ence community refer to the web as a social machine
[129, 252].

This human activity, the things we do on the web, is
both an opportunity for AI, and especially ML, to help
us, but also the acts themselves are a source of input into
many AI algorithms. Some of these are built using data
that is passively gathered from web users, such as usage
patterns, some is explicitly gathered, for example, when
you give a star rating. Sometimes the results of this feed
back into the web itself, for example in targeted advertis-
ing or prioritising of social media posts, but the data can
also be used for other purposes.

17.5.1 Recommender Systems

When you look at a product on Amazon or a film on Net-
flix, you are presented with suggestions of other prod-
ucts and films you might also like. Some of this is based
purely on raw popularity, the top ten films or music in
the genre. However, we know that much of this is far
more targeted, sometimes implicitly (those suggestions
that just seem prescient) and sometimes explicitly “peo-
ple who watched X also watched Y”. Collectively, and for
obvious reasons, these are called recommender systems,
and we’ve already mentioned them in Chapters 7 and 8.

There are very many algorithms used in recom-
mender systems and also different kinds of data, but

largely they are based around an event stream of the
form:

At time <t> user <u>
interacted with product <p>
in an event <e>

The events may be of different kinds, for example
viewing a product and buying it, or checking the
information about a film vs. watching it. In addition,
there may be some extra information attached to the
event, for example if you are asked to star rate a film, or
how long you viewed the information about a product.

When users are asked to rate a product or film, this
is called relevance feedback. You will also see this used
in other kinds of interactions, such as customer support
sites which ask you to rate the answer to a query. We look
in detail at intelligent interactive systems in Chapter 19.

This stream of <t,u,p,e> events is complex to han-
dle in a raw state, so is often reduced to relatively simple
matrices. Let’s look at just one way to do this.

We’ll turn the event stream into a matrix, let’s call it
M, where the rows are people and the columns products.
Each cell is some sort of score measuring the level of pos-
itive engagement with the product. The score will often
be a weighted combination of factors, with some factors,
such as whether the person bought/watched it or a star
rating, weighted more highly than others, such as view-
ing the information. Indeed, viewing the information on
a film and then never watching it might be included as a
negative score.

Note a few things:

1. We have completely ignored some information,
such as the order we viewed two different items.

2. We have reduced the stream of events for each
product to a single score.

3. The resulting matrix is sparse, that is most of the
entries are zero. On a large site each person will
only engage with a relatively small number of
products and vice versa.

The first two are a form of initial data reduction, which
is a common theme in all big data analysis. The volume
of data is often too big even with massive computational
resources, so we have to find ways to progressively sim-
plify it (see also Chapter 8).

https://alandix.com/glossary/aibook/web science
https://alandix.com/glossary/aibook/web science
https://alandix.com/glossary/aibook/social machine
https://alandix.com/glossary/aibook/recommender systems
https://alandix.com/glossary/aibook/relevance feedback
https://alandix.com/glossary/aibook/sparse matrix

264 ■ Artificial Intelligence

FIGURE 17.13 Pseudocode for product–product score based
on multiplying user scores. Note this is schematic, not opti-
mised for sparse matrix M.

The last is more about data representation but also in-
fluences the kinds of algorithms we apply. Let’s look at
the scale of this matrix:

N – total number of users (many millions in a typical
e-commerce site, billions for internet giants)

P – products (many thousands on movie sites, millions
on large eCommerce sites such as Amazon)

E – typical number of products engaged with by a single
user over the time frame of the modelling, say a few
hundred per year

The total size of the matrix M is N × P, but the
number of non-zero entries is only N×E, that is only
E/P of the cells have numbers in. If we take a million
users, with 10,000 products, the sparse matrix has
perhaps 100 million non-zero entries (big enough),
but the complete matrix has 10 billion cells. It is clear
we want to avoid any sort of algorithm whose time
taken, or memory used is based on the complete
matrix.

As there are typically more users than products, so of-
ten it is the users that are ‘simplified’ further using some
form of clustering into classes of users or representa-
tion as a vector of characteristics. Both of these can be
obtained through automated processes, for example, the
self-organising maps in Chapter 5, although at each stage
algorithms often have to be adapted to deal with scale.

Another approach is to create product–product scores
by summing over users. Figure 17.13 shows a simple
example of this, each user’s scores for a pair of products
are multiplied together and add to the relevant product–
product score. If you know your matrix algebra, you
might recognise this as transpose(M)×M.

This code is rather oversimplified in two senses. First,
it is not optimised for the sparseness of the matrix M, but
there are ways of doing this. Second, one might want to

combine the users’ scores in other non-linear ways, not
just multiply them. For example, if the same user has a
positive score for two products, we might count this more
strongly than a positive and a negative, or two negative
scores.

Even this score matrix is quite large (P×P), so further
data reduction might be necessary. However, let’s assume
t is manageable. We can then see how this can be used in
practice.

When the user is looking at product A, and finds
other products B1, B2, ... where score(A, Bi) is large, this
is the simple “customers who liked/bought A also liked
B”. Adding a little more sophistication, one could rank
the Bi by also looking at other products P1, P2, ... the
user had recently engaged with and using the values of
score(Bi, Pj) to enable a more personalised ranking of
suggestions.

17.5.2 Crowdsourcing and Human Computation

One of the defining features of the web has been its use of
crowdsourcing, engaging very large numbers of people
in the creation of knowledge as opposed to small num-
bers of professionals. Sometimes this is voluntary as in
the case of Wikipedia with over a quarter of a million ac-
tive contributors. However, it may also be paid, as in the
case of Amazon Mechanical Turk and many other sites
offering ‘human intelligence tasks’ to the lowest bidder.
Finally, there are tasks that happen, possibly without you
being aware that you are doing them as they are part of a
game or login process.

These human tasks vary in their complexity. Some
involve expertise or creativity including design and
writing work. Some are more low-level such as
checking/correcting text generated by OCR (optical
character recognition). The latter are sometimes also
called human computation, a phrase that conjures up
images of the worker as a cog in the machine; in fact not
an unfair portrayal of much of the work.

One of the earliest examples of human computation
was reCAPTCHA codes, used as part of an authentica-
tion process to ensure that the user was human and not
an automated bot. These asked the user to type the text
in several slightly broken or blurry images. The images
were derived from scans of books and news articles
where OCR had either failed or had low confidence. Two
images were shown, one had known text and was used to
verify the user was human, the other had unknown text

https://alandix.com/glossary/aibook/crowdsourcing
https://alandix.com/glossary/aibook/OCR
https://alandix.com/glossary/aibook/optical character recognition
https://alandix.com/glossary/aibook/optical character recognition
https://alandix.com/glossary/aibook/human computation
https://alandix.com/glossary/aibook/reCAPTCHA codes

FIGURE 17.14 Early reCAPTCHA – human as gap filling for
automated systems.

and the user was effectively providing a transcription.
If enough users typed the same text, it became ‘known’
and the relevant OCR updated.

This early example was effectively filling in gaps in the
automated system (see Figure 17.14). OCR has become
increasingly sophisticated, often including rich language
models to help choose where the text is ambiguous, even
for poor quality or hand-written text. This is true of many
kinds of automated systems. If the gaps are occasional
and can be detected, then it may be more cost effective
to have the task completed by people rather than trying
to create ever more complex automated systems, even
where this is possible.

You may also have used reCAPTCHA codes that show
you a number of images and ask you whether these in-
clude cyclists or road crossings. This is also being used
as part of an intelligent system, but rather than filling in
gaps in the processing you are preparing training mate-
rials.

Deep learning and other machine learning algorithms
have allowed the development of highly accurate image
recognition systems. However, to do this they require
large quantities of training data. It is easy to gather vast
quantities of image data, from dashboard cameras in cars
to satellite imagery. If these are tagged to describe the
features seen ‘person’, ‘cloud’, ‘mountain’, then the ma-
chine learning system can work on them. The difficult
thing is adding tags as this is a huge quantity of images.
When you complete the image reCAPTCHA codes, you
are doing precisely that, adding tags so that Google can
use these to train the image processing systems for au-
tonomous cars (Figure 17.15).

Both of these can happen in the same system. For ex-
ample, many apparently AI-driven chatbots have human
backup. First they attempt automatic recognition of your

Web-scale Reasoning ■ 265

question. If this succeeds with high enough confidence,
then the system responds. However, if the confidence is
low, there is a pool of back-up humans who attempt to in-
terpret the user’s request. The human-generated response
is then used as further training data so that if the system
encounters a similar request in future it may be able to
respond automatically.

17.5.3 Social Media as Data

We have already seen how the large corpora of text in
the web and social media can be used to derive language
models and structured knowledge simply by its volume.
In addition, social media can be used as a source of raw
data for sophisticated (and simple) real-time analysis.

The national health services and the WHO have exten-
sive monitoring processes for doctors and health workers
to report potential outbreaks of endemic diseases from
the common cold to Ebola. This can then be used to di-
rect resources or generate emergency responses as neces-
sary. During the Covid-19 pandemic, the same authori-
ties were trying to gauge public sentiment as to whether
they would respond well to various public health mea-
sures and to predict uptake of vaccination.

However, often changes in search behaviour, Twit-
ter/X and other social media content precede official
channels. When seasonal flu begins, there will be more
web searches for symptoms and more phrases in tweets
and posts suggesting poor health. Similarly language
analysis of tweets from early in the Covid-19 outbreak
included levels of fear or surprise [Medford, 2020].
This data cannot always be taken at face value as small
numbers of people account for large volumes of activity,
and these are often, depending on the platform, slanted
towards younger and more affluent users. However, with
sufficient processing these data sources can be used as
indicators of change and trends without relying on them
uncritically.

Similar techniques have been used by national power
regulators. It may take several minutes for local power
generation and distribution companies to inform their
national grid about outages. This time can be critical to
prevent catastrophic knock-on failures when problems
in one area cause power surges in neighbouring regions.
However, spikes in ‘#powercut’ tweets can start within
seconds allowing early warning of impending problems.

A slightly different version of similar techniques
has been used to monitor public opinion shifts during
political campaigns at a far finer granularity than is

https://alandix.com/glossary/aibook/Deep learning
https://alandix.com/glossary/aibook/image recognition
https://alandix.com/glossary/aibook/image recognition
https://alandix.com/glossary/aibook/chatbots

266 ■ Artificial Intelligence

FIGURE 17.15 More recent reCAPTCHA – human creating training data for machine learning.

possible with traditional opinion polls. Many online
betting sites allow users to place bets on political
campaigns such as the US presidential election, and the
sites change the odds based on betting patterns. So, the
odds during a live debate can give a near instant reading
of whether watchers think this has shifted the overall
sentiment [293]. Of course, the raw result is focused
on those who are both watching the debate and also
online gamblers, but again this can be raw data for more
sophisticated machine learning algorithms.

17.6 SUMMARY
We’ve seen that the Semantic Web and in particular
RDF and linked data can facilitate web-scale reasoning.
Triplestores can be used to store RDF including meta-
information and provenance, while SPARQL allows
queries. Various forms of markup can also make
human-readable web pages in HTML available for
automated reasoning, but text-mining techniques can
also be used. The vast quantity of information allows
new forms of knowledge-rich reasoning, but also simple
statistical techniques can be surprisingly powerful,
allowing apparently intelligent understanding of text
based on vast quantities of essentially frequency data.
The web is ultimately a social machine where people and
machines interact, this leads to opportunities to learn
automatically from similarities and communications
between people and to explicitly include people in data
production and management through crowdsourcing.

17.1 Following the pattern in Section 17.2.1 represent
all of the entity–entity relationships in Figure 2.6
as triples. Note, in the semantic network diagram
in Figure 2.6, the entities are the objects or con-
cepts enclosed in boxes. For this exercise, ignore
the properties that are not relationships between
entities, that is: ‘is carnivorous’, ‘is wild’, ‘has/has
no tail’, ‘barks/doesn’t bark’, ‘has 4 legs’, ‘is tall’, ‘is
brown’ and ‘is drawn’.

17.2 Now represent the properties in Figure 2.6
as triples. Think carefully about whether the
property is boolean (true/false) or has some
numeric or other type of value.

17.3 Imagine you are trying to create a name
recogniser, rather like the ISBN recogniser in
Figure 17.9. You want it to match simple names
such as ‘Alan Dix’, ‘J Finlay’, ‘J.E. Finlay’ and
‘Alan John Dix’. That is any number of forenames
including optional initials followed by a surname.
Initials may or may not be followed by a full stop.
You can assume that names always start with a
capital letter but do not match fully capitalised
names such as “Alan DIX”.

a. Create a small number of regular expression
that together will match names. That is any
valid name should match at least one of the
regular expressions, but no non-name should
match any of them. Try to do this using as few
regular expressions as possible.

b. Can you think of names of people that this
would not match?

Note: If you are not sure of how to write regular
expressions, look up the entry for regular expres-
sion in the book’s online glossary.

FURTHER READING

S. Brin and L. Page. The anatomy of a large-scale hypertextual
web search engine. Computer networks and ISDN Sys-
tems, 30(1–7):107–117, 1998. Elsevier.
This article, by the founders of Google, describes the ra-
tionale, development and architecture of the first Google
prototype including the first version of the PageRank al-
gorithm. As well as the historical interest, the article de-
scribes how the authors dealt with issues of scale as well as

https://alandix.com/glossary/aibook/Semantic Web
https://alandix.com/glossary/aibook/RDF
https://alandix.com/glossary/aibook/linked data
https://alandix.com/glossary/aibook/web-scale reasoning
https://alandix.com/glossary/aibook/Triplestores
https://alandix.com/glossary/aibook/provenance
https://alandix.com/glossary/aibook/SPARQL
https://alandix.com/glossary/aibook/markup
https://alandix.com/glossary/aibook/text-mining
https://alandix.com/glossary/aibook/crowdsourcing
https://alandix.com/glossary/aibook/regular expression
https://alandix.com/glossary/aibook/regular expression
https://alandix.com/glossary/aibook/PageRank

pragmatic issues such as size-speed trade-off for compres-
sion and emails from site owners due to misunderstandings
about web-crawlers.

T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web.
Scientific American, 284(5):34–43, 2001.
The article that lays out the vision for the semantic web.

G. Antoniou and F. Van Harmelen. A semantic web primer.
MIT Press, 2004.
The classic book about semantic web technology.

C. Aggarwal, editor. An introduction to social network data an-
alytics. Springer, Cham, 2011.

Web-scale Reasoning ■ 267

Edited collection covering many aspects of the analysis of
network data as found in the web and social media.

R. Zafarani, M. Abbasi and H. Liu. Social media mining: An
introduction. Cambridge University Press Cambridge,
2014.
More specialised volume on the specific issues of social
media data. This includes some general network-analysis
techniques but also more pragmatic issues related to social
media data gathering.

https://taylorandfrancis.com/

IV
Humans at the Heart

https://taylorandfrancis.com/

CHAP T ER 1 8

Expert and Decision Support Systems

18.1 OVERVIEW
Expert systems were one of the early success stories of
AI, with medical advice systems dating back to the 1970s.
In this chapter we will look at systems where AI in var-
ious ways seeks to aid, learn from and in some cases re-
place experts. As well as expert systems, which attempt to
capture knowledge explicitly, we will consider decision
support systems, which use a variety of statistical and AI
techniques to offer advice or supporting information for
experts making their own decisions. In particular, visual
analytics combines interactive machine learning and ad-
vanced visualisation. We will see that knowledge acqui-
sition may be explicit, seeking to draw out the expert’s
understanding of a domain, or implicit based on the ex-
pert’s past behaviour and data. Explanation is critical at
various stages of this process, an issue we will return to
in Chapter 21.

18.2 INTRODUCTION – EXPERTS IN THE
LOOP

The core feature of the systems and techniques we will
cover in this chapter is that experts are in some way in-
volved. The term ‘expert’ is itself broad as we are all ex-
pert at something. We will principally be dealing with
uncommon expertise, such as medical knowledge, but
many of the techniques would also apply for more day-
to-day but still individual or unique perspectives, such as
the way your grandma makes pasta. Experts can be in-

FIGURE 18.1 Different forms of expert involvement.

volved in two different ways: they can be used as sources
during knowledge acquisition in the construction of an
AI system; or they can be users applying the outputs of
the system (Figure 18.1).

Traditional expert systems (Section 18.3) ask users to
explicitly encode their knowledge in rules or one of the
other forms of knowledge representation dealt with in
Chapter 2. This may then be used entirely automatically
or by people with less expertise. For example, you might
follow the instructions from a cookery application based
on your grandma’s expertise. This process of knowledge
elicitation can be difficult, and we will look at this in
more detail in Section 18.4.1. Machine learning can
be used either alongside this or to implicitly capture
expert knowledge from past data. For example, a system
might use data about past patient symptoms combined
with (human) treatment decisions and use this to build
automated recommendations.

Decision support systems (Section 18.6) provide in-
formation and visualisations to help experts make deci-

DOI: 10.1201/9781003082880-22 271

https://alandix.com/glossary/aibook/visual analytics
https://alandix.com/glossary/aibook/visual analytics
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/visualisation
https://alandix.com/glossary/aibook/knowledge acquisition
https://alandix.com/glossary/aibook/knowledge acquisition
https://alandix.com/glossary/aibook/knowledge acquisition
https://alandix.com/glossary/aibook/expert systems
https://alandix.com/glossary/aibook/knowledge representation
https://alandix.com/glossary/aibook/knowledge elicitation
https://alandix.com/glossary/aibook/knowledge elicitation
https://alandix.com/glossary/aibook/Machine learning
https://alandix.com/glossary/aibook/expert knowledge
https://alandix.com/glossary/aibook/Decision support systems
http://dx.doi.org/10.1201/9781003082880-22

272 ■ Artificial Intelligence

sions or predictions. This may be based on the expert’s
own knowledge or the knowledge of peers, for example
natural language processing techniques to retrieve past
cases similar to a current patient’s symptoms. More of-
ten they are based more on pure data analysis, for ex-
ample the (highly controversial) systems used by some
courts that offer predictions of the likelihood of a felon
re-offending [7].

A special case of decision support is visual analytics
(Section 18.6.3). Many expert systems and decision sup-
port systems pre-process past data and knowledge and
then use this as a relatively static resource. In contrast,
visual analytics systems offer the expert the ability to ex-
plore data interactively using a combination of statistical
and machine learning techniques and rich visualisations.
This can be used historically to gain understanding of a
dataset or with live data as part of decision making. Note
that in the case of visual analytics, one of the outcomes
of the process is to increase expert understanding of phe-
nomena.

18.3 EXPERT SYSTEMS
An expert system is an AI program that uses knowledge
to solve problems that would normally require a human
expert. The knowledge is collected from human experts
and secondary knowledge sources, such as books. The
knowledge is represented in some form, often using logic
or production rules, although forms of neural networks
are increasingly common. The system includes a reason-
ing mechanism as well as heuristics for making choices
and navigating around the search space of possible solu-
tions. It also includes a mechanism for passing informa-
tion to and from the user. Even from this brief overview
you can probably see how the techniques that we have
already considered might be used in expert system de-
velopment.

We can think of an expert system as operating in two
main phases (see also Figure 18.2):

knowledge acquisition – A knowledge engineer works
with experts in order to elicit and then represent
their knowledge.

application – The running system based on that
knowledge is used by non-experts to help them
make judgements or may be applied automatically.

In this section we will look at the latter, assuming that ex-
pert knowledge has been captured and represented, and

we will return to the question about how this is acquired
in Section 18.4.

18.3.1 Uses of Expert Systems

If an expert system is a program that performs the work
of human experts, what type of work are we talking
about? This is not an easy question to answer since the
possibilities, if not endless, are extensive. Commercial
expert systems have been developed to provide financial,
tax-related and legal advice; to plan journeys; to check
customer orders; to perform medical diagnosis and
chemical analysis; to solve mathematical equations; to
design everything from kitchens to computer networks;
and to debug and diagnose faults. And this is not
a comprehensive list. Such tasks fall into two main
categories:

diagnosis and advice – Those that use evidence to se-
lect one of a number of hypotheses; and

design and planning – Those that work from require-
ments and constraints to produce a solution which
meets these.

So why are expert systems used in such areas? Why not
use human experts instead? And what problems are can-
didates for an expert system? To take the last question
first, expert systems are generally developed for domains
that share certain characteristics.

rare expertise – First, human expertise about the sub-
ject in question is not always available when it is
needed. This may be because the necessary knowl-
edge is held by a small group of experts who may
not be in the right place at the right time. Alterna-
tively it may be because the knowledge is distributed
through a variety of sources and is therefore difficult
to assimilate.

problem clarity – Secondly, the domain is well defined
and the problem clearly specified. At present, as we
discovered in Chapter 2, AI technology still strug-
gles to handle common sense or general knowledge
very well, but expert systems can be very successful
for well-bounded problems.

willing experts – Thirdly, there are suitable and will-
ing domain experts to provide the necessary knowl-
edge to populate the expert system. It is unfeasible

https://alandix.com/glossary/aibook/natural language processing
https://alandix.com/glossary/aibook/visual analytics
https://alandix.com/glossary/aibook/visual analytics
https://alandix.com/glossary/aibook/visual analytics
https://alandix.com/glossary/aibook/logic
https://alandix.com/glossary/aibook/production rules
https://alandix.com/glossary/aibook/neural networks
https://alandix.com/glossary/aibook/heuristics
https://alandix.com/glossary/aibook/search space
https://alandix.com/glossary/aibook/knowledge acquisition
https://alandix.com/glossary/aibook/knowledge engineer
https://alandix.com/glossary/aibook/expert knowledge
https://alandix.com/glossary/aibook/expert knowledge
https://alandix.com/glossary/aibook/constraints
https://alandix.com/glossary/aibook/common sense
https://alandix.com/glossary/aibook/general knowledge

Expert and Decision Support Systems ■ 273

FIGURE 18.2 Expert system capturing and applying knowledge.

to contemplate an expert system when the relevant
experts are either unwilling to co-operate or are not
available.

limited scope – Finally, the problem is of reasonable
scope, covering diagnosis of a particular class of
disease, for example, rather than of disease in
general.

If the problem fits this profile, it is likely to benefit
from the use of expert system technology. In many
cases the benefits are in real commercial terms such as
cost reduction, which may go some way to explaining
their commercial success. For example, expert systems
allow the dissemination of information held by one or
a small number of experts. This makes the knowledge
available to a larger number of people, and less
skilled (so less expensive) people, reducing the cost
of accessing information. Expert systems also allow
knowledge to be formalised. It can then be tested
and potentially validated, reducing the costs incurred
through error. They also allow integration of knowledge
from different sources, again reducing the cost of
searching for knowledge. Finally, expert systems can
provide consistent, unbiased responses. This can be a
blessing or a curse depending on which way you look
at it. On the positive side, the system is not plagued by
human error or prejudice (unless this is built into the
knowledge and reasoning), resulting in more consistent,
correct solutions. On the other hand, the system is
unable to make value judgements, which makes it more
inflexible than the human (e.g. a human assessing
a loan application can take into account mitigating
circumstances when assessing previous bad debts, but
an expert system is limited in what it can do).

FIGURE 18.3 Typical expert system architecture.

18.3.2 Architecture of an Expert System

An expert system comprises a number of components,
several of which utilise the techniques we have consid-
ered so far (see Figure 18.3).

Working from the bottom-up, we require: (i) knowl-
edge; (ii) a reasoning mechanism and heuristics for prob-
lem solving (e.g. search or constraint satisfaction); (iii)
an explanation component; and (iv) a dialogue compo-
nent or user interface. We have considered the first two
of these in previous chapters and will come back to them
when we consider particular expert systems. Before that,
let us look in a little more detail at the last two.

18.3.3 Explanation Facility

It is not acceptable for an expert system to make decisions
without being able to provide an explanation for the basis
of those decisions. Clients using an expert system need

https://alandix.com/glossary/aibook/heuristics
https://alandix.com/glossary/aibook/constraint satisfaction
https://alandix.com/glossary/aibook/explanation component
https://alandix.com/glossary/aibook/dialogue component
https://alandix.com/glossary/aibook/dialogue component
https://alandix.com/glossary/aibook/user interface
https://alandix.com/glossary/aibook/explanation component

274 ■ Artificial Intelligence

to be convinced of the validity of the conclusion drawn
before applying it to their domain. They also need to be
convinced that the solution is appropriate and applica-
ble in their circumstances. Engineers building the expert
system also need to be able to examine the reasoning be-
hind decisions in order to assess and evaluate the mecha-
nisms being used. It is not possible to know if the system
is working as intended (even if it produces the expected
answer) if an explanation is not provided. So explanation
is a vital part of expert system technology.

There are a number of ways of generating an explana-
tion, the most common being to derive it from the goal
tree that has been traversed. Here the explanation facil-
ity keeps track of the subgoals solved by the system and
reports the rules that were used to reach that point. For
example, imagine the following very simple system for
diagnosing skin problems in dogs.

Rule 1: IF the dog is scratching its ears
AND the ears are waxy
THEN the ears should be cleaned

Rule 2: IF the dog is scratching its coat
AND if insects can be seen in the coat
AND if the insects are grey
THEN the dog should be treated for lice

Rule 3: IF the dog is scratching its coat
AND if insects can be seen in the coat
AND if the insects are black
THEN the dog should be treated for fleas

Rule 4: IF the dog is scratching its coat
AND there is hair loss
AND there is inflammation
THEN the dog should be treated for
eczema

Imagine we have a dog that is scratching and has insects
in its coat. A typical consultation would begin with a re-
quest for information, in an attempt to match the con-
ditions of the first rule “is the dog scratching its ears?”,
to which the response would be no. The system would
then attempt to match the conditions of rule 2, asking “is
the dog scratching its coat?” (yes), “can you see insects in
the coat?” (yes), “are the insects grey?”. If we respond yes
to this question, the system will inform us that our dog
needs delousing. At this point if we asked for an expla-
nation, the following style of response would be given:

It follows from rule 2 that

If the dog is scratching

And if insects can be seen

And if the insects are grey

Then the dog should be treated for lice.

This traces the reasoning used through the consultation
so that any errors can be identified and justification can
be given to the client if required. However, as you can see,
the explanation given is simply a restatement of the rules
used, and as such is limited.

In addition to questions such as “how did you reach
that conclusion?” the user may require explanatory feed-
back during a consultation, particularly to clarify what
information the system requires. A common request is
“why do you want to know that?” when the system asks
for a piece of information. In this case the usual response
is to provide a trace up to the rule currently being con-
sidered and a restatement of that rule. Imagine that in
our horror at discovering crawling insects on our dog we
hadn’t noted the colour – we might ask to know why the
system needs this information. The response would be of
the form

You said the dog is scratching

and that there are insects.
If the insects are grey

then the dog should be treated for lice.

Notice that it does not present the alternative rule, rule 3,
which deals with black insects. This would be useful but
assumes look-ahead to other rules in the system to see
which other rules may be matched.

This form of explanation facility is far from ideal, both
in terms of the way that it provides the explanation and
the information to which it has access. In particular it
tends to regurgitate the reasoning in terms of rules and
goals, which may be appropriate to the knowledge en-
gineer but is less suitable for the user. Ideally, an expla-
nation facility should be able to direct the explanation
towards the skill level or understanding of the user. In
addition, it should be able to differentiate between the
domain knowledge that it uses and control knowledge,
such as that used to control the search. Explanations for
users are best described in terms of the domain; those for
engineers in terms of control mechanisms.

In addition, rule tracing only makes sense for back-
ward reasoning systems, since in forward reasoning it is

https://alandix.com/glossary/aibook/knowledge engineer
https://alandix.com/glossary/aibook/knowledge engineer
https://alandix.com/glossary/aibook/domain knowledge
https://alandix.com/glossary/aibook/expert system!rule tracing
https://alandix.com/glossary/aibook/backward reasoning
https://alandix.com/glossary/aibook/backward reasoning
https://alandix.com/glossary/aibook/forward reasoning

not known, at a particular point, where the line of rea-
soning is going.

For these reasons researchers have looked for
alternative mechanisms for providing explanations.
One approach is to maintain a representation of the
problem-solving process used in reaching the solution as
well as the domain knowledge. This provides a context
for the explanation: the user knows not only which
rules have been fired but what hypothesis was being
considered. More complex explanations may include a
domain model [269] (rather like the blocks world model
of SHRDLU, but more complex for the real world) or
meta-knowledge. In order to do this successfully, expert
systems must be designed for explanation.

18.3.4 Dialogue and UI Component

The dialogue component is closely linked to the
explanation component, as one side of the dialogue
involves the user questioning the system at any point
in the consultation in the ways we have considered.
However, the system must also be able to question the
user in order to establish the existence of evidence.
The dialogue component has two functions. First,
it determines which question to ask next (using
meta-rules and the reasoning mechanism to establish
what information is required to fire particular rules).
Secondly, it ensures that unnecessary questions are not
asked, by keeping a record of previous questions. For
example, it is not helpful to request the model of a car
when the user has already said that they don’t know its
make.

The dialogue could be one of three styles:
• system controlled, where the system drives the dia-

logue through questioning the user

• mixed control, where both user and system can di-
rect the consultation

• user controlled, where the user drives the consulta-
tion by providing information to the system.

Most expert systems use the first of these, the rest the sec-
ond. This is because the system needs to be able to elicit
information from the user when it is needed to advance
the consultation. If the user controlled the dialogue, the
system might not get all the information required. Ideally
a mixed dialogue should be provided, allowing the sys-
tem to request further information and the user to ask
for “why?” and “how?” explanations at any point.

Expert and Decision Support Systems ■ 275

Expert systems for large-scale use deployed over the
web or in phone apps may use other forms of interac-
tion, including menus or forms for initial input possibly
combined with chatbots.

18.3.5 Examples of Four Expert Systems

To illustrate how the components that we have looked at
fit together we will consider four early expert systems.
Although these systems are far from up-to-date, they
were systems that were groundbreaking when they
were built, and they have all been successful in their
domains. As such they rank among the “classics” of
expert systems and therefore merit a closer look. In each
case we will summarise the features of the expert system
in terms of the key components we have identified.
This will help you to see how different expert systems
can be constructed for different problems. In each
case, consider the problem that the expert system was
designed to solve, and why the particular components
chosen are suited to that task.

18.3.5.1 Example 1: MYCIN

MYCIN was an expert system for diagnosing and recom-
mending treatment of bacterial infections of the blood
(such as meningitis and bacteremia) [258]. It was devel-
oped at Stanford University in California in the 1970s
and became a template for many similar rule-based sys-
tems. It was intended to support clinicians in the early
diagnosis and treatment of meningitis, which can be fa-
tal if not treated in time. However, the laboratory tests for
these conditions take several days to complete, so doctors
(and therefore MYCIN) have to make decisions with in-
complete information. A consultation with MYCIN be-
gins with requests for routine information such as age,
medical history and so on, progressing to more specific
questions as required.

• Knowledge representation. Production rules (imple-
mented in LISP).

• Reasoning. Backward chaining, goal-driven reason-
ing. MYCIN uses certainty factors to reason with
uncertain information.

• Heuristics. When the general category of infection
has been established, MYCIN examines each can-
didate diagnosis in a depth first manner. Heuristics
are used to limit the search, including checking all

https://alandix.com/glossary/aibook/domain knowledge
https://alandix.com/glossary/aibook/SHRDLU
https://alandix.com/glossary/aibook/expert system!meta-knowledge
https://alandix.com/glossary/aibook/dialogue component
https://alandix.com/glossary/aibook/explanation component
https://alandix.com/glossary/aibook/dialogue component
https://alandix.com/glossary/aibook/dialogue
https://alandix.com/glossary/aibook/dialogue!system control
https://alandix.com/glossary/aibook/dialogue!mixed control
https://alandix.com/glossary/aibook/dialogue!user control
https://alandix.com/glossary/aibook/chatbots
https://alandix.com/glossary/aibook/MYCIN
https://alandix.com/glossary/aibook/Production rules
https://alandix.com/glossary/aibook/LISP
https://alandix.com/glossary/aibook/Backward chaining
https://alandix.com/glossary/aibook/goal-driven reasoning
https://alandix.com/glossary/aibook/goal-driven reasoning
https://alandix.com/glossary/aibook/certainty factors
https://alandix.com/glossary/aibook/depth first
https://alandix.com/glossary/aibook/Heuristics

276 ■ Artificial Intelligence

premises of a possible rule to see if any are known
to be false.

• Dialogue/explanation. The dialogue is computer (or
system) controlled, with MYCIN driving the con-
sultation through asking questions. Explanations
are generated through tracing back through the
rules that have been fired. Both “how?” and “why?”
explanations are supported.

18.3.5.2 Example 2: PROSPECTOR

PROSPECTOR was an expert system to evaluate geolog-
ical sites for potential mineral deposits, again developed
at Stanford in the late 1970s [95]. Given a set of obser-
vations on the site’s attributes (provided by the user),
PROSPECTOR provides a list of minerals, along with
probabilities of them being present. In 1984 it was instru-
mental in discovering a molybdenum deposit worth 100
million dollars!

• Knowledge representation. Rules, semantic network.

• Reasoning. Predominantly forward chaining (data-
driven), with some backward chaining. Bayesian
reasoning is used to deal with uncertainty.

• Heuristics. Depth first search is focused using the
probabilities of each hypothesis.

• Dialogue/explanation. The dialogue uses mixed
control. The user volunteers information at the
start of the consultation, and PROSPECTOR
can request additional information when required.
Explanations are generated by tracing back through
the rules that have been fired.

18.3.5.3 Example 3: DENDRAL

DENDRAL was one of the earliest expert systems, devel-
oped at Stanford during the late 1960s [170]. It infers the
molecular structure of organic compounds from chem-
ical formulae and mass spectrography data. It is not a
“stand-alone” expert, more an expert’s assistant, since it
relies on the input of the human expert to guide its deci-
sion making. However, it was successful enough in this
capacity to discover results that were published as origi-
nal research.

• Knowledge representation. Production rules and al-
gorithms for generating graph structures, supple-
mented by expert user’s knowledge.

• Reasoning. Forward chaining (data-driven).

• Heuristics. DENDRAL uses a variation on depth
first search called generate and test, where all
hypotheses are generated and then tested against
the available evidence. Heuristic knowledge from
the users (chemists) is also used to constrain the
search.

• Dialogue/explanation. The dialogue uses mixed
control. The user can supply information and the
system can request information as required.

18.3.5.4 Example 4: XCON

XCON was a commercial expert system developed by
Digital Electronics Corporation to configure VAX com-
puter systems to comply with customer orders [14]. The
problem is one of planning and design: there could be
up to 100 components in any system and XCON had to
decide how they could best be spatially arranged to meet
the specification. The design also had to meet constraints
placed by the functionality of the system and physical
constraints.

• Knowledge representation. Production rules.

• Reasoning. Forward chaining (data-driven). Since it
is possible to specify rules exactly no uncertainty is
present.

• Heuristics. The main configuration task is split into
subtasks which are always examined in a predeter-
mined order. Constraint satisfaction is used to in-
form the search for a solution to a subtask.

• Dialogue/explanation. The dialogue is less impor-
tant than in the previous situations since the cus-
tomer’s requirements can be specified at the begin-
ning and the system contains all the information it
needs regarding other constraints.

These examples illustrate how the different techniques
we have considered in previous chapters can be com-
bined to produce a useful solution, and how different
problems require different solutions.

18.3.6 Building an Expert System

We have looked at some of the applications for which ex-
pert systems have proved successful, and what compo-
nents an expert system will have. But how would we go

https://alandix.com/glossary/aibook/dialogue
https://alandix.com/glossary/aibook/dialogue!system control
https://alandix.com/glossary/aibook/expert system!rule tracing
https://alandix.com/glossary/aibook/expert system!rule tracing
https://alandix.com/glossary/aibook/PROSPECTOR
https://alandix.com/glossary/aibook/semantic network
https://alandix.com/glossary/aibook/forward chaining
https://alandix.com/glossary/aibook/reasoning!data-driven
https://alandix.com/glossary/aibook/reasoning!data-driven
https://alandix.com/glossary/aibook/backward chaining
https://alandix.com/glossary/aibook/Bayesian reasoning
https://alandix.com/glossary/aibook/Bayesian reasoning
https://alandix.com/glossary/aibook/uncertainty
https://alandix.com/glossary/aibook/Depth first search
https://alandix.com/glossary/aibook/dialogue
https://alandix.com/glossary/aibook/dialogue!mixed control
https://alandix.com/glossary/aibook/dialogue!mixed control
https://alandix.com/glossary/aibook/expert system!rule tracing
https://alandix.com/glossary/aibook/expert system!rule tracing
https://alandix.com/glossary/aibook/DENDRAL
https://alandix.com/glossary/aibook/Production rules
https://alandix.com/glossary/aibook/Forward chaining
https://alandix.com/glossary/aibook/reasoning!data-driven
https://alandix.com/glossary/aibook/depth first search
https://alandix.com/glossary/aibook/depth first search
https://alandix.com/glossary/aibook/generate and test
https://alandix.com/glossary/aibook/dialogue
https://alandix.com/glossary/aibook/dialogue!mixed control
https://alandix.com/glossary/aibook/dialogue!mixed control
https://alandix.com/glossary/aibook/XCON
https://alandix.com/glossary/aibook/constraints
https://alandix.com/glossary/aibook/physical constraints
https://alandix.com/glossary/aibook/physical constraints
https://alandix.com/glossary/aibook/Production rules
https://alandix.com/glossary/aibook/Forward chaining
https://alandix.com/glossary/aibook/reasoning!data-driven
https://alandix.com/glossary/aibook/uncertainty
https://alandix.com/glossary/aibook/Constraint satisfaction
https://alandix.com/glossary/aibook/dialogue
https://alandix.com/glossary/aibook/constraints

about building one? First, we need to be certain that ex-
pert system technology is appropriate to solve the prob-
lem that we have in mind. If the problem falls into one
of the categories we have already mentioned, such as di-
agnosis, planning, design or advice giving, then it has
passed the first test. The second consideration is whether
the problem can be adequately solved using conventional
technology. For example, can it be solved statistically or
algorithmically? If the answer to this is no, we need to ask
whether the problem justifies the expense and effort re-
quired to produce an expert system solution. This usually
means that the expert system is expected to save costs in
the long term, perhaps by making an operation more ef-
ficient or making knowledge more widely available. The
problem should also be clearly defined and of reasonable
size, since expert system technology cannot handle gen-
eral or common-sense knowledge.

18.3.7 Limitations of Expert Systems

We have looked at expert systems, what they are used
for and whether to build one. But what are the current
limitations of expert system technology that might affect
our exploitation of them? We have already come across
a number of limitations in our discussion, but we will
reconsider them here.

First, there is the problem of knowledge acquisition:
it is not an easy task to develop complete, consistent
and correct knowledge bases. Experts are generally
poor at expressing their knowledge, and non-expert (in
the domain) knowledge engineers may not know what
they are looking for. Some tool support is available,
and using a structured approach can alleviate the
problem, but it remains a bottleneck in expert system
design.

A second problem is the verification of the knowledge
stored. The knowledge may be internally consistent but
inaccurate, due to either expert error or misunderstand-
ing at the acquisition stage. Validation of data is usually
done informally, on the basis of performance of the sys-
tem, but this makes it more difficult to isolate the cause
of an observed error. Knowledge elicitation techniques
such as critiquing, where the domain expert assesses the
knowledge base in stages as it is developed, help to alle-
viate this problem, although the verification is still sub-
jective.

Thirdly, expert systems are highly domain dependent
and are therefore brittle. They cannot fall back on general
or common-sense knowledge or generalise their knowl-

Expert and Decision Support Systems ■ 277

edge to unexpected cases. A new expert system is there-
fore required for each problem (although expert system
shells can be re-used) and the solution is limited in scope.

An additional problem with brittleness is that the user
may not know the limitations of the system. For example,
in a Prolog-based system a goal may be proved false if
the system has knowledge that it is false or if the system
does not have knowledge that it is true. So the user may
not know whether the goal is in fact false or whether the
knowledge base is incomplete.

Finally, expert systems often lack meta-knowledge,
that is knowledge about their own operations, so they
cannot reason about their limitations or the effect of
these on the decisions that are made. They cannot decide
to use a different reasoning or search strategy if it is more
appropriate or provide more informative explanations.

18.4 KNOWLEDGE ACQUISITION
So we have examined our candidate problem and de-
cided that an expert system would be an appropriate so-
lution; what next? Assuming that we have considered our
domain of interest carefully and defined the boundaries
of the expert system, our first and most crucial stage is
knowledge acquisition. Knowledge acquisition is the pro-
cess of getting information out of the head of the expert
or from the chosen source and into the form required
by the expert system. We can identify two phases of this
process:

knowledge elicitation – where the knowledge is
extracted from the expert; and

knowledge representation – where the knowledge is
put into the expert system.

In this section we will focus primarily on knowledge
acquisition and representation for symbolic/rule-based
expert systems. Many aspects do not change when deal-
ing with hybrid systems that also incorporate machine
learning, but there are some differences which we will
discuss in Section 18.5.

18.4.1 Knowledge Elicitation

The knowledge engineer (the title often given to the
person developing the expert system) is probably not
an expert in the domain of interest. The engineer’s first
task is therefore to become familiar with the domain
through talking to domain experts and reading relevant

https://alandix.com/glossary/aibook/general or common-sense knowledge
https://alandix.com/glossary/aibook/general or common-sense knowledge
https://alandix.com/glossary/aibook/expert system!limitations
https://alandix.com/glossary/aibook/knowledge acquisition
https://alandix.com/glossary/aibook/knowledge engineers
https://alandix.com/glossary/aibook/expert system!verification
https://alandix.com/glossary/aibook/Knowledge elicitation
https://alandix.com/glossary/aibook/knowledge elicitation!critiquing
https://alandix.com/glossary/aibook/knowledge base
https://alandix.com/glossary/aibook/expert system!brittleness
https://alandix.com/glossary/aibook/general or common-sense knowledge
https://alandix.com/glossary/aibook/general or common-sense knowledge
https://alandix.com/glossary/aibook/expert system shells
https://alandix.com/glossary/aibook/expert system shells
https://alandix.com/glossary/aibook/Prolog
https://alandix.com/glossary/aibook/knowledge base
https://alandix.com/glossary/aibook/expert system!meta-knowledge
https://alandix.com/glossary/aibook/knowledge acquisition
https://alandix.com/glossary/aibook/Knowledge acquisition
https://alandix.com/glossary/aibook/knowledge elicitation
https://alandix.com/glossary/aibook/knowledge representation
https://alandix.com/glossary/aibook/hybrid systems
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/knowledge engineer

278 ■ Artificial Intelligence

background material. Once the engineer has a basic
level of understanding of the domain he or she can begin
knowledge elicitation. There are a number of techniques
used to facilitate this. It is the job of the knowledge
engineer to spot gaps in the knowledge that is being
offered and fill them.

The problem of knowledge elicitation is not a trivial
one. To help you to understand the magnitude of
the problem, think of a subject on which you would
consider yourself expert. Imagine having to formalise
all this information without error or omission. Think
about some behaviour in which you are skilled (a
good example is driving a car): can you formalise all
the actions and knowledge required to perform the
necessary actions? Alternatively, imagine questioning
someone on a topic on which they are expert and you
are not. How do you know when information is missing?
This is where concrete examples can be useful since it is
easier to spot a conceptual leap in an explanation of a
specific example than it is in more general explanations.

The interview can capture qualitative information,
which is the crux of knowledge elicitation, and therefore
provides the key mechanism for acquiring knowledge.
There are a number of different types of interview, each
of which can be useful for eliciting different types of
information. We will consider a number of variants on
the interview: the unstructured interview; the structured
interview; focused discussion; role reversal; and think
aloud.

18.4.1.1 Unstructured Interviews

The unstructured interview is open and exploratory:
no fixed questions are prepared and the interviewee is
allowed to cover topics as he or she sees fit. It can be
used to set the scene and gather contextual information
at the start of the knowledge elicitation process. Probes,
prompts and seed questions can be used to encourage
the interviewee to provide relevant information. A probe
encourages the expert to provide further information
without indicating what that information should be.
Examples of such questions are “tell me more about
that”, “and then?” and “yes?”. Prompts are more directed
and can help return the interview to a relevant topic
that is incomplete. Seed questions are helpful in starting
an unstructured interview. A general seed question
might be: “Imagine you went into a bookshop and
saw the book you wished you’d had when you first

started working in the field. What would it have in it?”
[149].

18.4.1.2 Structured Interviews

In structured interviews a framework for the interview
is determined in advance. They can involve the use
of check-lists or questionnaires to ensure focus is
maintained. Strictly structured interviews allow the
elicitor to compare answers between experts whereas
less strict, perhaps more accurately termed semi-
structured interviews combine a focus on detail with
some freedom to explore areas of interest.

Appropriate questions can be difficult to devise with-
out some understanding of the domain. Unstructured in-
terviews are often used initially, followed by structured
interviews and more focused techniques.

18.4.1.3 Focused Discussions

A focused discussion is centred around a particular prob-
lem or scenario. This may be a case study, a critical in-
cident or a specific solution. Case analysis considers a
case study that might occur in the domain or one that
has occurred. The expert explains how it would be or was
solved, either verbally or by demonstration. Critical in-
cident analysis is a variant of this that looks at unusual
and probably serious incidents, such as error situations.

In critiquing, the expert is asked to comment on some-
one else’s solution to a problem or design. The expert is
asked to review the design or problem solution and iden-
tify omissions or errors. This can be helpful as a way of
cross-referencing the information provided by different
experts and also provides validation checks, since each
solution or piece of information is reviewed by another
expert.

18.4.1.4 Role Reversal

Role reversal techniques place the elicitor in the expert’s
role and vice versa. There are two main types: teach-
back interviews and Twenty Questions. In teach-back
interviews the elicitor “teaches” the expert on a subject
that has already been discussed. This checks the elicitor’s
understanding and allows the expert to amend the
knowledge if necessary. In Twenty Questions, the
elicitor chooses a topic from a predetermined set and
the expert asks questions about the topic in order to
determine which one has been selected. The elicitor

https://alandix.com/glossary/aibook/knowledge engineer
https://alandix.com/glossary/aibook/knowledge engineer
https://alandix.com/glossary/aibook/knowledge elicitation!unstructured interview
https://alandix.com/glossary/aibook/knowledge elicitation!seed questions
https://alandix.com/glossary/aibook/knowledge elicitation!structured interview
https://alandix.com/glossary/aibook/knowledge elicitation!focused discussions
https://alandix.com/glossary/aibook/knowledge elicitation!critiquing
https://alandix.com/glossary/aibook/knowledge elicitation!role reversal
https://alandix.com/glossary/aibook/knowledge elicitation!teach-back interview
https://alandix.com/glossary/aibook/knowledge elicitation!teach-back interview
https://alandix.com/glossary/aibook/knowledge elicitation!Twenty Questions

can answer yes or no. The questions asked reflect the
expert’s knowledge of the topic and therefore provide
information about the domain.

18.4.1.5 Think-aloud

Think-aloud is used to elicit information about specific
tasks. The expert is asked to think aloud while carrying
out the task. Similarly, the post-task walk-through in-
volves debriefing the expert after the task has been com-
pleted. Both techniques are better than simple observa-
tion, as they provide information on expert strategy as
well as behaviour.

18.4.2 Knowledge Representation

When the knowledge engineer has become familiar with
the domain and elicited some knowledge, it is necessary
to decide on an appropriate representation for the
knowledge, choosing, for example, to use a frame-based
or network-based scheme. The engineer also needs to
decide on appropriate reasoning and search strategies.
At this point the engineer is able to begin prototyping
the expert system, normally using an expert system shell
or a high-level AI language.

18.4.2.1 Expert System Shells

An expert system shell abstracts features of one or
more expert systems. The shell comprises the inference
and explanation facilities of an existing expert system
without the domain-specific knowledge. This allows
non-programmers to add their own knowledge on a
problem of similar structure but to re-use the reasoning
mechanisms. A different shell is required for each type
of problem, for example to support data-driven or
goal-driven reasoning, but one shell can be used for
many different domains.

Expert system shells are useful if the match between
the problem and the shell is good, but they are inflexible.
They work best in diagnostic and advice-style problems
rather than design or constraint satisfaction and are read-
ily available for most computer platforms. This makes
building an expert system using a shell relatively cheap.

18.4.2.2 High-level Programming Languages

High-level programming languages, designed for AI,
provide a fast, flexible mechanism for developing
expert systems. They conceal their implementation

Expert and Decision Support Systems ■ 279

details, allowing the developer to concentrate on the
application. They also provide inbuilt mechanisms for
representation and control. Different languages support
different paradigms, for example Prolog supports logic,
LISP is a functional programming language and OPS5
was a production system language designed specifically
for expert systems. Python has become popular for AI
particularly for machine learning. As well as handling
data, there are implementations of various reasoning
mechanisms in Python, including Prolog-like logic
rules.

However, high-level languages do demand certain
programming skills in the user, particularly to develop
more complex systems, so they are less suitable for
the “do-it-yourself ” expert system developer. Some
environments have been developed that support more
than one AI programming language, such as POPLOG
which incorporates LISP and Prolog, and there are
configurable expert system shells available in many
languages. These provide a blend of flexibility and some
programming support but still require programming
skills.

18.4.2.3 Ontologies

Expert systems often include specific reasoning rules
such as: “if the patient has a headache and loss of smell
suspect Covid-19”. However, this is often backed up
by large amounts of declarative knowledge such as
“Covid-19 is a kind of coronavirus” or “headaches are a
symptom of flu”.

This declarative knowledge is most often encoded
in some form of ontology as we first saw in Chapter 2.
This can be encoded in a bespoke fashion within tools
or hand-edited using a standard such as OWL/RDF
(Chap. 17). However, large ontologies are best created
using a purpose-built tool as these include ways to edit,
visualise and often verify properties of the ontology.
Ontology editors will typically be able to import/export
in standard formats that make them easy to share
with other projects and use by different reasoning
engines.

Expert system shells may include some form of
ontology, but there are also many commercial and open
standalone ontology editors. Probably the most well
known and used is Protégé [204], not least because it has
a highly extensible architecture, so its large developer
community can create their own plugins which expand
its capabilities. Figure 18.4 shows a screenshot of

https://alandix.com/glossary/aibook/knowledge elicitation!think aloud
https://alandix.com/glossary/aibook/knowledge elicitation!post-task walkthrough
https://alandix.com/glossary/aibook/knowledge engineer
https://alandix.com/glossary/aibook/knowledge representation!frame
https://alandix.com/glossary/aibook/knowledge representation!by networks
https://alandix.com/glossary/aibook/search strategies
https://alandix.com/glossary/aibook/expert system shell
https://alandix.com/glossary/aibook/expert system shell
https://alandix.com/glossary/aibook/domain-specific knowledge
https://alandix.com/glossary/aibook/goal-driven reasoning
https://alandix.com/glossary/aibook/constraint satisfaction
https://alandix.com/glossary/aibook/High-level programming languages
https://alandix.com/glossary/aibook/Prolog
https://alandix.com/glossary/aibook/logic
https://alandix.com/glossary/aibook/LISP
https://alandix.com/glossary/aibook/OPS5
https://alandix.com/glossary/aibook/production system!language
https://alandix.com/glossary/aibook/Python
https://alandix.com/glossary/aibook/Python
https://alandix.com/glossary/aibook/Prolog
https://alandix.com/glossary/aibook/logic rules
https://alandix.com/glossary/aibook/logic rules
https://alandix.com/glossary/aibook/POPLOG
https://alandix.com/glossary/aibook/LISP
https://alandix.com/glossary/aibook/Prolog
https://alandix.com/glossary/aibook/declarative knowledge
https://alandix.com/glossary/aibook/declarative knowledge
https://alandix.com/glossary/aibook/ontology
https://alandix.com/glossary/aibook/OWL
https://alandix.com/glossary/aibook/RDF
https://alandix.com/glossary/aibook/ontologies
https://alandix.com/glossary/aibook/Ontology editors
https://alandix.com/glossary/aibook/ontology
https://alandix.com/glossary/aibook/ontology editors
https://alandix.com/glossary/aibook/Protege ontology editor

280 ■ Artificial Intelligence

WebProtégé, which allows both web-based editing and
also cloud-hosted sharing of ontologies.

18.4.2.4 Selecting a Tool

There are a number of things to bear in mind when
choosing a tool to build an expert system. First, select
a tool which has only the features you need. This will
reduce the cost and increase the speed (both in terms
of performance and development). Secondly, let the
problem dictate the tool to use, where possible, not the
available software. This is particularly important with
expert system shells, where choosing a shell with the
wrong reasoning strategy for the problem will create
more difficulties than it solves. Think about the problem
in the abstract first and plan your design. Consider your
problem against the following abstract problem types:

• problems with a small solution space and reliable
data

• problems with unreliable or uncertain data

• problems where the solution space is large but
where you can reduce it, say using heuristics

• problems where the solution space is large but not
reducible.

Each of these would need a different approach. Look
also at successful systems, try to find one that is solving a
similar problem to yours and look at its structure. Only
when you have decided on the structure and techniques
that are best for your problem should you look for an ap-
propriate tool. Finally, choose a tool with built-in expla-
nation facilities and debugging if possible. These are eas-
ier to use and test and will save time in implementation.

18.5 EXPERTS AND MACHINE LEARNING
One possible solution to some of the limitations of ex-
pert systems is to combine the knowledge-based technol-
ogy of expert systems with technologies that learn from
examples, such as neural networks and inductive learn-
ing. These classify instances of an object or event accord-
ing to their closeness to previously trained examples and
therefore do not require explicit knowledge representa-
tion (see Chap. 22 and Chap. 5 for more details).

Some machine learning systems learn purely from
real-world data, using ground truth. For example,
looking at large-scale data on the way risk factors such

as smoking relate to reported lung-cancer deaths. Even
then there is a level of expertise in that the choice of what
data to collect and what outcomes to address comes
from somewhere. However, here we’ll look at ways in
which the expert involvement is richer.

There are several ways in which experts can be in-
volved in the creation of a hybrid expert system incor-
porating machine learning (Figure 18.5):

implicit capture of expertise – Here the data collected
incorporates some form of expert assessment,
behaviour or knowledge. For example, we might
look at data on initial patient symptoms and
tests ordered by physicians and then use this to
streamline hospital admissions by automatically
ordering the most common tests (so long as they
are not too costly). Similarly, we might train a
system using the eventual diagnosis by senior
clinicians and then use this to create an expert
system to guide less-experienced practitioners.

labelling – Experts may explicitly label data items. This
can be with a final outcome measure such as a
medical diagnosis, “has influenza”. However, the
labelling could also be of intermediate features
such as “tachycardia” for an ECG trace.

feature selection – The choice of features is often crit-
ical, both in initial data collection and those used
as part of machine learning. If important features
are omitted, then the machine learning will not be
accurate, and if too many features are present, there
may be overlearning for smaller datasets.

knowledge and rules – The experts may still encode
knowledge and/or rules to be combined with more
automated techniques. For example a taxonomy of
disease types may make it easier to automatically
train a system as it can diagnose to higher level
disease types when data is sparse for more precise
diagnoses.

synthetic data models – We saw in Chapter 8 that syn-
thetic data used in training requires domain knowl-
edge. At its simplest it may be about saying what
kinds of distortion are realistic (e.g. blurring, rotat-
ing). However, it may be more complex, for exam-
ple using images of a tumour from one X-ray to be
artificially added to others in anatomically correct
places, or creating models of human anatomy and

https://alandix.com/glossary/aibook/ontologies
https://alandix.com/glossary/aibook/heuristics
https://alandix.com/glossary/aibook/neural networks
https://alandix.com/glossary/aibook/inductive learning
https://alandix.com/glossary/aibook/inductive learning
https://alandix.com/glossary/aibook/knowledge representation
https://alandix.com/glossary/aibook/knowledge representation
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/ground truth
https://alandix.com/glossary/aibook/hybrid expert system
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/ECG
https://alandix.com/glossary/aibook/overlearning
https://alandix.com/glossary/aibook/synthetic data
https://alandix.com/glossary/aibook/synthetic data
https://alandix.com/glossary/aibook/domain knowledge
https://alandix.com/glossary/aibook/domain knowledge

Expert and Decision Support Systems ■ 281

FIGURE 18.4 WebProtégé – a web-based version of the Protégé ontology editor [204].

cancer growth to generate completely artificial im-
ages.

Note that this expert-based data and knowledge may
be combined with ground truth data such as eventual
clinical outcome, especially in the cases of feature
labelling.

Some aspects of expert systems are the same no matter
whether machine learning is involved, but there are some
crucial differences, in knowledge elicitation and valida-
tion, and perhaps most crucial is the way algorithmic
choice impacts explanation.

18.5.1 Knowledge Elicitation for ML

18.5.1.1 Acquiring Tacit Knowledge

Some expert knowledge is explicit, the expert knows it,
and they know that they know it. There may be problems
in dealing with the volume of information or in encod-
ing it in ways that a machine can understand, but still
this is the easiest kind of expert knowledge to acquire.
However, it is usually only a fraction of the experts’ full
knowledge, much of which is implicit. There are many
things they ‘know’ in the sense that they are implicitly

used in their decision making, but which are tacit knowl-
edge, that they cannot easily tell you that they know.

Tacit knowledge may be physical, such as the way we
move our arms and legs while walking. Typically only
elite sports players or those undergoing some sort of re-
habilitation have a deep knowledge of their movements,
and then often only through external movement experts
recording them and discussing their gait or technique.
Tacit knowledge may also be cognitive, ways of address-
ing problems or the way one just gets an impression that
someone is unwell.

An expert knowledge engineer can use the techniques
in Section 18.4.1 to gain some insight into this tacit
knowledge and then externalise it, for example by asking
for explanations of decisions. However, it is hard and not
always successful. It is precisely in these circumstances
that machine learning techniques can be most valuable.

Deriving the training set purely from implicit be-
havioural data entirely bypasses the need for the expert
to articulate their knowledge; it is captured entirely
from the outcomes of their previous conscious and
unconscious decision making. There are disadvantages
of this, not least that our behaviours may be influenced
by unconscious bias (see also Chapter 20).

https://alandix.com/glossary/aibook/ground truth
https://alandix.com/glossary/aibook/knowledge elicitation
https://alandix.com/glossary/aibook/expert knowledge
https://alandix.com/glossary/aibook/expert knowledge
https://alandix.com/glossary/aibook/tacit knowledge
https://alandix.com/glossary/aibook/tacit knowledge
https://alandix.com/glossary/aibook/Tacit knowledge
https://alandix.com/glossary/aibook/Tacit knowledge
https://alandix.com/glossary/aibook/knowledge engineer
https://alandix.com/glossary/aibook/tacit knowledge
https://alandix.com/glossary/aibook/tacit knowledge
https://alandix.com/glossary/aibook/unconscious bias

282 ■ Artificial Intelligence

FIGURE 18.5 Hybrid expert system incorporating machine learning guided by human expertise.

18.5.1.2 Feature Selection

One of the early observations by knowledge engineers
engaged in knowledge elicitation was that experts may
struggle to tell you the precise rules they employ; it is
often tacit knowledge, not explicitly available to the ex-
perts, but guiding their decision making. However, they
are often far better at telling you which features they con-
sider. This is fortunate; as the appropriate choice of fea-
tures is critical for effective machine learning.

18.5.1.3 Expert Labelling

Asking experts to label data sits somewhere between
purely behavioural data and more explicit knowledge
elicitation. However, an issue with expert labelling is
that many machine learning techniques require large
volumes of data. This is not a problem when the data is
implicitly captured or even explicitly captured as part
of normal practice, for example diagnoses in medical
records. However, experts’ time is, by definition, limited
and costly, so it is not usually possible to ask them to
label vast quantities of data simply to create a training
set.

Sometimes it is sufficient to use semi-supervised
learning over partially labelled data, as discussed in
Chapter 9. Alternatively it may be possible for some
aspects of labelling to be carried out by those with more
limited expertise, for example one might delegate the
task to junior doctors rather than senior physicians.
However, it is then critical that those doing the task
recognise when they don’t know enough and so are able
to flag the more problematic cases for expert review.

18.5.1.4 Iteration and Interaction

In a similar way, the machine learning algorithm
itself may be able to identify difficult, low certainty
or boundary cases. This then enables an iterative
process where a relatively small initial labelled dataset is
combined with partially unsupervised learning and then,
in a series of cycles, the difficult cases are presented to
the expert for verification or labelling. In a similar way,
the user can provide an initial, but partial, collection of
rules, which can then be used to bootstrap inductive
learning.

In all cases it is crucial to use efficient and easy user
interfaces for this process, to allow rapid scanning and
labelling. In the cases when there is less expert human la-
belling or semi-automated labelling, it can often be faster
to have an interface for the experts that is verification-
based, ‘this X-ray appears to have a tumour here – Y/N’,
rather than open-ended entry.

18.5.2 Algorithmic Choice, Validation and
Explanation

Because of the advantages in simplifying knowledge ac-
quisition, hybrid expert systems have been used since the
early days of AI and with a wide variety of algorithmic
approaches.

Symbolic machine learning techniques such as con-
cept learning, decision trees and rule induction lead to
knowledge representations that are similar in form to
those generated by purely human-based knowledge elici-
tation. They can therefore use the same forms of dialogue
management and explanation.

https://alandix.com/glossary/aibook/knowledge elicitation
https://alandix.com/glossary/aibook/tacit knowledge
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/knowledge elicitation
https://alandix.com/glossary/aibook/knowledge elicitation
https://alandix.com/glossary/aibook/expert labelling
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/semi-supervised learning
https://alandix.com/glossary/aibook/semi-supervised learning
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/unsupervised learning
https://alandix.com/glossary/aibook/bootstrap
https://alandix.com/glossary/aibook/inductive\protect \penalty -\@M learning
https://alandix.com/glossary/aibook/inductive\protect \penalty -\@M learning
https://alandix.com/glossary/aibook/human labelling
https://alandix.com/glossary/aibook/human labelling
https://alandix.com/glossary/aibook/knowledge acquisition
https://alandix.com/glossary/aibook/knowledge acquisition
https://alandix.com/glossary/aibook/hybrid expert systems
https://alandix.com/glossary/aibook/Symbolic machine learning
https://alandix.com/glossary/aibook/concept learning
https://alandix.com/glossary/aibook/concept learning
https://alandix.com/glossary/aibook/decision trees
https://alandix.com/glossary/aibook/rule induction
https://alandix.com/glossary/aibook/knowledge elicitation
https://alandix.com/glossary/aibook/knowledge elicitation

Expert and Decision Support Systems ■ 283

In addition, the scrutability of this kind of rule makes
it amenable to various forms of iterative expert valida-
tion where the rules are presented back to the expert who
can verify whether they make sense or not. However,
they should be presented in language or visual form that
is familiar in the expert’s own domain, rather than AI-
related terms. For example, note the way that the Query-
by-Browsing interface described in Chapter 5 shows an
SQL representation of the decision tree generated by ma-
chine learning (Figure 18.6).

Concrete examples are also important and often easier
to understand than generic rules. Examples can be pre-
sented to the expert with the classification or advice that
would be generated by the expert system for the expert
to verify. We have already discussed how this can be used
during knowledge elicitation in order to ask for labels of
boundary cases or difficult to classify data items. Exactly
the same techniques can be used during validation as it
is precisely the boundary cases or those with little train-
ing data and large uncertainty where errors are likely to
occur.

Using Query-by-Browsing again as an example, note
the way that the user can see both the SQL query and the
list of selected and unselected records (Figure 18.6). The
combination of intentional (rules) and extensional (ex-
amples) representations makes it easier to verify whether
the generated decision rule is what the user wants. This
is particularly important for logical connectives such as
AND/OR, as the formal meaning of these can differ from
day-to-day use.

We have discussed the phenomenal success of deep
learning and other large-data-based techniques in
many areas that were previously thought to require far
richer knowledge. While neural networks and other
sub-symbolic approaches have been used for many
years, their popularity has increased. However, they
tend to be “black-box” techniques, which are poor at
providing explanations for their decisions even to data
scientists let alone domain experts or end users. This
is also true to a large extent with other techniques that
create very large or complex rule sets, including random
forests.

Example-based methods of validation and expla-
nation can also be used for the final system, and we
will discuss other ways to address these issues in
Chapter 21. In fact part of the expert’s role may be to
help the knowledge engineer to craft explanations for
the end-user, for example creating meaningful labels

for classes generated by unsupervised learning. These
explanations are not only important when the expert
or end-user asks for them but also to avoid automation
bias [62, 63], the tendency to accept blindly the outputs
of computers. The more ‘intelligent’ the algorithm, the
greater the tendency to assume the computer knows
best. Explanations, especially when combined with
some form of confidence rating, can help to encourage a
more sceptical use of automated evidence.

Hybrid architectures have a role here; that is systems
that encompass both symbolic and sub-symbolic tech-
niques. For example, a machine learning system may use
labelled ECG data to classify different forms of arrhyth-
mia. This classification could then form the input to a
more rule-based diagnosis. An explanation might then
say “drug X is being proposed as the patient is an ex-
smoker and has tachycardia” – the smoking history may
come from a form input or questions generated by the
dialogue component, and the rules that generate the ad-
vice given the tachycardia will be explainable in the ways
discussed in Section 18.3.3. The categorisation of tachy-
cardia itself may not be explainable except in the form
of a fixed patient-oriented description, “rapid heart rate”.
However, this would be similar to the explanation a doc-
tor would have given; it is sufficient reason.

18.6 DECISION SUPPORT SYSTEMS
The term decision support system includes many forms
of data dashboard or visualisations; however, here we
are only considering those that include some form of AI
component.

Sometimes the AI is based solely on machine learning
from data with no expert input. This is the case with the
controversial COMPAS system that has been used in US
parole decisions [7]. However, often the line between ex-
pert systems and decision support is blurred as systems
implicitly or explicitly include elements of expert knowl-
edge combined with historic and current data.

As an example, consider the online tool that medical
practitioners in the UK use when assessing risk
associated with high blood pressure. They enter a
number of factors into a web form including blood
pressure, cholesterol level, smoking and drinking; this
then returns a risk factor for the person. The tool
embodies the best expert knowledge, itself drawing on
statistical data and published medical results. This is
a good example of evidence-based medicine. In many
cases the practitioner may directly follow this as an

https://alandix.com/glossary/aibook/scrutability
https://alandix.com/glossary/aibook/Query-by-Browsing
https://alandix.com/glossary/aibook/Query-by-Browsing
https://alandix.com/glossary/aibook/SQL
https://alandix.com/glossary/aibook/decision tree
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/knowledge elicitation
https://alandix.com/glossary/aibook/uncertainty
https://alandix.com/glossary/aibook/Query-by-Browsing
https://alandix.com/glossary/aibook/extensional
https://alandix.com/glossary/aibook/deep learning
https://alandix.com/glossary/aibook/deep learning
https://alandix.com/glossary/aibook/neural networks
https://alandix.com/glossary/aibook/sub-symbolic
https://alandix.com/glossary/aibook/black-box techniques
https://alandix.com/glossary/aibook/random forests
https://alandix.com/glossary/aibook/random forests
https://alandix.com/glossary/aibook/knowledge engineer
https://alandix.com/glossary/aibook/unsupervised learning
https://alandix.com/glossary/aibook/automation bias
https://alandix.com/glossary/aibook/automation bias
https://alandix.com/glossary/aibook/confidence rating
https://alandix.com/glossary/aibook/Hybrid architectures
https://alandix.com/glossary/aibook/sub-symbolic
https://alandix.com/glossary/aibook/ECG
https://alandix.com/glossary/aibook/dialogue component
https://alandix.com/glossary/aibook/explainable
https://alandix.com/glossary/aibook/explainable
https://alandix.com/glossary/aibook/sufficient reason
https://alandix.com/glossary/aibook/decision support system
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/COMPAS
https://alandix.com/glossary/aibook/expert knowledge
https://alandix.com/glossary/aibook/expert knowledge
https://alandix.com/glossary/aibook/expert knowledge
https://alandix.com/glossary/aibook/evidence-based medicine

284 ■ Artificial Intelligence

FIGURE 18.6 Query-by-Browsing – shows inferred rule both as SQL query and highlighted listing.

indicator combined with prescribing norms from NICE
(National Institute for Health and Care Excellence) to,
say, prescribe statins. However, especially on boundary
cases, a physician may also take into account additional
risk or mitigating factors that are not part of the tool,
perhaps a recent change in lifestyle.

We can see from this example that the decision sup-
port tool is aiding the medical practitioner to make a
decision. However, the medical practitioner is still using
their own discretion and judgement based on their own
expert knowledge, both general and situational.

In 1960 Licklider wrote about a ‘symbiosis’ between
humans and computers harnessing the complementary
abilities of each [168] (also known as synergistic interac-
tion, see Chapter 19). Decision support systems can be
thought of in these terms. The list of different abilities in
Table 18.1 was produced in 2004 in an influential paper
on decision support [62]. Twenty years later, some of the
abilities on the left, particularly pattern recognition and
the ability to recall pertinent information are certainly
within the realms of AI, but even then in different ways
to humans.

The challenge of decision support is to harness the
abilities of the machine (in the right-hand column) but
then to present these in ways that maximise the abilities
of the human expert (on the left).

In some cases this is managed using textual or form-
based interactions, as in the blood pressure example. In
other cases there may be very domain-specific methods
such as a kitchen-planning aid that knows about the
kitchen triangle (sink, cooker, refrigerator) and warns
the planner if they are not suitably placed. However,
often decisions may be based on larger datasets, for

TABLE 18.1 Strengths of Humans and Computers in Decision
Making, from [62].
Humans are better at: Computers are better at:
Perceiving patterns Responding quickly to control

tasks
Improvising and using flexible Repetitive and routine tasks
procedures
Recalling relevant facts at the Reasoning deductively
appropriate time
Reasoning inductively Handling many complex tasks

simultaneously
Exercising judgment

example a government planner using past and projected
population and traffic trends to help determine transport
policy.

We will look at visualisation and associated manage-
ment issues, before looking at visual analytics, when
visualisation and machine learning are interactively
linked.

18.6.1 Visualisation

You will undoubtedly have seen many forms of static vi-
sualisation or infographic, from simple histograms or pie
charts, to geographic images that colour areas depending
on some factor such as population or carbon footprint. In
addition, visualisation research has created many more,
some used only fleetingly by the researchers who devel-
oped them and then forgotten, others that have become
part of the toolkit of visualisation, for example parallel
coordinates [127]. In addition to general purpose visual-
isations, others are more bespoke such as the ROC curves

https://alandix.com/glossary/aibook/expert knowledge
https://alandix.com/glossary/aibook/Licklider, J.C.R.
https://alandix.com/glossary/aibook/synergistic interaction
https://alandix.com/glossary/aibook/synergistic interaction
https://alandix.com/glossary/aibook/pattern recognition
https://alandix.com/glossary/aibook/visualisation
https://alandix.com/glossary/aibook/visual analytics
https://alandix.com/glossary/aibook/visualisation
https://alandix.com/glossary/aibook/visualisation
https://alandix.com/glossary/aibook/parallel coordinates
https://alandix.com/glossary/aibook/parallel coordinates
https://alandix.com/glossary/aibook/ROC curves

we saw in Chapter 9 and Nyquist diagrams, used in con-
trol engineering. Images and text documents can be par-
ticularly hard to visualise in bulk as there is no obvious
‘average’ value, but central examples can be used for clus-
ters, or rapid serial visualisation shows images or words
in flip-book fashion.

Some visualisations, such as the last above, already in-
clude some form of animation. However, the power of
visualisation is often increased dramatically by interac-
tion. At its simplest interactivity can be used to make
otherwise static decisions dynamic; for example, when
drawing a scatter graph of multi-dimensional data, one
has to choose which numeric fields to plot and this can
be made selectable.

Figure 18.7 shows dancing histograms [87], simple
stacked histograms, but where the user can select
which attribute to align to the x-axis. In other systems
interaction is used to zoom into areas of a data plot,
to show the details of any specific data item or to
interactively filter results based on sliders [3, 277].

Ben Shneiderman’s ‘visual information seeking
mantra’ [255] summarises many of the common forms
of interactive visualisation:

Overview First – Show the whole dataset even if this
means in some way reducing detail such as amal-
gamating close elements.

Zoom and Filter – Allow the user to zoom spatially into
areas of interest and also to apply filtering criteria.

Details on Demand – Open up individual data items
for inspection when needed.

There are additional interaction possibilities when
there are several visualisations of the same data (see
Figure 18.8). One of the simplest is to select a data item
on one visualisation and then see the corresponding
item highlighted on another visualisation. An extension
of this is to sweep a range of values that are close on one
visualisation and see the whole set highlighted on the
other. If they are using different ways to visualise, this
can often reveal rich patterns.

18.6.2 Data Management and Analysis

This form of interactive visualisation is easily possible
on desktop workstations or even personal devices when

Expert and Decision Support Systems ■ 285

the dataset is relatively small. However, to feel interac-
tive the response to continuous actions such as rotat-
ing, zooming or moving a slider needs to be in the or-
der of 100s of milliseconds, with more discrete actions
such as a major change in view, within a couple of sec-
onds. For more complex visualisations even medium-
sized data (millions of items) may make such interactive
visualisation impossible. In addition, in an AI-powered
decision support system, these visualisations may them-
selves require data items to be run through a pre-trained
network or similar algorithm, further exacerbating the
problems in the data-pipeline.

This can partially be tackled by some of the data re-
duction techniques we saw Chapter 8. For example, if
we have geographical data at one metre resolution, we
might down-sample to a kilometre grid, or show aver-
ages over geographical areas such as postal districts. Note
that the former reduces the dataset size by a factor of one
million.

However, data reduction techniques may need to be
recomputed as the user interacts with the visualisations.
In the case of the geographic data if the user zooms
in one might want to have a higher resolution sample
of the smaller area. Similarly in the earlier example, if
one had randomly sampled documents to visualise and
then made a sub-selection based on chosen words, more
documents might need to be sampled from the smaller
set.

These changes need to be managed in ways that are
comprehensible to the user of the system, especially
when the analyst is a domain expert, but not a data sci-
entist. In the case of sampled data it may be important to
keep track of which samples have previously been shown
so that if the user zooms out and then zooms back again
into the same part of the data space, the same items are
shown.

Sometimes it is possible to perform some kind of pre-
computation, either generic or bespoke. For example, full
ECG data is often recorded at 100–500 Hz, that is hun-
dreds of samples a second, but often one is more inter-
ested in heart rate. This can be pre-calculated and a cus-
tom lower-resolution data stream created with, say, av-
erage heart rate and heart rate variability every minute.
Just as with the geographic down-sampling, it would be
possible to zoom into a region and retrieve the raw ECG
data.

https://alandix.com/glossary/aibook/clusters
https://alandix.com/glossary/aibook/clusters
https://alandix.com/glossary/aibook/rapid serial visualisation
https://alandix.com/glossary/aibook/visualisation
https://alandix.com/glossary/aibook/interactive visualisation
https://alandix.com/glossary/aibook/interactive visualisation
https://alandix.com/glossary/aibook/data reduction
https://alandix.com/glossary/aibook/data reduction
https://alandix.com/glossary/aibook/down-sample
https://alandix.com/glossary/aibook/data reduction
https://alandix.com/glossary/aibook/ECG
https://alandix.com/glossary/aibook/down-sampling
https://alandix.com/glossary/aibook/ECG

286 ■ Artificial Intelligence

FIGURE 18.7 Dancing histograms: (left) plain stacked histogram – easy to discern overall trends and trends in the baseline
category (apples), but other categories less clear; (right) add interaction – click on a category (bananas) to alter the baseline and
make trends in that category easier to see. Available at https://www.meandeviation.com/dancing-histograms/.

18.6.3 Visual Analytics

Visual analytics has been defined as, “the science of
analytical reasoning facilitated by interactive visual
interfaces” [271]. The term was initially coined in the
aftermath of the 9/11 terrorist attacks on the United
States. Research funded in part by US Homeland
Security sought to understand how they might be
better able to deal with the vast volumes of information
available to security services and hence prevent future
attacks [54]. However, it was recognised at the time
that this was giving a name to a style of interactive
visualisation of data analysis that was present in earlier
systems and that the research agenda was applicable
across a wide range of areas including medical and
environmental data [152]. The volume of available data
has of course grown even more since that time, and
visual analytics can be seen as an aspect of the broader
area of data science.

The core of the idea of visual analytics is to create
ways in which human experts can better analyse and
understand large volumes of data and/or complex
simulations and models. Central is a tight interactive
loop where the analyst can select and modify parameters
of analysis tools, focus in on specific parts of a dataset
and in real time see the results in multiple visualisations.
The aim is to explore the data and in so doing gain
insights, and ideally actionable insights, that can lead to
better decisions.

For example, suppose you are studying a large docu-
ment set. One view of the data might represent the doc-
uments interlinked in a graph based on text-based simi-
larity measures. Selecting a document might recentre the
network visualisation at the focus document, but also in
a second window show the word cloud associated with
the document (see Figure 18.8). In the word cloud you
might choose a subset of the terms and then tell the sys-
tem to restrict further analysis to documents containing
the chosen terms, and then get it to do an unsupervised
clustering on the selected documents.

Notice that even in a relatively simple domain there is
the need to move back and forth between different visu-
alisations and to combine human analytic choices with
algorithmic analysis. The range and type of such visu-
alisations and algorithmic data analysis varies between
application domains, and also on the level of technical
expertise of the analyst. Some applications are tailored so
that they are more usable by a domain expert, but conse-
quently may need to have a more restricted set of capabil-
ities than an application designed for more open-ended
exploration.

This creates additional challenges for both visualisa-
tion and data analysis.

18.6.3.1 Visualisation in VA

All of the techniques in Section 18.6.1 can be applied
here, with the main difference being that the algorithms

https://www.meandeviation.com/dancing-histograms/
https://alandix.com/glossary/aibook/Visual analytics
https://alandix.com/glossary/aibook/interactive visualisation
https://alandix.com/glossary/aibook/interactive visualisation
https://alandix.com/glossary/aibook/similarity measures
https://alandix.com/glossary/aibook/similarity measures
https://alandix.com/glossary/aibook/network visualisation
https://alandix.com/glossary/aibook/unsupervised clustering
https://alandix.com/glossary/aibook/unsupervised clustering
https://alandix.com/glossary/aibook/visualisation
https://alandix.com/glossary/aibook/visualisation

Expert and Decision Support Systems ■ 287

FIGURE 18.8 Connected visualisations.

generating the data being presented may need to be
recomputed as the user interacts with the visualisation.
This creates a two-way path:

From algorithm to visualisation – where the compu-
tation changes the processed data presented.

From visualisation to algorithm – where the user in-
teractions change the parameters of the algorithm
or the filtered data being processed.

In Section 18.6.1 we saw ways in which interaction
between multiple visualisations can be used to cast light
on both. In visual analytics, multiple visualisations are
the norm; however, here the visualisations are typically
the result of some form of AI or statistical algorithm. The
two paths above then work back-and-forth between the
visualisations.

This was clear in the example above. There are two vi-
sualisations, one shows the documents spatially arranged
based, say, on Jaccard similarity and the other a word
cloud. Lassoing a subset of documents in the spatial lay-
out cloud selects these and then the word cloud is recom-
puted based on the selected documents. Alternatively, as
in the initial example for this section, selecting words in
the word clouds could filter the documents which would
then need a fresh 2D layout based on an unsupervised
algorithm.

This creates computational issues, discussed below,
but also interaction ones. It can be easy to lose track

of the path of interaction. Imagine the user in the
example looking at the word cloud for a particular set
of filtered data and algorithm settings, thinking “I recall
these terms in an earlier cloud”, but being unable to
recall which particular set of choices had led there.
Some visual analytics systems include the ability to see
multiple copies of the same visualisation side-by-side
with different parameter choices or filters for each.
In addition, history mechanisms become important,
recording past settings and allowing the user to review
these, mark interesting ones, and then, using the side-
by-side techniques above, compare, contrast and above
all gain insight.

18.6.3.2 Data Management and Analysis for VA

The problems we discussed in Section 18.6.2 are further
exacerbated in visual analytics. As well as the visualisa-
tion being interactive, we are dealing with AI and statis-
tical components that are not fully determined and pre-
trained but typically require the user to change parame-
ters or re-run algorithms based on interactively filtered
data. As we saw in Chapter 8, many successful machine
learning and data analysis techniques obtain their power
through applying massive computation based on large-
scale data. These datasets may not fit within the mem-
ory of an ordinary computer, and computation that even
takes a few seconds can feel interminable when working
interactively.

https://alandix.com/glossary/aibook/visualisation
https://alandix.com/glossary/aibook/visual analytics
https://alandix.com/glossary/aibook/Jaccard similarity
https://alandix.com/glossary/aibook/unsupervised algorithm
https://alandix.com/glossary/aibook/unsupervised algorithm
https://alandix.com/glossary/aibook/visual analytics
https://alandix.com/glossary/aibook/visualisation
https://alandix.com/glossary/aibook/visual analytics
https://alandix.com/glossary/aibook/visualisation
https://alandix.com/glossary/aibook/visualisation

288 ■ Artificial Intelligence

The techniques described in Section 18.6.2 are more
complicated when they also need to work with machine
learning or other data analysis tools interactively. Some
combinations of techniques work quite well, for example
random sampling of largely independent data items can
give good results for many kinds of machine learning
as well as rapid visualisation. However, this is not good
for network algorithms as the sampling process will lose
connections.

It may also be possible to modify algorithms. For ex-
ample, some methods, such as simulated annealing or ge-
netic algorithms, improve iteratively, so it may be possi-
ble to stop them earlier to obtain a less accurate but more
timely answer. Depending on the context it may even
be possible to continue the algorithm in the background
and have the outputs gradually update. Some algorithms
or variants of them can operate incrementally adding or
removing data as the user updates a selection. For ex-
ample, a neural network can simply be given additional
items and weight them more highly during subsequent
cycles of learning, and even negatively weight items to
be removed.

18.7 STEPPING BACK
It is easy in AI to focus on the techniques and al-
gorithms, even when dealing with human expertise.
However, it is important to step back and look at how
the system fits into the world. A medical diagnosis
support system affects the lives of patients as well as
the functioning of the hospital as a whole. We need
to ask ourselves who the system affects, what it is
intended to achieve and how this fits into the larger
organisational or social context. All of these influence
the cost–benefit balance when we trade-off precision and
recall.

18.7.1 Who Is It About?

When considering what a system is for, one question to
ask is whether the impact is individual or about a popu-
lation as a whole.

Imagine designing a vision-based system to sort
fruit in a packing factory. The system might be based
on a combination of expert rules and lower-level
vision based on labelled data for categories such as
bruising, ripeness and shape. You do not expect the
system to be 100% accurate but do want a high level of
accuracy on average. In contrast, imagine you are the

owner of the factory and using an AI planning tool to
help decide whether to invest in the new technology
at all.

In the first case we are interested in the population as a
whole, errors for individuals are less important than the
overall levels. In the second case the single decision is
absolutely critical.

The same system can often embody both these
aspects, individual vs. population – single decision vs
average, depending on the point of view. Consider a
system that helps diagnose early-stage cancers. From
the point of view of each individual patient the crucial
thing is that it improves their own health outcome; if the
system improves this, it is worth using. From the point of
view of the national health system, the improved health
outcomes are important, but they also have to consider
the costs of the system and perhaps additional tests and
procedures for any false positive diagnosis. Additional
costs for cancer care mean less money elsewhere.

18.7.2 Why Are We Doing It?

Another question is what we intend to learn from using
the system. Is it to make an assessment of the current
state, to give a prediction about the future or to generate
insight about the phenomenon as a whole?

In the case of a medical system the question is of-
ten “does the patient have disease X?” that is knowledge
about the (hidden) current state of an individual or the
world. In other cases, for example climate modelling, we
are interested in predictions, “what happens next?”

Of course both assessments of current state and
predictions are estimates and both typically have some
level of uncertainty or, in some cases, probabilities
attached to them. Indeed, for algorithmic purposes the
two do not differ that much. In fact, for certain diseases
an absolute definitive diagnosis can only be made post
mortem, so any diagnosis on the living patient could
be argued to be a prediction about the findings of
that future post-mortem. Even when definitive tests
or investigations are possible, the system is operating
before that point on what is, at that point, hidden and
unknown.

However, while being technically similar and indeed
in many ways epistemologically similar (that is in
terms of knowledge), there is a fundamental difference
between prediction and assessment of current or past
state. The future is mutable, the past is not. One can take

https://alandix.com/glossary/aibook/visualisation
https://alandix.com/glossary/aibook/simulated annealing
https://alandix.com/glossary/aibook/genetic algorithms
https://alandix.com/glossary/aibook/genetic algorithms
https://alandix.com/glossary/aibook/neural network
https://alandix.com/glossary/aibook/cost--benefit
https://alandix.com/glossary/aibook/precision
https://alandix.com/glossary/aibook/recall
https://alandix.com/glossary/aibook/computer vision
https://alandix.com/glossary/aibook/accuracy
https://alandix.com/glossary/aibook/false positive
https://alandix.com/glossary/aibook/expert system!purpose!current state
https://alandix.com/glossary/aibook/expert system!purpose!current state
https://alandix.com/glossary/aibook/expert system!purpose!prediction
https://alandix.com/glossary/aibook/uncertainty

actions based on past knowledge and the current state,
indeed this might even change the state, perhaps curing
an infection, but the state as it is now cannot be changed.
In contrast, acknowledging another AI story, “the future
is not set” [38]. This means the way we use the system’s
outputs is often different.

Sometimes either instead of or alongside some form of
decision making, the outcome of the use of an AI system
is to increase human knowledge or give insight. This is
particularly obvious for visual analytics systems, which
can help the user to make decisions, but are principally
about exploring the data, working out the best way to
understand it, and then based on that knowledge maybe
making some sort of decision.

This can also be the case during knowledge elicita-
tion. The very act of externalising tacit expert knowledge
changes the expert’s own explicit knowledge and maybe
their future behaviour. This may be amplified when the
results of AI are fed back to the expert, possibly showing
logical consequences of rules, or inferred rules or cases
based on data.

Some years ago, data was collected in the heart
unit of a US hospital. When a heart attack patient is
admitted and stabilised, the doctors need to make an
assessment of future risk and hence treatment. To do
this they used to record around 30 factors including
ordering multiple tests. The historic data included this
information and the final patient outcomes (ground
truth). This was used to perform data analysis using
some form of machine learning or statistical analysis.
As with many expert systems in medicine, this was
never deployed – the legal and medical barriers are
often too high. However, the physicians learnt from
the exercise. The analysis showed that the influence
of the majority of the factors was extremely low, only
four of the factors had any predictive power. The
physicians changed their practice and only focused
on the relevant factors but otherwise used their own
human judgement as before. With less information,
but the best information, their clinical outcomes
improved.

In the natural sciences symbolic regression has
been used to re-learn fundamental physical equations
based purely on data [247, 279]. This is a form of
genetic programming that learns formulae such as
F = q(Ef + B v sin 𝜃) by building, mutating and
combining trees of basic operators. More recently
this has been combined with deep learning to create

Expert and Decision Support Systems ■ 289

FIGURE 18.9 Visual analysis – the big picture: data coming
from the world is used to generate insights, which influence
decisions, which then change the world.

new hypotheses, for example concerning galactic
evolution in the early universe [58]. It may be that in
time these systems will create truly new physics, but at
present the new formulae that are generated are not the
final outcome; instead they are used to prompt more
theoretical analysis [166].

18.7.3 Wider Context

Expert systems and decision support, indeed any appli-
cation of AI, does not exist in a vacuum; the insights or
predictions gained from the process will be used to in-
form decisions in a wider organisational or social context
(Figure 18.9). For example, any large supermarket will
have a team of sales forecasters whose job is to analyse
past sales data in order to make forecasts on the future
sales of different products [9]. However, this is not the
end of the story; they will communicate their predictions
to the sales team or company board who will then make
marketing and stocking decisions.

This may mean that additional forms of visualisation
may be needed in order to inform others of the insights
gained. These may be simple tables or static graphs in
a PowerPoint presentation or may include animated or
interactive visualisations. Where more complex analysis
techniques have been used, for example black-box ma-
chine learning, the analyst may need to be able to explain

https://alandix.com/glossary/aibook/visual analytics
https://alandix.com/glossary/aibook/knowledge elicitation
https://alandix.com/glossary/aibook/knowledge elicitation
https://alandix.com/glossary/aibook/expert knowledge
https://alandix.com/glossary/aibook/ground truth
https://alandix.com/glossary/aibook/ground truth
https://alandix.com/glossary/aibook/symbolic regression
https://alandix.com/glossary/aibook/genetic programming
https://alandix.com/glossary/aibook/deep learning
https://alandix.com/glossary/aibook/visualisation
https://alandix.com/glossary/aibook/black-box machine learning
https://alandix.com/glossary/aibook/black-box machine learning

290 ■ Artificial Intelligence

the reasons for the choice of the technique to an appro-
priate level, showing how it works in general and for the
particular forecast.

For sales forecasts and any complex prediction
domain, the forecasting process includes many tweaks
and adjustments, for example manually increasing a
past data point to remove the anomalous impact of a
stocking shortage. In addition, where there are a range
of predictions (as in climate change models), one can
choose to make more or less optimistic assumptions.
These are partly a matter of judgement and so the
precise choices may include organisational politics as
well as data analysis. For example, a manager may want
forecasts to be set higher to motivate sales staff to try
harder or low so that a future report can show the team
is outperforming expectations.

Often forecasts are measured based on accuracy. How
close is the predicted value to what actually happens? For
example, you might tell your friends that you think your
football team will win this week, and after the match you
will know how accurate you were. This is unproblematic
as a metric because you are not part of the team and have
not had influence on the team’s behaviour. However, if
you are a player and think the match will be an easy win,
you may relax and then perform less well. In the sales
forecasting example, if the forecaster predicts an increase
in the sales of speciality cheeses, the store may display the
cheeses more prominently and the marketing team have
a special advertising campaign. If the cheese sells better,
is this because the forecast was right or simply because of
the better marketing?

18.7.4 Cost–Benefit Balance

Think back to the fruit factory example. There is a cost to
rejecting items that are saleable, but also we don’t want to
accept too many items that are blemished or misshapen.
The vision system can be tuned to make a trade-off be-
tween false negatives and false positives (recall the ROC
curve from Chapter 9). This tradeoff depends on costs.
If the system occasionally misclassifies an item of fruit
then the impact is perhaps a disgruntled shopkeeper or
customer who has a poor quality banana. However, if this
were instead analysing wheat for ergot, then the result of
a failure might be a dead customer.

These trade-offs are also different if we are looking at a
population as a whole or at an individual. For the popu-
lation, we might consider some sort of overall measure of

costs and benefits (sum or average), which in public pol-
icy include putting a value on human lives. For example,
in the UK NICE (the National Institute for Health and
Care Excellence) uses a figure of £20–30,000 per QALY
[211]. A QALY is a Quality Adjusted Life Year, which
measures both quality of life (e.g. coma vs full health)
and also extension of life.

In contrast for an individual entity we may be more
risk averse. For example, imagine we have used an ex-
pert system to help guide the investment decision for the
factory. It may suggest there is a 80% chance that using
new technology will increase net profits by 50% even tak-
ing into account investment costs, but a 20% probability
that increased productivity will be insufficient to service
the interest repayments on the costs of refitting leading
to bankruptcy. On a simple average returns basis (maybe
a venture capital firm deciding on the investment), this
looks like an easy decision, on average we would have a
40% increase in profitability, but the factory owner and
the workforce may not agree.

We also have to consider how this fits into the wider
organisational and social processes, often in timescales
beyond the simple decision point. A clinician looking at
a cervical smear may notice an inconclusive mark that
could be cancerous but ignore it as they know that there
will be another smear test in two years’ time and that if it
is cancerous it will be slow developing and will be caught
at a subsequent point. Here the cost–benefit trade-off is
not just about the immediate severity of a false negative
but that the test now is just one of a series.

Sometimes, these cost–benefit calculations are built
into the expert rules or training data. For example, if an
image system is based on smears together with the hu-
man labelling, the judgements about re-testing intervals
will already be part of the data. In contrast, if a machine
learning system is built using historic smears and post-
hoc knowledge of cancer outcomes, then it may generate
too many false negatives leading to unnecessary stress for
the patients and wasted hospital procedures.

In the latter cases we can sometimes use wider knowl-
edge of the costs of different kinds of misdiagnosis to-
gether with models of the process to build more appro-
priate advice. Alternatively, we might design an overall
decision support system that takes the raw learnt out-
comes and presents them in a form that allows the user
of the system to make expert judgements. For example, if
a system labels a test “80% chance of cancer, time to de-

https://alandix.com/glossary/aibook/accuracy
https://alandix.com/glossary/aibook/computer vision
https://alandix.com/glossary/aibook/false negatives
https://alandix.com/glossary/aibook/false positives
https://alandix.com/glossary/aibook/ROC curve
https://alandix.com/glossary/aibook/ROC curve
https://alandix.com/glossary/aibook/probability
https://alandix.com/glossary/aibook/cost--benefit
https://alandix.com/glossary/aibook/false negative
https://alandix.com/glossary/aibook/cost--benefit
https://alandix.com/glossary/aibook/human labelling
https://alandix.com/glossary/aibook/human labelling
https://alandix.com/glossary/aibook/false negatives

Expert and Decision Support Systems ■ 291

velop 6 years”, this may be judged less critical than “20% 18.2 Working in small groups and using the
chance of cancer, time to develop 6 months”.

Note also that where systems are based on machine
learning or complex statistics, the algorithms themselves
will have uncertainty within their own training and oper-
ation which may need to be factored into decisions. This
can be hard to assess, again pointing to the need for more
explainable AI ... see Chapter 21.

18.8 SUMMARY
In this chapter we looked at the main applications of
expert systems and the components that we would
expect to see in an expert system. We considered the
stages in building an expert system, concentrating
on knowledge acquisition and choosing appropriate
tools. Machine learning can be used alongside expert
knowledge or make use of data that embodies prior
expert decisions or behaviour. This reduces some of
the difficulties of expert knowledge elicitation but may
lead to less comprehensible rules making explanation
difficult.

Decision support systems use AI to provide guidance
and data that helps experts employ their own human
judgement. This often includes elements of visualisation
as well as data analysis in order to make the outcomes of
algorithms more comprehensible to the expert. This can
be made more interactive in visual analytics where the
choices and parameters of machine learning and statisti-
cal transformations are both displayed and manipulated
through multiple visualisations.

In all cases we need to keep in mind a wider picture
including the nature of the decisions which will be made
and the organisational and social processes within which
it will be used. Both will affect cost–benefit choices which
may be embedded in various ways within algorithms.

18.1 You are asked to advise on the use of expert sys-
tems for the following tasks. Outline appropriate
reasoning methods and other key expert system
features for each application.

a. a system to advise on financial investment (to
reduce enquiries to a bank’s human advisor)

b. a medical diagnosis system to help doctors

c. a kitchen design system to be used by sales
personnel

textual information below about causes
for a car overheating (extending it where
necessary)

a. Formalise the knowledge as a set of rules (of
the form IF evidence THEN hypothesis)

b. Calculate certainty factors (see Chap. 3) for
each hypothesis given the evidence (estimate
measures of belief and disbelief from the state-
ments made)

c. Use an expert system shell or bespoke code to
implement this knowledge.

Car overheating: There are a number of reasons
why a car might overheat. If the radiator is empty,
it will certainly overheat. If it is half full, this may
cause overheating but is quite likely not to. If the fan
belt is broken or missing, the car will again certainly
overheat. If it is too tight, it may cause this problem
but not always. Another possible cause is a broken
or jammed thermostat, or too much or too little oil.
If the engine is not tuned properly, it may also over-
heat, but this is less likely. Finally, the water pump
may be broken. If none of these things is the cause,
the temperature gauge might be faulty (the car is
not overheating at all). Also the weather and the
age of the car should be considered (older cars are
more likely to overheat). A combination of any of
the above factors would increase the likelihood of
overheating.

18.3 Individually or in a group, find examples of
graphs, diagrams and infographics used in
magazines, newspapers or academic papers.

a. Look for potential ways in which each
could be made interactive as described in
Section 18.6.1.

b. Consider ways in which the underlying data
might make use of AI, perhaps machine learn-
ing, or clustering.

c. Now think of how the AI could interact
with the visualisation (or an alternative
visualisation), to show its outcomes and to be
controlled.

https://alandix.com/glossary/aibook/uncertainty
https://alandix.com/glossary/aibook/explainable AI
https://alandix.com/glossary/aibook/knowledge acquisition
https://alandix.com/glossary/aibook/Machine learning
https://alandix.com/glossary/aibook/expert knowledge
https://alandix.com/glossary/aibook/expert knowledge
https://alandix.com/glossary/aibook/expert knowledge
https://alandix.com/glossary/aibook/visualisation
https://alandix.com/glossary/aibook/visual analytics
https://alandix.com/glossary/aibook/cost--benefit
https://alandix.com/glossary/aibook/certainty factors
https://alandix.com/glossary/aibook/expert system shell

292 ■ Artificial Intelligence

If you found a lot of examples, you can focus
on the most promising as you work through the
steps.

FURTHER READING

P. Jackson. An introduction to expert systems. Addison Wesley,
Workingham, 2nd edition, 1990.
Detailed coverage of many of the topics introduced here as
well as other aspects of expert systems. An excellent next
step for anyone wanting to know more about the subject.

L. Medsker and J. Liebowitz. Design and development of expert
systems and neural networks. Macmillan, New York, 1994.
A book that attempts to provide a balanced view of the role
of traditional and connectionist techniques in the practical
development of expert systems.

S. Goonatilake and Khebbal, editors. Intelligent hybrid systems.
John Wiley, Chichester, 1995.
A collection of papers detailing some of the research in us-
ing hybrid techniques in expert systems and knowledge ac-
quisition.

A. Kidd, editor. Knowledge acquisition for expert systems: A
practical handbook. Plenum Press, New York, NY, 1987.
A collection of papers discussing a range of knowledge elic-
itation techniques. A worthwhile read for anyone wanting
to gather information to build an expert system.

T. Segaran and J. Hammerbacher, editors. Beautiful data: The
stories behind elegant data solutions. O’Reilly Media Se-
bastopol, CA, 2009.
This book includes many case studies of visualisations used
in real-world projects, written by the visualisation experts
who created them. The book draws out general lessons and
principles from the specific examples.

D. Keim, D. J. Kohlhammer, G. Ellis, and F. Mansmann, edi-
tors. Mastering the information age: solving problems with
visual analytics. Eurographics Association, 2010. https:
//www.vismaster.eu/book/
Arising from the European VisMaster programme, this
book both summarises the key issues in visual analytics
and lays out a roadmap for future research. Many of the
case studies, although now some years old, still look futur-
istic, emphasising the gap between state of the art and day-
to-day practice.

A. Dix. Information visualization. In Information retrieval
meets information visualization, pages 1–27. Springer
LNCS 7757, 2013. https://alandix.com/academic/teachin
g/Promise2012/
A short introduction to information visualisation princi-
ples and techniques. A video course based on this is at:
https://hcibook.com/hcicourse/2013/unit/08-infovis

https://alandix.com/glossary/aibook/connectionist
https://alandix.com/glossary/aibook/hybrid
https://alandix.com/glossary/aibook/knowledge acquisition
https://alandix.com/glossary/aibook/knowledge acquisition
https://alandix.com/glossary/aibook/knowledge elicitation
https://alandix.com/glossary/aibook/knowledge elicitation
https://alandix.com/glossary/aibook/visualisation
https://www.vismaster.eu/book/
https://www.vismaster.eu/book/
https://alandix.com/glossary/aibook/visual analytics
https://alandix.com/academic/teaching/Promise2012/
https://alandix.com/academic/teaching/Promise2012/
https://hcibook.com/hcicourse/2013/unit/08-infovis

CHAP T ER 1 9

AI Working with and for Humans

19.1 OVERVIEW
This chapter looks at the issues that arise when people in-
teract closely with AI. It begins by looking at some broad
dimensions on which this can vary including who is in
control and the level of automation. We will then look in
more detail first at intelligent user interfaces, where AI is
very explicitly part of an application, followed by smart
environments, where AI is less obvious, but more inti-
mately embedded in sensors and devices around us. Just
like people, the results of AI are not always 100% correct,
so we look at interaction techniques which are robust to
individual errors. Finally we will see how synergistic in-
teractions between humans and AI may require changes
in the design of both AI algorithms and user interfaces.

19.2 INTRODUCTION
As we noted at the beginning of this book, every AI-
based system will in the end need to work with people. In
this chapter, we will look at cases where this is very direct
such as an intelligent website, a semi-autonomous car or
a smart home. In the last chapter we were dealing with
expert use, whereas here it is more everyday applications
for anyone.

In some ways AI systems are yet another kind of tech-
nology and so to understand the relations between hu-
mans and AI it is sufficient to look at the history of new
technology in general or consult human–computer in-
teraction texts [88].

However, there are key differences, which we can sum-
marise in terms of three ‘C’s (we’ll see a different three
‘C’s later).

complexity – When we pick up a rock, we can see the
rock and know what will happen. When we turn a
door handle or flick a light switch, the mechanism
is hidden but there is a straightforward cause-and-
effect that we can learn. Standard (non-AI) com-
puter programs have higher complexity, every de-
veloper has encountered unexpected behaviour of
the code that they wrote, but the intention when it
is written is that the coder knows what they want
to happen! Even traditional rule-based AI systems
have added complexity, as the order and interac-
tions between rules is hard to track, and when we
have neural networks with billions of parameters, it
is impossible to know unambiguously what is going
on.

(un)certainty – With the exception of mechanical
breakdown or electrical failure, turning the door
handle always opens the door, flicking the switch
always turns the light on. However, the complexity
of many machine learning systems means we are
often uncertain as to precisely what the outcome
will be. Furthermore, many AI systems themselves
take input from sensors that either have uncertainty
in themselves or where the interpretation of the
sensor is open to doubt. If a heart sensor shows a
high rate, is that because the person is excited or
has just walked up three flights of stairs?

co-adaptation – Humans always adapt to the technol-
ogy we use, learning to work with its benefits and
work around its limitations. Often we are creative

DOI: 10.1201/9781003082880-23 293

https://alandix.com/glossary/aibook/intelligent user interfaces
https://alandix.com/glossary/aibook/semi-autonomous car
https://alandix.com/glossary/aibook/human--computer interaction
https://alandix.com/glossary/aibook/human--computer interaction
https://alandix.com/glossary/aibook/neural networks
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/uncertainty
http://dx.doi.org/10.1201/9781003082880-23

294 ■ Artificial Intelligence

appropriating technology in ways that designers
never considered [81], such as a shop-keeper
using a mobile phone contact list as a place to
remember who owes money. However, with the
exception of wear patterns, traditional devices
do not themselves change. In contrast, many
AI systems constantly adapt to their users, for
example the way autocompletion gets to know
your common phrases. This co-adaptation can be
powerful: voice-based systems learn your voice,
but also you unconsciously adapt the way you
speak to be more understandable. However, when
two systems adapt to each other, there can be new
problems, think about the little dance when you try
to pass someone on a narrow sidewalk.

In each case there are non-AI systems that also share
one or more of these characteristics, for example the
operation of a large chemical plant is very complex, and
even simple, sensor-based systems have considerable
uncertainty. This is helpful as we can think of related
but simpler systems that share some of these properties
as we think about creating AI systems to work with
people.

In the rest of the chapter we’ll see many examples of
systems working with people. We’ll consider how to both
design human interactions that work with AI taking into
account the three ‘C’s and also how AI algorithms can be
modified to work better with people.

In the next section we’ll look at some of the different
ways in which people work with AI before looking at
more specific areas in more detail.

19.3 LEVELS AND TYPES OF HUMAN
CONTACT

There are a wide range of ways in which AI-based sys-
tems can interact with people. We’ll explore four dimen-
sions of this:

Social scale – From single users to the whole of society.

Visibility and embodiment – From screens and robots
to smart environments.

Intentionality – From pressing a button to unobtrusive
support.

Who is in control – From saying what you want to be-
ing told what to do.

We will describe each in a little more detail, but we will
also see aspects of them emerge in the various examples
in the rest of the chapter.

19.3.1 Social Scale

Some systems are focused on a single individual, for ex-
ample biometric authentication on a phone or recom-
mender systems in a website. This is the most obvious
form of human interaction with AI, and Section 19.4 will
consider several examples.

At the other extreme is the use of AI at a social scale,
for example, when AI is used in mass surveillance, or to
help governments plan healthcare. Chapter 23 will look
at these issues in more detail.

Between the two are systems that operate where a
small group of people are involved, for example, the
lift that needs to decide between all the humans’ floor
requests, or the digital party-hats or other filters that can
be applied in video chat.

This may be partially hidden, for example when
you chat with a salesperson on a website, your
interactions may sometimes be handled by AI and
sometimes by a human, and you may even be un-
aware which it is. More often when AI mediates
human–human communication, it is clear which is
which. For example, in the pre-consultation system
described in Chapter 13, the patient was interacting
with a chatbot and knew it was not human, but the
patient’s responses were designed to be available to
help a later face-to-face consultation with a human
clinician.

The individual and group concerns can interact, par-
ticularly if the level of personalisation of the system is
high. In many case studies of control rooms, such as in
the London Underground, it has been found that shared
displays and also casual overhearing or seeing activity in
peripheral vision are key to effective collaboration [126].
Furthermore in collaboration between teams of differ-
ing kinds of expertise, boundary objects have been found
to be crucial; that is physical or information artefacts
that connect in different ways to each person’s specialised
domain [265]. Even informal helping assumes that the
same application behaves the same for everyone. There
are many benefits in the use of machine learning to adapt
systems to each individual user, but also care needs to be
taken to ensure opportunities for human–human collab-
oration are not hindered.

https://alandix.com/glossary/aibook/appropriating technology
https://alandix.com/glossary/aibook/uncertainty
https://alandix.com/glossary/aibook/robots
https://alandix.com/glossary/aibook/recommender systems
https://alandix.com/glossary/aibook/recommender systems
https://alandix.com/glossary/aibook/chatbot
https://alandix.com/glossary/aibook/computer vision
https://alandix.com/glossary/aibook/boundary objects
https://alandix.com/glossary/aibook/machine learning

19.3.2 Visibility and Embodiment

The device embodying AI can also differ. Sometimes it
will be very explicit: visualised on a screen, or a physical
device in the home to which you speak. However, some-
times it may be invisible, more part of the environment.
We will look at the latter in more detail in Section 19.5.

Often smart systems, such as lights or home music, are
controlled by a separate device, most commonly through
a phone app. In these cases we need to think both about
the design of the app and the way in which the user makes
sense of its, sometimes invisible, effects on the environ-
ment.

In some cases the AI system may be embodied in ways
that have considerable autonomy. At its simplest a lift can
be thought about as a robot with a single degree of free-
dom that we happen to ride in ... and we can sometimes
find lifts hard to control. Industrial robots, autonomous
cars and drones all create situations where it is not just
about telling the AI device what to do, but fluidly work-
ing alongside it.

19.3.3 Intentionality

AI based systems also differ in their level of intentional-
ity, that is whether the user explicitly instructs the system
to do something, or whether it chooses to do so. This can
be thought of as a continuum (note the use of the term
‘intentionality’ here is different from philosophical no-
tions of intentionality discussed in Chapter 23):

explicit – Here the user issues some form of explicit
command, for example telling a home automation
system, “turn off the lights”. Note that here the user
consciously and explicitly plans what will happen.

implicit – Here the user performs some form of action
that triggers the system to respond, but it is more a
natural action such as tipping an e-book to turn a
page [246]. The action is still in a sense planned or
triggered by the user, but more unconsciously.

expected – Here the user doesn’t do anything specific to
trigger the action, but they know it will happen and
would be surprised if it didn’t, for example auto-
matic doors opening as you approach them or lights
going on when you enter a room.

incidental – Here the user is doing some action as part
of other activities which the system uses to perform

AI Working with and for Humans ■ 295

some other action [79]. This is often at a completely
different time, for example learning email habits; or
it may be to help a different person such as the use
of one customer’s book buying to make suggestions
to another. The action is planned entirely by the AI,
the user may not even be aware that it has happened.

accidental – Finally there are cases when neither human
nor AI plan that things happen, but they arise as
an unexpected side effect or emergent behaviour. In
the telecoms industry feature interaction has been a
recognised issue for many years, where several fea-
tures each of which seem reasonable have an unex-
pected, and possibly damaging, effect together. AI
and ML often intensify this due to the complexity
of the algorithms; for example the personalisation
of news and social media seemed overwhelmingly
positive, but has given rise to filter bubbles.

Note that the implicit, expected and incidental levels
all make heavy use of context in order to make sense of
the users’ activity. This can involve the user of physical
sensors in the environment or monitoring of digital in-
teractions. This is because the AI system has to interpret
the users’ actions in order either to understand the users’
intentions or at least make sense of their actions.

19.3.4 Who Is in Control

Closely related to levels of intentionality is the question
of how the level of control between human and AI can
vary:

Human as cog (in the machine) – In the web chapter
(Chap. 17) we have seen how reCaptcha codes sim-
ply regard the end-user as a ‘recogniser’ to be used
as part of a larger machine learning system. Sim-
ilarly in many gig-economy applications, such as
ride or delivery services, the driver is told by the
machine who or what to pick up when.

Human as controller – In other applications, the
human is definitely in control, telling the AI what
to do. For example, you tell an autonomous car
where you want to go and then let it drive you
there.

Human as partner – At other times the relationship is
more collaborative, for example a system might sug-
gest options to you, or semi-automate processes, but

https://alandix.com/glossary/aibook/embodied
https://alandix.com/glossary/aibook/robot
https://alandix.com/glossary/aibook/Industrial robots
https://alandix.com/glossary/aibook/intentionality
https://alandix.com/glossary/aibook/intentionality
https://alandix.com/glossary/aibook/home automation
https://alandix.com/glossary/aibook/triggers
https://alandix.com/glossary/aibook/trigger
https://alandix.com/glossary/aibook/emergent behaviour
https://alandix.com/glossary/aibook/feature interaction
https://alandix.com/glossary/aibook/social media
https://alandix.com/glossary/aibook/filter bubbles
https://alandix.com/glossary/aibook/implicit interaction
https://alandix.com/glossary/aibook/incidental interaction
https://alandix.com/glossary/aibook/context of human activity
https://alandix.com/glossary/aibook/interpretation of user actions
https://alandix.com/glossary/aibook/reCaptcha
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/gig-economy
https://alandix.com/glossary/aibook/autonomous car

296 ■ Artificial Intelligence

let you fine tune or guide. This is sometimes called
hybrid AI, as we saw in Chapter 18; however, the
term ‘hybrid’ is also used for discrete/continuous
problems (Chap. 4) or combining different kinds of
AI algorithm (Chap. 6).

In these we can see different options as to who has
the initiative, does something that starts things off; who
makes the decision as to what should be done; and who
actually takes action to do it (see Table 19.1 for some ex-
amples). When the human acts as a cog (in the machine),
the initiative and decisions are made by the system and
the human merely performs the action that has been se-
lected. Whereas in the human as controller situation, the
initiative and high-level decisions are taken by the hu-
man, with the system dealing with details.

Another term you may hear is human in the loop. This
can refer to situations in all three of the above classes,
wherever the results of the AI are not applied without
additional human interaction. This is particularly clear
where the human is used as part of a broader algorithm
(human as cog) or working alongside (human as part-
ner).

TABLE 19.1 Who Has Control and Who Does the Work,
Some Examples.
initiative decision action example
machine machine human delivery service
human machine machine autonomous car
human joint human decision support
machine joint joint recommender system
human joint machine engine management

system

19.3.5 Levels of Automation

When considering automobile automation, the Society
of Automotive Engineers have defined five levels [238,
239], which have been adopted or adapted by many na-
tional and international standards:

0. No Driving Automation

1. Driver Assistance

2. Partial Driving Automation

3. Conditional Driving Automation

4. High Driving Automation

5. Full Driving Automation

In levels 0–2 the driver is still ‘driving’ the car. Level
0 includes basic features such as ABS (anti-lock braking
system) and various forms of warning such as blind spot
or lane changing alarms. Levels 1 and 2 include more ad-
vanced features such as automated steering within lanes,
or maintaining distance from the vehicle in front, but the
driver is still expected to maintain attention and over-
sight even when the AI system is doing much of the fine
work of driving.

Levels 3–5 include times when the automation is
actually driving the car. In Level 3 the driver has to
take over when requested by the system (which creates
hand-over challenges for the driver-car interface). In
levels 4 and 5 the car may have no human operated
controls at all; the difference is that level 4 is only within
constrained environments, such as an airport shuttle
service.

Although the levels were developed for cars, we
can see other kinds of human–AI system in a similar
vein. For example in an AI-assisted programming
environment, level 0 would include things such as
syntax highlighting or auto-completion of variable
names and function templates, whereas level 2 and 3
would include auto-completion of more substantial
chunks of code, as with GitHub Copilot [48]. In level 3
we can imagine a system that writes full programs but
maybe stops and requests help from the programmer
when it gets stuck; level 4 would be something that codes
entirely autonomously, but within a limited context,
such as configuring IoT rules in a domestic setting; while
level 5 would be a fully autonomous general-purpose
artificial coder.

Shneiderman argues that this one-dimensional view
of automation is too simplistic and instead suggests con-
sidering a two-dimensional framework with higher and
lower levels of human-control compatible with higher
and lower levels of automation [257].

Figure 19.1 illustrates this with camera design. Early
mass-market film cameras (bottom right: low human-
control, low automation) had no automation beyond
springs in the shutter and little human control beyond
pushing the button to take the picture and winding on
the film. In contrast older (pre-digital) SLR cameras (top
left: high human-control, low automation) allowed the
photographer to manipulate many settings such as the
focus, exposure time, aperture size and level of zoom

https://alandix.com/glossary/aibook/hybrid AI
https://alandix.com/glossary/aibook/human in the loop
https://alandix.com/glossary/aibook/IoT

FIGURE 19.1 Shneiderman’s two-dimensional human–
centred AI framework.

as well as switch lenses, or attach different forms of
flash devices or lens filters for different conditions. Early
mass-market digital cameras and the basic mode of most
phone-based cameras are essentially point-and-click
(bottom right: low human-control, high automation),
where the embedded computer automatically focuses
and determines the exposure time and other settings
available to the camera. Finally high-end professional
cameras allow photographers to manage settings when
they want to but can also include rich automation to
enhance the photographer’s experience and capabilities,
especially when in challenging circumstances such as
needing to take many rapid shots at a wedding or during
wildlife photography.

The meaning of ‘control’ in this framework is
slightly different from the kinds of control we were
considering in Section 19.3.4, but the more synergistic
human–AI interaction, which we will return to in
Section 19.7, tends to fall into the upper-right quadrant
of Shneiderman’s framework which he considers the
sweet spot for “reliable, safe and trustworthy” AI
systems.

19.4 ON A DEVICE – INTELLIGENT USER
INTERFACES

Throughout this book, we’ve already seen many exam-
ples of user interfaces that make use of some form of
AI including recommender systems and data detectors
in Chapter 17. User interfaces where AI forms a signif-
icant element are often called intelligent user interfaces,
and there is a long-running ACM conference dedicated
to the area.

AI Working with and for Humans ■ 297

19.4.1 Low-level Input

Many low-level input methods make use of some form
of AI or ML. Some are obvious such as the speech recog-
nition used in voice assistants, but others less so.

In Chapter 12 we discussed gesture recognition that is
often used in pen-based systems. This includes recognis-
ing letters and numbers to enable handwriting recogni-
tion to avoid the use of a keyboard. In addition, there are
usually action gestures, such as crossing out for delete or
circling text to select it. These systems come pre-trained
but will also usually adapt themselves to the user’s own
styles of writing.

In many situations the goal of the recognition engine
is to translate the free-flowing gestures into a series of
predefined codes or tokens such as letters or editing com-
mands. However, for some strokes such as lassoing text
to edit, the precise path is important. In games often the
speed of the movement is also critical.

Even smartphone virtual keyboards embody quite
complex algorithms to minimise (inevitable) mistyping.
Often this is not in the public domain as it is either
commercially sensitive or just buried in the code.
However, some years ago, Microsoft engineers gave
a rare glimpse into the detailed engineering of the
Windows Phone 7 virtual keyboard [119]. The design
combined fixed rules to ensure that the centre portion of
every key is consistent with more predictive techniques
that expand the effective size of each key depending on
the likelihood it will be pressed next.

Even less visible are the algorithms used for picture
stabilisation and auto-focus in a smartphone camera.
These are only noticed when they go wrong.

19.4.2 Conversational User Interfaces

The origins of conversing with a computer date back
many years, not least ELIZA in the mid-1960s [299] that
we discussed in Chapter 1. By the mid-1980s the MIT
Speech Interface Group used various state-of-the-art
techniques to create an envisionment ‘Phone Slave’,
which still looks remarkable given the 30 years it took to
become commonplace [245]. It is interesting that many
of the issues that can still cause problems today were
foreseen at that point, for example how to distinguish
deliberate commands vs accidentally overheard speech.

A home automation device has a relatively high-
quality microphone and also gradually learns your
speech patterns. Voice-based systems over telephones

https://alandix.com/glossary/aibook/recommender systems
https://alandix.com/glossary/aibook/data detectors
https://alandix.com/glossary/aibook/intelligent user interfaces
https://alandix.com/glossary/aibook/speech recognition
https://alandix.com/glossary/aibook/speech recognition
https://alandix.com/glossary/aibook/gesture recognition
https://alandix.com/glossary/aibook/pen-based systems
https://alandix.com/glossary/aibook/handwriting recognition
https://alandix.com/glossary/aibook/handwriting recognition
https://alandix.com/glossary/aibook/Microsoft
https://alandix.com/glossary/aibook/ELIZA
https://alandix.com/glossary/aibook/Phone Slave
https://alandix.com/glossary/aibook/home automation

298 ■ Artificial Intelligence

FIGURE 19.2 Talking to Siri.

that have to work with anyone can still be difficult and
can be particularly problematic for certain accents, or
older people. For this reason, interactive voice response
(IVR) systems are still often built around a computer-
driven dialogue with quite complex parts spoken by the
system and key presses or very simple spoken responses
by the user.

IVR systems and indeed many chatbots typically oper-
ate using a simple flow-chart-based dialogue, often called
a ‘decision tree’, but in a different sense to the decision
trees in machine learning. The decisions here refer to the
choices made by the user, for example what kind of query
they have, or choosing between different kinds of prob-
lem.

Text-based chatbots can also use more sophisticated
NLP using the kinds of techniques discussed in Chap-
ter 13. This is in part because the actual words are well
defined even though the extraction of meaning can be
more difficult.

In all cases there will be errors and uncertainty and
so it is critical that any conversation-based interactions
have plenty of provision for error detection and repair,
for example the system repeating back what it thinks the
user has said. We’ll return to these issues of repair in Sec-
tion 19.6.2.

Home automation systems or voice assistants on
smartphones or in a car have to work by voice alone
but typically do not operate in a fully conversational
mode, instead adopting a question-and-answer or
command-and-action pattern. Figure 19.2 shows an
attempt to get MacOS’s Siri to engage in conversation.

Sometimes conversational interfaces merge with
gesture-based interaction in multimodal interfaces.
Both the speech and gesture aspects have their own
algorithms and uncertainties, but it is also important
that they are synchronised to enable interactions such
as “put that circle there” in a graphics editing system.
The different locations of the user’s pointed finger
at the words ‘that’ and ‘there’ are crucial. Often the
recognition process has small delays, so it is important
that the speech-recognition part is able to link the
recognised words with the time they were uttered not
the time the recognition is complete.

19.4.3 Predicting What Next

The key-level algorithm used in the Windows Phone
keyboard and the word-level prediction that offers
suggested completions are performing a simple form
of lookahead prediction: the next token in a sequence.
Older systems often used Markov models or similar
statistical techniques, and simple frequency-based
methods are often sufficient for more discrete short text
such as search auto-complete. However, for sequence-
based prediction, such as sentence completion in
an email client, transformer models (Chap. 14) are
increasingly used.

In some ways these are simply more sophisticated ver-
sions of older statistical or probability-based methods,
taking a window of past text and predicting the next few
words. However, there is a point at which the simple
change in quantity of text feels like a qualitative differ-
ence. GPT-3 was trained on half a trillion words, many
thousands of times more than a child would encounter as
they grow up, and this huge figure is only increasing with
subsequent versions. Our own language is often a mix of
stock phrases and adaptations to the precise situation. To
some extent the transformer models are doing this. Cru-
cially they maintain a substantial amount of context and
so are able to stay ‘on topic’ for extended periods, to the
extent that whole essays are being produced with publicly
available tools such as ChatGPT.

Often GPT-based applications are tuned to specific ar-
eas, and there is a considerable art in priming the models,
that is giving them some starting text that establishes the
right topic area. For example the Codex model is a ver-
sion of GPT-3 trained on 54 million public repositories
at GitHub [48]. This has been used to offer code auto-
completion in GitHub Copilot [108], which often offers

https://alandix.com/glossary/aibook/interactive voice response
https://alandix.com/glossary/aibook/IVR
https://alandix.com/glossary/aibook/IVR
https://alandix.com/glossary/aibook/chatbots
https://alandix.com/glossary/aibook/decision tree in IVR
https://alandix.com/glossary/aibook/decision trees
https://alandix.com/glossary/aibook/decision trees
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/chatbots
https://alandix.com/glossary/aibook/NLP
https://alandix.com/glossary/aibook/uncertainty
https://alandix.com/glossary/aibook/Home automation
https://alandix.com/glossary/aibook/voice assistants
https://alandix.com/glossary/aibook/multimodal interfaces
https://alandix.com/glossary/aibook/speech-recognition
https://alandix.com/glossary/aibook/statistical techniques
https://alandix.com/glossary/aibook/auto-complete
https://alandix.com/glossary/aibook/transformer models
https://alandix.com/glossary/aibook/probability
https://alandix.com/glossary/aibook/GPT-3
https://alandix.com/glossary/aibook/transformer models
https://alandix.com/glossary/aibook/ChatGPT
https://alandix.com/glossary/aibook/GPT-3

amazing coding suggestions, but also can create reason-
able but wrong code, or possibly worse, return code that
duplicates whole chunks of specific code from GitHub
with implications for IP.

The same underlying Codex has also been to drive a
chatbot in ‘The Programmer’s Assistant’ offering conver-
sations that are remarkably like one might expect with a
fellow programmer [236]. Crucially however, the devel-
opers of the Programmer’s Assistant prime Codex with a
prompt that shifts it towards effective interactions. This
prompt contains some fixed text that has been tuned to
nudge Codex in a helpful direction, which is combined
with phrases drawn from the specific current coding con-
text.

19.4.4 Finding and Managing Information

Researchers in personal information management (PIM)
often focus on four activities; the user needs to acquire,
organise, maintain and retrieve information [23, 150].
Organisational information management has similar ac-
tivities. Various machine learning techniques are used in
at least three of these – relatively little for the ‘maintain’
side.

Thinking first on acquiring information, we have al-
ready discussed forms of recommender system in previ-
ous chapters. These use your own and other people’s past
selection of material (books, music, news items) in or-
der to offer suitable items to suggest to you. Similar tech-
niques are used for both targeted advertising and dat-
ing apps. Note these systems often depend on relevance
feedback, some indication of whether the recommenda-
tions are indeed what you want to see or hear. This can
be explicit, as in star ratings for films you have watched
or favouriting an item to return to; or it can be implicit,
for example that you chose to listen to a recommended
piece of music to the end.

The organising side has also been a major success, at
least in email management, where the volume of incom-
ing information is greatest. As well as spam filters, the
main commercial systems exploit machine learning for
classification to pre-sort mail into major categories, try-
ing to identify the most important emails for immediate
attention. These systems are so good that people rely on
them and will often miss emails that have not been cor-
rectly categorised. Outside of email, the picture is more
patchy; hierarchical filing systems on personal comput-
ers and the cloud have changed little since the 1970s. Of-

AI Working with and for Humans ■ 299

ten the assumption is that if retrieval is good enough,
careful filing is unnecessary.

As noted there seems to be less use of AI for main-
taining information, that is ensuring it is kept up-to-date
and filing systems are efficient. As with organisation, if
retrieval is good enough, having things poorly sorted is
not a problem. One of the reasons for deleting old infor-
mation is to reduce the clutter that gets in the way of ef-
fective human retrieval, but if AI can identify candidates
for deletion, it may as well not bother and simply ignore
or low-rank these items during retrieval.

There are two times when deletion is important.
First is for resource management. Phones may identify
apps to archive, as running apps reduce battery life and
cloud services may automatically migrate items to and
from your personal computer. However, full deletion
is rare except for disk clean-up applications, which use
relatively simple rules, not least because mistakes are
hard to fix. The other reason is privacy and security, both
personal and corporate. Indeed, many organisations still
find it hard to comply with data protection legislation
that requires personal information not to be kept longer
than necessary.

In some ways retrieving information is similar to ac-
quiring it, except that the sources are internal rather than
external. Indeed at an organisational level very similar
techniques are used. At a personal level things are a little
more complicated as by definition the information is not
personal and therefore simple popularity-style metrics
cannot be used to learn from other people’s behaviour.
The search systems in use for personal information do
indeed seem to be relatively simple.

Crucially personal information search requires trans-
fer learning where things learnt about one person’s be-
haviour in an abstract sense can be transferred to another
person’s documents or emails, even though the actual
items are completely different. The main example of this
at present is at the language level where synonyms for
terms learnt from document corpora or other people’s
(public) searches can be used to tune searching of per-
sonal or corporate repositories, but as work on transfer
learning develops this may soon change.

Search and retrieval systems differ in terms of accu-
racy. Many of the highly successful systems developed
for acquiring information, particularly recommender
systems, work on the principle that there is too much
information available and so giving good enough
information is sufficient, you do not need to have every

https://alandix.com/glossary/aibook/chatbot
https://alandix.com/glossary/aibook/personal information management
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/relevance feedback
https://alandix.com/glossary/aibook/relevance feedback
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/classification
https://alandix.com/glossary/aibook/privacy
https://alandix.com/glossary/aibook/personal information search
https://alandix.com/glossary/aibook/transfer learning
https://alandix.com/glossary/aibook/transfer learning
https://alandix.com/glossary/aibook/transfer learning
https://alandix.com/glossary/aibook/transfer learning
https://alandix.com/glossary/aibook/accuracy
https://alandix.com/glossary/aibook/accuracy
https://alandix.com/glossary/aibook/recommender systems
https://alandix.com/glossary/aibook/recommender systems

300 ■ Artificial Intelligence

single piece of information that is relevant, and a few
irrelevant items don’t matter as you can skip them.

However, sometimes it does matter that you have pre-
cisely the items you want. This can be the case for pub-
lic information, for example it is important that a lawyer
retrieves ‘all’ of the relevant case law. It is even more
common for retrieval of personal or organisational in-
formation – you want precisely the document you were
working on three weeks ago, or exactly the records of
employees that are nearing retirement. This was one of
the drivers for Query-by-Browsing (QbB) described in
Chapter 5; if you are going to perform an action, such
as giving a pay rise to employees, or sending a loan re-
minder to clients, it is important that you select exactly
the right ones. Note that QbB was designed to create an
understandable query which could be verified by the user
– we will return to these issues in Chapter 21.

While non-AI based systems tend to merely retrieve
information when asked, more intelligent systems can
proactively suggest potentially useful information. Rec-
ommender systems do this for acquiring information,
while some personal knowledge management may sug-
gest relationships between items as a form of creativity or
inspiration aid. Note that personal knowledge manage-
ment is a term often used in commercial systems rather
than PIM, which is used more in the research domain.

19.4.5 Helping with Tasks

Various forms of more (or less) intelligent algorithms can
be used to help make day-to-day digital tasks easier.

At the simpler end is automated form-filling in email
browsers. Research systems have created sophisticated
versions that use contextual information to tune sugges-
tions for each field, but most systems used in practice rely
on simple rules such as the names of the web form fields
and match these to previous entries in fields of the same
name, especially on the same web form.

One step up are data detectors and named entity
recognition introduced in Chapter 17. For the former,
simple patterns are used to match structured content
such as a date. The latter match specific words or
sequences of words to known entities such as places,
people or titles. These are sometimes combined in more
complex recognisers such as the way some email systems
will notice that if a time, a date and place are mentioned,
then this may be an appointment. If the source of an
email is recognised, then more specific rules may be

applied, for example parsing the automated emails from
flight or hotel booking sites. Most of these systems are
based on pre-specified rules rather than learning from
user interactions.

There is also a long history of systems that observe and
then automate user tasks. Some of the earliest examples
were related to programming user interfaces [169, 205],
and hence the term programming-by-demonstration
is often used even when the applications involve
no code.

Systems such as Apple Automator simply record
the user’s actions on an interface and then allow the
user to replay them, but more sophisticated systems
attempt to match potential variable elements, so that
they can repeat the same task for a different object or
look for repetitions (or loops in a coding analogy). An
early example of this was EAGER [64], which was able
to automate iterative tasks in HyperCard, a common
hypertext and coding system on Apple computers
at the time. As well as being relatively sophisticated
EAGER was embodied in the interface in the form of a
small cat.

Despite these early research systems being relatively
successful, the level of sophistication of actual deployed
systems is very basic. This is partly due to the complexity
of correctly inferring both parameterised and repeated
tasks, not least the completion criteria for the latter.
The success of code-completion systems such as Copilot
in inferring complex coding structures is because they
are based on large bodies of code containing loops as
text, not because they understand coding structures
themselves.

Another barrier to effective task automation is access
to the underlying data. First the units of activity on a
graphical system are not obvious. If you simply record
user actions you end up with a series of mouse-click
events, whereas for effective task learning this needs to
happen at a more semantic level such as “MOVE FILE
august.xls TO FOLDER monthly_reports”. Apple
attempted to encourage developers to code applications
using this form of intermediate representation so that
they were recordable for automation, but few followed
this advice including many of Apple’s own applications.

Furthermore both task automation and simpler aids
such as form filling ideally would have access to rich data
about the user and current context such as contacts and
different messaging systems. There have been attempts to
capture this in what has been called a semantic desktop

https://alandix.com/glossary/aibook/Query-by-Browsing
https://alandix.com/glossary/aibook/QbB
https://alandix.com/glossary/aibook/QbB
https://alandix.com/glossary/aibook/Recommender systems
https://alandix.com/glossary/aibook/Recommender systems
https://alandix.com/glossary/aibook/personal knowledge management
https://alandix.com/glossary/aibook/personal knowledge management
https://alandix.com/glossary/aibook/personal knowledge management
https://alandix.com/glossary/aibook/PIM
https://alandix.com/glossary/aibook/data detectors
https://alandix.com/glossary/aibook/named entity recognition
https://alandix.com/glossary/aibook/named entity recognition
https://alandix.com/glossary/aibook/programming-by-demonstration
https://alandix.com/glossary/aibook/EAGER
https://alandix.com/glossary/aibook/hypertext
https://alandix.com/glossary/aibook/EAGER
https://alandix.com/glossary/aibook/embodied
https://alandix.com/glossary/aibook/semantic desktop

applying semantic web technologies to personal comput-
ers [242]. However, these efforts have never found their
way into commercial systems, for both practical reasons
and also issues of privacy.

19.4.6 Adaptation and Personalisation

Most computer applications have settings that can be
customised by the user, but few ever change the default
settings. This is partly because customisation requires
upfront effort in order to improve future experience.
Furthermore the precise implications of customisation
decisions can be hard to predict, further reducing our
willingness to put in effort for uncertain outcomes.

Various forms of intelligent adaptation can address
these problems. For example, a word processor might
highlight ‘colour’ as a potential spelling mistake but,
when you open the pop-up menu, will offer both
changing it to ‘color’ and changing the default language
setting to ‘English (UK)’. Note that this:

• reduces the knowledge required – how to change
language settings,

• reduces the effort required – agreeing to the sugges-
tion rather than navigating to the settings,

• is timely in terms of understanding – the user can
see how the change would have helped the interac-
tion,

• is timely in terms of value – because of this the user
can appreciate the value of the (small) effort to agree
the settings change.

While there are many advantages to this form of timely
suggestion, some adaptations may be performed entirely
automatically. For example, if you adjust your screen
backlight, the system could use this to improve its
algorithm that sets the backlight depending on ambient
light. Similarly, if a user frequently opens then closes
files, it may be a sign that double-click delay needs to
be slightly adjusted. Note that these are both examples
where it is very hard to say precisely what is a good
setting except in the precise situation and where the user
may be unaware of the adaptation except in so far as it
subtly improves their experience.

In between are adaptations that are automated but vis-
ible. One of the oldest examples of this is long menus. An

AI Working with and for Humans ■ 301

obvious way to adapt a long menu is to order it by fre-
quency of use so that the most commonly used items are
at the top. Indeed, this is the approach taken in some file
browsers where the default view is of recently accessed
files. In the case of the file system you still can access
them in an alphabetic or hierarchical view. However, if
the menu is entirely sorted by recency, then it becomes
very hard to find the less frequently accessed items as
their location in the menu keeps changing.

This illustrates a general issue for adaptation, the
need for deterministic ground, having things that do
not change as well as things that do and knowing which
is which. In the filing system the hierarchical folder
view is the deterministic ground, meaning you can rely
on it being stable and hence learn to access things in it
without them being confused by adaptations. In fact,
most adaptive menus, such as font selection, do have a
deterministic ground as they only place a small number
of most likely items at the top (adaptive area) and
then have a fully alphabetic menu below (deterministic
ground).

Note too that an effective deterministic ground can
also help manage the conflict between personalisation
and cooperation, which we highlighted earlier.

19.4.7 Going Small

Many of the machine-learning approaches we have seen
in this book require large datasets and extensive com-
putational power for initial training. We’ve already dis-
cussed how transfer learning can help deal with the lim-
ited data available for a single user. However, in addi-
tion the user’s device cannot perform the massive com-
putation that is available for the most sophisticated algo-
rithms. Execution is usually less computationally expen-
sive than learning, but still the many billions of param-
eters of some deep learning models would challenge the
memory and processing capacity of smaller devices.

This is one of the reasons that many of the systems we
have described use relatively simple rules rather than
more complex machine learning. One solution is to
use large computational resources to train models and
then use some form of simplification to create smaller
models that perform nearly as well. This simplification
is itself a computationally expensive task but only needs
to be done once and is performed centrally with its
results then downloaded into individual devices. Of
course, if the device is internet connected, then some

https://alandix.com/glossary/aibook/semantic web
https://alandix.com/glossary/aibook/privacy
https://alandix.com/glossary/aibook/deterministic ground
https://alandix.com/glossary/aibook/deterministic ground
https://alandix.com/glossary/aibook/deterministic ground
https://alandix.com/glossary/aibook/deterministic ground
https://alandix.com/glossary/aibook/deterministic ground
https://alandix.com/glossary/aibook/deterministic ground
https://alandix.com/glossary/aibook/machine-learning
https://alandix.com/glossary/aibook/transfer learning
https://alandix.com/glossary/aibook/deep learning
https://alandix.com/glossary/aibook/machine learning

302 ■ Artificial Intelligence

computation can be off-loaded to the cloud, and this
is precisely the approach taken in some speech-based
systems.

19.5 IN THE WORLD – SMART
ENVIRONMENTS

Most of the examples so far have been where the in-
telligence is in some form of information system and
where there is a single user largely in control. However,
we are increasingly living in environments where many
aspects are digitally controlled and monitored. This is
true in the home, in hospitals, on the road and at work.
These devices are often network connected creating what
is known as the internet of things (IOT) and furthermore
these devices often either include local intelligent algo-
rithms or connect to cloud-based intelligent services.

The nature of human interactions with these diffuse
smart environments (smart home, smart city) is funda-
mentally different from information systems.

We can think of this from both the computer and the
human side. First of all the designer of smart environ-
ment algorithms needs to consider:

initiative – These systems often involve the computer
taking the initiative, that is in the incidental end of
the intentionality spectrum.

interpretation – Because of this the computer algo-
rithm also needs to interpret the environment
which may include one or many people.

sensing – Often the inputs for the system come from
sensors in the environment, not user commands.
However, these sensors may offer incomplete or un-
certain data due to placement or inherent accuracy
of the electronics.

physical – The output or impact of computer actions
may be more informational (such as the colour of
lights) but also may include actual physical actions
such as the raising of a barrier or an autonomous
car driving on the road.

human action – Some outputs such as traffic lights only
have an effect indirectly through human actions,
which may not be reliably predictable.

distribution – The computation for AI may be
distributed in sensors or actuators as well as
in centralised systems, which can then be seen

as interacting with one another digitally and
physically.

In addition, these systems feel very different for the
human:

uncertainty – The uncertainty of sensors is com-
pounded with the uncertain behaviour of complex
AI systems.

hiddenness – Some system actions are immediately ob-
vious, for example changing the music, but others
are not immediately obvious, such as turning on an
outside security light.

time lags – Furthermore there are often delays between
an action being performed by the system and its
effect on the environment, for example between
turning on heating and feeling the air warm up the
room.

conjoint action – Changes in a smart environment are
often related to broad human activity, such as traffic
volume, rather than individual user actions.

We’ll look at a selection of issues in more detail.

19.5.1 Configuration

If IOT devices are being installed in an industrial
environment, then expert installation engineers can set
the system up, configuring the locations and settings
of the individual sensors and connecting them into the
overall system. However, in a domestic environment
this has to be managed by an ordinary person. In both
cases mechanisms to ease the installation process are
important.

The smart environment typically needs to take into
account the relative locations of devices, which may be
used by specialised algorithms or fed as additional in-
put alongside the sensor values as part of machine learn-
ing. This is relatively easy to configure in an industrial
plant where there are plans and schematics, but harder
in a home or for devices installed outside. However, al-
gorithms can be designed to help this process. This can
use time of flight for wireless signals or sound, or trian-
gulation using cameras. For example, the Firefly system
in Figure 19.3 allows lights to be positioned randomly
but then works out their locations after installation by
twinkling each light in a unique code [44].

https://alandix.com/glossary/aibook/internet of things
https://alandix.com/glossary/aibook/IOT
https://alandix.com/glossary/aibook/incidental interaction
https://alandix.com/glossary/aibook/intentionality
https://alandix.com/glossary/aibook/accuracy
https://alandix.com/glossary/aibook/autonomous car
https://alandix.com/glossary/aibook/autonomous car
https://alandix.com/glossary/aibook/uncertainty of sensors
https://alandix.com/glossary/aibook/IOT
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/machine learning

AI Working with and for Humans ■ 303

FIGURE 19.3 Firefly – individual lights flash a unique code and are then positioned using triangulation from multiple camera
angles (see https://lucidina.com/).

After initial installation, sensors may fail or new
sensors are deployed. Ideally this should not require
configuring from scratch. Where there is redundancy
in the sensor network this can be used to fill in the
gaps for broken sensors and to train on the fly for new
sensors.

19.5.2 Sensor Fusion

There are often many sensors in an area. These may be
homogeneous, for example many air-quality sensors in
a city street, or heterogeneous, for example temperature
sensors in a conjunction with cameras. Some sensors
may return very different data about the same thing,
for example a camera and air-quality sensor in the
same street; some similar data about different things,
for example temperature sensors in a distant room.

However, sensors can also offer redundant data, that
is they are measuring the same or nearly the same
thing. This sounds wasteful, but allows for sensors to
fail, or also to potentially deploy large numbers of low
cost and low quality sensors that together are accurate,
sometimes called smart dust.

The data from the sensors needs to be brought together
to generate a coherent view of the environment. This is
called sensor fusion. At its simplest all the sensor input
could be used as inputs to a single large neural network;
however, this approach is rarely best as datasources are
so different both in terms of sample rate (e.g. sound sam-
pled as 44kHz vs video at 60 frames per second) and size
(a single volume level or two stereo channels for sound,
vs millions of pixels for video). Because of this, sensors
will typically have some initial media-specific process-
ing, for example a convolutional neural network for im-

https://lucidina.com/
https://alandix.com/glossary/aibook/redundancy
https://alandix.com/glossary/aibook/redundant data
https://alandix.com/glossary/aibook/smart dust
https://alandix.com/glossary/aibook/sensor fusion
https://alandix.com/glossary/aibook/neural network
https://alandix.com/glossary/aibook/sample rate
https://alandix.com/glossary/aibook/camera!frame
https://alandix.com/glossary/aibook/convolutional neural network

304 ■ Artificial Intelligence

FIGURE 19.4 Sensor fusion: from multiple raw sensors to rich
context model.

ages or Fourier analysis for sound sources, that reduces
the heterogeneous signals to forms that can be brought
together either through more rule-based approaches or
machine learning.

19.5.3 Context and Activity

The final aim of processing sensor data will be to
do something. This might be to autonomously make
decisions, for example to adjust the pattern of heating
and ventilation in the house as a particular area is too
hot. It may also be used to modify or augment explicit
user interactions, for example taking into account the
packet of food you have taken out of the freezer when
you say “put the oven on” to the home computer. This
latter is called context-aware interaction.

In the case of the freezer pack the system might be us-
ing a vision system to read the packet label or bar code, or
scanning an RFID tag. This is relatively straightforward.
However, more complex automatic decisions or context
aware interactions may require the system to recognise
what you are doing. This activity recognition typically
involves observing over a time period, for example the
difference between stirring and beating an egg, or run-
ning vs walking.

The final output of such a system may be a single
activity, say ‘running’, possibly with a confidence
value, say 53%; or it may be a vector of activities with
associated confidence levels: say [running:53%,
hopping:32%, walking:15%]. Of course the latter
can be reduced to a single activity by selecting the activity
with highest confidence as often a single choice may be
needed.

When we have several possible activity types (or in-
deed several kinds of classification in general for ma-

chine learning), then there is not a simple accuracy value,
nor even simple false positive/negative, as a classification
of ‘running’ could be wrong in several ways. A confusion
matrix captures this uncertainty giving the probability,
say, that a person who is classified as running is actually
walking; in the example confusion matrix in Table 19.2
this is 12%.

TABLE 19.2 Confusion Matrix for Activity Recognition.

actual activity
running walking hopping

running 67% 12% 21%classified walking 82% 15% 3%activity hopping 57% 7% 36%

Note that you can draw this the other way round, ask-
ing that if someone is actually running, how likely they
are to be classified as walking, but this is not simply the
transpose of the matrix in Table 19.2 as it needs to take
into account the probability that a person is running in
the first place, that is the base rate.

Note finally that this uncertainty in the final classifica-
tion in the output of sensor processing (whether an ac-
tivity label or some other kind of measure) includes both
uncertainty due to raw sensor measurement and due to
the recognition/processing process. Sensor redundancy
and sensor fusion may reduce some of the raw sensor
uncertainty, but there is almost always significant uncer-
tainty remaining.

19.5.4 Designing for Uncertainty in Sensor-rich
Smart Environments

Designing in smart environments is almost always
about designing within uncertainty, creating a system
that works as a whole even if elements cannot be 100%
accurate. One way to do this is to try to match the
accuracy of the sensor and AI. We’ll see how to do this
using a simple example of car courtesy lights.

Figure 19.5 shows a scenario of getting into a car ready
to drive off. Each step is marked with how important it is
that the lights are on (‘+’s) or off (‘–’s), the more plusses or
minuses there are, the more important it is that the lights
are on or off in the state. So for example it is more impor-
tant that the lights are on when looking up the route than
when adjusting the seat.

This kind of representation can be useful in itself as
part of a discussion with potential users. Note especially
the little bomb symbol for walking up to the car. This

https://alandix.com/glossary/aibook/Fourier analysis
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/context-aware interaction
https://alandix.com/glossary/aibook/computer vision
https://alandix.com/glossary/aibook/activity recognition
https://alandix.com/glossary/aibook/confidence in output
https://alandix.com/glossary/aibook/confidence in output
https://alandix.com/glossary/aibook/confidence in output
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/accuracy
https://alandix.com/glossary/aibook/classification
https://alandix.com/glossary/aibook/confusion matrix
https://alandix.com/glossary/aibook/confusion matrix
https://alandix.com/glossary/aibook/uncertainty
https://alandix.com/glossary/aibook/probability
https://alandix.com/glossary/aibook/confusion matrix
https://alandix.com/glossary/aibook/transpose
https://alandix.com/glossary/aibook/probability
https://alandix.com/glossary/aibook/base rate
https://alandix.com/glossary/aibook/uncertainty
https://alandix.com/glossary/aibook/classification
https://alandix.com/glossary/aibook/classification
https://alandix.com/glossary/aibook/uncertainty
https://alandix.com/glossary/aibook/Sensor redundancy
https://alandix.com/glossary/aibook/sensor fusion
https://alandix.com/glossary/aibook/uncertainty
https://alandix.com/glossary/aibook/accuracy

FIGURE 19.5 Courtesy lights – when do you want them on?

was initially marked with plusses as it seemed good to
have a little light as one was opening the door, but in a
discussion about this one person pointed out that when
alone at night, it was dangerous to have the light turn on
as one approached the car as it let muggers know where
you were going.

Having got this it can be used to match with available
smart technology. This might include simple door sen-
sors, weight sensors in the seats (available for seat belt
warnings) and data from the internal infra-red security
sensors that can help differentiate the driver and passen-
ger’s activity.

Let’s imagine that we have trained a neural network
to identify the various activities in Figure 19.5 and pro-
duced the confusion matrix. If there were only two activ-
ities, then we would need to trade-off false positives and
false negatives using a ROC curve as we saw in Chap-
ter 9. However, here we have a multi-way classification
and in particular some of these are less critical than oth-
ers. These less critical cases give us leeway to improve the
behaviour in the most critical situations.

Suppose the classification system is 60% certain you
are trying to put the key in the ignition (step 11), when it
is slightly easier with no light as it is in shadow anyway;
but with a 30% certainty that you are finding the right
key on your key ring (step 10), when it is a little better
to have light, but possible by feel; and only 15% certainty

AI Working with and for Humans ■ 305

that you are still looking up your route (step 9). A ‘highest
certainty’ rule would turn the light off, as you are most
likely to be trying to get the key in the ignition, but a more
importance weighted rule would keep the light on as the
state of the light in step 11 is of low importance whereas
step 9 is critical.

19.5.5 Dealing with Hiddenness – A Central
Heating Controller

With the car courtesy light the problem is that the system
doesn’t know precisely what you are doing. However, if
there is a time lag, or the state of the system is hidden,
the user may be in a position of uncertainty about the
system. This can sometimes be used constructively by
taking into account the context and the user’s inferred
meaning because of that.

One of the problems with heating controllers is that
people think the level on the controller is about the quan-
tity of heat that is being produced. Imagine you have
only recently arrived home and the heating has only just
started to warm the room, that is the current temperature
of the room is below the thermostat temperature and the
heating is already working at full capacity warming it up.
However, you feel cold, so you turn the thermostat right
up. This has no immediate effect as the heating is already
working as hard as it can, but some while later the room
ends up far too hot. You then turn the thermostat right
down ... and the cycle continues!

We are going to replace the system with a smart system
that tries to adjust the temperature to your preferences
but still allows you to override the system’s chosen tem-
perature – indeed it is precisely these times you override
it that allow it to learn. If the new system simply copies
the old model of a thermostat temperature, it will inherit
the same problems.

One solution is to make the state less hidden, perhaps
showing the target temperature the system is trying to
reach and the current temperature, with an icon such as
a fire to show the heating is working hard (Figure 19.6,
left).

Another option is to have no display at all and sim-
ply a control with plus/minus or up/down arrows mean-
ing “I’d like it warmer” or “I’d like it colder” (Figure 19.6,
left). Maybe pressing the plus button twice might mean
“I’d like it a lot warmer”. If we return to the scenario of
the heating being below the current system target tem-
perature and you press the plus, the system will sim-

https://alandix.com/glossary/aibook/neural network
https://alandix.com/glossary/aibook/confusion matrix
https://alandix.com/glossary/aibook/false positives
https://alandix.com/glossary/aibook/false negatives
https://alandix.com/glossary/aibook/ROC curve
https://alandix.com/glossary/aibook/classification
https://alandix.com/glossary/aibook/classification

306 ■ Artificial Intelligence

FIGURE 19.6 Heating controller (left) first design option more information; (right) second design option less information,
more intelligence.

ply ignore your press – it is doing it already. However,
if the temperature is at the system setting, it will both
turn up the target temperature and use this to improve its
learning.

Thinking further imagine you have installed a carbon-
conscious AI system. Over time the system can gradu-
ally lower the room temperature from its best estimate of
your desired temperature. It may be that you don’t no-
tice or if asked would ideally like it a little warmer, but
not enough to be bothered to do anything. However, if it
gets too cold you press the plus button. This means that
the system can not only learn over time your ideal tem-
perature but also your tolerance either side and deliber-
ately save energy by keeping the room only just above the
point where you care. Maybe over time you even get used
to the lower temperature and the levels can drop further
still, saving you money and saving the world at the same
time.

19.6 DESIGNING FOR AI–HUMAN
INTERACTION

When there is expected to be human involvement, some
of the unstated requirements of algorithms change.

For machine learning systems and AI in general, the
normal metrics are about accuracy, correctness and opti-
mality. How often does the system give the right answer?
What is the single best choice? These are good questions
if the system is to be deployed with no direct human in-
volvement, or in situations where people should not be
aware that the AI is operating.

However, these are often not the best algorithm
heuristics when there is a human in the loop. Here the
appropriate question is not how to make the AI as good
as possible but how do we design the intelligence and
the interaction so that when they are used with people
the system as a whole behaves as well as possible.

19.6.1 Appropriate Intelligence – Soft Failure

When you demo a system, you of course want to give the
best answer as often as possible. We can think of this as
two tenets of useful artificial intelligence:

1. be right as often as possible

2. be as good as possible

These are important. However, in real use the key
question is often how badly things go wrong and how
easy is it to recover when they do. In other words, tenet
1 is important, but in practice so long as it is right
reasonably often it is fine. Tenet 2 is important, but if it
is reasonably useful, it is fine. However, more important
is the tenet of appropriate intelligence:

3 don’t mess things up when you are wrong

Older users of Microsoft Word will remember Clippy.
Every so often, as you were typing, a small pop up would
appear with a little paperclip figure in it to give useful
advice, “I can see that you are writing a letter, why don’t
you ...”. It used reasonably clever algorithms in order to

https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/accuracy
https://alandix.com/glossary/aibook/optimality
https://alandix.com/glossary/aibook/optimality
https://alandix.com/glossary/aibook/heuristics
https://alandix.com/glossary/aibook/human in the loop
https://alandix.com/glossary/aibook/appropriate intelligence
https://alandix.com/glossary/aibook/Microsoft Word
https://alandix.com/glossary/aibook/Clippy

FIGURE 19.7 Appropriate intelligence – Sum button in Excel.

detect the kind of document you were working on (ad-
dressing tenet 1) and had (more debatably) useful advice
(tenet 2). However, when it popped up in the middle of
the screen it interrupted both your train of thought and
your typing, discarding anything you were typing after it
appeared until you cancelled it. That is, it failed tenet 3.

Not surprisingly, Clippy was withdrawn, although
other more subtle forms of intelligence are used. In
contrast, the Sum (Σ) button has been in all versions
of Excel for many years. This was introduced based on
analysis of spreadsheet use that showed that the most
frequent action after entering numbers is adding up a
row or column.

The Sum button uses a fairly simple intelligent algo-
rithm. There are a few tweaks to manage subtotals, but
basically it scans upwards and leftwards from the current
cell looking for the nearest block of consecutive numbers
and adds a sum formula. If there is a tie for the closest,
the vertical (column) sum wins. The algorithm is simple
and often works out what you want (tenet 1) and inserts
the correct formula (tenet 2).

Crucially however, once the sum is inserted the cells
that form part of the sum are selected. If they are not what
you want, it is easy to grab one of the selection handles
to extend or completely change the selected region (Fig-
ure 19.7). In other words, when it is wrong, it is easy to
fix (tenet 3).

19.6.2 Feedback – Error Detection and Repair

With Clippy, it was usually obvious whether or not its
suggestions were helpful, it was just that by this point the
damage to your concentration had already been done.
However, in many settings the problem is even more se-
vere: things go wrong but you don’t even realise.

AI Working with and for Humans ■ 307

One day you say to Aria, your voice-based virtual as-
sistant, “Aria, order two, no three, no two bottles of milk”;
“OK”, says Aria. The next morning a large, refrigerated
truck arrives and starts to unload crate, after crate, after
crate. If only Aria had instead answered, “You’d like to
order two oh three oh two, that is twenty thousand three
hundred and two bottles of milk. Is that right?”

In human–human conversations we often mishear or
misinterpret what others are saying, but we also con-
stantly offer ways to confirm that we have a common un-
derstanding and are adept at repair. Sometimes this takes
the form of an explicit confirmation step, such as Aria’s
“Is that right?”, but it can also be in the form of implicit
feedback during the next step of conversation.

Imagine you are on the phone to the airline agent
(maybe human, maybe AI) at New York JFK and say
“When is the next flight to [slightly inaudible] London?”,
the reply might be “The next direct flight from New
York JFK to Lisbon is midday tomorrow”. Note that this
gave the answer to the question, but rather than just
saying “It’s at midday tomorrow”, the reply reiterated the
hearer’s interpretation of what was asked, partly based
on context (the airport of the agent) and partly based on
(mis)heard information (Lisbon rather than London).
This gives you the chance to correct the mishearing
“that was London not Lisbon”, and also the contextual
interpretation “what about other New York airports”, or
“I’d be happy with a connection”.

We can think of these speech-based interactions using
the stages of language processing we saw in Chapter 13;
there are lots of different kinds of AI involved at each
level (Figure 19.8).

Lexical – what was actually said – “no” or “oh”, “London”
or “Lisbon”

Syntactic – how this is pieced together as a unit, for ex-
ample “oh” being treated as a digit (zero) and thus
making the number 20,302

Semantic – the utterance means “please order 20,302
bottles of milk”

Pragmatic – the way this makes sense in the real-world
setting, for example the assumption that this is from
the normal dairy supplier and maybe that 20,302 is
a lot of milk

There is the potential for misunderstanding or
misinterpretation at each level, and thus for feedback

https://alandix.com/glossary/aibook/Clippy
https://alandix.com/glossary/aibook/Clippy
https://alandix.com/glossary/aibook/explicit confirmation
https://alandix.com/glossary/aibook/implicit feedback
https://alandix.com/glossary/aibook/implicit feedback

308 ■ Artificial Intelligence

and repair. However, in practice, as a human, we make
choices of the level of feedback and whether we seek
explicit or implicit confirmation based on our level of
confidence. If the line was very bad, or the location very
unusual, the agent might explicitly ask “did you say
Lisbon?”. Similarly, Aria might normally say, “I’ll order
twenty thousand three hundred and two bottles of milk.
Is that right?” but would only add the lexical feedback
“two oh three oh two”, if there was high uncertainty
(noisy room).

Note too that these levels cannot be treated entirely
separately as a pipeline. If at the pragmatic level the Aria
system notices that 20,302 is an unusually large milk or-
der, this might trigger a search at a lower level for inter-
pretations of lower confidence, maybe not low enough
on their own to trigger additional feedback but possibly
sufficient to say, “two oh three oh two”, with the addi-
tional knowledge that there is potential high-level incon-
sistency.

19.6.3 Decisions and Suggestions

Note that while Clippy and Excel Sum differ in their
impact, both are making suggestions rather than doing
something. Imagine if when you pressed the Sum button
in Excel, it not only added the sum but guessed that you
were calculating numbers to put into your tax return,
so it accessed your bank account and copied all your
financial details into the spreadsheet. Of course, while
this could be precisely what you are doing, maybe you
are in the middle of a meeting projecting the spreadsheet
on a large screen to a room of 20 colleagues, who then
see all your personal expenditure for the year. As a rule
of thumb unless the level of confidence you have in
the correctness of an automatic decision is high or the
consequences of getting it wrong are low, it is better to
offer suggestions for action rather than automating the
action (Figure 19.9). However, there are limits to this.

If there are too many confirmations and suggestions,
then this may itself interfere in the user’s tasks or lead to
‘click it away’ habits, as often is the case with confirma-
tion dialogues.

In practice there are three factors that work together to
determine the appropriate level of suggestion or action.

Confidence – how accurate is the AI system at its pre-
dictions/interpretations

Cost of failure – how bad is it if the action is wrong

Complexity of interaction – how much would this add
to the human’s load

If all of these agree, things are easy. For example, if
there is high confidence, low cost of failure and high
complexity of interaction, then there is a strong case to
act without further user interaction. If on the other hand
the confidence is low, cost of failure high and complexity
of interaction low, then it is worth checking with a
human user first. Real life often sits in the in-between
places, and here effective design of interactions can
make a difference, for example subtly offering feedback
of what has been done, without asking an explicit “is this
right”.

19.6.4 Case Study: onCue – Appropriate
Intelligence by Design

Figure 19.10 shows the operation of onCue, a commer-
cial system the author was involved with in the dot-com
period [78]. The interactions in onCue were designed
with the principles of appropriate interaction explicitly
in mind.

onCue watched for when the user copied or cut
items into the clipboard. It contained data detectors
(see Chapter 17) that used pattern recognition to work
out what kind of content had been copied. This was
then used to populate an intelligent dynamic toolbar
that usually floated on the side of the user’s screen. If
the clipboard contents looked like plain words, onCue
would suggest search engines; if the content looked
like names it would suggest directory services; a table
of numbers would suggest graphing or opening in a
spreadsheet.

Crucially, onCue was not intrusive – it was not modal
taking keyboard focus, nor did it grab the user’s visual
attention by appearing in the middle of the screen or
changing suddenly. Instead, the icons slowly faded in and
out, so that it was always there waiting but never de-
manding.

This was a deliberate design choice based on the
principles of appropriate intelligence. The matches,
while potentially useful, had low confidence in two
senses: (i) the pattern matching was simple, so there
could be several potential tentative matches; and (ii)
it might not be needed – you might simply want to
copy a name but not want to look it up in a directory
service. Because of this the interaction was designed to

https://alandix.com/glossary/aibook/confidence in output
https://alandix.com/glossary/aibook/uncertainty
https://alandix.com/glossary/aibook/trigger
https://alandix.com/glossary/aibook/confidence in output
https://alandix.com/glossary/aibook/trigger
https://alandix.com/glossary/aibook/Clippy
https://alandix.com/glossary/aibook/confidence in output
https://alandix.com/glossary/aibook/confidence in output
https://alandix.com/glossary/aibook/confidence in output
https://alandix.com/glossary/aibook/onCue
https://alandix.com/glossary/aibook/dot-com period
https://alandix.com/glossary/aibook/dot-com period
https://alandix.com/glossary/aibook/onCue
https://alandix.com/glossary/aibook/onCue
https://alandix.com/glossary/aibook/data detectors
https://alandix.com/glossary/aibook/pattern recognition
https://alandix.com/glossary/aibook/onCue
https://alandix.com/glossary/aibook/search engines
https://alandix.com/glossary/aibook/onCue
https://alandix.com/glossary/aibook/modal user interface
https://alandix.com/glossary/aibook/appropriate intelligence
https://alandix.com/glossary/aibook/confidence in output
https://alandix.com/glossary/aibook/pattern matching

AI Working with and for Humans ■ 309

FIGURE 19.8 Multiple levels of processing in a speech-based system.

FIGURE 19.9 Levels of confidence and action – simplified
view.

offer unobtrusive suggestions, which imposed minimal
additional load on the user.

19.7 TOWARDS HUMAN–MACHINE
SYNERGY

We saw that AI systems differ in the extent to which the
user or AI is in control. Possibly the best outcomes are
when the system is designed to be synergistic, to enable
both human and computer system to work together.

One part of this is assessing which aspects of an overall
task are most suited to the human or artificial participant,
for example the “Humans are better at ... Computers are
better at” lists we saw for expert systems in Table 18.1.
This can be used for function allocation – who does what.
This can be static, with fixed things that the system does
(maybe find candidate interaction icons) and things the
user does (choose which they want). However, we may
also sometimes have dynamic function allocation where
the balance changes depending on the context, for ex-
ample, in an aircraft cockpit, an AI system might auto-
matically manage less critical aspects during take-off and

landing when the pilot’s attention needs to be focused,
but leave them to the air crew during flight when they
have free attention.

As well as taking different tasks, the nature of both AI
algorithms and interaction can be deliberately modified
in order to make a better overall system. That is we might
deliberately choose an apparently less than optimal AI al-
gorithm or a less than optimal user interface in order that
the overall synergistic system works as well as possible.

19.7.1 Tuning AI Algorithms for Interaction

First let’s look at how we can adapt AI so that it works
well in human-in-the-loop systems. In fact, many of
the things needed for this turn out also to be helpful
when one AI system is embedded within a larger
fully automated system – that is algorithms that are
good for human interaction are also often good for
machine-machine interaction.

We have seen several examples where measures of
confidence or uncertainty are helpful in order to trigger
feedback. These are generated as a matter of course
by some algorithms as part of their normal workings.
This may be used to select the best but can also be
used to signal uncertainty. In some cases, there is an
absolute measure, for example Bayesian reasoning
can yield a probability estimate. In other cases, the
measure is relative, for example where the scores for
two alternatives are close to one another. Where there
is no such measure, it may be possible to create one,
for example by adding noise to the inputs of a neural
network and seeing if this changes the classification it
gives.

When making an automated decision, an algorithm
needs to be very sure it is correct; however, when making
suggestions, the opposite strategy is often useful. If there

https://alandix.com/glossary/aibook/synergistic interaction
https://alandix.com/glossary/aibook/expert systems
https://alandix.com/glossary/aibook/function allocation
https://alandix.com/glossary/aibook/dynamic function allocation
https://alandix.com/glossary/aibook/user interface
https://alandix.com/glossary/aibook/human-in-the-loop
https://alandix.com/glossary/aibook/confidence
https://alandix.com/glossary/aibook/uncertainty
https://alandix.com/glossary/aibook/trigger
https://alandix.com/glossary/aibook/uncertainty
https://alandix.com/glossary/aibook/Bayesian reasoning
https://alandix.com/glossary/aibook/probability estimate
https://alandix.com/glossary/aibook/neural network
https://alandix.com/glossary/aibook/neural network
https://alandix.com/glossary/aibook/automated decision

310 ■ Artificial Intelligence

FIGURE 19.10 onCue – designing appropriate interactions.

is some sort of score of fit or certainty, then the threshold
for an automated decision can be set very high, but the
threshold for whether to offer something as a suggestion
can be set quite low, presenting multiple alternatives to
the user.

There are limits to this. Hick’s Law says that the time
taken to make a choice increases with the logarithm of
the number of choices – having more choices means
more time. Sorting the choices in relevance order can
help – which emphasises the importance of the quality
of confidence measures. Also if the bar for admitting
suggestions is too low, the poor quality suggestions may
erode trust in the system.

In some applications a mixture of the two can be help-
ful with liberal suggestions combined with conservative
warnings.

An example of this principle was adopted in human
verification of record matching of historic 19th-century
musical records [86]. There are often multiple newspaper
notices referring to a concert, but they may differ slightly
“St Thomas Hall, on 3rd Dec at 7pm” “Saint Thomas’s in
the evening of December 3rd”. An automatic algorithm
matched these records, with different kinds of matching
for dates, times and venues that were weighted together
to give a final score. A liberal policy was then used
to match records with high match scores to create
groups of records that might be the same concert. A
human expert then went through these confirming or
changing the groupings. In addition, to make this task
quicker, some groups were marked as more critical
to check than others. A conservative strategy was
used for this, with only groups where all the items

were nearly identical being given a positive health
check.

It is also helpful where the workings of the system are
more transparent, that is if the way in which they have
come to a decision is apparent to the user. We will return
to this issue when we look at explainable AI in Chap-
ter 21, but we can see the importance of this already.
When Aria reflects back the first stage of its interpre-
tation “two oh three oh two”, it is effectively exposing
a mid-point in its processing pipeline. The speech pro-
cessing algorithm that has transformed the raw analogue
signal into these words may be very obscure, perhaps
involving signal processing or a deep neural network.
When you heard this, you would realise the problem was
that Aria had misheard you and at least understand what
had gone wrong. In addition to making repair easier, this
increases confidence in the system, it was not an arbitrary
bug that led to those crates of milk appearing!

19.7.2 Tuning Interaction for AI

As well as modifying algorithms to make them work bet-
ter with people, we can modify the interaction to provide
better information to allow AI systems to work better.
This can be explicit, for example asking users to provide
information for a profile; however, it is often better if it
is implicitly embedded in the interaction.

Let’s look at an example.
When you use a search engine, the system logs which

websites you click through to. This is then taken as an im-
plicit measure of relevance and is used to improve the al-
gorithm’s effectiveness for you and others. However, this
is harder if the results are short.

https://alandix.com/glossary/aibook/threshold
https://alandix.com/glossary/aibook/automated decision
https://alandix.com/glossary/aibook/threshold
https://alandix.com/glossary/aibook/Hick's Law
https://alandix.com/glossary/aibook/confidence measures
https://alandix.com/glossary/aibook/liberal suggestions
https://alandix.com/glossary/aibook/conservative warnings
https://alandix.com/glossary/aibook/conservative warnings
https://alandix.com/glossary/aibook/transparency
https://alandix.com/glossary/aibook/explainable AI
https://alandix.com/glossary/aibook/signal processing
https://alandix.com/glossary/aibook/deep neural network
https://alandix.com/glossary/aibook/search engine

AI Working with and for Humans ■ 311

On the left of Figure 19.11 is the search results page
for a text book [88] that is finding each paragraph in the
book mentioning the search terms. The paragraphs are
shown in full and the user scrolls down to look at dif-
ferent search results. This is a very fluid interaction as
we are used to scrolling quickly to skim, but it is very
hard for the system to work out which are the most rel-
evant results. It is possible to measure how long the user
spends before scrolling further, but there are typically
several results visible, so without using eye tracking it is
hard to know which is the actual result the user is looking
at.

On the right is an alternative accordion-style inter-
face. A shortened version of each result is shown, and
the user has to explicitly ‘open’ the entry to see the full
paragraph. Imagine we have done testing and found that
the original is slightly better than this new interface, but
not by a large margin. It may be worth still using the new
design, even if it is slightly less usable, as it is far easier
to work out which of the results the user found relevant
and hence improve future searching for this user and
others.

This is an example of epistemic interaction, that is
where the style of interaction is chosen in order to
improve the information available for the AI system
and thus to improve the overall synergistic human–AI
system.

The menu example is hypothetical; however, it has
been suggested that part of the success of TikTok has
been due to precisely such interaction tuning. TikTok
works by scrolling, but ensures that only one video at a
time is visible on screen, making it easy to collect precise
feedback that is then used to tune the recommendation
algorithms [195].

19.8 SUMMARY
In the end, every AI system has an impact on humans.
This chapter considered situations where the contact be-
tween AI and people is more direct. This has included
where traditional digital applications incorporate AI in
intelligent user interfaces and also where the AI is more
behind the scenes, combining sensor inputs to modify
aspects of the physical environment in which we live.
We saw that appropriate intelligence can be used to de-
sign interactions where occasional inaccurate or incor-
rect outputs of AI do not lead to failures in the overall
human–AI system. We have also seen ways in which AI

algorithms can be adapted to work more effectively in
human-in-the-loop systems, and user interaction can be
designed to maximise information available for synergis-
tic human–AI adaptations.

19.1 Using Shneiderman’s two-dimensional human–
centred AI framework in Figure 19.1:

a. Populate it with examples of tools and appli-
ances used in a kitchen.

b. Do the same for controls and devices in cars
with different levels of automation.

19.2 Create a table similar to Table 19.1 in Sec-
tion 19.3.4 and classify the initiative, decision
and action of each of the following:

car-nav-1 – A car navigation system where you
enter the destination, it works out the optimal
route and then tells you which turns to take
along the way.

car-nav-2 – The same, but where the system pro-
poses several routes and you select the one you
prefer.

warehouse-1 – A system in a warehouse where
incoming orders are processed and robots au-
tomatically despatched to collect items from
the shelves.

warehouse-2 – A system in a warehouse where
incoming orders are processed, the optimal
picking order created and given to the human
operator to fetch the items.

warehouse-3 – The same, except that the system
asks an operator, who decides whether to send
the robot or whether they wish to fetch the
item themselves.

lorry key – A key fob for a lorry, where you press
the button and depending on which end of the
lorry you are at (sensed by the wireless signal
of the key fob), either the back door or the cab
doors are unlocked.

19.3 Make a list of activities that you (or your group) do
regularly, both on computers (such as answering
email, or writing a report) and physically (such as
making toast, or playing squash). For each, ask:

https://alandix.com/glossary/aibook/search terms
https://alandix.com/glossary/aibook/epistemic interaction
https://alandix.com/glossary/aibook/intelligent user interfaces
https://alandix.com/glossary/aibook/appropriate intelligence
https://alandix.com/glossary/aibook/human-in-the-loop
https://alandix.com/glossary/aibook/synergistic interaction
https://alandix.com/glossary/aibook/synergistic interaction
https://alandix.com/glossary/aibook/optimal route
https://alandix.com/glossary/aibook/optimal route
https://alandix.com/glossary/aibook/robots

312 ■ Artificial Intelligence

FIGURE 19.11 Two search engine interaction styles.

a. Is AI used already in the activity?

b. If not, could it be, or if it is, could the AI be
used more?

c. Use the vocabulary developed in this chapter,
to describe the existing or envisioned use of
AI. For example, is it synergistic or does one
partner have most of the control? Does it use
sensors, and if so, is it single sensors or using
sensor fusion?

d. Choose one activity where the AI (or
sensors it uses) is likely to be inaccurate or
uncertain, and create an analysis similar to
Figure 19.5.

e. Are there ways additional sensors or changes
in the activity (epistemic interaction) can be
used to improve the information available to
the AI?

FURTHER READING

B. Shneiderman. Human-centered AI. Oxford University Press,
Oxford, 2022.
Shneiderman’s book was one of the key sources for the dis-
cussion of levels of automation in Section 19.3.5 but also
covers many other issues in design and governance. In par-
ticular it emphasises the importance of AI companies be-
ing held accountable for failures in systems, which connects
with issues of responsibility in Chapter 23.

A. Dix. AI for human–computer interaction. CRC Press, Boca
Raton, FL, 2025.
Expands on the issues of this chapter, exploring in more
detail the way AI can be used in the user experience design
process and also the way insights from HCI can help create
more effective tools for AI practitioners, including aspects
of explainable AI.

https://alandix.com/glossary/aibook/epistemic interaction
https://alandix.com/glossary/aibook/algorithmic accountability
https://alandix.com/glossary/aibook/responsibility
https://alandix.com/glossary/aibook/explainable AI

CHAP T ER 2 0

When Things Go Wrong

20.1 OVERVIEW
This chapter deals with some of the things that can
go wrong due to AI. The previous chapter has talked
about dealing with individual failures, but this chapter
is more about systemic issues. This includes deliberate
misuse such as disinformation and also unintentional
misuse, notably bias. We will discuss some of the
general approaches to deal with problems including
transparency and algorithmic accountability. We
examine bias in detail, including how it arises at
different stages in the machine learning process. We
look at threats to privacy and ways to mitigate it, and
also some of the dangers of deliberate and accidental
misinformation.

20.2 INTRODUCTION
AI can be very powerful both in tackling tasks that
humans already do and also doing things that are
beyond our comprehension. This is of course good when
everything works, but sometimes things go wrong. The
tide of AI optimism has been countered by an increasing
number of stories of failures of various forms, from
autonomous car fatalities to ‘racist’ search results and
in the UK a (so called) ‘mutant’ algorithm for school
leaving exams. Some are also laying part of the blame
for growing intolerance and extremism in society on
the algorithms behind social media and search engines,
which, in the interest of giving consumers what they
want, are creating sounding boxes where we each see

only views, news and ‘facts’ that agree with our own
preconceptions.

To some extent Chapter 19 has already dealt with
various forms of errors or failures in AI, but focused
on specific points in an interaction and how overall
human–computer systems can function robustly despite
the inevitable inaccuracy or failures of AI. In this
chapter, we will focus more on the larger-scale impact of
AI algorithms, focusing particularly on misinformation,
bias and privacy. We will consider other large-scale
societal and ethical AI issues in Chapter 23, many of
which do not admit easy answers and where the key
question is “what do we want AI to do?” In the main
issues discussed in this chapter we have a better idea
of what is wanted, but there are challenges in how to
achieve it.

20.3 WRONG ON PURPOSE?
The press naturally focuses on the bad side of algorithms
and machine learning. However, it is important to distin-
guish different forms of bad outcomes, some are deliber-
ate, some are unintentional, either accidental or negli-
gent.

20.3.1 Intentional Bad Use

We’ll first consider deliberate misuse such as hacking.
Here we may not blame the algorithms per se, but their
weakness or vulnerability. In such cases we may seek bet-
ter software design or security. For classic hacking the
vulnerability is not in the complexity of the intelligent
algorithm itself, but the surrounding operating system,
device drivers, etc. Once the hacker is ‘in’ they may sub-
vert the software – modifying or replacing the code.

However, big data has led to more complex forms of
vulnerability based on subverting the data. In the case

DOI: 10.1201/9781003082880-24 313

https://alandix.com/glossary/aibook/bias
https://alandix.com/glossary/aibook/transparency
https://alandix.com/glossary/aibook/algorithmic accountability
https://alandix.com/glossary/aibook/bias
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/privacy
https://alandix.com/glossary/aibook/misinformation
https://alandix.com/glossary/aibook/autonomous car
https://alandix.com/glossary/aibook/social media
https://alandix.com/glossary/aibook/search engines
https://alandix.com/glossary/aibook/misinformation
https://alandix.com/glossary/aibook/bias
https://alandix.com/glossary/aibook/privacy
https://alandix.com/glossary/aibook/big data
http://dx.doi.org/10.1201/9781003082880-24

314 ■ Artificial Intelligence

of the Cambridge Analytica scandal, this was principally
about using data in ways it was not supposed to be used;
so is mainly connected with privacy and personal control
of data. However, the other aspect of this scandal was the
way the resulting data was used to influence the US pres-
idential elections. This was a fairly direct use of data, but
often it can be less direct. Bots often deliberately create
inflammatory posts on both sides of an issue; the aim is
to increase re-posts and hence the ranking of the chan-
nel, so that subsequent deliberately misleading or misin-
formative posts (fake news) will have instant influence.
A more citizen-led form of data manipulation is used by
campaigns to get everyone to do specific Google searches
in order to make it have a particular auto-completion
when you start to type a query such as “Trump”.

Some forms of deliberate ‘bad’ use are legal and may be
regarded as acceptable depending on one’s ethical view-
point.

Autonomous weapons have been widely condemned if
there is not a human in the loop, and major scientists and
industrialists have called for there to be an international
ban akin to that on chemical weapons [124]; although
others have argued that if AI weapons are more accu-
rately targeted on combatants, we have an ethical duty to
use them. Oddly we accept bombs that explode at a fixed
height, or guide themselves to a specific location using
GPS; we also accept soldiers trained to obey orders with-
out question. Perhaps unpacking what is so bad about
autonomous weapons could help us unpack our attitudes
to war itself?

Cyberweapons and cyberattacks have also attracted
significant publicity. Some simply attack computer
software or data, for example Denial of Service (DoS)
attacks, but others may be targeted to bring down
infrastructure or even cause physical damage. The first
(publicly known) case of cyberwarfare against physical
infrastructure was Stuxnet designed by Israeli and US
intelligence to degrade the Iranian nuclear programme
by attacking centrifuges [156]. Spread by USB memory
sticks, Stuxnet showed that even internet-isolated
computers could be at risk, and there are also rumours
that it ‘escaped’ spreading to unintended targets with
similar hardware including Ukrainian and Russian
nuclear power stations [290].

Many of the methods to detect and prevent cyberat-
tacks are based on big data and machine learning, but
malware applies similar principles to mutate itself and
find ways around defences.

In some cases ethics can be built into machine learn-
ing to prevent misuse. Notably GPT-4 was progressively
modified before release to prevent it answering questions
relating to illegal or otherwise harmful activities [217].

20.3.2 Unintentional Problems

Sometimes things go wrong unintentionally, whether
through ignorance, negligence or pure accident.

One example, which is often widely reported in
the media, is accidents involving autonomous and
semi-autonomous cars. In some cases, these accidents
have been because drivers have not understood the
capabilities of cars that operate in semi-autonomous
mode but rely on the driver to maintain attention. Some
suggest that this means that only fully autonomous
vehicles should be allowed. However, there is a long
history of partial autonomy from ABS to cruise control;
so it may be that the answer is better design of the
autonomous vehicle user interface, crucially ensuring
that the ‘driver’ has a clear understanding of the
momentary level of autonomy ... and maybe also that
the vehicle has a model of the driver’s attention

In other cases the vehicle has been in fully autonomous
mode. Here the manufacturers and accident investiga-
tion authorities have to determine whether this was un-
avoidable (e.g. a person running into the road in front of
the vehicle) or potentially preventable. In the latter case it
is particularly important to be able to unpack the chain
of sensing and decisions that led to the accident in or-
der to see whether there are changes that could improve
safety. The software for such vehicles is inevitably com-
plex with interacting sets of rules and machine-learnt as-
pects, making such essential explanations difficult.

Even where there is no obvious cataclysmic ‘accident’,
things can go wrong. The system appears to work and
make suitable decisions, but are there unintended con-
sequences?

Three forms of this will be familiar to all readers, and
we’ll deal with each in a little more detail in the rest
of the chapter. The first is unintended bias, as opposed
to deliberate discriminatory or hateful acts. The latter
are easier to identify, but the former may be as harmful
both at individual and societal levels. Every few months
there seems to be a new case in the news where an
algorithm has created sexist or racist results. The second
is privacy, which has been recognised as a problem
since the early days of the web, but came to prominence

https://alandix.com/glossary/aibook/Cambridge Analytica scandal
https://alandix.com/glossary/aibook/privacy
https://alandix.com/glossary/aibook/Autonomous weapons
https://alandix.com/glossary/aibook/human in the loop
https://alandix.com/glossary/aibook/Cyberweapons
https://alandix.com/glossary/aibook/cyberattacks
https://alandix.com/glossary/aibook/Denial of Service (DoS)
https://alandix.com/glossary/aibook/cyberwarfare
https://alandix.com/glossary/aibook/Stuxnet
https://alandix.com/glossary/aibook/big data
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/ethics
https://alandix.com/glossary/aibook/GPT-4
https://alandix.com/glossary/aibook/autonomous car
https://alandix.com/glossary/aibook/semi-autonomous car
https://alandix.com/glossary/aibook/autonomous vehicles
https://alandix.com/glossary/aibook/autonomous vehicles
https://alandix.com/glossary/aibook/user interface
https://alandix.com/glossary/aibook/unintended bias
https://alandix.com/glossary/aibook/privacy

with high-profile cases such as the Cambridge Analytica
scandal, and is a constant backdrop to discussions about
social media. Finally, we will look at misinformation
and filter bubbles, both how to counter deliberate mis-
information and also how to promote good information
habits.

20.4 GENERAL STRATEGIES
There are a number of general ways to address both in-
tentional and unintentional problems with AI. In fact
these are mostly approaches that apply across the board
to digital systems, but of course these often embody some
aspect of AI anyway.

20.4.1 Transparency and Trust

When things go wrong we want to ask the question,
“why?” Why did the autonomous car not notice the
pedestrian crossing the road? Why did the bank system
reject my loan application? Why did the automated
exam marking system give me a B grade?

The need to answer these “why?” questions has led to
calls for transparency of algorithms. This is an important
ethical consideration, but also increasingly embedded in
law, and demanded by customers or the public. The Eu-
ropean general data protection regulation (GDPR) de-
mands that when algorithms make decisions that affect
individuals, for example credit scoring or job shortlist-
ing, these need to be capable of explanation. This is often
referred to as a ‘right to an explanation’, a term that some
argue may be misinterpreted in scope [57]. Note that this
is not simply guidance but has legal force with very large
fines for any organisation or individual who is not able
to show they have provided sufficient explanation.

Most countries also have anti-discrimination laws
covering what are called ‘protected characteristics’.
These vary a little between countries but may include
gender, ethnicity, religion, age and sexual orientation. If
you are using any sort of machine learning or complex
algorithm to make decisions, for example on job
applicants, awarding loans or selecting housing tenants,
you must ensure that you are not discriminating on the
grounds of one of these. Typically, there are substantial
fines for breaking these laws.

For personal crimes, such as theft or murder, most ju-
risdictions require that the defendant intended to com-
mit the crime. However, for civil cases this is not usually
the case. You may never have intended to discriminate,

When Things Go Wrong ■ 315

but if an organisation does, however unintentionally, it
has broken the law.

It is therefore crucial both:

• To be able to convince yourself (and your boss/-
client) that systems are unbiased

• To be able to provide evidence to others, notably a
judge, that they are.

If the decision had been made by a deep neural
network, with multiple layers of weights and threshold,
would you feel able to justify this to a court?

In fact, the judge may not be the hardest audience. Of-
ten a court will appoint expert witnesses, so that a cor-
rect, but obscure, explanation may suffice. However, if
you are a bank, or a public facing medical provider, you
will also need to convince the general public. Indeed in
the online world, trust is often the most valuable com-
modity of all.

To win public trust you may need to provide different
forms of visualisation and explanation, for example the
way some advertisement platforms allow you to ask “why
am I seeing this?”.

Trust is a complex issue as it has many facets. For ex-
ample, you may trust a company’s technical competence,
but not its good intentions. Alternatively, there may be
a different organisation that you trust to want to do the
right things, but you are not sure whether it is able to
achieve its goals successfully. Establishing trust in the al-
gorithms is just one part of this wider picture. However,
the fact that an organisation at least attempts to be open
in its algorithmic decision-making processes often con-
tributes to other, more subjective forms of trust.

20.4.2 Algorithmic Accountability

Another way to tackle these issues is to increase legal and
financial accountability [110, 256]. We may accept that
legislation will never keep up with technology and when
it does may end up hampering good things while not re-
ally preventing the harms it seeks to avoid. Instead we
can seek to ensure that if things do go wrong, the compa-
nies and individuals responsible are held to account, with
substantial legal and financial consequences. If compa-
nies know they will pay for bad practices or mistakes,
they will work to ensure that these things do not happen.
This approach effectively trusts the free market to create
the best outcomes when costs are suitably manipulated.

https://alandix.com/glossary/aibook/Cambridge Analytica scandal
https://alandix.com/glossary/aibook/Cambridge Analytica scandal
https://alandix.com/glossary/aibook/social media
https://alandix.com/glossary/aibook/misinformation
https://alandix.com/glossary/aibook/filter bubbles
https://alandix.com/glossary/aibook/misinformation
https://alandix.com/glossary/aibook/misinformation
https://alandix.com/glossary/aibook/autonomous car
https://alandix.com/glossary/aibook/transparency
https://alandix.com/glossary/aibook/European general data protection regulation
https://alandix.com/glossary/aibook/European general data protection regulation
https://alandix.com/glossary/aibook/GDPR
https://alandix.com/glossary/aibook/anti-discrimination laws
https://alandix.com/glossary/aibook/protected characteristics
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/deep neural network
https://alandix.com/glossary/aibook/deep neural network
https://alandix.com/glossary/aibook/threshold
https://alandix.com/glossary/aibook/visualisation
https://alandix.com/glossary/aibook/explanation
https://alandix.com/glossary/aibook/accountability

316 ■ Artificial Intelligence

This happens with other technologies. In many coun-
tries companies that have been found to be negligent to
employees, customers or the general public can face large
compensation claims, and US courts in particular may
choose to set these at a punitive scale, to avoid companies
simply factoring potential compensation as part of cost–
benefit calculations. On the financial side ‘polluter pays’
and carbon pricing have been used to create financial in-
centives for companies to adopt more environmentally
friendly practices. These schemes sometimes impose ad-
ditional costs for ‘bad’ behaviour (such as polluter-pays
taxes) or may do the opposite and offer financial incen-
tives for ‘good’ behaviour (such as subsidies for farmers
to set-aside land for wildlife).

Typically these financial penalties or incentives are
paired with more explicit laws that limit or constrain
behaviour within limits. For example, most countries
have dangerous driving laws that may include criminal
proceedings against those who drive recklessly but also
have explicit speed limits and other traffic regulation,
not leaving it entirely up to individuals to decide
moment-to-moment what is safe. Similarly health
and safety regulation combines explicit limits such as
mandating the wearing of hard hats in certain areas or
only allowing certain additives in foods, but in addition
requires companies to apply general safety assessment
with the potential for negligence claims if predictable
hazards are ignored.

We already see similar principles at work in the dig-
ital arena with explicit regulation, such as the EU pri-
vacy and data protection regulations [56], but backed by
civil law cases, such as the class action privacy lawsuits
brought against Facebook after the Cambridge Analytica
scandal.

There are limits to these approaches.
If laws are too tightly defined, larger companies with

sufficient resources can find loopholes. At its worst this
may distort markets giving larger companies an inherent
advantage over smaller ones, despite the fact that it is
typically the behaviour of the larger ones that legislators
are most concerned about.

Penalties, whether directly imposed as fines by gov-
ernments or through damages in civil cases, also need
to be large enough that they are not merely regarded
as a ‘cost of business’. This is particularly difficult with
transnational companies, such as the large tech compa-
nies, as chains of subsidiaries can shift financial account-
ability away from the parent company and fines that are

FIGURE 20.1 Increasing opacity in more complex algorithms.

too large may cause international friction between gov-
ernments.

Sometimes companies have appealed to the inherent
complexity and opacity of AI as a defence; effectively say-
ing “the AI did it”. The core of effective algorithmic ac-
countability is to turn this on its head, to put the onus
onto the company to show it has used technology fairly
and legally.

20.4.3 Levels of Opacity

The apparent opacity of algorithms is not unique to
AI. Although these issues are most stark when the
algorithms involve machine learning, they arise with all
sorts of algorithms, even the simplest (Figure 20.1). For
example, in the 1980s a project using expert systems to
capture some of the legislation around welfare benefits
found there were inconsistencies that had previously
been overlooked [162, 163]. Similarly, few understand
the relatively small set of rules around taxation.

As things get more complex, few programmers would
claim to understand all the behaviour of their code. In-
deed, advocates of formal methods in computing attempt
to address precisely this issue, but these methods often
prove too cumbersome for all but the most safety critical
situations or toy problems in research contexts.

Classic symbolic AI is not so far from programming,
although far more broad in terms of computational
genres. Crucially many AI languages and notations are
declarative; this can make them more clear in intent
than ordinary code but may also make the consequences
of multiple interacting rules hard to predict. On the
other hand AI techniques such as formal argumentation
logics may offer ways to help other algorithms become
more explainable.

Finally, most of the media coverage both positive and
negative in recent years has concerned machine learning
of various forms, from fairly simple frequency-based
techniques on big data to neural methods in deep

https://alandix.com/glossary/aibook/Facebook
https://alandix.com/glossary/aibook/Cambridge Analytica\protect \penalty -\@M scandal
https://alandix.com/glossary/aibook/Cambridge Analytica\protect \penalty -\@M scandal
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/expert systems
https://alandix.com/glossary/aibook/symbolic AI
https://alandix.com/glossary/aibook/explainable
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/big data
https://alandix.com/glossary/aibook/deep learning

learning. For these techniques the explanation as to why
something has happened often comes down to “there
was this shed-load of data and this is what came out”.

20.5 SOURCES OF ALGORITHMIC BIAS
Some of the most common ‘bad news’ stories about AI
relate to the potential for unintended bias, including
gender or ethnic bias, in automated decision-making
systems. The potential for this to be a problem in
machine learning was predicted as far back as 1992 [74],
but it was only in the mid-2010s when this started to
become a major problem.1 There have been headline
cases of this, notably Microsoft’s Twitter bot Tay,
which quickly learnt sexist, racist and anti-Semitic
language [118]; or cases of Google search returning
gender stereotyped images or auto-completion [159].
These stories have continued with almost every new
search technology or chatbot [244, 259, 275]. However,
potentially more worrying are the cases we don’t notice:
what are the factors that are being used to set your loan
interest rate or determine whether you are shown highly
paid job adverts [41, 66]?

20.5.1 What Is Bias?

In statistics and when we are dealing with more formal
aspects of machine learning there is a very specific quan-
titative meaning of bias. When you produce some sort
of estimation algorithm, then if you use the estimation
process on lots of examples, some will end up a little too
high, some a little too low. We say an estimate is unbi-
ased if the long-term average of the estimate is the true
average. Effectively this statistical bias is a measure of ac-
curacy.

However, the ‘bias’ that we refer to in ethical or legal
discussions is not the ‘bias’ used in technical discussions.
By bias here we mean an algorithm or decision procedure
that unfairly discriminates or disadvantages certain peo-
ple. We shall see that even an algorithm that is entirely
‘accurate’ may still embody ‘bias’ in the ethical sense of
the word. It is not sufficient for an algorithm to be tech-
nically ‘right’, it must also be ethically upright.

Even where systems are utterly neutral, the impact of
numerous design decisions may affect different groups
disproportionately. For example, the UK’s Universal
Credit system is designed to unify and simplify welfare

1In fact issues of bias in hand-crafted algorithms were already ev-
ident in the 1980s [248].

When Things Go Wrong ■ 317

FIGURE 20.2 Bias entering at different stages in machine
learning.

payments but is completely computer based. Early
trials showed that 49% of those eligible did not have
internet access at home [51]. In rural areas land-based
broadband and mobile connectivity may be slow or
non-existent, so that not just Universal Credit but all
forms of internet-shopping, eGovernment or other
services are hard to access [201].

20.5.2 Stages in Machine Learning

Figure 20.2 shows a simplified view of machine learning.
Training data is fed into the learning algorithm. The algo-
rithm is guided by an objective or fitness function, which
defines what it is to be a ‘good’ set of learnt rules. This all
results in some form of learnt rules (where a ‘rule’ might
consist thousands of weights in a deep neural network).

Each of these stages offers potential sources of bias:

1. bias in the training data from past biased human
behaviour

2. bias in the goals from societal bias

3. even when bias in (1) and (2) are removed, the
‘best’ or accurate result may still be biased (in
the ethical sense)

In addition, we’ll see that the choice of features – what
you choose to gather data about, is also critical. We will
look at each in turn.

20.5.3 Bias in the Training Data

Imagine we want a machine learning system to distin-
guish cows from sheep, so we feed it lots of images la-
belled ‘cow’ and ‘sheep’. Similarly if we want it to recog-

https://alandix.com/glossary/aibook/deep learning
https://alandix.com/glossary/aibook/unintended bias
https://alandix.com/glossary/aibook/bias
https://alandix.com/glossary/aibook/automated decision-making systems
https://alandix.com/glossary/aibook/automated decision-making systems
https://alandix.com/glossary/aibook/Microsoft
https://alandix.com/glossary/aibook/Twitter bot
https://alandix.com/glossary/aibook/Microsoft Tay
https://alandix.com/glossary/aibook/Google search
https://alandix.com/glossary/aibook/chatbot
https://alandix.com/glossary/aibook/statistics
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/statistical bias
https://alandix.com/glossary/aibook/accuracy
https://alandix.com/glossary/aibook/accuracy
https://alandix.com/glossary/aibook/ethical
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/fitness function
https://alandix.com/glossary/aibook/deep neural network
https://alandix.com/glossary/aibook/sources of bias
https://alandix.com/glossary/aibook/choice of features
https://alandix.com/glossary/aibook/machine learning

318 ■ Artificial Intelligence

nise cancerous lesions, then we give it lots of labelled
mammograms. Now imagine that we want it to pre-select
job applicants based on their CVs. So, we feed the ma-
chine learning system lots of CVs labelled as to whether
or not the candidate was called to interview.

This sounds straightforward. The system is accurate if
when we give it a picture, it correctly labels it, that is if
it reproduces the expert human labelling of the training
set.

However, if the person labelling pastoral images was
confused by highland cows and labelled them ‘sheep’,
then the ML system will confuse them too; if a certain
form of cancer often got missed by radiologists, then the
new cancer diagnosis system will also miss them; and if
the past human selection of job applicants was racially
biased, then the trained automated selection process will
be similarly biased.

In general, the existing norms and biases of society will
be embodied in past decisions and even special labelling
for training. The machine learning system will faithfully
copy the patterns of the training data and thus embody
the self-same traits of society at large. Algorithms reflect
data and data reflects society.

Happily this first source of bias is relatively well un-
derstood both in the technical literature and by the me-
dia. Google processes billions of search queries; if peo-
ple search for sexist or racist terms, this may naturally
emerge when it autocompletes as you type. Similarly, an
image search for “Professor” or “CEO” returns predom-
inantly white male faces (see Figures 20.3 and 20.4), but
this precisely reflects the preponderance of such images
in web pages labelled “professor” or “CEO”. The last ex-
ample is important as it is effectively reflecting the reality
of society: senior positions in many countries are more
likely to be held by white males.

Some courts in the US have used automated systems
to assess the risk of reoffending when considering
sentencing or parole requests [7]. These systems have
been found to assess black offenders as significantly
more likely to reoffend than white offenders even after
balancing for other factors. However, if the police have
been more assiduous in arresting and prosecuting black
offenders, then, as a group, they will have a higher
recorded reoffending rate, and therefore a statistically
‘correct’ system would reflect this. Of course the system
would not have had the offenders’ ethnicity as an explicit
factor in the training data, but we shall see later that
‘proxy’ measures may effectively yield the same result. In

these examples the training data reflects societal effects
that are not neutral with regard to gender or race. It is
no wonder the resulting systems also exhibit bias.

There are methods designed to de-bias data, for exam-
ple to rebalance or weight the training data based on gen-
der or other characteristics. These tools can be powerful
as part of efforts to avoid bias, but very dangerous if one
believes that they have really removed all bias either from
the data or the process as a whole. Furthermore removing
bias in one area often increases it elsewhere, especially if
one considers individual cases rather than overall statis-
tics.

For example, pupils from fee-paying schools perform
better at university entrance exams than those from
state-funded schools; this is clearly unfair across society
as a whole. We might attempt to de-bias the data by
reducing the grades of all those from fee-paying schools.
This would balance the overall statistics, but would it be
fair for a child at a fee-paying school who had worked
hard for their examinations? Happily there are more
sophisticated ways to approach de-biasing data, but this
simple example highlights the complexity of the task.

Simulated data has also been suggested as a way of
avoiding human bias embodied in data. Indeed some
companies have suggested that by using synthetic data
they remove the inherent ‘risk’ in real data and also offer
to create datasets with any desired balance of gender,
ethnic or other demographic factors [144]. Again, while
potentially a valuable tool in machine learning, the idea
that synthetic data entirely removes bias is dangerous.
Indeed the algorithms generating synthetic datasets are
often themselves in part built using machine learning,
and the idea that you can generate particular racial
characteristics to order means that stereotypical features
are deeply burned into the algorithms.

20.5.4 Bias in the Objective Function

The second source of bias is through what is called the
objective or fitness function.

A development programme for autonomous cars
might choose to train their system using a simulator.
Initially the car would crash all the time, but gradually
learn to be better. However, for the car to be ‘better’ the
training system needs to know what ‘better’ is. If the
measure of ‘better’ is minimising damage to the vehicle,
then later, given a choice of a minor scrape against
another car or mounting the pavement and ploughing

https://alandix.com/glossary/aibook/human labelling
https://alandix.com/glossary/aibook/labelling
https://alandix.com/glossary/aibook/bias
https://alandix.com/glossary/aibook/Google
https://alandix.com/glossary/aibook/bias
https://alandix.com/glossary/aibook/de-bias
https://alandix.com/glossary/aibook/de-bias
https://alandix.com/glossary/aibook/Simulated data
https://alandix.com/glossary/aibook/human bias
https://alandix.com/glossary/aibook/bias
https://alandix.com/glossary/aibook/bias
https://alandix.com/glossary/aibook/objective function
https://alandix.com/glossary/aibook/fitness function

When Things Go Wrong ■ 319

FIGURE 20.3 Google image search “Professor” 13th Feb 2019 – 15 images, 10 white males.

FIGURE 20.4 Google image search “CEO” 13th Feb 2019 – 14 individual images, 9 white males.

320 ■ Artificial Intelligence

down pedestrians, the car might choose the latter. If the
measure of ‘better’ had been minimising fatalities and
injury, then of course it would learn to make different
choices. This measure of ‘better’ is precisely the fitness
function, and it is clear that this significantly affects the
ultimate behaviour of the system.

In the previous example the objective function was ex-
plicit. However, often it is implicit, encoded in the prefer-
ences of society at large. Examples of this are rife, not just
in automated systems, but also human decision making.
We’ll consider a number of examples.

At the ACM CHI 2018, Chris Rudder, co-founder
of the dating site OkCupid, gave one of the keynotes
based on his book Dataclysm [237]. He described how
data analytics exposed the choices of different genders,
ages and ethnic groups. Much of this was unsurprising
but still shocking to see in raw numbers. However,
more problematic was the way the dating site effectively
pandered to these human biases. OkCupid was simply
giving people what they wanted, maximising the chances
they would find a profile they would like, but in doing
so it made explicit choices, for example to use ethnic
profiles to determine who saw whom.

In the 1990s, the Trump Plaza casino was fined
$200,000 for deliberately moving black employees away
from the tables when certain high stakes gamblers
visited the casino [284]. Note that the casino had black
employees, it was not being fined for discriminatory
recruitment policies. The fine was because they were
pandering to the racist whims of their customers.

In 2017, the BBC was widely criticised after it pub-
lished pay gap figures showing that the most highly paid
male presenters were receiving significantly more money
than their female equivalents. When the story broke, the
BBC Director General, Lord Hall, was quoted as saying,

The BBC does not exist in a market on its own
where it can set the market rates. If we are to give
the public what they want, then we have to pay
for those great presenters and stars. [18]

Of course, if the public’s perception of major presen-
ters is biased, then that market ‘value’ will reflect this. In
particular, experiments show that both male and female
subjects harbour gender stereotypes that have changed
relatively little in 30 years [121]. One such stereotype
may lead viewers to unreasonably place more trust in
male news presenters, thus creating the market demand

and ‘justifying’ the BBC pay gap. However, the same ar-
gument could be made by Trump Plaza’s casino man-
agers.

In each case the bias, prejudice and stereotypes of so-
ciety mean that ‘good business’ would suggest making
decisions that are driven by gender, ethnicity and other
characteristics that would be deemed inappropriate, un-
ethical or illegal if expressed explicitly.

However, imagine if in each case a machine learning
algorithm or similar black-box technique was being
driven by apparently neutral metrics such as popularity
or consumer demand.

The only reason we know about OkCupid’s decision
rules is that they obtained them in a two-stage process,
using data analytics to go from big data to comprehen-
sible results, and then from that to hard-coded rules. If
they had simply said, “we put all our data into a recom-
mender system”, it would have been a very short but un-
controversial keynote. Similarly, Trump Plaza’s shift al-
location systems would ‘just happen’ to avoid black em-
ployees on the days certain customers were expected.

In some ways this is already happening with the BBC
as the ‘market’ is the black-box system. Given an objec-
tive function to maximise profit, or audience share, the
accurate and ‘best’ decision is ‘good’ business, but is def-
initely not good.

20.5.5 Bias in the Accurate Result

Finally, even if the training data and objective are en-
tirely unbiased, and the algorithms used have obtained
the most accurate and optimal rules, the results of learn-
ing can still be ‘biased’ in the ethical sense. For this part
we’ll look at an example of gender discrimination.

In most societies there are major differences on aver-
age between males and females, due to many factors, but
most significantly the societal norms, expectations and
sometimes explicit rules that influence our physical, in-
tellectual and emotional development.

In the UK (and many countries), when there are
choices in school, boys are more likely to take STEM
subjects, such as chemistry, and girls humanities, such
as history. This is clearly not an inherent fact of gender,
as other countries do not have such a marked difference.
However, in the UK it is the case that, on average, girls
and boys have had very different education by the time
they leave school.

https://alandix.com/glossary/aibook/fitness function
https://alandix.com/glossary/aibook/fitness function
https://alandix.com/glossary/aibook/objective function
https://alandix.com/glossary/aibook/bias
https://alandix.com/glossary/aibook/black-box technique
https://alandix.com/glossary/aibook/big data
https://alandix.com/glossary/aibook/objective function
https://alandix.com/glossary/aibook/objective function

When Things Go Wrong ■ 321

Now imagine you are selecting applicants for two jobs
with the Antarctic Survey, one for a communication-rich
role at Rothera research station on the Palmer Land
peninsula, and the other for an engineering-related
role at Davis research station near the Amery Ice Shelf,
several thousand miles of ice and snow away. The
applications are all in and you need to work quickly as
the last ships, one for Rothera and one for Davis, are
about to leave to get there before winter weather cuts off
the bases for six months of dark winter.

You take the applications home and you have whittled
the applicants down to two. Then, disaster, the dog eats
the CVs. All you have left are the diversity information
pages that you carefully separated and which contain in-
formation about gender, etc. There is no time to get fresh
CVs and yet you must send the chosen applicants post
haste to their respective ships. You peek at the forbidden
diversity pages: one applicant is male and one female; one
job is communications-rich, one engineering related ...
what do you do?

Because of our education system, gender is a predictor
of communication and technical skills, albeit a poor one.
The reason we do not use gender as a predictor is not
because it lacks predictive power; instead it is because as
a society we choose not to. It is an ethical decision.

As a society we choose to use other (and actually
far better) predictors. We may look at exam results, or
run our own tests that more directly assess the skills or
knowledge we require, but we choose not to use gender
irrespective of whether it offers any predictive power.

20.5.6 Proxy Measures

We may think that we can deal with bias simply by not
including protected characteristics in our training data.
So long as the CV does not mention the gender of the
applicant, then the outcome must be fair.

To see why this is not the case, imagine a very so-
cially conscious building company. They are very tradi-
tional in terms of methods (a lot of heavy lifting), but
advanced in the use of IT, so they decide to create an
automated system to help with hiring. In order to avoid
bias in the system, they conduct an extensive experiment.
One thousand people are recruited, 50% male, 50% fe-
male, and employed for 2 months, with their produc-
tivity heavily monitored. At the end of the experiment
a machine learning system is given the measured pro-
ductivity of subjects together with their CVs and builds a

predictor of productivity. Being an ethical company, the
gender and other protected characteristics are removed
from the CVs before they are entered into the learning
system.

If the system were entirely opaque, one would just have
to trust it. The entire process was gender-blind, so surely
the resulting system would be unbiased?

Now imagine a learning system that creates more
transparent rules. You start to interrogate it and find
that school exam subjects are being used and the rules
effectively say, “if the person has taken STEM subjects
then hire them”. Now STEM subjects at school are
almost certainly not useful on an old-fashioned building
site. However, they are a proxy indicator of gender,
which in turn is a crude predictor of strength.

Note again that the algorithm may be producing the
‘best’, most accurate estimator given the data available.
However, bias, in an ethical and legal sense, is not about
algorithmic correctness, it is about social choice.

Note also that if the job had required technical abil-
ity or good communications, then exam grades would
be deemed a reasonable and acceptable decision criteria.
The exam results would correlate with gender, but would
be directly relevant to the job. The problem in the build-
ing site is that they are not clearly relevant to the job at
hand and merely act as a proxy gender measure.

In other words, exactly the same training data could
yield ethical or unethical (and legal or illegal) outcomes
depending on context.

20.5.7 Input Feature Choice

In several of the examples we have discussed, the choice
of input features being fed into a learning system has
been often critical in creating or controlling bias. The
most obvious approach is to exclude explicit gender or
similar indicators, but as we have seen this is not suffi-
cient.

In the case of the builder, the problem is partly that
if there is no direct measure of physical strength on the
CVs, then the system will choose the ‘next best’ thing and
may latch onto (proxy measures of) gender.

A strong guard against this is to make sure you collect
relevant features. If the system has a good measure of
physical strength, it is less likely to fall back on gender,
the use of which is both a relatively poor predictor and
illegal in many countries.

https://alandix.com/glossary/aibook/bias
https://alandix.com/glossary/aibook/protected characteristics
https://alandix.com/glossary/aibook/bias
https://alandix.com/glossary/aibook/transparency
https://alandix.com/glossary/aibook/proxy indicator
https://alandix.com/glossary/aibook/bias
https://alandix.com/glossary/aibook/bias

322 ■ Artificial Intelligence

Furthermore, as well as removing explicit gender in-
dicators, one might consider also deliberately excluding
what appear to be irrelevant features. This may have tech-
nical benefits by reducing overfitting and also make the
system less likely to have potential proxies to latch onto.

20.5.8 Bias and Human Reasoning

The examples point out potential dangers for machine
learning systems. However, anti-discrimination legisla-
tion predated the widespread use of AI. The legislation
exists precisely because humans haven’t done so well at
these issues prior to automation.

The human perceptual and cognitive system has
developed primarily for information poor environ-
ments, where you have to make the most effective
inferences from scant data. Now we live in a world
of information overload, but with the same per-
ceptual and cognitive system as our cave-dwelling
ancestors.

Crucially humans are poor at ignoring low-quality
cues even when there are better ones to hand. One
example of this was exposed by experiments on people’s
ability to assess the quality of search results based on
the title and snippet as commonly found in web search
results [241]. Users were able to assess relevance using
only the snippet but were better when shown the title
on its own. They were then shown both together (title
and snippet), which one might imagine would be better
still (more information). However, on the contrary,
the effectiveness fell between the two on their own.
Even though the snippet was not adding to the subjects’
ability to assess relevance, they were unable to ignore it
and hence performed less well than if they had had the
title alone.

Some algorithms also have these problems of ignoring
this unhelpful information, but others can do better and
maybe even help people to become better at judging such
things.

Recall in Chapter 18, we discussed a study that was
performed some years ago of people admitted to hospi-
tal for heart attacks. The doctors gathered many test re-
sults and other forms of evidence and used this to decide
among a few different forms of treatment. Retrospective
data was then collected including the original diagnostic
features and the clinical outcomes for the patients after
a few months, whether they had recurrence, or indeed
died.

The data was used to train a classifier; however,
this was not used as an automatic diagnosis system to
replace the doctors’ judgement. Instead the analysts
examined the rules created by the system and realised
that the optimal classification depended on four features
only.

The doctors were told about this and changed their
clinical practice: only collecting the four relevant factors,
but otherwise using their clinical judgement as before.
They found that their own clinical outcomes improved.
By not collecting data and never seeing it, they became
better at their job.

20.5.9 Avoiding Bias

While in principle algorithms could behave better than
people, the reality is still far from this.

Crucially, as we have seen, it is not sufficient to remove
explicit indicators of gender, ethnicity, disability, reli-
gion or other protected characteristics. Many discrimi-
nation cases relate to indirect forms of discrimination,
for example demanding a particular headwear when this
is not essential to the job, which effectively discriminates
against Sikhs or those wearing the hijab. As we have seen
it is easy for a machine learning system to accidentally
latch onto proxy measures of a protected characteristic.

Instead, algorithms need to actively avoid discrimina-
tion. For example, after training an algorithm on gender-
blinded data, one could deliberately re-introduce gender
and build a causal model. If the impact of features on the
final decision is factored through gender, then that is a
good indication that the features were acting as a proxy
for gender. One could even imagine building this into the
original learning process.

Whether or not algorithms are better or worse than
humans at making ethically unbiased decisions; how do
we know? There is a growing set of techniques and tools
to help with this, and it will undoubtedly have grown by
the time you read this.

One method is to perform some form of external au-
dits of the statistics comparing the way different groups
are dealt with by a system or process, whether by hu-
man or machine. A good example of this is the way many
companies now publish pay gap data.

Note that such external statistics do not answer the
question “is my process biased”, but do offer evidence to
pursue and investigate in more detail. There may be ex-
ternal societal reasons, such as disparity of access to ed-

https://alandix.com/glossary/aibook/overfitting
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/web search
https://alandix.com/glossary/aibook/optimal classification
https://alandix.com/glossary/aibook/protected characteristics
https://alandix.com/glossary/aibook/proxy measures

ucation, that create unbalanced outcomes. The stats are
the beginning, not the end of an investigation into bias.
It is not sufficient to look at the overall numbers, but we
must dig into the reasons that led to them.

This can be applied at the end of the process by look-
ing at the overall decision being produced. However, the
same technique can be used proactively to attempt to de-
bias training data. If there is a disparity in the labelling of
training data, for example if we thought prior recruiters
had discriminated against female applicants, we could
deliberately re-weight the data.

The disparity may not be in the labelling, but in the
spread of data. Several face recognition algorithms have
had higher error rates among certain groups simply be-
cause the training data contained fewer examples. Either
gathering more data from the poorly represented groups
or weighting them more highly during training may help
to alleviate this. Note too, this is often worth doing when
training data is unbalanced, even if there is no issue of
bias, as this can often improve accuracy.

This kind of audit can also be used to identify fea-
tures that are strongly connected to a particular protected
characteristic. For example, choice of school subjects or
gaps in employment record (potentially because of fam-
ily responsibilities). These features can then be examined
to see if they are really necessary, and removed if not.
Proxy indicators can be very hard to eliminate; as we
have seen, a feature which is a proxy measure for a pro-
tected characteristic in one context may be quite valid in
another. One way to detect this is through building ex-
planatory models. There are algorithms that do this natu-
rally, but it is also possible to detect potential proxy mea-
sures for other algorithms.

Paradoxically the way to do this is often to re-
introduce the protected characteristic. Think of the
building site example. You train the algorithm with
CVs with gender removed and find that STEM subjects
in school are a strong feature used in the prediction.
You then retrain the algorithm, but this time including
gender explicitly. If the role of STEM subjects is
substantially reduced, this is a strong indicator that it is
functioning as a gender proxy rather than as a predictor
in its own right.

20.6 PRIVACY
One of the most common worries about big data and
indeed the internet in general is privacy. From the

When Things Go Wrong ■ 323

early days of the web, worries about misuse and the
dangers of hacking and information theft led to various
governments creating legislation to protect personal
data. The Cambridge Analytica scandal and continual
newspaper stories about data breaches show that these
problems have not gone away.

To some extent this is an issue for data collection in
general rather than AI and indeed most data breaches are
on conventional data stores. However, machine learning
has exacerbated issues, in part because the value of data
has led to more data being gathered and retained and
in part because of the ability of algorithms to mine both
stolen data and public data. Furthermore an ever greater
part of life is online – personal, financial and professional
– so the dangers of identity theft are correspondingly
greater.

20.6.1 Anonymisation

The most obvious privacy worry is that identifiable
personal data may be leaked. Data may be stored either
fully anonymised or pseudonymised. The latter is where
a unique identifier (such as a number) is used instead of
a personal identifier (such as a name and address). If data
is being retained for machine learning, then the identity
of individuals often doesn’t matter, so anonymised or
pseudonymised data can be used. However, if the data
has any relations between individuals, then this needs
to be retained, for example knowing that several people
are in the same household.

Often anonymisation is deemed to have made data
‘privacy-safe’. This is evident in the relevant UK law
which defines ‘anonymous information’ as:

information which does not relate to an iden-
tified or identifiable natural person or to per-
sonal data rendered anonymous in such a man-
ner that the data subject is not or no longer iden-
tifiable. [142]

If data is anonymous by this definition, UK privacy law
does not apply. Similar legislation can be found elsewhere
in the world and even where this is not enshrined in law,
a similar principle often applies in organisations’ internal
ethical guidelines.

However, this is not the end of the story.
Note the phrase “is not or no longer identifiable”. Re-

moving names may mean that one cannot simply look up

https://alandix.com/glossary/aibook/bias
https://alandix.com/glossary/aibook/de-bias
https://alandix.com/glossary/aibook/de-bias
https://alandix.com/glossary/aibook/human labelling
https://alandix.com/glossary/aibook/face recognition
https://alandix.com/glossary/aibook/bias
https://alandix.com/glossary/aibook/accuracy
https://alandix.com/glossary/aibook/protected characteristic
https://alandix.com/glossary/aibook/protected characteristic
https://alandix.com/glossary/aibook/big data
https://alandix.com/glossary/aibook/privacy
https://alandix.com/glossary/aibook/Cambridge Analytica scandal
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/identity theft
https://alandix.com/glossary/aibook/privacy
https://alandix.com/glossary/aibook/anonymised
https://alandix.com/glossary/aibook/pseudonymised
https://alandix.com/glossary/aibook/unique identifier

324 ■ Artificial Intelligence

the person, but if the data has sufficient surrounding ma-
terial it may be possible to work out who the person is –
there may be only one person living in a particular postal
code with one hundred and one dogs! This potential for
deanonymisation is not new, but more complex AI al-
gorithms combined with the ability to trawl the web for
additional connected information has turned this from a
remote possibility to an off-the-shelf service.

20.6.2 Obfuscation

One solution is obfuscation where small details are al-
tered, for example adding a year to age or a 5% change
in salary. This is clearly not an option for actual data
records – you would not be happy to find your bank
balance vary randomly from month to month even as
part of privacy-preserving practices. However, for ma-
chine learning purposes such obfuscated data is often
suitable. Indeed this is rather like the perturbation tech-
niques used for growing datasets for machine learning
we saw in Chapter 8.

Note however, if the intention is also to grow the data
using perturbation, this should be done in a two step-
process: (i) first perturb the data once for privacy and
then (ii) do data growing perturbations from that point.
If you simply do lots of perturbations of the original raw
data point, it will become apparent as the ‘centre’ of a
cluster in the derived data.

20.6.3 Aggregation

Another approach is to only store aggregated data. Tra-
ditionally this would have meant averages for areas or
demographics but now is more likely to be the learnt
weights in a neural network or latent features in a big data
model.

It has been known for many years that it is sometimes
possible to recreate raw data from multiple statistical
queries [69] and similar problems arise with machine
learning. This can be through deliberate attacks but may
even ‘slip out’. OpenAI Copilot was trained on large
volumes of open source data from GitHub and is able
to autocomplete or even completely write code with
amazing accuracy. However, soon after it was released it
became apparent that it would occasionally reproduce
whole sections of code from the originals line-for-line
including comments, leading to a lawsuit and lots of
discussion of IP issues surrounding models built from
large-scale data [291].

There are problems with aggregated data even if per-
sonal data is not divulged. Consider this example from
one of the author’s early papers on privacy:

A parent may drive his child 100 metres down
the road to school because the road is unsafe to
cross. On the way, he passes an observer mea-
suring road usage. Because the road is used such
a lot it is widened, attracting more traffic and
thus making it more dangerous. [91]

There is no identifiable data here, just a count of road
usage. However, the parent would not assent to the data
capture if they knew it would be used to make their child’s
life worse.

20.6.4 Adversarial Privacy

Another privacy concern has been the use of image
recognition techniques both on web images and CCTV
in the physical world.

Hand-crafted image processing algorithms use tech-
niques such as those described in Chapter 12 and often
follow similar steps to human visual processing. How-
ever, machine learning techniques often use very differ-
ent features from the human eye. Adversarial learning
techniques have exploited this to create small variations
of images which do not look any different to the human
eye and yet are able to fool state-of-the-art face recogni-
tion algorithms [45].

Similar techniques have been used in the physical
world using adversarial techniques to create car licence
plates that look normal to the human eye but are
unreadable to a number plate recognition system [305].
This can be part of asserting privacy and freedom to
travel without being tracked but of course can also be
used to evade legitimate law enforcement such as an
automatic speed trap.

It is also possible to buy clothing that claims to subvert
image recognition, but with this, as in all of the above,
adversarial techniques are only powerful until the next
iteration!

20.6.5 Federated Learning

Many organisations want to protect privacy either be-
cause it is part of their fundamental ethos (e.g. NGOs and
some governments) or as part of management of public
perception and brand. Hence there has been substantial

https://alandix.com/glossary/aibook/obfuscation
https://alandix.com/glossary/aibook/perturbation techniques
https://alandix.com/glossary/aibook/perturbation techniques
https://alandix.com/glossary/aibook/perturbation
https://alandix.com/glossary/aibook/privacy
https://alandix.com/glossary/aibook/neural network
https://alandix.com/glossary/aibook/big data
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/OpenAI
https://alandix.com/glossary/aibook/privacy
https://alandix.com/glossary/aibook/image recognition
https://alandix.com/glossary/aibook/image recognition
https://alandix.com/glossary/aibook/image processing
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/Adversarial learning
https://alandix.com/glossary/aibook/face recognition
https://alandix.com/glossary/aibook/face recognition
https://alandix.com/glossary/aibook/adversarial techniques
https://alandix.com/glossary/aibook/image recognition
https://alandix.com/glossary/aibook/adversarial techniques
https://alandix.com/glossary/aibook/privacy

work in looking at privacy preserving algorithms [303].
Some of the techniques we have already discussed fall
into this heading.

One technique in this area is federated learning. The
very act of bringing data together to be processed by ma-
chine learning creates a risk of data being hacked or ac-
cidentally leaked. So why transmit it at all? In federated
learning your personal data is processed close to you on
your own device and only the processed data is passed
on to be collated.

One of the easiest forms of this is as a modification
to backpropagation algorithms. Backpropagation
normally works by processing a dataset item-by-item,
presenting each data item to the neural network and
then making small modifications to the weights at each
step. The federated version of the algorithm sends the
complete network to every participating device. The
device then processes small numbers of data items
locally and passes back a delta, the small changes in
the neural network’s weights due to the additional
examples. These are then added to the central algorithm
very nearly reproducing the normal workings of the
algorithm, while never sending raw data to the central
hub.

However, even this apparently bullet-proof method
has been subject to adversarial attacks, reproducing
example data from weight changes [234]. Privacy in AI
is an ever-evolving arms race!

20.7 COMMUNICATION, INFORMATION
AND MISINFORMATION

At its best, the web brings much of human knowledge
into nearly every corner of the world. There are limits to
availability both in terms of literacy and also the ability
to afford a web-ready device and sufficient network
bandwidth, but these are lower barriers than previously.
AI and large-data algorithms have been at the heart of
this, not least PageRank and other web search algorithms
that scan and sift vast numbers of web resources in order
to find the most relevant information. Furthermore,
the objects around us are becoming more internet
connected, meaning that not just abstract knowledge
but real-time information is at our fingertips, from
the current weather forecast to whether our kettle has
boiled.

However, we also all know that this has a dark side:
phishing, cyberattacks, radicalisation, online grooming

When Things Go Wrong ■ 325

and misinformation. The Cambridge Analytica scandal
not only raised privacy issues but showed how demo-
cratic process might be subverted by AI-powered mes-
saging. During the Covid-19 pandemic, distorted news
stories, pseudo-science and deliberate mis-information
rose alongside more trustworthy, but not always trusted,
sources. The causes of this include both deliberate misuse
and unintentional consequences of otherwise beneficial
systems and, between the two, negligence when bad con-
sequences could have been averted.

20.7.1 Social Media

AI can be used positively to help deal with some of the
dangers of social media, for example using natural lan-
guage algorithms to automate moderation by flagging
or removing hate speech. This is not easy. Simple algo-
rithms can generate false positives, for example suspend-
ing the account of someone quoting and refuting a racist
statement, or where a term that has a totally benign day-
to-day use has been appropriated by an extremist group.
Similarly image processing can generate false positives,
for example where nudity filters on social media have
censored posts of breastfeeding mothers.

One solution to this is human-in-the-loop algorithms,
where the AI system passes harder to classify examples to
human moderators to judge and in the process improve
the training of the algorithms. As we saw in Chapter 19,
the design of algorithms of this kind is different from a
simple automated decision. Of course, human modera-
tion is expensive compared with automatic processing,
and so the preferred solution for many social media plat-
forms is to employ ‘better AI’ ... not always successfully!

Of course the opposite problem is false negatives, the
bad posts that are missed. These can be hard to spot as
they may simply use coded language, combine neutral
or ironic speech combined with images that make their
meaning clear, or simply point to video clips. This means
that effective algorithms often need to combine media,
including text, recorded, static and video images. Each
medium requires its own individual specialised process-
ing, using techniques we’ve described in previous chap-
ters, but crucially they have to be combined.

Recall the levels of natural language processing
described in Chapter 13. Really effective moderation
ideally requires pragmatic understanding. A statement
“that’s awful” about an image depicting an atrocity could
be an expression of shock or an ironic statement of

https://alandix.com/glossary/aibook/privacy preserving algorithms
https://alandix.com/glossary/aibook/federated learning
https://alandix.com/glossary/aibook/backpropagation
https://alandix.com/glossary/aibook/neural network
https://alandix.com/glossary/aibook/delta
https://alandix.com/glossary/aibook/adversarial attacks
https://alandix.com/glossary/aibook/PageRank
https://alandix.com/glossary/aibook/web search
https://alandix.com/glossary/aibook/cyberattacks
https://alandix.com/glossary/aibook/misinformation
https://alandix.com/glossary/aibook/Cambridge Analytica scandal
https://alandix.com/glossary/aibook/privacy
https://alandix.com/glossary/aibook/natural language algorithms
https://alandix.com/glossary/aibook/natural language algorithms
https://alandix.com/glossary/aibook/false positives
https://alandix.com/glossary/aibook/image processing
https://alandix.com/glossary/aibook/false positives
https://alandix.com/glossary/aibook/human-in-the-loop
https://alandix.com/glossary/aibook/automated decision
https://alandix.com/glossary/aibook/false negatives
https://alandix.com/glossary/aibook/natural language processing
https://alandix.com/glossary/aibook/pragmatic

326 ■ Artificial Intelligence

support for the terrorist group. Of course distinguishing
such statements is not easy for humans and indeed
may simply end up reflecting our own prejudices about
the speaker. Automated algorithms can face similar
problems, for example, some terrorist groups may
use religious language, so that, without care, machine
learning could lead to highly biased algorithms that
block benign uses of that language.

Natural language processing has also been used
to detect potential paedophile grooming, especially
techniques that include elements of sentiment analysis.
Sometimes this is based on cumulative textual content,
distinguishing 14 year-old speech from a 40 year-old
pretending to be 14. Sometimes this can be augmented
by learning patterns of interchanges, for example the
way alternating critical and complimentary statements
can be used as a means of coercive control.

20.7.2 Deliberate Misinformation

AI can also be used to detect and help ameliorate the
spread of deliberate misinformation in social media, in-
cluding that distributed by AI-driven bots. Social media
platforms are constantly adjusting algorithms and poli-
cies to attempt to prevent or discourage fake news [94,
213, 278]. This includes the use of techniques similar
to those used for intrusion detection in cybersecurity:
human-like patterns of behaviour are learnt from large
volumes of normal usage and then this can be used to
spot the unusual behaviour of bots. However, the bots
themselves are also using AI and machine learning tech-
niques, both to mimic the most successful influencers
and memes and to avoid the defences of the platforms.

Big data techniques, especially network analysis, have
been used to understand the spread of fake news and dis-
information on social media platforms. Crucially, it ap-
pears that fake news is spread more quickly and broadly
than true news, quite likely because it is more novel; fur-
thermore, while bots help this spread, the difference is
principally due to humans [292]. Attempts to distinguish
misinformation have also found that often the text of so-
cial media posts may be relatively innocuous, but then
link to media on other platforms, such as YouTube, that
contain the actual misinformation [190]. This means that
misinformation detection needs to operate both across
different kinds of media and also across different dis-
tribution platforms. This has both technical challenges

and also commercial ones as different platform providers
need to cooperate.

20.7.3 Filter Bubbles

Recommendation and personalisation algorithms help
to ensure that the news items we are shown or the
information we search for is most relevant to us. If a
search engine knows you are a geographer, then it makes
more sense that searches for ‘Chihuahua’ would favour
the place in Mexico, whereas if you are a dog lover, then
the dog breed is more likely to be of interest. Of course,
we are aware that the counter problem to this is that
we may only ever see information that confirms our
existing views, especially when the algorithms take into
account our social groups.

As with deliberate disinformation, big data network
analysis has been used to study the phenomena, for ex-
ample highlighting the role of ‘gatekeepers’, people who
consume a wide variety of media but then only pass on
those of a more partisan nature, which then get amplified
by the social recommendation algorithms; sadly people
who are more balanced pay a “price of bipartisanship”
and are less well received by their peers [111].

As well as analysing social recommendation, attempts
have been made to modify algorithms in order to offer
alternative views [106, 147]. These have had limited
success, especially in actual deployment, potentially
even hardening views. This is clearly an area where
behavioural science and data science need to work
together; for example, it may be more effective to show
views that are slightly less extreme than one’s own,
rather than those very different, which one may be likely
to reject out of hand.

Search engine personalisation may be even more
problematic as many people do not realise quite how
directed this can be and therefore trust the search
engine to offer an unbiased view of the world. If
instead we receive only information that agrees with
us, this may lead us to believe that we are operat-
ing on objective facts, further reinforcing our own
biases.

20.7.4 Poor Information

With the best intentions we can all create or pass on
poor quality or incorrect information. This is partic-
ularly problematic if we are acting in a professional
capacity whether as an academic, journalist or in policy

https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/Natural language processing
https://alandix.com/glossary/aibook/deliberate misinformation
https://alandix.com/glossary/aibook/social media
https://alandix.com/glossary/aibook/Big data
https://alandix.com/glossary/aibook/network analysis
https://alandix.com/glossary/aibook/fake news
https://alandix.com/glossary/aibook/disinformation
https://alandix.com/glossary/aibook/disinformation
https://alandix.com/glossary/aibook/social media
https://alandix.com/glossary/aibook/social media
https://alandix.com/glossary/aibook/social media
https://alandix.com/glossary/aibook/misinformation detection
https://alandix.com/glossary/aibook/search engine
https://alandix.com/glossary/aibook/big data
https://alandix.com/glossary/aibook/network analysis
https://alandix.com/glossary/aibook/network analysis
https://alandix.com/glossary/aibook/Search engine personalisation
https://alandix.com/glossary/aibook/search engine
https://alandix.com/glossary/aibook/search engine

making. As humans we have a known tendency to
seek confirmatory evidence, and, as discussed above,
if anything search engines and social media make
this worse. Ideally we need tools that counter this.
Although systems offering opposing views have had
poor success, they have potential as add-on tools for
those seeking broader viewpoints. For example, these
can use clustering techniques and deliberately offer
items with high reliability (say peer-reviewed science)
but in different clusters to the items you have been
referencing.

AI can make these problems worse. For example, gen-
erative AI language tools, or simply predictive text within
word processors, may lead to text in articles that sounds
articulate, reliable and persuasive. If errors or misinter-
pretations are common in the training data, these are
likely to be regurgitated. However, AI can also help by
performing a level of fact checking or analysing argu-
ments and flagging common fallacies.

TABLE 20.1 Data Used in Exercises 20.1 and 20.2.
Key: M–Mathematics, S–Science, L–Language, H–History.
(This data is also available in the chapter web resources.)
XY height M S L H apt A apt B

X 1.53 N N Y Y 0 3
X 1.56 N Y Y Y 2 3
Y 1.68 N Y N N 2 0
Y 1.6 Y Y Y N 3 2
Y 1.65 Y Y N Y 3 1
Y 1.65 Y Y Y N 3 3
X 1.56 N Y Y Y 2 3
X 1.52 Y N N Y 1 1
X 1.56 Y N Y N 0 3
Y 1.71 N Y N N 2 0
X 1.54 N N Y Y 0 3
Y 1.75 N Y N N 2 0
X 1.53 N N N Y 0 0
Y 1.63 N Y N N 2 0
X 1.58 N Y Y Y 3 3
Y 1.63 Y Y N N 3 0
Y 1.69 N Y N Y 3 0
X 1.56 Y N Y Y 1 3
Y 1.6 Y Y Y N 3 2
X 1.63 N N Y N 0 2

20.8 SUMMARY
This chapter has discussed a number of potential ways in
which AI can go wrong including bias in machine learn-
ing, threats to privacy and misinformation. In each case

When Things Go Wrong ■ 327

there are ways to mitigate the danger, but these are always
partial. For deliberate misuse, there is always an arms
race between those creating prevention mechanisms and
those seeking to undermine them. However, inadvertent
misuse can be at least as dangerous, for example believ-
ing that simply removing identifying characteristics can
prevent bias or spreading poor quality or misleading in-
formation. These threats do not mean that AI shouldn’t
be used but mean that we do need to use it responsibly
and be aware that despite our best efforts things can still
go wrong.

20.1 An employer has taken on a group of 20 school
leavers. Data collected during recruitment
(Table 20.1) includes height, and whether they
took higher level exams in maths, science,
language or history (but not their marks in the
exams). In order to guide future recruitment,
the employer trials them all for initial periods
on two kinds of tasks and they are assessed on
each (labelled ‘apt A’ and ‘apt B’). For the present
ignore the column labelled ‘XY’.

a. Work out a decision rule for whether someone
will be good at task A (score 2 or 3) using only
the columns ‘language’ and ‘history’. You can
use an algorithm such as ID3 or simply plot
the values and work out a rule by eye.

b. Do the same for task B, but this time using only
the columns ‘maths’ and ‘science’.

TABLE 20.2 First Dataset Used in Exercise 20.3
(This data and an extended version are also available in the
chapter web resources.)
x y x y x y

1.804 4.344 1.219 3.050 1.275 3.966
1.671 4.609 1.324 3.463 3.665 3.298
4.845 3.538 3.542 2.357 4.876 3.535
1.821 4.301 1.832 2.642 4.664 3.651
1.777 4.645 4.338 2.706 2.464 3.357
4.362 2.600 4.189 4.021 1.264 4.161
1.735 3.849 4.383 2.113 1.283 3.969
4.014 1.477 4.577 2.373 1.509 4.118
4.846 4.151 1.330 3.669 1.458 3.351
4.167 3.277 3.990 2.056 3.807 3.298
4.856 3.372 1.114 3.909 1.862 5.366
1.233 3.442 0.978 4.113 4.144 2.072
4.607 2.574 4.786 1.899 3.780 3.388
1.746 3.680

https://alandix.com/glossary/aibook/search engines
https://alandix.com/glossary/aibook/social media
https://alandix.com/glossary/aibook/clustering
https://alandix.com/glossary/aibook/clusters
https://alandix.com/glossary/aibook/generative AI
https://alandix.com/glossary/aibook/generative AI
https://alandix.com/glossary/aibook/bias
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/privacy
https://alandix.com/glossary/aibook/misinformation
https://alandix.com/glossary/aibook/bias
https://alandix.com/glossary/aibook/ID3

328 ■ Artificial Intelligence

TABLE 20.3 Second Dataset Used in Exercise 20.3
(This data and an extended version are also available in the
chapter web resources.)
x y x y x y

1.809 2.160 2.214 2.341 4.743 1.852
3.971 1.430 4.268 3.946 3.410 3.594
2.943 1.849 4.564 2.526 2.225 2.172
4.534 2.325 1.810 3.400 3.771 3.573
3.499 2.309 2.204 3.609 2.558 4.856
4.340 2.065 2.472 4.136 3.269 3.593
4.479 3.830 1.803 1.955 1.937 1.842
3.384 3.684 2.517 3.792 4.295 2.658
4.319 2.553 1.698 1.542 1.979 3.460
2.367 4.100 1.971 3.457 4.449 3.834
4.460 3.668 4.101 2.024 2.499 3.835
2.311 1.134 4.450 4.447 3.947 2.009
1.673 3.604 1.712 1.934 1.743 2.653
3.793 4.317

In fact the aptitude for tasks A and B in this sim-
ulated dataset were calculated as a weighted sum
of the four subjects studied. Apt A was calculated
from maths, science and history in the ratio 2:6:1
plus a small random amount. Similarly apt B was
calculated from maths, language and history in
the ratio 1:6:2. That is, language did not contribute
at all to apt A and science did not contribute to apt
B.

c. Is this surprising given your decision rules?

d. If so, can you work out what is happening?

20.2 This exercise builds on Exercise 20.1 and uses the
same data from Table 20.1:

a. Work out a decision rule for whether someone
will be good at task A (score 2 or 3) using only
the column ‘height’. You can use an algorithm
such as ID3 or simply plot the values and work
out a rule by eye.

b. Do the same for task B based again on height
only.

Suppose, the column labelled XY represents some
kind of protected characteristic, such as gender.

c. Use each of the decision rules in parts (a) and
(b) and from Exercise 20.1 to create predictors
of whether each person will be good at tasks A
and B.

d. Does this look fair taking into account the pro-
tected characteristic XY?

e. Can you make sense of any apparent unfair-
ness?

20.3 The data in Tables 20.2 and 20.3 have been
generated from small seeds of (simulated) real
data by adding small random perturbations (as
discussed originally in Chapter 8). In both tables,
there are multiple columns for x and y values,
but they should each be read as single datasets
of 40 x–y values. In this exercise you are aiming
to de-anonymise the data by finding the original
data items.

a. For the data in Table 20.2 identify clusters
of data items. You can do this by plotting
the data and identifying groups by eye, or by
using a clustering algorithm such as k-means.
For each cluster calculate its centroid.

b. Do the same for the data in Table 20.3.

There were four initial seed items with x–y values
(2,2),(2,4), (4,2) and (4,4). The second dataset (Ta-
ble 20.3) replicated each value ten times and then
added random noise to each replicated item, fol-
lowing the perturbation techniques in Chapter 8.
The first dataset (Table 20.2) did the same, but be-
fore replicating the seed data item it added a ran-
dom value to each seed first, as described in Sec-
tion 20.6.2.

c. How close were the results in (a) and (b) to this
original data?

d. Consider on your own, or discuss in small
groups the results you have observed and how
good each technique has been in preserving
privacy.

FURTHER READING

A. Dix. Human issues in the use of pattern recognition tech-
niques. In R. Beale and J. Finlay, editors, Neural networks
and pattern recognition in human computer interaction,
pages 429-451. Ellis Horwood, 1992.
This early paper highlighted the dangers of ethnic, gen-
der and social bias in black-box machine learning systems.

https://alandix.com/glossary/aibook/ID3
https://alandix.com/glossary/aibook/protected characteristic
https://alandix.com/glossary/aibook/clusters
https://alandix.com/glossary/aibook/clustering algorithm
https://alandix.com/glossary/aibook/k-means
https://alandix.com/glossary/aibook/centroid
https://alandix.com/glossary/aibook/perturbation techniques
https://alandix.com/glossary/aibook/privacy
https://alandix.com/glossary/aibook/bias
https://alandix.com/glossary/aibook/black-box machine learning

Sadly, many of the issues are still apparent more than 30
years on.

C. O’Neil. Weapons of math destruction: How big data increases
inequality and threatens democracy. Crown, New York,
NY, 2016.
Highly influential popular science book that shows how the
indiscriminate use of AI and big data can be socially divi-
sive and discriminatory.

J. Angwin, J. Larson, S. Mattu, and L. Kirchner. Machine bias:
There’s software used across the country to predict future
criminals: And it’s biased against blacks and how we ana-

When Things Go Wrong ■ 329

lyzed the COMPAS recidivism algorithm. ProPublica, 23
May 2016. https://www.propublica.org/article/machine-
bias-risk-assessments-in-criminal-sentencing and
https://www.propublica.org/article/how-we-analyzed-
the-compas-recidivism-algorithm

This is the article which exposed the potential discrimina-
tory impact of the COMPAS probation decision support
systems used in court rooms across the US. Read the more
detailed report of the way the authors obtained and anal-
ysed the data as well as the article aimed at the general
public. This illustrates the complexity of dealing with this
kind of data and in particular the issue of base rates, which
means it is hard to be fair in all senses at once.

https://alandix.com/glossary/aibook/big data
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm
https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm
https://alandix.com/glossary/aibook/COMPAS
https://alandix.com/glossary/aibook/base rates

CHAP T ER 2 1

Explainable AI

21.1 OVERVIEW
It is important that AI gives the right answers; however,
it is often equally important that we understand why
it is giving the answers it does. This was recognised
in the early days of expert systems, which offered
some form of explanation as we saw in Chapter 18.
It is particularly important for black-box machine
learning, such as deep neural networks, where the
link between input and output can be hard to fathom.
Because of this, the investigation of explainable AI
has become a sub-field in itself attracting both generic
solutions that are agnostic to the underlying AI or
machine learning and also more specialised solutions
to adapt specific algorithms to make them more
scrutable.

In this chapter we will first look in more detail at
the reasons why explainable AI is important, return
to Query-by-Browsing (first seen in Chapter 5) as
an example of how machine learning systems can
be designed to be scrutable and then look at general
heuristics for designing explainable AI.

21.2 INTRODUCTION
A job candidate has been pre-selected for shortlist by
a neural net; an autonomous car has suddenly changed
lanes almost causing an accident; the intelligent fridge
has ordered an extra pint of milk. From the life chang-
ing or life threatening to day-to-day living, decisions are
made by computer systems on our behalf. If something

goes wrong, or even when the decision appears correct,
we may need to ask the question, “why?”

In the case of failures we need to know whether it is the
result of a bug in the software, a need for more data, faulty
sensors, inadequate training or just ‘one of those things’:
a decision correct in the context, which happened to turn
out badly. Even if the decision appears acceptable, we
may wish to understand it for our own curiosity, peace
of mind or for legal compliance.

Explainable AI is the term that is used to describe
methods to make the algorithms that underlie decision-
making systems more understandable by humans.

21.2.1 Why We Need Explainable AI

We have looked at bias in detail as it is one of the areas
that has caused most controversy in the application of AI
and ML. However, bias is not the only reason we need to
dig more deeply into algorithmic (or other) decisions.

safety – When an autonomous car has an accident,
we need to understand what went wrong in order
to prevent similar future accidents. The airline
industry has long-standing rigorous methods for
this adopting a forensic analysis of every accident.
Normally car accidents are not treated with the
same level of detail even though in total they cause
a far greater death toll. This is in part because
they are each individually smaller but also because
it is too easy to blame the driver: human error.
However, software-controlled cars will mean that
accidents will be more likely to have repeatable
causes.

democracy – There have been growing worries about
the ways algorithms potentially undermine democ-
racy. Sometimes this is about deliberate practices

DOI: 10.1201/9781003082880-25 330

https://alandix.com/glossary/aibook/expert systems
https://alandix.com/glossary/aibook/black-box machine learning
https://alandix.com/glossary/aibook/black-box machine learning
https://alandix.com/glossary/aibook/deep neural networks
https://alandix.com/glossary/aibook/explainable AI
https://alandix.com/glossary/aibook/Query-by-Browsing
https://alandix.com/glossary/aibook/heuristics
https://alandix.com/glossary/aibook/neural net
https://alandix.com/glossary/aibook/autonomous car
https://alandix.com/glossary/aibook/Explainable AI
https://alandix.com/glossary/aibook/bias
https://alandix.com/glossary/aibook/autonomous car
http://dx.doi.org/10.1201/9781003082880-25

Explainable AI ■ 331

such as the Cambridge Analytica scandal or social
media bots. Perhaps more worrying is the way that
search engines and social media use a “what people
want” objective function in their algorithms, which
as a side effect creates bubbles of like-minded infor-
mation, allowing us to each feel we are in the fact-
based majority against an ignorant, albeit vocal, mi-
nority.

health and wellbeing – Imagine you are the senior
executive of a soft drinks manufacturer that wishes
to adopt an ethical advertising policy. You do not
deliberately advertise in children’s magazines or
on children’s TV, but how do you know whether
your online advertising, which may be driven by
keywords or much more complex algorithmic
mechanisms, is not implicitly targeting children?

social issues – The author first wrote about the danger
of gender and ethnic bias in AI in 1992 [74]. This
was prompted in part by a letter from his bank that
said he would need to pick up a chequebook directly
from his branch; they couldn’t post it because he
lived in a ‘high-risk postal code’. In other words they
did not trust the honesty of his neighbours if it were
misdelivered to the wrong house ... and, by implica-
tion, they would not trust him if they were consider-
ing posting a chequebook to a neighbour! This was
a minor inconvenience, but the cost of everything
from car insurance to interest rates on loans them-
selves is driven by a wide variety of factors includ-
ing the area you live in, often linked directly or in-
directly to your socio-economic status. At one level
this is simply reflecting the market, but of course the
same could be said about some of the other discrim-
inatory effects we have discussed. Unless we under-
stand how these decisions are made it is hard to as-
sess their ethical status.

science – There are similar worries in the scientific com-
munity that big data approaches to science may well
be ‘discovering’ relationships that later turn out to
be spurious [115]. Bias can also creep into the most
apparently ‘objective’ basic science. Most cognitive
psychology has been developed using experimental
subjects that are WEIRD (Western, Educated, In-
dustrialised, Rich and Democratic); a meta-study
revealed that fundamental cognitive and perceptual
phenomena, such as the Müller-Lyer illusion, which

had previously been regarded as universal, are often
culturally determined [130].

In general, for many kinds of algorithms and complex
rule-driven human processes, we need to be able to ask
the question “why?”

• Why did that car crash?

• Why was I refused a loan?

• Why did the police stop me in the street to question
me rather than all the others walking by?

This emphasises the need for some form of trans-
parency or explainability in complex algorithms.

21.2.2 Is Explainable AI Possible?

Explainability has always been a central aspect of
expert systems, but the field of explainable AI has been
growing rapidly over recent years in the face of the
above issues. Some suggest that deeply opaque methods
such as deep learning are by their nature unexplainable.
However, there has also been promising work, both
in more traditional symbolic AI (e.g. argumentation-
based reasoning) and in sub-symbolic AI and machine
learning (e.g. hotspot analysis of critical regions for
image-recognition systems).

Often results are very specific to a domain or tech-
nique, but it is evident that some of these offer poten-
tial methods that could be adapted or core principles ex-
tracted so that they could be used more widely. This has
led to a growing number of commercial and open-source
tools that can help increase transparency even for black-
box techniques.

21.3 AN EXAMPLE – QUERY-BY-BROWSING
Before discussing general methods and heuristics for
transparency and explanation, let’s look at a specific
example of a machine learning system, Query-by-
Browsing (QbB), which was designed to be transparent.
QbB was originally designed as a thought experiment to
highlight potential problems and solutions but is also a
running system [77].

We first discussed QbB in Chapter 5, but here we will
look in a little more detail. Note that the screenshots in
Chapter 5 were from the early envisionment, whereas
Figure 21.1 depicts a later web version.

https://alandix.com/glossary/aibook/Cambridge Analytica scandal
https://alandix.com/glossary/aibook/social media bots
https://alandix.com/glossary/aibook/social media bots
https://alandix.com/glossary/aibook/search engines
https://alandix.com/glossary/aibook/social media
https://alandix.com/glossary/aibook/objective function
https://alandix.com/glossary/aibook/bias
https://alandix.com/glossary/aibook/big data
https://alandix.com/glossary/aibook/Bias
https://alandix.com/glossary/aibook/transparency
https://alandix.com/glossary/aibook/transparency
https://alandix.com/glossary/aibook/explainability
https://alandix.com/glossary/aibook/expert systems
https://alandix.com/glossary/aibook/deep learning
https://alandix.com/glossary/aibook/symbolic AI
https://alandix.com/glossary/aibook/sub-symbolic AI
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/hotspot analysis
https://alandix.com/glossary/aibook/image-recognition
https://alandix.com/glossary/aibook/open-source tools
https://alandix.com/glossary/aibook/open-source tools
https://alandix.com/glossary/aibook/transparency
https://alandix.com/glossary/aibook/black-box techniques
https://alandix.com/glossary/aibook/black-box techniques
https://alandix.com/glossary/aibook/heuristics
https://alandix.com/glossary/aibook/transparency
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/Query-by-Browsing
https://alandix.com/glossary/aibook/Query-by-Browsing
https://alandix.com/glossary/aibook/QbB
https://alandix.com/glossary/aibook/QbB
https://alandix.com/glossary/aibook/QbB

332 ■ Artificial Intelligence

21.3.1 The Problem

Many recommender systems for news articles, techni-
cal help or additional products use some form of rele-
vance feedback. Sometimes this is implicit, when the user
clicks through an advert, and sometimes explicit, per-
haps a thumbs up or star rating. These can be almost
prescient suggesting just the right book, music or news
item but sometimes can be almost embarrassingly weird.
A recommender for news or products has to be ‘good
enough’, finding sufficient relevant articles to suggest and
not showing too many irrelevant items. Precise accuracy
is not required.

In contrast, when querying a database, say to select a
specific group of staff for a pay rise, it is usually impor-
tant that the records selected are precisely those that are
required. This is commonly achieved by writing an SQL
query to select the required records, but this requires
both technical expertise and the ability to frame one’s re-
quirements in precise logic. It would be nice to be able
to use relevance feedback style interactions to select the
records desired and then let that determine which staff
receive the pay rise.

The technical challenge is to do this in a way that
(a) you can be sure is updating precisely the right
staff; (b) the rule used is one that does not violate any
anti-discrimination legislation.

21.3.2 A Solution

The record form of a database table is compatible with the
input format of many machine-learning methods; how-
ever, most of these have relatively opaque learning algo-
rithms and decision rules.

Query-by-Browsing (QbB) attempts to address this,
starting with relevance-feedback-style user-selection of
records, but creating rules that are scrutable addressing
requirements (a) and (b), and in the process highlight-
ing the potential for biased results to arise that would be
illegal in a less transparent system.

The original machine learning system chosen was a
variant of ID3 [226, 227] (see Chapter 5) extended to
allow multi-column comparison criteria. However, one
QbB version used genetic algorithms to create rules [75].

Walking through the behaviour in Figure 21.1:

1. The user selects records of interest with a tick for
those that are wanted and cross for those not re-
quired.

2. The user selects “Make a Query”.

3. The system generates an SQL query that matches
the desired records.

4. The query is displayed in the Query area and
the records selected by the query are shown
highlighted.

5. The user can select more examples and counter-
examples to refine the query.

Note that the interface effectively includes two rep-
resentations of the decision rule. In the Query area the
decision tree is rendered as an SQL query giving an in-
tentional representation; this is useful for precision, en-
suring that conditions are exactly as required. In the List
area the highlighted records form an extensional view of
the rule, showing which records are chosen by it. This is
particularly useful for complex and–or queries, or those
including negation, which are known to be hard to inter-
pret.

As well as allowing precision, the Query area
makes the decision rule transparent. It is immediately
obvious if the rule says, for example, ‘SELECT *
WHERE title="Mr"’. As we saw in Chapter 20, this
is not sufficient to prevent bias, but certainly helps to
uncover problematic decision rules.

21.3.3 How It Works

Figure 21.2 shows schematically the steps ‘under the
bonnet’. The examples chosen by the user are fed into a
machine learning system that generates a decision tree
or similar rules, and these are then rendered as SQL (or
RQBE).

In the case of ID3 the top-down ‘divide and conquer’
nature of the machine learning algorithm is itself com-
prehensible; it is possible, albeit tedious, to go through
the process by hand or read a trace of the system learn-
ing. As noted, there has also been a version of QbB that
uses genetic algorithms to generate the decision tree. In
this case the complexity of the algorithm (large popula-
tion and number of generations) make the learning pro-
cess opaque; however, the rules generated are still under-
standable.

This is crucial. Think of a mathematician; the process
of finding a proof may require trial and error, sparks

https://alandix.com/glossary/aibook/recommender systems
https://alandix.com/glossary/aibook/relevance feedback
https://alandix.com/glossary/aibook/relevance feedback
https://alandix.com/glossary/aibook/accuracy
https://alandix.com/glossary/aibook/database
https://alandix.com/glossary/aibook/logic
https://alandix.com/glossary/aibook/relevance feedback
https://alandix.com/glossary/aibook/database
https://alandix.com/glossary/aibook/machine-learning
https://alandix.com/glossary/aibook/Query-by-Browsing
https://alandix.com/glossary/aibook/QbB
https://alandix.com/glossary/aibook/relevance-feedback
https://alandix.com/glossary/aibook/transparency
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/ID3
https://alandix.com/glossary/aibook/QbB
https://alandix.com/glossary/aibook/genetic algorithms
https://alandix.com/glossary/aibook/decision tree
https://alandix.com/glossary/aibook/intentional representation
https://alandix.com/glossary/aibook/intentional representation
https://alandix.com/glossary/aibook/extensional
https://alandix.com/glossary/aibook/transparency
https://alandix.com/glossary/aibook/bias
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/decision tree
https://alandix.com/glossary/aibook/ID3
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/QbB
https://alandix.com/glossary/aibook/genetic algorithms
https://alandix.com/glossary/aibook/decision tree

Explainable AI ■ 333

FIGURE 21.1 Query-by-Browsing (https://www.meandeviation.com/qbb/).

of insight, generating intermediate lemmas. To fully de-
scribe and justify each step of this would be impossible.
However, mathematicians do not attempt to represent
how they came to a solution, but instead present a proof,
a form of rational reconstruction of the actual mathemat-
ical process.

That is, we need to think about two kinds of trans-
parency:

• decision rules

• learning process

Just like the sparks of inspiration behind a mathemati-
cal proof, it is often acceptable to have an opaque learning
process so long as the rules generated are comprehensi-
ble.

21.4 HUMAN EXPLANATION – SUFFICIENT
REASON

When looking at complex AI methods, such as deep
learning, explainability can seem impossible. However, it
is crucial to remember that human–human explanations
are rarely utterly precise or reproducible.

If at a restaurant you were asked why you chose a
particular main course you might say something like,
“well I usually go for a steak, but it was late and I wanted
something lighter; I’d had fish last night, so chose a
salad.” Within this are many vague concepts and open
questions. Why normally choose steak? What do you
mean by ‘lighter’? Why not have fish two nights running?
However, for most purposes this would be a sufficient

explanation. Of course the statement might elicit further
questions, “why didn’t you go for the spinach brûlée, I
know it sounds odd but is actually quite delicious?” Of
course, both questions and answers themselves might
leave aspects only roughly defined, but sufficient for a
discussion about food.

We do not try to explain in terms of the firing of indi-
vidual neurons in our brain, or try to make precise ev-
ery nuance. Furthermore, the explanations we provide
are often rational reconstructions, ways to make sense
to ourselves, as much as to others, of the complex inter-
weaving of conscious and unconscious processes in our
minds.

In human–human discourse statements and expla-
nations are part of a process of mutual understanding
that enables further action or communication. Studies
repeatedly show an incremental process of unfolding
of partial statements rather than precise detailed
monologues (except in the university lecture theatre).
For example Grice’s conversational maxims include
“make your contribution as informative as is required” –
but no more [117]. Clark and Brennan [52] suggest that
our conversational utterances will always involve levels
of ambiguity, which are confirmed or disconfirmed as
part of on-going discourse, with the aim of creating a
sufficient common ground of understanding for future
conversation and action.

In short, the purpose of an explanation is to inspire
confidence and trust to allow future mutual action, or
possibly to create sufficient openness to allow critique or
dispute.

https://www.meandeviation.com/qbb/
https://alandix.com/glossary/aibook/insight
https://alandix.com/glossary/aibook/transparency
https://alandix.com/glossary/aibook/transparency
https://alandix.com/glossary/aibook/deep learning
https://alandix.com/glossary/aibook/deep learning
https://alandix.com/glossary/aibook/Grice's conversational maxims
https://alandix.com/glossary/aibook/common ground
https://alandix.com/glossary/aibook/trust

334 ■ Artificial Intelligence

FIGURE 21.2 QbB – under the bonnet.

When we look at machine–human explanations in this
light, it is often easier to see how we may at least make
complex big-data analysis, deep learning and similar al-
gorithms comprehensible if not utterly ‘explained’ to the
last possible detail. Indeed such an over-detailed expla-
nation would probably, for the human, be no explanation
at all.

21.5 LOCAL AND GLOBAL EXPLANATIONS
Another insight that helps make explanations more
tractable is that we may not need to understand the
whole system, merely the aspects that influence a
particular decision.

Imagine you have been stopped by a police officer and
ask, “why have you stopped me?” The police officer could
offer a complete explanation starting with Roman Law
and its impact on modern jurisprudence, or could sim-
ply say, “you were driving too fast”. There are times when
the complete explanation is useful, especially if you are
trying to assess the fairness of the legal system as a whole.
However, here the answer you require is local: why you
were stopped at this time, in this situation.

As well as being more comprehensible, these local ex-
planations also offer the potential for better human de-
cision making and action. If you drive just a little more
slowly, you won’t be stopped in future.

We have already seen an example of a local expla-
nation in Chapter 18, tracing inferences of a forwards
chaining inference system (Section 18.3.3). This is

FIGURE 21.3 Decision tree for whether police stop a car (se-
lected path in red).

far from perfect for a non-technical user, but at least
is a representation where the individual rules are
comprehensible. Other representations, especially those
from machine learning, need more work to make them
understandable. This section looks at two examples of
specific techniques for local explanation before we move
to a broader classification in Section 21.6.

21.5.1 Decision Trees – Easier Explanations

Some decision rules admit very easy local explanations.
For a decision tree the best explanation is often related to
the final decision points, lowest in the tree. For example,

https://alandix.com/glossary/aibook/big-data
https://alandix.com/glossary/aibook/deep learning
https://alandix.com/glossary/aibook/forwards chaining
https://alandix.com/glossary/aibook/forwards chaining
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/classification
https://alandix.com/glossary/aibook/decision tree

FIGURE 21.4 Alternative decision tree taking into account
emergency vehicles.

in Figure 21.3, the police officer would say, “you were
driving too fast”, not, “you weren’t driving dangerously”.

However, there are exceptions to this. The police
would not normally stop an ambulance or fire engine,
even if it were driving over the limit, as they would
assume it was on its way to an emergency. Figure 21.4
includes this and so the final decision point is therefore
“(is it an) emergency vehicle”. However, if the police
officer said “you’re not a fire engine”, this would be taken
as a facetious answer, not a helpful one.

In general, stating the obvious is not helpful! Happily,
the decision tree in Figure 21.4 is also labelled with
the probability of each branch occurring (taken from
either training data or ongoing data collection). A
more helpful explanation rule for decision trees is the
last low probability choice. In this case “driving too
fast”.

21.5.2 Black-box – Sensitivity and Perturbations

You do not always have such an easy (or at least rela-
tively easy) representation available. In some cases, the
representation is fundamentally complex, for example
the weights on thousands of internal nodes in a neural
network do not offer such an easy explanation. Alter-
natively, the algorithm may be proprietary or secret, for
example, a labour rights organisation might have access
to the decisions made by a gig-economy platform, but
not the algorithm itself. Even if the algorithm is avail-
able, generic tools or legal compliance tests need to work

Explainable AI ■ 335

with any algorithm, so cannot be dependent on specific
details.

In these cases it is possible to obtain local explana-
tions by trial and error. For example, in the UK a med-
ical advice app hit the news headlines when a reporter
entered identical sets of symptoms but changed whether
they said they were male or female. If the reporter en-
tered “male”, they were advised to go to a hospital as they
might be having a heart attack, if they entered “female”,
they were advised to stay at home as they probably just
had a stomach-ache.

To be fair on the app, there were good reasons for this,
heart problems are more common in men than women
(the base rate is different), so the gender-specific advice
is reasonable. One could imagine a similar case where
the woman was advised to seek medical attention due
to a suspected ectopic pregnancy, which would not be
sensible for a man with otherwise identical symptoms.
Crucially though, the reporter’s investigation brought the
issue to the surface.

Note that the reporter was entering a small perturba-
tion to the input data (female vs male) and observing the
local effects of this. This same technique can be applied
automatically. Given a black-box decision mechanism B
and particular set of data x, we can try lots and lots of
variants x1, x2, ..., xn where each xi is the same as x with
one or a small number of features modified. We can then
see the effect of the decision made on these B(x1), B(x2),
..., B(xn) compared with B(x) (see Figure 21.5).

These small trials are all small perturbations of the
original data x and can be used to build a local model
of B near x. This might be a decision tree or, in the case
of numeric features, some sort of linear decision model.

The same data can also be used to give a rating for the
sensitivity of each feature. For example, given a binary
feature such as “smoker/non-smoker” we can look at the
proportion of experiments that yield each decision out-
put for each feature value. The entropy or chi-squared
of the resulting contingency table can be used as a way
to assess the sensitivity, that is the extent to which that
feature is likely to change the categorisation.

21.6 HEURISTICS FOR EXPLANATION
For both local and global explanation, we can group
methods into three main classes (Figure 21.6):

white-box techniques – These are algorithms which by
their nature or with minor modifications naturally

https://alandix.com/glossary/aibook/decision tree
https://alandix.com/glossary/aibook/probability
https://alandix.com/glossary/aibook/neural network
https://alandix.com/glossary/aibook/neural network
https://alandix.com/glossary/aibook/gig-economy
https://alandix.com/glossary/aibook/base rate
https://alandix.com/glossary/aibook/perturbation
https://alandix.com/glossary/aibook/perturbation
https://alandix.com/glossary/aibook/decision tree
https://alandix.com/glossary/aibook/sensitivity
https://alandix.com/glossary/aibook/entropy
https://alandix.com/glossary/aibook/chi-squared
https://alandix.com/glossary/aibook/contingency table
https://alandix.com/glossary/aibook/sensitivity
https://alandix.com/glossary/aibook/white-box techniques

336 ■ Artificial Intelligence

FIGURE 21.5 Sensitivity analysis using small perturbations of the original data.

FIGURE 21.6 Three broad classes of explainability technique.

have understandable internal representations. For
example, the choice of decision trees in Query-by-
Browsing was because these were relatively easy to
understand and could easily be transformed into
standard database queries.

black-box techniques – Here one treats the process as
a black-box, but attempts to make sense of it from
the outside. If the police have suspected terrorists
under surveillance, they will not walk up to them
and ask, “why are you buying fertiliser?” Instead,
they will attempt to determine plans, motives
and reasons based on the observable behaviour
of the suspects. In a similar way, it is possible to
explore an AI or ML algorithm based purely on its
behaviour.

grey-box techniques – Where the internal process has
some sort of intermediate representation, such as
one of the internal layers in a multi-layer deep learn-
ing network, the network can effectively be split to
look for black-box explanations in both directions.
Typically the early layers, closer to the input, will be
framing broad conceptual categories, whereas the
later layers may be amenable to transformation onto
a more logical/symbolic representation.

Using this framework, we can consider different gen-
eral heuristics, some of which can be used for both exist-
ing and novel algorithms. We will consider a few exam-
ples for each of the three classes and more are described
on the book website.

21.6.1 White-box Techniques

The simplest case is when we choose an algorithm that
by its nature has a human readable representation, for
example a decision tree. Even a decision tree can be hard
to understand if it gets very large, and there are ways to
steer tree building algorithms towards more understand-
able trees, but at least the tree is relatively comprehen-
sible. A step along from this is where a black-box tech-
nique is used to generate a readable representation; for
example we saw in Section 21.3 that a version of Query-
by-Browsing used a genetic algorithm to create a deci-
sion tree. Although it would be hard to explain precisely
how the algorithm chose a particular tree, the tree itself
is readable. This is rather like a judge who has an instinc-
tive idea of whether the defendant is guilty or not based

https://alandix.com/glossary/aibook/decision trees
https://alandix.com/glossary/aibook/Query-by-Browsing
https://alandix.com/glossary/aibook/Query-by-Browsing
https://alandix.com/glossary/aibook/database queries
https://alandix.com/glossary/aibook/black-box techniques
https://alandix.com/glossary/aibook/grey-box techniques
https://alandix.com/glossary/aibook/deep learning
https://alandix.com/glossary/aibook/deep learning
https://alandix.com/glossary/aibook/heuristics
https://alandix.com/glossary/aibook/decision tree
https://alandix.com/glossary/aibook/black-box technique
https://alandix.com/glossary/aibook/black-box technique
https://alandix.com/glossary/aibook/Query-by-Browsing
https://alandix.com/glossary/aibook/Query-by-Browsing
https://alandix.com/glossary/aibook/genetic algorithm

on experience but has to make that feeling explicit in a
legally argued judgement.

More complex methods may use a black-box machine
learning algorithm initially, but then use it to generate a
white-box model.

One approach is simplification of the rule set. The end
point of training a neural network is a complex set of
real-valued weights and thresholds, in some cases it may
be possible to ‘harden’ the network into a binary network
after training is complete (see Figure 21.7). Recall from
Chapter 9 that the sigmoid activation function is nec-
essary to ‘soften’ the network to allow backpropagation
learning as it is often easier to learn continuous rather
than discrete boundaries. It may be possible to turn the
sigmoid into a simple threshold for deployment, result-
ing in a more comprehensible (albeit large) Boolean net-
work.

Another approach is to use adversarial examples
for white-box learning. Adversarial learning (as used
in GAN) generates a large case-base of examples.
One of the problems with many knowledge-rich
ML techniques (especially ones that have stochas-
tic/uncertainty elements) is that they were hamstrung
as they often needed to work on small training sets,
risking overfitting from repeated exposure to the
same examples, and missing cases where there were
none. The case-base of examples from the adversarial
learning can be used as a training set for these other
more traditional, and more scrutable, techniques (see
Figure 21.8).

In some ways this is rather like observing human ex-
perts and building an expert system based on the obser-
vations. The expert may not be able to fully explain their
decision making, but it may be possible to build an ex-
ternal model.

21.6.2 Black-box Techniques

We have already seen an example of a black-box method
when discussing sensitivity analysis techniques in Sec-
tion 21.5.2. Basically black-box techniques work rather
like a scientist examining a new material, experimenting
with it, measuring it and creating some sort of humanly
reasonable explanation. In the case of the local pertur-
bation methods, we used small perturbations around a
specific input, that is exploring the close neighbourhood
of a single value.

Explainable AI ■ 337

Most black-box techniques work either by generating
small perturbations or large numbers of examples gener-
ated in other ways.

Following the scientific analogy one can use a form
of exploratory analysis for human visualisation. Lots of
random or systematically chosen inputs can be used
to create input–output maps that can be visualised
using standard scientific or information visualisation
techniques (see Figure 21.9). The example values
can be created through lots of small perturbations of
training set data or randomly chosen. The former has
the advantage that they are more realistic examples,
but the latter may expose extreme cases or unexpected
generalisations of the algorithm. In addition, some
algorithms can be turned backwards, feeding in what
would normally be an output and generating typical
‘input’ values.

Various forms of hotspot analysis can be used to high-
light the key features in the data, or pixels in an image,
that are most critical for the classification or decision of
an algorithm, typically using some form of perturbation
of features/pixels (Figure 21.10). For example, an image
recognition algorithm might be very successful at distin-
guishing yachts from fighter aircraft, but hotspot analy-
sis shows that it is the bottom and top of the image that
are important, not the central part where the object is;
the image recognition algorithm is really distinguishing
images with sea at the bottom from those in the open
sky. SHAP, one of the popular systems for local expla-
nation, uses this method for non-image data, calculating
the sensitivity of each feature to help users assess which
are affecting the decision being made [178].

Similar methods can be used to distinguish central
and boundary examples. You begin generating lots
of examples but then perturb each. If an example’s
output remains constant despite perturbation, it is a
central example. If small perturbations change the class,
it is a boundary example (see Figure 21.11). Those
examples where small perturbations do not change it
but larger ones do (large and small as measured by
Hamming distance, or another suitable metric) are in
the penumbra of the boundary – these may also be
useful.

The boundary and central cases can be used to help
a human understand the classes, just as we would do if
explaining a concept to another person. We might use a
crow as a central example to describe what we mean by a
‘bird’ and then maybe use some extreme examples such

https://alandix.com/glossary/aibook/black-box machine learning
https://alandix.com/glossary/aibook/black-box machine learning
https://alandix.com/glossary/aibook/neural network
https://alandix.com/glossary/aibook/sigmoid activation function
https://alandix.com/glossary/aibook/backpropagation
https://alandix.com/glossary/aibook/sigmoid
https://alandix.com/glossary/aibook/threshold
https://alandix.com/glossary/aibook/Boolean network
https://alandix.com/glossary/aibook/Boolean network
https://alandix.com/glossary/aibook/white-box learning
https://alandix.com/glossary/aibook/Adversarial learning
https://alandix.com/glossary/aibook/GAN
https://alandix.com/glossary/aibook/overfitting
https://alandix.com/glossary/aibook/expert system
https://alandix.com/glossary/aibook/sensitivity analysis
https://alandix.com/glossary/aibook/perturbation
https://alandix.com/glossary/aibook/perturbation
https://alandix.com/glossary/aibook/information visualisation
https://alandix.com/glossary/aibook/hotspot analysis
https://alandix.com/glossary/aibook/classification
https://alandix.com/glossary/aibook/perturbation
https://alandix.com/glossary/aibook/image recognition
https://alandix.com/glossary/aibook/image recognition
https://alandix.com/glossary/aibook/image recognition
https://alandix.com/glossary/aibook/SHAP
https://alandix.com/glossary/aibook/sensitivity
https://alandix.com/glossary/aibook/perturbation
https://alandix.com/glossary/aibook/central example
https://alandix.com/glossary/aibook/boundary example
https://alandix.com/glossary/aibook/penumbra
https://alandix.com/glossary/aibook/central example

338 ■ Artificial Intelligence

FIGURE 21.7 Simplification of rule set.

FIGURE 21.8 Adversarial learning to generate training sets
for white-box learning.

FIGURE 21.9 Exploratory analysis for human visualisation.

FIGURE 21.10 Key feature detection through perturbations.

FIGURE 21.11 Identifying central and boundary examples.

as a penguin or ostrich to explore the range of animals
covered.

These boundary examples can also be used to generate
other forms of explanation. For example, LIME, another
popular local-explanation technique, automatically
finds cases close to a given example that fall inside or
outside of the same classification; these are then used

https://alandix.com/glossary/aibook/LIME
https://alandix.com/glossary/aibook/classification

FIGURE 21.12 Grey-box techniques prising open the black-
box at an internal layer.

to create a linear classifier that is simpler to understand
than the overall black-box model [235]. In general, it
is sometimes possible to take a black-box model that
is in itself inscrutable but then use it to train other,
more comprehensible algorithms, such as decision trees,
that can then be used either instead of the original
black-box model or as an explanation of it (local or
global).

21.6.3 Grey-box Techniques

Grey-box techniques are a form of divide-and-conquer,
effectively cutting the black-box model in half at a
layer of internal representation. The initial black-box
input–output system can then be seen as a pipeline
(Figure 21.12):

first stage – input transformed to internal representa-
tion

second stage – internal representation transformed to
output

Note that this is not changing the underlying algo-
rithm but simply viewing it in parts. In principle one
could split the network into three or more parts, here
we’ll just look at splitting in two at a single central layer.

For some ML algorithms, such as a simple three-layer
neural network, there is only one sensible split point,
but for deep neural networks, or other algorithms,
there may be many ways to do this division. We saw in
Chapter 8 that in deep network architectures there is

Explainable AI ■ 339

often a pinch point, a layer that has relatively few nodes
that in some way acts as a compact representation of
lower level features, and which would be an obvious split
point.

Divide-and-conquer approaches are generally useful
to simplify things, but as we discussed in Chapter 8, the
earlier and later parts of multi-layer systems often per-
form different functions. Typically, the early layers are
about feature extraction and the later layers about com-
bining these into some form of decision or categorisa-
tion. For example, it may be possible to create an expla-
nation of the first stage that says “that cluster of nodes is
about whether there is a cat in the scene” or “that is about
food being spicy”, whereas the second stage may be more
rule-like: “choose the meal if it is spicy, but not too expen-
sive”.

So, while in principle both sides of the black-box
can be treated equally, in practice different black-box
explanation techniques may work better on the two
parts. We’ll look at one example technique each for the
first and second parts.

As the first part of the black-box is likely to be
performing feature extraction, we are unlikely to extract
a simple logical explanation, but may be able to obtain
an intuitive understanding of the behaviour through
clustering or visualisation of the low-level features
represented in the internal layer.

We focus on the mapping from input to intermediate
activation of the layer for any specific input. We effec-
tively treat the intermediate activation (or a subset of it)
as a feature vector (rather than the input) and seek to find
clusters or other ways to organise the input space (see
Figure 21.13). This may involve initially reducing the ex-
ample set to a similarity matrix where the cosine or other
distance metric is used on the intermediate activations of
each pair of examples, this can then be fed into a variety
of algorithms for clustering such as self-organising maps
(see Section 6.6.2).

The aim of this process is not to create a precise
explanation of the first part of the black-box, but rather
to be able to obtain a qualitative understanding, such
as “ah, yes, this cluster of nodes is encoding the shape
of the wing”, “this set is about the background”. This is
the same as with explaining a friend’s taste in books;
you may not be able to codify precisely what makes
a novel fit into a genre, but you can still understand
enough to look for Gothic fantasy as a birthday
present.

https://alandix.com/glossary/aibook/decision trees
https://alandix.com/glossary/aibook/divide-and-conquer
https://alandix.com/glossary/aibook/black-box model
https://alandix.com/glossary/aibook/neural network
https://alandix.com/glossary/aibook/deep neural networks
https://alandix.com/glossary/aibook/pinch point
https://alandix.com/glossary/aibook/Divide-and-conquer
https://alandix.com/glossary/aibook/clustering
https://alandix.com/glossary/aibook/visualisation
https://alandix.com/glossary/aibook/clusters
https://alandix.com/glossary/aibook/similarity matrix
https://alandix.com/glossary/aibook/clustering
https://alandix.com/glossary/aibook/self-organising maps

340 ■ Artificial Intelligence

FIGURE 21.13 Clustering and comprehension of low-level
features.

The structure of the internal layer can also be used
more directly. For example, in Chapter 13 we saw how
this can be used as a latent space for other purposes such
as creating similarity measures between pairs of inputs,
or, in the case of word2vec having structural properties
such as “Madrid is to Spain as Paris is to France”.

As the second stage is often about building final deci-
sions from features, there is more likelihood that we will
be able to build more symbolic descriptions of the high-
level processing. In the book example, we might have an
intuitive idea of genre, but are able to say, “my friend likes
both Gothic fantasy and Nordic noir”, that is an explicit
and codifiable statement built on top of more intuitively
understood classes of literature.

In general, we may be able to use a white-box algo-
rithm, such as a decision tree to create an alternative set
of explainable rules (see Figure 21.14).

1. Take a set of input examples: I1, I2, ..., In

2. Use a black-box classifier to generate outputs: O1,
O2, ..., On

3. While doing this also store the intermediate rep-
resentation L1, L2, ..., Ln

4. Collect the pairs < L1, O1 >, < L2, O2 >, ...,
< Ln, On > as new training data

5. Apply your favourite white-box learning algo-
rithm to this training set

In some cases, the resulting white-box model may be
able to be substituted for the second stage of the original

FIGURE 21.14 High-level model generation.

black-box. However, more commonly it may not entirely
capture everything. For example, the friend might dislike
a particular Nordic noir writer. The general rule is still
useful to give a broad understanding of the behaviour of
the black-box system, even if there are exceptions that do
not fit the rule.

21.7 SUMMARY
We have seen how explainable AI is essential for un-
derstanding failures in AI as well as building confidence
when they are right. This is particularly important when
we want to detect or prevent bias in AI decisions. We saw
an example, QbB, of how explainability can be built into
the design of a system as well as more general heuris-
tics for explainability. Explanations can be global, giving
a sense of the whole system behaviour, or local, allow-
ing a viewer to make sense of a specific decision. Tech-
niques for increasing explainability may be: white-box,
using details of the internals of a model; black-box, sim-
ply using input and outputs in a model-agnostic way;
or grey-box, choosing an intermediate layer of a com-
plex model and then applying black-box techniques to
the parts before and after the chosen layer.

21.1 Consider the following situations of AI use:

• At the end of each week an integrated office
system uses natural language processing
techniques to scan emails for potential to-do
items that have been missed. It then posts a
reminder on Saturday morning.

https://alandix.com/glossary/aibook/latent space
https://alandix.com/glossary/aibook/similarity measures
https://alandix.com/glossary/aibook/word2vec
https://alandix.com/glossary/aibook/decision tree
https://alandix.com/glossary/aibook/white-box model
https://alandix.com/glossary/aibook/explainable AI
https://alandix.com/glossary/aibook/bias
https://alandix.com/glossary/aibook/QbB
https://alandix.com/glossary/aibook/heuristics
https://alandix.com/glossary/aibook/heuristics
https://alandix.com/glossary/aibook/white-box techniques
https://alandix.com/glossary/aibook/black-box techniques
https://alandix.com/glossary/aibook/grey-box techniques

Explainable AI ■ 341

• During a presidential election a video clip
is shared on social media showing one of
the candidates accepting a bribe. It says it
is based on image and voice reconstruction
from poor-quality CCTV recordings.

• An AI-generated proof has been published
showing that P=NP, a long open problem. The
proof is over a million lines long.

• A government agency asks a marketing
agency to advertise its new career develop-
ment grants. The agency uses AI to determine
advert placement in order to optimise uptake
of the grants.

• AI is used to detect potential cancerous tu-
mours in X-rays.

a. For each consider what kind of problems
might arise. Note, there may be several for
each situation.

b. Classify these using the terms in Sec-
tion 21.2.1.

c. For each situation and problem, say whether
explainability/transparency is likely to be an
issue.

21.2 Using the list of situations in Exercise 21.1, sug-
gest ways to mitigate potential problems using the
explainability techniques discussed in this chap-
ter.

21.3 A deep neural network has been trained to
identify potential cancers based on urine samples
for mass screening. However, there is a worry
that differences in hormones may make the
test less reliable for women. The network has a
pinch point (see Chapter 8), and the developers
have augmented the training data by saving the
activation state of the nodes in the pinch point for
each training example. As a first stage of analysis
they applied a clustering algorithm to this data
and identified 17 main clusters.

a. Using the local/global, white-box/black-
box/grey-box terminology, what kind of
explanation is being attempted.

b. What would you suggest as potential next
steps in the analysis?

The developers try an alternative analysis where
they use an algorithm to identify other samples
that are similar to a given one and let the clinician
see the AI classification of these alongside the pri-
mary diagnosis.

c. Classify this technique using the local/global,
white-box/black-box/grey-box terminology.

d. In what situations would each kind of expla-
nation be useful?

FURTHER READING

A. Dix. Human issues in the use of pattern recognition tech-
niques. In R. Beale and J. Finlay, editors, Neural networks
and pattern recognition in human computer interaction,
pages 429-451. Ellis Horwood 1992.
As well as identifying the potential for social, ethnic and
gender bias in black-box machine learning, it introduces
Query-by-Browsing as an example that provides what
would now be called explainable AI.

S. Lundberg and S. Lee. A unified approach to interpreting
model predictions. In Proceedings of the 31st interna-
tional conference on neural information processing sys-
tems, pages 4768–4777. Curran Associates Inc., Red Hook,
NY, 2017.
The paper that introduces SHAP.

M. Ribeiro, S. Singh, and C. Guestrin. “Why should I trust
you?”: Explaining the predictions of any classifier. In Pro-
ceedings of the 22nd ACM SIGKDD international con-
ference on knowledge discovery and data mining, pages
1135–1144. DOI:10.1145/2939672.2939778

The paper that introduces LIME. As well as being two
of the earlier model-agnostic methods in explainable AI,
SHAP and LIME are the inspiration for many other tech-
niques.

W. Samek, M. Grégoire, A. Vedaldi, L. K. Hansen, and K. R.
Müller, editors. Explainable AI: Interpreting, explaining
and visualizing deep learning. Springer LNAI 11700, Hei-
delberg, 2019.
Edited collection including chapters covering explainable
AI methods across a wide range of data and application
areas.

https://alandix.com/glossary/aibook/social media
https://alandix.com/glossary/aibook/deep neural network
https://alandix.com/glossary/aibook/pinch point
https://alandix.com/glossary/aibook/pinch point
https://alandix.com/glossary/aibook/clustering algorithm
https://alandix.com/glossary/aibook/classification
https://alandix.com/glossary/aibook/bias
https://alandix.com/glossary/aibook/black-box machine learning
https://alandix.com/glossary/aibook/Query-by-Browsing
https://alandix.com/glossary/aibook/SHAP
https://alandix.com/glossary/aibook/LIME

342 ■ Artificial Intelligence

C. Molnar. Interpretable machine learning: A guide for making
black box models explainable, 2023. https://christophm.g
ithub.io/interpretable-ml-book/
An open-access book that covers a very wide range of meth-
ods for explainable AI.

A. Crabtree, A. Urquhart, and J. Chen. Right to an explanation
considered harmful. Edinburgh School of Law Research
Paper, 2019. DOI:10.2139/ssrn.3384790

A philosophical and legal perspective on the ‘right to an
explanation’ embodied in EU law.

https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/

CHAP T ER 2 2

Models of the Mind – Human-like
Computing

22.1 OVERVIEW
In this chapter, we consider approaches that have been
developed for modelling not only intelligent human ac-
tivity but also human cognition. While neural networks
model the brain at a low level, this chapter focuses prin-
cipally on more high-level cognitive models. The earli-
est models of cognition focused on human rationality,
and we will look at two of these, ACT* and SOAR, which
use production systems to model problem solving and
memory. However, further into the chapter we will look
at other features of human cognition, including uncon-
scious processes of attention, imagination, dreaming and
emotion. We will see how human regret encompasses
many of these and demonstrates how modelling emotion
can not only offer understanding of human cognition but
also suggest potential ways to improve practical AI.

22.2 INTRODUCTION
While the origins of many techniques used in AI are
based on artificial human intelligence, often the way
they behave is strange and counter-intuitive, even if they
give the right results. Sometimes this does not matter;
so long as the algorithm works it is fine. However, there
are times when we would like the alien intelligence to
behave more like a human.

There are three main reasons for this:

Understanding humans – From early days of AI, cog-
nitive scientists have created computational models
of the human mind – the way people think, learn
and make mistakes. These are used to inform exper-
imental and theoretical psychology and potentially
help in creating better clinical interventions.

Assisting humans – In Chapter 19 we see examples
where lessons from human–human conversations
can help make the behaviour of an artificial system
more comprehensible. In many other examples,
from medical advice to computer-assisted learning
and care robots, automated systems need to behave
in ways that are intellectually and/or emotionally
meaningful.

Emulating humans – There have been many quite as-
tounding successes in AI, not least advances in deep
learning and the use of big data. However, there are
still some situations where current volume-based
AI is less good than a human, especially when there
are very few examples on which to base behaviour,
sometime called, in the extreme, single-shot learn-
ing.

While the first of these has been part of the earliest
history of AI, the other areas have risen in importance
more recently. As this is an open research area, there is
not yet an overarching view, so we’ll just look at a few
examples.

22.3 WHAT IS THE HUMAN MIND?
To model the human mind we first need to understand
what it is like, what it can do, what it can’t. A true model of

DOI: 10.1201/9781003082880-26 343

https://alandix.com/glossary/aibook/neural networks
https://alandix.com/glossary/aibook/ACT*
https://alandix.com/glossary/aibook/SOAR
https://alandix.com/glossary/aibook/imagination
https://alandix.com/glossary/aibook/emotion
https://alandix.com/glossary/aibook/regret
https://alandix.com/glossary/aibook/emotion
https://alandix.com/glossary/aibook/artificial human intelligence
https://alandix.com/glossary/aibook/alien intelligence
https://alandix.com/glossary/aibook/care robots
https://alandix.com/glossary/aibook/deep learning
https://alandix.com/glossary/aibook/deep learning
https://alandix.com/glossary/aibook/big data
https://alandix.com/glossary/aibook/single-shot learning
https://alandix.com/glossary/aibook/single-shot learning
http://dx.doi.org/10.1201/9781003082880-26

344 ■ Artificial Intelligence

the mind would incorporate the positive and the negative
about the human so that what is produced shares our
limitations as well as our strengths. Think about the mind
for a moment. What qualities does it have? What are its
limits? What do you think is its main strength?

The mind has a number of characteristics, some
good, some bad. On the positive side we are able to
tackle unfamiliar problems and apply our knowledge to
produce new solutions. Indeed, we can create original
things, from words to machines to music. People are very
creative, and, while it is debatable whether anything is
truly original (since most ideas are influenced by existing
things), we generate considerable variety and make huge
leaps through insight and imagination. Another positive
aspect of the human mind is its ability to learn. From
infancy humans assimilate information and make sense
of it, using it to interpret their environment. Our ability
to learn degrades as we get older (the speed at which
babies and small children learn is remarkable), but we
never lose it completely and we can adapt throughout
our lives. We can do several things at once, often
without any apparent loss of performance (although the
less skilled we are at something, the more we have to
concentrate our attention on it). So experienced drivers
have no problem talking to passengers and listening to
music while they drive. The capacity of the mind means
that we can still function, even if our performance is
impaired by fatigue, illness or even partial brain damage.
Although we may be less efficient or unable to do some
activities, we do not cease to function altogether, and
our mind provides inventive solutions to these problems
to support us when we face them.

The mind is clearly a remarkable thing. However, it
does have its limitations. Compare the performance of a
human with that of a computer in arithmetic calculations
or remembering the names and ages of all the people
who work in an organisation, and you will start to see
the limits. The human mind works slowly. In the time it
takes a human to add up a few numbers, a computer can
have summed millions. Human memory is also limited.
Our short-term memory capacity (i.e. what we can hold
in our conscious mind at a time) has been shown to be of
the order of 7 ± 2 items, that is a range of 5 to 9 [192]. Try
an experiment to test this. Spend 30 seconds looking at
this list of numbers; then, without looking, write down,
in order, as many as you can remember.

2 7 12 4 9 3 23 7 1 10 18 16 21

How many could you recall? Unless you have an excep-
tionally poor or well-trained memory you probably man-
aged between 5 and 9 items. There are of course ways of
increasing memory capacity; by relating items together,
such as in a phone number, we can remember more. So
in fact, our short-term memory capacity is not 7 ± 2
items but 7 ± 2 chunks of information. Our long-term
memory capacity is another matter. Many believe that
this is in principle unlimited, although in practice it is
bounded by our ability to recall the information. Again,
using cues and association helps us to remember more.
Finally, humans make mistakes, even when performing
tasks at which we are expert. This is because we have
lapses of concentration or get distracted. We are not often
precise and thorough.

All in all you can see that the human mind is very
different to the computer. The areas that we are good
at (creativity, flexibility, learning and so on) computers
are notoriously bad at, whereas those areas where we fall
down (memory, speed, accuracy) are the strengths of the
computer. So how can we make a computer model the
human mind? First we should be clear what is meant by
a model. A model is an approximation or a representa-
tion of something else. Think about architectural design.
As well as drawing up plans for a new building, an ar-
chitect will often produce a scale model of it. This is not
the building itself, it may not have all the properties of
the building (for instance, it is unlikely to be constructed
of the same materials), but it will have enough detail to
enable the architect to learn something about the real
building (perhaps about its appearance or structural lim-
itations).

22.4 RATIONALITY
Most of the earliest cognitive models were based on the
rational/logical aspects of human cognition. In partic-
ular production systems were adopted as they could be
adapted to a wide range of different kinds of knowledge
and matched various constructs in cognitive science.

Recall our discussion of the production system in
Chapter 2. It has three components: (i) a database
of current knowledge (the working memory), (ii)
rules to alter the state of the memory and (iii) some
method of deciding which rules to apply when. The
production system was originally proposed as a method
that plausibly reflected human thinking, including
short-term memory limitations. However, it was also

https://alandix.com/glossary/aibook/insight
https://alandix.com/glossary/aibook/imagination
https://alandix.com/glossary/aibook/Human memory
https://alandix.com/glossary/aibook/short-term memory
https://alandix.com/glossary/aibook/short-term memory
https://alandix.com/glossary/aibook/chunking
https://alandix.com/glossary/aibook/long-term memory
https://alandix.com/glossary/aibook/long-term memory
https://alandix.com/glossary/aibook/production system
https://alandix.com/glossary/aibook/database
https://alandix.com/glossary/aibook/working memory
https://alandix.com/glossary/aibook/production system
https://alandix.com/glossary/aibook/short-term memory

recognised as a powerful tool for the development
of AI applications, such as expert systems, and these
pragmatic concerns have rather eclipsed the role of
production systems as a model of the mind. How-
ever, a number of researchers continued to work on
this, and there are several general implementations
of models of cognition using production systems.
Two of the best known are ACT* [5, 6] and SOAR
[157, 158]. Each is a general model, but more specific
applications can be built on top of them. For example,
Programmable User Models or PUMs [304] was an
application built on top of SOAR, designed to simulate
the behaviour of a user with a computer or machine
interface.

22.4.1 ACTR

ACT-R (formally known as ACT*) has been developed
by Anderson and others over the past 40 years [5, 6]. It
comprises a large long-term memory in the form of a se-
mantic network, a small working memory of active items
and a production system that operates on the memories.
As in humans, only a small part of the long-term memory
is active at any time and the condition part of a rule can
only match an active element. The action part of the rule
can change memory (say, by activating a new item or de-
activating one) or perform some other action. Memory
elements can spread activation to their neighbours in the
semantic network, mimicking association of ideas. As in
human memory, activation decays if an element is not
accessed by the rules, so only items that are being used
remain in active memory.

ACT-R is used to model learning, or the development
of skills. It is Anderson’s contention that the mind can
develop procedures for specialised activities from some
basic knowledge, general problem-solving rules and a
mechanism for deciding which rules to apply. Conse-
quently skill is acquired in three stages. At first, general
purpose rules are used to make sense of facts known
about a problem. This is slow and places significant de-
mands on memory. Gradually the learner develops pro-
ductions or rules specific to the new task, and, as skill be-
comes more developed, these rules are tuned to improve
performance.

ACT-R provides two general mechanisms to account
for each of these transitions. Proceduralisation is the
mechanism to move from general rules to specific rules.
Memory access is reduced by removing those parts
of the rules that require it and by replacing variables

Models of the Mind – Human-like Computing ■ 345

with specific values. Generalisation is the mechanism
that tunes the specific rules to improve performance.
Commonalities between specific rules are identified and
combined to form a more general rule.

A simple example of ACT-R should illustrate
this (reproduced with permission from the authors’
book, Human–Computer Interaction, published by
Prentice Hall). Imagine you are learning to cook.
Initially you may have a general rule to tell you how
to determine the cooking time for a dish, together
with some explicit examples for particular dishes. You
can instantiate the rule by retrieving these cases from
memory.

IF cook[type,ingredients,time]
THEN

cook for: time

cook[casserole, [chicken,carrots,potatoes],
2 hours]

cook[casserole, [beef,dumpling,carrots],
2 hours]

cook[cake, [flour,sugar,butter,egg],
45 mins]

Gradually your knowledge becomes proceduralised
and you have specific rules for each case:

IF type is casserole
AND ingredients are

[chicken,carrots,potatoes]
THEN

cook for: 2 hours

IF type is casserole
AND ingredients are

[beef,dumpling,carrots]
THEN

cook for: 2 hours

IF type is cake
AND ingredients are

[flour,sugar,butter,egg]
THEN

cook for: 45 mins

Finally you may generalise from these rules to produce
general purpose rules which exploit their commonalities:

IF type is casserole
AND ingredients are ANYTHING
THEN

cook for: 2 hours

https://alandix.com/glossary/aibook/expert systems
https://alandix.com/glossary/aibook/ACT*
https://alandix.com/glossary/aibook/SOAR
https://alandix.com/glossary/aibook/Programmable User Models
https://alandix.com/glossary/aibook/PUMs
https://alandix.com/glossary/aibook/SOAR
https://alandix.com/glossary/aibook/ACT-R
https://alandix.com/glossary/aibook/ACT*
https://alandix.com/glossary/aibook/Anderson, J.
https://alandix.com/glossary/aibook/long-term memory
https://alandix.com/glossary/aibook/semantic network
https://alandix.com/glossary/aibook/semantic network
https://alandix.com/glossary/aibook/working memory
https://alandix.com/glossary/aibook/production system
https://alandix.com/glossary/aibook/long-term memory
https://alandix.com/glossary/aibook/semantic network
https://alandix.com/glossary/aibook/human memory
https://alandix.com/glossary/aibook/ACT-R
https://alandix.com/glossary/aibook/general problem-solving
https://alandix.com/glossary/aibook/ACT*!proceduralization
https://alandix.com/glossary/aibook/ACT-R!generalization
https://alandix.com/glossary/aibook/ACT-R

346 ■ Artificial Intelligence

ACT-R has shown impressive results in modelling the
learning of arithmetic in children and the utterances of a
child learning to speak, indicating that it is quite a pow-
erful general model. However, it is unable to model in-
dividual differences in learning or the problem of how
incorrect rules are acquired.

22.4.2 SOAR

SOAR is a general model of human problem solving
developed by Laird et al. [157, 158]. In SOAR, long-
term memory is represented by production rules, and
short-term memory is a buffer containing facts deduced
from these rules. Problem solving is modelled as state
space traversal (see Chap. 4), and SOAR uses the same
approach to problem solving to deal with domain
problems and those relating to the process of problem
solving. So, given a start state and a goal state, SOAR sets
up an initial problem space. It then faces the problem
of which rule to choose to move towards the goal. To
solve this problem it sets up an auxiliary problem space
and so on. By treating control problems in the same way
as domain problems SOAR is able to use either general
problem-solving rules or domain-specific rules to deal
with all types of problems. If a difficulty is encountered,
SOAR sets up an impasse, creating a subgoal to resolve
the difficulty.

A key characteristic of SOAR is chunking. When an
operator or sequence of operators has been particularly
successful in reaching a goal, SOAR encapsulates this in
a “chunk”, essentially a new operator that it can use when
it meets a similar problem again. The basic operation of
SOAR is illustrated in Figure 22.1.

SOAR is a flexible, general purpose architecture, but
this has its price: it can be resource intensive and slow.
However, as an attempt to produce a general cognitive
architecture it has been the focus of substantial research
efforts.

22.5 SUBCONSCIOUS AND INTUITION
In Chapter 1 we discussed thinking ‘fast and slow’ [151]:
System 1 (fast, largely unconscious) vs System 2 (slow,
conscious). Production systems emphasise System 2;
however, even when thinking logically/rationally, it is
hard to pin down just why we start a train of thought
or why a related idea comes to mind. Furthermore, the
main growth in AI has been in areas that are closest to
the unconscious aspects of the human condition: the

gut feeling or spark of insight. So one big challenge is to
connect these into some of the more traditional areas
of AI that were inspired more by higher-level conscious
cognition.

We will look at a few of these more intuitive or uncon-
scious aspects of human cognition to see lessons for AI.

22.5.1 Heuristics and Imagination

In Chapter 4, we saw that an appropriate heuristic evalu-
ation function can substantially improve tree search. This
mimics the way a human chess player will typically look
many moves ahead in their head, but, except in the very
last moves, this lookahead will not get as far as a check-
mate position, but stop when the board looks ‘good’ or
‘bad’. In traditional AI, these heuristics were designed by
hand. For example, counting the number of squares con-
trolled by pieces in a game of chess. However, the human
assessment is a mixture of rules and also an unconscious
assessment of board positions. In a very similar way Al-
phaGo combined tree search with deep neural networks
[260].

Similarly, when you read a mathematics proof, it is
written as if it were a straightforward progression from
axioms through lemmas and sub-proofs through to a fi-
nal theorem and QED. However, that is not how the hu-
man process of finding proof is actually done. There are
many, many ways the axioms could be combined, and
only some are useful in order to prove the theorem.

The human mathematician proceeds using heuristics
as to which paths to try. They might find it very hard to
explain just why they tried a particular strategy, but that
doesn’t matter. We don’t mind if the process is obscure,
so long as this gives rise to a verifiable proof. Similarly,
neural networks or other black-box techniques are being
applied to automated mathematical or logical reasoning.
While symbolic rule-based approaches are needed to do
the actual mathematical derivations, machine learning
can be applied to find heuristics to choose which rules
to try next.

Mathematical proofs, and indeed problem solving in
general, does not proceed linearly from axioms to theo-
rem or from problem statement to solution. Instead, one
‘guesses’ intermediate things, lemmas in mathematics,
or perhaps an intermediate state in a less mathematical
problem “if I can get the green block on top of the red one
...”.

https://alandix.com/glossary/aibook/ACT-R
https://alandix.com/glossary/aibook/SOAR
https://alandix.com/glossary/aibook/Laird, J.
https://alandix.com/glossary/aibook/long-term memory
https://alandix.com/glossary/aibook/long-term memory
https://alandix.com/glossary/aibook/production rules
https://alandix.com/glossary/aibook/short-term memory
https://alandix.com/glossary/aibook/state space traversal
https://alandix.com/glossary/aibook/state space traversal
https://alandix.com/glossary/aibook/goal state
https://alandix.com/glossary/aibook/general problem-solving
https://alandix.com/glossary/aibook/general problem-solving
https://alandix.com/glossary/aibook/SOAR
https://alandix.com/glossary/aibook/soar!chunking
https://alandix.com/glossary/aibook/SOAR
https://alandix.com/glossary/aibook/architecture
https://alandix.com/glossary/aibook/cognitive architecture
https://alandix.com/glossary/aibook/cognitive architecture
https://alandix.com/glossary/aibook/System 1
https://alandix.com/glossary/aibook/System 2
https://alandix.com/glossary/aibook/gut feeling
https://alandix.com/glossary/aibook/insight
https://alandix.com/glossary/aibook/heuristic evaluation function
https://alandix.com/glossary/aibook/heuristic evaluation function
https://alandix.com/glossary/aibook/tree search
https://alandix.com/glossary/aibook/chess
https://alandix.com/glossary/aibook/heuristics
https://alandix.com/glossary/aibook/AlphaGo
https://alandix.com/glossary/aibook/AlphaGo
https://alandix.com/glossary/aibook/tree search
https://alandix.com/glossary/aibook/deep neural networks
https://alandix.com/glossary/aibook/heuristics
https://alandix.com/glossary/aibook/neural networks
https://alandix.com/glossary/aibook/black-box techniques
https://alandix.com/glossary/aibook/logical reasoning
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/heuristics

Models of the Mind – Human-like Computing ■ 347

FIGURE 22.1 Basic SOAR diagram. After Newell [208].

One way we find these is by imagining or sketching
examples and noticing patterns, perhaps all triangles that
have the same base and height have the same area, or ev-
ery route between two places crosses a particular bridge.
If lots of examples can be generated virtually (automated
imagination!), then this creates exactly the sort of data
that can be used for automated pattern extraction, and
once patterns are noticed they become lemmas or inter-
mediate points for more conventional problem solving.

22.5.2 Attention, Salience and Boredom

In 1890, William Jones, one of the founders of modern
psychology, identified attention as a critical resource for
cognition [146]. He described attention as

“taking possession by the mind, in clear and
vivid form, of one out of what seem several
simultaneously possible objects or trains of
thought”
“withdrawal from some things in order to deal
effectively with others” [146]

Note that this is as much about what is ignored as what
is attended to – there are so many things, both entering
our senses and already in our heads, that they threaten to

overwhelm us, or as James puts it “without it [attention]
the consciousness of every creature would be a gray chaotic
indiscriminateness”. By ignoring the (for now) irrelevant,
we are able to function better on the things we want to
do.

This is already used within practical AI systems. Trans-
former models, discussed in Chapter 14, are often viewed
in terms of attention: those elements in the trace that are
more closely related to the current topic are given greater
salience and hence pass more activation to higher levels
of the network.

Human attention occurs at multiple levels, some vol-
untary, but some largely unconscious.

22.5.3 Rapid Serial Switching

When performing image recognition, it is common to
treat the scene as if it were presented as a whole, like look-
ing at a photograph. This might be to apply edge detec-
tion uniformly or simply to feed the whole image into a
neural network.

This does parallel the way it feels as if we see the world,
but in reality the detailed images humans see are built up
of many rapid saccades. Our eyes flit over a web page,
document or outdoor scene focusing first on one detail,

https://alandix.com/glossary/aibook/imagination
https://alandix.com/glossary/aibook/Transformer models
https://alandix.com/glossary/aibook/Transformer models
https://alandix.com/glossary/aibook/salience
https://alandix.com/glossary/aibook/image recognition
https://alandix.com/glossary/aibook/edge detection
https://alandix.com/glossary/aibook/edge detection
https://alandix.com/glossary/aibook/neural network
https://alandix.com/glossary/aibook/saccades

348 ■ Artificial Intelligence

and then another. Try fixating on a single word on this
page, and without moving your eyes, see how far you can
read either side. You’ll find that only the next word or
so is readable. Our eyes have very detailed resolution in
the middle, the fovea, but a far lower density of light-
detecting cells further out. The area of detailed vision
(the fovea) is very small and hence the need for saccades.
The detailed view we appear to have is the overall effect
of lots of small glimpses of specific areas.

In some ways this can be seen as a deficiency in hu-
man vision that is not present in computer vision, which
usually has a uniform resolution across the whole field
of view. However, the way our eye works can also be an
inspiration. In an image with two people in it there are
many low-level features, eyes, hands and clothes, and we
have to associate the right parts with the right person. If
the two people evoke different emotional feelings, per-
haps a terrorist and hostage, then it is important that the
connections are the right ones. This can be a challenge
taking the whole image at once, but when our eye scans
in saccades, it focuses attention on one person at a time,
so that we might momentarily focus on one person’s face,
recognise that person, then skip to the other perhaps fo-
cusing on the gun that suggests they are the aggressor.

This switching of attention can also happen at a more
gestalt level. When you look at an ambiguous image such
as Rubin’s vase, at one moment you will see one interpre-
tation, perhaps the vase, and then a few moments later it
will ‘flip’ and you’ll see two faces (Figure 22.2). Because
these are deliberately intended to be confusing, this can
go on for ever, but this exposes the kind of processing
that is going on for ‘ordinary’ images; our brains rapidly
flick between interpretations until they settle on one that
is most globally consistent.

22.5.4 Disambiguation

The same principle of rapidly switching attention can be
applied in higher-level processing. For example, we have
a piece of text with ambiguous words in it, perhaps ‘bow’,
which could be the front of a boat, the weapon used to
shoot an arrow, or bending over in greeting. How can we
design algorithms to disambiguate them? Some combi-
nations are more likely than others based on semantic
similarity, for example if there is mention of stern and
sail ‘bow’ is more likely to be the nautical term.

One way is to effectively push all of the interpretations
at once into a semantic network as shown in Figure 22.3 –

FIGURE 22.2 Rubin’s vase (Source: NevitNevit Dilmen, CC
BY-SA 3.0 via Wikimedia Commons).

putting a weight of, say, one third each on the three inter-
pretations of ‘bow’, and similarly half each for the mean-
ings of ‘stern’ (part of boat and facial expression). Some
form of spreading activation or neural algorithm then
iterates, strengthening similar meanings and weakening
others. This can work well if the topic is very focused but
may struggle where there are two things being discussed
such as the Queen visiting naval dockyards, rather like
the image with two people in it.

An alternative is to rapidly switch between different
interpretations. This can happen as an emergent property
of some spiking neural networks or can be coded more
explicitly. For example, one can use the same seman-
tic connections as shown in Figure 22.3 but randomly
fix different interpretations (e.g. temporarily treat ‘bow’
as meaning bend at the waist) with probability depen-
dent on their weight, then ripple out their impact on
the other interpretations to weaken or strengthen their
weights.

22.5.5 Boredom

At a higher level, we find it hard to maintain attention on
one topic as we get bored with it. In school, this lack of
attention is either criticised as a lack of diligence or diag-
nosed as a cognitive disorder, but in fact boredom is es-
sential for human cognition. Due to a brain injury, a pa-
tient lost their ‘ability’ to experience boredom. Undoubt-
edly, this caused some issues for social interactions, but
for most purposes this had little effect on their ability to

https://alandix.com/glossary/aibook/fovea
https://alandix.com/glossary/aibook/fovea
https://alandix.com/glossary/aibook/human vision
https://alandix.com/glossary/aibook/human vision
https://alandix.com/glossary/aibook/computer vision
https://alandix.com/glossary/aibook/saccades
https://alandix.com/glossary/aibook/gestalt
https://alandix.com/glossary/aibook/ambiguous image
https://alandix.com/glossary/aibook/Rubin's vase
https://alandix.com/glossary/aibook/semantic similarity
https://alandix.com/glossary/aibook/semantic similarity
https://alandix.com/glossary/aibook/semantic network
https://alandix.com/glossary/aibook/spreading activation
https://alandix.com/glossary/aibook/spiking neural networks
https://alandix.com/glossary/aibook/probability

FIGURE 22.3 Semantic network for disambiguation.

problem solve. However, for certain problems it severely
hampered them.

It is easy to see how this comes about. As we saw in
Chapter 4, there are many ways to tackle even highly for-
mulated AI problems, let alone the complexity of human
life. Initially one method of solution may seem best and
worth pursuing first. However, if this proves unfruitful,
we get bored and try an alternative strategy. If this flit-
ting happens too often, we may never reap the benefits
of the original choice, but without any boredom we may
simply become fixated on a single, initially ‘best choice’
method, and never find a solution. This is also true in the
physical world, indeed there is some evidence that ‘atten-
tion deficits’ may have been important for foraging, to
encourage movement to new food sources, literally seek-
ing more ‘fruitful’ patches [13].

Computationally it is often worth switching between
strategies, or trying several in parallel, especially if there
is the potential for partial work on one to benefit the
others. This has similarities with swarm computing, ex-
cept the agents in swarms usually have a similar method
of solution, but are following different alternative paths
within the solution space.

22.5.6 Dreaming

There are many theories about the role of sleep and
dreaming, especially as there are aspects that are
particularly unusual in humans. It is known that lack
of sleep can cause problems with laying down new
memories, so it is commonly assumed that sleeping
and dreaming have a role in ‘sorting out’ experiences
in shorter term memory before committing them to
long-term memories.

Models of the Mind – Human-like Computing ■ 349

This is still an open question. However, very early in
the investigation of neural networks, two papers were
coincidentally published in the same issue of a journal,
one by John Hopfield, one of the founders of neural
network research, and one by neuroscientist and co-
discoverer of DNA, Francis Crick. Both presented closely
equivalent accounts of one of the purposes of sleep
[59, 137].

If you create certain kinds of network architecture, for
example spreading activation over a semantic network, it
is possible to have small sub-networks with strong posi-
tive feedback between the elements within them. Even a
small initial amount of activation (perhaps because one
element has a weak semantic link to one of the inputs)
leads to more and more feedback until everything in the
sub-network is highly active. In a practical application,
these greedy sub-networks can be very difficult to deal
with. The suggestion is that during dreaming or maybe
sleeping in general, the brain is cut off from normal sen-
sory inputs and so is effectively subject to random noise.
If particular parts are constantly active when subject to
this, they clearly have low discrimination and are there-
fore weakened. Doing the same to an artificial network
would reduce the strength of the links in those greedy
sub-networks [2, 225].

22.6 EMOTION
Humans are not creatures of reason and logic alone: we
think, but we also feel. Human emotion can be viewed
pragmatically as a ‘fast response’ system – part of Kahne-
man’s System 1 thinking [151]. However, complex emo-
tions are more than that, modulating much of our so-
cial and personal experience of the world. While emotion
brings uncertainty and irrationality, it is also the mecha-
nism by which we take account of shared human experi-
ence in our decisions. We react to situations not only by
reason but by emotion.

We do not normally associate machines with emotion.
Indeed it is the ability to perform rationally, logically,
without the baggage of emotional response that can make
an intelligent machine powerful.

There are two possibilities for machine intelligence.
Either we attempt to provide artificial emotion (a neces-
sity if machine intelligence is truly to mirror that of hu-
mans) or we preserve objective reasoning. If we do the
former, will the occasional emotional decisions of a ma-
chine be acceptable to a human? Yet if we do the latter,
how will the decisions of the machine be tempered to

https://alandix.com/glossary/aibook/swarm computing
https://alandix.com/glossary/aibook/shorter term memory
https://alandix.com/glossary/aibook/long-term memories
https://alandix.com/glossary/aibook/neural networks
https://alandix.com/glossary/aibook/John Hopfield
https://alandix.com/glossary/aibook/Francis Crick
https://alandix.com/glossary/aibook/spreading activation
https://alandix.com/glossary/aibook/semantic network
https://alandix.com/glossary/aibook/positive feedback
https://alandix.com/glossary/aibook/positive feedback
https://alandix.com/glossary/aibook/Human emotion
https://alandix.com/glossary/aibook/System 1
https://alandix.com/glossary/aibook/emotion
https://alandix.com/glossary/aibook/artificial emotion

350 ■ Artificial Intelligence

take into account emotional and moral issues that are im-
portant in society?

It can certainly be useful for an artificial system to de-
tect, interpret or emulate emotion for a number of rea-
sons:

1. to detect or assess a human’s emotional state –
This may be for health-related reasons or simply
to improve the behaviour of a game. Typically this
might involve reading facial expressions, tone of
voice or, in the case of text, sentiment analysis us-
ing shifts in vocabulary.

2. to shape or predict human emotion – Again this
may be as part of mental health or well-being ap-
plications, but also in creating meaningful nar-
ratives for a story. Typically this requires deeper
models of human emotion.

3. to model or emulate human emotion – This may
be to support (2), but also may be a goal in its
own right, perhaps to make an artificial compan-
ion that (appears to) have feelings, or to model the
impact of therapies.

4. to improve machine algorithms – By un-
derstanding the role emotion plays in human
cognition and behaviour, we may be able to learn
techniques for automatic systems. For example,
boredom can help prevent fixation on a single
problem-solving strategy.

Note that each of these may be implemented at an in-
dividual or group level. For example, (1) might read an
individual face or use movement patterns in a crowd; (2)
and (3) could be used by a policing application to sug-
gest suitable strategies to defuse a potential riot situation
or calm inmates in a prison.

As is evident this is a broad area in itself. We’ll look in
a little more detail at empathy, which is related to (1),
(2) and (3); and then at a more computational exam-
ple, modelling regret, which has elements of (3) and (4).
However, this is an open topic: theoretically, computa-
tionally, philosophically and ethically.

22.6.1 Empathy and Theory of Mind

Some form of empathy is widely regarded as critical for
the functioning of both small- and large-scale social

groups. We are often asked to put ourselves in another
person’s shoes, to see the world through their eyes, and
moreover feel what it is like to be them. This is at the
heart of much of great literature: characters, who may
be far different from you, and yet whose inner life as
well as external circumstances are exposed to let you
vicariously experience what it is like to be them.

This is closely related to what psychologists call ‘theory
of mind’, being able to reason from another’s perspective.
A small child hiding will often assume they are invisible if
they can’t see you, rather like the mythical ostrich hiding
its head under the sand. Piaget established more formal
tests as part of his investigation into childhood cogni-
tive development [224]. When shown a model landscape
with a hill or building blocking the view of a doll in the
landscape, a small child will exhibit egocentrism: they
will say that the doll can see something the other side of
the obstacle, just because they, the child, can see it. How-
ever, as they get older, this usually changes. The exact age
depends on the child and the exact way the experiment
is performed, with more realistic scenarios yielding less
egocentric responses at an earlier age [273].

It is straightforward to see how AI can achieve this
perceptual level of theory of mind, working out what a
person could see or do based on their situation, but deep
empathy seems more elusive. How can a computer ‘get
inside’ the mind of a human without being human them-
selves, without having experienced the full gamut of hu-
man experience and emotion itself: joy, love, fear, laugh-
ter?

In descriptions of adult theory of mind, it is often as-
sumed that it is easy to put yourself into another person’s
shoes and imagine what it feels like. However, it is not so
clear why we need to understand our own minds. Indeed,
it can be argued that theory of mind precedes knowledge
of self – we need to understand other people’s mental
states and intentions in order to interact with them, and
because they similarly have models of our own inten-
tions, we need to model ourselves [82].

The ability to put ourselves into others’ heads is not
universal and certainly does not come ‘naturally’ to ev-
eryone. For example, those with some forms of neuro-
divergence may find it difficult to see the world instinc-
tively from another person’s viewpoint, or for that matter
to easily make sense of their own mental states. How-
ever, while this ability may not come naturally, it does
not mean it cannot be learnt, just as we may learn to un-

https://alandix.com/glossary/aibook/emotion
https://alandix.com/glossary/aibook/empathy
https://alandix.com/glossary/aibook/regret
https://alandix.com/glossary/aibook/empathy
https://alandix.com/glossary/aibook/theory of mind
https://alandix.com/glossary/aibook/theory of mind
https://alandix.com/glossary/aibook/childhood cognitive development
https://alandix.com/glossary/aibook/childhood cognitive development
https://alandix.com/glossary/aibook/egocentrism
https://alandix.com/glossary/aibook/theory of mind
https://alandix.com/glossary/aibook/human emotion
https://alandix.com/glossary/aibook/theory of mind

derstand many aspects of the world. Furthermore, this
less ‘natural’ empathy can often be better.

When we put ourselves into another person’s shoes,
we are asked to imagine what it would be like if we were
them. Of course, the real question is not what we would
feel like in their shoes, but what they feel like. We are
all different, with different life experiences and different
ways of thinking.

You may have heard about method acting, that is
when actors try to get inside the head of the part they
are playing, so that when something happens they really
feel the emotions of the part they are acting and respond
accordingly. In conversation, an actor was asked about
method acting and they said “well there is method
acting, and there is real acting”. By this they meant actors
who simply create the expressions, mannerisms and
behaviours of the role as they appear to others. That is to
understand the role but not attempt to be it. Of course,
there are different views on this within acting, and
there are similarly different approaches in day-to-day
life.

If it was essential to share experiences to understand
another person, the only suitable psychologist to
work in a prison for the criminally insane would
be one who is themself a psychopath. Indeed, the
power of a good clinical psychologist in general is
precisely to understand those who are not like them.
Understanding how someone is feeling is not the same
as feeling like them. This is equally true for machine
‘empathy’.

We saw in Chapter 1 how those interacting with
Eliza felt as if it understood them, even though all it
did was reflect back words they had said using very
simple rules. Arguably this is about the way the human
interprets the response of Eliza, but then surely that
is also true of Rogerian therapists on which Eliza was
based? Those using ChatGPT and similar tools have
reported apparently deeper understanding or empathy
as they engage in dialogues. This is not so surprising,
large language models are trained on large datasets
including human–human dialogues, so have access to
humans’ understanding of other humans (both good
and bad).

One can argue that while these dialogues might appear
to exhibit empathy, they are not true empathy. However,
the same could be said for professional therapists or
counsellors. Arguably, for therapeutic purposes it is
what it feels like for the patient that matters, so if they

Models of the Mind – Human-like Computing ■ 351

feel that a machine exhibits ‘real’ empathy, it is real
enough.

22.6.2 Regret

Have you ever lain awake at night going over and over a
conversation from the previous day, “if only I’d said ...”?
Regret feels like a very negative emotion, forcing us to re-
peatedly relive painful incidents, making outcomes that
were already bad far worse. It is hard to think of this as
something adaptive, designed to help in some way. How-
ever, it is precisely that, a human facility that can improve
learning.

The things you regret most are not simply when things
go wrong but when you could have done something to
make it better. The smaller the difference between success
and failure, the more intense the sense of regret. From
a cognitive point of view, regret brings a lot of different
mechanisms together:

1. Something bad happens (sensation and immedi-
ate assessment)

2. You bring to mind a possible action that may have
caused it (memory, imagination and salience)

3. You work out what might have happened if you’d
done something different (counterfactual reason-
ing)

4. If alternative actions would have been better you
feel worse (emotion)

5. The emotional state acts as (negative) reinforce-
ment of the action, making to less likely in future
(low-level stimulus–response learning)

6. In free moments you remember this and repeat
steps 2–5 in your mind (more extensive imagina-
tion)

Note how this involves high-level logical thinking, in-
deed complex counterfactual “what if I hadn’t ...” reason-
ing, but also emotion, imagination and eventually low-
level stimulus–response learning that we share with the
simplest forms of animal.

This is a finely tuned mechanism, related to some
forms of boosting in machine learning. The small things
that would have made a big difference are precisely
those that are most important to learn. In such cases

https://alandix.com/glossary/aibook/empathy
https://alandix.com/glossary/aibook/method acting
https://alandix.com/glossary/aibook/method acting
https://alandix.com/glossary/aibook/empathy
https://alandix.com/glossary/aibook/Eliza
https://alandix.com/glossary/aibook/ChatGPT
https://alandix.com/glossary/aibook/empathy
https://alandix.com/glossary/aibook/large language models
https://alandix.com/glossary/aibook/Regret
https://alandix.com/glossary/aibook/emotion
https://alandix.com/glossary/aibook/sensation
https://alandix.com/glossary/aibook/memory
https://alandix.com/glossary/aibook/imagination
https://alandix.com/glossary/aibook/salience
https://alandix.com/glossary/aibook/counterfactual reasoning
https://alandix.com/glossary/aibook/counterfactual reasoning
https://alandix.com/glossary/aibook/emotion
https://alandix.com/glossary/aibook/reinforcement
https://alandix.com/glossary/aibook/reinforcement
https://alandix.com/glossary/aibook/stimulus--response learning
https://alandix.com/glossary/aibook/imagination
https://alandix.com/glossary/aibook/imagination
https://alandix.com/glossary/aibook/emotion
https://alandix.com/glossary/aibook/imagination
https://alandix.com/glossary/aibook/stimulus--response learning
https://alandix.com/glossary/aibook/boosting
https://alandix.com/glossary/aibook/machine learning

352 ■ Artificial Intelligence

regret increases both the strength of learning (stronger
emotion) and also the (virtual) repetitions of the
example. Of course it can go wrong, and perhaps by
understanding this mechanism, we can design therapies
or self-help guides for psychologically damaging feelings
of pathological regret.

Partly in order to consider such issues a simple ma-
chine learning model of regret was built [90] and used
to learn how to play a simplified version of Black Jack. It
consisted of a basic stimulus–response learner and a plu-
gin regret module (Figure 22.4). The stimulus–response
learner chose a move based on the current situation and
the next cards were played based on the move. This could
lead to positive or negative reward (win or lose) that rein-
forced or inhibited learning – that is a form of reinforce-
ment learning. The plug-in regret model looked at the sit-
uation after the move, and the “what if ” analysis adjusted
the reward (emotion) accordingly. Note this emulates as-
pects of steps 1–5, but not step 6, the repetition.

Running this model led to two insights:

Learning with fewer examples – Even without the
additional boosting effect of repetition, adding the
regret module improved the rate of learning, in
terms of the number of iterations required, by a
factor of 5–10 times. For purely virtual learning,
this may well be outweighed by the additional
complexity, but where the iterations involve costly,
time-consuming or risky actions in the real world,
this is a massive improvement, and certainly a step
towards single-shot learning.

Positive regret – Initially the regret module only kicked
in for negative outcomes, but this looked odd in the
code. An alternative included ‘regret’ also for pos-
itive outcomes, that is if the outcome was positive,
but could have been better, the positive reward is re-
duced. This also improved learning, especially when
the low-level learning employed a ‘winner takes all’
approach choosing the best previous outcomes as
opposed to more probabilistic approaches.

The first of these partially validates the belief that the
human mechanism is a form of tuned learning but also
offers a way to improve machine learning algorithms, es-
pecially when these involve actions in the real world.

The second is perhaps more surprising. In human
terms it is a “grass is greener on the other side” effect.
Imagine you are eating a good meal in a restaurant, and

then spot someone else with a different meal, maybe
your meal does not feel quite so good now. At first this
sounds a rather unpleasant type of human emotion.
However, on investigating the machine learning
algorithm it became apparent that the positive regret
was forcing the algorithm to try alternatives rather than
settling on the first ‘good enough’ solution. That is,
positive regret helped to discourage local minima and
encourage exploration ... maybe you’ll try the other meal
next time you go to the restaurant.

22.6.3 Feeling

So far we have been using emotion and feeling
interchangeably. However, psychologists often draw a
distinction between the two, reserving the word feeling
for the internal subjective state and emotion for the
physiological state related to it (heart racing, etc.). The
natural assumption is that the latter is caused by the
former. However, William James, one of the late 19th-
century pioneers of current ideas of emotion, challenged
this assumption. He asserted that the opposite was the
case [145]: the bodily response comes first, for example
heart racing when you hear a loud bang, which is then
interpreted by higher levels of cognition, for example as
fear.

Modern views are a little more mixed, allowing some
top-down processes but still close to James’ view. This is
probably one of the reasons that in child development
empathy and the ability to talk about and manage one’s
own emotions develop at around the same age. It is at
least as difficult to understand oneself as others.

We have seen how emotions (in the above sense), such
as regret, may be useful for artificial intelligence. We’ve
also seen how empathy, understanding the emotions
and feelings of others, can also be helpful. It therefore
seems quite possible for an artificial intelligence to both
have emotions (as a means to drive better behaviour and
learning) and interpret its own emotions – that is have
feelings. But, apart from its curiosity value, would this
be a good thing?

First, one can imagine applications in research or
clinical settings following reason (3): ‘to model or
emulate human emotion’. There are various cognitive
conditions that make it hard to interpret one’s own
emotional state, which can be distressing. By modelling
these we may be able to understand human emotion
and feeling better and hence produce better clinical

https://alandix.com/glossary/aibook/regret
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/stimulus–response
https://alandix.com/glossary/aibook/stimulus–response
https://alandix.com/glossary/aibook/reinforcement learning
https://alandix.com/glossary/aibook/reinforcement learning
https://alandix.com/glossary/aibook/boosting
https://alandix.com/glossary/aibook/single-shot learning
https://alandix.com/glossary/aibook/Positive regret
https://alandix.com/glossary/aibook/winner takes all
https://alandix.com/glossary/aibook/probabilistic approaches
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/positive regret
https://alandix.com/glossary/aibook/local minima
https://alandix.com/glossary/aibook/exploration
https://alandix.com/glossary/aibook/feeling
https://alandix.com/glossary/aibook/emotion
https://alandix.com/glossary/aibook/William James
https://alandix.com/glossary/aibook/empathy
https://alandix.com/glossary/aibook/regret
https://alandix.com/glossary/aibook/empathy
https://alandix.com/glossary/aibook/human emotion
https://alandix.com/glossary/aibook/human feeling

Models of the Mind – Human-like Computing ■ 353

FIGURE 22.4 Regret in machine learning.

FIGURE 22.5 ChatGPT advice about an emotional situation (https://askaichat.app/, 6th May 2024).

strategies, both generally and maybe even for individual
therapy.

Second, one of the reasons humans have feelings as
well as emotions is that they can help us make better de-
cisions. Imagine that a shop has two entrances and that
just as you go out a painter drops a large dollop of paint
on your head. You might feel regret, “if only I’d left by the
other entrance”. However, by understanding that feeling
as regret, you can also think “but if I’d left the other way,
the careless painter might have been there”. Although you
won’t entirely be able to lose the slight anxiety next time
you leave the shop by the first entrance, your head will
tell you that both are still equally good. In a similar way,
a more reflective AI could both have emotions (where
they are useful) and also be able to interpret and where
appropriate overrule them or make more complex deci-
sions based on them; that is have ‘feelings’.

Of course by ‘feelings’ this does not (necessarily) mean
pain, distress or joy in the sense that humans, or indeed

many animals, do. However, this does start to take us
into more complicated ethical territory, which we ex-
plore more in the next chapter.

22.7 SUMMARY
In this chapter we have considered a number of mod-
els of the human mind ranging from production systems
for problem solving and memory to the role of emotion.
This has included the importance of attention in effective
use of cognitive and sensory resources and how dream-
ing can unlearn overactive sub-networks. The example of
regret showed how models of emotion have the potential
to improve machine learning. This and other examples
illustrate how emotion is not a separate aspect of human
experience, divorced from more rational aspects, but that
human cognition is a holistic phenomenon incorporat-
ing conscious and unconscious processes, rational and
emotional reactions and rich imagination. Incorporating
the full range of human-like cognition in AI has the po-

https://askaichat.app/
https://alandix.com/glossary/aibook/emotion
https://alandix.com/glossary/aibook/regret
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/conscious
https://alandix.com/glossary/aibook/unconscious
https://alandix.com/glossary/aibook/imagination

354 ■ Artificial Intelligence

tential to create AI that is both more effective and more
easily relates to people.

22.1 Illustrate how ACT-R would represent the process
of learning multiplication.

22.2 Figure 22.5 shows a ChatGPT session asking
about an emotional situation. Consider yourself,
or discuss in a group:

a. Does this represent emotional understanding?

b. Might this be useful advice?

A message to Sally from a friend reads: “I’m really
sorry to hear that you weren’t invited to the party. It
must feel really disappointing. Remember that your
worth is not defined by social events, and I’m here
for you if you need to talk or do something fun to-
gether.”

c. Does this suggest the friend is empathetic?

d. Would your answer change if you were told
that the friend had asked ChatGPT to generate
the text?1

22.3 As a mini-project, create a system with ‘artificial
imagination’ to suggest possible geometric facts.
Proceed as follows (but feel free to add your own
steps too).

a. Generate sets of four random points on a cir-
cle (the easiest way is to generate four random
numbers between 0 and 360 and use these as
angles from the centre), then sort them so that
they proceed clockwise and call them A, B, C
and D.

b. For each set calculate all of the six side lengths
(using a radius of 1): AB, AC, AD, BC, BC,
CD; the four angles subtended at the centre
(O): ∠AOB, ∠BOC, ∠COD, ∠DOA; and the 12
angles between points: ∠BAC, ∠BAD, ∠CAD,
∠ABC, ...

1In fact this text was generated by ChatGPT in response to the
follow-on question, “I’d like to express empathy with Sally; what should
I say?”

c. Next look for any near equalities, say if AD
is nearly the same length as CD or ∠BAC is
nearly the same angle as ∠ABD. Record these
in a separate column. Initially use 0.1 as ‘near’
in distance and 5 degrees as ‘near’ in angle,
but you can adjust these to get the best results.
Note if you use a smaller ‘near’, you will prob-
ably need to generate more examples.

d. By eye or using a machine learning algorithm,
look for potential ‘hypotheses’. For example,
a simple hypothesis would be if every set of
points has the same near equality. A more
complex one might be an ‘if-then’ rule such
as ‘if the length of AB is nearly the same as
the length CD, then the angles subtended at
the centres, ∠AOB and ∠COD, are also nearly
equal’.

e. Test your hypotheses by creating more
examples and verifying if the hypothesis is
true for them all. Note that for ‘if-then’ rules
use a slightly more strict ‘nearly the same’ on
the ‘if ’ part of the rule than you used when
generating the hypothesis.

f. Why do you think step 22.3c. uses ‘nearly’
equal rather than exactly equal, and why is it
a good idea to use a stricter ‘near’ for the ‘if ’
part of the rule?

g. There are symmetries in geometry, so that
properties that are true of points ABCD are
usually also true of rotations: BCDA, CDAB
and DABC; and also mirror images: DCBA,
etc. How might you make use of these?

FURTHER READING

J. A. Michon and A. Akyurek, editors. SOAR: A cognitive archi-
tecture in perspective. Kluwer, Dordrecht, 1992.
A collection of papers on SOAR and related research. An
excellent survey of the area.

J. R. Anderson. The architecture of cognition. Harvard Univer-
sity Press, Cambridge, MA, 1983.
The key work on the ACT* architecture.

J. E. Laird. An analysis and comparison of ACT-R and soar.
arXiv preprint arXiv:2201.09305, 2022.

https://alandix.com/glossary/aibook/ACT-R
https://alandix.com/glossary/aibook/ChatGPT
https://alandix.com/glossary/aibook/ChatGPT
https://alandix.com/glossary/aibook/artificial imagination
https://alandix.com/glossary/aibook/artificial imagination
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/SOAR
https://alandix.com/glossary/aibook/ACT*

Models of the Mind – Human-like Computing ■ 355

An analysis by Laird, the originator of SOAR, examining methods. SEFM 2021 collocated workshops, pages 15-36.
the common features of and differences between ACT-R Springer, 2022. ISBN:978-3-031-12429-7.
and SOAR models. This paper describes the regret model that is used in Sec-

tion 22.6.2.A. Dix and G. Kefalidou. Regret from cognition to code. In A.
Cerone et al., editors, Software engineering and formal

https://alandix.com/glossary/aibook/SOAR
https://alandix.com/glossary/aibook/ACT-R
https://alandix.com/glossary/aibook/SOAR

CHAP T ER 2 3

Philosophical, Ethical and Social
Issues

23.1 OVERVIEW
Artificial intelligence is not simply a matter of develop-
ing appropriate technology. It also raises philosophical,
moral, ethical and social questions that must be
addressed. In this chapter we highlight some of these.

We will start by looking at artificial intelligence itself –
is it indeed possible for machines to be truly intelligent,
and, if so, what about even more quintessential aspects
of being human such as creativity and consciousness.
These fundamental questions themselves raise moral
issues about the status of AI. However, we then go on
to consider more current and imminent issues as AI is
deployed in morally sensitive areas, and then further
how the very presence of AI is fundamentally changing
the way society and the economy operate, crucially often
further concentrating existing power and wealth.

23.2 THE LIMITS OF AI
“Can machines think?” is a question that has been de-
bated throughout the lifetime of AI. In fact it is a very
vague question that begs more questions than it answers.
However, the question of whether digital computers will
ever be considered intelligent is an important one, since
our response to it determines our view of what AI is all
about. We will consider some of the arguments in the

ongoing debate as well as the implications of seeking ma-
chine intelligence. But be warned: our intention is not to
direct your choice, simply to map out some of the possi-
bilities. You will have to consider the evidence and make
up your own mind!

23.2.1 Intelligent Machines or Engineering Tools?

As we have seen, there is a strand of AI that aims to in-
vestigate the nature of intelligence and build intelligent
machines. In Chapter 1, we saw that within this strand
there are in fact two camps:

• strong AI, whose supporters claim that machines
can possess cognitive states and can think (or will
be able to at some point in the future)

• weak AI, whose supporters use computers to test
theories of intelligence, and so build models of hu-
man intelligence.

A third view of AI is what might be called the prag-
matic view: it views AI as a discipline which has pro-
vided engineering techniques for solving difficult prob-
lems. Whether these techniques indicate intelligence or
reflect human cognition is immaterial.

It is the strong AI viewpoint that is most controversial,
since it suggests that machines can, or at least will, pos-
sess genuine independent intelligence. Fiction and film
have taken this notion on board with enthusiasm. But
how realistic is it, and what implications does it raise?
The first question we need to consider is: what is meant
by intelligence?

DOI: 10.1201/9781003082880-27 356

https://alandix.com/glossary/aibook/creativity
https://alandix.com/glossary/aibook/consciousness
https://alandix.com/glossary/aibook/strong AI
https://alandix.com/glossary/aibook/weak AI
https://alandix.com/glossary/aibook/human intelligence
https://alandix.com/glossary/aibook/human intelligence
https://alandix.com/glossary/aibook/pragmatic AI
https://alandix.com/glossary/aibook/pragmatic AI
https://alandix.com/glossary/aibook/strong AI
http://dx.doi.org/10.1201/9781003082880-27

Philosophical, Ethical and Social Issues ■ 357

23.2.2 What Is Intelligence?

Intelligence is very difficult to define. Chambers’
dictionary describes it as being “endowed with the
faculty of reason”, but our intuitive notion of intelligence
includes more than that. Intelligent agents can plan
and adapt plans to respond to changes in circumstance
(or anticipated changes); they can recognise what is
significant in a situation; they can learn new concepts
from old; they can interact and learn from their
environment; they can exercise aesthetic appreciation.
We might also identify imagination, moral conscience,
creativity and emotion as characteristics associated
with intelligence, but while it may not be possible
to have these without intelligence, it is possible to
have intelligence without these. A psychopath, for
example, lacks moral conscience but may be extremely
intelligent. So intelligence includes some or all of these
characteristics.

So where does such a definition leave us? As we have
seen throughout this book, computers are being given
the ability to plan, to adapt, to learn, to make decisions,
to reason, albeit in a limited form as yet. So perhaps this
suggests that machines that simulate human intelligence
are ultimately very likely? Many would argue that this is
not the case for one crucial reason: machines do not and
cannot share the environment in which we live. Weizen-
baum, one of the pioneers of AI and the creator of ELIZA,
claimed that the notion that a machine can be modelled
on a human is

artificial intelligence’s perverse grand fantasy.
[300]

He argues that an organism is defined by the problems
it faces. Computers will never face the same problems
as humans and therefore cannot simulate human intel-
ligence. Dreyfus [93] agrees, arguing that computers do
not have bodies and share the human context. They are
digital rather than analogue and are therefore fundamen-
tally different from humans. They cannot therefore sim-
ulate human intelligence. Others are not so dismissive.
Boden [29] believes that some aspects of intelligence may
be simulated, but not necessarily all:

The philosophical arguments most commonly
directed against artificial intelligence [such as
Dreyfus’] are unconvincing.

However, she goes on:

the issues involved are too obscure to allow
one …to insist that all aspects of human
thought could in principle be simulated by
computational means …Still less should one
assume that complete simulation is possible in
practice.

23.2.3 The Computational Argument vs. Searle’s
Chinese Room Argument

The fundamental assumption underlying strong AI is
that human intelligence is computational: we are simply
information processing machines and our brain runs
“programs”. The claim, therefore, is that with the right
programs, computers can possess cognitive states and
be said to understand and be intelligent. Even if the
hardware on which these programs run (the digital
computer) differs from that used by the human (the
brain), the computer will reflect human cognition.
We can use an analogy between natural and artificial
flight. In nature, birds have wings made of bone, skin,
muscle and feathers, which they flap in order to fly.
Early attempts at artificial flight tried to imitate this and
failed miserably (humans and birds are constructed very
differently). However, by understanding the underlying
principles of flight and the laws of thermodynamics,
essentially by using a model of flying, we can build
machines to fly. They look different from the natural
thing and use different materials but reflect the same
principles.

Searle [250] criticised the computational view by argu-
ing that a human could run a program and not possess
understanding (therefore suggesting that intelligence is
more than this). He also opposes the behavioural model
of the Turing test, since the appearance of intelligence
does not indicate actual intelligence. As a thought ex-
periment, he posed the Chinese Room argument which
(paraphrased) is as follows:

Imagine a prisoner locked in a room. He
understands English but not Chinese. In the
room he has pieces of Chinese writing and
English rules to say how to manipulate these.
An interrogator passes more Chinese writing
into the room. The rules say how to give back
Chinese symbols in response. Unknown to
the prisoner, the writing is a script which the
interrogator is asking about. The prisoner uses
the rules to answer the questions.

https://alandix.com/glossary/aibook/intelligence!definition
https://alandix.com/glossary/aibook/imagination
https://alandix.com/glossary/aibook/creativity
https://alandix.com/glossary/aibook/emotion
https://alandix.com/glossary/aibook/human intelligence
https://alandix.com/glossary/aibook/Weizenbaum, Joseph
https://alandix.com/glossary/aibook/Weizenbaum, Joseph
https://alandix.com/glossary/aibook/ELIZA
https://alandix.com/glossary/aibook/human intelligence
https://alandix.com/glossary/aibook/human intelligence
https://alandix.com/glossary/aibook/Dreyfus, H
https://alandix.com/glossary/aibook/Boden, M.
https://alandix.com/glossary/aibook/strong AI
https://alandix.com/glossary/aibook/human intelligence!computational view
https://alandix.com/glossary/aibook/Searle, J.
https://alandix.com/glossary/aibook/Turing test
https://alandix.com/glossary/aibook/thought experiment
https://alandix.com/glossary/aibook/thought experiment
https://alandix.com/glossary/aibook/Chinese Room argument

358 ■ Artificial Intelligence

Does the prisoner understand the script? Searle
argues that he doesn’t: the prisoner has only syntax,
not semantics. He has no idea what the scripts are
about. In order to understand he needs to know what
the symbols mean in the context of the real world.
He compares this scenario with another where the
prisoner is given scripts and asked questions in his own
language. In this case the prisoner does understand
since he not only knows how to answer the questions but
also what the questions and answers mean. Searle calls
this intentionality. Similarly, Searle argues, computers
do not have intentionality and therefore cannot be
intelligent.

A counter argument to Searle is the Systems Response:
the prisoner does not understand Chinese but is part of
a larger system that does (the whole room). The pris-
oner corresponds to only one level of a full computa-
tional system. The functional relationships between the
entities make an intelligent system. Searle argued against
this by dismissing the notion of a “system”: the system
is just the prisoner, the symbols, the instructions, and
if the prisoner is not demonstrating intelligence, then
adding pieces of paper cannot change that. However, this
assumes that a system is a physical thing, the combina-
tion of its physical constituents, whereas the Systems Re-
sponse argues that the system is made up of the com-
bined functions and interactions of the constituents, just
as being human is more than the sum of the cells com-
prising our bodies.

The arguments about machine intelligence will
continue. Indeed, we have only scratched the surface of
the philosophy of intelligence and artificial intelligence:
interested readers are directed to the recommended
reading list at the end of the chapter. However,
machine intelligence is not simply a philosophical
question. It raises important ethical and legal ques-
tions that will need to be addressed as it becomes a
reality.

23.3 CREATIVITY
Creativity appears to be a quintessentially human
trait, perhaps the last bastion against the onslaught of
AI. However, there has been work on various forms
of creative AI for many years. Some of the earliest
work was focused on poetry, taking models of simple
grammatical and poetic forms and using stochastic
methods to generate novel stanzas. Early work also

included painting or drawing robots (or at least robotic
arms) that looked at a face or scene and used a variety
of vision techniques to transform the image into one
that could be painted stroke by stroke. More recently
generative AI and large-language models have been used
to create apparently original images, music or text in the
style of famous artists, and even converse in rhyming
couplets.

Critics would say that the latter technologies are
merely copying or reproducing the collected work of
others. However, if this is so, the results often seem to
be novel, at least in terms of the ways in which they
combine these existing elements. Furthermore, human
creative art is based on thousands of years of culture
that shapes our ideas of beauty and influences our own
attempts to be truly original. So, if learning from the
work of others means computers are not creative, then
neither are we.

23.3.1 The Creative Process

Imagine a sealed room, rather like Searle’s Chinese
Room, with only a letter-box on its door. Unlike
Searle’s room, no text is fed into the sealed room, but
occasionally a small envelope is posted out [84]. Inside
the envelope is a short poem or aphorism of amazing
beauty or profundity. “There must be a really creative
person inside” everyone thinks. However, if you peek
inside the room instead you find row upon row upon
row of desks, and at each desk a chimpanzee typing. Back
and forth along the rows a small team of humans walk
the aisles. They look at each sheet of paper as they pass.
Sometimes it starts well, only to descend into gibberish
“To be or not bugle ppdf ”. However, occasionally, by
pure chance, the words have real merit. Quickly, the
walker pulls out the sheet of paper, folds it neatly,
places it in an envelope and posts it out through the
door.

Where is the creativity in this?
The possible responses are parallels to those for intel-

ligence in the Chinese room. One might assert that there
is no creativity: the chimpanzees merely randomly type,
the walkers simply act as critics, judging the text pro-
duced, but not being original themselves – although the
outputs of the room might appear creative, in fact it is an
illusion. However, one could counter-argue that even if
there is no creativity in the individual parts of the room,
the room as a whole, as a system, is creative.

https://alandix.com/glossary/aibook/Searle
https://alandix.com/glossary/aibook/intentionality
https://alandix.com/glossary/aibook/intentionality
https://alandix.com/glossary/aibook/Searle
https://alandix.com/glossary/aibook/Systems Response
https://alandix.com/glossary/aibook/Creativity
https://alandix.com/glossary/aibook/robots
https://alandix.com/glossary/aibook/computer vision
https://alandix.com/glossary/aibook/generative AI
https://alandix.com/glossary/aibook/large-language models
https://alandix.com/glossary/aibook/Chinese Room
https://alandix.com/glossary/aibook/Chinese Room
https://alandix.com/glossary/aibook/Chinese room

FIGURE 23.1 Generate and filter: initial ideas are iteratively
evaluated, filtered, recombined and modified until the final
problem solution or work of art is selected.

23.3.2 Generate and Filter

In fact much of human creativity is not purely individ-
ual and has elements of this system-like behaviour. In
the early 20th century various artists and writers delib-
erately used random methods as part of their practice,
and even where this is not the final outcome, it may be
used for inspiration. The importance of the wider system
is also evident in more classical work. Find a copy of the
complete works of Wordsworth, one of the great poets in
the English language. Depending on the edition, it will
run to about a thousand pages and yet only a handful of
the poems are commonly known. Wordsworth will have
carefully edited and curated his poems before publishing
them, so there will have been some selection, and yet af-
ter this, there is a potentially more extreme process of se-
lection by critics and society to give us the ‘Wordsworth’
that we know today.

A simple model of creativity is generate and filter –
an interplay of novel ideas being created and then only
some being taken forward for further work, perhaps be-
ing modified or recombined (see Figure 23.1). This is
rather like a human equivalent of the generate and test
search in Chapter 4. Depending on the art form and situ-
ation there may be more ‘creativity’ in either part of this.
Indeed in photography one could argue that the art is
90% selection.

As is evident, there are different roles in the human
creative process, sometimes all performed by the same
person, but often by a formal or informal team, indeed
great Renaissance artists such as Michelangelo will have
had a Bottega, or workshop, containing a team of appren-
tices and assistants.

In addition, much of human art is based on culture and
recombination. When we realise this, it is not surprising

Philosophical, Ethical and Social Issues ■ 359

that large-language models can produce apparently cre-
ative novel works. Most often this is part of a collabora-
tive process, rather like the Renaissance Bottega, where
the human user guides the model and then chooses what
is an acceptable outcome. In this model, the AI acts like
a better version of the typing chimpanzee: able to write
grammatically, and to some extent semantically, sensible
text, from which the humans can select the best passages.

23.3.3 The Critical Edge

What is perhaps less clear is the extent to which AI can
take the role of the critic.

The generate-and-filter view of creativity parallels one
of the definitions of a creative idea: that it should pos-
sess both novelty and quality. The generation processes
ensure novelty (with more or less initial quality) and the
filtering process ensures final quality. Quality here can
mean utility for more technical or scientific creativity, or
have a more aesthetic dimension in art and design. For
the former, it is easy to see how AI can perform the role
of assessing technical adequacy or scientific correctness.
Indeed AI is being actively used to generate new phar-
maceutical compounds, mathematical proofs and even
whole building blueprints. The latter, filtering and assess-
ing aesthetic quality, seems more challenging; however,
generative AI models based on large datasets are in some
way absorbing human ideas of what is good text, music
or images, and adversarial learning includes the ability to
train what are effectively critics.

23.3.4 Impact on Creative Professionals

Of course, this is all based on the way that large models
use corpora of existing human creative output. There are
concerns that the outputs of this infringe the intellectual
property of those whose work was used and furthermore
may put large numbers of creative professionals out of
work. For example, concern about the growing use of
AI in studios led to the 2023 Hollywood screenwriters
strike. Arguably, AI is no different from a human writer
who has studied the work of others and is part of a cul-
tural milieu. However, AI models are based on far greater
volumes of work than a human could ever digest, so do
fall into a different category.

Given there are ongoing experiments of AI agents in-
teracting with one another in virtual worlds, there is the
possibility that the agents may develop their own distinct
aesthetic, just as has happened in Bohemian circles in

https://alandix.com/glossary/aibook/generate and filter
https://alandix.com/glossary/aibook/generate and test
https://alandix.com/glossary/aibook/Bottega
https://alandix.com/glossary/aibook/large-language models
https://alandix.com/glossary/aibook/generate-and-filter
https://alandix.com/glossary/aibook/generative AI
https://alandix.com/glossary/aibook/adversarial learning
https://alandix.com/glossary/aibook/intellectual property
https://alandix.com/glossary/aibook/intellectual property

360 ■ Artificial Intelligence

the past. Such an alien aesthetic may initially be hard for
humans to understand [84], just as Eastern and Western
musical and artistic traditions took time to fully appreci-
ate each other.

In summary, it is clear that AI is already being used
extensively within creative practice and will undoubtedly
continue to do so. This will inevitably mean that some
jobs previously regarded as ‘creative’ are automated, but
hopefully AI might also enhance aspects of the creative
professions.

23.4 CONSCIOUSNESS
If creativity is complex, then AI consciousness is doubly
so. Philosophers and neuroscientists debate endlessly, in
part as there are so many ways we can understand con-
sciousness.

At the simplest, there is consciousness in the sense of
being awake rather than asleep or in a coma. However,
our experiences while dreaming are a form of conscious-
ness and if simply being awake is conscious, then surely
when the power is on and a computer is responding, it
is ‘conscious’ to some degree. However, we usually mean
something more than simply being awake.

23.4.1 Defining Consciousness

Most definitions are about deeper forms of conscious-
ness such as one’s stream of thought or knowledge of one-
self. For each, we can ask why it arises, that is what pur-
pose it has for human survival; and how it arises within
the human brain. These are also related to the question of
when it arose in the development of the human species,
or indeed other animals, and also in an individual hu-
man. The answer to each, of course, differs on the kind
of consciousness being discussed.

The first question, why, is important to assess whether
it is desirable for AI to have consciousness (of a particu-
lar kind). For example, an AI system that has an explicit
model of its reasoning process that led to a decision may
be able to critique and refine its behaviour – one of the
advantages we have in possessing that ability. Also, as we
saw in Chapter 8, one of the key advances in MapReduce
over the existing programming paradigms it built upon is
the way that it is able to respond to failures in individual
computers in a data centre – that is a form of model of
its own ‘body’.

The second question, how, can aid in the design of con-
scious AI, just as studying human neurones led to artifi-

cial neural networks. Neuroscientists attempt to discover
neural correlates of consciousness, particular patterns of
brain activity that arise when people exhibit different lev-
els or kinds of activity. However, if a region of the brain
is active when we are conscious, that may just be a re-
sult of consciousness, rather than its cause or origin. In-
deed some theories of consciousness focus on global syn-
chronisation of oscillations across the brain [100] or, in
Global Workspace Theory, as a shifting focus of attention
on different aspects [11].

The when question is closely associated with the
first, as one assumes there must have been some sort of
advantage for consciousness to emerge through natural
selection. This initial reason however does not need to be
the only reason it is useful today. Indeed, there are some
who regard consciousness as purely an epiphenomenon,
something that arose almost by accident due to more
mundane processes. However, even if the initial
reason for the development of a particular form of
consciousness is not the most important now, it may
suggest paths for artificial development. For example, as
noted in Chapter 22, theory of mind, the ability to ‘put
oneself in another’s shoes’ may have developed in order
to aid social relations and then indirectly gave rise to the
ability to understand one’s own intentions [82]. If this
is the case, or even plausibly the case, then this might
suggest focusing on artificial empathy may be a better
route to self-aware AI than addressing the problem head
on.

23.4.2 Dualism and Materialism

Descartes considered so-called res cogitans, the material
that forms mind, as distinct from res extensa, the physical
body [72]. This dualism is almost universally rejected by
modern scientists and philosophers, who instead focus
on physicalism or materialism, the tenet that everything
can be explained by physical processes [266].

Following this, many explanations of human con-
sciousness focus on the behaviour of neurones in the
brain as a form of information processing engine, and
then it becomes almost inevitable that sufficiently com-
plex information processing machines will themselves,
at some point, become conscious. The human brain
has about 100 billion neurones and current artificial
networks are already around this size.

There is resistance to this idea, arguing that while fully
material, there are special aspects of human (or animal)

https://alandix.com/glossary/aibook/consciousness
https://alandix.com/glossary/aibook/MapReduce
https://alandix.com/glossary/aibook/neurones
https://alandix.com/glossary/aibook/artificial neural networks
https://alandix.com/glossary/aibook/artificial neural networks
https://alandix.com/glossary/aibook/neural correlates of consciousness
https://alandix.com/glossary/aibook/global synchronisation of oscillations
https://alandix.com/glossary/aibook/global synchronisation of oscillations
https://alandix.com/glossary/aibook/Global Workspace Theory
https://alandix.com/glossary/aibook/natural selection
https://alandix.com/glossary/aibook/natural selection
https://alandix.com/glossary/aibook/epiphenomenon
https://alandix.com/glossary/aibook/theory of mind
https://alandix.com/glossary/aibook/empathy
https://alandix.com/glossary/aibook/Descartes
https://alandix.com/glossary/aibook/res cogitans
https://alandix.com/glossary/aibook/res extensa
https://alandix.com/glossary/aibook/dualism
https://alandix.com/glossary/aibook/physicalism
https://alandix.com/glossary/aibook/materialism
https://alandix.com/glossary/aibook/neurones
https://alandix.com/glossary/aibook/information processing

life that are necessary for consciousness (or indeed intel-
ligence) beyond this purely information processing ap-
proach. Searle’s Chinese room is just such an argument,
suggesting that there needs to be some form of inner
meaning ... or (in philosophical terms) intentionality be-
yond mere information.

Some look to the physical architecture of the brain,
in particular glial cells, which outnumber neurones. For
many years these were seen as having only a supporting
role for neurones rather than being engaged in mental
activity themselves, but more recent advances have raised
the potential that they may have a more active role. In
some ways this would merely raise the complexity and
number of elements that need to be considered. More
controversially, Penrose has argued that simple informa-
tion processing cannot explain some aspects of human
intelligence and suggested that quantum effects may be
critical [220]; the nanoscale microtubules that form the
scaffolding within cells are suggested as a potential locus
for this [221].

Many explanations of consciousness focus on the
body, for example Damasio locates the origins of
consciousness in the need for models of the body,
damage and function in order to maintain life [65]. This
might suggest that only embodied agents such as robots
could develop any form of consciousness. However,
one could also argue that it is the ability to act on the
physical and digital worlds that is more critical. We’ve
already seen that algorithms have models of their own
state in this sense.

23.4.3 The Hard Problem of Consciousness

The various forms of consciousness we have considered,
the modelling of one’s physical body, intentions or
train of thought, differ in terms of complexity, but
it does not feel impossible to imagine sufficiently
complex AI systems emulating them at some point.
However, there is something that is in many ways
simpler, and yet deeper – the bare awareness of being.
Chalmers calls this the hard problem of consciousness
[43].

Philosophers talk about qualia, for example the phe-
nomenological experience of seeing redness as opposed
to the wavelengths that comprise red, or the signals gen-
erated when they strike the sensory cells at the back of
your eye. These are themselves complex; your experience
of redness may be different from mine. The hard problem

Philosophical, Ethical and Social Issues ■ 361

is not about what these are like but that there is such an
experience that we can imagine.

One mental tool that is often used is to think about
‘Zombie Alice’, who can move, think and act, but has no
inner consciousness (or alternatively true intelligence).
It is argued that a machine will always be like this. Of
course if the zombie behaves and acts as if it is conscious,
then perhaps that is consciousness?

To some extent these are purely philosophical debates,
but we are coming to the point where they have potential
ethical consequences. In 2022 a Google engineer, Blake
Lemoine, was suspended and then fired because he had
claimed that the Google chatbot LaMDA was sentient
[179]. Most AI scientists did not agree with Lemoine,
but the issue is critical at a practical level – if an AI is
sentient, then is it ethical to turn it off, or manipulate its
algorithms?

23.5 MORALITY OF THE ARTIFICIAL
As AI is used more it inevitably influences areas where
complex moral choices are made, from healthcare to
law. This is true of every technology, but AI is often also
regarded as offering advice to human decision makers
or even autonomously making critical life-or-death
decisions.

23.5.1 Morally Neutral

One of the long-standing arguments about technology,
and indeed science, is whether it is morally neutral. One
argument is that technology/science in itself is neither
good nor bad, merely the use to which it is put, or as those
who oppose gun control would say, “guns don’t kill, peo-
ple do”. A common counter to this is that where the po-
tential harmful impacts are clear, we have responsibility.
To take another gun analogy, if you fire a gun in the gen-
eral direction of a person, its trajectory is predictable and
hence you may be imprisoned for the harm it causes.

Of course, the extreme examples are easy, but real sit-
uations are often more complicated.

One of the success stories of AI has been the way
it is being used to understand and generate potential
new drugs to address some of the most critical health
problems on our planet, for example AlphaFold’s
ability to predict folding structures of proteins [30]
or the discovery of the new drug halicin using neural
networks trained to predict antibacterial effects
[167, 182].

https://alandix.com/glossary/aibook/information processing
https://alandix.com/glossary/aibook/Searle
https://alandix.com/glossary/aibook/Chinese room
https://alandix.com/glossary/aibook/intentionality
https://alandix.com/glossary/aibook/brain architecture
https://alandix.com/glossary/aibook/glial cells
https://alandix.com/glossary/aibook/neurones
https://alandix.com/glossary/aibook/Penrose
https://alandix.com/glossary/aibook/human intelligence
https://alandix.com/glossary/aibook/human intelligence
https://alandix.com/glossary/aibook/microtubules
https://alandix.com/glossary/aibook/Damasio
https://alandix.com/glossary/aibook/embodied agents
https://alandix.com/glossary/aibook/robots
https://alandix.com/glossary/aibook/hard problem of consciousness
https://alandix.com/glossary/aibook/qualia
https://alandix.com/glossary/aibook/phenomenological
https://alandix.com/glossary/aibook/phenomenological
https://alandix.com/glossary/aibook/Zombie Alice
https://alandix.com/glossary/aibook/Google
https://alandix.com/glossary/aibook/Blake Lemoine
https://alandix.com/glossary/aibook/Blake Lemoine
https://alandix.com/glossary/aibook/chatbot
https://alandix.com/glossary/aibook/LaMDA
https://alandix.com/glossary/aibook/responsibility
https://alandix.com/glossary/aibook/AlphaFold
https://alandix.com/glossary/aibook/neural networks
https://alandix.com/glossary/aibook/neural networks

362 ■ Artificial Intelligence

However, this has its own dark side. In preparation
for a conference on potential implications of AI on the
Chemical/Biological Weapons Convention, researchers
using similar techniques to those used to discover halicin
turned their modelling around to see what would happen
if it deliberately attempted to create toxic compounds.
Their thought experiment shocked them as within six
hours their system had independently rediscovered VX
nerve agent as well as several compounds that were po-
tentially more toxic still [286].

The authors did not use this as an argument to ban
the use of AlphaFold, but they did use it to challenge the
scientific community to use this as a ‘wake-up call’ to
establish ways to manage the use of open AI models as
well as better ethical training for scientists.

Researchers creating new algorithms are further from
the point of application than those developing final ap-
plications, but we all need to think about the potential
implications of the algorithms and systems we create.
The UK’s research funding agencies created a framework,
AREA, to help researchers think about responsible inno-
vation (see Figure 23.2).

23.5.2 Who Is Responsible?

The first and, perhaps, most crucial issue raised by
the possibility of intelligent, independent machines
is responsibility. Who is responsible, both ethically
and legally, for their actions? Can a machine be held
accountable?

Even when the first edition of this book was written,
nearly 30 years ago, expert systems were already being
used to decide where resources should be allocated in a
UK hospital. This is now common; an algorithm predicts
which patients have most chance of survival, aiding doc-
tors in deciding where treatment should be given. More
recently US judges have been using the COMPAS system
to predict likelihood of recidivism, whether a prisoner is
likely to re-offend. This is then used, controversially, by
the judges as part of their assessment as to whether to
grant parole [7, 143].

In both these cases they are human-in-the-loop sys-
tems, that is the ultimate decision is made by a human;
the machine does not literally decide who should live
or die, who should be jailed or go free. However, these
systems do influence human decision making, especially
given automation bias, the tendency for people to over-
trust machines. In the case of a wrong decision by an ex-

pert system, is the system responsible or the knowledge
engineer or the user? And if the system, how can a ma-
chine be made accountable? Normal legal methods are
not valid here. It is not possible to sue a machine!

These issues are being actively discussed in theory by
philosophers of ethics and in practice as part of policy
formation. However, for many purposes it is the legal and
insurance professions which will determine the practical
assignment of responsibility.

We discussed empathy in Chapter 22, but principally
thinking about human–AI dialogues and the way the AI
may or may not appear to be empathetic to the human.
However, taking others’ feelings into account is not just
important for therapy or conversation. Humans feel and
so these feelings matter for many types of decisions.

Asimov’s First Law of Robotics says “A robot may not
injure a human being or, through inaction, allow a hu-
man being to come to harm” [10]. When first stated in the
1960s this was science fiction, but these are precisely the
kinds of rules being built into autonomous vehicles. For
preventing serious road accidents, it is primarily physi-
cal harm that is to be avoided. However, even for road
use, emotion matters. Imagine if an autonomous vehicle
passes very close to a pedestrian, or appears to ‘near miss’
another car; this may be ‘safe’ defined purely physically,
but the humans involved may feel stressed, or anxious.

For many purposes, the decision of a machine may
be acceptable because it is impersonal and therefore
objective. However, emotional empathy tempers
decisions that are otherwise too severe. An empathetic
autonomous vehicle may be polite as well as safe.

23.5.3 Life or Death Decisions

Moral philosophers love to create thought experiments
as ways to probe the extreme ethical implications of ap-
parently benign rules, or to see how people weigh up dif-
ficult choices. One of these that has become important
within AI is the Trolley Problem, particularly in relation
to autonomous vehicles. (Note: A small urban train is
known as a trolley in some parts of the world.)

Imagine a runaway train is about to hit a group
of people, often five. Fortunately, you are standing
right next to a lever which can redirect the train
onto a side track saving their lives. Unfortunately
there is a single person standing on the side track
(Figure 23.3). What do you do, sacrifice one life to save
five?

https://alandix.com/glossary/aibook/thought experiment
https://alandix.com/glossary/aibook/AlphaFold
https://alandix.com/glossary/aibook/AREA framework
https://alandix.com/glossary/aibook/responsible innovation
https://alandix.com/glossary/aibook/responsible innovation
https://alandix.com/glossary/aibook/responsibility
https://alandix.com/glossary/aibook/accountable
https://alandix.com/glossary/aibook/expert systems
https://alandix.com/glossary/aibook/COMPAS
https://alandix.com/glossary/aibook/recidivism
https://alandix.com/glossary/aibook/human-in-the-loop
https://alandix.com/glossary/aibook/automation bias
https://alandix.com/glossary/aibook/expert system
https://alandix.com/glossary/aibook/expert system
https://alandix.com/glossary/aibook/knowledge engineer
https://alandix.com/glossary/aibook/knowledge engineer
https://alandix.com/glossary/aibook/accountable
https://alandix.com/glossary/aibook/responsibility
https://alandix.com/glossary/aibook/empathy
https://alandix.com/glossary/aibook/Asimov, Isaac
https://alandix.com/glossary/aibook/Law of Robotics
https://alandix.com/glossary/aibook/autonomous vehicles
https://alandix.com/glossary/aibook/emotion
https://alandix.com/glossary/aibook/autonomous vehicle
https://alandix.com/glossary/aibook/empathy
https://alandix.com/glossary/aibook/autonomous vehicle
https://alandix.com/glossary/aibook/Trolley Problem
https://alandix.com/glossary/aibook/autonomous vehicles

Philosophical, Ethical and Social Issues ■ 363

FIGURE 23.2 Anticipate, Reflect, Engage, Act – The UKRI AREA Framework for Responsible Innovation [282].

FIGURE 23.3 Trolley problem: do you sacrifice one life to save five? (Image: McGeddon Vector: Zapyon – This SVG diagram
includes elements from this icon: CC-BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=67107784).

There are variants to this. You can play with the
numbers: would it make a difference if 50, 500 or 5
million lives were at stake? Or with the people: maybe
a healthy young child on one track and a terminally ill
person in a coma on the other. More problematic cases
include pushing someone onto a track to stop the train
– few people say they would do this, even if they would
shift the train down the side track. It is clearly not simply
about numbers, but about the kinds of action we are
doing.

These situations do occur. During the Second World
War British intelligence learnt that there was to be a huge
bombing raid on Coventry. However, to raise the alarm
would have compromised the source of the intelligence
and the future course of the war. The British government
chose not to act resulting in many avoidable deaths in the

city; a decision which has caused controversy ever since,
but is also generally understood in the light of the times.

Happily, we are rarely faced with such dilemmas.
Partly because they don’t happen very often except in
the movies or in wartime, but also when a real situation
arises of this kind, those involved rarely have time to
make a careful weighing up of the options. Imagine a car
is driving down a road when a child runs out in front;
the driver instinctively swerves and then hits a bus stop
injuring and killing many of these waiting there. No one
would blame the driver for this, even though it would
probably haunt them ever after. The decision is taken in
the spur of the moment, not coldly deciding who lives
and who dies.

Now imagine you are programming the guidance sys-
tem for an autonomous car. It has many sensors facing

https://alandix.com/glossary/aibook/AREA Framework
https://commons.wikimedia.org/w/index.php?curid=67107784
https://alandix.com/glossary/aibook/autonomous car

364 ■ Artificial Intelligence

in all directions and a fast processor, so it has near per-
fect knowledge of the consequences of every choice. We
clearly build in rules either explicitly or through train-
ing examples so that it will take evasive action to avoid
hitting anyone when this is possible. However, there will
be times when the speed of the vehicle and the options
available mean that someone is going to be hit ... how do
we program the system to make the choice of who will
die?

23.5.4 The Special Ethics of AI

The ethical conundrum of the trolley problem is not new,
the difference is that AI means we have to explicitly de-
cide, ahead of time, what rule it is to follow.

These choices will of course have legal implications in
the case that there are fatalities or injuries. Even if there
is no single rule operating, it will have been possible to
run simulations and see the impact of rules, so neither
companies supplying such vehicles nor those using them
will have the defence of ignorance. Countries will almost
certainly develop different safety guidelines and laws so
that AI software may have to change its rules as vehicles
cross borders ... meaning different trolley problem deci-
sions in different jurisdictions.

Finally, this interacts with other issues, not least the
potential for unintended bias in algorithms. Imagine it
is a winter’s evening and a patch of fog suddenly blows
across the road reducing visibility, the autonomous vehi-
cle has already started to slow, but too late detects two po-
tential pedestrians ahead. If it keeps on driving straight
ahead it will strike both of them, but by swerving one
way or other it can hit just one. The vision system is not
certain of the detection, but gives the person on the left
90% certainty, but the more indistinct possible person
on the right only 20% certainty. It would make perfect
sense for the car to swerve to the right as it is less likely
to actually be a person. However, we also know that the
accuracy of image recognition systems often depends on
skin colour. Is the system’s decision potentially racially
biased?

23.6 SOCIETY AND WORK
The ethical problems above are principally about individ-
ual decisions and the way AI might affect or even make
them. However, the very presence of technology has a
broader and more diffuse effect across society and the
economy.

The latter, as it is less immediate, can be harder to
understand; however, it is perhaps easier to see when
we think about an older technology, such as cars. The
internal combustion engine reshaped cities and nations
around roads, with shops and other services often
becoming more distant from people – car-trip distance
rather than walking distance. Even where car ownership
is widespread, access is not universal, disadvantaging
those who are without cars or who rely on others
in their household; typically those with existing
disadvantages.

Digital technology in general has had a similar effect,
with many government services increasingly accessed
via the web and cheaper online deals for travel. Those
without access to the latest technology, or without
sufficient digital skills, are left behind. Furthermore, in
the UK and other countries, the increasingly cashless
society has meant fewer physical bank branches and
ATMs, so harder and more expensive access for those
who are still reliant on cash [281, 268], predominantly
the old and poor; this was a particular problem during
the Covid pandemic [131].

As we have seen, AI is already having a dramatic ef-
fect on the creative industry and starting to have a trans-
formative impact across many aspects of society – some
good but others more problematic.

23.6.1 Humanising AI or Dehumanising People

There have been many debates on the impact of com-
puter technology in general on society and whether in-
creasing computerisation will have a dehumanising ef-
fect. These issues are magnified when artificial intelli-
gence is considered. Expert systems have been proposed
for many applications, including medicine, counselling
and psychotherapy.

Such applications raise strong objections from many
sides on the grounds that they dehumanise the people
who are subjected to them. Weizenbaum, who created
ELIZA, believed that it was obscene to use artificial intel-
ligence in clinical situations. Yet it is possible that some
prefer the impersonal anonymity of dealing with a ma-
chine.

Related to this is the implication of loss of human–
human contact. As computers are able to perform more
and more of the tasks currently performed by people,
there will be less need for human–human contact. This
shift from reliance on other people to reliance on ma-

https://alandix.com/glossary/aibook/trolley problem
https://alandix.com/glossary/aibook/trolley problem
https://alandix.com/glossary/aibook/unintended bias
https://alandix.com/glossary/aibook/autonomous vehicle
https://alandix.com/glossary/aibook/autonomous vehicle
https://alandix.com/glossary/aibook/computer vision
https://alandix.com/glossary/aibook/accuracy
https://alandix.com/glossary/aibook/image recognition
https://alandix.com/glossary/aibook/Expert systems
https://alandix.com/glossary/aibook/Weizenbaum, Joseph
https://alandix.com/glossary/aibook/ELIZA

chines may cause breakdown in social structures and so-
cial responsibility. The 1974 prediction that

it may be possible for intelligent machines of
the future to supply not only intellectual stim-
ulation or instruction, but also domestic and
health care, social conversation, entertainment,
companionship, and even physical gratification
[103]

now appears closer and is still as likely to inspire horror
as excitement in many.

The dehumanising potential of artificial intelligence
has another aspect: if it is true that we can create intelli-
gent life, then life may cease to have the same value. If ar-
tificial intelligence is possible in machines, then humans
are reduced to little more than machines themselves. The
implication of this may change our view of ourselves and
those around us.

Artificial intelligence has the potential to empower
humans through enhanced learning and performance,
and through freeing us from mundane and dangerous
tasks. It may provide critical insights into how we
ourselves operate. But if this potential is to be realised
and accepted, the social and ethical aspects as well as the
technical must be addressed.

23.6.2 Top-down: Algorithms Grading Students

In the summer of 2020, in the midst of the Covid pan-
demic, UK schools were shut and exams cancelled. In the
absence of formal examinations, the government asked
the qualifications agency to devise a means to create a
grading for pupils to be used by universities and employ-
ers.

The available information included teachers’ assess-
ments of their pupils’ performance, any previously
marked coursework and also historic information on
pupil attainment in different schools. It was known that
teachers’ assessment of their own pupils varied sub-
stantially between schools and different demographics,
and furthermore tended to be slightly generous. If used
on their own, they would introduce social, ethnic and
gender bias and furthermore unfairness between years
[161]. The algorithm needed to retain a pass level similar
to previous years and also correct bias.

When the results were released, they caused contro-
versy, not least because they appeared to introduce addi-
tional bias of their own [97]. After intense media cover-

Philosophical, Ethical and Social Issues ■ 365

age and large protests by school children outside Parlia-
ment, the algorithmic results were abandoned in favour
of the teachers’ assessments leading to the highest grades
and largest university intake ever.

This story reminds us that every algorithm is designed
and deployed within a wider social, political and organi-
sational context. From this single story we can see a num-
ber of general lessons that apply broadly [60]:

Trust – It was never clear in the end whether the algo-
rithm actually fulfilled its purposes to maintain fair-
ness as the actual teacher grades were never scru-
tinised in the same way. However, irrespective of
whether an algorithm does its job, it needs to be
trusted, it needs to be both right and seen to be
right.

Diverse stakeholders – The qualifications agency did
consult widely before producing the algorithm, but
ultimately it was written to a specification given
by government. The protests came from pupils
and media, at which point government distanced
itself from the decision. There are often diverse and
potentially conflicting views and needs.

Individuals vs. aggregate – The requirements were
about ensuring that on average, the grades awarded
were fair between years and between social, ethnic
and gender differences. There was debate about
whether this was achieved, but the principal
opposition was driven by specific cases that
appeared unfair.

Transparency – The algorithm was largely using tradi-
tional statistics, which meant critics could scruti-
nise its inner workings. This might not have been
as easy with a machine learning algorithm, empha-
sising the need for explainable AI (Chap. 21).

Unreasonable expectations – There was clearly a belief
that the algorithm could in some way create for
each person a reasonable estimate of the exam
grade the individual would have received in a
written in-person exam. Given the lack of available
information, this was always an impossible
expectation.

Although this was a headline grabbing national issue,
you will see examples in many kinds of AI system de-
ployment, for example stakeholder conflicts between the

https://alandix.com/glossary/aibook/social responsibility
https://alandix.com/glossary/aibook/social responsibility
https://alandix.com/glossary/aibook/Covid pandemic
https://alandix.com/glossary/aibook/Covid pandemic
https://alandix.com/glossary/aibook/bias
https://alandix.com/glossary/aibook/bias
https://alandix.com/glossary/aibook/Transparency
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/explainable AI

366 ■ Artificial Intelligence

system and workers in gig-economy platforms, or issues
of trust in acceptance of autonomous vehicles.

You may be able to focus inwards on the algorithms
themselves for periods, but in professional practice, you
will also have to lift your eyes and take into account the
complex environment in which the final system will be
placed, and also the multiple pressures that may exist
during the specification and design process itself.

23.6.3 Bottom-up: When AI Ruled France

In late 2018 mass protests erupted across France, which
became known as the “mouvement des gilets jaunes”
(yellow vest protests) sparked by recent fuel price rises,
but also capturing simmering resentment on many
issues. In response to this, in 2019, President Macron
instigated the “Great National Debate”, a series of
public meetings across the country backed up by a web
platform that gathered more than 300,000 responses
expressing citizen views. This was far too many to
process manually and so the data was processed by a
company using natural language processing techniques
to extract key themes and issues [203]. These were then
critical in determining French policy.

While the ‘AI ruled France’ in this section heading has
an element of hyperbole, certainly it was instrumental in
shaping the course of the country. Given the major effect
on the nation, this is not a small role for AI and raises key
issues:

who is represented – As the majority of input to this
process came from a web forum, is it representative
of society as a whole? Presumably there will have
been a bias towards younger and more educated
groups. This is not a specific AI issue as social
media means we are seeing the world through the
eyes of ‘generation Twitter’. It is easy when seeing
international news to forget those who are older,
more rural or from lower socio-economic groups
who have less access to digital media. At least
when we see a social-media post we have some
model of who we are reading and who may not be
represented. The use of AI hides the underlying
media and hence makes it harder to visualise who,
and who is not, represented. This is of course
equally true of the large language models such as
GPT-4 that are taught on material produced in
large by the more advantaged portion of the world’s
population.

language – One would hope that those in French
government would have had some awareness of the
demographics of respondents. However, even when
people did respond, were they all heard equally?
More educated respondents and first-language
French speakers are perhaps more likely to have
used more formally correct phrasing and more
succinct language which will be easy to process
using NLP techniques. It is possible that those with
broken language, or only able to express complex
thoughts in more round-about ways, will have been
missed in the summarisation process.

choice of algorithms – The above effect may be ame-
liorated or intensified by the choice of algorithm.
A simple word-matching algorithm such as used in
word clouds would be most likely to focus on a sin-
gle word or pair of words that capture a topic. Tools
that dig more into the meaning of text might be able
to capture less precise language and hence be less
biased towards more highly educated respondents.

cherry picking – Not only will different algorithms give
different results, but each algorithm will have vari-
ous parameters, such as the sizes or number of lay-
ers in a neural network, and often have stochastic
aspects to their learning so that many different re-
sults are possible from the same underlying data.
Who chooses which of these is used? It may be sim-
ply luck, but if anyone in the process has a view they
wish to advance, it would be easy to choose the tun-
ing parameters that give the most convenient an-
swers and pass these on quite truthfully as a result
of (a particular run of) the AI algorithm.

In some way this is merely a next step on from the use
of opinion polls and other statistical data in politics and
so inherits existing issues including the choice of ques-
tions asked, which is known to radically affect the an-
swers given. However, the fact that this is mediated by
AI adds the danger that those reading the result assume
a level of factuality because it comes from a computer;
that is automation bias [63].

The French use of AI was a one-way process from
data gathering to summarised themes. However, it is
also known that the presence of opinion polls changes
voting habits; we are all influenced by other people’s
views. If the results of public discussion are presented
as derived by AI, the automation bias may mean we

https://alandix.com/glossary/aibook/gig-economy
https://alandix.com/glossary/aibook/autonomous vehicles
https://alandix.com/glossary/aibook/natural language processing
https://alandix.com/glossary/aibook/bias
https://alandix.com/glossary/aibook/social media
https://alandix.com/glossary/aibook/social media
https://alandix.com/glossary/aibook/large language models
https://alandix.com/glossary/aibook/GPT-4
https://alandix.com/glossary/aibook/NLP
https://alandix.com/glossary/aibook/neural network
https://alandix.com/glossary/aibook/automation bias
https://alandix.com/glossary/aibook/automation bias

assume that the results are factual, hence not affected by
political pressures and bias; even though it is clear from
the above that this may not be the case.

23.6.4 AI and Work

Every few months a new report predicts that whole types
of profession from taxi drivers to journalists will be ren-
dered obsolete by AI.

Of course digital technology has eradicated many
jobs, for example the ‘human computers’ who performed
scientific calculations at NASA and elsewhere [99], the
disappearance of the typing pool or factories peopled
only by robots. Further back, the Spinning Jenny
replaced handspinners – technology of all kinds brings
change.

One reaction has often been resistance. In the mid-
1980s newspapers moved from ‘hot metal’ printing to
computerised printing where the laborious hand-layout
of type was replaced by journalists keying in their own
copy. In the UK this led to an acrimonious dispute and
the loss of thousands of jobs as the Sunday Times moved
production to a new automated press in Wapping [215].
This dispute is reminiscent of the Luddites in the 19th
century, who are now synonymous with technophobia
and vain resistance to inevitable change.

Another reaction is technological determinism, a form
of fatalism, that says technological change is inevitable
and unstoppable so that, whether or not it is good, we
simply have to learn to live with it. However, this is per-
haps even less positive in its outlook than active resis-
tance.

However, there are countervailing arguments.
Technological optimists would say that the jobs that are
lost are mostly those that are boring, dangerous or dirty.
This might mean that humanity’s future is one of leisure
served by the machines, as E.M. Forster [105] foresaw
in “The Machine Stops” (albeit with not totally positive
results). Alternatively it may mean new and better jobs,
possibly even more jobs. Indeed there are statistics that
show that companies that embrace new technology, not
least Amazon, grow their labour force ... although this is
largely because they grow and displace other companies,
the job losses elsewhere are not usually accounted.

Where do you put yourself in this spectrum of
responses to AI: resistance, fatalism or welcome?

In principle, if AI enables the same work to be done
more efficiently, then there will be more for everyone.

Philosophical, Ethical and Social Issues ■ 367

However, we also know that the benefits of technological
change are rarely distributed evenly. What is certainly the
case is that the nature of work is changing.

Looking back to the Luddites and the Industrial Revo-
lution, there was a similar pattern and similar complex-
ity. Often those working in the factories were the same
people who used to work in their homes spinning and
weaving. It was clear in the letters between the mill own-
ers that their motives were not so much the efficiency of
the technology per se, but the way it gave greater control
over the workforce [272]. The much maligned Luddites
were not against machines in themselves, but against ma-
chines that were “Harmful to the commonality”, and when
they occupied factories, they would only destroy the ma-
chines that were most dangerous to the poorly paid and
often child labour of the time [188].

It sometimes feels as though we are simply re-iterating
the mistakes of the past as most gig-work platforms
create precarious jobs and the platform owners delib-
erately seek to avoid legal and financial responsibility.
The uneven playing field puts traditional companies
out of business leading to greater control by a few large
players. On the other hand, many people have found
that the flexibility of gig-work allows them a level of
autonomy that they would not experience in traditional
employment.

Perhaps we can learn the lessons of the Industrial Rev-
olution without repeating its mistakes, and all be Lud-
dites in the best sense of the word!

23.7 MONEY AND POWER
The lessons of history suggest that the first beneficiaries
of any new technology are those who already have
power. Certainly this seems to be the case with
digital technology where the digital divide is further
entrenching existing social inequality. Sometimes this
power is governmental and military. Considering the
former, there are indeed worries about the use of AI
in civil surveillance, albeit often for apparently good
reasons such as better policing. On the latter, while this
second edition is being written, conflicts rage in Ukraine
and Israel, where drones, precision ordnance and cyber-
attacks on civic infrastructure are increasingly reliant
on AI [21, 67]. These issues are perhaps too raw and too
difficult to discuss dispassionately but will only increase
in relevance. There are calls to ban the deployment
of fully autonomous weapons including from the UN

https://alandix.com/glossary/aibook/bias
https://alandix.com/glossary/aibook/human computers
https://alandix.com/glossary/aibook/robots
https://alandix.com/glossary/aibook/technological determinism
https://alandix.com/glossary/aibook/responsibility
https://alandix.com/glossary/aibook/autonomous weapons

368 ■ Artificial Intelligence

Secretary General [283]; it might be that by the time you
read this there are changes in international law.

The other source of power in market economies is
money. This is also a difficult topic, and indeed also
costs lives, albeit less clearly accountable to individual
acts than a missile strike.

23.7.1 Finance and Markets

The finance industry has always embraced new technol-
ogy, particularly anything that can help predict markets.
When markets are rising, it is easy to make money,
you simply buy stock and then sell it later for a profit.
Conversely, when markets are falling you need to sell
as quickly as possible to avoid making losses. Of course
the really difficult thing is knowing when that change
will happen. The perfect trade is to buy when stocks
are at their minimum and sell just as they are at their
maximum and about to fall.

For large long-term investors, these trends may
be averaged over months or years, but short traders
depend on change over hours, minutes or less, making
quick small profits on small movements typically with
borrowed capital. Noticing when the market is shifting
and then acting quickly is the difference between profit
and loss. The speed of these shifts is exacerbated because
every other trader is also looking out for then, and so if
prices begin to rise or drop, the reactions of others lead
to a positive feedback and the changes are sudden and
dramatic.

Because of this, many of these short trades depend on
automatic algorithms, which of course themselves then
make the overall reactions of the market even more rapid
and unstable. As well as the large financial investors there
are numerous apps offering AI-powered short-trading.
Small margins in terms of accuracy and speed of predic-
tion make a huge difference in money. In the past these
were driven by fixed rules, then more traditional math-
ematical models, but of course now many use machine
learning.

For each trader the use of automated algorithms and
AI is about individually maximising returns; however,
the overall impact is to fundamentally change the market,
increasing the speed and scale of upward and downward
shifts. Often, these are relatively small, relatively short
and affect only a small number of stocks. However, as
with many feedback phenomena, there can be infrequent
larger anomalies. On Monday, October 19, 1987, known

as Black Monday, a stock market crash wiped more than
half a trillion dollars from the Dow Jones alone and is
believed to have been caused, in large part, by automatic
trading. Although national governments and the major
stock exchanges have established various mechanisms to
try to prevent such events, since then there have been
several ‘flash crashes’ including in 2010 when the Dow
Jones dropped 10% in just ten minutes.

The 1987 crash, which had major economic im-
plications worldwide, way beyond the stock markets
themselves, is believed to have been because many
hedgefunds used similar algorithms based on the
Black–Scholes equation [27]. The algorithms were
designed to remove volatility of each fund’s own
portfolio, but because they all had the same market
data and used similar algorithms, they all took the same
decisions leading to massive instability. In contrast to
these early deterministic algorithms, many machine
learning algorithms have some level of indeterminacy
in training. While this can be a problem in some fields,
such as medicine, where explainability is important,
it is possible this may increase diversity of the trading
algorithms meaning that there is less tendency to act
in tandem. However, ultimately they are trained on the
same historic data.

In addition, the competitive nature of stock trading
means that small differences in the performance of AI,
both in speed and accuracy, can make a disproportionate
difference in outcome, leading to an AI arms race. We can
see this issue arise in other areas.

23.7.2 Advertising and Runaway AI

In many birds, the males exhibit bold plumage during
mating season. The peacock is an extreme example,
with huge, extravagantly beautiful tail feathers. Of
course, such obvious plumage makes it hard to hide
from predators, and the sheer size of the tail hampers
escape. From an evolutionary perspective, no matter
how attractive it is to look at, this tail seems terribly
poorly adapted for survival, hence should never have
developed. The Darwinian answer to this conundrum is
sexual selection, and this is believed to be the cause of
other, apparently maladapted, features of many animals.
The idea is that initially fitter males tend to eat better
and thus have better plumage. Females seek out the best
males and hence choose those with better plumage.
Over time males develop better plumage in order to

https://alandix.com/glossary/aibook/trends
https://alandix.com/glossary/aibook/positive feedback
https://alandix.com/glossary/aibook/accuracy
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/feedback phenomena
https://alandix.com/glossary/aibook/deterministic algorithms
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/explainability
https://alandix.com/glossary/aibook/accuracy
https://alandix.com/glossary/aibook/AI arms race
https://alandix.com/glossary/aibook/sexual selection

exploit this preference and indeed have to be better than
other males.

We can see a similar story in the need for AI in the
stock market. If your AI is even a little better than other
traders, you make money, if it is less good you lose. The
same dynamic is also at play in internet advertising.

Many free services and websites, including most social
media, make their money from advertising. These plat-
forms use increasingly sophisticated algorithms in order
to target adverts to the most receptive audience at the
most opportune time when they will click through and
make a purchase (a conversion). Of course large com-
panies will be using detailed data analytics to monitor
the success of their adverts on different platforms. If one
platform is performing better, in terms of conversions
per dollar of advertising spend, they will favour that plat-
form. In the extreme, they may shift nearly all their ad-
vertising budget to the most successful platform, only re-
taining enough on others as a monitor to see if they im-
prove.

If you are the platform, say a social media or web
search site, you know that a small difference in AI
performance will boost advertising revenues massively.
If your competitors have better AI, then you will either
lose advertising clients or have to reduce the amount you
charge. Some of the improvement in AI can be obtained
by recruiting the best AI researchers (good news for
readers of this book), but also, as we saw in Chapter 8,
sheer size is increasingly regarded as the solution
with bigger models, requiring more computation to
train and execute, producing better performance. So
long as the cost of AI algorithms for selecting advert
placement is relatively small compared with other
fixed costs of maintaining the site, it is worth spending
more and more money and more and more computer
time on AI even when the gains are marginal, well
beyond their value in attracting, overall, more paying
customers.

This is rather like the prisoner’s dilemma and similar
issues we discussed in Chapter 11, every player in
the industry would benefit from a lower level of AI
use, but none can individually act. In the end we
all end up paying slightly more for goods due to
wasted computation. Of course the cost is not merely
financial, that compute time also means more carbon
emissions.

Happily there are some countervailing effects. Dif-
ferent platforms target slightly different demographics,

Philosophical, Ethical and Social Issues ■ 369

meaning it is not a simple head-to-head competition,
large advertisers may wish to have brand presence across
a wide range of platforms not merely the most effective,
and platforms can adjust pricing so that they trade off
income for AI costs. So the impact of AI is not total, but
still the pressures to overuse it are there.

23.7.3 Big AI: The Environment and Social Impact

The resurgence of AI was not fundamentally based on
new AI theory or radically novel algorithms. These have
come, but the breakthrough was driven by scale. Deep
neural networks had been known about since the 1990s,
but the larger a network, the more data it needs to train,
and the deeper it is, the more computation is needed to
tame the underdetermined inner layers (see Chapter 8).
The growth of search engines, such as Google search,
and also social networks, such as Facebook, gave rise
to (a) vast datasets and (b) massive computational
power distributed over data centres. This scale driven
by internet business enabled the training of large deep
neural networks, kick-starting a process that then gave
rise to novel paradigms such as adversarial training and
transformer networks. Size matters! However, there
is a social and environmental cost that comes with
this size.

The scale of data and computation arose through
the needs of the tech giants such as Google, Facebook
and Microsoft. However, the machine learning that has
driven the revolution in AI requires such massive levels
of investment, that it potentially shuts out any but the
largest companies and even most governments. Back in
2014, Ian Bartram of Gartner said:

I don’t know if any public sector has necessar-
ily cracked the nut on attracting the right skills
and capabilities, ... The commercial sector has,
because they’ve got the dollars to spend.

This was before the advent of big AI and talking about
governments. The prospect for non-governmental
organisations, charities, communities or individ-
uals seems bleak ... AI, as with much of digital
technology, seems to be entrenching existing
power within society and disadvantages the already
marginalised.

Scale also has an environmental impact. One estimate
predicts that global use of energy for AI will be around
100 terawatt-hours (TWh) by 2027, which is equivalent

https://alandix.com/glossary/aibook/social media
https://alandix.com/glossary/aibook/social media
https://alandix.com/glossary/aibook/social media
https://alandix.com/glossary/aibook/web search
https://alandix.com/glossary/aibook/web search
https://alandix.com/glossary/aibook/prisoner's dilemma
https://alandix.com/glossary/aibook/Deep neural networks
https://alandix.com/glossary/aibook/Deep neural networks
https://alandix.com/glossary/aibook/underdetermined
https://alandix.com/glossary/aibook/search engines
https://alandix.com/glossary/aibook/Google search
https://alandix.com/glossary/aibook/Facebook
https://alandix.com/glossary/aibook/deep neural networks
https://alandix.com/glossary/aibook/deep neural networks
https://alandix.com/glossary/aibook/adversarial training
https://alandix.com/glossary/aibook/transformer networks
https://alandix.com/glossary/aibook/Google
https://alandix.com/glossary/aibook/Facebook
https://alandix.com/glossary/aibook/Microsoft
https://alandix.com/glossary/aibook/machine learning

370 ■ Artificial Intelligence

to the entire energy use of the Netherlands [70]. To put
this figure in perspective with other carbon-intensive in-
dustries, it is still only about 0.5% of total global electric-
ity use. However, it is also worth noting this is just AI,
not all digital technology, and it is still increasing when
other uses are reducing in an attempt to meet net-zero
carbon targets.

Happily, there are counter trends, especially following
Meta’s open release of LLaMa 2 (Large Language Model
Meta AI)) [274], which enabled small start-ups and re-
searchers to create myriad new applications and exten-
sions [73, 240]. In principle as large language models are
foundation models the fully trained model is then spe-
cialised in various ways so that the initial (enormous)
cost of training is amortised. The specialisation process
itself is still way beyond small companies or individuals;
however, there are techniques to reduce this technology
gap.

Some, such as LiGO (Linear Growth Operator)
[296], seek to make the learning process faster. Other
techniques focus more on the execution post-training,
for example memory layers act as a form of fuzzy
key–value mechanism, which can dramatically reduce
the computation costs during use [22]. LoRA (Low-
rank adaptation of large language models, [138]) takes
the inner layers of the deep neural network, where
specialisation occurs, and uses a form of dimensional
reduction to vastly reduce the number of nodes, while
not compromising too severely the overall efficacy of
the network (Figure 23.4). This means that the resulting
network is both faster to re-train for new applications
and faster to execute on smaller processors.

More radically, DeepSeek’s mixture-of-experts
approach showed that it is possible to create high quality
large-language models with a small fraction of the exe-
cution costs of previous models [173]. The development
of DeepSeek was driven by the technological restrictions
imposed by the US export ban on high-end chips to
China, but it demonstrates that smart techniques can
create effective AI models without simply throwing
more and more resources at them.

In general, there is an active research area seeking to
reduce the training costs and runtime size of AI, both for
environmental reasons and also to enable advanced tech-
niques to be used on tiny IoT (internet of things) devices
that are an essential element in smart homes, cities and
workplaces.

FIGURE 23.4 Reducing the dimensionality of inner layers to
reduce re-training and runtime costs.

23.8 SUMMARY
We began this chapter by considering whether machine
intelligence is possible, looking in particular at the
Chinese Room argument and its opponents. This led
to discussing creativity and consciousness, which seem
even more intrinsically human than intelligence. The
more human-like AI becomes, the more it seems to
raise deep philosophical and moral questions. Some are
more theoretical, but some of quite immediate relevance
as autonomous vehicles drive through our streets, and
AI fundamentally shifts patterns of work and society.
Considering this, we have looked at issues of legal and
ethical responsibility, and the potential social impact of
artificial intelligence. It is vital that these questions are
tackled if artificial intelligence is to be accepted widely.
Perhaps the key question we need to ask ourselves is
not whether true machine intelligence is possible but
whether and where it is desirable. What do you think?

EXERCISES

This is another chapter where exercises are more discur-
sive, suitable for individual projects or group discussion.

https://alandix.com/glossary/aibook/LLaMa 2
https://alandix.com/glossary/aibook/Large Language Model Meta AI
https://alandix.com/glossary/aibook/Large Language Model Meta AI
https://alandix.com/glossary/aibook/large language models
https://alandix.com/glossary/aibook/foundation models
https://alandix.com/glossary/aibook/LiGO
https://alandix.com/glossary/aibook/Linear Growth Operator
https://alandix.com/glossary/aibook/memory layers
https://alandix.com/glossary/aibook/LoRA
https://alandix.com/glossary/aibook/Low-rank adaptation of large language models
https://alandix.com/glossary/aibook/Low-rank adaptation of large language models
https://alandix.com/glossary/aibook/deep neural network
https://alandix.com/glossary/aibook/dimensional reduction
https://alandix.com/glossary/aibook/dimensional reduction
https://alandix.com/glossary/aibook/DeepSeek
https://alandix.com/glossary/aibook/mixture-of-experts
https://alandix.com/glossary/aibook/large-language models
https://alandix.com/glossary/aibook/IoT
https://alandix.com/glossary/aibook/internet of things
https://alandix.com/glossary/aibook/Chinese Room argument
https://alandix.com/glossary/aibook/creativity
https://alandix.com/glossary/aibook/consciousness
https://alandix.com/glossary/aibook/autonomous vehicles
https://alandix.com/glossary/aibook/responsibility

23.1 Collect newspaper reports on social and ethical is-
sues in AI – they appear quite frequently. Examine
each with three lenses:

a. The particular human context, has AI made it
worse or simply highlighted existing issues?

b. What kind of AI is being used and does it ap-
pear sensible or well designed for the purpose?

c. Are there ways you could imagine improving
the AI to reduce the problem, or deploying AI
to counter it?

23.2 A university is collaborating with a major
washing machine manufacturer to optimise the
design of washing machine drums, as factory
testing never entirely matches real-world perfor-
mance. The idea is to use a form of AB-testing,
where internet-enabled washing machines are
delivered with slight variations in the shape of
the drum. Performance data will be sent back
to the manufacturer enabling near-real-time
modifications to the manufacturing process and
ever more energy and water efficient washing
machines.
Use the questions of the AREA framework (Fig-
ure 23.2 in Section 23.5.1) to explore some of the
social and ethical implications of this.

23.3 Try variations of the Trolley Problem with friend-
s/colleagues. Things you could experiment with
include:

• Different numbers of people, different ages,
etc.

• Certainty of effects: what if there were a bridge
between the trolley and the people that might
collapse with the weight of the trolley before
hitting the people.

• The blameworthiness of the people involved,
perhaps some are legitimately standing where
they are, but others have trespassed onto the
tracks even though there are warning signs.

23.4 Design Fiction uses fictitious scenarios in order
to explore the potential positive and negative
consequences of emerging technology, including
AI [181].

Philosophical, Ethical and Social Issues ■ 371

a. Forster’s The Machine Stops [105] was written
in 1909, based on future machinery as envis-
aged then, so could be seen as a form of de-
sign fiction from before the term was coined.
Read the short story (available on the Internet
Archive) and consider yourself or discuss in a
group the extent to which the issues in it have
parallels today.

b. The Machine Stops was written over a hundred
years ago, looking forward. Can you do the
same, imagine potential just-over-the-horizon
AI and its impact. Here are some ideas, but
think of your own too.
• Computers are better than humans than

all intellectual tasks, but robotics is still
struggling so that the only jobs requiring
humans are physical ones.

• Artificial companions are being used ex-
tensively in care homes.

• AI enables instant fact checking of any-
thing.

FURTHER READING

M. Boden, editor. The philosophy of artificial intelligence. Ox-
ford University Press, Oxford, 1990.
A collection of seminal papers on machine intelligence by
leaders in the field including Searle and Turing. An excel-
lent and accessible introduction to some of the philosophi-
cal issues of AI.

M. Boden. Artificial intelligence and natural man. MIT Press,
London, 2nd edition, 1987.
Part IV in particular provides a useful survey of the social,
psychological and philosophical issues of AI.

M. Wooldridge. A brief history of artificial intelligence: What it
is, where we are, and where we are going. Flatiron Books,
2021. ISBN: 9781250770745

An overview of the development and history of AI.

A. Dix. ChatGPT, culture and creativity – simulacrum and al-
terity. Keynote at JRL Creative AI Research Conference,
2023, 26 June 2023. https://alandix.com/academic/talks
/CAR2023-keynote/
A more detailed exploration of the issues surrounding AI
creativity discussed in Section 23.3.

A. Seth. Being you: A new science of consciousness. Faber, Lon-
don, 2021.

https://alandix.com/glossary/aibook/AREA framework
https://alandix.com/glossary/aibook/Trolley Problem
https://alandix.com/glossary/aibook/Design Fiction
https://alandix.com/glossary/aibook/robotics
https://alandix.com/glossary/aibook/Searle
https://alandix.com/glossary/aibook/Turing
https://alandix.com/glossary/aibook/philosophical issues of AI
https://alandix.com/glossary/aibook/philosophical issues of AI
https://alandix.com/glossary/aibook/philosophical issues of AI
https://alandix.com/glossary/aibook/history of AI
https://alandix.com/academic/talks/CAR2023-keynote/
https://alandix.com/academic/talks/CAR2023-keynote/
https://alandix.com/glossary/aibook/creativity

372 ■ Artificial Intelligence

Rich discussion of the current state of consciousness re-
search and philosophy.

B. Panic and P. Arthur. AI for peace. CRC Press, Boca Raton,
FL, 2024.
A rich analysis of the way AI can be used positively to pro-
mote peace as well as counter the ways it is being used for
the opposite.

C. Crivellaro and A. Dix. AI for social justice. CRC Press, Boca
Raton, FL, 2025.
Another volume in the AI for Everything series. It expands
on many of the issues in Sections 23.6 and 23.7.1; indeed
early drafts of AI for Social Justice were used to help write
this chapter.

https://alandix.com/glossary/aibook/consciousness

V
Looking Forward

https://taylorandfrancis.com/

CHAP T ER 2 4

Epilogue: What Next?

24.1 OVERVIEW
The book is almost finished, but AI will continue to de-
velop. In this chapter we take a look at some of the pos-
sible future developments of AI, both in terms of techni-
cal developments and the way it is used in society. Given
the rate of change, asking “what next?” is a risky en-
terprise, but some near future directions are clear. Ul-
timately, though, the big questions in AI may be about
what we want to do with it and what sort of AI future we
want.

24.2 CRYSTAL BALL
It seems a foolish time to ask “what next?” for AI.
When the first edition of this book was written, AI
was on a downward rollercoaster. Indeed, as previously
mentioned, the preface of the 1996 edition of this book
said, “... the subject is far from dead or historical”. Written
as the AI winter started to bite, we felt it was necessary
to defend even writing a book on AI.

As this edition is written AI is still on a rising curve,
with apparently ever accelerating change, to the point
that many AI researchers and entrepreneurs are less con-
cerned about whether AI has a future than whether we
have any control over it.

It may be that by the time you read this, that future
is already with us – AI as saviour, nemesis or dead-end.
However, risking instant obsolescence, let’s take a tour
through a few directions that AI may take over the com-

ing years, social and technical. These are not mutually ex-
clusive alternatives, more that all are likely to happen to
a greater or lesser degree.

24.3 WHAT NEXT: AI TECHNOLOGY

24.3.1 Bigger and Better

As noted in Chapters 8 and 17 there has been continual
surprise at the qualitative leaps in performance gained
by simply throwing more and more computational re-
sources at greater and greater amounts of data to cre-
ate ever larger models. Before deep learning took centre
stage, simple statistical algorithms were delivering ‘un-
reasonably’ effective natural language results that would
once have been seen as requiring some form of gram-
matical knowledge [122]. More recently, simply scaling
large-language models (LLMs) has led to step changes in
behaviour, to the point at which they can perform with
apparent human understanding in many tests.

Some believe that this process can continue; simply
making larger models will lead to general artificial
intelligence. Measured in purely information terms, the
brain contains around half a petabyte (see Figure 24.1),
which, at the time of writing, is still several hundred
times greater than the largest LLMs. It is argued that as
LLMs reach these sizes, more human-like features will
emerge.

Of course, as models get bigger they need more train-
ing data. However, existing models are getting close to
consuming all human-generated material. In some do-
mains it is possible for this to be supplemented or even
replaced with generated synthetic data, as was the case
with AlphaGo and then AlphaZero. However, it is hard
to see what the equivalent is for text or art.

In addition, while scale has been important, it has not
been the only factor at play. The inclusion of attention

DOI: 10.1201/9781003082880-29 375

https://alandix.com/glossary/aibook/AI winter
https://alandix.com/glossary/aibook/deep learning
https://alandix.com/glossary/aibook/large-language models
https://alandix.com/glossary/aibook/synthetic data
https://alandix.com/glossary/aibook/AlphaGo
https://alandix.com/glossary/aibook/AlphaZero
https://alandix.com/glossary/aibook/attention mechanisms
http://dx.doi.org/10.1201/9781003082880-29

376 ■ Artificial Intelligence

mechanisms in transformer models made fundamental
differences in their effectiveness. That is algorithmic and
architectural innovation has also been critical in the past
and undoubtedly will continue to be significant.

24.3.2 Smaller and Smarter

In Chapter 23, we discussed how the sheer scale of AI cre-
ates both environmental and social issues. We also saw
that methods are being developed to dramatically reduce
the necessary size and training costs of large models and
in general develop AI for smaller devices. We can expect
to see developments in a number of directions:

• Improvements in large-language models and gener-
ative AI with roughly the same behaviour, but faster
training.

• Ways to tweak large models after they have been
trained to make them faster to specialise.

• Ways to shrink large models after training to reduce
the final execution size.

• Ways to use large-scale training to create small-
footprint AI directly.

• Alternative methods that do not require such large-
scale models or training.

There is ongoing work in each area – alongside scale,
the future is lean and mean!

24.3.3 Mix and Match

One of the alternatives to simple scaling is a return to
more traditional knowledge-rich methods. This won’t be
‘business as usual’ for traditional AI, there was plenty of
time during the long AI winter for that, but lessons learnt
from big data and big computation can be brought to
bear. It may be that simply having more computational
power or more data available can reinvigorate past so-
lutions that were infeasible 20 years ago. However, ap-
proaches that combine neural techniques and big data
with knowledge-rich methods will undoubtedly become
more common. Again there are various ways in which
this is developing:

• Using machine learning techniques to craft tradi-
tional AI, such as inferring grammar rules from text
corpora, or the use of genetic algorithms to create
decision trees as described in Chapter 21.

• Hybrid systems combining modules with different
styles of AI, as described in Chapter 6, for example,
using image classifiers in combination with hand-
crafted rules.

• Neurosymbolic techniques, also discussed in
Chapter 6, where neural-inspired methods
and more high-level reasoning are com-
bined at a more fundamental level, for ex-
ample, by crafting neurons with specialised
behaviour.

One of the critiques of large-language models is
their propensity to hallucinate: to invent text that
is plausible, yet inaccurate or entirely fabricated.
In contrast, traditional planning or mathematical
proof systems guarantee to create accurate results
but may struggle with more complex problems. The
opportunities for these to complement each other are
clear.

The joker in the pack is the emergence of quantum
computing and other forms of novel computational sub-
strates such as reservoir computing. Google already has a
quantum version of its successful TensorFlow framework
[33] and research on quantum AI has been growing for
a number of years [98]. These new substrates, physical
and biological, will certainly work within hybrid digital
architectures.

24.3.4 Partners with People

The book began with a reminder that all AI at some
level impacts real people. We saw in Chapter 19 that this
impact may be quite diffuse as AI invisibly becomes part
of the devices we use or the environment in which we
live. When more visible, it may act as a tool or servant
doing things we tell it to, or, more problematic, AI
tells us what to do! However, the real promise may be
in systems where humans and AI work synergistically
together. The ultimate goals and purposes must be
human ones, but the endeavour to achieve them is
collaborative.

This requires more human-like AI that can both pro-
duce behaviour that is comprehensible to humans and
also respond to humans in ways that go beyond simply
doing what they are told. Systems such as GitHub Copi-
lot [108] begin to show what is possible, and similar tech-
niques have already been built into conversational agents
[236].

https://alandix.com/glossary/aibook/attention mechanisms
https://alandix.com/glossary/aibook/transformer models
https://alandix.com/glossary/aibook/large-language models
https://alandix.com/glossary/aibook/generative AI
https://alandix.com/glossary/aibook/generative AI
https://alandix.com/glossary/aibook/AI winter
https://alandix.com/glossary/aibook/big data
https://alandix.com/glossary/aibook/knowledge-rich methods
https://alandix.com/glossary/aibook/machine learning
https://alandix.com/glossary/aibook/grammar rules
https://alandix.com/glossary/aibook/genetic algorithms
https://alandix.com/glossary/aibook/decision trees
https://alandix.com/glossary/aibook/Hybrid systems
https://alandix.com/glossary/aibook/Neurosymbolic
https://alandix.com/glossary/aibook/large-language models
https://alandix.com/glossary/aibook/quantum computing
https://alandix.com/glossary/aibook/quantum computing
https://alandix.com/glossary/aibook/reservoir computing
https://alandix.com/glossary/aibook/Google
https://alandix.com/glossary/aibook/TensorFlow

Epilogue: What Next? ■ 377

FIGURE 24.1 Brain sized.

24.4 WHAT NEXT: AI IN THE WORLD

24.4.1 Friend or Foe?

While this edition was being prepared, the European
Union and the governments of 27 countries including
the UK, the USA and China signed the Bletchley
Declaration following a two-day summit on AI
safety [264, 280]. The declaration acknowledged the
positive aspects of AI but also warned of a “potential
for serious, even catastrophic, harm, either deliberate
or unintentional, stemming from the most significant
capabilities of these AI models”. This echoes warnings
from within the academic AI community [36].

In the last chapter, we looked at many of the social and
ethical issues around the growing use of AI: job losses,
misinformation and the undermining of human creativ-
ity. These are current issues and will continue to be so
for years to come. There is the promise that AI may do
away with all unfulfilling labour and give us all, in Elon
Musk’s words, a “universal high income” [187]. How-
ever, given the history of adoption of technology in mar-
ket economies, and the nature of transnational compa-
nies ... that future seems least likely.

Some worry about more existential risks – as AI de-
signs better AI we will come to the point when its growth
is uncontrollable, leading to a singularity when AI so

https://alandix.com/glossary/aibook/misinformation
https://alandix.com/glossary/aibook/singularity

378 ■ Artificial Intelligence

far exceeds human intelligence that humanity becomes
at best an irrelevance to be brushed away, and at worst
an impediment to be crushed. This seems less science
fiction than it did a few years ago and, in true B-movie
style, there are those who are welcoming the alien in-
vader as the next stage in the evolution of intelligence.
While there are clearly more pressing problems, this is
an issue that will continue to create headlines, but also,
at the most pragmatic level, cannot be utterly ignored.

Fans of the Terminator films will recall that Skynet was
created for military use before it decided to destroy hu-
manity to protect itself. However, apocalyptic scenarios
do not require sentient AI. We are already seeing AI used
in guided weaponry, and while there are moves to pre-
vent fully autonomous weapons, it seems unlikely this
will be averted. Of course AI is used to design new mil-
itary hardware and, perhaps more worrying, AI has al-
ready been shown to be capable of designing new chem-
ical and biological weapons. Certainly AI is being used
to develop and deploy cyberattacks, both military and
criminal.

Most likely, in terms of utter apocalypse, is the use of
AI to initiate the overall firing of weapons, especially nu-
clear missiles. There is widespread desire to retain human
control, not least political control, but, as successive nu-
clear control treaties have expired or collapsed, it may be
hard for countries to avoid installing ‘use it or lose it’ hair
triggers if they fear the other side has already done so.
The issue here is not so much AI itself (indeed the film Dr
Strangelove predicted just such a hair trigger using 1960s
technology), but more about conflict resolution and de-
escalation. Dealing with more prosaic issues around filter
bubbles and echo chambers is perhaps at least as impor-
tant here as the direct military threat.

Indeed, we are facing so many problems in national
and global society: climate change, growing inequality,
deepening political division, extremism and the
likelihood of a next pandemic. In some cases AI is
currently exacerbating these problems but could be
turned for good. In others there is real hope that AI
may make significant advances, for example, in climate
prediction models or the rapid creation of new vaccines.

24.4.2 Boom then Bust

It may be that the current surge in interest in AI will come
to an end and there will be another AI winter. However,
this seems unlikely. The surge in AI interest in the early

1990s was driven by some early research success and
an aspiration that outstripped the state of maturity. In
contrast, the current wave is being driven by real appli-
cations that are delivering business benefits in numerous
fields. Some of the high hopes may not be fully achieved,
but it seems unlikely that there will be a complete
collapse.

In addition, while the grand narrative of waves of AI
interest interspersed with long winters makes good read-
ing, the reality is more nuanced. During the period from
mid-1990s to 2010, AI researchers would mourn the state
of the discipline, but meanwhile there were gradual de-
velopments in areas such as natural language processing,
text mining, speech recognition and computer vision,
which in the 1980s would have been regarded as major
goals of AI. In addition the growth of web and big data
algorithms such as Google PageRank and recommender
systems were clearly ‘intelligent’ if not card-carrying AI.

So, while there may well be a deceleration or even a
hiatus in the rise of AI, a collapse is not imminent.

24.4.3 Everywhere and Nowhere

The earliest commercial engines were enormous, sitting
in factories, belching smoke and driving rumbling
machinery, but within a hundred years became part of
the background of society with mass-produced cars and
now the electric toothbrush on your bathroom shelf.
Similarly the earliest digital mainframe computers sat
in large glass computer rooms, served by white-coated
technicians, but within 30 years were on every desk
and now in tags on fast-fashion clothes. As Weiser
put it,

The most profound technologies are those that
disappear. They weave themselves into the fabric
of everyday life until they are indistinguishable
from it. [298]

Similarly, novel developments in AI are headline
grabbing and require large budgets: Big Blue defeating
Kasparov, Watson winning Jeopardy! or AlphaZero
mastering Go. However, we are already so used to
AI in recommender systems, email filtering and
voice-controlled home automation, it too has become
invisible.

The future of pervasive AI may be that we don’t even
know it is there.

https://alandix.com/glossary/aibook/human intelligence
https://alandix.com/glossary/aibook/autonomous weapons
https://alandix.com/glossary/aibook/cyberattacks
https://alandix.com/glossary/aibook/filter bubbles
https://alandix.com/glossary/aibook/filter bubbles
https://alandix.com/glossary/aibook/echo chambers
https://alandix.com/glossary/aibook/AI winter
https://alandix.com/glossary/aibook/natural language processing
https://alandix.com/glossary/aibook/text mining
https://alandix.com/glossary/aibook/speech recognition
https://alandix.com/glossary/aibook/computer vision
https://alandix.com/glossary/aibook/big data
https://alandix.com/glossary/aibook/Google PageRank
https://alandix.com/glossary/aibook/recommender systems
https://alandix.com/glossary/aibook/recommender systems
https://alandix.com/glossary/aibook/Big Blue
https://alandix.com/glossary/aibook/Watson
https://alandix.com/glossary/aibook/jeopardy
https://alandix.com/glossary/aibook/AlphaZero
https://alandix.com/glossary/aibook/Go
https://alandix.com/glossary/aibook/recommender systems
https://alandix.com/glossary/aibook/home automation

Epilogue: What Next? ■ 379

24.5 SUMMARY – FROM HYPE TO HOPE
Artificial intelligence is at an interesting juncture; there
are many directions in which it may develop, both tech-
nically and, more critically, in the way we use it in society.
You may be one of those who develop the algorithms that
take the next steps in AI. Certainly you will be a user of
AI, no matter how invisible. Within AI as a research and
development discipline and within society at large, there
are crucial choices to be made. We are all part of the de-
bate as to whether AI becomes yet another technology
that divides, or whether it can be harnessed to serve hu-
manity as a whole.

What’s next for AI?
The choice is in your hands.

FURTHER READING

S. Russell, R. Rossi, and M. Schönstein, co-chairs. OECD work-
ing party and network of experts on AI, 2024. https://oecd
.ai/en/network-of-experts/working-group/10847

The OECD run periodic workshops of global experts in AI
to offer an informed glimpse into the future.

B. Panic and P. Arthur. AI for peace. CRC Press, Boca Raton,
FL, 2024.

H. S. Sætra. AI for the sustainable development goals. CRC
Press, Boca Raton, FL, 2022.
Thinking about the future of AI is only meaningful if we
have a future. These two volumes address key issues where
AI can have a role ... for good or ill ... in determining the
future of humankind and the world we live in.

https://oecd.ai/en/network-of-experts/working-group/10847
https://oecd.ai/en/network-of-experts/working-group/10847

https://taylorandfrancis.com/

Bibliography

[1] David H. Ackley, Geoffrey E. Hinton, and Ter-
rence J. Sejnowski. A learning algorithm for Boltz-
mann machines. Cognitive Science, 9(1):147–169,
1985.

[2] Elena Agliari, Francesco Alemanno, Adriano
Barra, and Alberto Fachechi. Dreaming neu-
ral networks: Rigorous results. Journal of
Statistical Mechanics: Theory and Experiment,
2019(8):083503, 2019.

[3] Christopher Ahlberg and Ben Shneiderman. Vi-
sual information seeking: Tight coupling of dy-
namic query filters with starfield displays. In
Proceedings of the SIGCHI conference on human
factors in computing systems, CHI ’94, page 313–
317. Association for Computing Machinery, New
York, NY, 1994.

[4] I. Aleksander and T. J. Stonham. Guide to pattern
recognition using random-access memories. Pro-
ceedings of the IEE: Computers and Digital Tech-
niques, 2(1):42–49, 1979.

[5] J. R. Anderson. The architecture of cognition. Har-
vard University Press, Cambridge, MA, 1983.

[6] John R. Anderson. How can the human mind occur
in the physical universe? Oxford University Press,
Oxford, 2009.

[7] Julia Angwin, Jeff Larson, Surya Mattu,
and Lauren Kirchner. Machine bias
there’s software used across the country
to predict future criminals: And it’s biased
against blacks. ProPublica (23 May 2016).
https://www.propublica.org/article/machine-bias-
risk-assessments-in-criminal-sentencing.

[8] R. C. Arkin, W. M. Carter, and D. C. Macken-
zie. Active avoidance: Escape and dodging be-
haviors for reactive control. In H. I. Christensen,
K. W. Bowyer, and H. Bunke, editors, Active robot
vision: Camera heads, model based navigation
and reactive control. World Scientific, Singapore,
1993.

[9] Stavros Asimakopoulos, Robert Fildes, and Alan
Dix. Forecasting software visualizations: An ex-
plorative study. In People and computers XXIII
celebrating people and technology, pages 269–277.
BCS, Swindon, 2009.

[10] I. Asimov. I, Robot. Panther, London, 1968.
[11] Bernard J. Baars, Natalie Geld, and Robert Kozma.

Global workspace theory (gwt) and prefrontal
cortex: Recent developments. Frontiers in Psychol-
ogy, 12:749868, 2021.

[12] Rembrandt Bakker, Paul Tiesinga, and Rolf Köt-
ter. The scalable brain atlas: Instant web-based
access to public brain atlases and related content.
Neuroinformatics, 13:353–366, 2015.

[13] David L. Barack, Vera U. Ludwig, Felipe Parodi,
Nuwar Ahmed, Elizabeth M. Brannon, Arjun Ra-
makrishnan, and Michael Platt. Attention deficits
linked with proclivity to explore while foraging.
Biological Sciences, 291(2017), Article 202222584,
2024.

[14] V. E. Barker and D. E. O’Connor. Expert sys-
tems for configuration at DIGITAL: XCON and
beyond. Communications of the ACM, 32(3):298–
318, 1989.

[15] B. Barrett. Google maps is racist because the in-
ternet is racist. Wired (May 23, 2015).

[16] N. Baym, L. Shifman, C. Persaud, and K.
Wagman. Intelligent failures: Clippy memes
and the limits of digital assistants. AoIR
Selected Papers of Internet Research, 2019.
https://doi.org/10.5210/spir.v2019i0.10923.

[17] BBC. Google’s AI wins final Go challenge. BBC
News (15 March 2016).

[18] BBC. BBC pay: Male stars earn more than female
talent. BBC News (19 July 2017).

[19] BBC. Go master quits because AI ‘cannot be de-
feated’. BBC News (27 November 2019).

[20] R. Beale and T. Jackson. Neural computing: An
introduction. Adam Hilger, Bristol, 1990.

381

https://doi.org/10.5210/spir.v2019i0.10923

382 ■ Bibliography

[21] Samuel Bendett. Roles and implications of
AI in the Russian–Ukrainian conflict. Russia
Matters, Harvard Kennedy School (20 July 2023).
https://www.russiamatters.org/analysis/roles-
and-implications-ai-russian-ukrainian-conflict
accessed 02/12/2023.

[22] V. P. Berges, B. Oğuz, D. Haziza, W. T. Yih, L.
Zettlemoyer, and G. Gosh. Memory layers at scale.
arXiv preprint arXiv:2412.09764, 2024.

[23] Ofer Bergman and Steve Whittaker. The science of
managing our digital stuff. MIT Press, Cambridge,
MA, 2016.

[24] Tim Berners-Lee, Robert Cailliau, Ari Luotonen,
Henrik Frystyk Nielsen, and Arthur Secret. The
world-wide web. Communications of the ACM,
37(8):76–82, 1994.

[25] Tim Berners-Lee, James Hendler, and Ora Lassila.
The semantic web. Scientific American, 284(5):34–
43, 2001.

[26] Andrzej Bieszczad and Bernard Pagurek. Neuro-
solver: Neuromorphic general problem solver. In-
formation Sciences, 105(1–4):239–277, 1998.

[27] Fischer Black and Myron Scholes. The pricing of
options and corporate liabilities. Journal of Politi-
cal Economy, 81(3):637–654, 1973.

[28] Y. Bob. Ex-gov’t agent: Crisis worse than 9/11
could emerge from AI arms race. Jerusalem Post
(12 Feburary 2019).

[29] M. A. Boden. Artificial intelligence and natural
man. MIT Press, London, 2nd edition, 1987.

[30] Nazim Bouatta, Peter Sorger, and Mohammed
AlQuraishi. Protein structure prediction by Al-
phaFold2: Are attention and symmetries all you
need? Acta Crystallographica Section D: Structural
Biology, 77(8):982–991, 2021.

[31] Leo Breiman. Random forests. Machine Learning,
45(1):5–32, 2001.

[32] Sergey Brin and Lawrence Page. The anatomy of a
large-scale hypertextual web search engine. Com-
puter Networks and ISDN Systems, 30(1–7):107–
117, 1998.

[33] Michael Broughton, Guillaume Verdon, Trevor
McCourt, Antonio J. Martinez, Jae Hyeon Yoo,
Sergei V. Isakov, Philip Massey, Ramin Halavati,
Murphy Yuezhen Niu, Alexander Zlokapa, et al.
TensorFlow Quantum: A software framework

for quantum machine learning. arXiv preprint
arXiv:2003.02989, 2020.

[34] Tom Brown, Benjamin Mann, Nick Ryder,
Melanie Subbiah, Jared D. Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam,
Girish Sastry, Amanda Askell, et al. Language
models are few-shot learners. Advances in Neural
Information Processing Systems, 33:1877–1901,
2020.

[35] Mark Buchanan. Ubiquity: The science of history,
or why the world is simpler than we think. Weiden-
feld & Nicolson, London, 2000.

[36] Benjamin S. Bucknall and Shiri Dori-Hacohen.
Current and near-term AI as a potential exis-
tential risk factor. In Proceedings of the 2022
AAAI/ACM conference on AI, ethics, and society.
ACM, New York, NY, July 2022.

[37] R. R. Burton. Semantic grammar: An engineering
technique for constructing natural language under-
standing systems. Report No. 3453. Bolt Beranek
and Newman, Boston, MA, 1976.

[38] James Cameron and William Wisher. Terminator
2: Judgment day. TriStar Pictures, Culver City, CA,
1991.

[39] Chunshui Cao, Yongzhen Huang, Zilei Wang,
Liang Wang, Ninglong Xu, and Tieniu Tan. Lateral
inhibition-inspired convolutional neural network
for visual attention and saliency detection. In Pro-
ceedings of the AAAI conference on artificial intel-
ligence, volume 32, 2018. AAAI Press, Palo Alto,
CA.

[40] Karel Čapek. R.U.R. (Rossum’s Universal Robots).
Samuel French, Inc., 1923. English version by
Paul Selver and Nigel Playfair. Original Czech play
1921, “Rossumovi Univerzální Roboti”. https://gu
tenberg.org/ebooks/59112.

[41] J. Carpenter. Google’s algorithm shows prestigious
job ads to men, but not to women. Independent (7
July 2015).

[42] CERN. Storage: What data to record? CERN,
2021. https://home.cern/science/computing/stor
age accessed 01/12/2024.

[43] David J. Chalmers. Facing up to the problem of
consciousness. Journal of Consciousness Studies,
2(3):200–219, 1995.

[44] Angie Chandler, Joe Finney, Carl Lewis, and Alan
Dix. Toward emergent technology for blended

https://gutenberg.org/ebooks/59112
https://gutenberg.org/ebooks/59112
https://home.cern/science/computing/storage
https://home.cern/science/computing/storage

Bibliography ■ 383

public displays. Proceedings of the 11th Interna-
tional Conference on Ubiquitous Computing, pages
101–104. ACM, New York, NY, 2009.

[45] Varun Chandrasekaran, Chuhan Gao, Brian Tang,
Kassem Fawaz, Somesh Jha, and Suman Baner-
jee. Face-off: Adversarial face obfuscation.
Proceedings on Privacy Enhancing Technologies
2021(2):369-390, 2021.

[46] E. Charniak. Towards a model of children’s story
comprehension. Report No. TR-266, AI Labora-
tory. MIT, Cambridge, MA, 1972.

[47] Kumar Chellapilla and David B. Fogel. Evolving
neural networks to play checkers without relying
on expert knowledge. IEEE Transactions on Neu-
ral Networks, 10(6):1382–1391, 1999.

[48] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas
Joseph, Greg Brockman, et al. Evaluating
large language models trained on code. arXiv
preprint arXiv:2107.03374, 2021 https://arxiv.org/
abs/2107.03374.

[49] Jessica Cherner. The Eiffel Tower is now
20 feet taller. Architectural Digest (17 March
2022). https://www.architecturaldigest.com/stor
y/eiffel-tower-20-feet-taller.

[50] Leon Chua. Memristor-the missing circuit el-
ement. IEEE Transactions on Circuit Theory,
18(5):507–519, 1971.

[51] Citizens Advice Bureau. 22% don’t have basic
banking services needed to deal with univer-
sal credit. Technical Report, Citizens Advice
Bureau, 2013. https://www.citizensadvice.org.uk/
cymraeg/amdanom-ni/about-us1/media/press-
releases/22-don-t-have-basic-banking-services-
needed-to-deal-with-universal-credit/ accessed
01/12/2024.

[52] H. H. Clark and S. E. Brennan. Grounding in com-
munication. In L. B. Resnick, J. Levine, and S.
D. Behrend, editors, Perspectives on socially shared
cognition, pages 127–149. American Psychologi-
cal Association, Washington, DC, 1991.

[53] A. J. G. Cockburn. Groupware design: Principles,
prototypes and systems. PhD thesis, University of
Stirling, 1993.

[54] Kristin A. Cook and James J. Thomas. Illuminat-
ing the path: The research and development agenda

for visual analytics. Technical Report. National
Visualization and Analytics Center (NVAC), Pa-
cific Northwest National Lab (PNNL), Richland,
WA, 2005. https://www.pnnl.gov/publications/
illuminating-path-research-and-development-
agenda-visual-analytics.

[55] Rémi Coulom. Efficient selectivity and backup
operators in Monte-Carlo tree search. In
International conference on computers and
games, pages 72–83. Springer, Berlin, 2006.
http://www.europarl.europa.eu/sed/doc/news/
document/CONS_CONS(2016)05418(REV1)_
EN.docx/ accessed 01/12/2024.

[56] Council of the European Union. Position
of the Council on General Data Protec-
tion Regulation. Technical Report. Coun-
cil of the European Union, 8 April 2016.
http://www.europarl.europa.eu/sed/doc/news/
document/CONS_CONS(2016)05418(REV1)_
EN.docx/ accessed 01/12/2024.

[57] Andy Crabtree, Lachlan Urquhart, and Jiahong
Chen. Right to an explanation considered harm-
ful. Technical Report. Edinburgh School of Law
Research Paper, Edinburgh, 8 April 2019.

[58] Miles Cranmer, Alvaro Sanchez Gonzalez, Peter
Battaglia, Rui Xu, Kyle Cranmer, David Spergel,
and Shirley Ho. Discovering symbolic models
from deep learning with inductive biases. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F.
Balcan, and H. Lin, editors, Advances in neural
information processing systems, volume 33,
pages 17429–17442. Curran Associates, Inc.,
2020.

[59] Francis Crick and Graeme Mitchison. The func-
tion of dream sleep. Nature, 304:111–114, 1983.

[60] Clara Crivellaro and Alan Dix. AI and so-
cial justice: From avoiding harms to positive ac-
tion. The AI Summit, New York, 8 Decem-
ber 2021. https://www.alandix.com/academic/tal
ks/AI-Summit-NY-2021-AISJ/.

[61] Florinel-Alin Croitoru, Vlad Hondru, Radu Tudor
Ionescu, and Mubarak Shah. Diffusion models in
vision: A survey. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 45(9):10850–
10869, 2023.

[62] Mary L. Cummings. Automation bias in intel-
ligent time critical decision support systems. In

https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://www.architecturaldigest.com/story/eiffel-tower-20-feet-taller
https://www.architecturaldigest.com/story/eiffel-tower-20-feet-taller
https://www.pnnl.gov/publications/illuminating-path-research-and-development-agenda-visual-analytics
https://www.pnnl.gov/publications/illuminating-path-research-and-development-agenda-visual-analytics
https://www.pnnl.gov/publications/illuminating-path-research-and-development-agenda-visual-analytics
https://www.alandix.com/academic/talks/AI-Summit-NY-2021-AISJ/
https://www.alandix.com/academic/talks/AI-Summit-NY-2021-AISJ/

384 ■ Bibliography

AIAA 1st intelligent systems technical conference,
2004. Chicago, IL, 20–22 September 2004.

[63] Mary L. Cummings. Automation bias in intelli-
gent time critical decision support systems. In D.
Harris, editor, Decision making in aviation, pages
289–294. Routledge, Abingdon, 2017.

[64] Allen Cypher. Eager: Programming repetitive
tasks by example. In Proceedings of the SIGCHI
conference on human factors in computing systems,
CHI ’91, page 33–39. Association for Computing
Machinery, Ney York, NY, 1991.

[65] Antonio R. Damasio. Descartes’ error. Putnam,
New York, NY, 1994.

[66] A. Datta, M. Tschantz, and A. Datta. Automated
experiments on ad privacy settings. In Proceedings
on privacy enhancing technologies, pages 92–112.
De Gruyter, Berlin, 2015.

[67] Harry Davies, Bethan McKernan, and Dan Sab-
bagh. ‘The Gospel’: How Israel uses AI to select
bombing targets in Gaza. The Guardian (1 De-
cember 2023).

[68] Ernest Davis and Gary Marcus. Commonsense
reasoning and commonsense knowledge in arti-
ficial intelligence. Communications of the ACM,
58(9):92–103, August 2015.

[69] Wiebren De Jonge. Compromising statistical
databases responding to queries about means.
ACM Transactions on Database Systems (TODS),
8(1):60–80, 1983.

[70] Alex de Vries. The growing energy footprint of
artificial intelligence. Joule, 7(10):2191–2194. ht
tps://doi.org/10.1016/j.joule.2023.09.004, 2023.

[71] Jeffrey Dean and Sanjay Ghemawat. MapReduce:
Simplified data processing on large clusters. Com-
mun: ACM, 51(1):107–113, January 2008.

[72] R. Descartes. A discourse on method, page 1637.
Project Gutenberg EBook, 2008. http://www.gute
nberg.org/files/59/59-h/59-h.htm#part4.

[73] Ben Dickson. Can large language models
be democratized? TechTalks (16 May 2022).
https://bdtechtalks.com/2022/05/16/opt-175b-
large-language-models/.

[74] A. Dix. Human issues in the use of pattern recog-
nition techniques. In R. Beale and J. Finlay, ed-
itors, Neural networks and pattern recognition in

human computer interaction, pages 429–451. Ellis
Horwood Hemel Hempstead, 1992.

[75] A. Dix. Interactive querying - locating and discov-
ering information. In Second workshop on infor-
mation retrieval and human computer interaction.
Paper presented at workshop without subse-
quent proceedings, Glasgow, 11 September 1998.
https://www.alandix.com/academic/papers/IQ98/
accessed 01/12/2024.

[76] A. Dix, J. Finlay, G. Abowd, and R. Beale. Human-
computer interaction. Prentice Hall, Hemel
Hempstead, 1993.

[77] A. Dix and A. Patrick. Query by Browsing.
In P. Sawyer, editor, Proceedings of IDS’94: The
2nd international workshop on user interfaces to
databases, pages 236–248. Springer Verlag, Lan-
caster, 1994.

[78] Alan Dix, Russell Beale and Andy Wood. Archi-
tectures to make simple visualisations using sim-
ple systems. In Proceedings of the working con-
ference on Advanced Visual Interfaces (AVI 2000),
pages 51–60, 2000.

[79] Alan Dix. Beyond intention – pushing bound-
aries with incidental interaction. In Proceed-
ings of Building bridges: Interdisciplinary context-
sensitive computing. Paper presented at workshop
without subsequent proceeding, Glasgow Univer-
sity, 2002. https://alandix.com/academic/papers/
beyond-intention-2002/ accessed 01/12/2024.

[80] Alan Dix. The brain and the web: A quick
backup in case of accidents, 29 August
2005. https://www.alandix.com/academic/paper
s/brain-and-web-2005/ accessed 21/11/2023.

[81] Alan Dix. Designing for appropriation. In Pro-
ceedings of the 21st British HCI group annual con-
ference on people and computers: HCI...but not as
we know it - volume 2, BCS-HCI ’07, page 27–
30. BCS Learning & Development Ltd, Swindon,
GBR, 2007.

[82] Alan Dix. I in an other’s eye. AI and Society,
34(1):55–73, 2019.

[83] Alan Dix. Statistics for HCI: Making sense of
quantitative data. Morgan & Claypool, 2020.
DOI:10.2200/S00974ED1V01Y201912HCI044.

[84] Alan Dix. ChatGPT, culture and creativity – sim-
ulacrum and alterity. Keynote at JRL Creative AI

https://doi.org/10.1016/j.joule.2023.09.004
https://doi.org/10.1016/j.joule.2023.09.004
http://www.gutenberg.org/files/59/59-h/59-h.htm#part4
http://www.gutenberg.org/files/59/59-h/59-h.htm#part4
https://alandix.com/academic/papers/beyond-intention-2002/
https://alandix.com/academic/papers/beyond-intention-2002/
https://www.alandix.com/academic/papers/brain-and-web-2005/
https://www.alandix.com/academic/papers/brain-and-web-2005/
https://www.alandix.com/academic/papers/IQ98

Research Conference 2023, 26 June 2023. https://
alandix.com/academic/talks/CAR2023-keynote/.

[85] Alan Dix, Rachel Cowgill, Christina Bashford, Si-
mon McVeigh, and Rupert Ridgewell. Authority
and judgement in the digital archive. In Proceed-
ings of the 1st international workshop on digital li-
braries for musicology (DLfM’14). Association for
Computing Machinery, New York, NY, 2014.

[86] Alan Dix, Rachel Cowgill, Christina Bashford, Si-
mon McVeigh, and Rupert Ridgewell. Spread-
sheets as user interfaces. In Proceedings of the in-
ternational working conference on advanced visual
interfaces (AVI’16), page 192–195. Association for
Computing Machinery, New York, NY, 2016.

[87] Alan Dix and Geoffrey Ellis. Starting simple:
Adding value to static visualisation through sim-
ple interaction. In Proceedings of the working
conference on Advanced Visual Interfaces (AVI’98),
pages 124–134, 1998. https://alandix.com/acad
emic/papers/simple98/.

[88] Alan Dix, Janet Finlay, Gregory D. Abowd, and
Russell Beale. Human-computer interaction. Pear-
son Education, 2003. https://hcibook.com/.

[89] Alan Dix, Akrivi Katifori, Giorgos Lepouras,
Costas Vassilakis, and Nadeem Shabir. Spreading
activation over ontology-based resources: From
personal context to web scale reasoning. Interna-
tional Journal of Semantic Computing, 4(01):59–
102, 2010.

[90] Alan Dix and Genovefa Kefalidou. Regret
from cognition to code. In Antonio Cerone,
Marco Autili, Alessio Bucaioni, Cláudio Gomes,
Pierluigi Graziani, Maurizio Palmieri, Marco
Temperini, and Gentiane Venture, editors, Soft-
ware engineering and formal methods. SEFM 2021
collocated workshops, pages 15–36. Springer Inter-
national Publishing, Cham, 2022.

[91] Alan J Dix. Information processing, context and
privacy. In Proceedings of INTERACT’90, pages
15–20. IFIP, 1990. https://alandix.com/academic
/papers/int90/.

[92] J. Doyle. A truth maintenance system. Artificial
Intelligence, 12(3):232–272, 1979.

[93] H. Dreyfus. What computers can’t do. Harper and
Row, New York, 2nd edition, 1979.

Bibliography ■ 385

[94] Emily Dreyfuss and Issie Lapowsky. Facebook
is changing news feed (again) to stop fake news.
Wired, 2019.

[95] R. O. Duda, J. Gaschnig, and P. E. Hart. Model
design in the PROSPECTOR consultant system
for mineral exploration. In D. Michie, editor, Ex-
pert systems in the micro-electronic age. Edinburgh
University Press, Edinburgh, 1979.

[96] Susan T. Dumais et al. Latent semantic analysis.
Annual Review of Information Science and Tech-
nology, 38(1):188–230, 2004.

[97] Pamela Duncan, Niamh McIntyre, Rhi Storer, and
Cath Levett. Who won and who lost: when A-
levels meet the algorithm. The Guardian (13 Au-
gust 2020).

[98] Vedran Dunjko and Hans J Briegel. Machine
learning & artificial intelligence in the quantum
domain: A review of recent progress. Reports on
Progress in Physics, 81(7):074001, 2018.

[99] Sue Bradford Edwards and Duchess Harris. Hid-
den human computers: The black women of NASA.
Hidden Heroes. Essential Library Dallas, TX,
2016.

[100] Andreas K. Engel and Pascal Fries. Chapter 3 -
neuronal oscillations, coherence, and conscious-
ness. In Steven Laureys, Olivia Gosseries, and
Giulio Tononi, editors, The neurology of concious-
ness, pages 49–60. Academic Press, San Diego, 2nd
edition, 2016.

[101] David Ferrucci, Eric Brown, Jennifer Chu-Carroll,
James Fan, David Gondek, Aditya A. Kalyanpur,
Adam Lally, J. William Murdock, Eric Nyberg,
John Prager, et al. Building Watson: An overview
of the DeepQA project. AI Magazine, 31(3):59–79,
2010.

[102] C. Fillmore. The case for case. In E. Bach and
R. T. Harms, editors, Universals in linguistic theory.
Holt, New York, 1968.

[103] O. Firschein, M. A. Fischler, L. S. Coles, and J. M.
Tenenbaum. Forecasting and assessing the im-
pact of artificial intelligence on society. In IJCAI-
3, pages 105–120. Morgan Kaufmann, San Fran-
cisco, CA, 1974.

[104] David V. Ford, Kerina H. Jones, Jean-Philippe
Verplancke, Ronan A. Lyons, Gareth John,
Ginevra Brown, Caroline J. Brooks, Simon

https://alandix.com/academic/talks/CAR2023-keynote/
https://alandix.com/academic/talks/CAR2023-keynote/
https://alandix.com/academic/papers/simple98/
https://alandix.com/academic/papers/simple98/
https://hcibook.com/
https://alandix.com/academic/papers/int90/
https://alandix.com/academic/papers/int90/

386 ■ Bibliography

Thompson, Owen Bodger, Tony Couch, et al. The
SAIL Databank: Building a national architecture
for e-health research and evaluation. BMC Health
Services Research, 9(1):1–12, 2009.

[105] E. M. Forster. The machine stops. 1909.
The Oxford and Cambridge Review (November
1909). https://archive.org/details/e.-m.-forster-
the-machine-stops_202008/.

[106] Marcus Foth, Martin Tomitsch, Laura Forlano,
M. Hank Haeusler, and Christine Satchell. Citi-
zens breaking out of filter bubbles: Urban screens
as civic media. In Proceedings of the 5th ACM in-
ternational symposium on pervasive displays, pages
140–147. ACM, New York, NY, 2016.

[107] N. Friedman, M. Linial, I. Nachman, and D. Pe’er.
Using Bayesian networks to analyze expression
data. Journal of Computational Biology, 7(3–
4):601–620, 2000.

[108] Nat Friedman. Introducing GitHub Copilot: Your
AI pair programmer, 2021. https://github.com/f
eatures/copilot/.

[109] Takuya Fukushima, Tomoharu Nakashima, and
Hidehisa Akiyama. Evaluation-function model-
ing with multi-layered perceptron for RoboCup
soccer 2D simulation. Artificial Life and Robotics,
25(3):440–445, 2020.

[110] Simson Garfinkel, Jeanna Matthews, Stuart S.
Shapiro, and Jonathan M. Smith. Toward algorith-
mic transparency and accountability, 2017.

[111] Kiran Garimella, Gianmarco De Fran-
cisci Morales, Aristides Gionis, and Michael
Mathioudakis. Political discourse on social
media: Echo chambers, gatekeepers, and the price
of bipartisanship. In Proceedings of the 2018 world
wide web conference, pages 913–922. ACM, New
York, NY, 2018.

[112] F. H. George. The brain as a computer. Pergamon
Press, Oxford, 1961.

[113] Peter A. Getting. Emerging principles governing
the operation of neural networks. Annual Review
of Neuroscience, 12(1):185–204, 1989.

[114] B. Gholipour. We need to open the AI black box
before it’s too late: If we don’t, the biases of our past
could dictate our future. Futurism (18 January
2018).

[115] P. Ghosh. AAAS: Machine learning ‘causing sci-
ence crisis’. BBC News (16 February 2019):99–99.

[116] Ian Goodfellow, Jean Pouget-Abadie, Mehdi
Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Gen-
erative adversarial networks. Communications of
the ACM, 63(11):139–144, 2020.

[117] H. P. Grice. Logic and conversation. In P. Cole and
J. Morgan, editors, Studies in syntax and semantics
III: Speech acts, pages 183–198. Academic Press,
New York, 1975.

[118] Guardian. Microsoft ‘deeply sorry’ for racist and
sexist tweets by AI chatbot. The Guardian (26
March 2016).

[119] Asela Gunawardana, Tim Paek, and Christopher
Meek. Usability guided key-target resizing for soft
keyboards. In Proceedings of the 15th international
conference on Intelligent user interfaces, pages 111–
118. ACM, New York, NY, 2010.

[120] Alfréd Haar. Zur Theorie der orthogonalen
Funktionensysteme. Mathematische Annalen,
71(1):38–53, 1910.

[121] Elizabeth L. Haines, Kay Deaux, and Nicole Lo-
faro. The times they are a-changing… or are they
not? A comparison of gender stereotypes, 1983–
2014. Psychology of Women Quarterly, 40(3):353–
363, 2016.

[122] Alon Halevy, Peter Norvig, and Fernando Pereira.
The unreasonable effectiveness of data. IEEE In-
telligent Systems, 24(2):8–12, 2009.

[123] R. Hall. Computational approaches to analogi-
cal reasoning. Artificial Intelligence, 39(1):39–120,
1989.

[124] S. Hawking, E. Musk, S. Wozniak, et al. Au-
tonomous weapons: An open letter from AI &
robotics researchers. Technical Report 99. Future
of Life Institute, 2015.

[125] Jeff Hawkins, Subutai Ahmad, and Yuwei Cui. A
theory of how columns in the neocortex enable
learning the structure of the world. Frontiers in
Neural Circuits, 11:81, 2017.

[126] Christian Heath and Paul Luff. Collaboration
and control crisis management and multimedia
technology in London Underground line control
rooms. Computer Supported Cooperative Work
(CSCW), 1:69–94, 1992.

[127] Julian Heinrich and Daniel Weiskopf. State of
the art of parallel coordinates. In M. Sbert and

https://archive.org/details/e.-m.-forster-the-machine-stops_202008/
https://archive.org/details/e.-m.-forster-the-machine-stops_202008/
https://github.com/features/copilot/
https://github.com/features/copilot/

Bibliography ■ 387

L. Szirmay-Kalos, editors, Eurographics 2013 -
state of the art reports. The Eurographics Associ-
ation, Eindhoven, 2013.

[128] James Hendler. Avoiding another AI winter. IEEE
Intelligent Systems, 23(2):2–4, March 2008.

[129] James Hendler, Nigel Shadbolt, Wendy Hall, Tim
Berners-Lee, and Daniel Weitzner. Web science:
An interdisciplinary approach to understanding
the web. Communications of the ACM, 51(7):60–
69, July 2008.

[130] J. Henrich, S. Heine, and A. Norenzayan. The
weirdest people in the world? Behavioral and
Brain Sciences, 33(2–3):61–83, 2010.

[131] Gary Higgs, Andrew Price, and Mitchel Langford.
Investigating the impact of bank branch closures
on access to financial services in the early stages of
the COVID-19 pandemic. Journal of Rural Stud-
ies, 95:1–14, 2022.

[132] Geoffrey E. Hinton. Learning multiple layers
of representation. Trends in Cognitive Sciences,
11(10):428–434, 2007.

[133] Geoffrey E. Hinton and Ruslan R. Salakhutdinov.
Reducing the dimensionality of data with neural
networks. Science, 313(5786):504–507, 2006.

[134] Tin Kam Ho. Random decision forests. In Pro-
ceedings of 3rd international conference on doc-
ument analysis and recognition, volume 1, pages
278–282. IEEE, Los Alamitos, CA, 1995.

[135] J. K. Hodgins, W. L. Wooten, D. C. Brogan, and
J. F. O’Brien. Animating human athletics. In Pro-
ceedings of SIGGRAPH95. ACM, New York, NY,
1995.

[136] Johannes Hoffart, Fabian M. Suchanek, Klaus
Berberich, and Gerhard Weikum. Yago2: A spa-
tially and temporally enhanced knowledge base
from Wikipedia. Artificial Intelligence, 194:28–61,
2013. Artificial Intelligence, Wikipedia and Semi-
Structured Resources.

[137] John J. Hopfield, David I. Feinstein, and Richard G
Palmer. ‘Unlearning’ has a stabilizing effect in col-
lective memories. Nature, 304:158–159, 1983.

[138] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adapta-
tion of large language models. arXiv preprint
arXiv:2106.09685, 2021.

[139] E. Hutchins. The technology of team navigation.
In J. Gallagher, R. Kraut, and C. Egido, editors,
Intellectual teamwork: Social and technical bases of
collaborative work. Lawrence Erlbaum Associates,
Hillsdale, NJ, 1990.

[140] Matthew Hutson. AI learns the art of diplomacy.
Science (New York, NY), 378(6622):818–818, 2022.

[141] IFTTT. What is IFTTT? If this then
that, 2023. https://ifttt.com/explore/new_to_ifttt
accessed 01/01/2023.

[142] Information Commissioner’s Office. Introduc-
tion to anonymisation: Draft anonymisation,
pseudonymisation and privacy enhancing tech-
nologies guidance, 2021. Information Com-
missioner’s Office May 2021, https://ico.org.
uk/media/about-the-ico/consultations/2619862/
anonymisation-intro-and-first-chapter.pdf.

[143] Eugenie Jackson and Christina Mendoza.
Setting the record straight: What the COMPAS
Core risk and need assessment is and is not.
Harvard Data Science Review, 2(1), 2020.
https://doi.org/10.1162/99608f92.1b3dadaa.

[144] Benjamin N. Jacobsen. Machine learning and the
politics of synthetic data. Big Data & Society,
10(1):20539517221145372, 2023.

[145] William James. What is an emotion? Mind,
9(34):188–205, 1884.

[146] William James. The principles of psychology,
chapter XI. Attention. Dover, New York,
1890. https://psychclassics.yorku.ca/James/Princ
iples/prin11.htm.

[147] Youngseung Jeon, Bogoan Kim, Aiping Xiong,
Dongwon Lee, and Kyungsik Han. Chamber-
breaker: Mitigating the echo chamber effect and
supporting information hygiene through a gami-
fied inoculation system. Proceedings of the ACM
on Human-Computer Interaction, 5(CSCW2):1–
26, 2021.

[148] Leisheng Jin, Zhuo Liu, and Lijie Li. Chain-
structure time-delay reservoir computing for syn-
chronizing chaotic signal and an application to se-
cure communication. EURASIP Journal on Ad-
vances in Signal Processing, 2022(1):1–17, 2022.

[149] L. Johnson and N. E. Johnson. Knowledge elic-
itation involving teach-back interviewing. In
A. Kidd, editor, Knowledge acquisition for expert
systems. Plenum Press, London, 1987.

https://ifttt.com/explore/new_to_ifttt
https://psychclassics.yorku.ca/James/Principles/prin11.htm
https://psychclassics.yorku.ca/James/Principles/prin11.htm
https://doi.org/10.1162/99608f92.1b3dadaa

388 ■ Bibliography

[150] William Jones. Keeping found things found: The
study and practice of personal information man-
agement. Morgan Kaufmann, Burlington, MA,
2010.

[151] Daniel Kahneman. Thinking, fast and slow.
Macmillan, Basingstoke, 2011.

[152] Daniel Keim, Jörn Kohlhammer, Geoffrey Ellis,
and Florian Mansmann. Mastering the informa-
tion age: Solving problems with visual analytics.
Eurographics Association, Goslar, 2010. https:
//www.vismaster.eu/book/.

[153] C. W. Kilmister. Language, logic and mathematics.
English Universities Press, London, 1967.

[154] Thomas Kluyver, Benjamin Ragan-Kelley, Fer-
nando Pérez, Brian E. Granger, Matthias Bus-
sonnier, Jonathan Frederic, Kyle Kelley, Jes-
sica B. Hamrick, Jason Grout, Sylvain Corlay,
et al. Jupyter Notebooks – a publishing format
for reproducible computational workflows. In F.
Loizides and B. Schmidt, editors, Positioning and
Power in Academic Publishing: Players, Agents and
Agendas. IOS Press, Amsterdam, 2016.

[155] T. Kohonen. Self organisation and associative
memory. Springer-Verlag, Berlin, 3rd edition,
1990.

[156] D. Kushner. The real story of Stuxnet. IEEE Spec-
trum, 50(3):48–53, 2013.

[157] J. E. Laird, A. Newell, and P. S. Rosenbloom.
SOAR: An architecture for general intelligence.
Artificial Intelligence, 33(1):1–64, 1987.

[158] John E Laird. The Soar cognitive architecture. MIT
Press, 2019.

[159] I. Lapowsky. Google autocomplete still makes vile
suggestions. Wired (2nd December 2018).

[160] Matthew E. Larkum, Lucy S. Petro, Robert N. S.
Sachdev, and Lars Muckli. A perspective on
cortical layering and layer-spanning neuronal el-
ements. Frontiers in Neuroanatomy, 12(56),
2018.

[161] M. W. Lee and M. Walter. Equality im-
pact assessment: Literature review. Of-
fice of Qualifications and Examina-
tions Regulation (Ofqual) April 2020.
https://assets.publishing.service.gov.uk/media/5e
971f1de90e071a145ec51f/Equality_impact_asses
sment_literature_review_15_April_2020.pdf.

[162] P. Leith. Ell: An expert legislative consultant. In
Proceedings lEE conference on man/machine sys-
tems, Manchester, UK, 1982.

[163] P. Leith. Legal knowledge engineering: Computing,
logic and law. PhD thesis, Open University, 1985.

[164] D. B. Lenat and R. V. Guha. Building large knowl-
edge based systems. Addison-Wesley, Reading,
MA, 1990.

[165] S. Levin and J. Wong. Self-driving Uber kills Ari-
zona woman in first fatal crash involving pedes-
trian. The Guardian (19 March 2018).

[166] Thomas Lewton. The Einstein machine. New Sci-
entist, 256(3414):44–47, 2022.

[167] Jialiang Li, Ming Gao, and Ralph D’Agostino.
Evaluating classification accuracy for modern
learning approaches. Statistics in Medicine,
38(13):2477–2503, 2019.

[168] Joseph C. R. Licklider. Man-computer symbiosis.
IRE Transactions on Human Factors in Electronics,
HFE-1 (1):4–11, 1960.

[169] Henry Lieberman. Constructing graphical user
interfaces by example. In Proceedings: Graphics In-
terface, pages 295–302. National Research Coun-
cil of Canada, 1982 (SEE N 82-29909 20-61). https:
//doi.org/10.20380/GI1982.44.

[170] R. K. Lindsay, B. G. Buchanan, E. A. Feigenbaum,
and J. Lederberg. Applications of artificial in-
telligence for organic chemistry: The DENDRAL
project. McGraw-Hill, New York, 1980.

[171] Jacques-Louis Lions, Lennart Luebeck, Jean-Luc
Fauquembergue, Gilles Kahn, Wolfgang Kubbat,
Stefan Levedag, Leonardo Mazzini, Didier Merle,
and Colin O’Halloran. Ariane 5 flight 501 failure
report by the inquiry board, 1996. http://sunnyd
ay.mit.edu/nasa-class/Ariane5-report.html.

[172] Ziming Liu, Yixuan Wang, Sachin Vaidya,
Fabian Ruehle, James Halverson, Marin Soljačić,
Thomas Y. Hou, and Max Tegmark. KAN:
Kolmogorov–Arnold networks. arXiv preprint
arXiv:22404.19756, 2024.

[173] A. Liu, B. Feng, B. Wang, et al. DeepSeek-v2:
A strong, economical, and efficient mixture-
of-experts language model. arXiv preprint
arXiv:2405.04434, 2024.

[174] Sarah Loos, Geoffrey Irving, Christian Szegedy,
and Cezary Kaliszyk. Deep network guided proof
search. arXiv preprint arXiv:1701.06972, 2017.

https://www.vismaster.eu/book/
https://www.vismaster.eu/book/
https://assets.publishing.service.gov.uk/media/5e971f1de90e071a145ec51f/Equality_impact_assessment_literature_review_15_April_2020.pdf
https://assets.publishing.service.gov.uk/media/5e971f1de90e071a145ec51f/Equality_impact_assessment_literature_review_15_April_2020.pdf
https://assets.publishing.service.gov.uk/media/5e971f1de90e071a145ec51f/Equality_impact_assessment_literature_review_15_April_2020.pdf
https://doi.org/10.20380/GI1982.44
https://doi.org/10.20380/GI1982.44
http://sunnyday.mit.edu/nasa-class/Ariane5-report.html
http://sunnyday.mit.edu/nasa-class/Ariane5-report.html

[175] C. Loughlin. Sensors for industrial inspection.
Kluwer Academic, Dordrecht, 1993.

[176] Ada Lovelace. Notes upon the memoir by the trans-
lator: Sketch of the analytical engine invented by
Charles Babbage, by L. F. Menabrea, Bibliothèque
Universelle de Genève, October, 1842, no. 82. ht
tps://www.fourmilab.ch/babbage/sketch.html.

[177] Peter Lucas, Linda van der Gaag, and Ameen Abu-
Hanna. Bayesian networks in biomedicine and
health-care. Artificial Intelligence in Medicine,
30(3):201–214, 2004.

[178] Scott M. Lundberg and Su-In Lee. A uni-
fied approach to interpreting model predictions.
In Proceedings of the 31st international confer-
ence on neural information processing systems
(NIPS’17), page 4768–4777. Curran Associates
Inc, Red Hook, NY, 2017.

[179] Richard Luscombe. Google engineer put on leave
after saying AI chatbot has become sentient. The
Guardian (December 2022).

[180] Ronan A. Lyons, Kerina H. Jones, Gareth John,
Caroline J. Brooks, Jean-Philippe Verplancke,
David V. Ford, Ginevra Brown, and Ken Leake.
The SAIL Databank: linking multiple health and
social care datasets. BMC Medical Informatics and
Decision Making, 9(1):1–8, 2009.

[181] Alessio Malizia, Alan Chamberlain, and Ian Will-
cock. From design fiction to design fact: Devel-
oping future user experiences with proto-tools.
In Masaaki Kurosu, editor, Human-computer in-
teraction: Theories, methods, and human issues,
pages 159–168. Springer International Publishing,
Berlin, 2018.

[182] Jo Marchant. Powerful antibiotics discovered us-
ing AI. Nature News (20 February 2020).

[183] Henry Markram. The human brain project. Sci-
entific American, 306(6):50–55, 2012.

[184] D. Marr. Vision: A computational investigation into
the human representation and processing of visual
information. W. H. Freeman, San Francisco, 1982.

[185] J. McCarthy and P. J. Hayes. Some philosophical
problems from the standpoint of artificial intelli-
gence. In B. Meltzer and D. Michie, editors, Ma-
chine intelligence 4. Edinburgh University Press,
Edinburgh, 1969.

Bibliography ■ 389

[186] J. L. McClelland and D. E. Rumelhart. Parallel dis-
tributed processing, volume 1. MIT Press, Cam-
bridge, MA, 1986.

[187] Paige McGlauflin and Joseph Abrams. Elon Musk
says AI will remove need for jobs and create ‘uni-
versal high income.’ But workers don’t want to
wait for robots to get financial relief. Fortune,
2023.

[188] Katharine McGowan and Sean Geobey. “Harmful
to the commonality”: The Luddites, the distribu-
tional effects of systems change and the challenge
of building a just society. Social Enterprise Journal,
18(2), 306-320, 2022.

[189] Cade Metz. In two moves, AlphaGo and Lee Sedol
redefined the future. WIRED (16 March 2016).

[190] Nicholas Micallef, Marcelo Sandoval-Castañeda,
Adi Cohen, Mustaque Ahamad, Srijan Kumar,
and Nasir Memon. Cross-platform multi-
modal misinformation: Taxonomy, characteris-
tics and detection for textual posts and videos.
In Proceedings of the international AAAI con-
ference on web and social media, volume 16,
pages 651–662, Association for the Advance-
ment of Artificial Intelligence, Washington, DC,
2022.

[191] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S.
Corrado, and Jeff Dean. Distributed representa-
tions of words and phrases and their composition-
ality. Advances in Neural Information Processing
Systems, 26, 3111–3119, 2013.

[192] G. A. Miller. The magical number seven, plus or
minus two: Some limits on our capacity to process
information. Psychological Review, 63(2):81–97,
1956.

[193] George A. Miller. WordNet: A lexical database for
English. Communications of the ACM, 38(11):39–
41, 1995.

[194] George A. Miller and Christiane Fellbaum. Word-
Net then and now. Language Resources and Eval-
uation, 41(2):209–214, 2007.

[195] Dan Milmo and Alex Hern. TikTok: Why the app
with 1bn users faces a fight for its existence. The
Guardian (31 March 2023).

[196] M. Minsky. A framework for representing knowl-
edge. In P. H. Winston, editor, The psychology of
computer vision. McGraw-Hill, New York, 1975.

https://www.fourmilab.ch/babbage/sketch.html
https://www.fourmilab.ch/babbage/sketch.html

390 ■ Bibliography

[197] M. Minsky. The society of mind. Simon and Schus-
ter, New York, 1985.

[198] M. Minsky and S. Papert. Perceptrons. MIT Press,
Cambridge, MA, 1969.

[199] T. M. Mitchell. Version spaces: An approach to
concept learning. PhD thesis, Stanford University,
Stanford, CA, 1978.

[200] Matej Moravčík, Martin Schmid, Neil Burch, Vil-
iam Lisỳ, Dustin Morrill, Nolan Bard, Trevor
Davis, Kevin Waugh, Michael Johanson, and
Michael Bowling. DeepStack: Expert-level artifi-
cial intelligence in heads-up no-limit poker. Sci-
ence, 356(6337):508–513, 2017.

[201] A. Morgan, A. Dix, M. Phillips, and C. House.
Blue sky thinking meets green field usability: Can
mobile internet software engineering bridge the
rural divide? Local Economy, 29(6–7):750–761,
2014.

[202] Lev Muchnik, Sen Pei, Lucas C. Parra, Saulo D.
S. Reis, José S. Andrade Jr, Shlomo Havlin, and
Hernán A. Makse. Origins of power-law degree
distribution in the heterogeneity of human activ-
ity in social networks. Scientific Reports, 3(1):1–8,
2013.

[203] Claire Mufson. What will France do with ’na-
tional debate’ data? 2019. https://www.france24.
com/en/20190302-france-great-national-debate-
data-artificial-intelligence-politics-yellow-vests
accessed 03/03/2019.

[204] Mark A. Musen. The Protégé project: a look back
and a look forward. AI Matters, 1(4):4–12, 2015.
https://protege.stanford.edu/.

[205] Brad A. Myers and William Buxton. Creating
highly-interactive and graphical user interfaces by
demonstration. In Proceedings of the 13th annual
conference on computer graphics and interactive
techniques, SIGGRAPH ’86, page 249–258. Asso-
ciation for Computing Machinery, New York, NY,
1986.

[206] J. Paul Myers and Kayako Yamakoshi. The
Japanese Fifth Generation Computing Project: A
brief overview. Journal of Computing Sciences in
Colleges, 36(2):53–60, January 2021.

[207] Miryam Naddaf. Europe spent €600 million to
recreate the human brain in a computer: how did
it go? Nature, 620(7975):718–720, 2023.

[208] A. Newell. Unified theories of cognition and the
role of SOAR. In J. A. Michon and A. Akyurek,
editors, SOAR: A cognitive architecture in perspec-
tive, pages 25–79. Kluwer, Dordrecht, 1992.

[209] A. Newell and H. A. Simon. Human problem solv-
ing. Prentice-Hall, Englewood Cliffs, NJ, 1972.

[210] A. Newell and H. A. Simon. Computer science as
empirical enquiry: Symbols and search. Commu-
nications of the ACM, 19:113–26, March 1976.

[211] NICE. How nice measures value for money in rela-
tion to public health interventions. (Local govern-
ment briefing). National Institute for Health and
Care Excellence, 1 September 2013, Manchester.

[212] S. Noble. Google has a striking history of bias
against black girls. Time (26 March 2018).

[213] NPR. Twitter aims to crack down on misinforma-
tion, including misleading posts about Ukraine.
NPR Technology (19 May 2022).

[214] Brian Oakley and Kenneth Owen. Alvey: Britain’s
strategic computing initiative. MIT Press, 1990.

[215] Nic Oatridge. Wapping’86: The strike that broke
Britain’s newspaper unions. ColdType, 2002,
http://www.coldtype.net/Assets/pdfs/Wapping1.
pdf.

[216] Office of National Statistics. Sustainable devel-
opment indicators, July 2014. http://webarchive.
nationalarchives.gov.uk/20160105183323/http://
www.ons.gov.uk/ons/rel/wellbeing/sustainable-
development-indicators/july-2014/sustainable-
development-indicators.html.

[217] OpenAI. GPT-4 technical report. arXiv preprint
[Submitted on 15 March 2023 (v1), last revised 27
March 2023 (this version, v3)]. https://arxiv.org/
abs/2303.08774.

[218] Dawn Ramanee Peiris. Computer interviews:
Enhancing their effectiveness by simulating inter-
personal techniques. PhD thesis, University of
Dundee, 1997.

[219] Thomas Pellissier Tanon, Denny Vrandečić, Se-
bastian Schaffert, Thomas Steiner, and Lydia
Pintscher. From Freebase to Wikidata: The great
migration. In Proceedings of the 25th Interna-
tional conference on world wide web, WWW’16,
page 1419–1428. International World Wide Web
Conferences Steering Committee, Republic and
Canton of Geneva, CHE, 2016.

https://protege.stanford.edu/
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774

[220] Roger Penrose. The emperor’s new mind: Concern-
ing computers, minds and the laws of physics. Ox-
ford University Press, Oxford, 1989.

[221] Roger Penrose. Shadows of the mind: A search
for the missing science of consciousness. Science
Spectra, 11:74–74, 1998.

[222] F. C. N. Pereira and D. H. D. Warren. Definite
clause grammars for language analysis – a sur-
vey of the formalism and a comparison with aug-
mented transition networks. Artificial Intelligence,
13(3):231–78, 1980.

[223] Andrés Pérez-Uribe and Eduardo Sanchez. Black-
jack as a test bed for learning strategies in neu-
ral networks. In 1998 IEEE international joint
conference on neural networks proceedings: IEEE
world congress on computational intelligence (Cat.
No. 98CH36227), volume 3, pages 2022–2027. Los
Alamitos, CA, IEEE, 1998.

[224] Jean Piaget. Play, dreams and imitation in child-
hood (La formation du symbole chez l’enfant; imi-
tation, jeu et reve, image et représentation). Repub-
lished Norton, New York, NY (1962), Routledge,
Abingdon (2013), 1945.

[225] Luke Y. Prince and Blake A. Richards. The overfit-
ted brain hypothesis. Patterns, 2(5):100268, 2021.

[226] J. R. Quinlan. Discovering rules by induction from
large collections of examples. In D. Michie, editor,
Expert systems in the micro-electronic age, pages
168–201. Edinburgh University Press, Edinburgh,
1979.

[227] J. R. Quinlan. Induction of decision trees. Machine
Learning, 1(1):81–106, 1986.

[228] J. R. Quinlan. C4.5: Programs for machine learning.
Morgan Kaufmann, Burlington, MA, 1993.

[229] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol,
Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents.
arXiv preprint arXiv:2204.06125, 2022.

[230] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh,
Scott Gray, Chelsea Voss, Alec Radford, Mark
Chen, and Ilya Sutskever. Zero-shot text-to-
image generation. In International conference
on machine learning, pages 8821–8831. PMLR,
https://proceedings.mlr.press/v139/ramesh21a.
html, 2021.

[231] Jem Rayfield. BBC World Cup 2010 dynamic
semantic publishing, 2010. BBC Internet Blog, 12

Bibliography ■ 391

July 2010. https://www.bbc.co.uk/blogs/bbcinter
net/2010/07/bbc_world_cup_2010_dynamic_se
m.html.

[232] Paul Rayson and Roger Garside. The CLAWS web
tagger. ICAME Journal, 22:121–123, 1998.

[233] R. Reiter. On closed world data bases. In H. Gal-
laire and J. Minker, editors, Logic and data bases,
pages 55–76. Plenum Press, New York, 1978.

[234] Hanchi Ren, Jingjing Deng, and Xianghua Xie.
GRNN: Generative regression neural network – a
data leakage attack for federated learning. ACM
Transactions on Intelligent Systems and Technol-
ogy, 13(4), May 2022.

[235] Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. ‘‘Why should I trust you?”: Explain-
ing the predictions of any classifier. In Proceed-
ings of the 22nd ACM SIGKDD international con-
ference on knowledge discovery and data mining
(KDD ’16), page 1135–1144. Association for Com-
puting Machinery, New York, NY, 2016.

[236] Steven I. Ross, Fernando Martinez, Stephanie
Houde, Michael Muller, and Justin D. Weisz. The
programmer’s assistant: Conversational interac-
tion with a large language model for software
development. In Proceedings of the 28th inter-
national conference on intelligent user interfaces,
pages 491–514, ACM, New York, NY, 2023.

[237] C. Rudder. Dataclysm: Who we are (when we think
no one’s looking). Fourth Estate, London, 4th Es-
tate, 2014.

[238] SAE International. Taxonomy and definitions
for terms related to driving automation systems
for on-road motor vehicles. SAE International,
4970(724):1–5, 2018.

[239] SAE International. SAE levels of driving
automationTM refined for clarity and international
audience. SAE Blog, posted: Monday (3 May
2021), https://www.sae.org/blog/sae-j3016-upda
te.

[240] Haziqa Sajid. Can you build large language mod-
els like ChatGPT at half cost? UniteAI (11 May
2023). https://www.unite.ai/can-you-build-larg
e-language-models-like-chatgpt-at-half-cost/.

[241] A. Salmoni. Task-based judgements of search en-
gine summaries, and negative information scent.
PhD Thesis, Cardff University, September 2004.

https://www.bbc.co.uk/blogs/bbcinternet/2010/07/bbc_world_cup_2010_dynamic_sem.html
https://www.bbc.co.uk/blogs/bbcinternet/2010/07/bbc_world_cup_2010_dynamic_sem.html
https://www.bbc.co.uk/blogs/bbcinternet/2010/07/bbc_world_cup_2010_dynamic_sem.html
https://www.sae.org/blog/sae-j3016-update
https://www.sae.org/blog/sae-j3016-update
https://www.unite.ai/can-you-build-large-language-models-like-chatgpt-at-half-cost/
https://www.unite.ai/can-you-build-large-language-models-like-chatgpt-at-half-cost/

392 ■ Bibliography

[242] Leo Sauermann, Ansgar Bernardi, and Andreas
Dengel. Overview and outlook on the semantic
desktop. SDW’05, page 74–91. CEUR-WS.org,
Aachan, DEU, 2005.

[243] R. C. Schank and R. P. Abelson. Scripts, plans,
goals, and understanding. Lawrence Erlbaum As-
sociates, Hillsdale, NJ, 1977.

[244] Ari Schlesinger, Kenton P. O’Hara, and Alex S.
Taylor. Let’s talk about race: Identity, chatbots, and
AI. CHI ’18, page 1–14. Association for Comput-
ing Machinery, New York, NY, 2018.

[245] Chistopher Schmandt and Barry Arons. Phone
Slave: A graphical telecommunications interface.
In Proceeding of the SID, volume 26, 1985. See
video at https://www.youtube.com/watch?v=94j
Ia7GIQu0.

[246] Albrecht Schmidt. Implicit human computer in-
teraction through context. Personal Technologies,
4:191–199, 2000.

[247] Michael Schmidt and Hod Lipson. Distilling free-
form natural laws from experimental data. Sci-
ence, 324(5923):81–85, 2009.

[248] Oscar Schwartz. Untold history of AI: Algorith-
mic bias was born in the 1980s. IEEE Spectrum,
15, 2019.

[249] J. R. Searle. Speech acts. Cambridge University
Press, Cambridge, 1969.

[250] J. R. Searle. Minds, brains and programs. Be-
havioural and Brain Sciences, 3:417–424, 1980.

[251] T. J. Sejnowski and C. R. Rosenberg. Parallel net-
works that learn to pronounce English text. Com-
plex Systems, 1(1):145–168, 1987.

[252] Nigel Shadbolt, Kieron O’Hara, David De Roure,
and Wendy Hall. The theory and practice of social
machines. Springer, Berlin, 2019.

[253] Ehud Y. Shapiro. The Fifth Generation Project
– a trip report. Commun. ACM, 26(9):637–641,
September 1983.

[254] Ying Shen, Lizhu Zhang, Jin Zhang, Min Yang,
Buzhou Tang, Yaliang Li, and Kai Lei. CBN: Con-
structing a clinical Bayesian network based on
data from the electronic medical record. Journal
of Biomedical Informatics, 88:1–10, 2018.

[255] B. Shneiderman. The eyes have it: A task by data
type taxonomy for information visualizations. In

Proceedings 1996 IEEE symposium on visual lan-
guages, pages 336–343, Los Alamitos, CA, 1996.

[256] Ben Shneiderman. Bridging the gap between
ethics and practice: Guidelines for reliable, safe,
and trustworthy human-centered AI systems.
ACM Transactions on Interactive Intelligent Sys-
tems (TiiS), 10(4):1–31, 2020.

[257] Ben Shneiderman. Human-centered AI. Oxford
University Press, Oxford, 2022.

[258] E. H. Shortliffe. Computer-based medical consul-
tations: MYCIN. Elsevier, New York, 1976.

[259] Christianna Silva. It took just one weekend for
Meta’s new AI chatbot to become racist. Mashable
(8 August 2022).

[260] David Silver, Aja Huang, Chris J Maddison,
Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis
Antonoglou, Veda Panneershelvam, Marc
Lanctot, et al. Mastering the game of Go with
deep neural networks and tree search. Nature,
529(7587):484–489, 2016.

[261] D. Slate and L. Atkin. Chess 4.5 – the North-
western University chess program. In P. W. Frey,
editor, Chess skill in man and machine. Springer-
Verlag, New York, 1977.

[262] Matthew Sparkes. DeepMind uses AI to control
plasma inside tokamak fusion reactor. New Scien-
tist (16 February 2022).

[263] SSiW. SaySomethingin, 2023. https://www.says
omethingin.com/ accessed 02/01/2023.

[264] Kiran Stacey and Dan Milmo. UK, US, EU and
China sign declaration of AI’s ‘catastrophic’ dan-
ger. The Guardian (1 November 2023).

[265] Susan Leigh Star and James R. Griesemer. In-
stitutional ecology, ‘translations’ and boundary
objects: Amateurs and professionals in Berkeley’s
Museum of Vertebrate Zoology, 1907-39. Social
Studies of Science, 19(3):387–420, 1989.

[266] Daniel Stoljar. Physicalism. In Edward N. Zalta
and Uri Nodelman, editors, Stanford encyclopedia
of philosophy. Stanford University Press Stanford,
CA, 2001.

[267] Petr Suchánek, Franciszek Marecki, and Robert
Bucki. Self-learning Bayesian networks in diag-
nosis. Procedia Computer Science, 35:1426–1435,

https://www.youtube.com/watch?v=94jIa7GIQu0
https://www.youtube.com/watch?v=94jIa7GIQu0
https://www.saysomethingin.com/
https://www.saysomethingin.com/
https://CEUR-WS.org

2014. Knowledge-Based and Intelligent Informa-
tion & Engineering Systems 18th Annual Confer-
ence, KES-2014 Gdynia, Poland, September 2014
Proceedings.

[268] George Sullivan and Luke Burns. Cashing out:
Assessing the risk of localised financial exclusion
as the UK moves towards a cashless society. arXiv
preprint arXiv:2202.05674, 2022.

[269] W. R. Swartout. XPLAIN: A system for creating
and explaining expert consulting programs. Arti-
ficial Intelligence, 21:285–325, 1983.

[270] Gerald Tesauro. Neurogammon: A neural-
network backgammon program. In 1990 IJCNN
international joint conference on neural networks,
pages 33–39. IEEE, Los Alamitos, CA, 1990.

[271] James J. Thomas and Kristin A. Cook. A visual
analytics agenda. IEEE Computer Graphics and
Applications, 26(1):10–13, 2006.

[272] Edward P. Thompson. The making of the English
working class: 1963. Vintage, New York, 1966.

[273] Barbara Tizard and Martin Hughes. Young chil-
dren learning. Harvard University Press, Cam-
bridge, MA, also John Wiley & Sons (2008), 1984.

[274] Hugo Touvron, Thibaut Lavril, Gautier Izacard,
Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric
Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
mand Joulin, Edouard Grave and Guillaume Lam-
ple. LLaMA: Open and efficient foundation lan-
guage models. arXiv preprint arXiv:2302.13971,
2023.

[275] Tony Ho Tran. Scientists built an AI to give ethical
advice, but it turned out super racist. Futurism (22
October 2021).

[276] A. M. Turing. Computing machinery and intelli-
gence. Mind, 59:433–460, October 1950.

[277] Lisa Tweedie, Bob Spence, Huw Dawkes, and Hua
Su. The influence explorer. In Conference com-
panion on human factors in computing systems,
CHI ’95, page 129–130. Association for Comput-
ing Machinery, New York, NY, 1995.

[278] Twitter Inc. How we address misinformation on
Twitter. Twitter Help Centre. https://help.twitter.c
om/en/resources/addressing-misleading-info ac-
cessed 07/04/2023,

Bibliography ■ 393

[279] Silviu-Marian Udrescu and Max Tegmark.
AI Feynman: A physics-inspired method
for symbolic regression. Science Advances,
6(16):eaay2631, 2020.

[280] UK Government. The Bletchley Ceclaration by
countries attending the AI Safety Summit, 1–2
November 2023. Policy Paper. https://www.gov.
uk/government/publications/ai-safety-summit-
2023-the-bletchley-declaration/the-bletchley-
declaration-by-countries-attending-the-ai-safety-
summit-1-2-november-2023.

[281] UK Parliament. Statistics on access to cash,
bank branches and ATMs. Research Briefing.
House of Commons Library, 25 July 2022.
https://commonslibrary.parliament.uk/research-
briefings/cbp-8570/.

[282] UKRI. Framework for responsible research and
innovation. https://www.ukri.org/about-us/eps
rc/our-policies-and-standards/framework-for-
responsible-innovation/ accessed 11/03/2023.

[283] Secretary-General United Nations. Joint call
by the United Nations Secretary-General and
the President of the International Commit-
tee of the Red Cross for states to establish
new prohibitions and restrictions on au-
tonomous weapon systems. Note to Corre-
spondents (05 October 2023). https://www.un.
org/sg/en/content/sg/note-correspondents/2023-
10-05/note-correspondents-joint-call-the-united-
nations-secretary-general-and-the-president-of-
the-international-committee-of-the-red-cross-
for-states-establish-new, 2023.

[284] United Press International. Trump Plaza fined
$200,000 for discrimination. UPI Archives (6 June
1991)

[285] Blase Ur, Melwyn Pak Yong Ho, Stephen Brawner,
Jiyun Lee, Sarah Mennicken, Noah Picard, Diane
Schulze, and Michael L. Littman. Trigger-action
programming in the wild: An analysis of 200,000
IFTTT recipes. In Proceedings of the 2016 CHI
conference on human factors in computing systems,
CHI’16, page 3227–3231. Association for Com-
puting Machinery, New York, NY, 2016.

[286] Fabio Urbina, Filippa Lentzos, Cédric Invernizzi,
and Sean Ekins. Dual use of artificial-intelligence-
powered drug discovery. Nature Machine Intelli-
gence, 4(3):189–191, 2022.

https://help.twitter.com/en/resources/addressing-misleading-info
https://help.twitter.com/en/resources/addressing-misleading-info
https://commonslibrary.parliament.uk/research-briefings/cbp-8570/
https://commonslibrary.parliament.uk/research-briefings/cbp-8570/
https://www.ukri.org/about-us/epsrc/our-policies-and-standards/framework-for-responsible-innovation/
https://www.ukri.org/about-us/epsrc/our-policies-and-standards/framework-for-responsible-innovation/
https://www.ukri.org/about-us/epsrc/our-policies-and-standards/framework-for-responsible-innovation/

394 ■ Index

[287] Ashish Vaswani, Noam Shazeer, Niki Par-
mar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polo-
sukhin. Attention is all you need, 2017
doi:10.48550/ARXIV.1706.03762; https://arxiv.
org/abs/1706.03762 .

[288] D. Vernon, editor. Computer vision: Craft, engi-
neering and science. Springer-Verlag, Berlin, 1991.

[289] Pablo Villalobos, Jaime Sevilla, Lennart Heim,
Tamay Besiroglu, Marius Hobbhahn, and Anson
Ho. Will we run out of data? An analysis of
the limits of scaling datasets in machine learning,
2022 doi: 10.48550/ARXIV.2211.04325; https://ar
xiv.org/abs/2211.04325.

[290] J. Vincent. Russian nuclear power plant in-
fected by Stuxnet malware says cyber-security ex-
pert. The Independent (Tuesday 12 November
2013).

[291] James Vincent. The lawsuit that could rewrite the
rules of AI copyright. The Verge, 2022.

[292] Soroush Vosoughi, Deb Roy, and Sinan Aral. The
spread of true and false news online. Science,
359(6380):1146–1151, 2018.

[293] Matthew Wall, Rory Costello, and Stephen Lind-
say. The miracle of the markets: Identifying key
campaign events in the Scottish independence ref-
erendum using betting odds. Electoral Studies,
46:39–47, 2017.

[294] D. L. Waltz. Understanding line drawings of
scenes with shadows. In P. Winston, editor, The
psychology of computer vision. McGraw-Hill, New
York, 1975.

[295] Lingfei Wang, Pieter Audenaert, and Tom Mi-
choel. High-dimensional Bayesian network in-
ference from systems genetics data using ge-
netic node ordering. Frontiers in Genetics, 10,
2019 doi: 10.3389/fgene.2019.01196; https://doi.
org/10.3389/fgene.2019.01196.

[296] Peihao Wang, Rameswar Panda, Lucas Torroba
Hennigen, Philip Greengard, Leonid Karlinsky,

Rogerio Feris, David Daniel Cox, Zhangyang
Wang, and Yoon Kim. Learning to grow pre-
trained models for efficient transformer training.
arXiv preprint arXiv:2303.00980, 2023.

[297] Stuart L. Weibel and Traugott Koch. The
Dublin Core Metadata Initiative. D-lib Magazine,
6(12):1082–9873, 2000.

[298] Mark D. Weiser. Ubiquitous computing. In ACM
conference on computer science, volume 418, pages
197530–197680, ACM, New York, NY, 1994.

[299] J. Weizenbaum. ELIZA – a computer program
for the study of natural language communication
between man and machine. Communications of
the ACM, 9(1):36–44, 1966.

[300] J. Weizenbaum. Computer power and human rea-
son: From judgement to calculation. Freeman, San
Francisco, 1976.

[301] T. Winograd. Understanding natural language.
Addison-Wesley, Reading, MA, 1972.

[302] W. A. Woods. Transition network grammars for
natural language analysis. Communications of the
ACM, 13(10):591–606, 1970.

[303] Runhua Xu, Nathalie Baracaldo, and James
Joshi. Privacy-preserving machine learning:
Methods, challenges and directions. arXiv
preprint arXiv:2108.04417, 2021.

[304] R. M. Young and T. R. G. Green. Programmable
user models for predictive evaluation of interface
designs. In K. Bice and C. Lewis, editors, Proceed-
ings of CHI’89: Human factors in computing sys-
tems, pages 15–19, ACM, New York, NY, 1989.

[305] Mingming Zha, Guozhu Meng, Chaoyang Lin,
Zhe Zhou, and Kai Chen. RoLMA: A practical ad-
versarial attack against deep learning-based LPR
systems. In Information security and cryptology:
15th international conference, Inscrypt 2019, Nan-
jing, China, December 6–8, 2019, revised selected
papers 15, pages 101–117. Springer, Berlin, 2020.

https://arxiv.org/abs/2211.04325
https://arxiv.org/abs/2211.04325
https://doi.org/10.3389/fgene.2019.01196
https://doi.org/10.3389/fgene.2019.01196

Index

A* algorithm, 49, 50, 55, 224
abductive reasoning, 25, 26, 27, 34, 63
accountability, 315, 362
accuracy, 105, 119, 124, 178, 212, 228, 233,

288, 290, 299, 302, 304, 306, 317,
323, 332, 364, 368

accuracy measure, 120, 129
ACT-R, 345, 346, 354, 355
activation function, 99
active vision, 161, 232, 234, 235
activity recognition, 304
ACT∗ , 343, 345, 354
Ada Lovelace, see Lovelace, Ada
adjacency statistics, 262
adversarial attacks, 325
adversarial learning, 7, 102, 106, 116, 147,

157, 158, 324, 337, 359, 369
adversarial search, 39, 54
agents, 155, 221, 236, 248, 249

action, 236, 237, 238, 241, 248
email filtering, 236, 238
embodied, 237, 295, 300, 361
intelligent filtering, 239
machine learning, 239
messages, 237
methods, 237

aggregation for privacy, 324
AI arms race, 368
AI winter, 6, 7, 375, 376, 378
algorithmic accountability, 312, 313
alien intelligence, 2, 343
alpha–beta pruning, 147, 152, 154, 158
AlphaFold, 214, 361, 362
AlphaGo, 3, 7, 85, 102, 106, 148, 149, 157,

158, 160, 346, 375
AlphaGo Zero, 158
AlphaZero, 375, 378
Alvey Programme, 6
ambiguity

in computer vision, see ambiguous
image

lexical, 189
pragmatic, 189
referential, 189
semantic, 189
syntactic, 189

ambiguous image, 161, 232, 348
analogy, 16, 30, 79

derivational, see derivational analogy
transformational, see transformational

analogy
analytic rules, see procedural knowledge
Analytical Engine, 4, 147
Anderson, John Robert, 345
Andrey Andreyevich Markov, see Markov,

Andrey
anonymisation, 323
anonymous identifier, 253
antecedent-driven reasoning, see bottom-up

reasoning
anti-discrimination laws, 315
Apache Hadoop, 113, 116
aperture, 232, 233
application phase, 60, 118
appropriate intelligence, 306, 308, 311
appropriating technology, see appropriation
appropriation, 294
architecture, 123, 346
AREA framework, 362, 363, 371
area under the curve, 121, 130
arithmetic mean, 94, 95, 96, 137
ARMA (Auto Regressive Moving Average),

216, 217, 220
artificial emotion, 349
artificial human intelligence, see artificial
artificial imagination, 354
artificial intelligence, 2, 4

history, see history of AI
artificial life, 221, 243, 246
artificial neural networks, 6, 83, 360
artificial society, 246
Asimov, Isaac, 221, 362
aspect ratio, 163, 178
associative memory, 74, 80
asymmetric distribution, 95
attention, 347
attention mechanisms, 214, 376
augmented transition network, 192, 195,

196
auto-associative memory, 80, 138, 182
auto-complete, 298
auto-regressive model, 216, 217
autoencoder, 80, 181, 182, 183, 187
automated decision, 309, 310, 317, 325
automation bias, 283, 362, 366

autonomous car, 106, 222, 295, 302, 313,
314, 315, 330, 363

autonomous vehicle, 7, 231, 314, 362, 364,
366, 370

autonomous weapons, 314, 367, 378
avoidance mechanisms, see obstacle

avoidance
avoidance rules, see obstacle avoidance

B-splines, 99
Babbage, Charles, 4, 147, 215
backpropagation, 75, 76, 78, 96, 102, 103,

122, 123, 127, 129, 182, 325, 337
backtracking, 16, 23, 44, 48, 50, 54, 224
backward branching factor, see branching

factor
backward chaining, see backward reasoning
backward reasoning, 26, 223, 274, 275, 276,

279
bag of words, 141
base rate, 119, 304, 329, 335
Bayes Theorem, 28, 29, 33, 34, 171, 176, 181,

276, 309
Bayesian methods, 30, 33, 34, 242
Bayesian network, 29, 33
Berners-Lee, Tim, 7, 250
best first search, 48, 49, 50, 55
bias, 7, 67, 108, 211, 217, 313, 317, 318, 320,

321, 323, 327, 328, 330, 331, 332,
340, 341, 365, 366, 367

bibliographic database, 240
bibliographic search, 240
Big Blue, 378
big data, 7, 79, 102, 107, 115, 116, 188, 203,

250, 313, 314, 316, 320, 323, 324,
326, 329, 331, 334, 343, 376, 378

binary image, 162, 173
bitmap image, 179
black-box machine learning, 283, 289, 320,

328, 330, 331, 336, 337, 339, 340,
341, 346

blackboard architecture, 243, 244, 245
blind search, 54
Boden, Margaret, 357
Boltzmann machine, 74, 80, 81, 83, 182
Bombe, 4
Boolean network, 337
boosting, 108, 109, 247, 351, 352

395

396 ■ Index

bootstrapping, 138, 158, 213, 282
boredom, 347
bottega, 359
bottom-up algorithm, see bottom-up

reasoning
bottom-up reasoning, 26, 186, 192, 211
boundary example, 337
boundary objects, 294
brain architecture, 74, 361
branch and bound search, 46, 47, 49, 54, 64,

152
branching factor, 40, 41, 45, 54, 148, 223
breadth first search, 43, 44, 45, 46, 47, 48, 50,

53, 54, 152, 223
Byzantine conditions, 97

C4.5, 68
Cambridge Analytica scandal, 314, 315, 316,

323, 325, 331
camera

aperture, 233
focus, 232, 233
frame, 303
pan, 186
zoom, 186, 232

cardinality of set, 141
care robots, 343
Cartesian coordinates, 90
case grammar, 198, 199, 200, 202
case memory, 32
case-based reasoning, 30, 31, 32, 34, 35, 64
cellular automata, 245, 246, 248
central example, 337
centroid, 92, 129, 328
cerebral cortex, 83
CERN, 115, 250
certainty factors, 27, 29, 30, 34, 275, 291
changes in status, see status change event
Charniak, Eugene, 21
chatbot, 3, 188, 201, 265, 275, 294, 298, 299,

317, 361
ChatGPT, 206, 298, 351, 354
chess, see computer chess
chess heuristic, 152
chess program, 149, 157
Chi squared, 335
childhood cognitive development, 350
Chinese room argument, 357, 358, 361, 370
choice of features, 317
chunking, 344
Clarke, Arthur C., 4
classification, 86, 299, 304, 305, 334, 337,

338, 341
Clippy, 237, 306, 307, 308
closed list, 47
closed world assumption, 16, 252, 253
closed-loop control, 230, 231, 234
cloud computation, 102

clustering, 60, 75, 81, 84, 92, 93, 98, 100,
108, 109, 115, 124, 129, 135, 136,
140, 171, 285, 327, 328, 339, 341

co-operating agents, see cooperating agents
cognitive architecture, 74, 346
coherence of clusters, 124
coin-weighing problem, 155
combinatorial explosion, 39, 114
common ground, 333
common sense, see domain-independent

knowledge
COMPAS, 283, 329, 362
compliant motion, 230, 233, 234, 235
computational argument, 357
computer chess, 2, 12, 38, 39, 40, 41, 42, 70,

74, 102, 147, 148, 149, 158, 204,
249, 346

computer vision, 6, 222, 226, 231, 232, 233,
235, 288, 290, 294, 304, 348, 358,
364, 378

concept learning, 31, 63, 65, 240, 248, 282
conditional probability, 28, 33
confidence, 309
confidence in output, 134, 304, 308
confidence measures, 310
confidence rating, 283
configuration parameters, 118
configuration space, 224, 225, 227, 234, 235
confusion matrix, 304, 305
connectionist model, 6, 74, 82, 87, 182, 292
conscious, 353
consciousness, 356, 360, 370, 372
consequent-driven reasoning, see

bottom-up reasoning
conservative warnings, 310
constraint propagation, 54
constraint satisfaction, 4, 53, 55, 126, 127,

173, 273, 276, 279
constraint solving, see constraint satisfaction
constraints, 38, 39, 40, 53, 54, 125, 126, 127,

128, 129, 173, 179, 196, 234, 272,
276

context in language, 15
context of human activity, 295
context-aware interaction, 304
context-free grammar, 195
context-sensitive grammar, 192, 195, 196,

198, 202
contingency table, 73, 335
continuity in learning, 127
continuous distribution, 95
contour following, 163
converge, 79
convolutional neural network, 116, 181, 187,

303
convolutions, 181
Conway, John, 245, 249
cooperating agents, 242, 248
correlation, 185

correlation matrix, 92, 107, 108
cosine similarity, 141
cost–benefit, 120, 239, 288, 290, 291
counterfactual reasoning, 85, 242, 351
cousin relationship, 13
Covid pandemic, 365
creativity, 356, 357, 358, 370, 371
credit assignment, 70, 242
critical point, 99
cross-validation, 121
crowdsourcing, 140, 183, 264, 266
Cuban missile crisis, 153
current state representation, 228, 229
cyberattack, 314, 325, 378
cyberwarfare, 314
cyberweapons, 314
CYC Project, 22
cyclotorsion, 232

Daleks, 221
Damasio, Antonio, 361
Dartmouth Workshop, 4
data cleaning, 132, 137, 215
data detector, 259, 297, 300, 308
data documentation, 143
data fusion, see sensor fusion
data reduction, 84, 85, 97, 102, 107, 108,

115, 116, 129, 143, 285
data structure, 173
data validation, 132
data wrangling, 132
data-driven reasoning, see forward

reasoning
database, 16, 17, 18, 25, 32, 33, 71, 132, 180,

189, 193, 198, 200, 218, 238, 251,
253, 254, 332, 344

database identifier, 135
database query, 198, 336
DBpedia, 254, 255
de-bias, 318, 323
de-trending, see trend removal
decibel, 215
decision support system, 271, 283
decision table, 73
decision tree, 67, 72, 84, 85, 110, 117, 118,

121, 122, 124, 135, 247, 248, 282,
283, 298, 332, 334, 335, 336, 339,
340, 376

decision tree in IVR, 298
decision trees, see decision tree
declarative knowledge, 11, 12, 261, 279
deduction, see deductive reasoning
deductive learning, 61, 64, 73
deductive reasoning, 26, 34, 63
Deep Blue, 102
deep fakes, 80, 183
deep learning, see deep neural network
deep neural network, 7, 76, 80, 81, 83, 84,

98, 102, 103, 105, 106, 115, 116,

Index ■ 397

129, 148, 157, 158, 160, 182, 183,
201, 203, 212, 217, 265, 283, 289,
301, 310, 315, 317, 330, 331, 333,
334, 336, 339, 341, 343, 346, 369,
370, 375

architecture, see neural-network
architecture

DeepSeek, 248, 370
definite clause grammar, 196
degrees of freedom (data), 105, 125
degrees of freedom (robotics), 229, 232
deliberate misinformation, 326
delta, 78, 79, 142, 325
DENDRAL, 276
denial of service (DoS), 314
dependent feature, 126
dependent variable, 89
depth first search, 43, 44, 45, 46, 48, 50, 53,

54, 55, 275, 276
depth of field, 232
depth of search tree, 40, 54
depth perception, 233
derivational analogy, 30
Descartes, Réne, 4, 253, 360
design fiction, 371
deterministic, 38, 241
deterministic algorithms, 368
deterministic ground, 301
deterministic search, 38, 39, 54, 98, 148, 149
dialogue, 275, 276

mixed control, 275, 276
system control, 275, 276
user control, 275

dialogue component, 273, 275, 283
Difference Engine, 4, 215
differential (calculus), 79, 127, 169
diffusion models, 183, 184
digital filtering, 164
digital signal processing, 166
digitisation, 161, 162, 186
dimension reduction, 104, 105, 107, 125,

370
directed graph, 41
disambiguation, 84, 197, 201, 232, 348
discontinuous, 99, 205
discrete distributions, 95
disinformation, see misinformation
distributed AI, 152, 242, 249
distributed cognition, 245, 248
divide and conquer, 224, 339
document retrieval, 202
domain knowledge, see domain-specific

knowledge
domain-independent knowledge, 11, 12, 21,

22, 23, 52, 61, 272, 277
domain-specific knowledge, 11, 53, 54, 105,

136, 274, 275, 279, 280
dominoes, 149, 150, 152
dot-com period, 308

down-sampling, 285
dreaming, 349
Dreyfus, Hubert, 357
drunkards walk, 97
DSP , see digital signal processing
dualism, 360
dynamic function allocation, 309

EAGER, 237, 300
EBL, see explanation-based learning
ECG , 106, 128, 129, 135, 205, 206, 218, 280,

283, 285
echo chambers, 295, 315, 326, 378
edge detection, 161, 162, 163, 166, 167, 169,

170, 171, 173, 176, 181, 186, 233,
347

edge following, 170, 186
egocentrism, 350
Eiffel Tower, 261
eigenvalues, see eigenvector
eigenvector, 91, 92, 100, 101, 107
eight queens problem, 36, 37
ELIZA, 4, 5, 12, 192, 201, 297, 351, 357, 364
email filtering agents, see email filtering
embodied, see embodied
embodied agents, see embodied
emergent behaviour, 245, 246, 248, 295
emotion, 85, 103, 343, 349, 350, 351, 352,

353, 357, 362
emotion recognition, 181
empathy, 350, 351, 352, 360, 362
energy landscape, 121
Enigma machine, 4
ensemble methods, 110, 247

heterogeneous, 248
homogeneous, 248

entity recognition, 143, 259
entropy, 68, 69, 124, 136, 335
epiphenomenon, 360
epistemic action, 232
epistemic interaction, 311, 312
equilibrium, 231
ethics, 314, 317
Euclidean distance, 49, 50
European General Data Protection

Regulation, see GDPR
event, 25, 80, 115, 204, 205, 213, 237
event stream, 107, 115, 219
evidence-based medicine, 283
exception sets, 134
exclusive or problem, see XOR problem
expert knowledge, 217, 218, 271, 272, 281,

283, 284, 289, 291
expert labelling, see human labelling
expert system, 6, 23, 25, 28, 29, 59, 85, 217,

271, 309, 316, 330, 331, 337, 345,
362, 364

brittleness, 277
hybrid, 280

limitations, 277
meta-knowledge, 275, 277
purpose, 288
rule tracing, 274, 276
shell, 277
verification, 277

expert system shell, 279, 291
explainable AI, 3, 7, 118, 119, 217, 283, 291,

310, 312, 316, 330, 331, 340, 365,
368

explanation, 315
explanation component, 273, 275
explanation-based learning, 64, 70, 71, 73
explicit confirmation, 307
exploration-exploitation trade-off, 232, 242,

248, 352
exponential decay, 215
exponential growth, 45, 215
extensional representation, 283, 332
external semantics, 250, 259

F score, 120, 129
Facebook, 253, 316, 369
facial recognition, 7, 180, 181, 323, 324
fake news, 326
false negative, 120, 121, 129, 290, 305, 325
false positive, 120, 121, 129, 180, 288, 290,

305, 325
Fast Fourier Transform, 207
fault tolerant, 74, 86, 113
feasibility, see feasible solution
feasible solution, 38, 50, 125, 126, 127
feasible state, 38
feature interaction, 295
feature sets, 196
federated learning, 325
feedback, 205, 215, 230, 231, 234
feedback phenomena, 96, 368
feeling, 352
Fifth Generation Computer Project, 6
figure-ground separation, 233
filter bubbles, see echo chambers
finite impulse response, 206, 210, 216
finite state machine, 194, 211
FIR, see finite impulse response
firewalls, 52
first-order difference, 215
first-order predicate calculus, 14
fitness function, 118, 121, 122, 124, 126, 127,

128, 211, 212, 317, 318, 320, 331
fitness landscape, 52, 117, 121, 122, 123, 124,

125, 126, 129
fixation point, 232
flocking behaviour, 246
fMRI, 83
focus, 232
forgetful hill climbing, 50, 51, 55
formal grammar, 200, 202
formal logic, 14, 15

398 ■ Index

forward branching factor, see branching
factor

forward chaining, see forward reasoning
forward reasoning, 26, 27, 223, 274, 276, 334
foundation models, 201, 370
four knights problem, 12
Fourier analysis, 84, 304
Fourier transform, 207
fovea, 348
FPGAs, 99
frame, 20, 196, 279
frame axiom, see frame problem
frame of video, 125, 186, 187
frame problem, 22, 23
frame rate, 125
Francis Crick, 349
Frankenstein, 3, 221
frequency domain, 84, 85, 205
frequency space, see frequency domain
fully connected, 75, 79, 80, 81, 83, 99, 103,

125
function allocation, 309
fuzzy logic, 30, 34
fuzzy reasoning, 27, 30, 33, 34
fuzzy set theory, 30

Game of Life, 245, 249
game playing, 2, 4, 6, 7, 12, 38, 39, 52, 85,

116, 183
heuristics, 149

game theory, 153
game tree, 53, 148, 149, 150, 151, 152, 153,

154, 155, 157, 159, xi
game tree search, 53
GAN, see generative adversarial network
Gaussian distribution, see Normal

distribution
Gaussian filter, 165, 166, 170, 181
GDPR, 315
general knowledge, see

domain-independent knowledge
general problem solving, 4, 345, 346
generalisation, 25, 31, 105, 121, 124
generate and filter, 359
generate and test, 39, 276, 359
generations, 52
generative adversarial network, 107, 183,

337
generative AI, 327, 358, 359, 376
genes, 52, 110, 126, 127
genetic algorithm, 52, 55, 64, 104, 110, 118,

122, 123, 124, 125, 126, 135, 159,
212, 288, 332, 336, 376

genetic programming, 85, 124, 212, 289
genotype, 52
geographic information system, 135, 173
geometric constraints, 179
GeoNames, 254, 255
gestalt, 85, 348

gesture recognition, 179, 297
gig economy, 295, 335, 366
glial cells, 361
global feedback, 230
global minimum, 48, 52
global planning, 222, 226, 227, 234
global search, 122, 123, 124
global synchronisation of oscillations, 360
global workspace theory, 360
Go, 3, 7, 40, 98, 102, 103, 106, 147, 148, 158,

378
goal state, 26, 36, 38, 39, 41, 42, 43, 44, 48,

49, 55, 222, 223, 235, 346
goal-driven reasoning, see backward

reasoning
Gödel, Kurt, 39
Google, 7, 22, 114, 183, 240, 255, 257, 318,

361, 369, 376
Google alerts, 239
Google Gemini, 206
Google PageRank, see PageRank
Google search, 32, 257, 317, 369
GPT-3, 76, 201, 298
GPT-4, 7, 314, 366
GPU, see graphics processing unit
graceful degradation, 74
gradient ascent, 122
gradient descent, 96, 122, 123, 124, 183
gradient filters, see gradient operators
gradient operators, 167, 169, 181
grammar, 191, 192, 193, 194, 195, 196, 198,

201, 202, 204, 210, 211, 219
case, see case grammar
context-free, see context-free grammar
context-sensitive, see context-sensitive

grammar
rules, see grammar rules
semantic, see semantic grammar
syntactic, see syntactic grammar

grammar fragment, 193, 194
grammar rules, 192, 194, 376
grammar-free approaches, 200
graph identifier, 254
graph search, 41, 47
graphics processing unit, 166
grey matter, 83
grey-box techniques, 336, 339, 340
grey-scale image, 162, 163, 165, 179, 185
Grice’s conversational maxims, 333
ground truth, 106, 183, 231, 280, 281, 289
gut feeling, 346

Harr wavelets, 207
Hadoop, see Apache Hadoop
HAL 9000, 4, 222
handwriting recognition, 179, 205, 297
hard problem of consciousness, 361
hard threshold, 127
Hardy, Thomas, 39

heteroassociative memory, 80
heterogeneous events, 204
heterogeneous sources, 134
heuristic evaluation function, 4, 42, 44, 47,

48, 49, 53, 54, 55, 85, 98, 132, 148,
149, 150, 152, 157, 176, 192, 217,
218, 225, 227, 234, 237, 244, 272,
273, 275, 280, 306, 330, 331, 336,
340, 346

heuristic information, see heuristic
evaluation function

heuristic search, 47, 55, 223
heuristics, see heuristic evaluation function
Hick’s law, 310
hidden Markov model, 197, 210, 211, 213,

218, 219, 262
hidden state, 205, 206, 207, 210, 212, 219
hierarchical grammars, 211
high-level programming languages, 279
higher-order function, 111
hill climbing

forgetful, see forgetful hill climbing
hill climbing algorithm, 48, 49, 50, 51, 52,

78, 79, 97, 122, 126, 151
hill climbing with backtracking, 48, 55
historical representation, 228
history of AI, 3, 371
HMM, see hidden Markov model
hold out, 121
home automation, 7, 188, 201, 222, 236, 295,

297, 298, 378
homeostasis, 231
homogeneous events, 204
Hopfield networks, 182
Hopfield, John, 349
hotspot analysis, 331, 337
human bias, 318
Human Brain Project, 83
human computation, 140, 264
human computers, 367
human emotion, see emotion
human feeling, see feeling
human in the loop, see human-in-the-loop
human insight, 7, 333, 344, 346
human intelligence, 1, 2, 4, 6, 74, 134, 147,

356, 357, 361, 378
artificial, 343
computational view, 357

human labelling, 85, 119, 282, 290, 318, 323
human memory, 19, 80, 344, 345
human perception, 4, 83, 184
human vision, 348
human working memory, 16, 18, 344, 346,

349
Human–Computer Interaction, 188, 238,

249, 293
human-in-the-loop, 260, 296, 306, 309, 311,

314, 325, 362
hybrid, 84, 292

Index ■ 399

hybrid AI, 84, 277, 296, 376
hybrid AI/statistical system, 205
hybrid architecture, 84, 86, 98, 181, 283
hybrid expert system, 280, 282
hybrid layers, 85
hybrid problems, 51, 52
hybrid systems, see hybrid AI
hypertext, 237, 240, 257, 300
hypothesis-driven reasoning, 26

IBM, 102, 261
IBM Watson, 7, 261, 378
ID3, 64, 67, 69, 71, 73, 124, 327, 328, 332
identity theft, 323
if this then that, see IFTTT
IFTTT , 236, 240
image processing, 245, 324, 325
image recognition, 102, 265, 324, 331, 337,

347, 364
image thresholding, 163
image understanding, 161, 163, 186
imagination, 343, 344, 346, 347, 351, 353,

357
imitation game, see Turing test
immune system, 247
implicit feedback, 307
implicit interaction, 295
incidental interaction, 295, 302
independent variable, 89
induction, see inductive reasoning
inductive learning, 62, 64, 73, 280, 282
inductive reasoning, 25, 34, 63
industrial robotics, 221, 233, 295
Industry 4.0, 124
inexact search, 50
inference, 15
infinite impulse response, 139, 207, 213, 216
information, 136
information entropy, see entropy
information preserving, 217
information processing, 142, 360, 361
information visualisation, 89, 337
inhibition, 83
insight, see human insight
instabilities, 103
intellectual property, 359
intelligent user interfaces, 293, 297, 311
intentional representation, 332
intentionality, 295, 302, 358, 361
interactive visualisation, 285, 286
interactive voice response, 298
intercept, 88, 89, 125
intermittent rewards, 242
internet of things, 139, 236, 296, 302, 370
interpretation of user actions, 295
interpreter, 16, 17, 18
interquartile range, 95
IoT, see internet of things
ISBN, 133, 259

iterative broadening, 45, 46, 54
iterative deepening, 45, 46, 50, 54, 147
IVR, see interactive voice response

Jaccard similarity, 141, 287
JavaScript, 259, 260
Jeopardy!, 7, 261, 378
John Hopfield, see Hopfield, John
JSON, 135, 259
junk DNA, 126

k-fold cross-validation, 121
k-means algorithm, 92, 93, 97, 98, 100, 117,

124, 129, 328
KAN, see Kolmogorov-Arnold Networks
Kasparov, Garry, 102
kernel, 99, 104
keyword matching, 133, 201
King Alabonzo of Arbicora, 155
knowledge

declarative, see declarative knowledge
domain-independent, see

domain-independent knowledge
domain-specific, see domain-specific

knowledge
procedural, see procedural knowledge

knowledge acquisition, 271, 272, 277, 282,
291, 292

knowledge base, 13, 16, 19, 22, 23, 82, 243,
277

knowledge elicitation, 23, 59, 271, 277, 281,
282, 283, 289, 292

critiquing, 277, 278
focused discussions, 278
post-task walkthrough, 279
role reversal, 278
seed questions, 278
structured interview, 278
teach-back interview, 278
think aloud, 279
twenty questions, 278
unstructured interview, 278

knowledge engineer, 14, 23, 24, 272, 274,
277, 278, 279, 281, 283, 362

knowledge representation, 5, 12, 23, 27, 33,
271, 277, 280

by logic, see logic representation
by networks, see network

representation
clarity, 14
completeness, 14
effectiveness, 14, 16, 18, 19, 20
efficiency, 14, 16, 18, 19, 20
explicitness, 14, 16, 18, 19, 20
expressiveness, 14, 16, 18, 19, 20
frame, see frame
granularity, 12
metrics, 14, 16, 18, 19, 20
procedural, see procedural knowledge

script, see script
structured, 19

knowledge-based system, 25
knowledge-rich AI, 6, 7
knowledge-rich reasoning, 255, 376
knowledge-rich search, 52, 53, 149, 222
Kohonen networks, 81, 83, 84, 117
Kolmogorov-Arnold Networks, 99, 100
Kolmogorov-Arnold representation

theorem, 99

labelling, 128, 129, 173, 318
Laird, John, 346
LaMDA , 361
language understanding, see natural

language understanding
Laplacian operator, 169
Laplacian-of-Gaussian filter, 166, 170
large language model, 7, 188, 201, 202, 248,

351, 358, 359, 366, 370, 375, 376
large language model meta AI, see LLaMA
latent semantic analysis, 202
latent space, 202, 340
lateral inhibition, 83
laws of robotics, 221, 362
learning phase, see training phase
learning rate, 123
least squares, 89, 96, 107, 138
Lee Sedol, 3, 7, 102, 158
Lego-style matching, 214
Lemoine, Blake, 361
Lenat, Doug, 22
Lex, 70
lexical processing, 198
lexicon, 191, 192, 193, 194, 195, 198
liberal suggestions, 310
Licklider, J.C.R., 284
LiGO, 370
limb control, 229
LIME, 338, 341
line labelling, 173, 175, 176, 177, 187
linear discriminant analysis, 85, 92
linear filter, 164, 166, 167, 169, 170
linear growth operator, see LiGO
linear patches, see piecewise linear
linear planning, 224
linear regression, 88, 89, 94, 96, 98, 100, 105,

138, 215
linearly inseparable, 75
linearly separable, 75, 92
link structure, 257
linked data, 135, 254, 255, 256, 266
linked data cloud, 255
Lisp, 111, 234, 275, 279

reduce, see reduce
LLaMA, 370
Llanfairpwll, 139
LLM, see large language model
loans example, see production system

400 ■ Index

local data access, 111
local feedback, 230
local maximum, 97, 123, 126, 242
local minima/maxima, 122
local minimum, 48, 51, 123, 352
local planning, 221, 226, 234, 235
local search, 122, 123
locality, 114, 116, 122
logarithm base, 215
logarithmic transform, 137, 215, 216
logic, 13, 14, 15, 16, 23, 26, 30, 43, 46, 47, 53,

272, 279, 332
as knowledge representation, see logic

representation
fuzzy, see fuzzy logic
operators, 14
standard, see standard logic

logic programming, 6
logic representation, 14, 16
logic rules, 279
logical reasoning, 2, 346
logistic function, 76
long-tail distribution, 96, 100, 113, 139
long-term memory, 214, 344, 345, 346, 349
long-term potentiation, 213
long-term short-term memory networks,

213
LoRA, 370
Lovelace, Ada, 4
lower bound, 49, 55

machine learning, 7, 23, 25, 81, 84, 85, 92,
93, 95, 97, 98, 99, 104, 107, 108,
109, 132, 133, 134, 136, 137, 139,
140, 143, 147, 148, 183, 202, 206,
217, 218, 236, 239, 247, 248, 250,
271, 277, 280, 282, 283, 291, 293,
294, 295, 298, 299, 301, 302, 304,
306, 313, 314, 315, 316, 317, 322,
323, 324, 326, 327, 331, 332, 334,
346, 351, 352, 353, 354, 365, 368,
369, 376

application, see application phase
training, see training phase
validation, see validation phase

macro languages, 236
magic square, 36, 37, 39, 40, 42, 47, 53, 54,

148
Manhatten block distance, 48
map, 111
MapReduce, 110, 111, 112, 113, 114, 115,

116, 360
Markov model, 207, 208, 209, 210, xiii
Markov, Andrey, 207
markup, 250, 258, 259, 266
Marr’s primal sketch, 170
Mary Shelley, see Shelley, Mary
materialism, see physicalism
mathematical optimisation, 51

MDS, see multi-dimensional scaling
means–ends analysis, 30, 36, 53, 222, 223,

234, 235
measure of uncertainty, see uncertainty

measure
memorising, 61
memory, 80, 351
memory layers, 370
memristor, 99
method acting, 351
microdata, 259
microformats, 258
Microsoft, 297, 317, 369
Microsoft Clippy, see Clippy
Microsoft Excel, 237
Microsoft Tay, 317
Microsoft Word, 306
microtubules, 361
minimax score, 152
minimax search, 53, 147, 149, 150, 151, 152,

153, 154, 155, 156, 157, 158, 159
misinformation, 313, 315, 325, 326, 327, 377
misinformation detection, 326
mixture-of-experts, 248, 370
modal user interface, 308
mode, 94
MoE, see mixture-of-experts
monocular vision, 233
monotonic reasoning, 27
Monte Carlo search, 85, 122
Monte Carlo techniques, 97, 100
Monte Carlo tree search, 98, 157
moving average, 139, 206, 215, 216, 218
moving average model, 216, 217
moving images, 161, 185, 186
moving obstacles, 234
moving pictures, see moving images
multi-dimensional scaling, 108
multi-layer neural network, 80, 83, 121, 122
multi-layer perceptron, 74, 75, 76, 81, 99
multi-linear regression, 89
multi-objective optimisation, 127, 128
multimodal interfaces, 298
multiple images, 184, 185, 187
mutual inhibition, 83, 84
MYCIN, 29, 30, 275

n-gram, 111, 201, 211, 262
named entity recognition, 259, 300
named graphs, 253, 254
namespace, 251
National Insurance number, 134
natural language algorithms, see natural

language processing
natural language database query, 189, 193,

198
natural language interfaces, 188
natural language processing, 140, 201, 203,

262, 272, 298, 325, 326, 366, 378

database access, see natural language
database query

database queries, see natural language
database query

information management, 188
intent, 201
tagger, 196
tagset, 197

natural language understanding, 4, 7, 20, 21,
202

natural logarithm, 215
natural selection, 52, 110, 360
negation as failure, 16, 253
NETtalk , 76
network analysis, 326
network representation, 19, 23, 250, 279
network routing, 247
network visualisation, 286
neural correlates of consciousness, 360
neural network, 3, 6, 19, 33, 92, 96, 99, 102,

105, 115, 117, 118, 120, 121, 122,
123, 127, 139, 140, 147, 148, 157,
159, 162, 177, 180, 181, 182, 186,
187, 202, 204, 212, 213, 217, 219,
220, 234, 242, 247, 272, 280, 283,
288, 293, 303, 305, 309, 324, 325,
330, 335, 337, 339, 343, 346, 347,
349, 361, 366

neural-network architecture, 83, 103, 104,
182, 214

neuron, 74, 75, 80, 83, 84, 127
neurone, 74, 83, 360, 361
neurosymbolic AI, 85, 376
Newell, Alan, 5
NewWave, 237
NLP, see natural language processing
non-linear functions, 99
non-linear planning, 224
non-linear transformations, 99, 105
non-locality, see locality
non-monotonic reasoning, 27, 34
non-overlapping windows, 206
non-terminal symbols, 192, 193, 194
non-time domain transformations, 207
non-zero-sum game, 152, 154
Normal distribution, 89, 95, 96, 100, 136,

137, 165, 216
normalisation, 132, 178
Normally distributed, see Normal

distribution
noughts and crosses, 38, 149

obfuscation, 324
object identification, 177

bitmaps, 177, 179
outlines, 178
paths, 179
summary statistics, 178

object recognition, 83, 161, 186

object-oriented architecture, 243, 244
object-oriented programming, 237
objective function, see fitness function
observation–action mapping, 242
obstacle avoidance, 226, 227, 234, 235, 246
Occam’s razor, 63
OCR (optical character recognition), 140,

142, 162, 264
octree, 173
onCue, 308
ontology, 19, 22, 250, 251, 252, 279, 280
ontology editors, 279
open list, 44, 45, 47, 49, 50, 51
open source, 331
open world assumption, 252, 253
open-loop control, 230, 234
OpenAI, 76, 324
OPS5, 279
optical character recognition, see OCR

(optical character recognition)
optical flow, 186
optimal, 38, 46, 49, 99, 107, 108, 121, 122,

125, 126, 130, 141, 306
optimal classification, 322
optimal route, 247, 311
optimal solution, 126, 154
optimisation, 37, 38, 52, 121, 122, 126
optimisation criterion, 128, 129
optimisation problem, 125
optional values, 137
outliers, 88, 89, 96, 100, 134, 138, 139, 215
overfitting, 67, 105, 121, 123, 125, 247, 280,

322, 337
overlearning, see overfitting
Ovid, 3
OWL, 252, 279

PageRank, 7, 32, 33, 114, 240, 257, 261, 266,
325, 378

parallax, 185
parallel coordinates, 284
parallel processing, 74, 86, 107, 166, 173
Pareto frontier, 128
Pareto, Vilfredo, 128
Pareto-optimal, 128, 129, 154, 155
parse tree, 191, 193, 194, 195, 202
parser, 192, 194, 195, 196
part-of-speech tagger, 197, 201, 202
partial state, 39
partially labelled data, 128, 129
pattern matching, 4, 140, 148, 177, 192, 204,

308
pattern recognition, 86, 259, 284, 308
Pavlov, Ivan, 242
Pavlovian learning, 81
pen-based systems, 179, 297
Penrose, Roger, 361
penumbra, 337
percentiles, 94

perception, see human perception
perceptron, 74, 75, 83, 84, 92, 102, 103, 127
Pereira, Fernando, 196
periodicity, 205
personal information management, 299, 300
personal information search, see personal

information management
personal knowledge management, see

personal information
management

perturbation techniques, 324, 328, 335, 337
phase, 207
phase changes, 205
phenomenological, 361
phenotype, 52
philosophical issues of AI, 371
Phone Slave, 297
phoneme labelling, 84
phonetic typewriter, 82
physical constraints, 276
physical symbol system hypothesis, 5, 6, 7
physicalism, 360
piecewise linear, 89, 98, 99, 100
PIM, see personal information management
pinch-point layer, 103, 105, 129, 339, 341
placing dominoes, 149, 159
plateau, 48, 51, 53, 55, 123, 151, 152
Pogoing robots, 246
pole balancing, 70, 241, 242
policy network, 157
poorly constrained, 103
Poplog, 279
POS tagger, see part-of-speech tagger
position independent, 181
positive feedback, 349, 368
positive regret, 352
power law distribution, 257
pragmatic, 201, 325
pragmatic AI, see pragmatic approach to AI
pragmatic ambiguity, 190
pragmatic analysis, 188, 190, 191, 200, 202
pragmatic approach to AI, 7, 356
pre-processing, 105, 119, 125, 181, 205, 214,

215, 217
pre-whitening, 92, 136
precision, 120, 121, 128, 129, 288
precision–recall trade-off, 120, 127
predicate logic, 15, 16, 63
pressure feedback, 230, 234
principal components analysis, 92, 96, 97,

100, 107, 108, 117, 129, 137, 140,
202

principal eigenvector, 101, 257
prisoner’s dilemma, 153, 154, 246, 369
privacy, 134, 180, 240, 243, 299, 301, 313,

314, 323, 324, 325, 327, 328
privacy preserving algorithms, 325
probabilistic approaches, 352
probabilistic process, see stochastic process

Index ■ 401

probabilistic reasoning, 27, 28, 29, 30, 34,
152

probability, 28, 30, 33, 51, 52, 95, 121, 137,
155, 156, 157, 204, 207, 290, 298,
304, 335, 348

probability density, 95
probability estimate, 309
probability table, 33
probability theory, 219
probability transition, 210
probability-based cut-off, 156
procedural knowledge, 11, 12, 16, 18, 20,

261
production rules, 16, 17, 23, 272, 275, 276,

346
production system, 16, 18, 23, 193, 279, 344,

345
loans example, see loans example

programmable user models, 345
programming-by-demonstration, 237, 300
Prolog, 14, 16, 19, 45, 193, 252, 253, 277, 279
property inheritance, 12, 19, 20, 27
propositional logic, 15
PROSPECTOR, 28, 276
protected characteristic, 315, 321, 322, 323,

328
Protégé, 279
provenance, 143, 253, 254, 255, 266
proxy indicator, 321, 322
pruning, 39, 42, 50, 54, 69, 124, 229

alpha–beta, see alpha–beta pruning
pseudonymisation, 134, 323
Pygmalion, 3
Python, 101, 116, 133, 279

quadstores, 254
quadtree, 173, 187
qualia, 361
quantifiers, 15
quantum computing, 376
quartile, 94, 95, 109
quasi-periodic, 205, 216
query interpreter, 198
Query-by-Browsing, 70, 71, 72, 283, 300,

330, 331, 332, 336, 340, 341

radial basis functions, 105
random decision forest, see random forest
random forest, 70, 110, 121, 247, 248, 283
random segmentation, 109
random walk, 51
randomising the order, 97
rapid serial switching, 347
rapid serial visualisation, 285
RBM, see restricted Boltzmann machine
RDF, 113, 250, 251, 252, 253, 254, 255, 256,

259, 266, 279
RDF triple notation, 252
RDF triplestore, 253

402 ■ Index

RDFS, 252
reactive movement, 231
readout, 99
reasoning, 4, 25

abductive, see abductive reasoning
analogy, see reasoning by analogy
antecedent-driven, see backward

reasoning
backward, see backward reasoning
Bayesian, see Bayesian reasoning
bottom-up, see bottom-up reasoning
case-based, see case-based reasoning
certainty factors, see certainty factors
consequent-driven, see backward

reasoning
data-driven, see forward reasoning
deductive, see deductive reasoning
forward, see forward reasoning
fuzzy, see fuzzy reasoning
goal-driven, see backward reasoning
hypothesis-driven, see

hypothesis-driven reasoning
inductive, see inductive reasoning
monotonic, see monotonic reasoning
non-monotonic, see non-monotonic

reasoning
probabilistic, see probabilistic

reasoning
top-down, see top-down reasoning

reasoning by analogy, 30, 34, 63
reasoning over networks, 34
reasoning systems, 13
reasoning with certainty factors, see

certainty factors
reasoning with uncertainty, 27, 30, 34, 35,

176, 234
recall, 120, 121, 128, 129, 288
reCAPTCHA, 264, 295
receiver operating characteristic, see ROC
receptive field, 182
recidivism, 362
recommender systems, 102, 110, 141, 202,

263, 294, 297, 299, 300, 332, 378
recurrent neural network, 212, 213, 214, 218
reduce, 111
redundancy, 303
region detection, 161, 170, 171, 173, 186
region growing, 171, 172, 173
regression line, 88, 89, 97, 100
regret, 70, 85, 242, 343, 350, 351, 352, 353
regular expression, 133, 210, 211, 212, 220,

259, 266
reification, 253
reinforcement, 351
reinforcement learning, 83, 236, 241, 242,

248, 249, 352
relational database, 71, 135
relaxation term, 79
relevance feedback, 263, 299, 332

relevance information, 257
reparameterisation, 126
res cogitans, 360
res extensa, 360
rescue dogs, 75
reservoir computing, 84, 99, 100, 247, 376
residuals, 88, 92, 94, 95
resource description framework, see RDF
resource description framework schema, see

RDFS
responsibility, 312, 361, 362, 367, 370
responsible innovation, 362
restricted Boltzmann machine, 81, 104, 138,

182
restricted language, 201
ridge, 51, 123, 167
risk avoidance, 156
RNN, see recurrent neural network
Robert Wadlow, 139
Robert’s operator, 167, 168, 169
robotic process automation, 236
robotics, 6, 63, 106, 147, 148, 152, 158, 161,

190, 236, 242, 245, 246, 248, 294,
295, 311, 358, 361, 367, 371

current state representation, see
current state representation

feedback, 230, 234
historical representation, see historical

representation
memory, 228
military, 221
practical, 233, 245
safety, 233
sensing, 227

robust to failure, 113
ROC, 120, 121, 128, 129, 130, 284, 290, 305
rote learning, 31, 61, 222
route planning, 224, 226, 236, 242
Rubin’s vase, 348
rule induction, 70, 282

saccades, 347, 348
SAIL databank, 134
salience, 31, 70, 347, 351
sample rate, 303
sampling bias, 138
sanity checks, 132, 142
satisficing, 39
scale-related variability, 216
Schank, R, 21
schema.org, 258, 259
scientific data, 250
screen scraping, 133
script, 20, 21, 22, 24, 133, 200, 202, 203, 236,

237
scrutability, 283
search, 23, 32, 64, 85

best first, see best first search
breadth first, see breadth first search

closed list, see closed list
depth first, see depth first search
deterministic, see deterministic search
feasibility, see feasibility
generate and test, see generate and test
graph, see graph search
heuristic, see heuristic search
open list, see open list
optimisation, 37, 38
satisficing, see satisficing
solution path, see solution path
solution state, see solution state

search engine, 7, 240, 249, 257, 258, 308,
310, 313, 326, 327, 331, 369

search engine personalisation, 326
search horizon, 53, 150, 151, 152
search methods, see search strategies
search space, 54, 55, 97, 102, 148, 155, 272
search strategies, 4, 23, 46, 98, 147, 158, 279
search techniques, see search strategies
search terms, 257, 311
search tree, 39, 40, 42, 43, 44, 45, 46, 47, 48,

49, 50, 53, 54, 55, 155, 156, 346
depth, see depth of search tree

Searle, John, 357, 358, 361, 371
seasonal adjustments, 215, 217
segmentation, 108, 109, 110, 171
segmentation rule, 109
self learning, 106
self play, 158
self-organising map, 60, 74, 81, 82, 84, 241,

339
self-organising network, see self-organising

map
semantic analysis, 188, 190, 191, 194, 196,

197, 198, 202
semantic desktop, 300
semantic grammar, 198, 199, 202
semantic integrity, 133
semantic markup, 259, 260
semantic network, 19, 20, 63, 80, 84, 276,

345, 348, 349
semantic similarity, 348
semantic web, 7, 113, 250, 253, 254, 255,

266, 301
semi-autonomous car, 293, 314
semi-structured data, 133
semi-supervised learning, 128, 129, 282
sensation, 184, 351
sensitivity analysis, 335, 337
sensor accuracy, 228
sensor fusion, 184, 303, 304
sensor redundancy, 304
sentence parsing, 191, 192, 193

bottom up, 192
methods, 192
systems, 192
top down, 192

sentence-level processing, 198

https://schema.org

Index ■ 403

sequence, 204
set theory, 30, 141
sexual selection, 368
SHAP, 337, 341
sharding, 111
sharpening filters, 187
sheep dogs, 75
Shelley, Mary, 3, 221
short-term memory, see human working

memory
SHRDLU, 5, 190, 203, 222, 275
sigmoid activation function, 76, 78, 99, 127,

337
sigmoid function, 76, 99, 126, 127, 139, 337
signal processing, 161, 162, 164, 181, 186,

205, 214, 310
similarity, see similarity measure
similarity matrix, 82, 91, 92, 339
similarity measure, 91, 92, 108, 118, 134,

141, 185, 240, 242, 248, 286, 340
Simon, Herbert, 5
simulated annealing, 51, 52, 55, 97, 123, 288
simulated data, 318
single step learning, 241
single-shot learning, 343, 352
singularity, 377
Skinner, B. F., 242
Skynet, 180
sleeping phase, 81
smart dust, 303
smoothing, 94, 124, 165, 166, 172, 181, 187,

215
Snip!t, 259
SOAR, 64, 343, 345, 346, 354, 355

chunking, 346
Sobel’s operator, 168, 169, 181, 187
social machine, 263
social media, 96, 102, 105, 113, 140, 238,

239, 250, 295, 313, 315, 325, 326,
327, 331, 341, 366, 369

social media bots, 331
social responsibility, 365
soft constraints, 127
soft-robotics, 235
software agents, see agents
software ring-fence, 234
solution path, 36
solution state, 36
sonar, 226
sources of bias, 317
SPARQL, 253, 255, 266
sparse connections, see sparsely connected
sparse matrix, 111, 263
sparsely connected, 75
spatial reasoning, 24
spectrogram, 207
speech acts, 200, 202, 203
speech recognition, 6, 82, 118, 207, 297, 298,

378

spikes, 84
spiking neural network, 84, 348
spin glass models, 80
sporadic sample, 204
spreading activation, 33, 257, 348, 349
SQL, 283
square matrices, 91
standard deviation, 93, 95, 109, 137, 138,

170
standard logic, 26, 27, 30
state space search, 30, 222, 346
state space traversal, see state space search
stationarity, 205
statistical bias, 317
statistical techniques, 93, 95, 107, 116, 117,

201, 202, 204, 205, 217, 262, 298
statistics, 317
status change event, 238
stemming, 241
stereo vision, 184, 185, 186, 187, 232
stimulus–response learning, 351, 352
stochastic process, 207
stochastic search, 159
stop words, 140, 141
straight-line distance, see Euclidean distance
strong AI, 1, 3, 356, 357
strong learner, 247
stuttering in search trees, 42, 44
Stuxnet, 314
sub-symbolic, see sub-symbolic systems
sub-symbolic AI, see sub-symbolic systems
sub-symbolic spring, 6
sub-symbolic systems, 2, 3, 6, 7, 19, 85, 283,

331
subject–predicate–object triples, 250
substructure, 205
successive refinement, 170
sufficient reason, 283, 333
supermarket, 20, 21
supervised learning, 60, 78, 81, 106, 117,

118, 119, 128, 129, 212, 241
support vector machine, 84, 85, 98, 99, 100,

101, 104, 105, 247
surrogate expert, 217
SVM, see support vector machine
swarm computing, 246, 249, 349
syllogism, 26
symbolic AI, see symbolic systems
symbolic machine learning, 282
symbolic regression, 289
symbolic systems, 2, 7, 85, 316, 331
symmetric matrix, 91, 101
synapse weights, 214
synergistic interaction, 284, 309, 311
syntactic analysis, 188, 190, 191, 192, 196,

197, 202
syntactic grammar, 191, 198, 202
synthetic data, 105, 280, 375
System 1, 3, 346, 349

System 2, 3, 346
system event, 238
systems response, 358

tacit knowledge, 281, 282
technological determinism, 367
template matching, 177, 178, 192, 201
temporal logics, 24
TensorFlow , 376
terminal symbols, 192, 193, 194
text mining, 22, 250, 266, 378
text prediction, 262
texture, 171, 172
theory of mind, 350, 360
thought experiment, 357, 362
three-dimensional objects, 173
threshold, 75, 76, 78, 79, 80, 120, 127, 135,

136, 163, 164, 165, 167, 171, 172,
177, 181, 187, 310, 315, 337

threshold function, 75, 76
Thunderbirds, 15
time dependence, 99
time domain, 205, 207
time series, 115, 181, 182, 205, 207, 213, 215,

218, 220
time series analysis, 214, 220
time series data, 218
time stamp, 135
timed event, 238
TMS, see truth maintenance system
top-down reasoning, 26
Towers of Hanoi, 36, 41, 44, 47, 234
training phase, 60, 76, 117, 118
transfer learning, 299, 301
transformational analogy, 30
transformer model, 214, 220, 298, 347, 369,

376
transition network, 192, 194, 195, 196, 202

augmented, see augmented transition
network

transition probabilities, 208, 209
transparency, 310, 313, 315, 321, 331, 332,

333, 365
transpose, 91, 110, 304
travelling salesman problem, 36, 37
tree search, see search tree
trend adjustments, see trend removal
trend removal, 205, 215, 217, 368
trends, see trend removal
trigger, 80, 201, 204, 236, 237, 238, 295, 308,

309
triplestores, 253, 254, 266
trolley problem, 362, 364, 371
true negative, 121, 129
true positive, 120, 121, 129
trust, 315, 333
truth maintenance system, 27
truth values, 14, 15
Turing test, 4, 5, 357

404 ■ Index

Turing, Alan, 4, 371
Twitter bot, 317

uncertain reasoning, see reasoning with
uncertainty

uncertainty, 27, 30, 34, 100, 147, 158, 228,
276, 283, 288, 291, 293, 294, 298,
304, 308, 309

uncertainty measure, 88
uncertainty of sensors, 302
unconscious, 353
unconscious bias, 281
underdetermined, 79, 103, 369
uniform distribution, 137
uniform resource identifiers, see URI
uniform resource locators, see URL
uniform sampling rate, 204
unintended bias, 314, 317, 364
unique identifier, 133, 134, 323
unsupervised, see unsupervised learning
unsupervised algorithm, see unsupervised

learning
unsupervised classifier, 218
unsupervised clustering, 286
unsupervised learning, 60, 81, 84, 103, 104,

108, 109, 115, 117, 118, 119, 124,
125, 128, 129, 140, 182, 212, 241,
282, 283, 287

upper bound, 76
URI, 251, 253, 254, 255, 256

URL, 251, 254, 255
user event, 237
user interface, 273, 309, 314
user interface agent, 240

validation phase, 60, 118
validation rules, 132, 142
value network, 157
variable-order markov models, 210
variance, 95, 96, 137
vCard ontology, 253
vergence, 232
version-space algorithm, 64, 65, 73, 117
Vilfredo Pareto, see Pareto, Vilfredo
visual analytics, 271, 272, 284, 286, 287, 289,

291, 292
visualisation, 118, 271, 284, 285, 286, 287,

288, 289, 291, 292, 315, 339
visualising data, see information

visualisation
voice assistants, 298
voxel, 173

Waltz’s algorithm, 171, 173, 175, 176, 178,
185, 187

Warren, David, 196
Watson (IBM), see IBM Watson
wavelength, 207
wavelet, 99, 207
wavelet transform, 105, 181, 207, 212, 214

weak AI, 1, 356
weak learners, 247
web of data, 250
web ontology language, see OWL
web science, 263
web scraping, 133
web search, 201, 250, 322, 325, 369
web-scale reasoning, 266
Weizenbaum, Joseph, 5, 357, 364
white matter, 83
white-box model, 337, 340
white-box techniques, 335, 336, 340
William James, 352
windowing, 115, 205, 206, 207, 212, 217, 219
winner takes all, 352
Winograd, Terry, 5, 190
wisdom of the crowds, 247
wizard, 237
word vector, 202
word2vec, 202, 340
working memory, 16, 18, 344, 345
World Wide Web, 237, 240

XCON, 276
XML, 135
XOR problem, 75, 86

zero-sum game, 148, 159, 183
Zombie Alice, 361
zoom, 232

	Cover
	Half Title
	Title Page
	Copyright Page
	Contents
	Preface
	About the Author
	CHAPTER 1 Introduction
	1.1 What Is Artificial Intelligence?
	1.1.1 How Much Like a Human: Strong vs. Weak AI
	1.1.2 Top-down or Bottom-up: Symbolic vs. Sub-symbolic
	1.1.3 A Working Definition
	1.1.4 Human Intelligence
	1.1.5 Bottom-up and Top-down

	1.2 Humans at the Heart
	1.3 A Short History of Artificial Intelligence
	1.3.1 The Development of AI
	1.3.2 The Physical Symbol System Hypothesis
	1.3.3 Sub-symbolic Spring
	1.3.4 AI Renaissance
	1.3.5 Moving Onwards

	1.4 Structure of This Book – A Landscape of AI

	SECTION I Knowledge-Rich AI
	CHAPTER 2 Knowledge in AI
	2.1 Overview
	2.2 Introduction
	2.3 Representing Knowledge
	2.4 Metrics for Assessing Knowledge Representation Schemes
	2.5 Logic Representations
	2.6 Procedural Representation
	2.6.1 The Database
	2.6.2 The Production Rules
	2.6.3 The Interpreter
	2.6.4 An Example Production System: Making a Loan

	2.7 Network Representations
	2.8 Structured Representations
	2.8.1 Frames
	2.8.2 Scripts

	2.9 General Knowledge
	2.10 The Frame Problem
	2.11 Knowledge Elicitation
	2.12 Summary

	CHAPTER 3 Reasoning
	3.1 Overview
	3.2 What Is Reasoning?
	3.3 Forward and Backward Reasoning
	3.4 Reasoning With Uncertainty
	3.4.1 Non-monotonic Reasoning
	3.4.2 Probabilistic Reasoning
	3.4.3 Certainty Factors
	3.4.4 Fuzzy Reasoning
	3.4.5 Reasoning by Analogy
	3.4.6 Case-based Reasoning

	3.5 Reasoning Over Networks
	3.6 Changing Representations
	3.7 Summary

	CHAPTER 4 Search
	4.1 Introduction
	4.1.1 Types of Problem
	4.1.2 Structuring the Search Space

	4.2 Exhaustive Search and Simple Pruning
	4.2.1 Depth and Breadth First Search
	4.2.2 Comparing Depth and Breadth First Searches
	4.2.3 Programming and Space Costs
	4.2.4 Iterative Deepening and Broadening
	4.2.5 Finding the Best Solution – Branch and Bound
	4.2.6 Graph Search

	4.3 Heuristic Search
	4.3.1 Hill Climbing and Best First – Goal-directed Search
	4.3.2 Finding the Best Solution – The A* Algorithm
	4.3.3 Inexact Search

	4.4 Knowledge-rich Search
	4.4.1 Constraint Satisfaction

	4.5 Summary

	SECTION II Data and Learning
	CHAPTER 5 Machine Learning
	5.1 Overview
	5.2 Why Do We Want Machine Learning?
	5.3 How Machines Learn
	5.3.1 Phases of Machine Learning
	5.3.2 Rote Learning and the Importance of Generalisation
	5.3.3 Inputs to Training
	5.3.4 Outputs of Training
	5.3.5 The Training Process

	5.4 Deductive Learning
	5.5 Inductive Learning
	5.5.1 Version Spaces
	5.5.2 Decision Trees
	5.5.2.1 Building a Binary Tree
	5.5.2.2 More Complex Trees

	5.5.3 Rule Induction and Credit Assignment

	5.6 Explanation-Based Learning
	5.7 Example: Query-by-Browsing
	5.7.1 What the User Sees
	5.7.2 How It Works
	5.7.3 Problems

	5.8 Summary

	CHAPTER 6 Neural Networks
	6.1 Overview
	6.2 Why Use Neural Networks?
	6.3 The Perceptron
	6.3.1 The XOR Problem

	6.4 The Multi-layer Perceptron
	6.5 Backpropagation
	6.5.1 Basic Principle
	6.5.2 Backprop for a Single Layer Network
	6.5.3 Backprop for hidden layers

	6.6 Associative Memories
	6.6.1 Boltzmann Machines
	6.6.2 Kohonen Self-organising Networks

	6.7 Lower-level Models
	6.7.1 Cortical Layers
	6.7.2 Inhibition
	6.7.3 Spiking Neural Networks

	6.8 Hybrid Architectures
	6.8.1 Hybrid Layers
	6.8.2 Neurosymbolic AI

	6.9 Summary

	CHAPTER 7 Statistical and Numerical Techniques
	7.1 Overview
	7.2 Linear Regression
	7.3 Vectors and Matrices
	7.4 Eigenvalues and Principal Components
	7.5 Clustering and K-means
	7.6 Randomness
	7.6.1 Simple Statistics
	7.6.2 Distributions and Long-tail Data
	7.6.3 Least Squares
	7.6.4 Monte Carlo Techniques

	7.7 Non-linear Functions for Machine Learning
	7.7.1 Support Vector Machines
	7.7.2 Reservoir Computing
	7.7.3 Kolmogorov-Arnold Networks

	7.8 Summary

	CHAPTER 8 Going Large: Deep Learning and Big Data
	8.1 Overview
	8.2 Deep Learning
	8.2.1 Why Are Many Layers so Difficult?
	8.2.2 Architecture of the Layers

	8.3 Growing the Data
	8.3.1 Modifying Real Data
	8.3.2 Virtual Worlds
	8.3.3 Self-Learning

	8.4 Data Reduction
	8.4.1 Dimension Reduction
	8.4.1.1 Vector Space Techniques
	8.4.1.2 Non-numeric Features

	8.4.2 Reduce Total Number of Data Items
	8.4.2.1 Sampling
	8.4.2.2 Aggregation

	8.4.3 Segmentation
	8.4.3.1 Class Segmentation
	8.4.3.2 Result Recombination
	8.4.3.3 Weakly Communicating Partial Analysis

	8.5 Processing Big Data
	8.5.1 Why It Is Hard – Distributed Storage and Computation
	8.5.2 Principles behind MapReduce
	8.5.3 MapReduce for the Cloud
	8.5.4 If It Can Go Wrong – Resilience for Big Processing

	8.6 Data and Algorithms at Scale
	8.6.1 Big Graphs
	8.6.2 Time Series and Event Streams
	8.6.2.1 Multi-scale with Mega-windows
	8.6.2.2 Untangling Streams
	8.6.2.3 Real-time Processing

	8.7 Summary

	CHAPTER 9 Making Sense of Machine Learning
	9.1 Overview
	9.2 The Machine Learning Process
	9.2.1 Training Phase
	9.2.2 Application Phase
	9.2.3 Validation Phase

	9.3 Evaluation
	9.3.1 Measures of Effectiveness
	9.3.2 Precision–Recall Trade-off
	9.3.3 Data for Evaluation
	9.3.4 Multi-stage Evaluation

	9.4 The Fitness Landscape
	9.4.1 Hill-Climbing and Gradient Descent/Ascent
	9.4.2 Local Maxima and Minima
	9.4.3 Plateau and Ridge Effects
	9.4.4 Local Structure
	9.4.5 Approximating the Landscape
	9.4.6 Forms of Fitness Function

	9.5 Dealing with Complexity
	9.5.1 Degrees of Freedom and Dimension Reduction
	9.5.2 Constraints and Dependent Features
	9.5.3 Continuity and Learning
	9.5.4 Multi-objective Optimisation
	9.5.5 Partially Labelled Data

	9.6 Summary

	CHAPTER 10 Data Preparation
	10.1 Overview
	10.2 Stages of Data Preparation
	10.3 Creating a Dataset
	10.3.1 Extraction and Gathering of Data
	10.3.2 Entity Reconciliation and Linking
	10.3.3 Exception Sets

	10.4 Manipulation and Transformation of Data
	10.4.1 Types of Data Value
	10.4.2 Transforming to the Right Kind of Data

	10.5 Numerical Transformations
	10.5.1 Information
	10.5.2 Normalising Data
	10.5.3 Missing Values – Filling the Gaps
	10.5.4 Outliers – Dealing with Extremes

	10.6 Non-numeric Transformations
	10.6.1 Media Data
	10.6.2 Text
	10.6.3 Structure Transformation

	10.7 Automation and Documentation
	10.8 Summary

	SECTION III Specialised Areas
	CHAPTER 11 Game Playing
	11.1 Overview
	11.2 Introduction
	11.3 Characteristics of Game Playing
	11.4 Standard Games
	11.4.1 A Simple Game Tree
	11.4.2 Heuristics and Minimax Search
	11.4.3 Horizon Problems
	11.4.4 Alpha–beta Pruning
	11.4.5 The Imperfect Opponent

	11.5 Non-zero-sum Games and Simultaneous Play
	11.5.1 The Prisoner's Dilemma
	11.5.2 Searching the Game Tree
	11.5.3 No Alpha–Beta Pruning
	11.5.4 Pareto-optimality
	11.5.5 Multi-party Competition and Co-operation

	11.6 The Adversary Is Life!
	11.7 Probability
	11.8 Neural Networks for Games
	11.8.1 Where to Use a Neural Network
	11.8.2 Training Data and Self Play

	11.9 Summary

	CHAPTER 12 Computer Vision
	12.1 Overview
	12.2 Introduction
	12.2.1 Why Computer Vision Is Difficult
	12.2.2 Phases of Computer Vision

	12.3 Digitisation and Signal Processing
	12.3.1 Digitising Images
	12.3.2 Thresholding
	12.3.3 Digital Filters
	12.3.3.1 Linear Filters
	12.3.3.2 Smoothing
	12.3.3.3 Gaussian Filters
	12.3.3.4 Practical Considerations

	12.4 Edge Detection
	12.4.1 Identifying Edge Pixels
	12.4.1.1 Gradient Operators
	12.4.1.2 Robert's Operator
	12.4.1.3 Sobel's Operator
	12.4.1.4 Laplacian Operator
	12.4.1.5 Successive Refinement and Marr's Primal Sketch

	12.4.2 Edge Following

	12.5 Region Detection
	12.5.1 Region Growing
	12.5.2 The Problem of Texture
	12.5.3 Representing Regions – Quadtrees
	12.5.4 Computational Problems

	12.6 Reconstructing Objects
	12.6.1 Inferring Three-Dimensional Features
	12.6.1.1 Problems with Labelling

	12.6.2 Using Properties of Regions

	12.7 Identifying Objects
	12.7.1 Using Bitmaps
	12.7.2 Using Summary Statistics
	12.7.3 Using Outlines
	12.7.4 Using Paths

	12.8 Facial and Body Recognition
	12.9 Neural Networks for Images
	12.9.1 Convolutional Neural Networks
	12.9.2 Autoencoders

	12.10 Generative Adversarial Networks
	12.10.1 Generated Data
	12.10.2 Diffusion Models
	12.10.3 Bottom-up and Top-down Processing

	12.11 Multiple Images
	12.11.1 Stereo Vision
	12.11.2 Moving Pictures

	12.12 Summary

	CHAPTER 13 Natural Language Understanding
	13.1 Overview
	13.2 What Is Natural Language Understanding?
	13.3 Why Do We Need Natural Language Understanding?
	13.4 Why Is Natural Language Understanding Difficult?
	13.5 An Early Attempt at Natural Language Understanding: SHRDLU
	13.6 How Does Natural Language Understanding Work?
	13.7 Syntactic Analysis
	13.7.1 Grammars
	13.7.2 An Example: Generating a Grammar Fragment
	13.7.3 Transition Networks
	13.7.4 Context-sensitive Grammars
	13.7.5 Feature Sets
	13.7.6 Augmented Transition Networks
	13.7.7 Taggers

	13.8 Semantic Analysis
	13.8.1 Semantic Grammars
	13.8.1.1 An Example: A Database Query Interpreter Revisited

	13.8.2 Case Grammars

	13.9 Pragmatic Analysis
	13.9.1 Speech Acts

	13.10 Grammar-free Approaches
	13.10.1 Template Matching
	13.10.2 Keyword Matching
	13.10.3 Predictive Methods
	13.10.4 Statistical Methods

	13.11 Summary
	13.12 Solution to SHRDLU Problem

	CHAPTER 14 Time Series and Sequential Data
	14.1 Overview
	14.2 General Properties
	14.2.1 Kinds of Temporal and Sequential Data
	14.2.2 Looking through Time
	14.2.3 Processing Temporal Data
	14.2.3.1 Windowing
	14.2.3.2 Hidden State
	14.2.3.3 Non-time Domain Transformations

	14.3 Probability Models
	14.3.1 Markov Model
	14.3.2 Higher-order Markov Model
	14.3.3 Hidden Markov Model

	14.4 Grammar and Pattern-Based Approaches
	14.4.1 Regular Expressions
	14.4.2 More Complex Grammars

	14.5 Neural Networks
	14.5.1 Window-based Methods
	14.5.2 Recurrent Neural Networks
	14.5.3 Long-term Short-term Memory Networks
	14.5.4 Transformer Models

	14.6 Statistical and Numerical Techniques
	14.6.1 Simple Data Cleaning Techniques
	14.6.2 Logarithmic Transformations and Exponential Growth
	14.6.3 ARMA Models
	14.6.4 Mixed Statistics/ML Models

	14.7 Multi-stage/Multi-scale
	14.8 Summary

	CHAPTER 15 Planning and Robotics
	15.1 Overview
	15.2 Introduction
	15.2.1 Friend or Foe?
	15.2.2 Different Kinds of Robots

	15.3 Global Planning
	15.3.1 Planning Actions – Means–Ends Analysis
	15.3.2 Planning Routes – Configuration Spaces

	15.4 Local Planning
	15.4.1 Local Planning and Obstacle Avoidance
	15.4.2 Finding Out about the World

	15.5 Limbs, Legs and Eyes
	15.5.1 Limb Control
	15.5.2 Walking – On One, Two or More Legs
	15.5.3 Active Vision

	15.6 Practical Robotics
	15.6.1 Controlling the Environment
	15.6.2 Safety and Hierarchical Control

	15.7 Summary

	CHAPTER 16 Agents
	16.1 Overview
	16.2 Software Agents
	16.2.1 The Rise of the Agent
	16.2.2 Triggering Actions
	16.2.3 Watching and Learning
	16.2.4 Searching for Information

	16.3 Reinforcement Learning
	16.3.1 Single Step Learning
	16.3.2 Choices during Learning
	16.3.3 Intermittent Rewards and Credit Assignment

	16.4 Co-operating Agents and Distributed AI
	16.4.1 Blackboard Architectures
	16.4.2 Distributed Control

	16.5 Larger Collectives
	16.5.1 Emergent Behaviour
	16.5.2 Cellular Automata
	16.5.3 Artificial Life
	16.5.4 Swarm Computing
	16.5.5 Ensemble Methods

	16.6 Summary

	CHAPTER 17 Web-scale Reasoning
	17.1 Overview
	17.2 The Semantic Web
	17.2.1 Representing Knowledge – RDF and Triples
	17.2.2 Ontologies
	17.2.3 Asking Questions – SPARQL
	17.2.4 Talking about RDF – Reification, Named Graphs and Provenance
	17.2.5 Linked Data – Connecting the Semantic Web

	17.3 Mining the Web: Search and Semantics
	17.3.1 Search Words and Links
	17.3.2 Explicit Markup
	17.3.3 External Semantics

	17.4 Using Web Data
	17.4.1 Knowledge-rich Applications
	17.4.2 The Surprising Power of Big Data

	17.5 The Human Web
	17.5.1 Recommender Systems
	17.5.2 Crowdsourcing and Human Computation
	17.5.3 Social Media as Data

	17.6 Summary

	SECTION IV Humans at the Heart
	CHAPTER 18 Expert and Decision Support Systems
	18.1 Overview
	18.2 Introduction – Experts in the Loop
	18.3 Expert Systems
	18.3.1 Uses of Expert Systems
	18.3.2 Architecture of an Expert System
	18.3.3 Explanation Facility
	18.3.4 Dialogue and UI Component
	18.3.5 Examples of Four Expert Systems
	18.3.5.1 Example 1: MYCIN
	18.3.5.2 Example 2: PROSPECTOR
	18.3.5.3 Example 3: DENDRAL
	18.3.5.4 Example 4: XCON

	18.3.6 Building an Expert System
	18.3.7 Limitations of Expert Systems

	18.4 Knowledge Acquisition
	18.4.1 Knowledge Elicitation
	18.4.1.1 Unstructured Interviews
	18.4.1.2 Structured Interviews
	18.4.1.3 Focused Discussions
	18.4.1.4 Role Reversal
	18.4.1.5 Think-aloud

	18.4.2 Knowledge Representation
	18.4.2.1 Expert System Shells
	18.4.2.2 High-level Programming Languages
	18.4.2.3 Ontologies
	18.4.2.4 Selecting a Tool

	18.5 Experts and Machine Learning
	18.5.1 Knowledge Elicitation for ML
	18.5.1.1 Acquiring Tacit Knowledge
	18.5.1.2 Feature Selection
	18.5.1.3 Expert Labelling
	18.5.1.4 Iteration and Interaction

	18.5.2 Algorithmic Choice, Validation and Explanation

	18.6 Decision Support Systems
	18.6.1 Visualisation
	18.6.2 Data Management and Analysis
	18.6.3 Visual Analytics
	18.6.3.1 Visualisation in VA
	18.6.3.2 Data Management and Analysis for VA

	18.7 Stepping Back
	18.7.1 Who Is It About?
	18.7.2 Why Are We Doing It?
	18.7.3 Wider Context
	18.7.4 Cost–Benefit Balance

	18.8 Summary

	CHAPTER 19 AI Working with and for Humans
	19.1 Overview
	19.2 Introduction
	19.3 Levels and Types of Human Contact
	19.3.1 Social Scale
	19.3.2 Visibility and Embodiment
	19.3.3 Intentionality
	19.3.4 Who Is in Control
	19.3.5 Levels of Automation

	19.4 On a Device – Intelligent User Interfaces
	19.4.1 Low-level Input
	19.4.2 Conversational User Interfaces
	19.4.3 Predicting What Next
	19.4.4 Finding and Managing Information
	19.4.5 Helping with Tasks
	19.4.6 Adaptation and Personalisation
	19.4.7 Going Small

	19.5 In the World – Smart Environments
	19.5.1 Configuration
	19.5.2 Sensor Fusion
	19.5.3 Context and Activity
	19.5.4 Designing for Uncertainty in Sensor-rich Smart Environments
	19.5.5 Dealing with Hiddenness – A Central Heating Controller

	19.6 Designing for AI–Human Interaction
	19.6.1 Appropriate Intelligence – Soft Failure
	19.6.2 Feedback – Error Detection and Repair
	19.6.3 Decisions and Suggestions
	19.6.4 Case Study: onCue – Appropriate Intelligence by Design

	19.7 Towards Human–Machine Synergy
	19.7.1 Tuning AI Algorithms for Interaction
	19.7.2 Tuning Interaction for AI

	19.8 Summary

	CHAPTER 20 When Things Go Wrong
	20.1 Overview
	20.2 Introduction
	20.3 Wrong on Purpose?
	20.3.1 Intentional Bad Use
	20.3.2 Unintentional Problems

	20.4 General Strategies
	20.4.1 Transparency and Trust
	20.4.2 Algorithmic Accountability
	20.4.3 Levels of Opacity

	20.5 Sources of Algorithmic Bias
	20.5.1 What Is Bias?
	20.5.2 Stages in Machine Learning
	20.5.3 Bias in the Training Data
	20.5.4 Bias in the Objective Function
	20.5.5 Bias in the Accurate Result
	20.5.6 Proxy Measures
	20.5.7 Input Feature Choice
	20.5.8 Bias and Human Reasoning
	20.5.9 Avoiding Bias

	20.6 Privacy
	20.6.1 Anonymisation
	20.6.2 Obfuscation
	20.6.3 Aggregation
	20.6.4 Adversarial Privacy
	20.6.5 Federated Learning

	20.7 Communication, Information and Misinformation
	20.7.1 Social Media
	20.7.2 Deliberate Misinformation
	20.7.3 Filter Bubbles
	20.7.4 Poor Information

	20.8 Summary

	CHAPTER 21 Explainable AI
	21.1 Overview
	21.2 Introduction
	21.2.1 Why We Need Explainable AI
	21.2.2 Is Explainable AI Possible?

	21.3 An Example – Query-by-Browsing
	21.3.1 The Problem
	21.3.2 A Solution
	21.3.3 How It Works

	21.4 Human Explanation – Sufficient Reason
	21.5 Local and Global Explanations
	21.5.1 Decision Trees – Easier Explanations
	21.5.2 Black-box – Sensitivity and Perturbations

	21.6 Heuristics for Explanation
	21.6.1 White-box Techniques
	21.6.2 Black-box Techniques
	21.6.3 Grey-box Techniques

	21.7 Summary

	CHAPTER 22 Models of the Mind – Human-like Computing
	22.1 Overview
	22.2 Introduction
	22.3 What Is the Human Mind?
	22.4 Rationality
	22.4.1 ACTR
	22.4.2 SOAR

	22.5 Subconscious and Intuition
	22.5.1 Heuristics and Imagination
	22.5.2 Attention, Salience and Boredom
	22.5.3 Rapid Serial Switching
	22.5.4 Disambiguation
	22.5.5 Boredom
	22.5.6 Dreaming

	22.6 Emotion
	22.6.1 Empathy and Theory of Mind
	22.6.2 Regret
	22.6.3 Feeling

	22.7 Summary

	CHAPTER 23 Philosophical, Ethical and Social Issues
	23.1 Overview
	23.2 The Limits of AI
	23.2.1 Intelligent Machines or Engineering Tools?
	23.2.2 What Is Intelligence?
	23.2.3 Computational argument vs. Searle's Chinese Room

	23.3 Creativity
	23.3.1 The Creative Process
	23.3.2 Generate and Filter
	23.3.3 The Critical Edge
	23.3.4 Impact on Creative Professionals

	23.4 Consciousness
	23.4.1 Defining Consciousness
	23.4.2 Dualism and Materialism
	23.4.3 The Hard Problem of Consciousness

	23.5 Morality of the Artificial
	23.5.1 Morally Neutral
	23.5.2 Who Is Responsible?
	23.5.3 Life or Death Decisions
	23.5.4 The Special Ethics of AI

	23.6 Society and Work
	23.6.1 Humanising AI or Dehumanising People
	23.6.2 Top-down: Algorithms Grading Students
	23.6.3 Bottom-up: When AI Ruled France
	23.6.4 AI and Work

	23.7 Money and Power
	23.7.1 Finance and Markets
	23.7.2 Advertising and Runaway AI
	23.7.3 Big AI: The Environment and Social Impact

	23.8 Summary

	SECTION V Looking Forward
	CHAPTER 24 Epilogue: What Next?
	24.1 Overview
	24.2 Crystal Ball
	24.3 What Next: AI Technology
	24.3.1 Bigger and Better
	24.3.2 Smaller and Smarter
	24.3.3 Mix and Match
	24.3.4 Partners with People

	24.4 What Next: AI in the World
	24.4.1 Friend or Foe?
	24.4.2 Boom then Bust
	24.4.3 Everywhere and Nowhere

	24.5 Summary – From Hype to Hope

	Bibliography
	Index

