

What Readers Said About Agile Web Development with Rails 7

The best book to get started in the Rails world. A comprehensive, coherent, and
concise overview of the Ruby on Rails framework. It treats learning in a gradual
way, creating an application from scratch using the latest technologies.

➤ Luis Miguel Cabezas Granado
Ruby on Rails and PHP Developer at Hunta de Extremadura (Spain) and PHP
Book Writer at Anaya Multimedia

I liked how the book guided me through each step of the tasks. This book gives
a thorough introduction to Rails, and I’d suggest it to anyone who wants to start
development with Rails.

➤ Gábor László Hajba
Software Developer, EBCONT Enterprise Technologies

The book was really pleasant to read; I liked how it creates a foundational under-
standing of Rails with a realistic scenario and then builds upon it for the more
advanced topics.

➤ Alessandro Bahgat
Software Engineer, Google

We've left this page blank to
make the page numbers the
same in the electronic and

paper books.

We tried just leaving it out,
but then people wrote us to
ask about the missing pages.

Anyway, Eddy the Gerbil
wanted to say “hello.”

Agile Web Development with Rails 8

Sam Ruby

The Pragmatic Bookshelf
Dallas, Texas

See our complete catalog of hands-on, practical,
and Pragmatic content for software developers:

https://pragprog.com

Sales, volume licensing, and support:

support@pragprog.com

Derivative works, AI training and testing,
international translations, and other rights:

rights@pragprog.com

The team that produced this book includes:

Dave ThomasPublisher:

Janet FurlowCOO:

Susannah DavidsonExecutive Editor:

Noel RappinSeries Editor:

Adaobi Obi TultonDevelopment Editor:

Corina LebegioaraCopy Editor:

Potomac Indexing, LLCIndexing:

Gilson GraphicsLayout:

Copyright © 2025 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced by any means, nor may any derivative works be made from this
publication, nor may this content be used to train or test an artificial intelligence system, without the prior consent of the publisher.

When we are aware that a term used in this book is claimed as a trademark, the designation is printed with an initial capital letter or
in all capitals.

The Pragmatic Starter Kit, The Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf, PragProg, and the linking g
device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes no responsibility for errors or omissions
or for damages that may result from the use of information (including program listings) contained herein.

ISBN-13: 979-8-88865-134-6
Encoded using recycled binary digits.
Book version: P1.0—June 2025

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Contents

Foreword to the Rails 8 Edition xi

Preface to the Rails 8 Edition xiii

Acknowledgments xv

Introduction xvii

Part I — Getting Started

1. Installing Rails 3
Installing on Windows 4
Installing on macOS 7
Installing on Linux 9
Choosing a Rails Version 11
Setting Up Your Development Environment 12
Rails and Databases 15

2. Instant Gratification 17
Creating a New Application 17
Hello, Rails! 20
Linking Pages Together 26
When Things Go Wrong 28

3. The Architecture of Rails Applications 33
Models, Views, and Controllers 33
Rails Model Support 36
Action Pack: The View and Controller 39

4. Introduction to Ruby 41
Ruby Is an Object-Oriented Language 41
Data Types 43
Logic 47
Organizing Structures 50
Marshaling Objects 53
Pulling It All Together 53
Ruby Idioms 54

Part II — Building an Application

5. The Depot Application 59
Incremental Development 59
What Depot Does 60
Let’s Code 64

6. Task A: Creating the Application 65
Iteration A1: Creating the Product Maintenance Application 65
Iteration A2: Making Prettier Listings 74
Iteration A3: Making the Page Update in Real Time 78

7. Task B: Validation and Unit Testing 85
Iteration B1: Validating! 85
Iteration B2: Unit Testing of Models 89

8. Task C: Catalog Display 101
Iteration C1: Creating the Catalog Listing 101
Iteration C2: Adding a Page Layout 105
Iteration C3: Using a Helper to Format the Price 107
Iteration C4: Functional Testing of Controllers 108
Iteration C5: Caching of Partial Results 110

Contents • vi

9. Task D: Cart Creation 115
Iteration D1: Finding a Cart 115
Iteration D2: Connecting Products to Carts 116
Iteration D3: Adding a Button 119

10. Task E: A Smarter Cart 127
Iteration E1: Creating a Smarter Cart 127
Iteration E2: Handling Errors 132
Iteration E3: Finishing the Cart 136

11. Task F: Hotwiring the Storefront 143
Iteration F1: Moving the Cart 144
Iteration F2: Creating a Hotwired Cart 150
Iteration F3: Highlighting Changes 155
Iteration F4: Broadcasting Updates with Action Cable 158

12. Task G: Check Out! 165
Iteration G1: Capturing an Order 165
Iteration G2: Adding Fields Dynamically to a Form 178
Iteration G3: Testing Our JavaScript Functionality 184

13. Task H: Sending Emails and Processing Payments
Efficiently 189

Iteration H1: Sending Confirmation Emails 189
Iteration H2: Connecting to a Slow Payment Processor
with Active Job 196

14. Task I: Logging In 207
Iteration I1: Authenticating Users 207
Iteration I2: Administration pages 215
Iteration I3: Permitting Access 217
Iteration I4: Adding a Sidebar, More Administration 218

15. Task J: Internationalization 225
Iteration J1: Selecting the Locale 226
Iteration J2: Translating the Storefront 230

Contents • vii

Iteration J3: Translating Checkout 237
Iteration J4: Adding a Locale Switcher 244

16. Task K: Receive Emails and Respond with Rich Text . . 247
Iteration K1: Receiving Support Emails with Action Mailbox 247
Iteration K2: Storing Support Requests from Our Mailbox 253
Iteration K3: Responding with Rich Text 259

17. Task L: Deployment and Production 269
Iteration L1: Deploying Locally 269
Iteration L2: Deployment to the Cloud 278
Iteration L3: Moving to Production 288

18. Depot Retrospective 295
Rails Concepts 295
Documenting What We’ve Done 298

Part III — Rails in Depth

19. Finding Your Way Around Rails 303
Where Things Go 303
Naming Conventions 311

20. Active Record 315
Defining Your Data 315
Locating and Traversing Records 320
Creating, Reading, Updating, and Deleting (CRUD) 324
Participating in the Monitoring Process 339
Transactions 344

21. Action Dispatch and Action Controller 349
Dispatching Requests to Controllers 350
Processing of Requests 360
Objects and Operations That Span Requests 371

Contents • viii

22. Action View 381
Using Templates 381
Generating Forms 383
Processing Forms 386
Uploading Files to Rails Applications 387
Using Helpers 391
Reducing Maintenance with Layouts and Partials 398

23. Migrations 407
Creating and Running Migrations 407
Anatomy of a Migration 410
Managing Tables 414
Advanced Migrations 419
When Migrations Go Bad 420
Schema Manipulation Outside Migrations 421

24. Customizing and Extending Rails 423
Creating a Reusable Web Component 423
Testing with RSpec 425
Creating HTML Templates with Slim 430
Customizing Rails in Other Ways 433
Where to Go from Here 433

Bibliography 437
Index 439

Contents • ix

Foreword to the Rails 8 Edition
I’ve been working on Rails for over twenty years now, and incredibly, this
book has been around for almost as long, helping programmers get quickly
up to speed on the framework. That kind of dedication doesn’t come around
by accident, but from a consistent commitment to teaching programmers how
to write beautiful code for the web. That’s what Rails is: a love letter to the
web written in Ruby. And this book is here to help you become a coauthor.

In the past two decades, a lot has changed about how we build for the web.
When Rails was first created, there were no web sockets, the use of JavaScript
was modest (or even optional!), and cloud computing had barely gotten
started. But as much as those factors have changed, there are also a lot that
haven’t. If you wrote a Rails application ten or even fifteen years ago, you’ll
instantly recognize the shape of the new app skeleton that Rails 8 delivers
today. You’ll be able to draw on experience working with Active Record and
Action Controller because, while both have gotten better, they’re still based
on the same fundamentally sound principles.

That’s the long-term magic of Ruby on Rails. The ability to draw a yield from
investments made in mastering the basics for years if not decades to come.
Making that first deposit towards those investments is what this book is all
about. To put a stop to, or at least provide an alternative to, the constant
churning and thrashing that has beset the world of web development.

This shows that the one-developer framework isn’t just a dream, but a reality.
Rails really does compress the complexity of modern web development to a
point where it’s feasible for an individual to create something amazing by
themselves. Because that’s how most novel ideas start: with a single individ-
ual taking it as far as they can before needing others to help go further. And
with Rails, you can take it very far indeed.

Think of all the incredible applications that run the Internet with Rails as
their backbone, like Shopify, GitHub, Procore, Cookpad, Intercom, Fleetio,
Instacart, Gusto, Zendesk, Coinbase, and many, many more. My own life’s

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

work, Basecamp, the original Rails application, is still going strong, as is HEY,
my email service. And all of it is built on Rails! That’s all the evidence you’d
ever need that Rails can take you from HELLO WORLD to IPO, as we say on
the homepage.

That’s an ambitious mission because Rails is an ambitious framework. We’re
tackling the entire web problem—not just a database mapper, a URL router,
or a templating language—all of it, all at once, and so much more. Rails is
the original full-stack framework, and as the web has evolved in the two
decades since its release, we continued to keep up with the new problems
and solutions that have arisen.

Many alternatives to Rails have come and gone over the years. Many more
will. But Ruby on Rails remains. So you’ve made the right decision buying
this book and inviting Sam and Dave to help you learn this incredible
framework. I hope you have as much fun as I did discovering Ruby and
riding Rails!

David Heinemeier Hansson
Creator of Ruby on Rails

david@hey.com
Copenhagen, Denmark

Foreword to the Rails 8 Edition • xii

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Preface to the Rails 8 Edition
Rails 7.2 was released in August of 2024. Rails 8.0 rc1 was released in
October. As such, there are few changes to the core in this edition. The biggest
focus of this release is to make your application easier to deploy without
requiring a full staff of DevOps engineers.

Task L: Deployment and Production has been rewritten to reflect this. The
introduction to Dockerfiles is still there, but the story continues on to show
how to deploy your application to a cloud provider with a single command.
And it continues further to show how to back up your data and send your
logs to a service where they can be searched.

The biggest non-deployment related change is the introduction of a basic
authentication generator.1 This replaces much of the content of Task I: Logging
In, with something that does much more with much less code. The code
generated by this generator makes use of Active Job and Active Mailer, further
demonstrating how these components work together.

Minor changes include text_area being renamed to textarea 2 and Parameters#expect
replaces most usages of Parameters#require.3 and the upgrade to Tailwind CSS 4.0.4

I also elected to introduce some concepts earlier. Previous editions started
with a basic web application and then added features like Active Job, Active
Storage, and Turbo Streams. A perennial theme of Rails is compressing
complexity, and given that these features can now be demonstrated with very
few lines of code and/or very few commands, it’s possible to introduce basic
usage of these from the very beginning. This also means that if you’re in a
hurry to explore Kamal, you can skip right to Task L: Deployment and Produc-
tion immediately after completing Task A: Creating the Application.

1. https://github.com/rails/rails/issues/50446
2. https://github.com/rails/rails/commit/f9c51ec385a7b75e212954cd4b22c2da7c1d32f4
3. https://github.com/rails/rails/pull/51674/
4. https://tailwindcss.com/docs/upgrade-guide

report erratum • discuss

https://github.com/rails/rails/issues/50446
https://github.com/rails/rails/commit/f9c51ec385a7b75e212954cd4b22c2da7c1d32f4
https://github.com/rails/rails/pull/51674/
https://tailwindcss.com/docs/upgrade-guide
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Acknowledgments
Rails is constantly evolving, and as it has, so has this book. Parts of the Depot
application were rewritten several times, and all of the text and code were
updated. The avoidance of features as they become deprecated has repeatedly
changed the structure of the book, as what was once hot became just lukewarm.

So, this book would not exist without a massive amount of assistance
from the Ruby and Rails communities. And of course, none of this would
exist without the developers contributing to Ruby on Rails every day. In
particular, the Rails core team has been incredibly helpful, answering
questions, checking out code fragments, and fixing bugs—even to the point
where part of the release process includes verifying that new releases of Rails
don’t break the examples provided in this book.

Sam Ruby

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Introduction
Ruby on Rails is a framework that makes it easier to develop, deploy, and
maintain web applications. During the twenty-plus years since its initial
release, Rails went from being an unknown toy to a worldwide phenomenon.
More importantly, it has become the framework of choice for the implementa-
tion of a wide range of applications.

Why is that?

Rails Simply Feels Right
A large number of developers were frustrated with the technologies they were
using to create web applications. It didn’t seem to matter whether they used
Java, PHP, or .NET—there was a growing sense that their jobs were just too
damn hard. And then, suddenly, along came Rails, and Rails was easier.

But easy on its own doesn’t cut it. We’re talking about professional developers
writing real-world websites. They wanted to feel that the applications they
were developing would stand the test of time—that they were designed and
implemented using modern, professional techniques. So, these developers
dug into Rails and discovered it wasn’t just a tool for hacking out sites.

For example, all Rails applications are implemented using the model-view-
controller (MVC) architecture. MVC isn’t a new concept for web development—
the earliest Java-based web frameworks (like Struts) base their design on it.
But Rails takes MVC further: when you develop in Rails, you start with a
working application, each piece of code has its place, and all the pieces of
your application interact in a standard way.

Professional programmers write tests. And again, Rails delivers. All Rails
applications have testing support baked right in. As you add functionality to
the code, Rails automatically creates test stubs for that functionality. The
framework makes it easy to test applications, and, as a result, Rails applica-
tions tend to get tested.

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Rails applications are written in Ruby, a modern, object-oriented language.
Ruby is concise without being unintelligibly terse. You can express ideas
naturally and cleanly in Ruby code. This leads to programs that are easy to
write and (just as important) easy to read months later.

Rails takes Ruby to the limit, extending it in novel ways that make our pro-
gramming lives easier. Using Rails makes our programs shorter and more
readable. It also allows us to perform tasks that would normally be done in
external configuration files inside the codebase instead. This makes it far
easier to see what’s happening. The following code defines the model class
for a project. Don’t worry about the details for now. Instead, think about how
much information is being expressed in a few lines of code:

class Project < ApplicationRecord
belongs_to :portfolio

has_one :project_manager
has_many :milestones
has_many :deliverables, through: milestones

validates :name, :description, presence: true
validates :non_disclosure_agreement, acceptance: true
validates :short_name, uniqueness: true

end

A major philosophical underpinning of Rails that keeps code short and
readable is the DRY principle, which stands for Don’t Repeat Yourself (see
The Pragmatic Programmer, 20th Anniversary Edition [TH19]). Every piece of
knowledge in a system should be expressed in one place. Rails uses the power
of Ruby to bring that to life. You’ll find little duplication in a Rails application;
you say what you need to say in one place—a place often suggested by the con-
ventions of the MVC architecture—and then move on. For programmers used to
other web frameworks, where a simple change to the database schema could
involve a dozen or more code changes, this was a revelation—and it still is.

From that principle, Rails is founded on the Rails Doctrine,1 which is a set
of nine pillars that explain why Rails works the way it does and how you can
be most successful in using it. Not every pillar is relevant when just starting
out with Rails, but one pillar in particular is most important: convention over
configuration.

Convention over configuration means that Rails has sensible defaults for just
about every aspect of knitting together your application. Follow the conven-
tions, and you can write a Rails application using less code than a typical

1. http://rubyonrails.org/doctrine

Introduction • xviii

report erratum • discuss

http://rubyonrails.org/doctrine
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

JavaScript application uses in JSON configuration. If you need to override
the conventions, Rails makes that easy, too.

Developers coming to Rails find something else too. Rails doesn’t merely play
catch-up with the de facto web standards: it helps define them. And Rails makes
it easy for developers to integrate features such as user authentication, modern
JavaScript frameworks, RESTful interfaces, and WebSockets into their code
because support is built in. (And if you’re not familiar with any of these terms,
never fear—you’ll learn what they mean as you proceed through the book.)

Rails was extracted from a real-world, commercial application. It turns out
that the best way to create a framework is to find the central themes in a
specific application and then package them in a generic foundation of code.
When you’re developing your Rails application, you’re starting with half of a
really good application already in place.

But there’s something else to Rails—something that’s hard to describe.
Somehow, it feels right. Of course, you’ll have to take our word for that until
you write some Rails applications for yourself (which should be in the next
forty-five minutes or so…). That’s what this book is all about.

Rails Is Agile
The title of this book is Agile Web Development with Rails 8. You may be
surprised to discover that we don’t have explicit sections on applying agile
practices X, Y, and Z to Rails coding. In fact, you won’t find mention of many
agile practices, such as Scrum or Extreme Programming, at all.

Over the years since Rails was introduced, the term agile has gone from
being relatively unknown to being overhyped, to being treated as a formal
set of practices, to receiving a well-deserved amount of pushback against
formal practices that were never meant to be treated as gospel, to a return
back to the original principles.

But it’s more than that. The reason is both simple and subtle. Agility is part
of the fabric of Rails.

Let’s look at the values expressed in the Agile Manifesto (Dave Thomas was
one of the seventeen authors of this document) as a set of four preferences:2

• Individuals and interactions over processes and tools
• Working software over comprehensive documentation

2. http://agilemanifesto.org/

report erratum • discuss

Rails Is Agile • xix

http://agilemanifesto.org/
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

• Customer collaboration over contract negotiation
• Responding to change over following a plan

Rails is all about individuals and interactions. It involves no heavy toolsets,
no complex configurations, and no elaborate processes, just small groups of
developers, their favorite editors, and chunks of Ruby code. This leads to
transparency; what the developers do is reflected immediately in what the
customer sees. It’s an intrinsically interactive process.

The Rails development process isn’t driven by documents. You won’t find
500-page specifications at the heart of a Rails project. Instead, you’ll find a
group of users and developers jointly exploring their needs and the possible
ways of answering those needs. You’ll find solutions that change as both the
developers and the users become more experienced with the problems they’re
trying to solve. You’ll find a framework that delivers working software early
in the development cycle. This software might be rough around the edges,
but it lets the users start to get a glimpse of what you’ll be delivering.

In this way, Rails encourages customer collaboration. When customers see
how quickly a Rails project can respond to change, they start to trust that
the team can deliver what’s required, not just what’s been requested. Con-
frontations are replaced by “What if?” sessions.

The agile way of working that Rails encourages is tied to the idea of being
able to respond to change. The strong, almost obsessive, way that Rails honors
the DRY principle means that changes to Rails applications impact a lot less
code than the same changes would in other frameworks. And since Rails
applications are written in Ruby, where concepts can be expressed accurately
and concisely, changes tend to be localized and easy to write. The deep
emphasis on both unit and system testing, along with support for test fixtures
and stubs during testing, gives developers the safety net they need when
making those changes. With a good set of tests in place, changes are less
nerve-racking.

Rather than constantly trying to link Rails processes to agile principles, we’ve
decided to let the framework speak for itself. As you read through the tutorial
chapters, try to imagine yourself developing web applications this way,
working alongside your customers and jointly determining priorities and
solutions to problems. Then, as you read the more advanced concepts that
follow in Part III, see how the underlying structure of Rails can enable you to
meet your customers’ needs faster and with less ceremony.

One last point about agility and Rails—although it’s probably unprofessional
to mention this—think how much fun the coding will be!

Introduction • xx

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Who This Book Is For
This book is for programmers looking to build and deploy web-based applica-
tions. This includes application programmers who are new to Rails (and
perhaps even new to Ruby) as well as those who are familiar with the basics
but want a more in-depth understanding of Rails.

We presume some familiarity with HTML, Cascading Style Sheets (CSS), and
JavaScript—in other words, the ability to view source on web pages. You
needn’t be an expert on these subjects; the most you’ll be expected to do is
copy and paste material from the book, all of which can be downloaded.

The focus of this book is on the features and choices made by the Rails core
team. More specifically, this book is for users of the Rails framework—people
who tend to be more concerned about what Rails does, as opposed to how it
does it or how to change Rails to suit their needs. Examples of topics not
covered in this book include the following:

• Turbo Drive3 is a way to load pages more quickly by just loading markup.
If you want to know more about how Rails makes your pages load faster,
follow that link. But should you instead be content with the knowledge
that Rails makes pages load fast and not need to know more, that’s OK too.

• Propshaft4 replaces Sprockets5 as the asset pipeline for Rails. It is responsible
for adding hashes to the end of asset URLs. If you’re interested in how Rails
makes sure that your assets are always up-to-date, you can follow that link.
But if you’re happy with the knowledge that Rails makes sure your assets
are always up-to-date and don’t need to know more, that’s OK too.

How to Read This Book
The first part of this book makes sure you’re ready. By the time you’re done
with it, you’ll have been introduced to Ruby (the language), you’ll have been
exposed to an overview of Rails, you’ll have Ruby and Rails installed, and
you’ll have verified the installation with a simple example.

The next part takes you through the concepts behind Rails via an extended
example: we build a simple online store. It doesn’t take you one by one through
each component of Rails (such as “here’s a chapter on models, here’s a
chapter on views,” and so forth). These components are designed to work

3. https://turbo.hotwired.dev/handbook/drive
4. hhttps://github.com/rails/propshaft
5. https://github.com/rails/sprockets

report erratum • discuss

Who This Book Is For • xxi

https://turbo.hotwired.dev/handbook/drive
hhttps://github.com/rails/propshaft
https://github.com/rails/sprockets
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

together, and each chapter in this section tackles a specific set of related
tasks that involve a number of these components working together.

Most folks seem to enjoy building the application along with the book. If you
don’t want to do all that typing, you can cheat and download the source code
(a compressed tar archive6 or a zip file).7

Be careful if you ever choose to copy files directly from the download into your
application: if the timestamps on the files are old, the server won’t know that
it needs to pick up these changes. You can update the timestamps using
the touch command on either MacOS or Linux, or you can edit the file and
save it. Alternatively, you can restart your Rails server.

Part III, Rails in Depth, on page 301, surveys the entire Rails ecosystem. This
starts with the functions and facilities of Rails that you’ll now be familiar
with. It then covers a number of key dependencies that the Rails framework
makes use of that contribute directly to the overall functionality that the Rails
framework delivers. Finally, we survey a number of popular plugins that
augment the Rails framework and make Rails an open ecosystem rather
than merely a framework.

Along the way, you’ll see various conventions we’ve adopted:

Live code
Most of the code snippets we show come from full-length, running exam-
ples that you can download.

To help you find your way, if a code listing can be found in the download,
you’ll see a bar before the snippet (like the one here):

rails80/demo1/app/controllers/say_controller.rb
class SayController < ApplicationController

def hello➤

end➤

def goodbye
end

end

The bar contains the path to the code within the download. If you’re
reading the ebook version of this book and your ebook viewer supports
hyperlinks, you can click the bar and the code should appear in a
browser window. Some browsers may mistakenly try to interpret some of

6. https://media.pragprog.com/titles/rails8/code/rails8-code.tgz
7. https://media.pragprog.com/titles/rails8/code/rails8-code.zip

Introduction • xxii

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdemo1%2Fapp%2Fcontrollers%2Fsay_controller.rb
https://media.pragprog.com/titles/rails8/code/rails8-code.tgz
https://media.pragprog.com/titles/rails8/code/rails8-code.zip
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

the HTML templates as HTML. If this happens, view the source of the
page to see the real source code.

And in some cases involving the modification of an existing file where
the lines to be changed may not be immediately obvious, you’ll also see
some helpful little triangles to the left of the lines that you’ll need to
change. Two such lines are indicated in the previous code.

David says
Every now and then you’ll come across a “David says” sidebar. Here’s
where David Heinemeier Hansson gives you the real scoop on some par-
ticular aspects of Rails—rationales, tricks, recommendations, and more.
Because he’s the fellow who invented Rails, these are the sections to read
if you want to become a Rails pro.

Joe asks
Joe, the mythical developer, sometimes pops up to ask questions about
stuff we talk about in the text. We answer these questions as we go
along.

This book isn’t meant to be a reference manual for Rails. Our experience
is that reference manuals aren’t the way most people learn. Instead, we show
most of the modules and many of their methods, either by example or
narratively in the text, in the context of how these components are used and
how they fit together.

Nor do we have hundreds of pages of API listings. There’s a good reason for
this: you get that documentation whenever you install Rails, and it’s guaran-
teed to be more up-to-date than the material in this book. If you install Rails
using RubyGems (which we recommend), start the gem documentation server
(using the gem server command), and you can access all the Rails APIs by
pointing your browser at http://localhost:8808.

In addition, you’ll see that Rails helps you by producing responses that
clearly identify any error found as well as traces that tell you not only the
point at which the error was found but also how you got there. You’ll see
an example on page 133. If you need additional information, peek ahead to
Iteration E2: Handling Errors, on page 132, to see how to insert logging
statements.

report erratum • discuss

How to Read This Book • xxiii

http://localhost:8808
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

If you get really stuck, plenty of online resources can help. In addition to the
code listings mentioned, you can find more resources on the Pragmatic
Bookshelf site page for this book, including links to the book forum and
errata.8 The resources listed on these pages are shared resources. Feel free
to post not only questions and problems to the forum but also any suggestions
and answers you may have to questions that others have posted.

Let’s get started! The first steps are to install Ruby and Rails and verify the
installation with a simple demonstration.

8. https://pragprog.com/titles/rails8/agile-web-development-with-rails-8/

Introduction • xxiv

report erratum • discuss

https://pragprog.com/titles/rails8/agile-web-development-with-rails-8/
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Part I

Getting Started

CHAPTER 1

In this chapter, you'll see:
• Installing Ruby, RubyGems, SQLite 3, and Rails
• Development environments and tools

Installing Rails
In Part I of this book, we’ll introduce you to both the Ruby language and the
Rails framework. But we can’t get anywhere until you’ve installed both and
verified that they’re operating correctly.

To get Rails running on your system, you’ll need the following:

• A Ruby interpreter. Rails is written in Ruby, and you’ll be writing your
applications in Ruby too. Rails 8.0 will run on Ruby versions 3.2, 3.3,
and 3.4. It won’t work on prior versions of Ruby.

• Ruby on Rails. This book was written using Rails version 8.0 (specifically,
Rails 8.0.2).

• Some libraries (depending on the operating system).

• A database. We’re using SQLite 31 for development. We’ll also describe
how to deploy with PostgreSQL,2 but you won’t need to install this on
your machine.

• Docker. You’ll need it when you reach the deployment stage. It can also
be used to isolate your development environment from your actual com-
puter.

For a development machine, that’s about all you’ll need (apart from an editor,
and we’ll talk about editors separately).

So, how do you get all this installed? It depends on your choice of development
environment. We’ll go over three common choices: Windows, macOS, and
Ubuntu Linux.

1. https://www.sqlite.org/index.html
2. https://www.postgresql.org/

report erratum • discuss

https://www.sqlite.org/index.html
https://www.postgresql.org/
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

But before you dive in, recognize that, for best results, these instructions are
meant for a fairly fresh, up-to-date, and clean machine. If this doesn’t match
your situation, consider doing your development in a Docker container.3 If
you choose to go this way, you can skip the rest of this chapter and go to
Chapter 2, Instant Gratification, on page 17.

Installing on Windows

Please Use WSL2

We recommend using WSL2 for Rails development on Windows. This will give you a
Linux environment that’s much more compatible with Rails development.

Most Rails applications are developed on MacOS machines and deployed to Linux
machines. This puts Windows developers at a disadvantage, as much of the helpful
advice you can find online won’t be geared toward you. Fortunately, Microsoft provides
three tools that will provide you with an absolutely first-class developer environment:

• Windows Subsystem for Linux (WSL)a

• Windows Terminalb

• Visual Studio Codec

With WSL2, select the latest Ubuntu version and proceed with the instructions in
Installing on Linux, on page 9.

a. https://docs.microsoft.com/en-us/windows/wsl/install
b. https://www.microsoft.com/en-us/p/windows-terminal/9n0dx20hk701
c. https://code.visualstudio.com/

The following instructions are for non-WSL2 Windows installations.

First, you need to install Ruby. We recommend using the RubyInstaller for
Windows package.4 At the time of this writing, the latest version of Ruby
available via RubyInstaller is Ruby 3.4.3. If you use RubyInstaller, be sure
to pick a version that includes Devkit. If you use a different installer, make
sure you install MSYS2 along with Ruby.

At this point, Windows Defender may intervene as it doesn’t recognize the
RubyInstaller package. If this happens, click the downloads folder icon to see
a list of downloads. Find the download, and double-click it. You may see a
screen that says, "Windows protected your PC." If so, click "More info" and
then click "Run anyway."

3. https://guides.rubyonrails.org/getting_started_with_devcontainer.html
4. http://rubyinstaller.org/downloads

Chapter 1. Installing Rails • 4

report erratum • discuss

https://docs.microsoft.com/en-us/windows/wsl/install
https://www.microsoft.com/en-us/p/windows-terminal/9n0dx20hk701
https://code.visualstudio.com/
https://guides.rubyonrails.org/getting_started_with_devcontainer.html
http://rubyinstaller.org/downloads
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Once you get past Windows Defender, installation is a snap. Choose the
"Install for me only" option and then select “I accept the License” (after reading
it carefully, of course) and then click Next. Ensure “Add Ruby executables to
your PATH” is selected, and click Install. See the following screenshot.

Next, you’ll need to select the components to be installed. Ensure that the
MSYS2 development toolchain is selected. Click Next. See the following
screenshot:

report erratum • discuss

Installing on Windows • 5

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Click Next to begin the installation. When you see the following screen, you’ll
be done with the first part of the installation. Click Finish to proceed to the
next and final part.

The next screen installs the development toolchains. Press Enter. This will
take a while and ultimately prompt you again for which tools to install. The
second time you’re prompted, again press Enter, and the window will be dis-
missed.

From the Windows start screen, you’ll launch your preferred terminal: either
the Command Prompt or PowerShell. You can also use the Windows Terminal.

Chapter 1. Installing Rails • 6

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

From there, you can verify that Ruby was installed correctly by entering the
command ruby -v as follows:

Next, configure Git, adjusting the user.name and user.email as appropriate:

> git config --global user.name "John Doe"
> git config --global user.email johndoe@example.com

With this in place, proceed to install Rails itself with the following command:

> gem install rails -v 8.0.2 --no-document

This will take a while. Once it completes, skip to Choosing a Rails Version,
on page 11, to ensure that the version of Rails you’ve installed matches the
version described in this edition. See you there.

Installing on macOS
Since macOS Sequoia ships with Ruby 2.6.10, you’ll need to download a
newer version of Ruby that works with Rails 8. The easiest way to do this is
to use Homebrew.5

Before you start, go to your Utilities folder and drag the Terminal application
onto your dock. You’ll be using this during the installation and then frequently
as a Rails developer. Open the terminal and run the following command:

$ /bin/bash -c "$(curl -fsSL \
https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"

You’ll be asked for your password and then to press Enter. Once the installa-
tion completes, it will output some next steps for you to take. At the present
time, those steps are as follows:

$ echo >> ~/.zprofile
$ echo 'eval "$(/opt/homebrew/bin/brew shellenv)"' >> ~/.zprofile
$ eval "$(/opt/homebrew/bin/brew shellenv)"

Next, you have a choice. You can let Homebrew install the latest version of
Ruby (currently Ruby 3.4.3). Or, you can install mise-en-place,6 and install the

5. https://brew.sh/
6. https://mise.jdx.dev/

report erratum • discuss

Installing on macOS • 7

https://brew.sh/
https://mise.jdx.dev/
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Ruby version of your choice, which can be important if you’re working with
a team that has standardized on a particular version of Ruby, or if you’re
working on multiple projects that require different versions of Ruby.

If you’re not sure, you can start with Homebrew and then switch to mise later
if you need to. To install Ruby with Homebrew, run the following command:

$ brew install ruby

Next, you’ll need to follow the post-installation instructions provided, which
involve adding lines to your ~/.zshrc file. (If the file doesn’t exist, create it using
touch ~/.zshrc.)

export PATH="/opt/homebrew/lib/ruby/gems/3.4.0/bin:$PATH"
export PATH="/opt/homebrew/opt/ruby/bin:$PATH"
export LDFLAGS="-L/opt/homebrew/opt/ruby/lib"
export CPPFLAGS="-I/opt/homebrew/opt/ruby/include"

Alternatively, you can install mise and use it to install Ruby 3.4.3.

$ brew install mise
$ echo 'eval "$(mise activate zsh)"' >> ~/.zshrc
$ eval "$(mise activate zsh)"

After that, you can install Ruby:

$ mise use -g ruby@3.4.3

If you’re wanting to use different versions of Ruby for different projects, you
can use the mise trust7 command to trust the .ruby-version file in the root of each
project.

These are the two most popular routes for Mac developers. rbenv,8 RVM,9

asdf,10 and chruby11 are four other alternatives.

Whichever path you take, run the following command to see which version
of Ruby you’re working with:

$ ruby -v

You should see the following type of result:

ruby 3.4.3 (2025-02-15 revision d2930f8e7a) +PRISM [arm64-darwin24]

7. https://mise.jdx.dev/cli/trust.html
8. https://github.com/rbenv/rbenv#readme
9. https://rvm.io/rvm/install
10. https://asdf-vm.com/
11. https://github.com/postmodern/chruby#readme

Chapter 1. Installing Rails • 8

report erratum • discuss

https://mise.jdx.dev/cli/trust.html
https://github.com/rbenv/rbenv#readme
https://rvm.io/rvm/install
https://asdf-vm.com/
https://github.com/postmodern/chruby#readme
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Next, run this command to update Rails to the version used by this book:

$ gem install rails -v 8.0.2 --no-document

OK, you OS X users are done. You can skip forward to join the Windows users
in Choosing a Rails Version, on page 11. See you there.

Installing on Linux
Linux has many different distributions, each having its own method of installing
software, along with various idiosyncrasies around how it behaves. It would be
too difficult to cover them all, so in this section, we’ll outline how to get a Rails
environment running on Ubuntu Linux. Most of the software we’ll install would
be needed on any Linux distribution, so if you aren’t using Ubuntu, hopefully,
this will help you know what you need to set up.

With that disclaimer out of the way, our setup will require a few different
steps. First, we’ll install some system software that the Ruby and Rails
development tools require before finally installing Ruby and Rails.

Installing System Software
The commands that follow assume you’re logged in as a user who can execute
sudo. Also, note that in this case, you may have some software installed already.
If you experience problems, you might want to update that software to the
latest versions.

Many Ruby libraries are actually wrappers for C libraries, and when you
install them, your system will try to build those libraries or build native con-
nectors. This is the main reason we need certain software installed before we
get to Ruby. First, refresh the list of packages available for your operating
system:

$ sudo apt-get update

That will produce a large amount of output. Once that’s done, we’ll install
several different libraries and tools. This is what it will look like on Ubuntu
and most Debian-based Linuxes:

$ sudo apt-get install -y \
build-essential \
git \
libsqlite3-dev \
libyaml-dev \
ruby-bundler \
ruby-dev \
tzdata

report erratum • discuss

Installing on Linux • 9

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

For AlmaLinux and most RedHat-based Linuxes, the following will get you
started:

$ sudo dnf module -y enable ruby:3.3
$ sudo dnf --enablerepo=crb install -y \

gcc \
git \
libyaml-devel \
ruby-devel \
sqlite-devel \
which

As a tip here, to avoid the need for sudo after this point, add the following to
your .bashrc:

export GEM_HOME=$HOME/.gem

Now, we can install Ruby and Rails!

Installing Ruby and Rails
At this point, your system will have Ruby installed, though it may not be the
version you need to run Rails. You need Ruby 3.2 or higher. The 3.2.3 version
that comes with Ubuntu 24.04 will do just fine.

If you want a different version of Ruby and are concerned about there being
unintended consequences to upgrading your system’s Ruby, you can use
mise-en-place12 to install Ruby in parallel to your system Ruby. This also allows
you to use many different versions of Ruby on the same computer without
disrupting the version of Ruby your system may depend on. mise is widely
used for exactly this purpose. First, install it like so:

$ curl https://mise.run | sh
$ echo 'eval "$(~/.local/bin/mise activate bash)"' >> ~/.bashrc
$ eval "$(~/.local/bin/mise activate bash)"

If you’re using another shell, consult the mise website for instructions. Next,
we’ll install Ruby 3.4.3, the latest version of Ruby 3.4 at the time of this
writing:

$ mise use -g ruby@3.4.3

With this done, you can try running ruby -v on the command line. You should
see 3.4.3 in the output.

12. https://mise.jdx.dev/

Chapter 1. Installing Rails • 10

report erratum • discuss

https://mise.jdx.dev/
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Next, we’ll install Rails itself. Rails is a RubyGem, and Ruby comes with
the command gem that installs RubyGems. We’ll use that to install Rails:

$ gem install rails -v 8.0.2 --no-document

When that completes, you can verify it worked by running rails --version. You
should see 8.0.2 in the output.

This completes the setup of Ruby and Rails. The rest of this chapter will
outline other software you might need to do development.

Choosing a Rails Version
The previous instructions helped you install the version of Rails used by
the examples in this book. But, occasionally, you might not want to run
that version. For example, a newer version with some fixes or new features
might become available. Or, perhaps, you’re developing on one machine
but intending to deploy on another machine that contains a version of
Rails that you don’t have any control over.

If either of these situations applies to you, you need to be aware of a few
things. For starters, you can use the gem command to find all the versions of
Rails you have installed:

$ gem list --local rails

You can also verify which version of Rails you’re running as the default by
using the rails --version command. It should return 8.0.2.

If it doesn’t, start by inserting the version of Rails surrounded by underscores
before the first parameter of any rails command. Here’s an example:

$ rails _8.0.2_ --version

What this will do is generate a file named Gemfile in the current directory with
the following contents:

gem "rails", "~> 8.0.2"

That strange syntax is called a twiddle-wakka,13 or (more formally) the pes-
simistic version operator, and it means that you’re asking for the latest version
of Rails that’s compatible with 8.0.2.

To upgrade, simply update the version number in the Gemfile that’s in the root
directory of your application and run bundle install. You can also pin to a specific
version of Rails by replacing the twiddle-wakka with an equals sign.

13. https://guides.rubygems.org/patterns/#semantic-versioning

report erratum • discuss

Choosing a Rails Version • 11

https://guides.rubygems.org/patterns/#semantic-versioning
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Setting Up Your Development Environment
The day-to-day business of writing Rails programs is pretty straightforward.
Everyone works differently; here’s how we work.

The Command Line
We do a lot of work at the command line. Although an increasing number of
GUI tools help generate and manage a Rails application, we find the command
line is still the most powerful place to be. It’s worth spending a little while
getting familiar with the command line on your operating system. Find out
how to use it to edit commands that you’re typing, how to search for and edit
previous commands, and how to complete the names of files and commands
as you type.

The so-called tab completion is standard on Unix shells such as bash and
zsh. It allows you to type the first few characters of a filename, hit Tab,
and have the shell look for and complete the name based on matching
files.

Version Control
We keep all our work in a version control system (currently Git). We make a
point of checking a new Rails project into Git when we create it and committing
changes once we’ve passed the tests. We normally commit to the repository
many times an hour.

If you’re not familiar with Git, don’t worry, because this book will introduce
you to the few commands that you’ll need to follow along with the application
being developed. If you ever need it, extensive documentation is available
online.14

If you’re working on a Rails project with other people, make use of the
continuous integration (CI) system that’s included with Rails 8. When anyone
checks in changes, the CI system will check out a fresh copy of the application
and run all the tests. It’s a common way to ensure that accidental breakages
get immediate attention. You can also set up your CI system so that your
customers can use it to play with the bleeding-edge version of your application.
This kind of transparency is a great way to ensure that your project isn’t going
off track.

14. https://git-scm.com/book/en/v2

Chapter 1. Installing Rails • 12

report erratum • discuss

https://git-scm.com/book/en/v2
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Editors
We write our Rails programs using a programmer’s editor. We’ve found over
the years that different editors work best with different languages and envi-
ronments. For example, Dave originally wrote this chapter using Emacs
because he thinks that its Filladapt mode is unsurpassed when it comes to
neatly formatting XML as he types. Sam updates the chapter using Vim. But
many think that neither Emacs nor Vim is ideal for Rails development.
Although the choice of editor is a personal one, here are some suggestions
for features to look for in a Rails editor:

• You’ll want support for syntax highlighting of Ruby and HTML—ideally,
support for .erb files (a Rails file format that embeds Ruby snippets within
HTML).

• Support for automatic indentation and reindentation of Ruby source. This
is more than an aesthetic feature: having an editor indent your program as
you type is the best way to spot bad nesting in your code. Being able to
reindent is important when you refactor your code and move stuff.

• Support for insertion of common Ruby and Rails constructs. You’ll be
writing lots of short methods, and if the IDE creates method skeletons with
a keystroke or two, you can concentrate on the interesting stuff inside.

• Good file navigation. As you’ll see, Rails applications are spread across
many files; for example, a newly created Rails application enters the world
containing 77 files spread across 45 directories. That’s before you’ve
written a thing.

You need an environment that helps you navigate quickly among
these. You’ll add a line to a controller to load a value, switch to the
view to add a line to display it, and then switch to the test to verify
you did it all right. Something like Notepad, where you traverse a File
Open dialog box to select each file to edit, won’t cut it. We prefer a combi-
nation of a tree view of files in a sidebar, a small set of keystrokes that help
us find a file (or files) in a directory tree by name, and some built-in smarts
that know how to navigate (say) between a controller action and the corre-
sponding view.

• Name completion. Names in Rails tend to be long. A nice editor will let
you type the first few characters and then suggest possible completions
to you at the touch of a key.

We hesitate to recommend specific editors because we’ve used only a few in
earnest, and we’ll undoubtedly leave someone’s favorite editor off the list.

report erratum • discuss

Setting Up Your Development Environment • 13

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Where’s My IDE?

If you’re coming to Ruby and Rails from languages such as C# and Java, you may
be wondering about IDEs. After all, we all know that it’s impossible to code modern
applications without at least 100 MB of IDE supporting our every keystroke. For you
enlightened ones, here’s the point in the book where we recommend you sit down—
ideally propped up on each side by a pile of framework references and 1,000-page
Made Easy books.

It may surprise you to know that most Rails developers don’t use fully-fledged IDEs
for Ruby or Rails (although some of the environments come close). Indeed, many Rails
developers use plain old editors. And it turns out that this isn’t as much of a problem
as you might think. With other, less expressive languages, programmers rely on IDEs
to do much of the grunt work for them because IDEs do code generation, assist with
navigation, and compile incrementally to give early warning of errors.

With Ruby, however, much of this support isn’t necessary. Editors such as Zed,
Neovim, and RubyMine give you 90 percent of what you’d get from an IDE but are
far lighter weight.

Nevertheless, to help you get started with something other than Notepad,
here are some suggestions:

• Visual Studio Code is a free editor built on open source that runs every-
where.15 It’s a good choice for Windows, macOS, and Linux. It has a large
number of extensions available, including a Ruby extension that provides
syntax highlighting, code completion, and debugging support. It’s the
most popular choice among Rails developers at the time of this writing.

• rails.vim is a Vim/NeoVim plugin for editing Ruby on Rails applications.16

• RubyMine is a commercial IDE for Ruby and is available for free to quali-
fied educational and open-source projects.17 It runs on Windows, macOS,
and Linux.

• Zed is a next-generation code editor designed for high-performance collab-
oration with humans and AI. It is not yet available for Windows, but it is
for macOS and Linux.18

Ask experienced developers who use your kind of operating system which
editor they use. Spend a week or so trying alternatives before settling in.

15. https://code.visualstudio.com/
16. https://github.com/tpope/vim-rails
17. http://www.jetbrains.com/ruby/features/index.html
18. https://zed.dev/

Chapter 1. Installing Rails • 14

report erratum • discuss

https://code.visualstudio.com/
https://github.com/tpope/vim-rails
http://www.jetbrains.com/ruby/features/index.html
https://zed.dev/
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

The Desktop
We’re not going to tell you how to organize your desktop while working with
Rails, but we’ll describe what we do.

Most of the time, we’re writing code, running tests, and poking at an application
in a browser. So, our main development desktop has an editor window and a
browser window that are permanently open. We also want to keep an eye on
the logging that’s generated by the application, so we keep a terminal window
open. In it, we use tail -f to scroll the contents of the log file as it’s updated. We
normally run this window with a small font, so it takes up less space. If we see
something interesting flash by, we increase the font size to investigate.

Alternatively, you can use less +F to scroll through messages. This has the
advantage of being able to exit the follow mode by pressing Ctrl-C, at which point
you can do searches by typing / followed by the string you want to search for.

Windows developers should take a look at the Windows Terminal.19

We also need access to the Rails API documentation, which we view in a
browser. In the Introduction, we talked about using the gem server command to
run a local web server containing the Rails documentation. This is convenient,
but it unfortunately splits the Rails documentation across a number of separate
documentation trees. If you’re online, you can see a consolidated view of all the
Rails documentation in one place.20

Rails and Databases
The examples in this book were written using SQLite 3 (version 3.43.2 or
thereabouts). If you want to follow along with our code, it’s probably simplest
if you use SQLite 3 as well. If you decide to use something else, it won’t be a
major problem. You may have to make minor adjustments to any explicit SQL
in our code, but Rails pretty much eliminates database-specific SQL from
applications.

If you want to connect to a database other than SQLite 3, Rails also works
with MySQL, trilogy, PostgreSQL, Oracle, SQLServer, JDBC My SQL, JDBC
Sqlite3, JDBC PostgreSQL, and just plain JDBC. For all but SQLite 3, you’ll
need to install a database driver—a library that Rails can use to connect to
and use with your database engine. This section contains links to instructions
on how to get that done.

19. https://www.microsoft.com/en-us/p/windows-terminal/9n0dx20hk701
20. http://api.rubyonrails.org/

report erratum • discuss

Rails and Databases • 15

https://www.microsoft.com/en-us/p/windows-terminal/9n0dx20hk701
http://api.rubyonrails.org/
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

The database drivers are all written in C and are primarily distributed in
source form. If you don’t want to bother building a driver from source, take
a careful look at the driver’s website. Many times, you’ll find that the author
also distributes binary versions.

If you can’t find a binary version, or if you’d rather build from source anyway,
you need a development environment on your machine to build the library.
For Windows, you need a copy of Visual C++. For Linux, you need gcc and
friends (but these will likely already be installed).

On OS X, you need to install the developer tools, which come with the operat-
ing system but aren’t installed by default. You also need to install your
database driver into the correct version of Ruby. If you installed your own
copy of Ruby, bypassing the built-in one, it’s important to have this version
of Ruby first in your path when building and installing the database driver.
You can use the which ruby command to make sure you’re not running Ruby
from /usr/bin.

The following are the available database adapters and the links to their
respective home pages:

https://rubygems.org/gems/firerubyFirebird

https://rubygems.org/search?query=jdbcJDBC

https://rubygems.org/gems/mysql2MySQL

https://rubygems.org/gems/activerecord-oracle_enhanced-adapterOracle Database

https://rubygems.org/gems/pgPostgres

https://github.com/rails-sqlserverSQL Server

https://github.com/luislavena/sqlite3-rubySQLite

https://rubygems.org/gems/trilogyTrilogy

What We Just Did
In this chapter, we installed everything you need to get you up and running:

• We installed (or upgraded) the Ruby language.
• We installed (or upgraded) the Rails framework.
• We selected an editor.
• We installed (or upgraded) the SQLite 3 database.

Now that we have Rails installed, let’s use it. It’s time to move on to the next
chapter, where you’ll create your first application.

Chapter 1. Installing Rails • 16

report erratum • discuss

https://rubygems.org/gems/fireruby
https://rubygems.org/search?query=jdbc
https://rubygems.org/gems/mysql2
https://rubygems.org/gems/activerecord-oracle_enhanced-adapter
https://rubygems.org/gems/pg
https://github.com/rails-sqlserver
https://github.com/luislavena/sqlite3-ruby
https://rubygems.org/gems/trilogy
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

CHAPTER 2

In this chapter, you'll see:
• Creating a new application
• Starting the server
• Accessing the server from a browser
• Producing dynamic content
• Adding hypertext links
• Passing data from the controller to the view
• Basic error recovery and debugging

Instant Gratification
Let’s write a simple application to verify that we have Rails snugly installed on
our machines. Along the way, you’ll get a peek at the way Rails applications work.

Creating a New Application
When you install the Rails framework, you also get a new command-line tool,
rails, that’s used to construct each new Rails application you write.

Why do we need a tool to do this? Why can’t we just hack away in our favorite
editor and create the source for our application from scratch? Well, we could
just hack. After all, a Rails application is just Ruby source code. But Rails
also does a lot of magic behind the curtain to get our applications to work
with a minimum of explicit configuration. To get this magic to work, Rails
needs to find all the various components of your application. As you’ll see
later (in Where Things Go, on page 303), this means we need to create a specific
directory structure, slotting the code we write into the appropriate places.
The rails command creates this directory structure for us and populates it
with some standard Rails code.

To create your first Rails application, pop open a shell window and navigate to
a place in your filesystem where you want to create your application’s
directory structure. In our example, we’ll be creating our projects in a direc-
tory called work. In that directory, use the rails command to create an application
called demo. Be slightly careful here—if you have an existing directory called
demo, you’ll be asked if you want to overwrite any existing files. (Note that if
you want to specify which Rails version to use, as described in Choosing a
Rails Version, on page 11, now is the time to do so.)

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

rubys> cd work
work> rails new demo
create
create README.md
create Rakefile
create .ruby-version

: : :
remove config/initializers/cors.rb
remove config/initializers/new_framework_defaults_8_0.rb

run bundle install --quiet
run bundle lock --add-platform=x86_64-linux

: : :
create db/cable_schema.rb
force config/cable.yml

work>

The command has created a directory named demo. Pop down into that
directory and list its contents (using ls on a Unix box or using dir on Windows).
You should see a bunch of files and subdirectories:

work> cd demo
demo> ls -p
Dockerfile Rakefile config.ru public/ tmp/
Gemfile app/ db/ script/ vendor/
Gemfile.lock bin/ lib/ storage/
README.md config/ log/ test/

All these directories (and the files they contain) can be intimidating to start
with, but you can ignore most of them for now. In this chapter, we’ll only use
two of them directly: the bin directory, where we’ll find the Rails executables,
and the app directory, where we’ll write our application.

Examine your installation using the following command:

demo> bin/rails about

Windows Powershell and Command Prompt users need to prefix the command
with ruby and use a backslash:

demo> ruby bin\rails about

If you get a Rails version other than 8.0.2, reread Choosing a Rails Version,
on page 11.

This command also detects common installation errors. For example, if it can’t
find a JavaScript runtime, it provides you with a link to available runtimes.

As you can see from the bin/ prefix, this is running the rails command from the
bin directory. This command is a wrapper, or binstub, for the Rails executable.
This ensures that you’re running with the correct version of every dependency.

Chapter 2. Instant Gratification • 18

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

If that doesn’t work, use bundle exec1 to run rails commands:

demo> bundle exec rails about

Once you get bin/rails about working, you have everything you need to start a
stand-alone web server that can run our newly created Rails application. So
without further ado, let’s start our demo application:

demo> bin/dev
=> Booting Puma
=> Rails 8.0.2 application starting in development
=> Run `bin/rails server --help` for more startup options
Puma starting in single mode...
* Puma version: 6.5.0 ("Sky's Version")
* Ruby version: ruby 3.4.3 (2024-12-25 revision 48d4efcb85) +YJIT +PRISM
* Min threads: 3
* Max threads: 3
* Environment: development
* PID: 43617
* Listening on http://127.0.0.1:3000
* Listening on http://[::1]:3000
Use Ctrl-C to stop

Note, if you’re using a virtual machine, you need to run Rails like so:

demo> bin/rails server -b 0.0.0.0

As the third line from the bottom of the startup tracing indicates, we started a
web server on port 3000. The 127.0.0.1 part of the address means the Puma web
server will only accept requests that originate from your machine. We can access
the application by pointing a browser at the URL http://localhost:3000. The result is
shown in the following screenshot.

Rails version: 8.0.2
Rack version: 3.1.13

Ruby version: ruby 3.4.3 (2025-04-14 revision d0b7e5b6a0) +YJIT +PRISM [arm64-
darwin24]

If you look at the window where you started the server, you can see tracing
showing that you started the application. We’re going to leave the server
running in this console window. Later, as we write application code and run

1. http://gembundler.com/v1.3/bundle_exec.html

report erratum • discuss

Creating a New Application • 19

http://localhost:3000
http://gembundler.com/v1.3/bundle_exec.html
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

it via our browser, we’ll be able to use this console window to trace the
incoming requests. When the time comes to shut down your application, you
can press Ctrl-C in this window to stop the server. (Don’t do that yet—we’ll
be using this particular application in a minute.)

If you want to enable this server to be accessed by other machines on your
network, either you’ll need to list each server you want to have access
separately or you can enable everybody to access your development server
by adding the following to config/environments/development.rb inside the Rails.application
.configure do block:

config.hosts.clear

You’ll also need to specify 0.0.0.0 as the host to bind to the following code:

demo> bin/rails server -b 0.0.0.0

At this point, we have a new application running, but it has none of our code
in it. Let’s rectify this situation.

Hello, Rails!
We can’t help it—we just have to write a Hello, World! program to try a new
system. Let’s start by creating a simple application that sends our cheery
greeting to a browser. After we get that working, we’ll embellish it with the
current time and links.

As you’ll explore further in Chapter 3, The Architecture of Rails Applications,
on page 33, Rails is a model-view-controller (MVC) framework. Rails accepts
incoming requests from a browser, decodes the request to find a controller,
and calls an action method in that controller. The controller then invokes a
particular view to display the results to the user. The good news is that Rails
takes care of most of the internal plumbing that links all these actions. To
write our Hello, World! application, we need code for a controller and a view,
and we need a route to connect the two. We don’t need code for a model,
because we’re not dealing with any data. Let’s start with the controller.

In the same way that we used the rails command to create a new Rails appli-
cation, we can also use a generator script to create a new controller for our
project. This command is rails generate. So to create a controller called say, we
make sure we are in the demo directory and run the command, passing in
the name of the controller we want to create and the names of the actions we
intend for this controller to support:

demo> bin/rails generate controller Say hello goodbye
create app/controllers/say_controller.rb

Chapter 2. Instant Gratification • 20

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

route get 'say/hello'
get 'say/goodbye'

invoke erb
create app/views/say
create app/views/say/hello.html.erb
create app/views/say/goodbye.html.erb
invoke test_unit
create test/controllers/say_controller_test.rb
invoke helper
create app/helpers/say_helper.rb
invoke test_unit

The rails generate command logs the files and directories it examines, noting
when it adds new Ruby scripts or directories to our application. For now,
we’re interested in one of these scripts and (in a minute) the .html.erb files.

The first source file we’ll be looking at is the controller. You can find it in the
app/controllers/say_controller.rb file.

Let’s take a look at it:

rails80/demo1/app/controllers/say_controller.rb
class SayController < ApplicationController

def hello
end

def goodbye
end

end

Pretty minimal, eh? SayController is a class that inherits from ApplicationController,
so it automatically gets all the default controller behavior. What does this
code have to do? For now, it does nothing—we simply have empty action
methods named hello() and goodbye(). To understand why these methods are
named this way, you need to look at the way Rails handles requests.

Rails and Request URLs
Like any other web application, a Rails application appears to its users to be
associated with a URL. When you point your browser at that URL, you’re
talking to the application code, which generates a response to you.

Let’s try it now. Navigate to the URL http://localhost:3000/say/hello in a browser.
You’ll see something that looks like the following screenshot.

Say#hello
Find me in app/views/say/hello.html.erb

report erratum • discuss

Hello, Rails! • 21

http://media.pragprog.com/titles/rails8/code/rails80%2Fdemo1%2Fapp%2Fcontrollers%2Fsay_controller.rb
http://localhost:3000/say/hello
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Our First Action
At this point, we can see not only that we’ve connected the URL to our con-
troller but also that Rails is pointing the way to our next step—namely, to tell
Rails what to display. That’s where views come in. Remember when we ran
the script to create the new controller? That command added several files
and a new directory to our application. That directory contains the template
files for the controller’s views. In our case, we created a controller named say,
so the views will be in the app/views/say directory.

By default, Rails looks for templates in a file with the same name as the action
it’s handling. In our case, that means we need to edit a file called hello.html.erb
in the app/views/say directory. (Why .html.erb? We’ll explain in a minute.) For now,
let’s put some basic HTML in there:

rails80/demo1/app/views/say/hello.html.erb
<h1>Hello from Rails!</h1>

Save the hello.html.erb file, and refresh your browser window. You should see
it display our friendly greeting, as in the following screenshot.

Hello from Rails!
In total, we’ve looked at two files in our Rails application tree. We looked at
the controller, and we modified a template to display a page in the browser.
These files live in standard locations in the Rails hierarchy: controllers go
into app/controllers, and views go into subdirectories of app/views. You can see
this structure in the following diagram.

class SayController < ApplicationController
 def hello
 end
end

<h1>Hello from Rails!</h1>

Chapter 2. Instant Gratification • 22

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdemo1%2Fapp%2Fviews%2Fsay%2Fhello.html.erb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Making It Dynamic
So far, our Rails application is boring—it just displays a static page. To make
it more dynamic, let’s have it show the current time each time it displays
the page.

To do this, we need to change the template file in the view—it now needs to
include the time as a string. That raises two questions. First, how do we add
dynamic content to a template? Second, where do we get the time from?

Dynamic Content

You can create dynamic templates in Rails in many ways. The most common
way, which we’ll use here, is to embed Ruby code in the template. That’s why
the template file is named hello.html.erb; the .html.erb suffix tells Rails to
expand the content in the file using a system called ERB.

ERB is a filter, installed as part of the Rails installation, that takes an .erb file
and outputs a transformed version. The output file is often HTML in Rails,
but it can be anything. Normal content is passed through without being
changed. However, content between <%= and %> is interpreted as Ruby code
and executed. The result of that execution is converted into a string, and that
value is substituted in the file in place of the <%=…%> sequence. For example,
change hello.html.erb to display the current time:

rails80/demo2/app/views/say/hello.html.erb
<h1>Hello from Rails!</h1>
<p>➤

It is now <%= Time.now %>➤

</p>➤

When we refresh our browser window, we see the time displayed using Ruby’s
standard format, as shown in the following screenshot.

Hello from Rails!
It is now 2025-04-20 20:32:23 -0400

Notice that the time displayed updates each time the browser window is
refreshed. It looks as if we’re really generating dynamic content.

report erratum • discuss

Hello, Rails! • 23

http://media.pragprog.com/titles/rails8/code/rails80%2Fdemo2%2Fapp%2Fviews%2Fsay%2Fhello.html.erb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Making Development Easier

You might have noticed something about the development we’ve been doing so far.
As we’ve been adding code to our application, we haven’t had to restart the running
application. It’s been happily chugging away in the background. And yet each change
we make is available whenever we access the application through a browser. What
gives?

It turns out that the Rails dispatcher is pretty clever. In development mode (as opposed
to testing or production), it automatically reloads changed application source files
when a new request comes along. That way, when we edit our application, the dis-
patcher makes sure it’s running the most recent changes. Any delays will be small
and generally unnoticeable since we’re usually dealing with only one user at a time
in development.

In testing and production, this feature is disabled because files won’t be changing,
and by not watching for file system changes, Rails can run a little faster. But in
development, it’s a real time-saver.

Adding the Time

Our original problem was to display the time to users of our application. We
now know how to make our application display dynamic data. The second
issue we have to address is working out where to get the time from.

We’ve shown that the approach of embedding a call to Ruby’s Time.now() method
in our hello.html.erb template works. Each time they access this page, users will
see the current time substituted into the body of the response. And for our
trivial application, that might be good enough. In general, though, we probably
want to do something slightly different. We’ll move the determination of the
time to be displayed into the controller and leave the view with the job of
displaying it. We’ll change our action method in the controller to set the time
value into an instance variable called @time:

rails80/demo3/app/controllers/say_controller.rb
class SayController < ApplicationController

def hello
@time = Time.now➤

end

def goodbye
end

end

In the .html.erb template, we’ll use this instance variable to substitute the time
into the output:

Chapter 2. Instant Gratification • 24

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdemo3%2Fapp%2Fcontrollers%2Fsay_controller.rb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

rails80/demo3/app/views/say/hello.html.erb
<h1>Hello from Rails!</h1>
<p>

It is now <%= @time %>➤

</p>

When we refresh our browser window, we again see the current time, showing
that the communication between the controller and the view was successful.

Why did we go to the extra trouble of setting the time to be displayed in the con-
troller and then using it in the view? Good question. In this application, it doesn’t
make much difference, but by putting the logic in the controller instead, we buy
ourselves some benefits. For example, we may want to extend our application in
the future to support users in many countries. In that case, we’d want to local-
ize the display of the time, choosing a time appropriate to the user’s time zone.
That would require a fair amount of application-level code, and it would probably
not be appropriate to embed it at the view level. By setting the time to display
in the controller, we make our application more flexible: we can change the time
zone in the controller without having to update any view using that time object.
The time is data, and it should be supplied to the view by the controller. We’ll
see a lot more of this when we introduce models into the equation.

The Story So Far

Let’s briefly review how our current application works.

1. The user navigates to our application. In our case, we do that using a
local URL such as http://localhost:3000/say/hello.

2. Rails then matches the route pattern, which it previously split into two
parts and analyzed. The say part is taken to be the name of a controller,
so Rails creates a new instance of the Ruby SayController class (which it
finds in app/controllers/say_controller.rb).

3. The next part of the pattern, hello, identifies an action. Rails invokes a method
of that name in the controller. This action method creates a new Time object
holding the current time and tucks it away in the @time instance variable.

4. Rails looks for a template to display the result. It searches the app/views
directory for a subdirectory with the same name as the controller (say) and
in that subdirectory for a file named after the action (hello.html.erb).

5. Rails processes this file through the ERB templating system, executing
any embedded Ruby and substituting in values set up by the controller.

6. The result is returned to the browser, and Rails finishes processing this
request.

report erratum • discuss

Hello, Rails! • 25

http://media.pragprog.com/titles/rails8/code/rails80%2Fdemo3%2Fapp%2Fviews%2Fsay%2Fhello.html.erb
http://localhost:3000/say/hello
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

This isn’t the whole story. Rails gives you lots of opportunities to override this
basic workflow (and we’ll be taking advantage of them shortly). As it stands, our
story illustrates convention over configuration, one of the fundamental parts of
the philosophy of Rails. Rails applications are typically written using little or no
external configuration. That’s because Rails provides convenient defaults, and
because you apply certain conventions to how a URL is constructed, which file
a controller definition is placed in, or which class name and method names are
used. Things knit themselves together in a natural way.

Linking Pages Together
It’s a rare web application that has just one page. Let’s see how we can add
another stunning example of web design to our Hello, World! application.

Normally, each page in our application will correspond to a separate view.
While we’ll also use a new action method to handle the new page, we’ll use
the same controller for both actions. This needn’t be the case, but we have
no compelling reason to use a new controller right now.

We already defined a goodbye action for this controller, so all that remains
is to update the scaffolding that was generated in the app/views/say directory.
This time the file we’ll be updating is called goodbye.html.erb because by default
templates are named after their associated actions:

rails80/demo4/app/views/say/goodbye.html.erb
<h1>Goodbye!</h1>
<p>

It was nice having you here.
</p>

Fire up your trusty browser again, but this time point to our new view using
the URL http://localhost:3000/say/goodbye. You should see something like the fol-
lowing screenshot.

Goodbye!
It was nice having you here.

Now we need to link the two screens. We’ll put a link on the hello screen that
takes us to the goodbye screen, and vice versa. In a real application, we might
want to make these proper buttons, but for now we’ll use hyperlinks.

Chapter 2. Instant Gratification • 26

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdemo4%2Fapp%2Fviews%2Fsay%2Fgoodbye.html.erb
http://localhost:3000/say/goodbye
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

We already know that Rails uses a convention to parse the URL into a target
controller and an action within that controller. So a simple approach would
be to adopt this URL convention for our links.

The hello.html.erb file would contain the following:

...
<p>

Say Goodbye!
</p>
...

And the goodbye.html.erb file would point the other way:

...
<p>

Say Hello!
</p>
...

This approach would certainly work, but it’s a bit fragile. If we were to move
our application to a different place on the web server, the URLs would no
longer be valid. It also encodes assumptions about the Rails URL format into
our code; it’s possible a future version of Rails could change that format.

Fortunately, these aren’t risks we have to take. Rails comes with a bunch of
helper methods that can be used in view templates. Here, we’ll use the link_to()
helper method, which creates a hyperlink to an action. (The link_to() method
can do a lot more than this, but let’s take it gently for now.) Using link_to(),
hello.html.erb becomes the following:

rails80/demo5/app/views/say/hello.html.erb
<h1>Hello from Rails!</h1>
<p>

It is now <%= @time %>
</p>
<p>➤

Time to say➤

<%= link_to "Goodbye", say_goodbye_path %>!➤

</p>➤

A link_to() call is within an ERB <%=…%> sequence. This creates a link to a URL
that will invoke the goodbye() action. The first parameter in the call to link_to()
is the text to be displayed in the hyperlink, and the next parameter tells Rails
to generate the link to the goodbye() action.

Let’s stop for a minute to consider how we generated the link. We wrote this:

link_to "Goodbye", say_goodbye_path

report erratum • discuss

Linking Pages Together • 27

http://media.pragprog.com/titles/rails8/code/rails80%2Fdemo5%2Fapp%2Fviews%2Fsay%2Fhello.html.erb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

First, link_to() is a method call. (In Rails, we call methods that make it easier
to write templates helpers.) If you come from a language such as Java, you
might be surprised that Ruby doesn’t insist on parentheses around method
parameters. You can always add them if you like.

say_goodbye_path is a precomputed value that Rails makes available to application
views. It evaluates to the /say/goodbye path. Over time, you’ll see that Rails
provides the ability to name all the routes that you use in your application.

Let’s get back to the application. If we point our browser at our hello page, it
now contains the link to the goodbye page, as shown in the following screenshot.

Hello from Rails!
It is now 2025-04-20 20:32:26 -0400

Time to say Goodbye!

We can make the corresponding change in goodbye.html.erb, linking it back to
the initial hello page:

rails80/demo5/app/views/say/goodbye.html.erb
<h1>Goodbye!</h1>
<p>

It was nice having you here.
</p>
<p>➤

Say <%= link_to "Hello", say_hello_path %> again.➤

</p>➤

So far, we’ve just done things that should work, and—unsurprisingly—they’ve
worked. But the true test of the developer friendliness of a framework is how
it responds when things go wrong. As we’ve not invested much time into this
code yet, now is a perfect time to try to break things.

When Things Go Wrong
Let’s start by introducing a typo in the source code—one that perhaps is
introduced by a misfiring autocorrect function in your favorite editor:

rails80/demo5/app/controllers/say_controller.rb
class SayController < ApplicationController

def hello
@time = Time.know

end

def goodbye
end

end

Chapter 2. Instant Gratification • 28

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdemo5%2Fapp%2Fviews%2Fsay%2Fgoodbye.html.erb
http://media.pragprog.com/titles/rails8/code/rails80%2Fdemo5%2Fapp%2Fcontrollers%2Fsay_controller.rb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8
http://localhost:3003/say/goodbye

Refresh the following page in your browser: http://localhost:3000/say/hello. You
should see something like the following screenshot.

NoMethodError in SayController#hello
undefined method 'know' for class Time
Did you mean?

now

Extracted source (around line #3):

1
2
3
4
5
6

class SayController < ApplicationController
 def hello
 @time = Time.know
 end

 def goodbye

Rails.root: /Users/rubys/git/awdwr8/work

Application Trace | Framework Trace | Full Trace
app/controllers/say_controller.rb:3:in 'SayController#hello'

>>

x

What you see is that Ruby tells you about the error (“undefined method
‘know’”), and Rails shows you the extracted source where the code can be
found (Rails.root), the stack traceback, and request parameters (at the moment,
None). It also provides the ability to toggle the display of session and environ-
ment dumps.

You’ll even see a suggestion: “Did you mean? now.” What a nice touch.

At the bottom of the window you see an area consisting of black text on a
white background, looking much like a command-line prompt. This is the
Rails web console. You can use it to try out suggestions and evaluate
expressions. Let’s try it out, as shown in the following screenshot.

All in all, helpful stuff.

Note that for security reasons, the web console is configured to only be shown
when accessed from the same machine that the web server is running on. If
you’re running on a different machine, you’ll need to adjust the configuration

report erratum • discuss

When Things Go Wrong • 29

http://localhost:3000/say/hello
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

to see this. For example, to enable the web console to be seen by all, add the
following to config/environments/development.rb and restart your server:

config.web_console.whitelisted_ips = %w(0.0.0.0/0 ::/0)

At this point, we have only broken the code. Now, let’s break the other thing
we have used so far: the URL. Visit the following page in your browser:
http://localhost:3000/say/hullo. You should see something like the following
screenshot.

Routing Error

No route matches [GET] "/say/hullo"
Rails.root: /Users/rubys/git/awdwr8/work

Application Trace | Framework Trace | Full Trace

Routes

Routes match in priority from top to bottom

Helper (Path /
Url)

HTTP
Verb Path Controller#Ac

tion
Source
Location

Search

>>

x

This is similar to what we saw before, but in place of source code we see a
list of possible routes, how they can be accessed, and the controller action
they’re associated with. We’ll explain this later in detail, but for now look at
the Path Match input field. If you enter a partial URL in there, you can see a
list of routes that match. That’s not needed right now, as we have only two
routes, but can be helpful later when we have many.

At this point, we’ve completed our toy application and in the process verified
that our installation of Rails is functioning properly and provides helpful
information when things go wrong. After a brief recap, it’s now time to move
on to building a real application.

What We Just Did
We constructed a toy application that showed you the following:

• How to create a new Rails application and how to create a new controller
in that application

• How to create dynamic content in the controller and display it via the
view template

Chapter 2. Instant Gratification • 30

report erratum • discuss

http://localhost:3000/say/hullo
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

• How to link pages together

• How to debug problems in the code or the URL

This is a great foundation, and it didn’t take much time or effort. This experi-
ence will continue as we move on to the next chapter and build a much bigger
application.

Playtime
Here’s some stuff to try on your own:

• Experiment with the following expressions:
– Addition: <%= 1+2 %>
– Concatenation: <%= "cow" + "boy" %>
– Time in one hour: <%= 1.hour.from_now.localtime %>

• A call to the following Ruby method returns a list of all the files in the
current directory:

@files = Dir.glob('*')

Use it to set an instance variable in a controller action, and then write the
corresponding template that displays the filenames in a list on the browser.

Hint—you can iterate over a collection using something like this:

<% @files.each do |file| %>
file name is: <%= file %>

<% end %>

Note that the first and last lines of this loop use <% without an equal sign.
This causes the code embedded in these markers to be executed without
inserting the results returned into the output.

You might want to use a for the list.

Cleaning Up
Maybe you’ve been following along and writing the code in this chapter. If so,
chances are that the application is still running on your computer. When we
start coding our next application in Chapter 6, Task A: Creating the Application,
on page 65, we’ll get a conflict the first time we run it because it’ll also try to use
the computer’s port 3000 to talk with the browser. Now is a good time to stop the
current application by pressing Ctrl-C in the window you used to start it.
Microsoft Windows users may need to press Ctrl-Pause/Break instead.

Now let’s move on to an overview of Rails.

report erratum • discuss

When Things Go Wrong • 31

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

CHAPTER 3

In this chapter, you'll see:
• Models
• Views
• Controllers

The Architecture of Rails Applications
One of the interesting features of Rails is it imposes some fairly serious con-
straints on how you structure your web applications. Surprisingly, these
constraints make it easier to create applications—a lot easier. Let’s see why.

Models, Views, and Controllers
Back in 1979, Trygve Reenskaug came up with a new architecture for devel-
oping interactive applications. In his design, applications were broken into
three types of components: models, views, and controllers.

The model is responsible for maintaining the state of the application. Some-
times this state is transient, lasting for just a couple of interactions with the
user. Sometimes the state is permanent and is stored outside the application,
often in a database.

A model is more than data; it enforces all the business rules that apply to
that data. For example, if a discount shouldn’t be applied to orders of less than
$20, the model enforces the constraint. This makes sense; by putting the
implementation of these business rules in the model, we make sure that
nothing else in the application can make our data invalid. The model acts as
both a gatekeeper and a data store.

The view is responsible for generating a user interface, normally based on data
in the model. For example, an online store has a list of products to be displayed
on a catalog screen. This list is accessible via the model, but it’s a view that
formats the list for the end user. Although the view might present the user with
various ways of inputting data, the view itself never handles incoming data.
The view’s work is done once the data is displayed. There may well be many
views that access the same model data, often for different purposes. The online

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

store has a view that displays product information on a catalog page and
another set of views used by administrators to add and edit products.

Controllers orchestrate the application. Controllers receive events from the
outside world (normally, user input), interact with the model, and display an
appropriate view to the user.

This triumvirate—the model, view, and controller—together form an architec-
ture known as MVC. To learn how the three concepts fit together, see the
following figure.

Database

Controller

View Model

 Browser sends request
 Controller interacts with model
 Controller invokes view
 View renders next browser screen

The MVC architecture was originally intended for conventional GUI applica-
tions, where developers found that the separation of concerns led to far less
coupling, which in turn made the code easier to write and maintain. Each
concept or action was expressed in a single, well-known place. Using MVC
was like constructing a skyscraper with the girders already in place—it was
a lot easier to hang the rest of the pieces with a structure already there.
During the development of our application, we’ll make heavy use of Rails’
ability to generate scaffolding for our application.

Ruby on Rails is an MVC framework too. Rails enforces a structure for your
application: you develop models, views, and controllers as separate chunks
of functionality, and it knits them together as your program executes. One of
the joys of Rails is that this knitting process is based on the use of intelligent
defaults so that you typically don’t need to write any external configuration
metadata to make it all work. This is an example of the Rails philosophy of
favoring convention over configuration.

In a Rails application, an incoming request is first sent to a router, which
works out where in the application the request should be sent and how the
request should be parsed. Ultimately, this phase identifies a particular method
(called an action in Rails parlance) somewhere in the controller code. The
action might look at data in the request, it might interact with the model, and

Chapter 3. The Architecture of Rails Applications • 34

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

it might cause other actions to be invoked. Eventually the action prepares
information for the view, which renders something to the user.

Rails handles an incoming request as shown in the following figure. In this
example, the application has previously displayed a product catalog page,
and the user has just clicked the Add to Cart button next to one of the prod-
ucts. This button posts to http://localhost:3000/line_items?product_id=2, where line_items
is a resource in the application and 2 is the internal ID for the selected product.

Database

 http://my.url/line_items?product_id=2

 Controller interacts with model
 Controller invokes view
 View renders next browser screenLine Items

Controller

Routing

Active
Record
Model

Line Items
View

The routing component receives the incoming request and immediately picks
it apart. The request contains a path (/line_items?product_id=2) and a method (this
button does a POST operation; other common methods are GET, PUT, PATCH, and
DELETE). In this simple case, Rails takes the first part of the path, line_items, as
the name of the controller and the product_id as the ID of a product. By conven-
tion, POST methods are associated with create() actions. As a result of all this
analysis, the router knows it has to invoke the create() method in the LineItems
Controller controller class (we’ll talk about naming conventions in Naming
Conventions, on page 311).

The create() method handles user requests. In this case, it finds the current
user’s shopping cart (which is an object managed by the model). It also asks
the model to find the information for product 2. It then tells the shopping
cart to add that product to itself. (See how the model is being used to keep
track of all the business data? The controller tells it what to do, and the
model knows how to do it.)

Now that the cart includes the new product, we can show it to the user. The
controller invokes the view code, but before it does, it arranges things so that
the view has access to the cart object from the model. In Rails, this invocation
is often implicit; again, conventions help link a particular view with a given action.

That’s all there is to an MVC web application. By following a set of conventions
and partitioning your functionality appropriately, you’ll discover that your

report erratum • discuss

Models, Views, and Controllers • 35

http://localhost:3000/line_items?product_id=2
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

code becomes easier to work with and your application becomes easier to
extend and maintain. That seems like a good trade.

If MVC is simply a question of partitioning your code a particular way, you
might be wondering why you need a framework such as Ruby on Rails. The
answer is straightforward: Rails handles all of the low-level housekeeping for
you—all those messy details that take so long to handle by yourself—and
lets you concentrate on your application’s core functionality. Let’s see how.

Rails Model Support
In general, we want our web applications to keep their information in a
relational database. Order-entry systems will store orders, line items, and
customer details in database tables. Even applications that normally use
unstructured text, such as weblogs and news sites, often use databases as
their back-end data store.

Although it might not be immediately apparent from the database queries
you’ve seen so far, relational databases are designed around mathematical
set theory. This is good from a conceptual point of view, but it makes it difficult
to combine relational databases with object-oriented (OO) programming lan-
guages. Objects are all about data and operations, and databases are all
about sets of values. Operations that are easy to express in relational terms
are sometimes difficult to code in an OO system. The reverse is also true.

Over time, folks have worked out ways of reconciling the relational and OO
views of their corporate data. Let’s look at the way that Rails chooses to map
relational data onto objects.

Object-Relational Mapping
Object-relational mapping (ORM) libraries map database tables to classes. If
a database has a table called orders, our program will have a class named Order.
Rows in this table correspond to objects of the class—a particular order is
represented as an object of the Order class. Within that object, attributes are
used to get and set the individual columns. Our Order object has methods to
get and set the amount, the sales tax, and so on.

In addition, the Rails classes that wrap our database tables provide a set of
class-level methods that perform table-level operations. For example, we might
need to find the order with a particular ID. This is implemented as a class
method that returns the corresponding Order object. In Ruby code, that might
look like this:

Chapter 3. The Architecture of Rails Applications • 36

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

order = Order.find(1)
puts "Customer #{order.customer_id}, amount=$#{order.amount}"

Sometimes these class-level methods return collections of objects:

Order.where(name: 'dave').each do |order|
puts order.amount

end

Finally, the objects corresponding to individual rows in a table have methods
that operate on that row. Probably the most widely used is save(), the opera-
tion that saves the row to the database:

Order.where(name: 'dave').each do |order|
order.pay_type = "Purchase order"
order.save

end

So an ORM layer maps tables to classes, rows to objects, and columns to
attributes of those objects. Class methods are used to perform table-level
operations, and instance methods perform operations on the individual rows.

In a typical ORM library, you supply configuration data to specify the
mappings between entities in the database and entities in the program.
Programmers using these ORM tools often find themselves creating and
maintaining a boatload of XML configuration files.

Active Record
Active Record is the ORM layer supplied with Rails. It closely follows the
standard ORM model: tables map to classes, rows to objects, and columns
to object attributes. It differs from most other ORM libraries in the way it’s
configured. By relying on convention and starting with sensible defaults,
Active Record minimizes the amount of configuration that developers perform.

To show this, here’s a program that uses Active Record to wrap our orders table:

require 'active_record'

ActiveRecord::Base.establish_connection({
adapter: 'sqlite3',
database: 'storage/development.sqlite3'

})

class Order < ActiveRecord::Base
end

order = Order.find(1)
order.pay_type = "Purchase order"
order.save

report erratum • discuss

Rails Model Support • 37

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

This code uses the new Order class to fetch the order with an id of 1 and modify
the pay_type. Active Record relieves us of the hassles of dealing with the
underlying database, leaving us free to work on business logic.

But Active Record does more than that. As you’ll see when we develop our
shopping cart application, starting in Chapter 5, The Depot Application, on
page 59, Active Record integrates seamlessly with the rest of the Rails
framework. If a web form sends the application data related to a business
object, Active Record can extract it into our model. Active Record supports
sophisticated validation of model data, and if the form data fails validations,
the Rails views can extract and format errors.

Active Record is the solid model foundation of the Rails MVC architecture.

Active Storage
Active Storage is a library that makes it easy to upload files to cloud storage
services like Amazon S3, Google Cloud Storage, and Microsoft Azure Storage.
It also provides a disk service for development and testing.

While Active Record is great for storing data in a database, Active Storage is
great for storing files. Active Storage is designed to work with Active Record
models, so you can associate files with records in your database. For example,
you can attach an image to a product record in your database.

class Product < ApplicationRecord
has_one_attached :image

end

Once defined this way, you can access images attached to a product class
even though the image data is stored in a separate table. Active Storage takes
care of the details of storing and retrieving the file:

product = Product.first
product.image.attach(io: File.open('/path/to/image.jpg'), filename: 'image.jpg')
puts product.image.filename
puts product.image.byte_size
puts product.image.url
puts product.image.content_type
contents = product.image.download

Active Storage also provides methods for resizing images, attaching metadata,
and generating URLs for the files. Sample usage:

puts product.image.url
puts product.image.content_type

As you can see, Active Storage complements Active Record.

Chapter 3. The Architecture of Rails Applications • 38

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Action Pack: The View and Controller
When you think about it, the view and controller parts of MVC are pretty
intimate. The controller supplies data to the view, and the controller receives
events from the pages generated by the views. Because of these interactions,
support for views and controllers in Rails is bundled into a single component,
Action Pack.

Don’t be fooled into thinking that your application’s view code and controller
code will be jumbled up because Action Pack is a single component. Quite
the contrary—Rails gives you the separation you need to write web applications
with clearly demarcated code for control and presentation logic.

View Support
In Rails, the view is responsible for creating all or part of a response to be
displayed in a browser, to be processed by an application, or to be sent as an
email. At its simplest, a view is a chunk of HTML code that displays some
fixed text. More typically, you’ll want to include dynamic content created by
the action method in the controller.

In Rails, dynamic content is generated by templates, which come in three
flavors. The most common templating scheme, called Embedded Ruby (ERB),
embeds snippets of Ruby code within a view document, in many ways similar
to the way it’s done in other web frameworks, such as PHP or JavaServer
Pages (JSP). Although this approach is flexible, some are concerned that it
violates the spirit of MVC. By embedding code in the view, we risk adding
logic that should be in the model or the controller. As with everything, while
judicious use in moderation is healthy, overuse can become a problem.
Maintaining a clean separation of concerns is part of the developer’s job.

You can also use ERB to construct HTML fragments on the server that can
then be used by the browser to perform partial page updates. This is great
for creating dynamic Hotwire interfaces. We talk about these starting in Iter-
ation F2: Creating a Hotwired Cart, on page 150.

Rails also provides libraries to construct XML or JSON documents using Ruby
code. The structure of the generated XML or JSON automatically follows the
structure of the code.

And the Controller!
The Rails controller is the logical center of your application. It coordinates
the interaction among the user, the views, and the model. However, Rails

report erratum • discuss

Action Pack: The View and Controller • 39

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

handles most of this interaction behind the scenes; the code you write con-
centrates on application-level functionality. This makes Rails controller code
remarkably easy to develop and maintain.

The controller is also home to a number of important ancillary services:

• It’s responsible for routing external requests to internal actions. It handles
people-friendly URLs extremely well.

• It manages caching, which can give applications orders-of-magnitude
performance boosts.

• It manages helper modules, which extend the capabilities of the view
templates without bulking up their code.

• It manages sessions, giving users the impression of ongoing interaction
with our applications.

We’ve already seen and modified a controller in Hello, Rails!, on page 20, and
we’ll be seeing and modifying a number of controllers in the development of
a sample application, starting with the products controller in Iteration C1:
Creating the Catalog Listing, on page 101.

There’s a lot to Rails. But before going any further, let’s have a brief refresher—
and for some of you, a brief introduction—to the Ruby language.

Chapter 3. The Architecture of Rails Applications • 40

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

CHAPTER 4

In this chapter, you'll see:
• Objects: names and methods
• Data: strings, arrays, hashes, and regular expressions
• Control: if, while, blocks, iterators, and exceptions
• Building blocks: classes and modules
• YAML and marshaling
• Common idioms that you’ll see used in this book

Introduction to Ruby
Many people who are new to Rails are also new to Ruby. If you’re familiar
with a language such as Java, JavaScript, PHP, Perl, or Python, you’ll find
Ruby pretty easy to pick up.

This chapter isn’t a complete introduction to Ruby. It doesn’t cover topics
such as precedence rules (as in most other programming languages, 1+2*3==7
in Ruby). It’s only meant to explain enough Ruby that the examples in the
book make sense.

This chapter draws heavily from material in Programming Ruby 3.3 [Tho24].
If you think you need more background on the Ruby language (and at the
risk of being grossly self-serving), we’d like to suggest that the best way to
learn Ruby and the best reference for Ruby’s classes, modules, and libraries
is Programming Ruby 3.3 [Tho24] (also known as the PickAxe book). Welcome
to the Ruby community!

Ruby Is an Object-Oriented Language
Everything you manipulate in Ruby is an object, and the results of those
manipulations are themselves objects.

When you write object-oriented code, you’re normally looking to model con-
cepts from the real world. Typically, during this modeling process you discover
categories of things that need to be represented. In an online store, the concept
of a line item could be such a category. In Ruby, you’d define a class to rep-
resent each of these categories. You then use this class as a kind of factory
that generates objects—instances of that class. An object is a combination of
state (for example, the quantity and the product ID) and methods that use
that state (perhaps a method to calculate the line item’s total cost). We’ll show
how to create classes in Classes, on page 50.

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

You create objects by calling a constructor, a special method associated with
a class. The standard constructor is called new(). Given a class called LineItem,
you could create line item objects as follows:

line_item_one = LineItem.new
line_item_one.quantity = 1
line_item_one.sku = "AUTO_B_00"

You invoke methods by sending a message to an object. The message contains
the method’s name along with any parameters the method may need. When
an object receives a message, it looks into its own class for a corresponding
method. Let’s look at some method calls:

"dave".length
line_item_one.quantity()
cart.add_line_item(next_purchase)
submit_tag "Add to Cart"

Parentheses are generally optional in method calls. In Rails applications,
you’ll find that most method calls involved in larger expressions have paren-
theses, while those that look more like commands or declarations tend not
to have them.

Methods have names, as do many other constructs in Ruby. Names in Ruby
have special rules—rules that you may not have seen if you come to Ruby from
another language.

Ruby Names
Local variables, method parameters, and method names should all start with
a lowercase letter or with an underscore: order, line_item, and xr2000 are all valid.
Instance variables begin with an at (@) sign—for example, @quantity and
@product_id. The Ruby convention is to use underscores to separate words in
a multiword method or variable name (so line_item is preferable to lineItem).

Class names, module names, and constants must start with an uppercase
letter. By convention they use capitalization, rather than underscores, to
distinguish the start of words within the name. Class names look like Object,
PurchaseOrder, and LineItem.

Rails uses symbols to identify things. In particular, it uses them as keys when
naming method parameters and looking things up in hashes. Here’s an example:

redirect_to :action => "edit", :id => params[:id]

As you can see, a symbol looks like a variable name, but it’s prefixed with a
colon. Examples of symbols include :action, :line_items, and :id. You can think of

Chapter 4. Introduction to Ruby • 42

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

symbols as string literals magically made into constants. Alternatively, you
can consider the colon to mean thing named, so :id is the thing named id.

Now that we’ve used a few methods, let’s move on to how they’re defined.

Methods
Let’s write a method that returns a cheery, personalized greeting. We’ll invoke
that method a couple of times:

def say_goodnight(name)
result = "Good night, " + name
return result

end

Time for bed...
puts say_goodnight("Mary-Ellen") # => "Goodnight, Mary-Ellen"
puts say_goodnight("John-Boy") # => "Goodnight, John-Boy"

Having defined the method, we call it twice. In both cases, we pass the result
to the puts() method, which outputs to the console its argument followed by a
newline (moving on to the next line of output).

You don’t need a semicolon at the end of a statement as long as you put each
statement on a separate line. Ruby comments start with a # character and
run to the end of the line. Indentation isn’t significant. (But two-character
indentation is the de facto Ruby standard.)

Ruby doesn’t use braces to delimit the bodies of compound statements and
definitions (such as methods and classes). Instead, you simply finish the body
with the end keyword. The return keyword is optional, and if it’s not present,
the results of the last expression evaluated are returned.

Data Types
While everything in Ruby is an object, some of the data types in Ruby have
special syntax support, in particular for defining literal values. In the preceding
examples, we used some simple strings and even string concatenation.

Strings
The previous example also showed some Ruby string objects. One way to create
a string object is to use string literals, which are sequences of characters between
single or double quotation marks. The difference between the two forms is the
amount of processing Ruby does on the string while constructing the literal.
In the single-quoted case, Ruby does very little. With only a few exceptions,
what you type into the single-quoted string literal becomes the string’s value.

report erratum • discuss

Data Types • 43

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

With double-quotes, Ruby does more work. It looks for substitutions—sequences
that start with a backslash character—and replaces them with a binary value.
The most common of these is \n, which is replaced with a newline character. When
you write a string containing a newline to the console, the \n forces a line break.

Then, Ruby performs expression interpolation in double-quoted strings. In
the string, the sequence #{expression} is replaced by the value of expression. We
could use this to rewrite our previous method:

def say_goodnight(name)
"Good night, #{name.capitalize}"

end
puts say_goodnight("pa")

When Ruby constructs this string object, it looks at the current value of name
and substitutes it into the string. Arbitrarily complex expressions are allowed
in the #{…} construct. Here we invoked the capitalize() method, defined for all
strings, to output our parameter with a leading uppercase letter.

Strings are a fairly primitive data type that contain an ordered collection
of bytes or characters. Ruby also provides means for defining collections of
arbitrary objects via arrays and hashes.

Arrays and Hashes
Ruby’s arrays and hashes are indexed collections. Both store collections of
objects, accessible using a key. With arrays, the key is an integer, whereas
hashes support any object as a key. Both arrays and hashes grow as needed
to hold new elements. It’s more efficient to access array elements, but hashes
provide more flexibility. Any particular array or hash can hold objects of dif-
fering types; you can have an array containing an integer, a string, and a
floating-point number, for example.

You can create and initialize a new array object by using an array literal—a
set of elements between square brackets. Given an array object, you can
access individual elements by supplying an index between square brackets,
as the next example shows. Ruby array indices start at zero:

a = [1, "cat", 3.14] # array with three elements
a[0] # access the first element (1)
a[2] = nil # set the third element

array now [1, "cat", nil]

You may have noticed that we used the special value nil in this example. In
many languages, the concept of nil (or null) means no object. In Ruby, that’s
not the case; nil is an object, like any other, that happens to represent nothing.

Chapter 4. Introduction to Ruby • 44

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

The <<() method is often used with arrays. It appends a single value to its
receiver:

ages = []
for person in @people

ages << person.age
end

Ruby has a shortcut for creating an array of words:

a = ['ant', 'bee', 'cat', 'dog', 'elk']
this is the same:
a = %w[ant bee cat dog elk]

Ruby hashes are similar to arrays. A hash literal uses braces rather than
square brackets. The literal must supply two objects for every entry: one for
the key, the other for the value. For example, you may want to map musical
instruments to their orchestral sections:

inst_section = {
:cello => "string",
:clarinet => "woodwind",
:drum => "percussion",
:oboe => "woodwind",
:trumpet => "brass",
:violin => "string"

}

The thing to the left of the => is the key, and that on the right is the corre-
sponding value. Keys in a particular hash must be unique; if you have two
entries for :drum, the last one will win. The keys and values in a hash can be
arbitrary objects: you can have hashes in which the values are arrays, other
hashes, and so on. In Rails, hashes typically use symbols as keys. Many
Rails hashes have been subtly modified so you can use either a string or a
symbol interchangeably as a key when inserting and looking up values.

The use of symbols as hash keys is so commonplace that Ruby has a special
syntax for it, saving both keystrokes and eyestrain:

inst_section = {
cello: "string",
clarinet: "woodwind",
drum: "percussion",
oboe: "woodwind",
trumpet: "brass",
violin: "string"

}

Doesn’t that look much better?

report erratum • discuss

Data Types • 45

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Feel free to use whichever syntax you like. You can even intermix usages in
a single expression. Obviously, you’ll need to use the arrow syntax whenever
the key is not a symbol. One other thing to watch out for—if the value is a
symbol, you’ll need to have at least one space between the colons or else you’ll
get a syntax error:

inst_section = {
cello: :string,
clarinet: :woodwind,
drum: :percussion,
oboe: :woodwind,
trumpet: :brass,
violin: :string

}

Hashes are indexed using the same square bracket notation as arrays:

inst_section[:oboe] #=> :woodwind
inst_section[:cello] #=> :string
inst_section[:bassoon] #=> nil

As the preceding example shows, a hash returns nil when indexed by a key it
doesn’t contain. Normally this is convenient because nil means false when
used in conditional expressions.

You can pass hashes as parameters on method calls. Ruby allows you to omit
the braces but only if the hash is the last parameter of the call. Rails makes
extensive use of this feature. The following code fragment shows a two-element
hash being passed to the redirect_to() method. Note that this is the same syntax
that Ruby uses for keyword arguments:

redirect_to action: "show", id: product.id

One more data type is worth mentioning: the regular expression.

Regular Expressions
A regular expression lets you specify a pattern of characters to be matched
in a string. In Ruby, you typically create a regular expression by writing /pattern/
or %r{pattern}.

For example, we can use the regular expression /Perl|Python/ to write a pattern
that matches a string containing the text Perl or the text Python.

The forward slashes delimit the pattern, which consists of the two things
that we’re matching, separated by a vertical bar (|). The bar character means
either the thing on the left or the thing on the right—in this case, either
Perl or Python. You can use parentheses within patterns, just as you can

Chapter 4. Introduction to Ruby • 46

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

in arithmetic expressions, so we could also write this pattern as /P(erl|ython)/.
Programs typically use the =~ match operator to test strings against regular
expressions:

if line =~ /P(erl|ython)/
puts "There seems to be another scripting language here"

end

You can specify repetition within patterns. /ab+c/ matches a string containing
an a followed by one or more bs, followed by a c. Change the plus to an
asterisk, and /ab*c/ creates a regular expression that matches one a, zero or
more bs, and one c.

Backward slashes start special sequences; most notably, \d matches any
digit, \s matches any whitespace character, and \w matches any alphanumeric
(word) character, \A matches the start of the string and \z matches the end of
the string. A backslash before a wildcard character, for example \., causes the
character to be matched as is.

Ruby’s regular expressions are a deep and complex subject; this section
barely skims the surface. See the PickAxe book for a full discussion.

This book will make only light use of regular expressions.

With that brief introduction to data, let’s move on to logic.

Logic
Method calls are statements. Ruby also provides a number of ways to make
decisions that affect the repetition and order in which methods are invoked.

Control Structures
Ruby has all the usual control structures, such as if statements and while
loops. Java, C, and Perl programmers may well get caught by the lack of
braces around the bodies of these statements. Instead, Ruby uses the end
keyword to signify the end of a body:

if count > 10
puts "Try again"

elsif tries == 3
puts "You lose"

else
puts "Enter a number"

end

report erratum • discuss

Logic • 47

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Similarly, while statements are terminated with end:

while weight < 100 and num_pallets <= 30
pallet = next_pallet()
weight += pallet.weight
num_pallets += 1

end

Ruby also contains variants of these statements. unless is like if, except that
it checks for the condition to not be true. Similarly, until is like while, except
that the loop continues until the condition evaluates to be true.

Ruby statement modifiers are a useful shortcut if the body of an if, unless, while,
or until statement is a single expression. Simply write the expression, followed
by the modifier keyword and the condition:

puts "Danger, Will Robinson" if radiation > 3000
distance = distance * 1.2 while distance < 100

Although if statements are fairly common in Ruby applications, newcomers
to the Ruby language are often surprised to find that looping constructs are
rarely used. Blocks and iterators often take their place.

Blocks and Iterators
Code blocks are chunks of code between braces or between do…end. A common
convention is that people use braces for single-line blocks and do/end for
multiline blocks:

{ puts "Hello" } # this is a block

do ###
club.enroll(person) # and so is this
person.socialize #

end ###

To pass a block to a method, place the block after the parameters (if any) to
the method. In other words, put the start of the block at the end of the source
line containing the method call. For example, in the following code, the block
containing puts "Hi" is associated with the call to the greet() method:

greet { puts "Hi" }

If a method call has parameters, they appear before the block:

verbose_greet("Dave", "loyal customer") { puts "Hi" }

A method can invoke an associated block one or more times by using the
Ruby yield statement. You can think of yield as being something like a method
call that calls out to the block associated with the method containing the yield.

Chapter 4. Introduction to Ruby • 48

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

You can pass values to the block by giving parameters to yield. Within the
block, you list the names of the arguments to receive these parameters between
vertical bars (|).

Code blocks appear throughout Ruby applications. Often they’re used in
conjunction with iterators—methods that return successive elements from
some kind of collection, such as an array:

animals = %w[ant bee cat dog elk] # create an array
animals.each {|animal| puts animal } # iterate over the contents

Each integer N implements a times() method, which invokes an associated
block N times:

3.times { print "Ho! " } #=> Ho! Ho! Ho!

The & prefix operator allows a method to capture a passed block as a named
parameter:

def wrap &b
print "Santa says: "
3.times(&b)
print "\n"

end
wrap { print "Ho! " }

Within a block, or a method, control is sequential except when an exception
occurs.

Exceptions
Exceptions are objects of the Exception class or its subclasses. The raise method
causes an exception to be raised. This interrupts the normal flow through
the code. Instead, Ruby searches back through the call stack for code that
says it can handle this exception.

Both methods and blocks of code wrapped between begin and end keywords
intercept certain classes of exceptions using rescue clauses:

begin
content = load_blog_data(file_name)

rescue BlogDataNotFound
STDERR.puts "File #{file_name} not found"

rescue BlogDataFormatError
STDERR.puts "Invalid blog data in #{file_name}"

rescue Exception => exc
STDERR.puts "General error loading #{file_name}: #{exc.message}"

end

report erratum • discuss

Logic • 49

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

rescue clauses can be directly placed on the outermost level of a method defi-
nition without needing to enclose the contents in a begin/end block.

That concludes our brief introduction to control flow. At this point you have
the basic building blocks for creating larger structures.

Organizing Structures
Ruby has two basic concepts for organizing methods: classes and modules.
We cover each in turn.

Classes
Here’s a Ruby class definition:

class Order < ApplicationRecordLine 1

has_many :line_items-

def self.find_all_unpaid-

self.where("paid = 0")-

end5

def total-

sum = 0-

line_items.each {|li| sum += li.total}-

sum-

end10

end-

Class definitions start with the class keyword and are followed by the class
name (which must start with an uppercase letter). This Order class is defined
to be a subclass of the ApplicationRecord class.

Rails makes heavy use of class-level declarations. Here, has_many is a method
that’s defined by Active Record. It’s called as the Order class is being defined.
Normally these kinds of methods make assertions about the class, so in this
book we call them declarations.

Within a class body, you can define class methods and instance methods.
Prefixing a method name with self. (as we do on line 3) makes it a class method;
it can be called on the class generally. In this case, we can make the following
call anywhere in our application:

to_collect = Order.find_all_unpaid

Objects of a class hold their state in instance variables. These variables, whose
names all start with @, are available to all the instance methods of a class.
Each object gets its own set of instance variables.

Chapter 4. Introduction to Ruby • 50

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Instance variables aren’t directly accessible outside the class. To make them
available, write methods that return their values:

class Greeter
def initialize(name)

@name = name
end

def name
@name

end

def name=(new_name)
@name = new_name

end
end

g = Greeter.new("Barney")
g.name # => Barney
g.name = "Betty"
g.name # => Betty

Ruby provides convenience methods that write these accessor methods for
you (which is great news for folks tired of writing all those getters and setters):

class Greeter
attr_accessor :name # create reader and writer methods
attr_reader :greeting # create reader only
attr_writer :age # create writer only

end

A class’s instance methods are public by default; anyone can call them. You’ll
probably want to override this for methods that are intended to be used only
by other instance methods:

class MyClass
def m1 # this method is public
end
protected
def m2 # this method is protected
end
private
def m3 # this method is private
end

end

The private directive is the strictest; private methods can be called only from
within the same instance. Protected methods can be called both in the same
instance and by other instances of the same class and its subclasses.

Classes aren’t the only organizing structure in Ruby. The other organizing
structure is a module.

report erratum • discuss

Organizing Structures • 51

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Modules
Modules are similar to classes in that they hold a collection of methods,
constants, and other module and class definitions. Unlike with classes, you
can’t create objects based on modules.

Modules serve two purposes. First, they act as a namespace, letting you define
methods whose names won’t clash with those defined elsewhere. Second,
they allow you to share functionality among classes. If a class mixes in a
module, that module’s methods become available as if they’d been defined
in the class. Multiple classes can mix in the same module, sharing the
module’s functionality without using inheritance. You can also mix multi-
ple modules into a single class.

Helper methods are an example of where Rails uses modules. Rails automat-
ically mixes these helper modules into the appropriate view templates. For
example, if you wanted to write a helper method that’s callable from views
invoked by the store controller, you could define the following module in the
store_helper.rb file in the app/helpers directory:

module StoreHelper
def capitalize_words(string)

string.split(" ").map {|word| word.capitalize}.join(" ")
end

end

One module that’s part of the standard library of Ruby deserves special
mention, given its usage in Rails: YAML.

YAML
YAML1 is a recursive acronym that stands for YAML Ain’t Markup Language. In
the context of Rails, YAML is used as a convenient way to define the configuration
of things such as databases, test data, and translations. Here’s an example:

development:
adapter: sqlite3
database: storage/development.sqlite3
pool: 5
timeout: 5000

In YAML, indentation is important, so this defines development as having a set
of four key-value pairs, separated by colons. While YAML is one way to repre-
sent data, particularly when interacting with humans, Ruby provides a more
general way for representing data for use by applications.

1. http://www.yaml.org/

Chapter 4. Introduction to Ruby • 52

report erratum • discuss

http://www.yaml.org/
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Marshaling Objects
Ruby can take an object and convert it into a stream of bytes that can be stored
outside the application. This process is called marshaling. This saved object
can later be read by another instance of the application (or by a totally separate
application), and a copy of the originally saved object can be reconstituted.

Two potential issues arise when you use marshaling. First, some objects can’t
be dumped. If the objects to be dumped include bindings, procedure or method
objects, instances of the IO class, or singleton objects—or if you try to dump
anonymous classes or modules—a TypeError will be raised.

Second, when you load a marshaled object, Ruby needs to know the definition
of the class of that object (and of all the objects it contains).

Rails uses marshaling to store session data. If you rely on Rails to dynamically
load classes, it’s possible that a particular class may not have been defined
at the point it reconstitutes session data. For that reason, use the model
declaration in your controller to list all models that are marshaled. This
preemptively loads the necessary classes to make marshaling work.

Now that you have the Ruby basics down, let’s give what we learned a whirl
with a slightly larger, annotated example that pulls together a number of
concepts. We’ll follow that with a walk-through of special features that will
help you with your Rails coding.

Pulling It All Together
Let’s look at an example of how Rails applies a number of Ruby features
together to make the code you need to maintain more declarative. You’ll see
this example again in Generating the Scaffold, on page 66. For now, we’ll
focus on the Ruby-language aspects of the example:

class CreateProducts < ActiveRecord::Migration[8.0]
def change

create_table :products do |t|
t.string :title
t.text :description
t.decimal :price, precision: 8, scale: 2

t.timestamps
end

end
end

report erratum • discuss

Marshaling Objects • 53

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Even if you didn’t know any Ruby, you’d probably be able to decipher that
this code creates a table named products. The fields defined when this table is
created include title, description, and price, as well as a few timestamps. We’ll
describe these in Chapter 23, Migrations, on page 407.

Now let’s look at the same example from a Ruby perspective. We define a class
named CreateProducts, which inherits from the versioned2 Migration class from
the ActiveRecord module, specifying that compatibility with Rails 8 is desired.
We define one method, named change(). This method calls the create_table()
method (defined in ActiveRecord::Migration), passing it the name of the table in
the form of a symbol.

The call to create_table() also passes a block that is to be evaluated before the
table is created. This block, when called, is passed an object named t, which
is used to accumulate a list of fields. Rails defines a number of methods on
this object—methods named after common data types. These methods, when
called, simply add a field definition to the ever-accumulating set of names.

The definition of decimal also accepts a number of optional parameters,
expressed as a hash.

To someone new to Ruby, this is a lot of heavy machinery thrown at solving
such a simple problem. To someone familiar with Ruby, none of this
machinery is particularly heavy. In any case, Rails makes extensive use of
the facilities provided by Ruby to make defining operations (for example,
migration tasks) as simple and as declarative as possible. Even small features
of the language, such as optional parentheses and braces, contribute to the
overall readability and ease of authoring.

Finally, a number of small features—or, rather, idiomatic combinations of
features—are often not immediately obvious to people new to the Ruby lan-
guage. We close this chapter with them.

Ruby Idioms
A number of individual Ruby features can be combined in interesting ways.
We use these common Ruby idioms in this book:

2. http://blog.bigbinary.com/2016/03/01/migrations-are-versioned-in-rails-5.html

Chapter 4. Introduction to Ruby • 54

report erratum • discuss

http://blog.bigbinary.com/2016/03/01/migrations-are-versioned-in-rails-5.html
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Methods such as empty! and empty?
Ruby method names can end with an exclamation mark (a bang method)
or a question mark (a predicate method). Bang methods normally do
something destructive to the receiver. Predicate methods return true or
false, depending on some condition.

a || b
The expression a || b evaluates a. If it isn’t false or nil, then evaluation stops
and the expression returns a. Otherwise, the statement returns b. This
is a common way of returning a default value if the first value hasn’t
been set.

a ||= b
The assignment statement supports a set of shortcuts: a op= b is the same
as a = a op b. This works for most operators:

count += 1 # same as count = count + 1
price *= discount # price = price * discount
count ||= 0 # count = count || 0

So, count ||= 0 gives count the value 0 if count is nil or false.

obj = self.new
Sometimes a class method needs to create an instance of that class:

class Person < ApplicationRecord
def self.for_dave

Person.new(name: "Dave")
end

end

This works fine, returning a new Person object. But later, someone might
subclass our class:

class Employee < Person
..

end

dave = Employee.for_dave # returns a Person

The for_dave() method was hardwired to return a Person object, so that’s
what’s returned by Employee.for_dave. Using self.new instead returns a new
object of the receiver’s class, Employee.

report erratum • discuss

Ruby Idioms • 55

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

lambda
The lambda operator converts a block into an object of type Proc. An alter-
native syntax, introduced in Ruby 1.9, is ->. As a matter of style, the Rails
team prefers the latter syntax. You can see example usages of this operator
in Scopes, on page 332.

require File.expand_path("../../config/environment", __FILE__)
Ruby’s require method loads an external source file into our application.
This is used to include library code and classes that our application relies
on. In normal use, Ruby finds these files by searching in a list of directo-
ries, the LOAD_PATH.

Sometimes we need to be specific about which file to include. We can do
that by giving require a full filesystem path. The problem is, we don’t know
what that path will be—our users could install our code anywhere.

Wherever our application ends up getting installed, the relative path
between the file doing the requiring and the target file will be the same.
Knowing this, we can construct the absolute path to the target by using
the File.expand_path() method, passing in the relative path to the target file,
and passing the absolute path to the file doing the requiring (available in
the special __FILE__ variable).

In addition, the web has many good resources that show Ruby idioms and
Ruby gotchas. Here are a few of them:

• http://www.ruby-lang.org/en/documentation/ruby-from-other-languages/
• http://en.wikipedia.org/wiki/Ruby_programming_language
• https://www.zenspider.com/ruby/quickref.html

By this point, you have a firm foundation to build on. You’ve installed Rails,
verified that you have things working with a simple application, read a brief
description of what Rails is, and reviewed (or for some of you, learned for the
first time) the basics of the Ruby language. Now it’s time to put this knowledge
in place to build a larger application.

Chapter 4. Introduction to Ruby • 56

report erratum • discuss

http://www.ruby-lang.org/en/documentation/ruby-from-other-languages/
http://en.wikipedia.org/wiki/Ruby_programming_language
https://www.zenspider.com/ruby/quickref.html
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Part II

Building an Application

CHAPTER 5

In this chapter, you'll see:
• Incremental development
• Use cases, page flow, and data
• Priorities

The Depot Application
We could mess around all day hacking together simple test applications, but
that won’t help us pay the bills. So let’s sink our teeth into something
meatier. Let’s create a web-based shopping cart application called Depot.

Does the world need another shopping cart application? Nope, but that hasn’t
stopped hundreds of developers from writing one. Why should we be different?

More seriously, it turns out that our shopping cart will illustrate many of the
features of Rails development. You’ll see how to create maintenance pages,
link database tables, handle sessions, create forms, and wrangle modern
JavaScript. Over the next twelve chapters, we’ll also touch on peripheral
topics such as unit and system testing, security, and page layout.

Incremental Development
We’ll be developing this application incrementally. We won’t attempt to spec-
ify everything before we start coding. Instead, we’ll work out enough of a
specification to let us start and then immediately create some functionality.
We’ll try ideas, gather feedback, and continue with another cycle of mini
design and development.

This style of coding isn’t always applicable. It requires close cooperation with
the application’s users because we want to gather feedback as we go along.
We might make mistakes, or the client might ask for one thing at first and
later want something different. It doesn’t matter what the reason is. The ear-
lier we discover we’ve made a mistake, the less expensive it’ll be to fix that
mistake. All in all, with this style of development, there’s a lot of change as
we go along.

Because of this, we need to use a toolset that doesn’t penalize us for changing
our minds. If we decide we need to add a new column to a database table or

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

change the navigation among pages, we need to be able to get in there and
do it without a bunch of coding or configuration hassle. As you’ll see, Ruby
on Rails shines when it comes to dealing with change. It’s an ideal agile pro-
gramming environment.

Along the way, we’ll be building and maintaining a corpus of tests. These
tests will ensure that the application is always doing what we intend to do.
Not only does Rails enable the creation of such tests but it even provides you
with an initial set of tests each time you define a new controller.

On with the application.

What Depot Does
Let’s start by jotting down an outline specification for the Depot application.
We’ll look at the high-level use cases and sketch out the flow through the web
pages. We’ll also try working out what data the application needs (acknowl-
edging that our initial guesses will likely be wrong).

Use Cases
A use case is simply a statement about how some entity uses a system.
Consultants invent these kinds of phrases to label things we’ve known all
along. (It’s a perversion of business life that fancy words always cost more
than plain ones, even though the plain ones are more valuable.)

Depot’s use cases are simple (some would say tragically so). We start off by
identifying two different roles or actors: the buyer and the seller.

The buyer uses Depot to browse the products we have to sell, select some to
purchase, and supply the information needed to create an order.

The seller uses Depot to maintain a list of products to sell, to determine the
orders that are awaiting shipment, and to mark orders as shipped. (The seller
also uses Depot to make scads of money and retire to a tropical island, but
that’s the subject of another book.)

For now, that’s all the detail we need. We could go into excruciating detail about
what it means to maintain products and what constitutes an order ready to
ship, but why bother? If some details aren’t obvious, we’ll discover them soon
enough as we reveal successive iterations of our work to the customer.

Speaking of getting feedback, let’s get some right now. Let’s make sure our
initial (admittedly sketchy) use cases are on the mark by asking our users.
Assuming the use cases pass muster, let’s work out how the application will
work from the perspectives of its various users.

Chapter 5. The Depot Application • 60

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Page Flow
We always like to have an idea of the main pages in our applications and to
understand roughly how users navigate among them. This early in the
development, these page flows are likely to be incomplete, but they still help
us focus on what needs doing and know how actions are sequenced.

Some folks like to use Photoshop, Word, or (shudder) HTML to mock up web
application page flows. We like using a pencil and paper. It’s quicker, and the
customer gets to play too, grabbing the pencil and scribbling alterations right
on the paper.

The first sketch of the buyer flow is shown in the following figure.

It’s pretty traditional. The buyer sees a catalog page, from which he selects
one product at a time. Each product selected gets added to the cart, and the
cart is displayed after each selection. The buyer can continue shopping using
the catalog pages or check out and buy the contents of the cart. During
checkout, we capture contact and payment details and then display a receipt
page. We don’t yet know how we’re going to handle payment, so those details
are fairly vague in the flow.

report erratum • discuss

What Depot Does • 61

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

The seller flow, shown in the following figure, is also fairly basic. After logging
in, the seller sees a menu letting her create or view a product or ship existing
orders. When viewing a product, the seller can optionally edit the product
information or delete the product entirely.

The shipping option is simplistic. It displays each order that hasn’t yet been
shipped, one order per page. The seller can choose to skip to the next or can
ship the order, using the information from the page as appropriate.

The shipping function is clearly not going to survive long in the real world,
but shipping is also one of those areas where reality is often stranger than
you might think. Overspecify it up front, and we’re likely to get it wrong. For
now, let’s leave it as it is, confident that we can change it as the user gains
experience using our application.

Data
Finally, we need to think about the data we’re going to be working with.

Notice that we’re not using words such as schema or classes here. We’re also
not talking about databases, tables, keys, and the like. We’re talking about data.
At this stage in the development, we don’t know if we’ll even be using a database.

Based on the use cases and the flows, it seems likely that we’ll be working with
the data shown in the figure on page 63. Again, using pencil and paper seems
a whole lot easier than some fancy tool, but use whatever works for you.

Chapter 5. The Depot Application • 62

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Working on the data diagram raised a couple of questions. As the user buys
items, we’ll need somewhere to keep the list of products they bought, so we
added a cart. But apart from its use as a transient place to keep this product
list, the cart seems to be something of a ghost—we couldn’t find anything
meaningful to store in it. To reflect this uncertainty, we put a question mark
inside the cart’s box in the diagram. We’re assuming this uncertainty will get
resolved as we implement Depot.

Coming up with the high-level data also raised the question of what information
should go into an order. Again, we chose to leave this fairly open for now. We’ll
refine this further as we start showing our early iterations to the customer.

General Recovery Advice

Everything in this book has been tested. If you follow along with this scenario precisely,
using the recommended version of Rails and SQLite 3 on Linux, MacOS, or Windows,
everything should work as described. However, deviations from this path can occur.
Typos happen to the best of us, and not only are side explorations possible, but
they’re positively encouraged. Be aware that this might lead you to strange places.
Don’t be afraid: specific recovery actions for common problems appear in the spe-
cific sections where such problems often occur. A few additional general suggestions
are included here.

You should only ever need to restart the server in the few places where doing so is
noted in the book. But if you ever get truly stumped, restarting the server might be
worth trying.

A “magic” command worth knowing, explained in detail in Part III, is bin/rails
db:migrate:redo. It’ll undo and reapply the last migration.

If your server won’t accept some input on a form, refresh the form on your browser
and resubmit it.

report erratum • discuss

What Depot Does • 63

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Finally, you might have noticed that we’ve duplicated the product’s price in
the line item data. Here we’re breaking the “initially, keep it simple” rule
slightly, but it’s a transgression based on experience. If the price of a product
changes, that price change shouldn’t be reflected in the line item price of
currently open orders, so each line item needs to reflect the price of the
product at the time the order was made.

Again, at this point we’ll double-check with the customer that we’re still on
the right track. (The customer was most likely sitting in the room with us
while we drew these three diagrams.)

Let’s Code
So after sitting down with the customer and doing some preliminary analysis,
we’re ready to start using a computer for development! We’ll be working from
our original three diagrams, but the chances are pretty good that we’ll be
throwing them away fairly quickly—they’ll become outdated as we gather
feedback. Interestingly, that’s why we didn’t spend too long on them; it’s
easier to throw something away if you didn’t spend a long time creating it.

In the chapters that follow, we’ll start developing the application based on
our current understanding. However, before we turn that page, we have to
answer one more question: what should we do first?

We like to work with the customer so we can jointly agree on priorities. In
this case, we’d point out to her that it’s hard to develop anything else until
we have some basic products defined in the system, so we suggest spending
a couple of hours getting the initial version of the product maintenance
functionality up and running. And, of course, the client would agree.

Chapter 5. The Depot Application • 64

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

CHAPTER 6

In this chapter, you'll see:
• Creating a new application
• Installing Active Storage
• Configuring the database
• Adding seed data
• Creating models and controllers
• Updating a view
• Running tests
• Making pages update automatically

Task A: Creating the Application
Our first development task is to create the web interface that lets us maintain
our product information—create new products, edit existing products, delete
unwanted ones, and so on. We’ll develop this application in small iterations,
where “small” means measured in minutes. Typically, our iterations involve
multiple steps, as in iteration C, which has steps C1, C2, C3, and so on. In
this case, the iteration has two steps.

Let’s get started.

Iteration A1: Creating the Product Maintenance
Application
At the heart of the Depot application is a database. Getting this installed
and configured and tested before proceeding will prevent a lot of headaches.
If you’re not certain about what you want, take the defaults, and it will go
easily. If you know what you want, Rails makes it easy for you to describe
your configuration.

For this project, let’s make use of the Tailwind CSS1 framework, which enables
you to make pretty websites without authoring any CSS. We’ll do so by
specifying an additional option when we create our application, and as you’ll
shortly see it will also affect how we start our server during development.

Creating a Rails Application
In Creating a New Application, on page 17, you saw how to create a new Rails
application. We’ll do the same thing here. Go to a command prompt and type
rails new followed by the name of our project, and then add the option to make

1. https://tailwindcss.com/

report erratum • discuss

https://tailwindcss.com/
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

use of the Tailwind CSS framework. Here, our project is called depot, so make
sure you’re not inside an existing application directory, and type this:

work> rails new depot --css tailwind

We see a bunch of output scroll by. When it has finished, we find that a new
directory, depot, has been created. That’s where we’ll be doing our work:

work> cd depot
depot> ls -p
Dockerfile README.md config/ log/ test/
Gemfile Rakefile config.ru public/ tmp/
Gemfile.lock app/ db/ script/ vendor/
Procfile.dev bin/ lib/ storage/

Of course, Windows users need to use dir /w instead of ls -p.

Creating the Database
For this application, we’ll use the open source SQLite database (which you’ll
need if you’re following along with the code). We’re using SQLite version 3 here.

SQLite 3 is the default database for Rails development and was installed along
with Rails in Chapter 1, Installing Rails, on page 3. With SQLite 3, no steps
are required to create a database, and we have no special user accounts or
passwords to deal with. So now you get to experience one of the benefits of
going with the flow (or, convention over configuration, as the Rails folks
say...ad nauseam).

If it’s important to you to use a database server other than SQLite 3, the
commands to create the database and grant permissions will be different.
You can find some helpful hints in the database configuration section of
Configuring Rails Applications in the Ruby on Rails Guides.2

Generating the Scaffold
Back in our initial guess at application data on page 63, we sketched out the
basic content of the products table. Now let’s turn that into reality. We need to
create a database table and a Rails model that lets our application use that
table, a number of views to make up the user interface, and a controller to
orchestrate the application.

So let’s create the model, views, controller, and migration for our products table.
With Rails, you can do all that with one command by asking Rails to generate
a scaffold for a given model. Note that on the command line that follows, we

2. http://guides.rubyonrails.org/configuring.html#configuring-a-database

Chapter 6. Task A: Creating the Application • 66

report erratum • discuss

http://guides.rubyonrails.org/configuring.html#configuring-a-database
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

use the singular form, Product. In Rails, a model is automatically mapped to a
database table whose name is the plural form of the model’s class. In our
case, we ask for a model called Product, so Rails associates it with the table
called products. (And how will it find that table? The development entry in
config/database.yml tells Rails where to look for it. For SQLite 3 users, this’ll be
a file in the storage directory.)

Note that the command is too wide to fit comfortably on the page. To enter a
command on multiple lines, put a backslash as the last character on all but
the last line, and you’ll be prompted for more input. Windows users need to
substitute a caret (^) for the backslash at the end of the first line and a
backslash for the forward slash in bin/rails:

depot> bin/rails generate scaffold Product \
title:string description:text image:attachment price:decimal

invoke active_record
create db/migrate/20250420000001_create_products.rb
create app/models/product.rb
invoke test_unit
create test/models/product_test.rb
create test/fixtures/products.yml
invoke resource_route
route resources :products

invoke scaffold_controller
create app/controllers/products_controller.rb
invoke tailwindcss
create app/views/products
create app/views/products/index.html.erb
create app/views/products/edit.html.erb
create app/views/products/show.html.erb
create app/views/products/new.html.erb
create app/views/products/_form.html.erb
create app/views/products/_product.html.erb
invoke resource_route
invoke test_unit
create test/controllers/products_controller_test.rb
create test/system/products_test.rb
invoke helper
create app/helpers/products_helper.rb
invoke test_unit
invoke jbuilder
create app/views/products/index.json.jbuilder
create app/views/products/show.json.jbuilder
create app/views/products/_product.json.jbuilder

The generator creates a bunch of files. The one we’re interested in first is the
migration one, namely, 20250420000001_create_products.rb.

report erratum • discuss

Iteration A1: Creating the Product Maintenance Application • 67

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

A migration represents a change we either want to make to a database as a
whole or to the data contained within the database, and it’s expressed in a source
file in database-independent terms. These changes can update both the data-
base schema and the data in the database tables. We apply these migrations
to update our database, and we can unapply them to roll our database back.
We have a whole section on migrations starting in Chapter 23, Migrations, on
page 407. For now, we’ll just use them without too much more comment.

The migration has a UTC-based timestamp prefix (20250420000001), a name
(create_products), and a file extension (.rb, because it’s Ruby code).

The timestamp prefix that you see will be different. In fact, the timestamps
used in this book are clearly fictitious. Typically, your timestamps won’t be
consecutive; instead, they’ll reflect the time the migration was created.

Applying the Migration
Although we’ve already told Rails about the basic data types of each property,
let’s refine the definition of the price to have eight digits of significance and
two digits after the decimal point:

rails80/depot_a/db/migrate/20250420000001_create_products.rb
class CreateProducts < ActiveRecord::Migration[8.0]

def change
create_table :products do |t|
t.string :title
t.text :description
t.decimal :price, precision: 8, scale: 2➤

t.timestamps
end

end
end

Since we’ve defined an attachment, we need to install the tables that Active
Storage uses to track the attachments. This only needs to be done once per
database. We do this by running the following command:

depot> bin/rails active_storage:install
Copied migration 20250420000002_create_active_storage_tables.active_storage.rb

from active_storage_attachments

Now that we’re done with our changes, we need to get Rails to apply this
migration to our development database. We do this by using the bin/rails
db:migrate command:

Chapter 6. Task A: Creating the Application • 68

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_a%2Fdb%2Fmigrate%2F20250420000001_create_products.rb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

depot> bin/rails db:migrate
== 20250420000001 CreateProducts: migrating ===================================
-- create_table(:products)

-> 0.0025s
== 20250420000001 CreateProducts: migrated (0.0025s) ==========================

== 20250420000002 CreateActiveStorageTables: migrating ========================
-- create_table(:active_storage_blobs, {:id=>:primary_key})

-> 0.0065s
-- create_table(:active_storage_attachments, {:id=>:primary_key})

-> 0.0270s
-- create_table(:active_storage_variant_records, {:id=>:primary_key})

-> 0.0113s
== 20250420000002 CreateActiveStorageTables: migrated (0.0451s) ===============

And that’s it. Rails looks for all the migrations not yet applied to the database
and applies them. In our case, the products table is added to the database defined
by the development section of the database.yml file, and three tables are created for
Active Storage to use.

OK, all the groundwork has been done. We set up our Depot application as a
Rails project. We created the development database and configured our appli-
cation to be able to connect to it. We created a products controller and a Product
model and used a migration to create the corresponding products table. And a
number of views have been created for us. It’s time to see all this in action.

Seeing the List of Products
With four commands, we’ve created an application and a database (or a table
inside an existing database if you chose something else besides SQLite 3) and
installed Active Storage. Before we worry too much about what happened
behind the scenes here, let’s try our shiny new application.

We mentioned previously that using a CSS processor will affect how we start
our server during development. This is because things like CSS processors
and JavaScript bundlers require a build step. Rather than requiring you to
start multiple processes, Rails provides bin/dev, which is a small script that
will start everything:

depot> bin/dev
Installing foreman...
Fetching foreman-0.88.1.gem
Successfully installed foreman-0.88.1
Parsing documentation for foreman-0.88.1
Installing ri documentation for foreman-0.88.1
Done installing documentation for foreman after 0 seconds
1 gem installed
08:43:51 web.1 | started with pid 31227

report erratum • discuss

Iteration A1: Creating the Product Maintenance Application • 69

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

08:43:51 css.1 | started with pid 31228
08:43:52 web.1 | => Booting Puma
08:43:52 web.1 | => Rails 8.0.2 application starting in development
08:43:52 web.1 | => Run `bin/rails server --help` for more startup options
08:43:52 web.1 | Puma starting in single mode...
08:43:52 web.1 | * Puma version: 6.5.0 ("Sky's Version")
08:43:52 web.1 | * Ruby version: ruby 3.4.3 (2024-12-25 revision 48d4efcb85)
08:43:52 web.1 | * Min threads: 3
08:43:52 web.1 | * Max threads: 3
08:43:52 web.1 | * Environment: development
08:43:52 web.1 | * PID: 31227
08:43:52 web.1 | * Listening on http://127.0.0.1:3000
08:43:52 web.1 | * Listening on http://[::1]:3000
08:43:52 web.1 | Use Ctrl-C to stop
08:43:52 css.1 |
08:43:52 css.1 | Rebuilding...
08:43:53 css.1 |
08:43:53 css.1 | Done in 228ms.

Note that in some environments, you may need sudo to install foreman. If so,
run sudo gem install foreman and rerun the bin/dev command. Windows Powershell
and Command Prompt users will need to run the command ruby bin\dev.

If you examine that output, in addtion to the lines containing web.1 that show
the Rails server starting, you see lines containing css.1 that show the CSS
rebuilding. This is all controlled by a file named Procfile.dev:

rails80/depot_a/Procfile.dev
web: bin/rails server
css: bin/rails tailwindcss:watch

Feel free to modify this file to suit your needs. For example, if you’re using a
virtual machine, you might need to add -b 0.0.0.0 to the rails server line to accept
connections from your host.

As with our demo application on page 17, this command starts a web server
on our local host, port 3000. If you get an error saying Address already in use when
you try to run the server, that means you already have a Rails server running
on your machine. If you’ve been following along with the examples in the book,
that might well be the Hello, World! application from Chapter 4. Find its console
and kill the server using Ctrl-C . If you’re running on Windows, you might see
the prompt Terminate batch job (Y/N)?. If so, respond with y.

Let’s connect to our application. Remember, the URL we give to our browser is
http://localhost:3000/products, which has both the port number (3000) and the name
of the controller in lowercase (products). The application looks like the screenshot
shown on page 71.

Chapter 6. Task A: Creating the Application • 70

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_a%2FProcfile.dev
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Products New product

No products found.

That’s pretty boring. It’s showing us an empty list of products. Let’s add some.
Click the New Product link. A form should appear, as shown in the following
screenshot.

New product
Title

Description

Image

Choose File No file chosen

Price

Create Product Back to products

These forms are simply HTML templates, like the ones you created in Hello,
Rails!, on page 20. In fact, we can modify them. Let’s change the number of
rows in the Description field and limit the acceptable files to select for upload
to images:

rails80/depot_a/app/views/products/_form.html.erb
<%= form_with(model: product, class: "contents") do |form| %>

<% if product.errors.any? %>
<div id="error_explanation"
class="bg-red-50 text-red-500 px-3 py-2 font-medium rounded-md mt-3">
<h2><%= pluralize(product.errors.count, "error") %>
prohibited this product from being saved:</h2>

<ul class="list-disc ml-6">
<% product.errors.each do |error| %>

<%= error.full_message %>
<% end %>

</div>

<% end %>

<div class="my-5">
<%= form.label :title %>
<%= form.text_field :title, class:
["block shadow-sm rounded-md border px-3 py-2 mt-2 w-full",
{"border-gray-400 focus:outline-blue-600": product.errors[:title].none?",
"border-red-400 focus:outline-red-600": product.errors[:title].any?}] %>

</div>

report erratum • discuss

Iteration A1: Creating the Product Maintenance Application • 71

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_a%2Fapp%2Fviews%2Fproducts%2F_form.html.erb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8
http://localhost:3003/products
http://localhost:3003/products/new

<div class="my-5">
<%= form.label :description %>
<%= form.textarea :description, rows: 10, class:➤

["block shadow-sm rounded-md border px-3 py-2 mt-2 w-full",➤

{"border-gray-400 focus:outline-blue-600":➤

product.errors[:description].none?",➤

"border-red-400 focus:outline-red-600":➤

product.errors[:description].any?}] %>➤

</div>

<div class="my-5">
<%= form.label :image %>
<%= form.file_field :image, accept: "image/*", class:➤

["block shadow-sm rounded-md border px-3 py-2 mt-2 w-full",➤

{"border-gray-400 focus:outline-blue-600": product.errors[:image].none?",➤

"border-red-400 focus:outline-red-600": product.errors[:image].any?}] %>➤

</div>

<div class="my-5">
<%= form.label :price %>
<%= form.text_field :price, class:
["block shadow-sm rounded-md border px-3 py-2 mt-2 w-full",
{"border-gray-400 focus:outline-blue-600": product.errors[:price].none?",
"border-red-400 focus:outline-red-600": product.errors[:price].any?}] %>

</div>

<div class="inline">
<%= form.submit class: "w-full sm:w-auto rounded-md px-3.5 py-2.5

bg-blue-600 hover:bg-blue-500 text-white inline-block
font-medium cursor-pointer" %>

</div>
<% end %>

We’ll explore this more in Chapter 8, Task C: Catalog Display, on page 101.
But for now, we’ve adjusted two fields to taste, so let’s fill them in, as shown
in screenshot on page 73. (Note the use of HTML tags in the description—–this
is intentional and will make more sense later.)

Now we need some files to upload. Create a directory named db/images in your
application, and download the images there.3

Fill in the fields, select a file, and click the Create button, and you should see
that the new product was successfully created. If you now click the Back link,
you should see the new product in the list, as shown in the screenshot on
page 73.

Perhaps it isn’t the prettiest interface, but it works, and we can show it to
our client for approval. She can play with the other links (showing details,

3. https://media.pragprog.com/titles/rails8/code/rails80/depot_a/db/images/

Chapter 6. Task A: Creating the Application • 72

report erratum • discuss

https://media.pragprog.com/titles/rails8/code/rails80/depot_a/db/images/
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

New product
Title

Programming Ruby 3.3 (5th Edition)

Description

<p>

The Pragmatic Programmers' Guide

Ruby is one of the most important programming languages in use for web

development. It powers the Rails framework, which is the backing of some of the most

important sites on the web. The Pickaxe Book, named for the tool on the cover, is the

definitive reference on Ruby, a highly-regarded, fully object-oriented programming

language. This updated edition is a comprehensive reference on the language itself,

with a tutorial on the most important features of Ruby—including pattern matching and

Ractors—and describes the language through Ruby 3.3.

</p>

Image

Choose File ruby5.jpg

Price

33.95

Create Product Back to products

Products New product

Title:

Programming Ruby 3.3 (5th Edition)

Description:

<p> The Pragmatic Programmers' Guide Ruby is one of the

most important programming languages in use for web development. It

powers the Rails framework, which is the backing of some of the most

important sites on the web. The Pickaxe Book, named for the tool on the

cover, is the definitive reference on Ruby, a highly-regarded, fully object-

oriented programming language. This updated edition is a

comprehensive reference on the language itself, with a tutorial on the

most important features of Ruby—including pattern matching and

Ractors—and describes the language through Ruby 3.3. </p>

Image:

ruby5.jpg

Price:

33.95

Show Edit Destroy

report erratum • discuss

Iteration A1: Creating the Product Maintenance Application • 73

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8
http://localhost:3003/products
http://localhost:3003/products/new
http://localhost:3003/rails/active_storage/blobs/redirect/eyJfcmFpbHMiOnsiZGF0YSI6MSwicHVyIjoiYmxvYl9pZCJ9fQ==--9920ebdfa2669b643869067551c8b52c580bbd4e/ruby5.jpg
http://localhost:3003/products/1
http://localhost:3003/products/1/edit

editing existing products, and so on). We explain to her that this is only a
first step—we know it’s rough, but we wanted to get her feedback early. (And
five commands probably count as early in anyone’s book.)

Note that if you’ve used a database other than SQLite 3, this step may have
failed. Check your config/database.ym file.

Iteration A2: Making Prettier Listings
Our customer has one more request. (Customers always seem to have one
more request, don’t they?) The listing of all the products is ugly. Can we
pretty it up a bit? And while we’re in there, can we also display the product
image instead of just the image file name?

We’re faced with a dilemma here. As developers, we’re trained to respond to
these kinds of requests with a sharp intake of breath, a knowing shake of the
head, and a murmured, “You want what?” At the same time, we also like to
show off a bit. In the end, the fact that it’s fun to make these kinds of changes
using Rails wins out, and we fire up our trusty editor.

Before we get too far, though, it would be nice if we had a consistent set of
test data to work with. We could use our scaffold-generated interface and
type data in from the browser. However, if we did this, future developers
working on our codebase would have to do the same. And if we were working
as part of a team on this project, each member of the team would have to
enter his or her own data. It would be nice if we could load the data into
our table in a more controlled way. It turns out that we can. Rails has the
ability to import seed data.

To start, we modify the file in the db directory named seeds.rb.

In this file, we add the code to populate the products table. This uses the create!()
method of the Product model. The following is an extract from that file. Rather
than type the file by hand, you might want to download the file from the sample
code available online.4

Be warned: this seeds.rb script removes existing data from the products table
before loading the new data. You might not want to run it if you’ve just spent
several hours typing your own data into your application!

rails80/depot_a/db/seeds.rb
Product.delete_all
. . .
product = Product.create(title: 'Rails Scales!',

4. https://media.pragprog.com/titles/rails8/code/rails80/depot_a/db/seeds.rb

Chapter 6. Task A: Creating the Application • 74

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_a%2Fdb%2Fseeds.rb
https://media.pragprog.com/titles/rails8/code/rails80/depot_a/db/seeds.rb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

description:
%(<p>
Practical Techniques for Performance and Growth
Rails doesn’t scale. So say the naysayers. They’re wrong. Ruby on Rails
runs some of the biggest sites in the world, impacting the lives of
millions of users while efficiently crunching petabytes of data. This
book reveals how they do it, and how you can apply the same techniques
to your applications. Optimize everything necessary to make an
application function at scale: monitoring, product design, Ruby code,
software architecture, database access, caching, and more. Even if your
app may never have millions of users, you reduce the costs of hosting
and maintaining it.

</p>),
price: 30.95)

product.image.attach(io: File.open(
Rails.root.join('db', 'images', 'cprpo.jpg')),
filename: 'cprpo.jpg')

product.save!
. . .

This code starts by deleting all the existing products from the database. It
then creates a new set of products, attaches an image to each one, and saves
the record. The save!() method is used to save the record to the database. If
there’s an error, it’ll raise an exception.

Note that this code uses %(…). This is an alternative syntax for double-quoted
string literals, convenient for use with long strings.

To populate your products table with test data, run the following command:

depot> bin/rails db:seed

Now let’s get the product listing tidied up. Normally this would require multiple
steps: creating a CSS style sheet, linking that style sheet to your HTML, defining
a set of style rules within the new style sheet, connecting these rules to the page
by defining an HTML class attribute on the page, and changing the HTML to
make styling the page easier.

Fortunately, we installed Tailwind CSS support, which is ideal for rapid
development. Instead of spending time managing global CSS classes and
trying to understand and debug the scope of your changes, you safely style
your HTML page through an extensive set of predefined CSS utility classes.

With Tailwind doing the heavy lifting for us, we’ll use a table-based template,
editing the index.html.erb file in app/views/products and replacing the scaffold-
generated view:

report erratum • discuss

Iteration A2: Making Prettier Listings • 75

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

rails80/depot_a/app/views/products/index.html.erb
<div class="w-full">

<% if notice.present? %>
<p class="py-2 px-3 bg-green-50 mb-5 text-green-500 font-medium

rounded-lg inline-block" id="notice">
<%= notice %>

</p>
<% end %>

<div class="flex justify-between items-center pb-8">
<h1 class="mx-auto font-bold text-4xl">Products</h1>

</div>

<table id="products" class="mx-auto">
<tfoot>
<tr>

<td colspan="3">
<div class="mt-8">
<%= link_to 'New product',

new_product_path,
class: "inline rounded-lg py-3 px-5 bg-green-600

text-white block font-medium" %>
</div>

</td>
</tr>

</tfoot>

<tbody>
<% @products.each do |product| %>

<tr class="<%= cycle('bg-green-50', 'bg-white') %>">

<td class="px-2 py-3">
<%= image_tag(product.image, class: 'w-40') %>

</td>

<td>
<h1 class="text-xl font-bold"><%= product.title %></h1>
<p class="my-3">

<%= truncate(strip_tags(product.description),
length: 80) %>

</p>
<p>

<%= number_to_currency(product.price) %>
</p>

</td>

<td class="px-3">

<%= link_to 'Show',

product,
class: 'hover:underline' %>

Chapter 6. Task A: Creating the Application • 76

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_a%2Fapp%2Fviews%2Fproducts%2Findex.html.erb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

<%= link_to 'Edit',

edit_product_path(product),
class: 'hover:underline' %>

<%= button_to 'Destroy',

product,
method: :delete,
class: 'hover:underline',
data: { turbo_confirm: "Are you sure?" } %>

</td>
</tr>

<% end %>
</tbody>

</table>
</div>

This template uses a number of built-in Rails features:

• The rows in the listing have alternating background colors. The Rails
helper method called cycle() does this by setting the CSS class of each row
to either bg-green-50 or bg-white, automatically toggling between the two style
names on successive lines.

• The truncate() helper is used to display the first eighty characters of the
description. But before we call truncate(), we call strip_tags() to remove the
HTML tags from the description.

• The number_to_currency() helper is used to format the price. We’ll explore this
more in Iteration C3: Using a Helper to Format the Price, on page 107.

• The image_tag() helper is used to display the image. We provide product.image.url
as the link to the image file, as described in Active Storage, on page 38.

• Look at the link_to 'Destroy' line. See how it has the parameter data: { turbo_confirm:
'Are you sure?' }. If you click this link, Rails arranges for your browser to pop up
a dialog box asking for confirmation before following the link and deleting the
product. (Also, see the sidebar on page 81 for an inside scoop on this action.)

As far as styling goes:

• We left the notice alone.

• We added mx-auto to the h1 and table to center them horizontally on the page.
This corresponds to setting the CSS margin to auto, where x is the horizontal
axis and y would be the vertical axis.

report erratum • discuss

Iteration A2: Making Prettier Listings • 77

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

• We added classes like px-2 and py-3 to add vertical and horizontal padding.

• Most of the rest of the changes are self-explanatory, with names like text-
xl, bg-green-600, and hover:underline.

We loaded some test data into the database, and we rewrote the index.html.erb
file that displays the listing of products. Before we proceed, there is a small
bit of administrivia we need to attend to. Much like how we installed active
storage tables earlier, we need to connect Active Storage to our views. We do
this by adding the following line to the app/controller/application_controller.rb file:

rails80/depot_a/app/controllers/application_controller.rb
class ApplicationController < ActionController::Base

Only allow modern browsers supporting webp images, web push, badges,
import maps, CSS nesting, and CSS :has.
allow_browser versions: :modern

include ActiveStorage::SetCurrent
end

Like before, this only needs to be done once, and only if we’re storing files on
disk. If you’re using a cloud storage provider, you can skip this step.

Unrelated to this change, this file also contains a line that blocks browsers
that don’t support modern standards.5 Feel free to remove or modify this line
at this time.

Now let’s bring up a browser and point to http://localhost:3000/products. The
resulting product listing might look something like the screenshot shown on
page 79.

So we proudly show our customer her new product listing. She is pleased but
notices that when she makes changes they aren’t reflected on the screen until
she refreshes the page. She asks if there’s a way to make the changes appear
automatically. We tell her that there is, and we do that next.

Iteration A3: Making the Page Update in Real Time
Real-time updates require WebSockets, JavaScript, and a bit of server code
to make it all work. Fortunately, Rails has a feature called Hotwire that makes
this easy.

5. https://api.rubyonrails.org/v7.2.1.2/classes/ActionController/AllowBrowser/ClassMethods.html#method-i-
allow_browser

Chapter 6. Task A: Creating the Application • 78

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_a%2Fapp%2Fcontrollers%2Fapplication_controller.rb
http://localhost:3000/products
https://api.rubyonrails.org/v7.2.1.2/classes/ActionController/AllowBrowser/ClassMethods.html#method-i-allow_browser
https://api.rubyonrails.org/v7.2.1.2/classes/ActionController/AllowBrowser/ClassMethods.html#method-i-allow_browser
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Products

Programming Ruby 3.3 (5th Edition)

The Pragmatic Programmers' Guide Ruby is one of the most importa...

$33.95

Show

Edit

Destroy

Rails Scales!

Practical Techniques for Performance and Growth Rails doesn’t sc...

$30.95

Show

Edit

Destroy

Modern Front-End Development for Rails, Second Edition

Hotwire, Stimulus, Turbo, and React Improve the user experience ...

$28.95

Show

Edit

Destroy

New product

First, we add the following line to the app/models/product.rb file:

rails80/depot_a/app/models/product.rb
class Product < ApplicationRecord

has_one_attached :image
after_commit -> { broadcast_refresh_later_to "products" }➤

end

This line tells Rails to broadcast changes to the product model to any clients
that are listening. We also need to add the following lines to the top of the
app/views/products/index.html.erb file:

rails80/depot_a/app/views/products/index.html.erb
<%= turbo_stream_from "products" %>➤

<%= turbo_refreshes_with method: :morph, scroll: :preserve %>➤

The first line tells the browser to listen for changes to the product model and
update the page when they occur. The second line tells the browser to apply
the changes directly to the page without refreshing it and to preserve the
scroll position.

report erratum • discuss

Iteration A3: Making the Page Update in Real Time • 79

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_a%2Fapp%2Fmodels%2Fproduct.rb
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_a%2Fapp%2Fviews%2Fproducts%2Findex.html.erb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8
http://localhost:3003/products/2
http://localhost:3003/products/2/edit
http://localhost:3003/products/3
http://localhost:3003/products/3/edit
http://localhost:3003/products/4
http://localhost:3003/products/4/edit
http://localhost:3003/products/new

This is some pretty advanced stuff, and there is a lot more to the story.

• after_commit() is an Active Record callback that’s called after a record is
saved to the database. We cover Active Record hooks in more detail
starting with Chapter 7, Task B: Validation and Unit Testing, on page 85.

• Methods with names that end with _later are Active Job methods. Active
Job is a framework for declaring jobs and making them run on a variety
of queuing backends. We cover Active Job in more detail starting with
Iteration H1: Sending Confirmation Emails, on page 189.

• Methods with names that start with turbo_ are part of the Turbo framework.
Turbo is a set of tools that make it easy to build modern, reactive web
applications. We cover Turbo in more detail starting with Iteration F2:
Creating a Hotwired Cart, on page 150.

Now, when you make changes to the product listing, they should appear
automatically on the page. With that, we’ve completed the styling of the
product listing. Now it’s time to create the storefront.

What We Just Did
In this chapter, we laid the groundwork for our store application:

• We created a development database.

• We installed Active Storage to handle file uploads.

• We used a migration to create and modify the schema in our development
database.

• We created the products table and used the scaffold generator to write an
application to maintain it.

• We updated a controller-specific view to show a list of products.

• We made the product listing update in real time.

What we’ve done didn’t require much effort, and it got us up and running
quickly. Databases are vital to this application but need not be scary. In fact,
in many cases we can defer the selection of the database and get started using
the default that Rails provides.

Getting the model right is more important at this stage. As you’ll see, selection
of data types doesn’t always fully capture the essence of all the properties of
the model, even in this small application, so that’s what we’ll tackle next.

Chapter 6. Task A: Creating the Application • 80

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

What’s with method: :delete?

You may have noticed that the Destroy link includes the method: :delete parameter. This
parameter determines which method is called in the ProductsController class and also
affects which HTTP method is used.

Browsers use HTTP to talk with servers. HTTP defines a set of verbs that browsers can
employ and defines when each can be used. A regular hyperlink, for example, uses an
HTTP GET request. A GET request is defined by HTTP as a means of retrieving data and
therefore isn’t supposed to have any side effects. Using the method parameter in this
way indicates that an HTTP DELETE method should be used for this hyperlink. Rails uses
this information to determine which action in the controller to route this request to.

Note that when used within a browser, Rails substitutes the HTTP POST method for
PUT, PATCH, and DELETE methods and in the process tacks on an additional parameter
so that the router can determine the original intent. Either way, the request isn’t
cached or triggered by web crawlers.

Playtime
Here’s some stuff to try on your own:

• We created tables in our database using a migration. Try examining the
tables directly by running bin/rails dbconsole. This will put you directly into
the SQLite database that the app uses. Type .help and hit Return to see
the commands you can run to examine the database. If you know SQL,
you can execute SQL in here as well.

• If you’re feeling frisky, you can experiment with rolling back the migration.
Type the following:

depot> bin/rails db:rollback

Your schema will be transported back in time, and the products table will
be gone. Calling bin/rails db:migrate again will re-create it. You’ll also want to
reload the seed data. More information can be found in Chapter 23,
Migrations, on page 407.

• We made the product listing update in real time as the database changes.
Hotwire Spark6 updates views in real time as the application changes. Try
running this:

depot> bundle add hotwire-spark --group development

6. https://dev.37signals.com/announcing-hotwire-spark-live-reloading-for-rails/

report erratum • discuss

Iteration A3: Making the Page Update in Real Time • 81

https://dev.37signals.com/announcing-hotwire-spark-live-reloading-for-rails/
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Then restart your server and make a change to a controller or view. You
should see the change reflected in your browser without needing to refresh
the page.

• We mentioned version control in Version Control, on page 12, and now
would be a great point at which to save your work. Should you happen
to choose Git (highly recommended, by the way), you need to do a tiny
bit of configuration first; all you need to do is provide your name and
email address:

depot> git config --global --add user.name "Sam Ruby"
depot> git config --global --add user.email rubys@intertwingly.net

You can verify the configuration with the following command:

depot> git config --global --list

Rails also provides a file named .gitignore, which tells Git which files are
not to be version-controlled:

rails80/depot_a/.gitignore
Ignore bundler config.
/.bundle

Ignore all environment files.
/.env*

Ignore all logfiles and tempfiles.
/log/*
/tmp/*
!/log/.keep
!/tmp/.keep

Ignore pidfiles, but keep the directory.
/tmp/pids/*
!/tmp/pids/
!/tmp/pids/.keep

Ignore storage (uploaded files in development and any SQLite databases).
/storage/*
!/storage/.keep
/tmp/storage/*
!/tmp/storage/
!/tmp/storage/.keep

/public/assets

Ignore master key for decrypting credentials and more.
/config/master.key

/app/assets/builds/*
!/app/assets/builds/.keep

Chapter 6. Task A: Creating the Application • 82

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_a%2F.gitignore
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Note that because this filename begins with a dot, Unix-based operating
systems won’t show it by default in directory listings. Use ls -a to see it.

At this point, you’re fully configured. The only tasks that remain are to
add all the files and commit them with a commit message (note that Rails
has initialized our repository with git init already):

depot> git add .
depot> git commit -m "Depot Scaffold"

Being fully configured may not seem very exciting, but it does mean you’re
free to experiment. If you overwrite or delete a file that you didn’t mean
to, you can always get back to this point by issuing a single command:

depot> git checkout .

report erratum • discuss

Iteration A3: Making the Page Update in Real Time • 83

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

CHAPTER 7

In this chapter, you'll see:
• Performing validation and error reporting
• Unit testing

Task B: Validation and Unit Testing
At this point, we have an initial model for a product as well as a complete
maintenance application for this data provided for us by Rails scaffolding.
In this chapter, we’re going to focus on making the model more bulletproof—
as in, making sure that errors in the data provided never get committed to
the database—before we proceed to other aspects of the Depot application in
subsequent chapters.

Iteration B1: Validating!
While playing with the results of iteration A1, our client noticed something.
If she entered an invalid price or forgot to set up a product description, the
application happily accepted the form and added a line to the database. A
missing description is embarrassing, and a price of $0.00 costs her actual
money, so she asked that we add validation to the application. No product
should be allowed in the database if it has an empty title or description field,
an invalid URL for the image, or an invalid price.

So where do we put the validation? The model layer is the gatekeeper between
the world of code and the database. Nothing to do with our application comes
out of the database or gets stored into the database that doesn’t first go
through the model. This makes models an ideal place to put validations; it
doesn’t matter whether the data comes from a form or from some program-
matic manipulation in our application. If a model checks it before writing to
the database, the database will be protected from bad data.

Let’s look at the source code of the model class (in app/models/product.rb):

class Product < ApplicationRecord
has_one_attached :image
after_commit -> { broadcast_refresh_later_to "products" }

end

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Adding our validation should be fairly clean. Let’s start by validating that
the text fields all contain something before a row is written to the database.
We do this by adding some code to the existing model:

validates :title, :description, :image, presence: true

The validates() method is the standard Rails validator. It checks one or more
model fields against one or more conditions.

presence: true tells the validator to check that each of the named fields is present
and that its contents aren’t empty. The following screenshot shows what
happens if we try to submit a new product with none of the fields filled in.
Try it by visiting http://localhost:3000/products/new and submitting the form without
entering any data. You’ll see the errors summarized in a nice list at the top
of the form. That’s not bad for one line of code. You might also have noticed
that after editing and saving the product.rb file, you didn’t have to restart the
application to test your changes. The same reloading that caused Rails to
notice the earlier change to our schema also means it’ll always use the latest
version of our code.

New product
3 errors prohibited this product from being saved:

Title can't be blank

Description can't be blank

Image can't be blank

Title

Description

Image

Choose File No file chosen

Price

0.0

Create Product Back to products

Chapter 7. Task B: Validation and Unit Testing • 86

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8
http://localhost:3003/products

We’d also like to validate that the price is a valid, positive number. We’ll use
the delightfully named numericality() option to verify that the price is a valid
number. We also pass the rather verbosely named :greater_than_or_equal_to option
a value of 0.01:

validates :price, numericality: { greater_than_or_equal_to: 0.01 }

Now, if we add a product with an invalid price, the appropriate message will
appear, as shown in the following screenshot.

New product
1 error prohibited this product from being saved:

Price is not a number

Title

Pragmatic Unit Testing

Description

A true masterwork. Comparable to Kafka at

his funniest, or Marx during his slapstick

period. Move over, Tolstoy, there's a new

funster in town.

Image

Choose File No file chosen

Price

wibble

Create Product Back to products

Why test against one cent rather than zero? Well, it’s possible to enter a number
such as 0.001 into this field. Because the database stores just two digits after
the decimal point, this would end up being zero in the database, even though
it would pass the validation if we compared against zero. Checking that the
number is at least one cent ensures that only correct values end up being stored.

We have two more items to validate. First, we want to make sure that each
product has a unique title. One more line in the Product model will do this. The
uniqueness validation will perform a check to ensure that no other row in
the products table has the same title as the row we’re about to save:

validates :title, uniqueness: true

report erratum • discuss

Iteration B1: Validating! • 87

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8
http://localhost:3003/products

Lastly, we need to validate that the image uploaded is of a supported type. We’ll
do this by calling validate() with the value :acceptable_image and by defining a cor-
responding acceptable_image method, which matches image.content_type against a
list of supported types:

validate :acceptable_image

def acceptable_image
return unless image.attached?

acceptable_types = ["image/gif", "image/jpeg", "image/png"]
unless acceptable_types.include?(image.content_type)

errors.add(:image, "must be a GIF, JPG or PNG image")
end

end

Note that we previously specified the set of acceptable content types in the
product form, but it’s possible for that to be bypassed. This validation ensures
that only the specified types are accepted.

So in a couple of minutes we’ve added validations that check the following:

• The title, description, and image URL fields aren’t empty.
• The price is a valid number not less than $0.01.
• The title is unique among all products.
• The image is of the right content type.

Your updated Product model should look like this:

rails80/depot_b/app/models/product.rb
class Product < ApplicationRecord

has_one_attached :image
after_commit -> { broadcast_refresh_later_to "products" }➤

validates :title, :description, :image, presence: true
validates :title, uniqueness: true
validate :acceptable_image

def acceptable_image
return unless image.attached?

acceptable_types = ["image/gif", "image/jpeg", "image/png"]
unless acceptable_types.include?(image.content_type)
errors.add(:image, "must be a GIF, JPG or PNG image")

end
end
validates :price, numericality: { greater_than_or_equal_to: 0.01 }

end

Nearing the end of this cycle, we ask our customer to play with the application,
and she’s a lot happier. It took only a few minutes, but the simple act of adding
validation has made the product maintenance pages seem a lot more solid.

Chapter 7. Task B: Validation and Unit Testing • 88

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_b%2Fapp%2Fmodels%2Fproduct.rb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Iteration B2: Unit Testing of Models
One of the joys of the Rails framework is that it has support for testing baked
right in from the start of every project. As you’ve seen, from the moment you
create a new application using the rails command, Rails starts generating a
test infrastructure for you. Let’s take a peek inside the models subdirectory to
see what’s already there:

depot> ls test/models
product_test.rb

product_test.rb is the file that Rails created to hold the unit tests for the model
we created earlier with the generate script. This is a good start, but Rails can
help us only so much. Let’s see what kind of test goodies Rails generated
inside test/models/product_test.rb when we generated that model:

rails80/depot_a/test/models/product_test.rb
require "test_helper"

class ProductTest < ActiveSupport::TestCase
test "the truth" do
assert true
end

end

The generated ProductTest is a subclass of ActiveSupport::TestCase.1 The fact that
ActiveSupport::TestCase is a subclass of the MiniTest::Test class tells us that Rails
generates tests based on the MiniTest2 framework that comes preinstalled
with Ruby. This is good news, because it means if we’ve already been testing
our Ruby programs with MiniTest tests (and why wouldn’t we be?), we can
build on that knowledge to test Rails applications. If you’re new to MiniTest,
don’t worry. We’ll take it slow.

Inside this test case, Rails generated a single commented-out test called
"the truth". The test...do syntax may seem surprising at first, but here
ActiveSupport::TestCase is combining a class method, optional parentheses, and
a block to make defining a test method the tiniest bit simpler for you. Some-
times it’s the little things that make all the difference.

The assert line in this method is a test. It isn’t much of one, though—all it does
is test that true is true. Clearly, this is a placeholder, one that’s intended to
be replaced by your actual tests.

1. http://api.rubyonrails.org/classes/ActiveSupport/TestCase.html
2. http://docs.seattlerb.org/minitest/

report erratum • discuss

Iteration B2: Unit Testing of Models • 89

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_a%2Ftest%2Fmodels%2Fproduct_test.rb
http://api.rubyonrails.org/classes/ActiveSupport/TestCase.html
http://docs.seattlerb.org/minitest/
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

A Real Unit Test
Let’s get on to the business of testing validation. First, if we create a product
with no attributes set, we’ll expect it to be invalid and for an error to be
associated with each field. We can use the model’s errors() and invalid?() methods
to see if it validates, and we can use the any?() method of the error list to see
if an error is associated with a particular attribute.

Now that we know what to test, we need to know how to tell the test framework
whether our code passes or fails. We do that using assertions. An assertion
is a method call that tells the framework what we expect to be true. The
simplest assertion is the assert() method, which expects its argument to be
true. If it is, nothing special happens. However, if the argument to assert() is
false, the assertion fails. The framework will output a message and will stop
executing the test method containing the failure. In our case, we expect that
an empty Product model won’t pass validation, so we can express that expecta-
tion by asserting that it isn’t valid:

assert product.invalid?

Replace the test the truth with the following code:

rails80/depot_b/test/models/product_test.rb
test "product attributes must not be empty" do

product = Product.new
assert product.invalid?
assert product.errors[:title].any?
assert product.errors[:description].any?
assert product.errors[:price].any?
assert product.errors[:image].any?

end

We can rerun just the unit tests by issuing the rails test:models command. When
we do so, we now see the test execute successfully:

depot> bin/rails test:models
Rebuilding...

Done in 225ms.
Running 1 tests in a single process (parallelization threshold is 50)
Run options: --seed 44564

Running:

.

Finished in 0.055882s, 17.8948 runs/s, 89.4742 assertions/s.
1 runs, 5 assertions, 0 failures, 0 errors, 0 skips

Sure enough, the validation kicked in, and all our assertions passed.

Chapter 7. Task B: Validation and Unit Testing • 90

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_b%2Ftest%2Fmodels%2Fproduct_test.rb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Clearly, at this point we can dig deeper and exercise individual validations.
Let’s look at three of the many possible tests.

First, we’ll check that the validation of the price works the way we expect:

rails80/depot_c/test/models/product_test.rb
test "product price must be positive" do

product = Product.new(title: "My Book Title",
description: "yyy")

product.image.attach(io: File.open("test/fixtures/files/lorem.jpg"),
filename: "lorem.jpg", content_type: "image/jpeg")

product.price = -1
assert product.invalid?
assert_equal ["must be greater than or equal to 0.01"],

product.errors[:price]

product.price = 0
assert product.invalid?
assert_equal ["must be greater than or equal to 0.01"],

product.errors[:price]

product.price = 1
assert product.valid?

end

In this code, we create a new product and then try setting its price to -1, 0,
and +1, validating the product each time. If our model is working, the first
two should be invalid, and we verify that the error message associated with
the price attribute is what we expect.

The last price is acceptable, so we assert that the model is now valid. (Some
folks would put these three tests into three separate test methods—that’s
perfectly reasonable.)

Next, we test that we’re validating that the image URL ends with one of .gif,
.jpg, or .png:

rails80/depot_c/test/models/product_test.rb
def new_product(filename, content_type)

Product.new(
title: "My Book Title",
description: "yyy",
price: 1

).tap do |product|
product.image.attach(
io: File.open("db/images/#{filename}"), filename:, content_type:)

end
end

test "image url" do
product = new_product("lorem.jpg", "image/jpeg")

report erratum • discuss

Iteration B2: Unit Testing of Models • 91

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_c%2Ftest%2Fmodels%2Fproduct_test.rb
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_c%2Ftest%2Fmodels%2Fproduct_test.rb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

assert product.valid?, "image/jpeg must be valid"

product = new_product("logo.svg", "image/svg+xml")
assert_not product.valid?, "image/svg+xml must be invalid"

end

You’ll notice that we also added an extra parameter to our assert method calls.
All of the testing assertions accept an optional trailing parameter containing
a string. This will be written along with the error message if the assertion
fails and can be useful for diagnosing what went wrong.

Finally, our model contains a validation that checks that all the product titles
in the database are unique. To test this one, we need to store product data in
the database.

One way to do this would be to have a test create a product, save it, then create
another product with the same title and try to save it too. This would clearly
work. But a much simpler way is to use Rails fixtures.

Test Fixtures
In the world of testing, a fixture is an environment in which you can run
a test. If you’re testing a circuit board, for example, you might mount it
in a test fixture that provides it with the power and inputs needed to drive
the function to be tested.

In the world of Rails, a test fixture is a specification of the initial contents of
a model (or models) under test. If, for example, we want to ensure that our
products table starts off with known data at the start of every unit test, we can
specify those contents in a fixture, and Rails takes care of the rest.

You specify fixture data in files in the test/fixtures directory. These files
contain test data in YAML format. Each fixture file contains the data for
a single model. The name of the fixture file is significant: the base name
of the file must match the name of a database table. Because we need
some data for a Product model, which is stored in the products table, we’ll
add it to the file called products.yml.

Rails already created this fixture file when we first created the model:

rails80/depot_a/test/fixtures/products.yml
Read about fixtures at
https://api.rubyonrails.org/classes/ActiveRecord/FixtureSet.html

one:
title: MyString
description: MyText
price: 9.99

Chapter 7. Task B: Validation and Unit Testing • 92

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_a%2Ftest%2Ffixtures%2Fproducts.yml
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

two:
title: MyString
description: MyText
price: 9.99

The fixture file contains an entry for each row that we want to insert into the
database. Each row is given a name. In the case of the Rails-generated fixture,
the rows are named one and two. This name has no significance as far as the
database is concerned—it isn’t inserted into the row data. Instead, as you’ll
see shortly, the name gives us a convenient way to reference test data inside
our test code. They also are the names used in the generated integration tests,
so for now, we’ll leave them alone.

David says:

Picking Good Fixture Names
As with the names of variables in general, you want to keep the names of fixtures as
self-explanatory as possible. This increases the readability of the tests when you’re
asserting that product(:valid_order_for_fred) is indeed Fred’s valid order. It also makes it a
lot easier to remember which fixture you’re supposed to test against, without having
to look up p1 or order4. The more fixtures you get, the more important it is to pick good
fixture names. So starting early keeps you happy later.

But what do we do with fixtures that can’t easily get a self-explanatory name like
valid_order_for_fred? Pick natural names that you have an easier time associating to a
role. For example, instead of using order1, use christmas_order. Instead of customer1, use
fred. Once you get into the habit of natural names, you’ll soon be weaving a nice little
story about how fred is paying for his christmas_order with his invalid_credit_card first, then
paying with his valid_credit_card, and finally choosing to ship it all off to aunt_mary.

Association-based stories are key to remembering large worlds of fixtures with ease.

Inside each entry you can see an indented list of name-value pairs. As in your
config/database.yml, you must use spaces, not tabs, at the start of each of the
data lines, and all the lines for a row must have the same indentation. Be
careful as you make changes, because you need to make sure the names of
the columns are correct in each entry; a mismatch with the database column
names can cause a hard-to-track-down exception.

This data is used in tests. In fact, if you rerun bin/rails test now you’ll see a
number of errors, including the following error:

Error:
ProductsControllerTest#test_should_get_index:
ActionView::Template::Error: The asset "MyString" is not present in
the asset pipeline.

report erratum • discuss

Iteration B2: Unit Testing of Models • 93

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

The reason for the failure is that we recently added an image_tag to the product
index page and Rails can’t find an image by the name MyString (remember that
image_tag() is a Rails helper method that produces an HTML element).
Let’s correct that error and, while we’re here, add some more data to the fixture
file with something we can use to test our Product model:

rails80/depot_c/test/fixtures/products.yml
Read about fixtures at
https://api.rubyonrails.org/classes/ActiveRecord/FixtureSet.html

one:
title: MyString
description: MyText
price: 9.99

two:
title: MyString
description: MyText
price: 9.99

pragprog:➤

title: The Pragmatic Programmer➤

description:➤

Your Journey To Mastery, 20th Anniversary Edition (2nd Edition)➤

price: 39.99➤

Note that the attached images aren’t defined here. We’ll need to add them.
We start by defining "blobs" for the content of the images.

rails80/depot_c/test/fixtures/active_storage/blobs.yml
blob_one: <%= ActiveStorage::FixtureSet.blob filename: 'lorem.jpg' %>
blob_two: <%= ActiveStorage::FixtureSet.blob filename: 'rails.png' %>

blob_pragprog: <%= ActiveStorage::FixtureSet.blob filename: 'lorem.jpg' %>

Now we attach these blobs to the products in the fixture file.

rails80/depot_c/test/fixtures/active_storage/attachments.yml
one:

name: image
record: one (Product)
blob: blob_one

two:
name: image
record: two (Product)
blob: blob_two

➤

pragprog:➤

name: image➤

record: pragprog (Product)➤

blob: blob_pragprog➤

Chapter 7. Task B: Validation and Unit Testing • 94

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_c%2Ftest%2Ffixtures%2Fproducts.yml
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_c%2Ftest%2Ffixtures%2Factive_storage%2Fblobs.yml
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_c%2Ftest%2Ffixtures%2Factive_storage%2Fattachments.yml
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Now that we have a fixture file, we want Rails to load the test data into the
products table when we run the unit test. And, in fact, Rails is already doing
this (convention over configuration for the win!), but you can control which
fixtures to load by specifying the following line in test/models/product_test.rb:

class ProductTest < ActiveSupport::TestCase
fixtures :products➤

#...
end

The fixtures() directive loads the fixture data corresponding to the given model
name into the corresponding database table before each test method in the
test case is run. The name of the fixture file determines the table that’s loaded,
so using :products will cause the products.yml fixture file to be used.

Let’s say that again another way. In the case of our ProductTest class, adding the
fixtures directive means that the products table will be emptied out and then popu-
lated with the three rows defined in the fixture before each test method is run.

Note that most of the scaffolding that Rails generates doesn’t contain calls to
the fixtures method. That’s because the default for tests is to load all fixtures
before running the test. Because that default is generally the one you want,
there usually isn’t any need to change it. Once again, conventions are used
to eliminate the need for unnecessary configuration.

So far, we’ve been doing all our work in the development database. Now that
we’re running tests, though, Rails needs to use a test database. If you look
in the database.yml file in the config directory, you’ll notice Rails actually created
a configuration for three separate databases.

• storage/development.sqlite3 will be our development database. All of our pro-
gramming work will be done here.

• storage/test.sqlite3 is a test database.

• storate/production.sqlite3 is the production database. Our application would
use this when we put it online; but using sqlite3 in production isn’t rec-
ommended, so when we get to deployment, we’ll switch this to a more
robust database.

Each test method gets a freshly initialized table in the test database, loaded
from the fixtures we provide. This is automatically done by the bin/rails test
command but can be done separately via bin/rails db:test:prepare.

report erratum • discuss

Iteration B2: Unit Testing of Models • 95

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Using Fixture Data

Now that you know how to get fixture data into the database, we need to find
ways of using it in our tests.

Clearly, one way would be to use the finder methods in the model to read
the data. However, Rails makes it easier than that. For each fixture it
loads into a test, Rails defines a method with the same name as the fix-
ture. You can use this method to access preloaded model objects
containing the fixture data: simply pass it the name of the row as defined
in the YAML fixture file, and it’ll return a model object containing that
row’s data.

In the case of our product data, calling products(:pragprog) returns a Product
model containing the data we defined in the fixture. Let’s use that to test the
validation of unique product titles:

rails80/depot_c/test/models/product_test.rb
test "product is not valid without a unique title" do

product = Product.new(title: products(:pragprog).title,
description: "yyy",
price: 1)

product.image.attach(io: File.open("test/fixtures/files/lorem.jpg"),
filename: "lorem.jpg", content_type: "image/jpeg")

assert product.invalid?
assert_equal ["has already been taken"], product.errors[:title]

end

The test assumes that the database already includes a row for the Ruby book.
It gets the title of that existing row using this:

products(:pragprog).title

It then creates a new Product model, setting its title to that existing title. It
asserts that attempting to save this model fails and that the title attribute has
the correct error associated with it.

If you want to avoid using a hardcoded string for the Active Record error, you
can compare the response against its built-in error message table:

rails80/depot_c/test/models/product_test.rb
test "product is not valid without a unique title - i18n" do

product = Product.new(title: products(:pragprog).title,
description: "yyy",
price: 1)

product.image.attach(io: File.open("test/fixtures/files/lorem.jpg"),
filename: "lorem.jpg", content_type: "image/jpeg")

Chapter 7. Task B: Validation and Unit Testing • 96

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_c%2Ftest%2Fmodels%2Fproduct_test.rb
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_c%2Ftest%2Fmodels%2Fproduct_test.rb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

assert product.invalid?
assert_equal [I18n.translate("errors.messages.taken")],

product.errors[:title]
end

We’ll cover the I18n functions in Chapter 15, Task J: Internationalization, on
page 225.

Before we move on, we once again try our tests:

$ bin/rails test

This time we see two remaining failures, both in test/controllers/products_controllertest.rb:
one in should create product and the other in should update product. Clearly, something
we did caused something to do with the creation and update of products to fail.
Since we just added validations on how products are created or updated, it’s
likely this is the source of the problem, and our test is out-of-date.

The specifics of the problem might not be obvious from the test failure mes-
sage, but the failure for should create product gives us a clue: “Product.count
didn’t change by 1.” Since we just added validations, it seems likely that our
attempts to create a product in the test are creating an invalid product, which
we can’t save to the database.

Let’s verify this assumption by adding a call to puts() in the controller’s create()
method:

def create
@product = Product.new(product_params)

respond_to do |format|
if @product.save
format.html { redirect_to @product,

notice: "Product was successfully created." }
format.json { render :show, status: :created,

location: @product }
else
puts @product.errors.full_messages➤

format.html { render :new,
status: :unprocessable_entity }

format.json { render json: @product.errors,
status: :unprocessable_entity }

end
end

end

report erratum • discuss

Iteration B2: Unit Testing of Models • 97

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

If we rerun just the test for creating a new product, we’ll see the problem:

> bin/rails test test/controllers/products_controller_test.rb:19
Running:

Title has already been taken
F

Failure:
ProductsControllerTest#test_should_create_product [«path to test»]
"Product.count" didn't change by 1.
Expected: 3

Actual: 2

bin/rails test test/controllers/products_controller_test.rb:18

Finished in 0.427810s, 2.3375 runs/s, 2.3375 assertions/s.
1 runs, 1 assertions, 1 failures, 0 errors, 0 skips

Our puts() is printing the validation error, which in this case is “Title has
already been taken.” In other words, we’re trying to create a product
whose title already exists. Instead, let’s create a random book title and
use that instead of the value coming out of the test fixture. First, we’ll
create a random title in the setup() block:

rails80/depot_b/test/controllers/products_controller_test.rb
require "test_helper"

class ProductsControllerTest < ActionDispatch::IntegrationTest
setup do

@product = products(:one)
@title = "The Great Book #{rand(1000)}"➤

end

Next, we’ll use that instead of the default @product.title the Rails generator put
into the test. The actual change is highlighted (the use of @title), but the code
had to be reformatted to fit the space, so this will look a bit different for you:

rails80/depot_b/test/controllers/products_controller_test.rb
test "should create product" do

assert_difference("Product.count") do
post products_url, params: {
product: {

description: @product.description,
image: file_fixture_upload("lorem.jpg", "image/jpeg"),➤

price: @product.price,
title: @title➤

}
}

end

assert_redirected_to product_url(Product.last)
end

Chapter 7. Task B: Validation and Unit Testing • 98

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_b%2Ftest%2Fcontrollers%2Fproducts_controller_test.rb
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_b%2Ftest%2Fcontrollers%2Fproducts_controller_test.rb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

rails80/depot_b/test/controllers/products_controller_test.rb
test "should update product" do

patch product_url(@product), params: {
product: {

description: @product.description,
image: file_fixture_upload("lorem.jpg", "image/jpeg"),➤

price: @product.price,
title: @title➤

}
}

assert_redirected_to product_url(@product)
end

After making these changes, we rerun the tests, and they report that all is well.

Now we can feel confident that our validation code not only works but will
continue to work. Our product now has a model, a set of views, a controller,
and a set of unit tests. It’ll serve as a good foundation on which to build the
rest of the application.

One Final Change
We originally stored product images in the db/images directory, but now we
have our test fixtures, let’s create a new place to store them: text/fixtures/files.
Move the images over, and update the paths in the new_product method in
test/models/products.rb.

What We Just Did
In a few dozen lines of code, we augmented the generated code with validation:

• We ensured that required fields are present.
• We ensured that price fields are numeric and at least one cent.
• We ensured that titles are unique.
• We ensured that images have a supported content type.
• We updated the unit tests that Rails provided, both to conform to the con-

straints we’ve imposed on the model and to verify the new code we added.

We show this to our customer, and although she agrees that this is something
an administrator could use, she says that it certainly isn’t anything that she
would feel comfortable turning loose on her customers. Clearly, in the next
iteration we’re going to have to focus a bit on the user interface.

report erratum • discuss

Iteration B2: Unit Testing of Models • 99

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_b%2Ftest%2Fcontrollers%2Fproducts_controller_test.rb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Playtime
Here’s some stuff to try on your own:

• If you’re using Git, now is a good time to commit your work. You can first
see which files we changed by using the git status command:

depot> git status
On branch master
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git checkout -- <file>..." to discard changes
in working directory)
#
modified: app/models/product.rb
modified: test/fixtures/products.yml
modified: test/controllers/products_controller_test.rb
modified: test/models/product_test.rb
no changes added to commit (use "git add" and/or "git commit -a")

Since we modified only some existing files and didn’t add any new ones,
you can combine the git add and git commit commands and simply issue a
single git commit command with the -a option:

depot> git commit -a -m 'Validation!'

With this done, you can play with abandon, secure in the knowledge that
you can return to this state at any time by using a single git checkout .
command.

• The :length validation option checks the length of a model attribute. Add
validation to the Product model to check that the title is at least ten characters.

• Change the error message associated with one of your validations.

Chapter 7. Task B: Validation and Unit Testing • 100

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

CHAPTER 8

In this chapter, you'll see:
• Writing our own views
• Using layouts to decorate pages
• Integrating CSS
• Using helpers
• Writing functional tests

Task C: Catalog Display
All in all, it’s been a successful set of iterations. We gathered the initial
requirements from our customer, documented a basic flow, worked out a first
pass at the data we’ll need, and put together the management page for the
Depot application’s products. It hasn’t taken many lines of code, and we even
have a small but growing test suite.

Thus emboldened, it’s on to our next task. We chatted about priorities with our
customer, and she said she’d like to start seeing what the application looks like
from the buyer’s point of view. Our next task is to create a catalog display.

This also makes a lot of sense from our point of view. Once we have the
products safely tucked into the database, it should be fairly straightforward
to display them. It also gives us a basis from which to develop the shopping
cart portion of the code later.

We should also be able to draw on the work we just did in the product man-
agement task. The catalog display is really just a glorified product listing.

Finally, we’ll also need to complement our unit tests for the model with some
functional tests for the controller.

Iteration C1: Creating the Catalog Listing
We’ve already created the products controller, used by the seller to administer
the Depot application. Now it’s time to create a second controller, one that
interacts with the paying customers. Let’s call it Store:

depot> bin/rails generate controller Store index
create app/controllers/store_controller.rb
route get 'store/index'

invoke tailwindcss
create app/views/store
create app/views/store/index.html.erb

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

invoke test_unit
create test/controllers/store_controller_test.rb
invoke helper
create app/helpers/store_helper.rb
invoke test_unit

As in the previous chapter, where we used the generate utility to create a
controller and associated scaffolding to administer the products, here we’ve
asked it to create a controller (the StoreController class in the store_controller.rb file)
containing a single action method, index().

While everything is already set up for this action to be accessed via
http://localhost:3000/store/index (feel free to try it!), we can do better. Let’s sim-
plify things and make this the root URL for the website. We do this by
editing config/routes.rb:

rails80/depot_d/config/routes.rb
Rails.application.routes.draw do

root "store#index", as: "store_index"➤

resources :products
Define your application routes per the DSL in
https://guides.rubyonrails.org/routing.html

Reveal health status on /up that returns 200 if the app boots with no
exceptions, otherwise 500.
Can be used by load balancers and uptime monitors to verify that the
app is live.
get "up" => "rails/health#show", as: :rails_health_check

Render dynamic PWA files from app/views/pwa/*
(remember to link manifest in application.html.erb)
get "manifest" => "rails/pwa#manifest", as: :pwa_manifest
get "service-worker" => "rails/pwa#service_worker", as: :pwa_service_worker

Defines the root path route ("/")
root "posts#index"

end

We’ve replaced the get 'store/index' line with a call to define a root path, and in
the process we added an as: 'store_index' option. The latter tells Rails to create
store_index_path and store_index_url accessor methods, enabling existing code—
and tests!—to continue to work correctly. Let’s try it. Point a browser at
http://localhost:3000/, and up pops our web page. See the following screenshot.

Store#index
Find me in app/views/store/index.html.erb

It might not make us rich, but at least we know everything is wired together
correctly. It even tells us where to find the template file that draws this page.

Chapter 8. Task C: Catalog Display • 102

report erratum • discuss

http://localhost:3000/store/index
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_d%2Fconfig%2Froutes.rb
http://localhost:3000/
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Let’s start by displaying a list of all the products in our database. We know
that eventually we’ll have to be more sophisticated, breaking them into cate-
gories, but this’ll get us going.

We need to get the list of products out of the database and make it available
to the code in the view that’ll display the table. This means we have to change
the index() method in store_controller.rb. We want to program at a decent level of
abstraction, so let’s assume we can ask the model for a list of the products:

rails80/depot_d/app/controllers/store_controller.rb
class StoreController < ApplicationController

def index
@products = Product.order(:title)➤

end
end

We asked our customer if she had a preference regarding the order things
should be listed in, and we jointly decided to see what happens if we display
the products in alphabetical order. We do this by adding an order(:title) call
to the Product model.

Now we need to write our view template. To do this, edit the index.html.erb file
in app/views/store. (Remember that the path name to the view is built from the
name of the controller [store] and the name of the action [index]. The .html.erb
part signifies an ERB template that produces an HTML result.)

rails80/depot_d/app/views/store/index.html.erb
<div class="w-full">
<% if notice.present? %>

<p class="py-2 px-3 bg-green-50 mb-5 text-green-500 font-medium rounded-lg
inline-block" id="notice">

<%= notice %>
</p>

<% end %>

<h1 class="font-bold text-xl mb-6 pb-2 border-b-2">
Your Pragmatic Catalog

</h1>

<% @products.each do |product| %>

<li class='flex mb-6'>
<%= image_tag(product.image,

class: 'object-contain w-40 h-48 shadow mr-6') %>

<div>
<h2 class="font-bold text-lg mb-3"><%= product.title %></h2>

<p>
<%= sanitize(product.description) %>

</p>

report erratum • discuss

Iteration C1: Creating the Catalog Listing • 103

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_d%2Fapp%2Fcontrollers%2Fstore_controller.rb
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_d%2Fapp%2Fviews%2Fstore%2Findex.html.erb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

<div class="mt-3">
<%= product.price %>

</div>
</div>

<% end %>

</div>

Note the use of the sanitize() method for the description. This allows us to safely1

add HTML stylings to make the descriptions more interesting for our customers.

We also used the image_tag() helper method. This generates an HTML
tag using its argument as the image source. We’ll need to place this image in
the app/assets/images directory. You’ve already downloaded it, so you can copy
it there now.

depot> cp db/images/logo.svg app/assets/images/

A page refresh brings up the display shown in the following screenshot. It’s
still pretty basic, and it seems to be missing something. The customer happens
to be walking by as we ponder this, and she points out that she’d also like to
see a decent-looking banner and sidebar on public-facing pages.

Your Pragmatic Catalog

Modern Front-End Development for Rails, Second Edition

Hotwire, Stimulus, Turbo, and React Improve the user experience for your Rails app with rich, engaging client-

side interactions. Learn to use the Rails 7 tools and simplify the complex JavaScript ecosystem. It’s easier than

ever to build user interactions with Hotwire, Turbo, and Stimulus. You can add great front-end flair without

much extra complication. Use React to build a more complex set of client-side features. Structure your code

for different levels of client-side needs with these powerful options. Add to your toolkit today!

28.95

Programming Ruby 3.3 (5th Edition)

The Pragmatic Programmers' Guide Ruby is one of the most important programming languages in use for web

development. It powers the Rails framework, which is the backing of some of the most important sites on the

web. The Pickaxe Book, named for the tool on the cover, is the definitive reference on Ruby, a highly-regarded,

fully object-oriented programming language. This updated edition is a comprehensive reference on the

language itself, with a tutorial on the most important features of Ruby—including pattern matching and Ractors

—and describes the language through Ruby 3.3.

33.95

Rails Scales!

Practical Techniques for Performance and Growth Rails doesn’t scale. So say the naysayers. They’re wrong.

Ruby on Rails runs some of the biggest sites in the world, impacting the lives of millions of users while

efficiently crunching petabytes of data. This book reveals how they do it, and how you can apply the same

techniques to your applications. Optimize everything necessary to make an application function at scale:

monitoring, product design, Ruby code, software architecture, database access, caching, and more. Even if

your app may never have millions of users, you reduce the costs of hosting and maintaining it.

30.95

At this point in the real world, we’d probably want to call in the design folks.
But Pragmatic Web Designer is off getting inspiration on a beach somewhere
and won’t be back until later in the year, so let’s put a placeholder in for now.
It’s time for another iteration.

1. https://owasp.org/www-community/attacks/xss/

Chapter 8. Task C: Catalog Display • 104

report erratum • discuss

https://owasp.org/www-community/attacks/xss/
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Iteration C2: Adding a Page Layout
The pages in a typical website often share a similar layout; the designer will
have created a standard template that’s used when content is placed. Our
job is to modify this page to add decoration to each of the store pages.

If you look at the .html.erb files we’ve created so far, you won’t find any ref-
erence to style sheets. You won’t even find the HTML <head> section where
such references would normally live. Instead, Rails keeps a separate file
that’s used to create a standard page environment for the entire application.
This file, called application.html.erb, is a Rails layout and lives in the layouts
directory: we can change the look and feel of the entire site by editing this
one file. This makes us feel better about putting a placeholder page layout
in for now; we can update it when the designer eventually returns from the
islands.

Let’s update this file to define a banner and a sidebar:

rails80/depot_e/app/views/layouts/application.html.erb
<!DOCTYPE html>
<html>

<head>
<title><%= content_for(:title) || "Pragprog Books Online Store" %></title>➤

<meta name="viewport" content="width=device-width,initial-scale=1">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="mobile-web-app-capable" content="yes">
<%= csrf_meta_tags %>
<%= csp_meta_tag %>

<%= yield :head %>

<%# Enable PWA manifest for installable apps (make sure to enable in
config/routes.rb too!) %>

<%#= tag.link rel: "manifest", href: pwa_manifest_path(format: :json) %>

<link rel="icon" href="/icon.png" type="image/png">
<link rel="icon" href="/icon.svg" type="image/svg+xml">
<link rel="apple-touch-icon" href="/icon.png">

<%# Includes all stylesheet files in app/assets/stylesheets %>
<%= stylesheet_link_tag :app, "data-turbo-track": "reload" %>
<%= javascript_importmap_tags %>

</head>

<body>
<header class="bg-green-700">➤

<%= image_tag 'logo.svg', alt: 'The Pragmatic Bookshelf' %>➤

<h1><%= @page_title %></h1>➤

</header>➤
➤

<section class="flex">➤

report erratum • discuss

Iteration C2: Adding a Page Layout • 105

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_e%2Fapp%2Fviews%2Flayouts%2Fapplication.html.erb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

<nav class="bg-green-900 p-6">➤

<ul class="text-gray-300 leading-8">➤

Home➤

Questions➤

News➤

Contact➤

➤

</nav>➤
➤

<main class="container mx-auto mt-4 px-5 flex">➤

<%= yield %>
</main>

</section>➤

</body>
</html>

Apart from the usual HTML gubbins, this layout has a number of Rails-
specific items. The Rails stylesheet_link_tag() helper method generates a <link> tag
to both Tailwind and our application’s style sheets and specifies an option to
enable Turbo,2 which transparently works behind the scenes to speed up
page changes within an application.

Finally, the csrf_meta_tags() and csp_meta_tag() methods set up all the behind-the-
scenes data needed to prevent cross-site request forgery attacks, which
will be important once we add forms in Chapter 12, Task G: Check Out!,
on page 165.

Inside the body, we set the page heading to the value in the @page_title instance
variable. By default, this is blank, meaning there won’t be an H1 rendered,
but any controller that sets the variable @page_title can override this. The real
magic, however, takes place when we invoke yield. This causes Rails to substi-
tute in the page-specific content—the stuff generated by the view invoked by
this request. Here, this’ll be the catalog page generated by index.html.erb.

The page design is fairly minimal, though we’ve added a lot of padding, mar-
gins, and other speccing directives to ensure a decent layout for the side nav
and main content. Some of the sizes we’ve used might seem strange (for
example, mt-4 and px-5), but everything should work out. Anytime we need
padding, margin, or any other size, we’ll use one of a few hand-picked sizes
that ensure our layout is always decent.

Refresh the page, and the browser window looks something like the screenshot
shown on page 107. It won’t win any design awards, but it’ll show our customer
roughly what the final page will look like.

2. https://turbo.hotwired.dev/

Chapter 8. Task C: Catalog Display • 106

report erratum • discuss

https://turbo.hotwired.dev/
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Home

Questions

News

Contact

Your Pragmatic Catalog

Modern Front-End Development for Rails, Second Edition

Hotwire, Stimulus, Turbo, and React Improve the user experience for your Rails app with rich,

engaging client-side interactions. Learn to use the Rails 7 tools and simplify the complex

JavaScript ecosystem. It’s easier than ever to build user interactions with Hotwire, Turbo, and

Stimulus. You can add great front-end flair without much extra complication. Use React to

build a more complex set of client-side features. Structure your code for different levels of

client-side needs with these powerful options. Add to your toolkit today!

28.95

Looking at this page, we spot a minor problem with how prices are displayed.
The database stores the price as a number, but we’d like to show it as dollars
and cents. A price of 12.34 should be shown as $12.34, and 13 should display
as $13.00. We’ll tackle that next.

Iteration C3: Using a Helper to Format the Price
Ruby provides a sprintf() function that can be used to format prices. We could
place logic that makes use of this function directly in the view. For example,
we could say this:

<%= sprintf("$%0.02f", product.price) %>

That would work, but it embeds knowledge of currency formatting into the
view. If we display prices of products in several places and want to interna-
tionalize the application later, this would be a maintenance problem.

Instead, let’s use a helper method to format the price as a currency. Rails
has an appropriate one built in, called number_to_currency().

Using our helper in the view is just a matter of invoking it as a regular method;
in the index template, this is the code we start with:

<%= product.price %>

We can change it to the following:

rails80/depot_e/app/views/store/index.html.erb
<%= number_to_currency(product.price) %>

When we refresh, we see a nicely formatted price, as shown in the screenshot
on page 108.

report erratum • discuss

Iteration C3: Using a Helper to Format the Price • 107

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_e%2Fapp%2Fviews%2Fstore%2Findex.html.erb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8
http://localhost:3003/
http://localhost:3003/questions
http://localhost:3003/news
http://localhost:3003/contact

Home

Questions

News

Contact

Your Pragmatic Catalog

Modern Front-End Development for Rails, Second Edition

Hotwire, Stimulus, Turbo, and React Improve the user experience for your Rails app with rich,

engaging client-side interactions. Learn to use the Rails 7 tools and simplify the complex

JavaScript ecosystem. It’s easier than ever to build user interactions with Hotwire, Turbo, and

Stimulus. You can add great front-end flair without much extra complication. Use React to

build a more complex set of client-side features. Structure your code for different levels of

client-side needs with these powerful options. Add to your toolkit today!

$28.95

Although it looks nice enough, we’re starting to get a nagging feeling that we
really should be running and writing tests for all this new functionality, par-
ticularly after our experience of adding logic to our model.

Iteration C4: Functional Testing of Controllers
Now for the moment of truth. Before we focus on writing new tests, we need to
determine if we’ve broken anything. Remembering our experience after we added
validation logic to our model, with some trepidation we run our tests again:

depot> bin/rails test

This time, all is well. We added a lot, but we didn’t break anything. That’s a
relief, but our work isn’t done yet; we still need tests for what we just added.

The unit testing of models that we did previously seemed straightforward
enough. We called a method and compared what it returned against what we
expected it to return. But now we’re dealing with a server that processes
requests and a user viewing responses in a browser. What we need is func-
tional tests that verify that the model, view, and controller work well together.
Never fear—Rails has you covered.

First, let’s take a look at what Rails generated for us:

rails80/depot_d/test/controllers/store_controller_test.rb
require "test_helper"

class StoreControllerTest < ActionDispatch::IntegrationTest
test "should get index" do

get store_index_url
assert_response :success

end
end

Chapter 8. Task C: Catalog Display • 108

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_d%2Ftest%2Fcontrollers%2Fstore_controller_test.rb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8
http://localhost:3003/
http://localhost:3003/questions
http://localhost:3003/news
http://localhost:3003/contact

The should get index test gets the index and asserts that a successful response
is expected. That certainly seems straightforward enough. That’s a reasonable
beginning, but we also want to verify that the response contains our layout,
our product information, and our number formatting. Let’s see what that
looks like in code:

rails80/depot_e/test/controllers/store_controller_test.rb
require "test_helper"

class StoreControllerTest < ActionDispatch::IntegrationTest
test "should get index" do

get store_index_url
assert_response :success
assert_select "nav a", minimum: 4➤

assert_select "main ul li", 3➤

assert_select "h2", "The Pragmatic Programmer"➤

assert_select "div", /\$[,\d]+\.\d\d/➤

end
end

The four lines we added take a look into the HTML that’s returned, using CSS
selector notation. As a refresher, selectors that start with a number sign (#)
match on id attributes; selectors that start with a dot (.) match on class
attributes; and selectors that contain no prefix match on element names.

So the first select test looks for an element named a that’s contained in a nav
element. This test verifies that a minimum of four such elements is present.
Pretty powerful stuff, assert_select(), eh?

The next three lines verify that all of our products are displayed. The first
verifies that there are three li elements inside a ul, which is itself inside the main
element. The next line verifies that there’s an h2 element with the title of the
Ruby book that we’d entered previously. The fourth line verifies that the price
is formatted correctly. These assertions are based on the test data that we
put inside our fixtures:

rails80/depot_e/test/fixtures/products.yml
Read about fixtures at
https://api.rubyonrails.org/classes/ActiveRecord/FixtureSet.html

one:
title: MyString
description: MyText
price: 9.99

two:
title: MyString
description: MyText
price: 9.99

report erratum • discuss

Iteration C4: Functional Testing of Controllers • 109

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_e%2Ftest%2Fcontrollers%2Fstore_controller_test.rb
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_e%2Ftest%2Ffixtures%2Fproducts.yml
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

pragprog:
title: The Pragmatic Programmer
description:

Your Journey To Mastery, 20th Anniversary Edition (2nd Edition)
price: 39.99

Maybe you noticed that the type of test that assert_select() performs varies based on
the type of the second parameter. If it’s a number, it’s treated as a quantity. If it’s
a string, it’s treated as an expected result. Another useful type of test is a regular
expression, which is what we use in our final assertion. We verify that there’s a
price that has a value that contains a dollar sign followed by any number (but at
least one), commas, or digits; followed by a decimal point; followed by two digits.

One final point before we move on: both validation and functional tests will
test the behavior of controllers only; they won’t retroactively affect any objects
that already exist in the database or in fixtures. In the previous example, two
products contain the same title. Such data will cause no problems and will
go undetected up to the point when such records are modified and saved.

We’ve touched on only a few things that assert_select() can do. More information
can be found in the online documentation.3

That’s a lot of verification in a few lines of code. We can see that it works by
rerunning just the functional tests (after all, that’s all we changed):

depot> bin/rails test:controllers

Now, not only do we have something recognizable as a storefront, but we also
have tests that ensure that all of the pieces—the model, view, and controller—
are all working together to produce the desired result. Although this sounds
like a lot, with Rails it wasn’t much at all. In fact, it was mostly HTML and CSS
and not much in the way of code or tests. Before moving on, let’s make sure
that it’ll stand up to the onslaught of customers we’re expecting.

Iteration C5: Caching of Partial Results
If everything goes as planned, this page will definitely be a high-traffic area
for the site. To respond to requests for this page, we’d need to fetch every
product from the database and render each one. We can do better than that.
After all, the catalog doesn’t change that often, so there’s no need to start
from scratch on each request.

So we can see what we’re doing, we’re first going to modify the configuration
for the development environment to turn on caching. To make this easy, Rails

3. https://github.com/rails/rails-dom-testing

Chapter 8. Task C: Catalog Display • 110

report erratum • discuss

https://github.com/rails/rails-dom-testing
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

provides a handy command to toggle caching on and off in the development
environment:

depot> bin/rails dev:cache

Note that this command will cause your server to automatically restart.

Next we need to plan our attack. Thinking about it, we only need to rerender
things if a product changed, and even then we need to render only the products
that actually changed. So we need to make two small changes to our template.

First, we mark the sections of our template that we need to update if any
product changes, and then inside that section we mark the subsection that
we need in order to update any specific product that changed:

rails80/depot_e/app/views/store/index.html.erb
<div class="w-full">
<% if notice.present? %>

<p class="py-2 px-3 bg-green-50 mb-5 text-green-500 font-medium rounded-lg
inline-block" id="notice">

<%= notice %>
</p>

<% end %>

<h1 class="font-bold text-xl mb-6 pb-2 border-b-2">
Your Pragmatic Catalog

</h1>

<% cache @products do %>➤

<% @products.each do |product| %>
<% cache product do %>➤

<li class='flex mb-6'>
<%= image_tag(product.image,
class: 'object-contain w-40 h-48 shadow mr-6') %>

<div>
<h2 class="font-bold text-lg mb-3"><%= product.title %></h2>

<p>
<%= sanitize(product.description) %>

</p>

<div class="mt-3">
<%= number_to_currency(product.price) %>

</div>
</div>

<% end %>➤

<% end %>
<% end %>➤

</div>

report erratum • discuss

Iteration C5: Caching of Partial Results • 111

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_e%2Fapp%2Fviews%2Fstore%2Findex.html.erb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

In addition to bracketing the sections, we identify the data to associate with
each: the complete set of products for the overall store and the individual
product we’re rendering with the entry. Whenever the specified data changes,
the section will be rerendered.

Bracketed sections can be nested to arbitrary depth, which is why those in
the Rails community have come to refer to this as “Russian doll” caching.4

With this, we’re done! Rails takes care of all of the rest, including managing
the storage and deciding when to invalidate old entries. If you’re interested,
you can turn all sorts of knobs and make choices as to which backing store
to use for the cache. It’s nothing you need to worry about now, but it might
be worth bookmarking the overview page of Caching with Rails in the Ruby
on Rails Guides.5

As far as verifying that this works is concerned, you’re going to get some
insight into the work the server is doing behind the scenes. Go back to your
server window and watch what happens when you refresh the page. The first
time you load the page, you should see some SQL that’s loading the products
like Product Load (0.2ms) SELECT "products".* FROM "products" ORDER BY "products"."title" ASC.
When you refresh the page again, it will still work, but you won’t see that
SQL run. You should see some SQL that Rails runs to check if its cache is
outdated, like so: SELECT COUNT(*) AS "size", MAX("products"."updated_at") AS timestamp
FROM "products".

If you still aren’t convinced, you can check your log/development.log file. In there
you should see log messages that look like this:

Read fragment views/store/index:f6d3d1696e62859f692c4ae9e7980d0f/…
Write fragment views/store/index:f6d3d1696e62859f692c4ae9e7980d0f/…
Read fragment views/store/index:f6d3d1696e62859f692c4ae9e7980d0f/…
Write fragment views/store/index:f6d3d1696e62859f692c4ae9e7980d0f/…
Read fragment views/store/index:f6d3d1696e62859f692c4ae9e7980d0f/…
Write fragment views/store/index:f6d3d1696e62859f692c4ae9e7980d0f/…
Read fragment views/products/2-20170611204944059695/cb43383298…

Once you’re satisfied that caching is working, turn caching off in development
so that further changes to the template will always be visible immediately:

depot> bin/rails dev:cache

Once again, wait for the server to restart, and verify that changes to the
template show up as quickly as you save them.

4. http://37signals.com/svn/posts/3113-how-key-based-cache-expiration-works
5. http://guides.rubyonrails.org/caching_with_rails.html

Chapter 8. Task C: Catalog Display • 112

report erratum • discuss

http://37signals.com/svn/posts/3113-how-key-based-cache-expiration-works
http://guides.rubyonrails.org/caching_with_rails.html
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

What We Just Did
We put together the basis of the store’s catalog display. The steps were as
follows:

1. Create a new controller to handle customer-centric interactions.

2. Implement the default index() action.

3. Add a call to the order() method within the Store controller to control the
order in which the items on the website are listed.

4. Implement a view (a .html.erb file) and a layout to contain it
(another .html.erb file).

5. Use a helper to format prices the way we want.

6. Make use of a CSS style sheet.

7. Write functional tests for our controller.

8. Implement fragment caching for portions of the page.

It’s time to check it all in and move on to the next task—namely, making a
shopping cart!

Playtime
Here’s some stuff to try on your own:

• Add a date and time to the sidebar. It doesn’t have to update; just show
the value at the time the page was displayed.

• Experiment with setting various number_to_currency helper method options,
and see the effect on your catalog listing.

• Write some functional tests for the product management application
using assert_select. The tests will need to be placed into the test/controllers/
products_controller_test.rb file.

• A reminder: the end of an iteration is a good time to save your work using
Git. If you’ve been following along, you have the basics you need at this
point.

report erratum • discuss

What We Just Did • 113

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

CHAPTER 9

In this chapter, you'll see:
• Sessions and session management
• Adding relationships among models
• Adding a button to add a product to a cart

Task D: Cart Creation
Now that we have the ability to display a catalog containing all our wonderful
products, it would be nice to be able to sell them. Our customer agrees, so
we’ve jointly decided to implement the shopping cart functionality next. This
is going to involve a number of new concepts, including sessions, relationships
among models, and adding a button to the view—so let’s get started.

Iteration D1: Finding a Cart
As users browse our online catalog, they will (we hope) select products to buy.
The convention is that each item selected will be added to a virtual shopping
cart, held in our store. At some point, our buyers will have everything they
need and will proceed to our site’s checkout, where they’ll pay for the stuff
in their carts.

This means that our application will need to keep track of all the items added
to the cart by the buyer. To do that, we’ll keep a cart in the database and
store its unique identifier, cart.id, in the session. Every time a request comes
in, we can recover that identifier from the session and use it to find the cart
in the database.

Let’s go ahead and create a cart:

depot> bin/rails generate scaffold Cart
...

depot> bin/rails db:migrate
== 20250420000003 CreateCarts: migrating ======================================
-- create_table(:carts)

-> 0.0016s
== 20250420000003 CreateCarts: migrated (0.0016s) =============================

Rails makes the current session look like a hash to the controller, so we’ll
store the ID of the cart in the session by indexing it with the :cart_id symbol:

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

rails80/depot_f/app/controllers/concerns/current_cart.rb
module CurrentCart

private

def set_cart
@cart = Cart.find(session[:cart_id])

rescue ActiveRecord::RecordNotFound
@cart = Cart.create
session[:cart_id] = @cart.id

end
end

The set_cart() method starts by getting the :cart_id from the session object and
then attempts to find a cart corresponding to this ID. If such a cart record
isn’t found (which will happen if the ID is nil or invalid for any reason), this
method will proceed to create a new Cart and then store the ID of the created
cart into the session.

Note that we place the set_cart() method in a CurrentCart module and place that
module in a new file in the app/controllers/concerns directory.1 This treatment
allows us to share common code (even as little as a single method!) among
controllers.

Additionally, we mark the method as private, which prevents Rails from ever
making it available as an action on the controller.

Iteration D2: Connecting Products to Carts
We’re looking at sessions because we need somewhere to keep our shopping
cart. We’ll cover sessions in more depth in Rails Sessions, on page 372, but
for now let’s move on to implement the cart.

Let’s keep things simple. A cart contains a set of products. Based on the Initial
guess at application data diagram on page 63, combined with a brief chat
with our customer, we can now generate the Rails models and populate the
migrations to create the corresponding tables:

depot> bin/rails generate scaffold LineItem product:references cart:belongs_to
...

depot> bin/rails db:migrate
== 20250420000004 CreateLineItems: migrating ==================================
-- create_table(:line_items)

-> 0.0023s
== 20250420000004 CreateLineItems: migrated (0.0024s) =========================

1. https://signalvnoise.com/posts/3372-put-chubby-models-on-a-diet-with-concerns

Chapter 9. Task D: Cart Creation • 116

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_f%2Fapp%2Fcontrollers%2Fconcerns%2Fcurrent_cart.rb
https://signalvnoise.com/posts/3372-put-chubby-models-on-a-diet-with-concerns
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

The database now has a place to store the references among line items, carts,
and products. If you look at the generated definition of the LineItem class, you
can see the definitions of these relationships:

rails80/depot_f/app/models/line_item.rb
class LineItem < ApplicationRecord

belongs_to :product
belongs_to :cart

end

The belongs_to() method defines an accessor method—in this case, carts() and
products()—but more importantly it tells Rails that rows in line_items are the
children of rows in carts and products. No line item can exist unless the corre-
sponding cart and product rows exist. A great rule of thumb for where to put
belongs_to declarations is this: if a table has any columns whose values consist
of ID values for another table (this concept is known by database designers
as foreign keys), the corresponding model should have a belongs_to for each.

What do these various declarations do? Basically, they add navigation capa-
bilities to the model objects. Because Rails added the belongs_to declaration to
LineItem, we can now retrieve its Product and display the book’s title:

li = LineItem.find(...)
puts "This line item is for #{li.product.title}"

To be able to traverse these relationships in both directions, we need to add
some declarations to our model files that specify their inverse relations.

Open the cart.rb file in app/models, and add a call to has_many():

rails80/depot_f/app/models/cart.rb
class Cart < ApplicationRecord

has_many :line_items, dependent: :destroy➤

end

That has_many :line_items part of the directive is fairly self-explanatory: a cart
(potentially) has many associated line items. These are linked to the cart because
each line item contains a reference to its cart’s ID. The dependent: :destroy part
indicates that the existence of line items is dependent on the existence of the
cart. If we destroy a cart, deleting it from the database, we want Rails also to
destroy any line items that are associated with that cart.

Now that the Cart is declared to have many line items, we can reference them
(as a collection) from a cart object:

cart = Cart.find(...)
puts "This cart has #{cart.line_items.count} line items"

report erratum • discuss

Iteration D2: Connecting Products to Carts • 117

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_f%2Fapp%2Fmodels%2Fline_item.rb
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_f%2Fapp%2Fmodels%2Fcart.rb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Now, for completeness, we should add a has_many directive to our Product model.
After all, if we have lots of carts, each product might have many line items
referencing it. This time, we make use of validation code to prevent the removal
of products that are referenced by line items:

rails80/depot_f/app/models/product.rb
class Product < ApplicationRecord

has_many :line_items➤

before_destroy :ensure_not_referenced_by_any_line_item➤

#...

private➤

ensure that there are no line items referencing this product➤

def ensure_not_referenced_by_any_line_item➤

unless line_items.empty?➤

errors.add(:base, "Line Items present")➤

throw :abort➤

end➤

end➤

end

Here we declare that a product has many line items and define a hook method
named ensure_not_referenced_by_any_line_item(). A hook method is a method that
Rails calls automatically at a given point in an object’s life. In this case, the
method will be called before Rails attempts to destroy a row in the database.
If the hook method throws :abort, the row isn’t destroyed.

Note that we have direct access to the errors object. This is the same place
that the validates() method stores error messages. Errors can be associated
with individual attributes, but in this case we associate the error with the
base object.

Before moving on, add a test to ensure that a product in a cart can’t be deleted:

rails80/depot_f/test/controllers/products_controller_test.rb
test "should destroy product" do

assert_raises ActiveRecord::RecordNotDestroyed do➤

delete product_url(products(:two))➤

end

assert Product.exists?(products(:two).id)➤

end

And change the fixture to make sure that product two is in both carts:

rails80/depot_f/test/fixtures/line_items.yml
Read about fixtures at
https://api.rubyonrails.org/classes/ActiveRecord/FixtureSet.html

Chapter 9. Task D: Cart Creation • 118

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_f%2Fapp%2Fmodels%2Fproduct.rb
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_f%2Ftest%2Fcontrollers%2Fproducts_controller_test.rb
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_f%2Ftest%2Ffixtures%2Fline_items.yml
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

one:
product: two➤

cart: one

two:
product: two
cart: two

We’ll have more to say about intermodel relationships starting in Specifying
Relationships in Models, on page 322.

Iteration D3: Adding a Button
Now that that’s done, it’s time to add an Add to Cart button for each product.

We don’t need to create a new controller or even a new action. Taking a look
at the actions provided by the scaffold generator, we find index(), show(), new(),
edit(), create(), update(), and destroy(). The one that matches this operation is create().
(new() may sound similar, but its use is to get a form that’s used to solicit
input for a subsequent create() action.)

Once this decision is made, the rest follows. What are we creating? Certainly
not a Cart or even a Product. What we’re creating is a LineItem. Looking at the
comment associated with the create() method in app/controllers/line_items_controller.rb,
you see that this choice also determines the URL to use (/line_items) and the
HTTP method (POST).

This choice even suggests the proper UI control to use. When we added links
before, we used link_to(), but links default to using HTTP GET. We want to use
POST, so we’ll add a button this time; this means we’ll be using the button_to()
method.

We could connect the button to the line item by specifying the URL, but again
we can let Rails take care of this for us by simply appending _path to the con-
troller’s name. In this case, we’ll use line_items_path.

However, there’s a problem with this: how will the line_items_path method
know which product to add to our cart? We’ll need to pass it the ID of the
product corresponding to the button. All we need to do is add the :product_id
option to the line_items_path() call. We can even pass in the product instance
itself—Rails knows to extract the ID from the record in circumstances
such as these.

In all, the one line that we need to add to our index.html.erb looks like this:

rails80/depot_f/app/views/store/index.html.erb
<div class="w-full">
<% if notice.present? %>

report erratum • discuss

Iteration D3: Adding a Button • 119

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_f%2Fapp%2Fviews%2Fstore%2Findex.html.erb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

<p class="py-2 px-3 bg-green-50 mb-5 text-green-500 font-medium rounded-lg
inline-block" id="notice">

<%= notice %>
</p>

<% end %>

<h1 class="font-bold text-xl mb-6 pb-2 border-b-2">
Your Pragmatic Catalog

</h1>

<% cache @products do %>

<% @products.each do |product| %>
<% cache product do %>

<li class='flex mb-6'>
<%= image_tag(product.image,
class: 'object-contain w-40 h-48 shadow mr-6') %>

<div>
<h2 class="font-bold text-lg mb-3"><%= product.title %></h2>

<p>
<%= sanitize(product.description) %>

</p>

<div class="mt-3">
<%= number_to_currency(product.price) %>

<%= button_to "Add to Cart",➤

line_items_path(product_id: product),➤

form_class: "inline",➤

class: 'ml-4 rounded-lg py-1 px-2➤

text-white bg-green-600' %>➤

</div>
</div>

<% end %>

<% end %>
<% end %>

</div>

We also need to deal with two formatting issues. button_to creates an HTML
<form> wrapping the <button>. HTML <form> is normally a block element that
appears on the next line. We’d like to place them next to the price. This is no
problem as Rails lets you specify both the form_class as well as the button class.

Now our index page looks like the screenshot shown on page 121. But before
we push the button, we need to modify the create() method in the line items
controller to expect a product ID as a form parameter. Here’s where we start
to see how important the id field is in our models. Rails identifies model objects

Chapter 9. Task D: Cart Creation • 120

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

(and the corresponding database rows) by their id fields. If we pass an ID to
create(), we’re uniquely identifying the product to add.

Home

Questions

News

Contact

Your Pragmatic Catalog

Modern Front-End Development for Rails, Second Edition

Hotwire, Stimulus, Turbo, and React Improve the user experience for your Rails app with rich,

engaging client-side interactions. Learn to use the Rails 7 tools and simplify the complex

JavaScript ecosystem. It’s easier than ever to build user interactions with Hotwire, Turbo, and

Stimulus. You can add great front-end flair without much extra complication. Use React to

build a more complex set of client-side features. Structure your code for different levels of

client-side needs with these powerful options. Add to your toolkit today!

$28.95 Add to Cart

Why the create() method? The default HTTP method for a link is a GET, and for
a button is a POST. Rails uses these conventions to determine which method
to call. Refer to the comments inside the app/controllers/line_items_controller.rb file
to see other conventions. We’ll be making extensive use of these conventions
inside the Depot application.

Now let’s modify the LineItemsController to find the shopping cart for the current
session (creating one if one isn’t there already), add the selected product to
that cart, and display the cart contents.

We use the CurrentCart concern we implemented in Iteration D1 on page 116 to
find (or create) a cart in the session:

rails80/depot_f/app/controllers/line_items_controller.rb
class LineItemsController < ApplicationController

include CurrentCart➤

before_action :set_cart, only: %i[create]➤

before_action :set_line_item, only: %i[show edit update destroy]

GET /line_items or /line_items.json
#...

end

We include the CurrentCart module and declare that the set_cart() method is to be
involved before the create() action. We explore action callbacks in depth in
Callbacks, on page 378, but for now all you need to know is that Rails provides
the ability to wire together methods that are to be called before, after, or even
around controller actions.

report erratum • discuss

Iteration D3: Adding a Button • 121

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_f%2Fapp%2Fcontrollers%2Fline_items_controller.rb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8
http://localhost:3003/
http://localhost:3003/questions
http://localhost:3003/news
http://localhost:3003/contact

In fact, as you can see, the generated controller already uses this facility to
set the value of the @line_item instance variable before the show(), edit(), update(),
or destroy() actions are called.

Now that we know that the value of @cart is set to the value of the current
cart, all we need to modify is a few lines of code in the create() method in
app/controllers/line_items_controller.rb. to build the line item itself:

rails80/depot_f/app/controllers/line_items_controller.rb
def create

product = Product.find(params[:product_id])➤

@line_item = @cart.line_items.build(product: product)➤

respond_to do |format|
if @line_item.save

format.html { redirect_to @line_item.cart,➤

notice: "Line item was successfully created." }
format.json { render :show,

status: :created, location: @line_item }
else

format.html { render :new,
status: :unprocessable_entity }

format.json { render json: @line_item.errors,
status: :unprocessable_entity }

end
end

end

We use the params object to get the :product_id parameter from the request. The
params object is important inside Rails applications. It holds all of the param-
eters passed in a browser request. We store the result in a local variable
because there’s no need to make this available to the view.

We then pass that product we found into @cart.line_items.build. This causes a
new line item relationship to be built between the @cart object and the product.
You can build the relationship from either end, and Rails takes care of
establishing the connections on both sides.

We save the resulting line item into an instance variable named @line_item.

The remainder of this method takes care of handling errors, which we’ll cover
in more detail in Iteration E2: Handling Errors, on page 132, (as well as han-
dling JSON requests, which we don’t need per se but that were added by the
Rails generator). But for now, we want to modify only one more thing: once
the line item is created, we want to redirect users to the cart instead of back
to the line item. Since the line item object knows how to find the cart object,
all we need to do is add .cart to the method call.

Chapter 9. Task D: Cart Creation • 122

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_f%2Fapp%2Fcontrollers%2Fline_items_controller.rb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Confident that the code works as intended, we try the Add to Cart buttons
in our browser. And the following screenshot shows what we see.

Home

Questions

News

Contact

Line item was successfully created.

Showing cart

This is a bit underwhelming. We have scaffolding for the cart, but when we
created it we didn’t provide any attributes, so the view doesn’t have anything
to show. For now, let’s add a trivial template that shows the title of each book
in the cart. Update the file views/carts/_cart.html.erb like so:

rails80/depot_f/app/views/carts/_cart.html.erb
<div id="<%= dom_id cart %>">

<h2 class="font-bold text-lg mb-3">Your Pragmatic Cart</h2>➤
➤

<ul class="list-disc list-inside">➤

<% cart.line_items.each do |item| %>➤

<%= item.product.title %>➤

<% end %>➤

➤

</div>

You may be wondering about the underscore in the file name and where the
cart variable comes from. Don’t worry, we’ll cover all this and more when we
get to Partial Templates, on page 144, but for now it’s enough to know that
this is the file that Rails uses to render a single cart.

So, with everything plumbed together, let’s go back and click the Add to Cart
button again and see our view displayed, as in the following screenshot.

Home

Questions

News

Contact

Line item was successfully created.

Showing cart
Your Pragmatic Cart

Modern Front-End Development for Rails,

Second Edition

report erratum • discuss

Iteration D3: Adding a Button • 123

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_f%2Fapp%2Fviews%2Fcarts%2F_cart.html.erb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8
http://localhost:3003/
http://localhost:3003/questions
http://localhost:3003/news
http://localhost:3003/contact
http://localhost:3003/
http://localhost:3003/questions
http://localhost:3003/news
http://localhost:3003/contact

Go back to http://localhost:3000/, the main catalog page, and add a different
product to the cart. You’ll see the original two entries plus our new item in
your cart. It looks like we have sessions working.

We changed the function of our controller, so we know that we need to update
the corresponding functional test.

For starters, we only need to pass a product ID on the call to post. Next, we
have to deal with the fact that we’re no longer redirecting to the line items
page. We’re instead redirecting to the cart, where the cart ID is internal state
data residing in a cookie. Because this is an integration test, instead of
focusing on how the code is implemented, we should focus on what users see
after following the redirect: a page with a heading identifying that they’re
looking at a cart, with a list item corresponding to the product they added.

We do this by updating test/controllers/line_items_controller_test.rb:

rails80/depot_g/test/controllers/line_items_controller_test.rb
test "should create line_item" do

assert_difference("LineItem.count") do
post line_items_url, params: { product_id: products(:pragprog).id }➤

end

follow_redirect!➤
➤

assert_select "h2", "Your Pragmatic Cart"➤

assert_select "li", "The Pragmatic Programmer"➤

end

We now rerun this set of tests:

depot> bin/rails test test/controllers/line_items_controller_test.rb

It’s time to show our customer, so we call her over and proudly display our
handsome new cart. Somewhat to our dismay, she makes that tsk-tsk sound
that customers make just before telling you that you clearly don’t get
something.

Real shopping carts, she explains, don’t show separate lines for two of the
same product. Instead, they show the product line once with a quantity of 2.
It looks like we’re lined up for our next iteration.

What We Just Did
It’s been a busy, productive day so far. We added a shopping cart to our store,
and along the way we dipped our toes into some neat Rails features:

• We created a Cart object in one request and successfully located the same
cart in subsequent requests by using a session object.

Chapter 9. Task D: Cart Creation • 124

report erratum • discuss

http://localhost:3000/
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_g%2Ftest%2Fcontrollers%2Fline_items_controller_test.rb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

• We added a private method and placed it in a concern, making it accessible
to all of our controllers.

• We created relationships between carts and line items, and relationships
between line items and products, and we were able to navigate using
these relationships.

• We added a button that causes a product to be posted to a cart, causing
a new line item to be created.

Playtime
Here’s some stuff to try on your own:

• Add a new variable to the session to record how many times the user
has accessed the store controller’s index action. Note that the first time
this page is accessed, your count won’t be in the session. You can test
for this with code like this:

if session[:counter].nil?
...

If the session variable isn’t there, you need to initialize it. Then you’ll be
able to increment it.

• Pass this counter to your template, and display it at the top of the catalog
page. Hint: the pluralize helper (There’s a method to pluralize nouns: on
page 394) might be useful for forming the message you display.

• Reset the counter to zero whenever the user adds something to the cart.

• Change the template to display the counter only if the count is greater
than five.

report erratum • discuss

Iteration D3: Adding a Button • 125

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

CHAPTER 10

In this chapter, you'll see:
• Modifying the schema and existing data
• Error diagnosis and handling
• The flash
• Logging

Task E: A Smarter Cart
Although we have rudimentary cart functionality implemented, we have much
to do. To start with, we need to recognize when customers add multiples of
the same item to the cart. Once that’s done, we’ll also have to make sure that
the cart can handle error cases and communicate problems encountered
along the way to the customer or system administrator, as appropriate.

Iteration E1: Creating a Smarter Cart
Associating a count with each product in our cart is going to require us to
modify the line_items table. We’ve used migrations before; for example, we used
a migration in Applying the Migration, on page 68, to update the schema of
the database. While that was as part of creating the initial scaffolding for a
model, the basic approach is the same:

depot> bin/rails generate migration add_quantity_to_line_items quantity:integer

Rails can tell from the name of the migration that you’re adding columns to the
line_items table and can pick up the names and data types for each column from
the last argument. The two patterns that Rails matches on are AddXXXToTABLE
and RemoveXXXFromTABLE, where the value of XXX is ignored; what matters is the
list of column names and types that appears after the migration name.

The only thing Rails can’t tell is what a reasonable default is for this column.
In many cases, a null value would do, but let’s make it the value 1 for existing
carts by modifying the migration before we apply it:

rails80/depot_g/db/migrate/20250420000005_add_quantity_to_line_items.rb
class AddQuantityToLineItems < ActiveRecord::Migration[8.0]

def change
add_column :line_items, :quantity, :integer, default: 1➤

end
end

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_g%2Fdb%2Fmigrate%2F20250420000005_add_quantity_to_line_items.rb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Once it’s complete, we run the migration:

depot> bin/rails db:migrate

Now we need a smart add_product() method in our Cart, one that checks if our
list of items already includes the product we’re adding; if it does, it bumps
the quantity, and if it doesn’t, it builds a new LineItem:

rails80/depot_g/app/models/cart.rb
def add_product(product)

current_item = line_items.find_by(product_id: product.id)
if current_item

current_item.quantity += 1
else

current_item = line_items.build(product_id: product.id)
end
current_item

end

The find_by() method is a streamlined version of the where() method. Instead of
returning an array of results, it returns either an existing LineItem or nil.

We also need to modify the line item controller to use this method:

rails80/depot_g/app/controllers/line_items_controller.rb
def create

product = Product.find(params[:product_id])
@line_item = @cart.add_product(product)➤

respond_to do |format|
if @line_item.save

format.html { redirect_to @line_item.cart,
notice: "Line item was successfully created." }

format.json { render :show,
status: :created, location: @line_item }

else
format.html { render :new,

status: :unprocessable_entity }
format.json { render json: @line_item.errors,

status: :unprocessable_entity }
end

end
end

We make two small changes to the _cart template to use this new infor-
mation:

rails80/depot_g/app/views/carts/_cart.html.erb
<div id="<%= dom_id cart %>">

<h2 class="font-bold text-lg mb-3">Your Pragmatic Cart</h2>

<ul class="list-none list-inside">➤

Chapter 10. Task E: A Smarter Cart • 128

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_g%2Fapp%2Fmodels%2Fcart.rb
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_g%2Fapp%2Fcontrollers%2Fline_items_controller.rb
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_g%2Fapp%2Fviews%2Fcarts%2F_cart.html.erb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

<% cart.line_items.each do |item| %>
<%= item.quantity %> × <%= item.product.title %>➤

<% end %>

</div>

In addition to displaying the quantity for each line item, we remove the bullets
that precede each item in the unordered list by changing list-disc to list-none.
This shows one of many benefits to using a CSS framework to make our work
more agile. When we make this change, we know not only that this change
applies to this particular view; we also know that this change does not affect
any other view—assurances we don’t always have when authoring CSS style
sheets.

Now that all the pieces are in place, we can go back to the store page and click
the Add to Cart button for a product that’s already in the cart. What we’re likely
to see is a mixture of individual products listed separately and a single product
listed with a quantity of two. This is because we added a quantity of one to
existing columns instead of collapsing multiple rows when possible. What we
need to do next is migrate the data.

We start by creating a migration:

depot> bin/rails generate migration combine_items_in_cart

This time, Rails can’t infer what we’re trying to do, so we can’t rely on the
generated change() method. What we need to do instead is to replace this
method with separate up() and down() methods. First, here’s the up() method:

rails80/depot_g/db/migrate/20250420000006_combine_items_in_cart.rb
def up

replace multiple items for a single product in a cart with a
single item
Cart.all.each do |cart|

count the number of each product in the cart
sums = cart.line_items.group(:product_id).sum(:quantity)

sums.each do |product_id, quantity|
if quantity > 1

remove individual items
cart.line_items.where(product_id: product_id).delete_all

replace with a single item
item = cart.line_items.build(product_id: product_id)
item.quantity = quantity
item.save!

end
end

end
end

report erratum • discuss

Iteration E1: Creating a Smarter Cart • 129

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_g%2Fdb%2Fmigrate%2F20250420000006_combine_items_in_cart.rb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

This is easily the most extensive code you’ve seen so far. Let’s look at it in
small pieces:

• We start by iterating over each cart.

• For each cart, we get a sum of the quantity fields for each of the line items
associated with this cart, grouped by product_id. The resulting sums will
be a list of ordered pairs of product_ids and quantity.

• We iterate over these sums, extracting the product_id and quantity from each.

• In cases where the quantity is greater than one, we delete all of the
individual line items associated with this cart and this product and replace
them with a single line item with the correct quantity.

Note how easily and elegantly Rails enables you to express this algorithm.

With this code in place, we apply this migration like any other migration:

depot> bin/rails db:migrate

We can see the results by looking at the cart, shown in the following
screenshot.

Home

Questions

News

Contact

Showing cart
Your Pragmatic Cart

2 × Programming Ruby 3.3 (5th Edition)

3 × Rails Scales!

Although we have reason to be pleased with ourselves, we’re not done yet.
An important principle of migrations is that each step needs to be reversible,
so we implement a down() too. This method finds line items with a quantity of
greater than one; adds new line items for this cart and product, each with a
quantity of one; and, finally, deletes the line item:

rails80/depot_g/db/migrate/20250420000006_combine_items_in_cart.rb
def down

split items with quantity>1 into multiple items
LineItem.where("quantity>1").each do |line_item|

add individual items

Chapter 10. Task E: A Smarter Cart • 130

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_g%2Fdb%2Fmigrate%2F20250420000006_combine_items_in_cart.rb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8
http://localhost:3003/
http://localhost:3003/questions
http://localhost:3003/news
http://localhost:3003/contact

line_item.quantity.times do
LineItem.create(

cart_id: line_item.cart_id,
product_id: line_item.product_id,
quantity: 1

)
end

remove original item
line_item.destroy

end
end

Now, we can just as easily roll back our migration with a single command:

depot> bin/rails db:rollback

Rails provides a Rake task to allow you to check the status of your migrations:

depot> bin/rails db:migrate:status
database: storage/development.sqlite3

Status Migration ID Migration Name
--

up 20160407000001 Create products
up 20160407000002 Create carts
up 20160407000003 Create line items
up 20160407000004 Add quantity to line items

down 20160407000005 Combine items in cart

Now, we can modify and reapply the migration or even delete it entirely. To
inspect the results of the rollback, we have to move the migration file out of
the way so Rails doesn’t think it should apply it. You can do that via mv, for
example. If you do that, the cart should look like the following screenshot:

Home

Questions

News

Contact

Showing cart
Your Pragmatic Cart

1 × Programming Ruby 3.3 (5th Edition)

1 × Programming Ruby 3.3 (5th Edition)

1 × Rails Scales!

1 × Rails Scales!

1 × Rails Scales!

Once we move the migration file back and reapply the migration (with the
bin/rails db:migrate command), we have a cart that maintains a count for each of
the products it holds, and we have a view that displays that count.

report erratum • discuss

Iteration E1: Creating a Smarter Cart • 131

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8
http://localhost:3003/
http://localhost:3003/questions
http://localhost:3003/news
http://localhost:3003/contact

Since we changed the output the application produces, we need to update
the tests to match. Note that what the user sees isn’t the string × but
the Unicode character ×. If you can’t find a way to enter that character using
your keyboard and operating system combination, you can use the escape
sequence \u00D71 instead (also note the use of double quotes, as this is needed
in Ruby to enter the escape sequence):

rails80/depot_h/test/controllers/line_items_controller_test.rb
test "should create line_item" do

assert_difference("LineItem.count") do
post line_items_url, params: { product_id: products(:pragprog).id }

end

follow_redirect!

assert_select "h2", "Your Pragmatic Cart"
assert_select "li", "1 \u00D7 The Pragmatic Programmer"➤

end

Happy that we have something presentable, we call our customer over and
show her the result of our morning’s work. She’s pleased—she can see the
site starting to come together. However, she’s also troubled, having just read
an article in the trade press on the way e-commerce sites are being attacked
and compromised daily. She read that one kind of attack involves feeding
requests with bad parameters into web applications, hoping to expose bugs
and security flaws. She noticed that the link to the cart looks like carts/nnn,
where nnn is our internal cart ID. Feeling malicious, she manually types this
request into a browser, giving it a cart ID of wibble. She’s not impressed when
our application displays the page shown in the screenshot on page 133.

This seems fairly unprofessional. So our next iteration will be spent making
the application more resilient.

Iteration E2: Handling Errors
It’s apparent from the page shown in the screenshot on page 133 that our
application raised an exception at line 63 of the carts controller. Your line
number might be different, as we have some book-related formatting stuff in
our source files. If you go to that line, you’ll find the following code:

@cart = Cart.find(params[:id])

If the cart can’t be found, Active Record raises a RecordNotFound exception, which
we clearly need to handle. The question arises—how?

1. http://www.fileformat.info/info/unicode/char/00d7/index.htm

Chapter 10. Task E: A Smarter Cart • 132

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_h%2Ftest%2Fcontrollers%2Fline_items_controller_test.rb
http://www.fileformat.info/info/unicode/char/00d7/index.htm
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

ActiveRecord::RecordNotFound in
CartsController#show
Couldn't find Cart with 'id'=wibble

Extracted source (around line #63):

61
62
63
64
65
66

 # Use callbacks to share common setup or constraints between actions.
 def set_cart
 @cart = Cart.find(params.expect(:id))
 end

 # Only allow a list of trusted parameters through.

Rails.root: /Users/rubys/git/awdwr8/work

Application Trace | Framework Trace | Full Trace
app/controllers/carts_controller.rb:63:in 'CartsController#set_cart'

Request
Parameters:

{"id" => "wibble"}

Toggle session dump

Toggle env dump

Response
Headers:

None

>>

x

We could silently ignore it. From a security standpoint, this is probably the
best move, because it gives no information to a potential attacker. However,
it also means that if we ever have a bug in our code that generates bad cart
IDs, our application will appear to the outside world to be unresponsive—no
one will know that an error occurred.

report erratum • discuss

Iteration E2: Handling Errors • 133

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Instead, we’ll take two actions when an exception is raised. First, we’ll log the
fact to an internal log file using the Rails logger facility.2 Second, we’ll redisplay
the catalog page along with a short message (something along the lines of
“Invalid cart”) to the user, who can then continue to use our site.

Rails has a convenient way of dealing with errors and error reporting. It defines
a structure called a flash. A flash is a bucket (actually closer to a Hash) in
which you can store stuff as you process a request. The contents of the flash
are available to the next request in this session before being deleted automat-
ically. Typically, the flash is used to collect error messages. For example,
when our show() method detects that it was passed an invalid cart ID, it can
store that error message in the flash area and redirect to the index() action to
redisplay the catalog. The view for the index action can extract the error and
display it at the top of the catalog page. The flash information is accessible
within the views via the flash accessor method.

Why can’t we store the error in any old instance variable? Remember that
after a redirect is sent by our application to the browser, the browser sends
a new request back to our application. By the time we receive that request,
our application has moved on; all the instance variables from previous requests
are long gone. The flash data is stored in the session to make it available
between requests.

Armed with this background about flash data, we can create an invalid_cart()
method to report on the problem:

rails80/depot_h/app/controllers/carts_controller.rb
class CartsController < ApplicationController

before_action :set_cart, only: %i[show edit update destroy]
rescue_from ActiveRecord::RecordNotFound, with: :invalid_cart➤

GET /carts or /carts.json
...
private
...

def invalid_cart➤

logger.error "Attempt to access invalid cart #{params[:id]}"➤

redirect_to store_index_url, notice: "Invalid cart"➤

end➤

end

The rescue_from clause intercepts the exception raised by Cart.find(). In the handler,
we do the following:

2. http://guides.rubyonrails.org/debugging_rails_applications.html#the-logger

Chapter 10. Task E: A Smarter Cart • 134

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_h%2Fapp%2Fcontrollers%2Fcarts_controller.rb
http://guides.rubyonrails.org/debugging_rails_applications.html#the-logger
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

• Use the Rails logger to record the error. Every controller has a logger
attribute. Here we use it to record a message at the error logging level.

• Redirect to the catalog display by using the redirect_to() method. The :notice
parameter specifies a message to be stored in the flash as a notice. Why
redirect rather than display the catalog here? If we redirect, the user’s
browser will end up displaying the store URL rather than http://.../cart/wibble.
We expose less of the application this way. We also prevent the user from
retriggering the error by clicking the Reload button.

With this code in place, we can rerun our customer’s problematic query by
entering the following URL:

http://localhost:3000/carts/wibble

We don’t see a bunch of errors in the browser now. Instead, the catalog page
is displayed with the error message shown in the following screenshot.

Home

Questions

News

Contact

Invalid cart

Your Pragmatic Catalog

If we look at the end of the log file (development.log in the log directory), we see
our message:

Started GET "/carts/wibble" for ::1 at 2024-06-20 19:59:26 -0400
Processing by CartsController#show as HTML

Parameters: {"id"=>"wibble"}
^[[1m^[[36mCart Load (0.4ms)^[[0m ^[[1m^[[34mSELECT "carts".* FROM "carts"
↳ app/controllers/carts_controller.rb:71:in `set_cart'

Attempt to access invalid cart wibble
Redirected to http://localhost:3003/
Completed 302 Found in 6ms (ActiveRecord: 0.3ms (1 query, 0 cached) | GC:

On Unix machines, we’d probably use a command such as tail or less to view this
file. On Windows, you can use your favorite editor. It’s often a good idea to keep
a window open to show new lines as they’re added to this file. In Unix, you’d
use tail -f. You can download a tail command for Windows3 or get a GUI-based

3. http://gnuwin32.sourceforge.net/packages/coreutils.htm

report erratum • discuss

Iteration E2: Handling Errors • 135

http://gnuwin32.sourceforge.net/packages/coreutils.htm
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8
http://localhost:3003/
http://localhost:3003/questions
http://localhost:3003/news
http://localhost:3003/contact

tool.4 Finally, some OS X users use Console.app to track log files. Just say
open development.log at the command line.

This being the Internet, we can’t worry only about our published web forms;
we have to worry about every possible interface, because malicious crackers
can get underneath the HTML we provide and attempt to provide additional
parameters. Invalid carts aren’t our biggest problem here; we also want to
prevent access to other people’s carts.

As always, your controllers are your first line of defense. Let’s go ahead and
remove cart_id from the list of parameters that are permitted:

rails80/depot_h/app/controllers/line_items_controller.rb
def line_item_params
params.expect(line_item: [:product_id])➤

end

We can see this in action by rerunning our controller tests:

bin/rails test:controllers

No tests fail, but we should clean this up anyway:

rails80/depot_h/test/controllers/line_items_controller_test.rb
test "should update line_item" do

patch line_item_url(@line_item),➤

params: { line_item: { product_id: @line_item.product_id } }➤

assert_redirected_to line_item_url(@line_item)
end

bin/rails test:controllers

Sensing the end of an iteration, we call our customer over and show her that
the error is now properly handled. She is delighted and continues to play with
the application. She notices a minor problem on our new cart display: there’s
no way to empty items out of a cart. This minor change will be our next iter-
ation. We should make it before heading home.

Iteration E3: Finishing the Cart
We know by now that to implement the empty-cart function, we have to add
a link to the cart and modify the destroy() method in the carts controller to
clean up the session.

Start with the template and use the button_to() method to add a button:

4. http://tailforwin32.sourceforge.net/

Chapter 10. Task E: A Smarter Cart • 136

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_h%2Fapp%2Fcontrollers%2Fline_items_controller.rb
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_h%2Ftest%2Fcontrollers%2Fline_items_controller_test.rb
http://tailforwin32.sourceforge.net/
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

rails80/depot_h/app/views/carts/_cart.html.erb
<div id="<%= dom_id cart %>">

<h2 class="font-bold text-lg mb-3">Your Pragmatic Cart</h2>

<ul class="list-none list-inside">
<% cart.line_items.each do |item| %>
<%= item.quantity %> × <%= item.product.title %>

<% end %>

</div>

<%= button_to 'Empty Cart', cart, method: :delete,➤

class: 'ml-4 rounded-lg py-1 px-2 text-white bg-green-600' %>➤

In the controller, let’s modify the destroy() method to ensure that the user is
deleting his or her own cart (think about it!) and to remove the cart from the
session before redirecting to the index page with a notification message:

rails80/depot_h/app/controllers/carts_controller.rb
def destroy

@cart.destroy! if @cart.id == session[:cart_id]➤

session[:cart_id] = nil➤

respond_to do |format|
format.html { redirect_to store_index_path, status: :see_other,➤

notice: "Your cart is currently empty" }➤

format.json { head :no_content }
end

end

And we update the corresponding test in test/controllers/carts_controller_test.rb:

rails80/depot_i/test/controllers/carts_controller_test.rb
test "should destroy cart" do

post line_items_url, params: { product_id: products(:pragprog).id }➤

@cart = Cart.find(session[:cart_id])➤
➤

assert_difference("Cart.count", -1) do
delete cart_url(@cart)

end

assert_redirected_to store_index_url➤

end

Now when we view our cart and click the Empty Cart button, we’re taken
back to the catalog page and see the message shown in the screenshot on
page 138.

report erratum • discuss

Iteration E3: Finishing the Cart • 137

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_h%2Fapp%2Fviews%2Fcarts%2F_cart.html.erb
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_h%2Fapp%2Fcontrollers%2Fcarts_controller.rb
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_i%2Ftest%2Fcontrollers%2Fcarts_controller_test.rb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Home

Questions

News

Your cart is currently empty

Your Pragmatic Catalog

We can remove the flash message that’s autogenerated when a line item is
added:

rails80/depot_i/app/controllers/line_items_controller.rb
def create

product = Product.find(params[:product_id])
@line_item = @cart.add_product(product)

respond_to do |format|
if @line_item.save

format.html { redirect_to @line_item.cart }➤

format.json { render :show,
status: :created, location: @line_item }

else
format.html { render :new,

status: :unprocessable_entity }
format.json { render json: @line_item.errors,

status: :unprocessable_entity }
end

end
end

Finally, we get around to tidying up the cart display. The -based approach
makes it hard to style. A table-based layout would be easier. Replace
app/views/carts/_cart.html.erb with the following:

rails80/depot_i/app/views/carts/_cart.html.erb
<div id="<%= dom_id cart %>">

<h2 class="font-bold text-lg mb-3">Your Cart</h2>➤
➤

<table class="table-auto">➤

<% cart.line_items.each do |line_item| %>➤

<tr>➤

<td class="text-right"><%= line_item.quantity %></td>➤

<td>×</td>➤

<td class="pr-2">➤

<%= line_item.product.title %>➤

</td>➤

<td class="text-right font-bold">➤

Chapter 10. Task E: A Smarter Cart • 138

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_i%2Fapp%2Fcontrollers%2Fline_items_controller.rb
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_i%2Fapp%2Fviews%2Fcarts%2F_cart.html.erb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8
http://localhost:3003/
http://localhost:3003/questions
http://localhost:3003/news

<%= number_to_currency(line_item.total_price) %>➤

</td>➤

</tr>➤

<% end %>➤
➤

<tfoot>➤

<tr>➤

<th class="text-right pr-2 pt-2" colspan="3">Total:</th>➤

<td class="text-right pt-2 font-bold border-t-2 border-black">➤

<%= number_to_currency(cart.total_price) %>➤

</td>➤

</tr>➤

</tfoot>➤

</table>➤

<%= button_to 'Empty Cart', cart, method: :delete,
class: 'ml-4 rounded-lg py-1 px-2 text-white bg-green-600' %>

</div>

To make this work, we need to add a method to both the LineItem and Cart
models that returns the total price for the individual line item and entire
cart, respectively. Here is the line item, which involves only simple multi-
plication:

rails80/depot_i/app/models/line_item.rb
def total_price

product.price * quantity
end

We implement the Cart method using the nifty Array::sum() method to sum the
prices of each item in the collection:

rails80/depot_i/app/models/cart.rb
def total_price

line_items.sum { |item| item.total_price }
end

The following screenshot shows a nicer-looking cart.

Home

Questions

News

Contact

Your Cart

2×Docker for Rails Developers $39.90

1 ×

Design and Build Great Web

APIs
$24.95

Total: $64.85

report erratum • discuss

Iteration E3: Finishing the Cart • 139

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_i%2Fapp%2Fmodels%2Fline_item.rb
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_i%2Fapp%2Fmodels%2Fcart.rb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8
http://localhost:3003/
http://localhost:3003/questions
http://localhost:3003/news
http://localhost:3003/contact

Finally, we update our test cases to match the current output:

rails80/depot_i/test/controllers/line_items_controller_test.rb
test "should create line_item" do

assert_difference("LineItem.count") do
post line_items_url, params: { product_id: products(:pragprog).id }

end

follow_redirect!

assert_select "h2", "Your Cart"➤

assert_select "td", "The Pragmatic Programmer"➤

end

What We Just Did
Our shopping cart is now something the client is happy with. Along the way,
we covered the following:

• Adding a column to an existing table, with a default value
• Migrating existing data into the new table format
• Providing a flash notice of an error that was detected
• Using the logger to log events
• Removing a parameter from the permitted list
• Deleting a record
• Adjusting the way a table is rendered, using Tailwind CSS classes

But, just as we think we’ve wrapped up this functionality, our customer
wanders over with a copy of Information Technology and Golf Weekly. Appar-
ently, it has an article about the Hotwire style of browser interface, where
stuff gets updated on the fly. Hmmm…let’s look at that tomorrow.

Playtime
Here’s some stuff to try on your own:

• Create a migration that copies the product price into the line item, and
change the add_product() method in the Cart model to capture the price
whenever a new line item is created. Add prices to the line_items.yml fixture.

• Write unit tests that add both unique products and duplicate products
to a cart. Assert how many products should be in the cart in each instance.
Note that you’ll need to modify the fixture to refer to products and carts
by name—for example, product: pragprog.

• Check products and line items for other places where a user-friendly error
message would be in order.

Chapter 10. Task E: A Smarter Cart • 140

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_i%2Ftest%2Fcontrollers%2Fline_items_controller_test.rb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

• Add the ability to delete individual line items from the cart. This will
require buttons on each line, and such buttons will need to be linked to
the destroy() action in the LineItemsController.

• We prevented accessing other users’ carts in the LineItemsController, but you
can still see other carts by navigating directly to a URL like http://local-
host/carts/3. See if you can prevent accessing any cart other than the one
currently stored in the session.

report erratum • discuss

Iteration E3: Finishing the Cart • 141

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

CHAPTER 11

In this chapter, you'll see:
• Using partial templates
• Rendering into the page layout
• Updating pages dynamically with TurboStreams
• Testing the TurboStream updates
• Highlighting changes with CSS Animations
• Broadcasting changes with Action Cable

Task F: Hotwiring the Storefront
Our customer wants us to make the storefront more interactive. After we
ask her what she means, we come to realize that what she wants is for the
page to update in place—no bouncing between pages, but to have the page
dynamically update as the cart is being filled.

Back in the old days (up until 1994 or so), browsers were treated as dumb
devices. When you wrote a browser-based application, you’d send stuff to the
browser and then forget about that session. At some point, the user would
fill in some form fields or click a hyperlink, and your application would get
woken up by an incoming request. It would render a complete page back to
the user, and the whole tedious process would start afresh. That’s exactly
how our Depot application behaves so far.

But it turns out that browsers aren’t really that dumb. (Who knew?) They
can run code. All modern browsers can run JavaScript. And it turns out that
the JavaScript in the browser can interact behind the scenes with the appli-
cation on the server, updating the stuff the user sees as a result.

Originally introduced in Rails 7 is a collection of web frameworks included
by default that collectively goes by the name Hotwire,1 which stands for HTML
Over The Wire. Clever, huh? The general idea is that instead of always
building entire HTML pages to send to the client, you build HTML fragments
or partials and send the results to the client, which will integrate those frag-
ments into the page that already is being displayed.

So let’s Hotwire our shopping cart. Rather than having a separate shopping
cart page, let’s put the current cart display into the catalog’s sidebar. Then
we’ll use Hotwire to update the cart in the sidebar without redisplaying the
whole page.

1. https://hotwired.dev/

report erratum • discuss

https://hotwired.dev/
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Whenever you work with Hotwire, it’s good to start with the non-Hotwire
version of the application and then gradually introduce Hotwire features.
That’s what we’ll do here. For starters, let’s move the cart from its own page
and put it in the sidebar.

Iteration F1: Moving the Cart
Currently, our cart is rendered by the show action in the CartController and the
corresponding .html.erb template. We’d like to move that rendering into the sidebar.
This means it’ll no longer be in its own page. Instead, we’ll render it in the layout
that displays the overall catalog. You can do that using partial templates.

Partial Templates
Programming languages let you define methods. A method is a chunk of code
with a name: invoke the method by the name, and the corresponding chunk of
code gets run. And, of course, you can pass parameters to a method, which lets
you write a piece of code that can be used in many different circumstances.

Think of Rails partial templates (partials for short) like a method for views. A
partial is simply a chunk of a view in its own separate file. You can invoke (aka
render) a partial from another template or from a controller, and the partial
will render itself and return the results of that rendering. As with methods, you
can pass parameters to a partial, so the same partial can render different results.

We’ll use partials twice in this iteration. First let’s look at the cart display:

rails80/depot_i/app/views/carts/_cart.html.erb
<div id="<%= dom_id cart %>">

<h2 class="font-bold text-lg mb-3">Your Cart</h2>

<table class="table-auto">
<% cart.line_items.each do |line_item| %>
<tr>

<td class="text-right"><%= line_item.quantity %></td>
<td>×</td>
<td class="pr-2">

<%= line_item.product.title %>
</td>
<td class="text-right font-bold">

<%= number_to_currency(line_item.total_price) %>
</td>

</tr>
<% end %>

<tfoot>
<tr>

<th class="text-right pr-2 pt-2" colspan="3">Total:</th>
<td class="text-right pt-2 font-bold border-t-2 border-black">

Chapter 11. Task F: Hotwiring the Storefront • 144

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_i%2Fapp%2Fviews%2Fcarts%2F_cart.html.erb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

<%= number_to_currency(cart.total_price) %>
</td>

</tr>
</tfoot>

</table>

<%= button_to 'Empty Cart', cart, method: :delete,
class: 'ml-4 rounded-lg py-1 px-2 text-white bg-green-600' %>

</div>

It creates a list of table rows, one for each item in the cart. Whenever you find
yourself iterating like this, stop and ask yourself, is this too much logic in a tem-
plate? It turns out we can abstract away the loop by using partials. To do this,
make use of the fact that you can pass a collection to the method that renders
partial templates, and that method will automatically invoke the partial once for
each item in the collection. Let’s rewrite our cart view to use this feature:

rails80/depot_j/app/views/carts/_cart.html.erb
<div id="<%= dom_id cart %>">

<h2 class="font-bold text-lg mb-3">Your Cart</h2>

<table class="table-auto">
<%= render cart.line_items %>➤

<tfoot>
<tr>

<th class="text-right pr-2 pt-2" colspan="3">Total:</th>
<td class="text-right pt-2 font-bold border-t-2 border-black">

<%= number_to_currency(cart.total_price) %>
</td>

</tr>
</tfoot>

</table>

<%= button_to 'Empty Cart', cart, method: :delete,
class: 'ml-4 rounded-lg py-1 px-2 text-white bg-green-600' %>

</div>

That’s a lot simpler. The render() method will iterate over any collection that’s
passed to it. The partial template is simply another template file (by default
in the same directory as the object being rendered and with the name of the
table as the name). However, to keep the names of partials distinct from reg-
ular templates, Rails automatically prepends an underscore to the partial
name when looking for the file. That means the partial is named _line_item.html.erb
and can be found in the app/views/line_items directory:

rails80/depot_j/app/views/line_items/_line_item.html.erb
<tr>

<td class="text-right"><%= line_item.quantity %></td>
<td>×</td>
<td class="pr-2">

report erratum • discuss

Iteration F1: Moving the Cart • 145

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_j%2Fapp%2Fviews%2Fcarts%2F_cart.html.erb
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_j%2Fapp%2Fviews%2Fline_items%2F_line_item.html.erb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

<%= line_item.product.title %>
</td>
<td class="text-right font-bold">

<%= number_to_currency(line_item.total_price) %>
</td>

</tr>

Something subtle is going on here. Inside the partial template, we refer
to the current object by using the variable name that matches the name
of the template. In this case, the partial is named line_item, so inside the
partial we expect to have a variable called line_item.

So now we’ve tidied up the cart display, but that hasn’t moved it into the sidebar.
To do that, let’s revisit our layout. Since we already have a partial template
that displays the cart, all we need to do is include this new partial in the sidebar:

rails80/depot_k/app/views/layouts/application.html.erb
<!DOCTYPE html>
<html>

<head>
<title><%= content_for(:title) || "Pragprog Books Online Store" %></title>

<meta name="viewport" content="width=device-width,initial-scale=1">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="mobile-web-app-capable" content="yes">
<%= csrf_meta_tags %>
<%= csp_meta_tag %>

<%= yield :head %>

<%# Enable PWA manifest for installable apps (make sure to enable in
config/routes.rb too!) %>

<%#= tag.link rel: "manifest", href: pwa_manifest_path(format: :json) %>

<link rel="icon" href="/icon.png" type="image/png">
<link rel="icon" href="/icon.svg" type="image/svg+xml">
<link rel="apple-touch-icon" href="/icon.png">

<%# Includes all stylesheet files in app/assets/stylesheets %>
<%= stylesheet_link_tag :app, "data-turbo-track": "reload" %>
<%= javascript_importmap_tags %>

</head>

<body>
<header class="bg-green-700">
<%= image_tag 'logo.svg', alt: 'The Pragmatic Bookshelf' %>
<h1><%= @page_title %></h1>

</header>

<section class="flex">
<nav class="bg-green-900 p-6">

<div id="cart" class="bg-white rounded p-2">➤

<%= render @cart %>➤

</div>➤

Chapter 11. Task F: Hotwiring the Storefront • 146

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_k%2Fapp%2Fviews%2Flayouts%2Fapplication.html.erb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

➤

<ul class="text-gray-300 leading-8">
Home
Questions
News
Contact

</nav>

<main class="container mx-auto mt-4 px-5 flex">
<%= yield %>

</main>
</section>

</body>
</html>

As black lettering on a green background would be hard to read, we also
added an HTML <div> element that wraps the cart with a white background,
rounded corners, and some padding.

Next, we have to make a small change to the store controller. We’re invoking
the layout while looking at the store’s index action, and that action doesn’t
currently set @cart. That’s a quick change:

rails80/depot_k/app/controllers/store_controller.rb
class StoreController < ApplicationController

include CurrentCart➤

before_action :set_cart➤

def index
@products = Product.order(:title)

end
end

If you display the catalog after adding something to your cart, you should see
something like the following screenshot.

Your Cart

1×
Programming Ruby 3.3 (5th

Edition)
$33.95

2×Rails Scales! $61.90

1×

Modern Front-End

Development for Rails,

Second Edition

$28.95

Total: $124.80

Your Pragmatic Catalog

Modern Front-End Development for Rails, Second

Edition

Hotwire, Stimulus, Turbo, and React Improve the user

experience for your Rails app with rich, engaging client-

side interactions. Learn to use the Rails 7 tools and simplify

the complex JavaScript ecosystem. It’s easier than ever to

build user interactions with Hotwire, Turbo, and Stimulus.

Let’s just wait for the Webby Award nomination.

report erratum • discuss

Iteration F1: Moving the Cart • 147

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_k%2Fapp%2Fcontrollers%2Fstore_controller.rb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Changing the Flow
Now that we’re displaying the cart in the sidebar, we can change the way that
the Add to Cart button works. Rather than display a separate cart page, all
it has to do is refresh the main index page.

The change is straightforward. At the end of the create action, we redirect the
browser back to the index:

rails80/depot_k/app/controllers/line_items_controller.rb
def create

product = Product.find(params[:product_id])
@line_item = @cart.add_product(product)

respond_to do |format|
if @line_item.save

format.html { redirect_to store_index_url }➤

format.json { render :show,
status: :created, location: @line_item }

else
format.html { render :new,

status: :unprocessable_entity }
format.json { render json: @line_item.errors,

status: :unprocessable_entity }
end

end
end

At this point, we rerun our tests and see a number of failures:

$ bin/rails test
Running 30 tests in a single process (parallelization threshold is 50)
Run options: --seed 58541

Running:

...E

Error:
ProductsControllerTest#test_should_show_product:
ActionView::Template::Error: 'nil' is not an ActiveModel-compatible
object. It must implement :to_partial_path.
app/views/layouts/application.html.erb:25

If we try to display the products index by visiting http://localhost:3000/products in
the browser, we see the error shown in the screenshot on page 149.

This information is helpful. The message identifies the template file that was
being processed at the point where the error occurs (app/views/layouts/applica-
tion.html.erb), the line number where the error occurred, and an excerpt from
the template of lines around the error. From this, we see that the expression

Chapter 11. Task F: Hotwiring the Storefront • 148

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_k%2Fapp%2Fcontrollers%2Fline_items_controller.rb
http://localhost:3000/products
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

ArgumentError in Products#index
Showing /Users/rubys/git/awdwr8/work/app/views/layouts/application.html.erb where line #38 raised:

'nil' is not an ActiveModel-compatible object. It must implement #to_partial_path.

Extracted source (around line #38):

36
37
38
39
40

<!-- START_HIGHLIGHT -->
 <div id="cart" class="bg-white rounded p-2">
 <%= render @cart %>
 </div>

<!-- END_HIGHLIGHT -->

>>

x

being evaluated at the point of error is @cart.line_items, and the message pro-
duced is 'nil' is not an ActiveModel-compatible object.

So, @cart is apparently nil when we display an index of our products. That
makes sense, because it’s set only in the store controller. We can even verify
this using the web console provided at the bottom of the web page. Now that
we know what the problem is, the fix is to avoid displaying the cart at all
unless the value is set:

rails80/depot_l/app/views/layouts/application.html.erb
<nav class="bg-green-900 p-6">

<% if @cart and not @cart.line_items.empty? %>➤

<div id="cart" class="bg-white rounded p-2">
<%= render @cart %>

</div>
<% end %>➤

<ul class="text-gray-300 leading-8">
Home
Questions
News
Contact

</nav>

With this change in place, our tests now pass once again. Imagine what could
have happened. A change in one part of an application made to support a
new requirement breaks a function implemented in another part of the
application. If you’re not careful, this can happen in a small application like
Depot. Even if you’re careful, this will happen in a large application.

Keeping tests up-to-date is an important part of maintaining your application.
Rails makes this as easy as possible to do. Agile programmers make testing

report erratum • discuss

Iteration F1: Moving the Cart • 149

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_l%2Fapp%2Fviews%2Flayouts%2Fapplication.html.erb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

an integral part of their development efforts. Many even go so far as to write
their tests first, before the first line of code is written.

So now we have a store with a cart in the sidebar. When we click to add an
item to the cart, the page is redisplayed with an updated cart. But if our cat-
alog is large, that redisplay might take a while. It uses bandwidth, and it uses
server resources. Fortunately, we can use Turbo to make this better.

Iteration F2: Creating a Hotwired Cart
Turbo2 is one of the Hotwire frameworks. Turbo lets us write code that runs
in the browser and interacts with our server-based application. In our case,
we’d like to make the Add to Cart buttons invoke the server create action on
the LineItems controller in the background. The server can then send down just
the HTML for the cart, and we can replace the cart in the sidebar with the
server’s updates.

Now, normally we’d do this by writing JavaScript that runs in the browser
and by writing server-side code that communicates with this JavaScript
(possibly using a technology such as JavaScript Object Notation [JSON]). The
good news is that, with Rails, all this is hidden from us. We can use Ruby to
do everything we need to do (and with a whole lot of support from some Rails
helper methods).

The trick when adding Turbo to an application is to take small steps. So let’s
start with the most basic one. Let’s change it so that our application responds
with the HTML fragment containing the cart.

Because Rails includes Turbo by default, our client application is already
ready. Behind the scenes it included text/vnd.turbo-stream.html in Accept header in
form requests, so all we need to do is provide a turbo stream response.

We do this by adding a call to respond_to() telling it that we want to respond
with a format of .turbo_stream:

rails80/depot_l/app/controllers/line_items_controller.rb
def create

product = Product.find(params[:product_id])
@line_item = @cart.add_product(product)

respond_to do |format|
if @line_item.save

format.turbo_stream do➤

render turbo_stream: turbo_stream.replace(➤

:cart,➤

2. https://turbo.hotwired.dev/

Chapter 11. Task F: Hotwiring the Storefront • 150

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_l%2Fapp%2Fcontrollers%2Fline_items_controller.rb
https://turbo.hotwired.dev/
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

partial: 'layouts/cart',➤

locals: { cart: @cart }➤

)➤

end➤

format.html { redirect_to store_index_url }
format.json { render :show,

status: :created, location: @line_item }
else

format.html { render :new,
status: :unprocessable_entity }

format.json { render json: @line_item.errors,
status: :unprocessable_entity }

end
end

end

The way to read this code is as follows: whenever we get a request that accepts
a turbo stream response, we render a turbo stream response consisting of
turbo stream replace, specifying an HTML element ID of cart as the element
to be replaced, and rendering the partial, which can be found in app/views/lay-
outs/_cart.html.erb using the value of @cart as the value of cart.

When receiving a turbo stream response, Turbo instructs the browser to stick
the HTML fragment contained in the response into the browser’s internal rep-
resentation of the structure and content of the document being displayed—
namely, the Document Object Model (DOM). By manipulating the DOM, we
cause the display to change in front of the user’s eyes.

Best of all, if the browser’s request does not specify that it will accept a turbo
stream response (perhaps because JavaScript was disabled?), what it will get
instead is the HTML response, which in this case is a redirect to the store.

Now let’s create the partial that this code references. Starting with code we
extract from app/views/layouts/application.html.erb, add an HTML id attribute so that
Turbo can identify the portion of the display that needs to be replaced. As we
do this, we take care to ensure that the id is present even when the cart isn’t
displayed, which we do by adding an else clause:

rails80/depot_m/app/views/layouts/_cart.html.erb
<% if cart and not cart.line_items.empty? %>

<div id="cart" class="bg-white rounded p-2">
<%= render cart %>

</div>
<% else %>

<div id="cart"></div>
<% end %>

report erratum • discuss

Iteration F2: Creating a Hotwired Cart • 151

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_m%2Fapp%2Fviews%2Flayouts%2F_cart.html.erb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Finally, we update the template that we extracted this from to make use of
the new partial:

rails80/depot_m/app/views/layouts/application.html.erb
<!DOCTYPE html>
<html>

<head>
<title><%= content_for(:title) || "Pragprog Books Online Store" %></title>

<meta name="viewport" content="width=device-width,initial-scale=1">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="mobile-web-app-capable" content="yes">
<%= csrf_meta_tags %>
<%= csp_meta_tag %>

<%= yield :head %>

<%# Enable PWA manifest for installable apps (make sure to enable in
config/routes.rb too!) %>

<%#= tag.link rel: "manifest", href: pwa_manifest_path(format: :json) %>

<link rel="icon" href="/icon.png" type="image/png">
<link rel="icon" href="/icon.svg" type="image/svg+xml">
<link rel="apple-touch-icon" href="/icon.png">

<%# Includes all stylesheet files in app/assets/stylesheets %>
<%= stylesheet_link_tag :app, "data-turbo-track": "reload" %>
<%= javascript_importmap_tags %>

</head>

<body>
<header class="bg-green-700">
<%= image_tag 'logo.svg', alt: 'The Pragmatic Bookshelf' %>
<h1><%= @page_title %></h1>

</header>

<section class="flex">
<nav class="bg-green-900 p-6">

<%= render partial: 'layouts/cart', locals: {cart: @cart } %>➤

<ul class="text-gray-300 leading-8">
Home
Questions
News
Contact

</nav>

<main class="container mx-auto mt-4 px-5 flex">
<%= yield %>

</main>
</section>

</body>
</html>

Chapter 11. Task F: Hotwiring the Storefront • 152

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_m%2Fapp%2Fviews%2Flayouts%2Fapplication.html.erb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Does it work? At first, it’s hard to tell the difference. But after emptying the
cart and adding another book to the cart we see an obviously not-empty cart
alongside a message that it currently is empty, as illustrated in the following
screenshot.

Your Cart

1×
Programming Ruby

3.3 (5th Edition)
$33.95

Total: $33.95

Empty Cart

Home

Questions

Your cart is currently empty

Your Pragmatic Catalog

What’s going on here is that we updated the cart (Yay!), but didn’t update
the notice (Boo!). This failure is something agile folks call failing fast and
is something to be celebrated. So far in this iteration we literally added one
call to format.turbo_stream and we got the cart updated dynamically and learned
a lot.

What did we learn? Well for starters, we need a partial for every area of the
screen that we wish to dynamically update, the HTML in that partial needs
to contain a unique HTML ID element, and we need to update the controller
to return turbo streams.

Let’s apply this to the notice. First, we extract the notice from
app/views/store/index.html.erb into a separate partial. While we’re here, we add an
else clause to ensure that there always is an HTML element with an ID of notice
present on the page, even if its content is empty.

rails80/depot_m/app/views/store/_notice.html.erb
<% if notice.present? %>

<p class="py-2 px-3 bg-green-50 mb-5 text-green-500 font-medium rounded-lg
inline-block" id="notice">

<%= notice %>
</p>

<% else %>
<div id="notice"></div>

<% end %>

And then we update the original template to make use of this partial, keeping
things DRY:

rails80/depot_m/app/views/store/index.html.erb
<div class="w-full">
<%= render 'notice' %>➤

report erratum • discuss

Iteration F2: Creating a Hotwired Cart • 153

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_m%2Fapp%2Fviews%2Fstore%2F_notice.html.erb
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_m%2Fapp%2Fviews%2Fstore%2Findex.html.erb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8
http://localhost:3003/
http://localhost:3003/questions

<h1 class="font-bold text-xl mb-6 pb-2 border-b-2">
Your Pragmatic Catalog

</h1>

Remembering from the test failures from the last iteration that the cart may
not be present in the layout, we add an else clause there too. And while we’re
at it, we tidy things up and make it so that the cart isn’t visible when it’s
empty:

rails80/depot_m/app/views/layouts/application.html.erb
<nav class="bg-green-900 p-6">

<%= render partial: 'layouts/cart', locals: {cart: @cart } %>➤

<ul class="text-gray-300 leading-8">
Home
Questions
News
Contact

</nav>

Now that the partials are in place, we need to send two turbo stream replace
instructions in response to a line item create. We actually can send an array
of responses within the partial, but that feels messy, so we instead create a
new template. As this will be the template for turbo stream LineItem create
responses, the natural place to put this is in app/views/line_items/create.tur-
bo_stream.erb:

rails80/depot_m/app/views/line_items/create.turbo_stream.erb
<%= turbo_stream.replace 'notice' do %>

<%= render partial: 'store/notice' %>
<% end %>

<%= turbo_stream.replace 'cart' do %>
<%= render partial: 'layouts/cart', locals: {cart: @cart} %>

<% end %>

Whether you create the turbo stream response inline in your controller or
make use of an HTML template is a matter of personal taste, but generally a
template is recommended, particularly when multiple items are in the
response.

All that’s remaining is to update the controller. Since we followed the default
naming conventions for the template, we don’t need to pass any arguments
to the format.turbo_stream call.

Chapter 11. Task F: Hotwiring the Storefront • 154

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_m%2Fapp%2Fviews%2Flayouts%2Fapplication.html.erb
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_m%2Fapp%2Fviews%2Fline_items%2Fcreate.turbo_stream.erb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

rails80/depot_m/app/controllers/line_items_controller.rb
def create

product = Product.find(params[:product_id])
@line_item = @cart.add_product(product)

respond_to do |format|
if @line_item.save

format.turbo_stream➤

format.html { redirect_to store_index_url }
format.json { render :show,

status: :created, location: @line_item }
else

format.html { render :new,
status: :unprocessable_entity }

format.json { render json: @line_item.errors,
status: :unprocessable_entity }

end
end

end

The Customer Is Never Satisfied
We’re feeling pretty pleased with ourselves. We changed a handful of lines of
code, and our boring old Web 1.0 application now sports Hotwire speed stripes.
We breathlessly call the client over to come look. Without saying anything,
we proudly click Add to Cart and look at her, eager for the praise we know
will come. Instead, she looks surprised. “You called me over to show me a
bug?” she asks. “You click that button, and nothing happens.”

We patiently explain that, in fact, a lot happened. Just look at the cart in the
sidebar. See? When we add something, the quantity changes from 4 to 5.

“Oh,” she says, “I didn’t notice that.” And if she didn’t notice the page update,
it’s likely that our users won’t either. It’s time for some user interface hacking.

Iteration F3: Highlighting Changes
A common way to highlight changes made to a page is the (now) infamous
Yellow Fade Technique.3 It highlights an element in a browser: by default it
flashes the background yellow and then gradually fades it back to white. The
user clicks the Add to Cart button, and the count updates to two as the line
flares brighter. It then fades back to the background color over a short period
of time.

3. https://signalvnoise.com/archives/000558.php

report erratum • discuss

Iteration F3: Highlighting Changes • 155

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_m%2Fapp%2Fcontrollers%2Fline_items_controller.rb
https://signalvnoise.com/archives/000558.php
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

While Tailwind provides an extensive set of utility CSS classes to cover most
needs, there comes a time when you need something more. For us, now is
that time.

You can implement this with CSS animations.4 In CSS animations, a class
uses the animation attribute to reference a particular animation. The animation
itself is defined as a series of keyframes that describe the style of an element
at various points in the animation. The animation is executed by the browser
when the page loads or when the class is applied to an element. This sounds
complicated, but for our case we only need to define the starting and ending
states of the element.

Let’s see the CSS first. We’ll place it inside app/assets/stylesheets/line_items.css. You
can name the file whatever you like as long as it ends in css and is placed in
this directory, and it will be made available to your entire application. Gener-
ally it makes sense to group related things into separate files.

rails80/depot_n/app/assets/stylesheets/line_items.css
@keyframes line-item-highlight {

0% {
background: #8f8;

}
100% {

background: none;
}

}

.line-item-highlight {
animation: line-item-highlight 1s;

}

The @keyframes directive defines an animation, in this case named line-item-
highlight. Inside that declaration, we specify what the state of the DOM element
should be at various points in the animation. At the start of the animation
(0%), the element should have a background color of bright green, which is
the highlight color. At the end of the animation (100%), it should have no
background color.

Next we define a CSS class named line-item-highlight that uses the animation
attribute. It accepts the name of the animation (which we just defined) and
an animation time, which we’ve set at one second (note that you don’t have
to name the CSS class the same as the animation, but it can help keep it all
straight if you do).

4. https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Animations/Using_CSS_animations

Chapter 11. Task F: Hotwiring the Storefront • 156

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_n%2Fapp%2Fassets%2Fstylesheets%2Fline_items.css
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Animations/Using_CSS_animations
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

The last step is to use this class on the recently added item. To do that, our
ERB template needs to know which item is the most recently added item. Set
that inside LineItemsController:

rails80/depot_o/app/controllers/line_items_controller.rb
def create

product = Product.find(params[:product_id])
@line_item = @cart.add_product(product)

respond_to do |format|
if @line_item.save

format.turbo_stream { @current_item = @line_item }➤

format.html { redirect_to store_index_url }
format.json { render :show,

status: :created, location: @line_item }
else

format.html { render :new,
status: :unprocessable_entity }

format.json { render json: @line_item.errors,
status: :unprocessable_entity }

end
end

end

In the _line_item.html.erb partial, we then check to see if the item we’re rendering
is the one that just changed. If so, we give it the animation class we just defined:

rails80/depot_o/app/views/line_items/_line_item.html.erb
<% if line_item == @current_item %>➤

<tr class="line-item-highlight">➤

<% else %>➤

<tr>➤

<% end %>➤

<td class="text-right"><%= line_item.quantity %></td>
<td>×</td>
<td class="pr-2">

<%= line_item.product.title %>
</td>
<td class="text-right font-bold">

<%= number_to_currency(line_item.total_price) %>
</td>

</tr>

As a result of these two minor changes, the <tr> element of the most
recently changed item in the cart will be tagged with class="line-item-highlight".
When the browser receives this rendered HTML and inserts it into the DOM,
the browser will see that the most recently added line item has the class line-
item-highlight, which will trigger the animation. No JavaScript needed!

report erratum • discuss

Iteration F3: Highlighting Changes • 157

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_o%2Fapp%2Fcontrollers%2Fline_items_controller.rb
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_o%2Fapp%2Fviews%2Fline_items%2F_line_item.html.erb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

With that change in place, reload the page, then click any Add to Cart button,
and you’ll see that the changed item in the cart glows a light green before
fading back to merge with the background.

We’re not done yet. We haven’t tested any of our Hotwire additions, such as
what happens when we click the Add to Cart button. Rails provides the help
we need to do that too.

We already have a should create line_item test, so let’s add another one called should
create line_item via turbo-stream:

rails80/depot_o/test/controllers/line_items_controller_test.rb
test "should create line_item via turbo-stream" do

assert_difference("LineItem.count") do
post line_items_url, params: { product_id: products(:pragprog).id },
as: :turbo_stream

end

assert_response :success
assert_match /<tr class="line-item-highlight">/, @response.body

end

This test differs in the name of the test, the addition of as: :turbo_stream—and
in the expected results. Instead of a redirect, we expect a successful
response containing a call to replace the HTML for the cart.

Iteration F4: Broadcasting Updates with Action Cable
As we saw with the products index page in Iteration A3: Making the Page Update
in Real Time, on page 78, it’s possible to send information from our Rails app
to our users’ browsers without a direct request. The technology that enables
this is called WebSockets.5 Prior to Rails 5, setting this up was fairly involved,
but Rails 5 introduced Action Cable, which simplifies pushing data to all con-
nected browsers.

We can use Action Cable and WebSockets to broadcast price updates to the
users browsing the catalog. To see why we’d want to, bring up the Depot appli-
cation in two browser windows or tabs. In the first window, display the catalog.
Then, in the second window, update the price of an item. Return to the first
window and add that item to the cart. At this point, the cart shows the updated
price, but the catalog shows the original price, as illustrated in the screenshot
on page 159.

We discuss this with our customer. She agrees to honor the price at the time
the item was placed in the cart, but she wants the catalog being displayed to

5. https://www.w3.org/TR/websockets/

Chapter 11. Task F: Hotwiring the Storefront • 158

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_o%2Ftest%2Fcontrollers%2Fline_items_controller_test.rb
https://www.w3.org/TR/websockets/
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Your Cart

1×

Modern Front-End

Development for Rails, Second

Edition

$28.95

Total: $28.95

Empty Cart

Home

Questions

News

Contact

Your Pragmatic Catalog

Modern Front-End Development for Rails, Second

Edition

Hotwire, Stimulus, Turbo, and React Improve the user

experience for your Rails app with rich, engaging client-side

interactions. Learn to use the Rails 7 tools and simplify the

complex JavaScript ecosystem. It’s easier than ever to build

user interactions with Hotwire, Turbo, and Stimulus. You

can add great front-end flair without much extra

complication. Use React to build a more complex set of

client-side features. Structure your code for different levels

of client-side needs with these powerful options. Add to

your toolkit today!

$33.95 Add to Cart

be up-to-date. At this point, we’ve reached the limits of what Turbo Streams
can do for us, and we don’t want to do full-page refreshes. We need a way to
push partial updates to the browser.

In 2011, the Internet Engineering Task Force (IETF) published a Standards
Track document describing a two-way WebSocket protocol.6 Action Cable
provides both a client-side JavaScript framework and a server-side Ruby
framework that together seamlessly integrate the WebSocket protocol into
the rest of your Rails application. This enables features like real-time updates
to be easily added to your Rails application in a manner that performs well
and is scalable.

Making use of Action Cable is a three-step process: create a channel, broadcast
some data, and receive the data. And by now, it should be no surprise that
Rails has a generator that does most of the work (for two out of the three
steps, anyway):

depot> bin/rails generate channel products
invoke test_unit
create test/channels/products_channel_test.rb

identical app/channels/application_cable/channel.rb
identical app/channels/application_cable/connection.rb

create app/channels/products_channel.rb
create app/javascript/channels/index.js
create app/javascript/channels/consumer.js

6. https://tools.ietf.org/html/rfc6455

report erratum • discuss

Iteration F4: Broadcasting Updates with Action Cable • 159

https://tools.ietf.org/html/rfc6455
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8
http://localhost:3003/
http://localhost:3003/questions
http://localhost:3003/news
http://localhost:3003/contact

append app/javascript/application.js
append config/importmap.rb
create app/javascript/channels/products_channel.js

gsub app/javascript/channels/products_channel.js
append app/javascript/channels/index.js

The way to create a channel is by updating the file created in the app/channels/
directory:

rails80/depot_o/app/channels/products_channel.rb
class ProductsChannel < ApplicationCable::Channel

def subscribed
stream_from "store/products"➤

end

def unsubscribed
Any cleanup needed when channel is unsubscribed

end
end

What’s important here is the name of the class (ProductsChannel) and the name
of the stream (products). It’s possible for a channel to support multiple streams
(for example, a chat application can have multiple rooms), but we only need
one stream for now.

Channels can have security implications, so by default Rails only allows
access from the localhost when running in development mode. If you’re doing
development with multiple machines, you must disable this check. Do this
by uncommenting the following line in config/environments/development.rb:

config.action_cable.disable_request_forgery_protection = true

We’ll be sending only data over this channel, and not processing commands,
so this is safe to do.

As with before, we begin by separating out the product information from the
store index template into a partial, and wrapping it with an HTML element
with an id attribute.

rails80/depot_o/app/views/store/_product.html.erb
<%= turbo_frame_tag(dom_id(product)) do %>➤

<li class='flex mb-6'>
<%= image_tag(product.image,
class: 'object-contain w-40 h-48 shadow mr-6') %>

<div>
<h2 class="font-bold text-lg mb-3"><%= product.title %></h2>

<p>
<%= sanitize(product.description) %>

</p>

Chapter 11. Task F: Hotwiring the Storefront • 160

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_o%2Fapp%2Fchannels%2Fproducts_channel.rb
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_o%2Fapp%2Fviews%2Fstore%2F_product.html.erb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

<div class="mt-3">
<%= number_to_currency(product.price) %>

<%= button_to "Add to Cart",
line_items_path(product_id: product),
form_class: "inline",
class: 'ml-4 rounded-lg py-1 px-2

text-white bg-green-600' %>
</div>

</div>

<% end %>➤

We use the handy turbo_frame_tag() helper to create the HTML element, as well
as the dom_id() helper to create a unique id for every product.

Next, we make two changes to the template from which this was extracted.
First, we add a call to turbo_stream_from() to identify what channel we’ll subscribe
to. Next we make use of the partial that we just created.

rails80/depot_o/app/views/store/index.html.erb
<div class="w-full">
<%= render 'notice' %>

<h1 class="font-bold text-xl mb-6 pb-2 border-b-2">
Your Pragmatic Catalog

</h1>

<%= turbo_stream_from 'products' %>➤
➤

<% cache @products do %>

<% @products.each do |product| %>
<% cache product do %>

<%= render partial: 'product', object: product %>➤

<% end %>
<% end %>

<% end %>

</div>

All that remains to be done is to broadcast the HTML for a product every time
an update is made:

rails80/depot_o/app/controllers/products_controller.rb
def update

respond_to do |format|
if @product.update(product_params)

format.html { redirect_to @product,
notice: "Product was successfully updated." }

format.json { render :show, status: :ok, location: @product }
➤

report erratum • discuss

Iteration F4: Broadcasting Updates with Action Cable • 161

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_o%2Fapp%2Fviews%2Fstore%2Findex.html.erb
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_o%2Fapp%2Fcontrollers%2Fproducts_controller.rb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

@product.broadcast_replace_later_to "store/products",➤

partial: "store/product"➤

else
format.html { render :edit,

status: :unprocessable_entity }
format.json { render json: @product.errors,

status: :unprocessable_entity }
end

end
end

We’re calling broadcast_replace_later_to() because we want the messages to go out
asynchronously, and generally after this request completes. We specify the
channel and the partial to be used.

To start the Action Cable process (and to pick up the configuration change if
that was done), we need to restart the server. The first time you visit the Depot
page you’ll see additional messages on the server window (information
slightly abbreviated to fit within the book margins):

Started GET "/cable" for 127.0.0.1
Started GET "/cable/" [WebSocket] for 127.0.0.1
Successfully upgraded to WebSocket
Started GET "/cable" for 127.0.0.1
ProductsChannel is transmitting the subscription confirmation
ProductsChannel is streaming from products
Started GET "/cable/" [WebSocket] for 127.0.0.1
Successfully upgraded to WebSocket
Turbo::StreamsChannel is transmitting the subscription confirmation
Turbo::StreamsChannel is streaming from products

Again, update the price of a book in one browser window and watch the catalog
update instantly in any other browser window that shows the Depot store.

What We Just Did
In this iteration, we added Hotwire support to our cart:

• We moved the shopping cart into the sidebar. We then arranged for the
create action to redisplay the catalog page.

• We used as: :turbo_stream to indicate to the LineItemsController.create() that the
client supports Turbo Streams.

• We then used an ERB partial template to return only the portions of the
page that need to be replaced.

• We used Action Cable and Turbo Frames to update the catalog display
whenever a product changes.

Chapter 11. Task F: Hotwiring the Storefront • 162

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

• We wrote a test that verifies not only the creation of a line item but also
the content of the response that’s returned from such a request.

The key point to take away is the incremental style of Hotwire development.
Start with a conventional application and then add Ajax features, one by one.
Hotwire applications can be hard to debug; by adding it slowly to an applica-
tion, you make it easier to track down what changed if your application stops
working. And, as you saw, starting with a conventional application makes it
easier to support both Hotwire and non-Hotwire behavior in the same code-
base.

Finally, here are a couple of hints. First, if you plan to do a lot of Hotwire
development, you’ll probably need to get familiar with your browser’s Java-
Script debugging facilities and with its DOM inspectors, such as Firefox’s
DevTools, Google Chrome’s Developer Tools, Safari’s Web Inspector, or Opera’s
Dragonfly. And, second, the NoScript plugin for Firefox makes checking
JavaScript/no JavaScript a one-click breeze. Others find it useful to run two
different browsers when they’re developing—with JavaScript enabled in one
and disabled in the other. Then, as new features are added, poking at it with
both browsers will ensure that your application works regardless of the state
of JavaScript.

Playtime
Here’s some stuff to try on your own:

• The cart is currently hidden when the user empties it by redrawing the
entire catalog. Can you change the application to remove it using a Turbo
Stream request, so the page doesn’t reload?

• Add a button next to each item in the cart. When clicked, it should invoke
an action to decrement the quantity of the item, deleting it from the cart
when the quantity reaches zero. Get it working without using Turbo first
and then add the Turbo goodness.

• Make images clickable. In response to a click, add the associated product
to the cart.

• When a product changes, highlight the product that changed in response
to receiving a broadcast message.

report erratum • discuss

Iteration F4: Broadcasting Updates with Action Cable • 163

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

CHAPTER 12

In this chapter, you'll see:
• Linking tables with foreign keys
• Using belongs_to, has_many, and :through
• Creating forms based on models (form_with)
• Linking forms, models, and views

Task G: Check Out!
Let’s take stock. So far, we’ve put together a basic product administration
system, we’ve implemented a catalog, and we have a pretty spiffy-looking
shopping cart. So now we need to let the buyer actually purchase the contents
of that cart. Let’s implement the checkout function.

We’re not going to go overboard here. For now, all we’ll do is capture the
customer’s contact information and payment details. Using these, we’ll con-
struct an order in the database. Along the way, we’ll be looking a bit more at
models, validation, and form handling.

Iteration G1: Capturing an Order
An order is a set of line items, along with details of the purchase transaction.
Our cart already contains line_items, so all we need to do is add an order_id col-
umn to the line_items table and create an orders table based on the Initial guess
at application data diagram on page 63, combined with a brief chat with our
customer.

First we create the order model and update the line_items table:

depot> bin/rails generate scaffold Order name address:text email \
pay_type:integer

depot> bin/rails generate migration add_order_to_line_item order:references

Note that we didn’t specify any data type for two of the four columns. This is
because the data type defaults to string. This is yet another small way in which
Rails makes things easier for you in the most common case without making
things any more cumbersome when you need to specify a data type.

Also note that we defined pay_type as an integer. While this is an efficient
way to store data that can only store discrete values, storing data in this
way requires keeping track of which values are used for which payment

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

type. Rails can do this for you through the use of enum declarations placed
in the model class. Add this code to app/models/order.rb:

rails80/depot_o/app/models/order.rb
class Order < ApplicationRecord

enum :pay_type, {➤

"Check" => 0,➤

"Credit card" => 1,➤

"Purchase order" => 2➤

}➤

end

Finally, we need to modify the second migration to indicate that cart_id can be
null in records. This is done by modifying the existing add_reference line to say
null: true and adding a new change_column line to enable nulls in the cart_id column.

rails80/depot_o/db/migrate/20250420000009_add_order_to_line_item.rb
class AddOrderToLineItem < ActiveRecord::Migration[8.0]

def change
add_reference :line_items, :order, null: true, foreign_key: true➤

change_column :line_items, :cart_id, :integer, null: true➤

end
end

Now that we’ve created the migrations, we can apply them:

depot> bin/rails db:migrate
== 20250420000007 CreateOrders: migrating ==============================
-- create_table(:orders)
-> 0.0007s
== 20250420000007 CreateOrders: migrated (0.0022s) =====================

== 20250420000008 AddOrderToLineItem: migrating ========================
-- add_reference(:line_items, :order, {:null=>true, :foreign_key=>true})

-> 0.0058s
-- change_column(:line_items, :cart_id, :integer, {:null=>true})

-> 0.0046s
== 20250420000008 AddOrderToLineItem: migrated (0.0246s) ===============

Because the database didn’t have entries for these two new migrations in the
schema_migrations table, the db:migrate task applied both migrations to the database.
We could, of course, have applied them separately by running the migration
task after creating the individual migrations.

Creating the Order Capture Form
Now that we have our tables and our models as we need them, we can start
the checkout process. First, we need to add a Checkout button to the shopping
cart. Because it’ll create a new order, we’ll link it back to a new action in our
order controller:

Chapter 12. Task G: Check Out! • 166

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_o%2Fapp%2Fmodels%2Forder.rb
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_o%2Fdb%2Fmigrate%2F20250420000009_add_order_to_line_item.rb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

rails80/depot_o/app/views/carts/_cart.html.erb
<div id="<%= dom_id cart %>">

<h2 class="font-bold text-lg mb-3">Your Cart</h2>

<table class="table-auto">
<%= render cart.line_items %>

<tfoot>
<tr>

<th class="text-right pr-2 pt-2" colspan="3">Total:</th>
<td class="text-right pt-2 font-bold border-t-2 border-black">

<%= number_to_currency(cart.total_price) %>
</td>

</tr>
</tfoot>

</table>

<div class="flex mt-1">➤

<%= button_to 'Empty Cart', cart, method: :delete,
class: 'ml-4 rounded-lg py-1 px-2 text-white bg-green-600' %>

<%= button_to 'Checkout', new_order_path, method: :get,➤

class: 'ml-4 rounded-lg py-1 px-2 text-black bg-green-200' %>➤

</div>➤

</div>

We wrapped the buttons in a div and used a flex layout so that they’ll appear
side by side.

The first thing we want to do is check to make sure that there’s something
in the cart. This requires us to have access to the cart. Planning ahead, we’ll
also need this when we create an order:

rails80/depot_o/app/controllers/orders_controller.rb
class OrdersController < ApplicationController

include CurrentCart➤

before_action :set_cart, only: %i[new create]➤

before_action :ensure_cart_isnt_empty, only: %i[new]➤

before_action :set_order, only: %i[show edit update destroy]

GET /orders or /orders.json
#...

➤

private➤

def ensure_cart_isnt_empty➤

if @cart.line_items.empty?➤

redirect_to store_index_url, notice: "Your cart is empty"➤

end➤

end➤

end

If nothing is in the cart, we redirect the user back to the storefront, provide
a notice of what we did, and return immediately. This prevents people from

report erratum • discuss

Iteration G1: Capturing an Order • 167

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_o%2Fapp%2Fviews%2Fcarts%2F_cart.html.erb
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_o%2Fapp%2Fcontrollers%2Forders_controller.rb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

navigating directly to the checkout option and creating empty orders. Note
that we tucked this handling of an exception case into a before_action method.
This enables the main line processing logic to remain clean.

And we add a test for requires item in cart and modify the existing test for should
get new to ensure that the cart contains an item:

rails80/depot_o/test/controllers/orders_controller_test.rb
test "requires item in cart" do➤

get new_order_url➤

assert_redirected_to store_index_path➤

assert_equal "Your cart is empty", flash[:notice]➤

end➤

test "should get new" do
post line_items_url, params: { product_id: products(:pragprog).id }➤

➤

get new_order_url
assert_response :success

end

Now we want the new action to present users with a form, prompting them to
enter the information in the orders table: the user’s name, address, email
address, and payment type. This means we’ll need to display a Rails template
containing a form. The input fields on this form will have to link to the corre-
sponding attributes in a Rails model object, so we need to create an empty
model object in the new action to give these fields something to work with.

As always with HTML forms, the trick is populating any initial values into the
form fields and then extracting those values out into our application when
the user clicks the submit button.

In the controller, the order variable is set to reference a new Order model
object. This is done because the view populates the form from the data in
this object. As it stands, that’s not particularly interesting. Because it’s a
new model object, all the fields will be empty. However, consider the general
case. Maybe we want to edit an existing order. Or maybe the user has tried
to enter an order but the data has failed validation. In these cases, we want
any existing data in the model shown to the user when the form is displayed.
Passing in the empty model object at this stage makes all these cases con-
sistent. The view can always assume it has a model object available. Then,
when the user clicks the submit button, we’d like the new data from the form
to be extracted into a model object back in the controller.

Fortunately, Rails makes this relatively painless. It provides us with a bunch
of form helper methods. These helpers interact with the controller and with

Chapter 12. Task G: Check Out! • 168

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_o%2Ftest%2Fcontrollers%2Forders_controller_test.rb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

the models to implement an integrated solution for form handling. Before we
start on our final form, let’s look at a small example:

<%= form_with(model: order) do |form| %>
<p>

<%= form.label :name, "Name:" %>
<%= form.text_field :name, size: 40 %>

</p>
<% end %>

This code does two powerful things for us. First, the form_with() helper on the
first line sets up an HTML form that knows about Rails routes and models.
The argument, model: order, tells the helper which instance variable to use when
naming fields and sending the form data back to the controller.

The second powerful feature of the code is how it creates the form fields
themselves. You can see that form_with() sets up a Ruby block environment
(that ends on the last line of the listing with the end keyword). Within this
block, you can put normal template stuff (such as the <p> tag). But you can
also use the block’s parameter (form in this case) to reference a form context.
We use this context to add a text field with a label by calling text_field() and
label(), respectively. Because the text field is constructed in the context of
form_with, it’s automatically associated with the data in the order object. This
association means that submitting the form will set the right names and
values in the data available to the controller, but it will also pre-populate the
form fields with any values already existing on the model.

All these relationships can be confusing. It’s important to remember that
Rails needs to know both the names and the values to use for the fields
associated with a model. The combination of form_with and the various field-
level helpers (such as text_field) gives it this information.

Now we can update the template for the form that captures a customer’s
details for checkout. It’s invoked from the new action in the order controller,
so the template is called new.html.erb, found in the app/views/orders directory:

rails80/depot_o/app/views/orders/new.html.erb
<% content_for :title, "New order" %>

<div class="md:w-2/3 w-full">
<h1 class="font-bold text-4xl">Please Enter Your Details</h1>➤

<%= render "form", order: @order %>
</div>

In this file, we’ve updated the h1 and removed the link back to the orders
index. This template makes use of a partial named _form. We take a peek at
that file and see many long lines repeating the same class definitions.

report erratum • discuss

Iteration G1: Capturing an Order • 169

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_o%2Fapp%2Fviews%2Forders%2Fnew.html.erb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

<div class="my-5">
<%= form.label :name %>
<%= form.text_field :name, class: [

"block shadow-sm rounded-md border outline-hidden px-3 py-2 mt-2 w-full",
{ "border-gray-400 focus:outline-blue-600": order.errors[:name].none?,

"border-red-400 focus:outline-red-600": order.errors[:name].any? }] %>
</div>

That’s quite a mouthful. The class= attribute is an array. The first element of
the array is a list of class names. The second element of the array is a hash
of class names and conditions. If the condition is true, the class names are
added to the list of classes. If the condition is false, the class names aren’t
added. The net result is a gray border if there are no errors and a red border
if there are errors. An outline is also defined, but hidden, which appears to
be an oversight.1

Let’s introduce a pair of CSS rules so that we can clean this up:

rails80/depot_o/app/assets/tailwind/application.css
@import "tailwindcss";

.input-field {➤

@apply➤

block shadow-sm rounded-md border px-3 py-2 mt-2 w-full➤

border-gray-400 focus:outline-blue-600➤

}➤
➤

.field_with_errors .input-field {➤

@apply➤

border-red-400 focus:outline-red-600➤

}➤

There is a lot to unpack in this short little file:

• The @apply directive2 is a Tailwind CSS feature that enables you to combine
a set of utility classes into a single CSS class.

• The field_with_errors3 class is a Rails feature that is added to form fields that
have errors. This class is used to style the form fields differently when
there are errors.

• With CSS, the most specific rule wins. In this case, the .field_with_errors .input-
field rule is more specific than the .input-field rule, so classes included in it
will take precedence. There is no need to repeat the classes in the less

1. https://github.com/rails/tailwindcss-rails/issues/489M
2. https://tailwindcss.com/docs/functions-and-directives#apply-directive
3. https://guides.rubyonrails.org/active_record_validations.html#displaying-validation-errors-in-views

Chapter 12. Task G: Check Out! • 170

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_o%2Fapp%2Fassets%2Ftailwind%2Fapplication.css
https://github.com/rails/tailwindcss-rails/issues/489M
https://tailwindcss.com/docs/functions-and-directives#apply-directive
https://guides.rubyonrails.org/active_record_validations.html#displaying-validation-errors-in-views
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

specific .input-field rule as they will be applied to elements that include this
class.

With this change in place, we can simplify the form template:

<div class="my-5">
<%= form.label :name %>
<%= form.text_field :name, class: "input-field" %>

</div>

There are many reasons to consider factoring out repeated definitions into a
style sheet: perhaps it’s to reduce repetition to ease maintenance, perhaps
it’s to reduce visual clutter so that you can focus on the structure of the
document, or perhaps it’s merely to keep the number of columns down so
that it will fit on the printed page. Any of these are good reasons, and they
all apply here.

Once we’ve replaced the class attributes for the form.text_field and wrapped
other lines to fit on the page, we make a second set of changes:

rails80/depot_o/app/views/orders/_form.html.erb
<%= form_with(model: order, class: "contents") do |form| %>

<% if order.errors.any? %>
<div id="error_explanation" class="bg-red-50 text-red-500 px-3 py-2
font-medium rounded-md mt-3">
<h2><%= pluralize(order.errors.count, "error") %>
prohibited this order from being saved:</h2>

<ul class="list-disc ml-6">
<% order.errors.each do |error| %>

<%= error.full_message %>
<% end %>

</div>

<% end %>

<div class="my-5">
<%= form.label :name %>
<%= form.text_field :name, class: "input-field" %>

</div>

<div class="my-5">
<%= form.label :address %>
<%= form.textarea :address, rows: 4, class: "input-field" %>

</div>

<div class="my-5">
<%= form.label :email %>
<%= form.email_field :email, class: "input-field" %>➤

</div>

<div class="my-5">

report erratum • discuss

Iteration G1: Capturing an Order • 171

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_o%2Fapp%2Fviews%2Forders%2F_form.html.erb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

<%= form.label :pay_type %>
<%= form.select :pay_type, Order.pay_types.keys,➤

{ prompt: 'Select a payment method' },➤

class: "input-field" %>➤

</div>

<div class="inline">
<%= form.submit 'Place Order', class: "w-full sm:w-autorounded-md➤

px-3.5 py-2.5 bg-green-200 hover:bg-blue-500 text-black➤

inline-block font-medium cursor-pointer" %>➤

</div>
<% end %>

Rails has form helpers for all the different HTML-level form elements. In the
preceding code we use text_field, email_field, and text_area helpers to capture
the customer’s name, email, and address. We’ll cover form helpers in more
depth in Generating Forms, on page 383.

The only tricky thing in there is the code associated with the selection list.
We use the keys defined for the pay_type enum for the list of available payment
options. We also pass the :prompt parameter, which adds a dummy selection
containing the prompt text.

We also adjust the background and text color of the submit button as well
as the text for the button itself.

We’re ready to play with our form. Add some stuff to your cart, then click the
Checkout button. You should see something like the following screenshot.

Your Cart

1×
Modern Front-End Development

for Rails, Second Edition
$28.95

1×
Programming Ruby 3.3 (5th

Edition)
$33.95

Total: $62.90

Empty Cart Checkout

Home

Questions

News

Contact

Please Enter Your Details
Name

Address

Email

Pay type

Select a payment method

Place Order

Chapter 12. Task G: Check Out! • 172

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8
http://localhost:3003/
http://localhost:3003/questions
http://localhost:3003/news
http://localhost:3003/contact

Looking good! Before we move on, let’s finish the new action by adding some
validation. We’ll change the Order model to verify that the customer enters
data for all the input fields. We’ll also validate that the payment type is one
of the accepted values:

rails80/depot_o/app/models/order.rb
class Order < ApplicationRecord

...
validates :name, :address, :email, presence: true➤

validates :pay_type, inclusion: pay_types.keys➤

end

Some folks might be wondering why we bother to validate the payment type,
given that its value comes from a drop-down list that contains only valid values.
We do it because an application can’t assume that it’s being fed values from
the forms it creates. Nothing is stopping a malicious user from submitting form
data directly to the application, bypassing our form. If the user sets an unknown
payment type, that user might conceivably get our products for free.

Note that we already loop over the @order.errors at the top of the page. This’ll
report validation failures.

Since we modified validation rules, we need to modify our test fixture to match:

rails80/depot_o/test/fixtures/orders.yml
Read about fixtures at
https://api.rubyonrails.org/classes/ActiveRecord/FixtureSet.html

one:
name: Dave Thomas➤

address: MyText
email: dave@example.org➤

pay_type: Check➤

two:
name: MyString
address: MyText
email: MyString
pay_type: 1

Furthermore, for an order to be created, a line item needs to be in the cart,
so we need to modify the line items test fixture too:

rails80/depot_o/test/fixtures/line_items.yml
Read about fixtures at
https://api.rubyonrails.org/classes/ActiveRecord/FixtureSet.html

one:
product: two
cart: one
price: 1

report erratum • discuss

Iteration G1: Capturing an Order • 173

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_o%2Fapp%2Fmodels%2Forder.rb
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_o%2Ftest%2Ffixtures%2Forders.yml
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_o%2Ftest%2Ffixtures%2Fline_items.yml
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

two:
product: pragprog➤

order: one➤

price: 1

Note that if you didn’t choose to do the optional exercises in Playtime, on page
140, you need to modify all of the references to products and carts at this time
and not add price to the line items.

Feel free to make other changes, but only the first is currently used in the
functional tests. For these tests to pass, we’ll need to implement the model.

Capturing the Order Details
Let’s implement the create() action in the controller. This method has to do the
following:

1. Capture the values from the form to populate a new Order model object.

2. Add the line items from our cart to that order.

3. Validate and save the order. If this fails, display the appropriate messages,
and let the user correct any problems.

4. Once the order is successfully saved, delete the cart, redisplay the catalog
page, and display a message confirming that the order has been placed.

We define the relationships themselves, first from the line item to the order:

rails80/depot_o/app/models/line_item.rb
class LineItem < ApplicationRecord

belongs_to :order, optional: true➤

belongs_to :product
belongs_to :cart, optional: true➤

def total_price
price * quantity

end
end

And then we define the relationship from the order to the line item, once again
indicating that all line items that belong to an order are to be destroyed
whenever the order is destroyed:

rails80/depot_o/app/models/order.rb
class Order < ApplicationRecord

has_many :line_items, dependent: :destroy➤

...
end

Chapter 12. Task G: Check Out! • 174

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_o%2Fapp%2Fmodels%2Fline_item.rb
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_o%2Fapp%2Fmodels%2Forder.rb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

The method ends up looking something like this:

rails80/depot_o/app/controllers/orders_controller.rb
def create

@order = Order.new(order_params)
@order.add_line_items_from_cart(@cart)➤

respond_to do |format|
if @order.save
Cart.destroy(session[:cart_id])➤

session[:cart_id] = nil➤

format.html { redirect_to store_index_url, notice:➤

"Thank you for your order." }➤

format.json { render :show, status: :created,
location: @order }

else
format.html { render :new, status: :unprocessable_entity }
format.json { render json: @order.errors,

status: :unprocessable_entity }
end

end
end

We start by creating a new Order object and initialize it from the form data.
The next line adds into this order the items that are already stored in the
cart; we’ll write the method to do that in a minute.

Next, we tell the order object to save itself (and its children, the line items) to
the database. Along the way, the order object will perform validation (but we’ll
get to that in a minute).

If the save succeeds, we do two things. First, we ready ourselves for this
customer’s next order by deleting the cart from the session. Then we redisplay
the catalog, using the redirect_to() method to display a cheerful message. If,
instead, the save fails, we redisplay the checkout form with the current cart.

In the create action, we assumed that the order object contains the
add_line_items_from_cart() method, so let’s implement that method now:

rails80/depot_p/app/models/order.rb
class Order < ApplicationRecord

...
def add_line_items_from_cart(cart)➤

cart.line_items.each do |item|➤

item.cart_id = nil➤

line_items << item➤

end➤

end➤

end

report erratum • discuss

Iteration G1: Capturing an Order • 175

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_o%2Fapp%2Fcontrollers%2Forders_controller.rb
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_p%2Fapp%2Fmodels%2Forder.rb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Joe asks:

Aren’t You Creating Duplicate Orders?
Joe is concerned to see our controller creating Order model objects in two actions: new
and create. He’s wondering why this doesn’t lead to duplicate orders in the database.

The answer is that the new action creates an Order object in memory simply to give the
template code something to work with. Once the response is sent to the browser, that
particular object gets abandoned, and it’ll eventually be reaped by Ruby’s garbage
collector. It never gets close to the database.

The create action also creates an Order object, populating it from the form fields. This
object does get saved in the database. So model objects perform two roles: they map
data into and out of the database, but they’re also regular objects that hold business
data. They affect the database only when you tell them to, typically by calling save().

For each item that we transfer from the cart to the order, we need to do two
things. First we set the cart_id to nil to prevent the item from going poof when
we destroy the cart.

Then we add the item itself to the line_items collection for the order. Notice we
didn’t have to do anything special with the various foreign-key fields, such as
setting the order_id column in the line item rows to reference the newly created
order row. Rails does that knitting for us using the has_many() and belongs_to()
declarations we added to the Order and LineItem models. Appending each new line
item to the line_items collection hands the responsibility for key management over
to Rails. We also need to modify the test to reflect the new redirect:

rails80/depot_p/test/controllers/orders_controller_test.rb
test "should create order" do

assert_difference("Order.count") do
post orders_url, params: { order: { address: @order.address,

email: @order.email, name: @order.name,
pay_type: @order.pay_type } }

end

assert_redirected_to store_index_url➤

end

So, as a first test of all of this, click the Place Order button on the
checkout page without filling in any of the form fields. You should see
the checkout page redisplayed along with error messages complaining
about the empty fields, as shown in screenshot on page 177.

Chapter 12. Task G: Check Out! • 176

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_p%2Ftest%2Fcontrollers%2Forders_controller_test.rb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Your Cart

1×

Modern Front-End

Development for Rails, Second

Edition

$28.95

Total: $62.90

Please Enter Your
Details
4 errors prohibited this order from being saved:

Name can't be blank

Address can't be blank

Email can't be blank

If we fill in data, as shown in the following screenshot, and click Place Order,
we should be taken back to the catalog, as shown in next the screenshot.

Your Cart

1×

Modern Front-End

Development for Rails, Second

Edition

$28.95

1×
Programming Ruby 3.3 (5th

Edition)
$33.95

Total: $62.90

Empty Cart Checkout

Home

Questions

News

Contact

Please Enter Your
Details
Name

Dave Thomas

Address

123 Main St

Email

customer@example.com

Pay type

Check

Home

Questions

News

Thank you for your order.

Your Pragmatic Catalog

But did it work? Let’s look in the database, using the Rails command dbconsole,
which tells Rails to open an interactive shell to whatever database we have
configured.

depot> bin/rails dbconsole
SQLite version 3.36.0 2021-06-18 18:58:49
Enter ".help" for instructions
sqlite> .mode line
sqlite> select * from orders;

id = 1
name = Dave Thomas

address = 123 Main St
email = customer@example.com

pay_type = 0
created_at = 2022-01-12 16:41:35.897275
updated_at = 2022-01-12 16:41:48.065263

sqlite> select * from line_items;

report erratum • discuss

Iteration G1: Capturing an Order • 177

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8
http://localhost:3003/
http://localhost:3003/questions
http://localhost:3003/news
http://localhost:3003/
http://localhost:3003/questions
http://localhost:3003/news
http://localhost:3003/contact

id = 10
product_id = 3

cart_id =
created_at = 2022-01-12 16:41:46.548932
updated_at = 2022-01-12 16:41:48.065780

quantity = 1
price = 19.95

order_id = 1
sqlite> .quit

Although what you see will differ on details such as version numbers and
dates (and price will be present only if you completed the exercises defined in
Playtime, on page 140), you should see a single order and one or more line
items that match your selections.

Our customer is enthusiastic about our progress, but after playing with the
new checkout feature for a few minutes, she has a question: how does a user
enter payment details? It’s a great question, since there isn’t a way to do that.
Making that possible is somewhat tricky because each payment method
requires different details. If users want to pay with a credit card, they need
to enter a card number and expiration date. If they want to pay with a check,
we’ll need a routing number and an account number. And for purchase orders,
we need the purchase order number.

Although we could put all five fields on the screen at once, the customer
immediately balks at the poor user experience that would result. Can we show
the appropriate fields, depending on what payment type is chosen? Changing
elements of a user interface dynamically is certainly possible with some
JavaScript but is beyond what we can do with Turbo alone.

Iteration G2: Adding Fields Dynamically to a Form
We need a dynamic form that changes what fields are shown based on what
pay type the user has selected. We could cobble something together with
jQuery, but Rails includes another framework from the Hotwire set of frame-
works that’s well-suited to this task: Stimulus.4 Let’s put it to use!

Creating a Stimulus Controller
Our starting point is clearly the existing order form. The plan is to add some
additonal fields, cause those fields to be hidden on initial display, and finally,
to expose the fields associated with selected pay type whenever the selection
changes.

4. https://stimulus.hotwired.dev/

Chapter 12. Task G: Check Out! • 178

report erratum • discuss

https://stimulus.hotwired.dev/
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Let’s focus intially on the behavior we want to implement, then on the markup.
With Stimulus, the behavior is placed inside a controller, so let’s generate one:

depot> bin/rails generate stimulus payment
create app/javascript/controllers/payment_controller.js

What we have is a single file. That’s where we place our logic:

rails80/depot_p/app/javascript/controllers/payment_controller.js
import { Controller } from "@hotwired/stimulus"

// Connects to data-controller="payment"
export default class extends Controller {

static targets = ["selection", "additionalFields"]➤
➤

initialize() {➤

this.showAdditionalFields()➤

}➤
➤

showAdditionalFields() {➤

let selection = this.selectionTarget.value➤
➤

for (let fields of this.additionalFieldsTargets) {➤

fields.disabled = fields.hidden = (fields.dataset.type != selection)➤

}➤

}➤

}

This has three parts:

• First, we declare a list of targets. Targets identify HTML elements that
our controller will interact with. Our targets are a selection element and
additional fields. We simply list our targets here without specifying how
many of each we expect.

• Next, we define the initialization logic, which could implement as a loop
over the targets, hiding each, but it turns out that we can take advantage
of the code that shows additional fields. This has the additional benefit
of gracefully handing the case where the browser restores the value of
some form fields when the user manually refreshes the browser window.

• Finally, we define the code that shows the additional fields. We start by
getting the value of the selection. We then iterate over the additional fields.
Inside the iteration, we either disable and hide each set of fields or enable
and show each set based on whether or not the type of those fields
matches the selection.

This all sounds straightforward but won’t completely make sense until we
see the markup. So the next step is to define the additional fields.

report erratum • discuss

Iteration G2: Adding Fields Dynamically to a Form • 179

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_p%2Fapp%2Fjavascript%2Fcontrollers%2Fpayment_controller.js
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Defining Additional Fields
Paying online from your checking account involves providing a routing code
and an account number. Let’s add these fields to a new partial:

rails80/depot_p/app/views/orders/_check.html.erb
<fieldset data-payment-target="additionalFields" data-type="Check">

<div class="my-5">
<%= form.label :routing_number %>
<%= form.text_field :routing_number, class: "input-field" %>

</div>

<div class="my-5">
<%= form.label :account_number %>
<%= form.password_field :account_number, class: "input-field" %>

</div>
</fieldset>

The first line defines a payment target of additionalFields as well as a type of
Check. This matches up with the controller, which defined additionalFields as a
target and matches the fields.dataset.type against the value from the selection
target.

The remainder of this file is familiar: it defines the two new fields exactly as we
have been defining them all along. The only new thing is the reference to a
password_field, which causes most browsers to hide the text as you’re entering it.

Next up, we need to define fields for a credit card number and an expiration
date. We put them into a second partial:

rails80/depot_p/app/views/orders/_cc.html.erb
<fieldset data-payment-target="additionalFields" data-type="Credit card">

<div class="my-5">
<%= form.label :credit_card_number %>
<%= form.password_field :credit_card_number, class: "input-field" %>

</div>

<div class="my-5">
<%= form.label :expiration_date %>
<%= form.text_field :expiration_date, class: "input-field",
size:9, placeholder: "e.g. 03/22" %>

</div>
</fieldset>

No surprises here. Finally, we need a purchase order number field, which we
put into a third partial:

rails80/depot_p/app/views/orders/_po.html.erb
<fieldset data-payment-target="additionalFields" data-type="Purchase order">

<div class="my-5">
<%= form.label :po_number %>

Chapter 12. Task G: Check Out! • 180

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_p%2Fapp%2Fviews%2Forders%2F_check.html.erb
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_p%2Fapp%2Fviews%2Forders%2F_cc.html.erb
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_p%2Fapp%2Fviews%2Forders%2F_po.html.erb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

<%= form.number_field :po_number, class: "input-field" %>
</div>

</fieldset>

Now that we’re done with the additional fields, it’s time to update the form
itself:

rails80/depot_p/app/views/orders/_form.html.erb
<%= form_with(model: order, class: "contents") do |form| %>

<% if order.errors.any? %>
<div id="error_explanation" class="bg-red-50 text-red-500 px-3 py-2
font-medium rounded-md mt-3">
<h2><%= pluralize(order.errors.count, "error") %>
prohibited this order from being saved:</h2>

<ul class="list-disc ml-6">
<% order.errors.each do |error| %>

<%= error.full_message %>
<% end %>

</div>

<% end %>

<div class="my-5">
<%= form.label :name %>
<%= form.text_field :name, class: "input-field" %>

</div>

<div class="my-5">
<%= form.label :address %>
<%= form.textarea :address, rows: 4, class: "input-field" %>

</div>

<div class="my-5">
<%= form.label :email %>
<%= form.email_field :email, class: "input-field" %>

</div>

<div data-controller="payment">➤

<div class="my-5">
<%= form.label :pay_type %>
<%= form.select :pay_type, Order.pay_types.keys,

{ prompt: 'Select a payment method' },
'data-payment-target' => 'selection',➤

'data-action' => 'payment#showAdditionalFields',➤

class: "input-field" %>
</div>

➤

<%= render partial: 'check', locals: {form: form} %>➤

<%= render partial: 'cc', locals: {form: form} %>➤

<%= render partial: 'po', locals: {form: form} %>➤

</div>➤

<div class="inline">

report erratum • discuss

Iteration G2: Adding Fields Dynamically to a Form • 181

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_p%2Fapp%2Fviews%2Forders%2F_form.html.erb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

<%= form.submit 'Place Order', class: "w-full sm:w-autorounded-md
px-3.5 py-2.5 bg-green-200 hover:bg-blue-500 text-black
inline-block font-medium cursor-pointer" %>

</div>
<% end %>

This file has three sets of changes.

• First, we wrap all of the elements that are to be controlled by the payment
Stimulus controller with a div element containing a data-controller field
naming the controller.

• Next, we identify the form.select element as the selection target for the payment
controller and associate an action by naming the method to be called
when the selection changes.

• Finally, we render the three partials that we just created.

With both the code and markup now in place, we revisit the browser to see
the results shown in the screenshots on page 183.

If that isn’t what you’re seeing, here are some things to check:

• Your browser’s console is always a great resource and where you’ll find
both syntax and runtime errors in your JavaScript code.

• Check for typos in your markup and in the portions of the payment
Stimulus controller that need to match your markup. Remember that
generally the default is to do nothing. If the controller doesn’t match, then
no code will be executed. If no additional fields are found, the loop won’t
hide anything.

• Feel free to add calls to console.log inside your Stimulus controller.

For the times when you really want to run all of your tests with a single
command, Rails has this covered too: try running bin/rails test:all.

What We Just Did
In a fairly short amount of time, we did the following:

• We created a form to capture details for the order and linked it to a new
order model.

• We added validation and used helper methods to display errors to the user.

• We provided a feed so the administrator can monitor incoming orders.

Chapter 12. Task G: Check Out! • 182

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Pay type

Select a payment method

Pay type

Check

Routing number

Account number

Pay type

Credit card

Credit card number

Expiration date

e.g. 03/22

Pay type

Purchase order

Po number

Playtime
Here’s some stuff to try on your own:

• Get HTML- and JSON-formatted views working for who_bought requests.
Experiment with including the order information in the JSON view by
rendering @product.to_json(include: :orders). Do the same thing for XML using
ActiveModel::Serializers::Xml.5

• What happens if you click the Checkout button in the sidebar while the
checkout screen is already displayed? Can you find a way to disable
the button in this circumstance?

5. https://github.com/rails/activemodel-serializers-xml#readme

report erratum • discuss

Iteration G2: Adding Fields Dynamically to a Form • 183

https://github.com/rails/activemodel-serializers-xml#readme
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

• The list of possible payment types is currently stored as a constant in the
Order class. Can you move this list into a database table? Can you still
make validation work for the field?

Iteration G3: Testing Our JavaScript Functionality
Now that we have application-level functionality in JavaScript code, we’re
going to need to have tests in place to ensure that the function not only works
as intended but continues to work as we make changes to the application.

Testing this functionality involves a lot of steps: visiting the store, selecting
an item, adding that item to the cart, clicking checkout, filling in a few fields,
and selecting a payment type. And from a testing perspective, we’re going to
need both a Rails server and a browser.

To accomplish this, Rails makes use of the popular Google Chrome web
browser and Capybara,6 which is a tool that drives this automation. Microsoft
Edge and Mozilla’s Firefox are also supported, as is Apple’s Safari once Allow
Remote Automation is enabled via the Develop menu. The choice of browser
is controlled by the application_system_test_case.rb file in the test directory.

rails80/depot_p/test/application_system_test_case.rb
require "test_helper"

class ApplicationSystemTestCase < ActionDispatch::SystemTestCase
driven_by :selenium, using: :headless_chrome, screen_size: [1400, 1400]➤

end

Should you wish to test with a different browser, this is the place where you
would indicate which browser to use. :edge, :firefox, and :safari are all supported.

Tests that pull together a complete and integrated version of the software are
called system tests, and that’s exactly what we’ll be doing: we’ll be testing a
full end-to-end scenario with a web browser, web server, our application, and
a database.

Let’s run the existing system tests using bin/rails test:system. Oh dear, there are
about a dozen failures—which isn’t all that surprising, given that we’ve ignored
these tests up to this point.

The output indicates screenshot images have been placed into the /tmp/screenshots
directory, and taking a look at a few of them, we feel a bit like archaeolo-
gists. The tests verify the operation of the code as originally scaffolded—
most importantly before we added product validation logic in Iteration

6. https://github.com/teamcapybara/capybara#readme

Chapter 12. Task G: Check Out! • 184

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_p%2Ftest%2Fapplication_system_test_case.rb
https://github.com/teamcapybara/capybara#readme
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

B1: Validating!, on page 85, and before we moved the cart in Changing
the Flow, on page 148.

We could fix these errors, but we would end up with tests that largely duplicate
tests we already have. Let’s clean things up and write an entirely new test—
one that takes advantage of the fact that we’re interacting with a real browser
that runs the JavaScript code that we provided.

$ rm test/system/carts_test.rb
$ rm test/system/line_items_test.rb
$ rm test/system/products_test.rb

Now we’re ready to write the test we came here to write, which is that our
JavaScript is working when it’s run in a web browser. We start by describing
the actions and checks we want performed in test/system/orders_test.rb, which
already has some tests in it from the scaffold:

rails80/depot_p/test/system/orders_test.rb
require "application_system_test_case"

class OrdersTest < ApplicationSystemTestCase
test "check dynamic fields" do

visit store_index_url

click_on "Add to Cart", match: :first

click_on "Checkout"

assert has_no_field? "Routing number"
assert has_no_field? "Account number"
assert has_no_field? "Credit card number"
assert has_no_field? "Expiration date"
assert has_no_field? "Po number"

select "Check", from: "Pay type"

assert has_field? "Routing number"
assert has_field? "Account number"
assert has_no_field? "Credit card number"
assert has_no_field? "Expiration date"
assert has_no_field? "Po number"

select "Credit card", from: "Pay type"

assert has_no_field? "Routing number"
assert has_no_field? "Account number"
assert has_field? "Credit card number"
assert has_field? "Expiration date"
assert has_no_field? "Po number"

select "Purchase order", from: "Pay type"

assert has_no_field? "Routing number"
assert has_no_field? "Account number"
assert has_no_field? "Credit card number"

report erratum • discuss

Iteration G3: Testing Our JavaScript Functionality • 185

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_p%2Ftest%2Fsystem%2Forders_test.rb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

assert has_no_field? "Expiration date"
assert has_field? "Po number"

end
end

As you can see, it’s largely a repetition of a few lines of code with minor vari-
ations, prefaced by a few discrete steps: visit() a URL, find the :first button with
the text "Add to Cart" and click_on() it. Then click_on() the button labeled "Checkout".
We then select() various pay types and verify what fields we expect to see and
what fields we expect not to see.

At this point in the test, we check an assumption that the routing number
field isn’t on the page yet. We do this using has_no_field?() and pass it "Routing
number", which is a the text the user would see if they had selected Check as
the Pay type. We repeat this for all the other fields that the user could even-
tually see but at this point should be hidden.

In general, be careful when using has_no_field?() as there are an uncountable
number of fields the form doesn’t have, and any typo will cause such a test
to pass. In this case we’re safe, as the test contains matching has_field?() method
calls.

After that, we select() the value "Check" from the "Pay type" selector and then
assert that the routing number text field showed up, using has_field(). We repeat
this for each combination of Pay type and field. Four groups of five assertions,
for a total of twenty asssertions. Whew!

Capybara makes all of this possible using a compact, readable API that
requires very little code. For additional information and more methods, we
suggest that you familiarize yourself with the domain-specific language (DSL)
that Capybara provides.7

Now let’s run the test we just wrote:

$ bin/rails test:system
Running 5 tests in a single process (parallelization threshold is 50)
Run options: --seed 55897

Running:

Capybara starting Puma...
* Version 5.5.2 , codename: Zawgyi
* Min threads: 0, max threads: 4
* Listening on tcp://127.0.0.1:56776
Capybara starting Puma...
* Version 3.12.1 , codename: Llamas in Pajamas

7. https://github.com/teamcapybara/capybara#the-dsl

Chapter 12. Task G: Check Out! • 186

report erratum • discuss

https://github.com/teamcapybara/capybara#the-dsl
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

* Min threads: 0, max threads: 4
* Listening on tcp://127.0.0.1:43749
.....

Finished in 4.065668s, 1.2298 runs/s, 5.9031 assertions/s.

5 runs, 24 assertions, 0 failures, 0 errors, 0 skips

When you run this, you’ll notice a number of things. First, a web server is
started on your behalf, and then a browser is launched and the actions you
requested are performed. Once the test is complete, both are stopped and the
results of the test are reported back to you. All this is based on your
instructions as to what actions and tests are to be performed, and it’s then
expressed clearly and succinctly as a system test.

Note that system tests tend to take a bit longer to execute than model or
controller tests, which is why they’re not run as a part of bin/rails test. But all
in all, these tests aren’t all that slow, and they can test things that can’t be
tested in any other way, so system tests are a valuable tool to have in our
toolchest.

What We Just Did
• We replaced a static form_select field with a dynamic list of form fields that

change instantly based on user selection.

• We wrote a Stimulus controller that attached to the HTML to make the
dynamic changes happen.

• We used Capybara to system-test this functionality.

Playtime
Here’s some stuff to try on your own:

• While new fields were added to the form, they have yet to be added
to the database. Generate a migration to add the fields, and add them to
the order_parameters() method.

• Add a test to verify that the Add to Cart and Empty Cart buttons reveal
and hide the cart, respectively.

• Add a test of the highlight feature you added in Iteration F3: Highlighting
Changes, on page 155. The Capybara have_css() method8 may be useful here.

8. https://rubydoc.info/github/jnicklas/capybara/Capybara%2FRSpecMatchers:have_css

report erratum • discuss

Iteration G3: Testing Our JavaScript Functionality • 187

https://rubydoc.info/github/jnicklas/capybara/Capybara%2FRSpecMatchers:have_css
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

CHAPTER 13

In this chapter, you'll see:
• Sending email
• Running background code with Active Job
• System testing background jobs and email

Task H: Sending Emails
and Processing Payments Efficiently

At this point, we have a website that responds to requests and provides
feeds that allow sales of individual titles to be checked periodically. The
customer is happier but still not satisfied. The first bit of feedback is that
users aren’t getting confirmation emails of their purchases. The second is
around payment processing. The customer has arranged for us to integrate
with a payment processor that can handle all forms of payment we want
to support, but the processor’s API is very slow. The customer wants to
know if that will slow down the site.

Sending email is a common need for any web application, and Rails has you
covered via Action Mailer,1 which you’ll learn in this chapter. Dealing with
the slow payment-processing API requires learning about the library Action
Mailer is built on, Active Job.2 Active Job allows you to run code in a back-
ground process so that the user doesn’t have to wait for it to complete.
Sending email is slow, which is why Action Mailer uses Active Job to offload
the work. This is a common technique you’ll use often when developing web
applications. Let’s take it one step at a time and learn how to send email.

Iteration H1: Sending Confirmation Emails
Sending email in Rails has three basic parts: configuring how email is to be
sent, determining when to send the email, and specifying what you want to
say. We’ll cover each of these three in turn.

1. http://guides.rubyonrails.org/action_mailer_basics.html
2. http://guides.rubyonrails.org/active_job_basics.html

report erratum • discuss

http://guides.rubyonrails.org/action_mailer_basics.html
http://guides.rubyonrails.org/active_job_basics.html
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Configuring Email
Email configuration is part of a Rails application’s environment and involves
a Rails.application.configure block. If you want to use the same configuration for
development, testing, and production, add the configuration to environment.rb
in the config directory; otherwise, add different configurations to the appropriate
files in the config/environments directory.

Inside the block, you need to have one or more statements. You first have to
decide how you want mail delivered:

config.action_mailer.delivery_method = :smtp

Alternatives to :smtp include :sendmail and :test.

The :smtp and :sendmail options are used when you want Action Mailer to attempt
to deliver email. You’ll clearly want to use one of these methods in production.

The :test setting is great for unit and functional testing, which we’ll make use
of in Testing Email, on page 195. Email won’t be delivered; instead, it’ll be
appended to an array (accessible via the ActionMailer::Base.deliveries attribute).
This is the default delivery method in the test environment. Interestingly,
though, the default in development mode is :smtp. If you want Rails to deliver
email during the development of your application, this is good. If you’d rather
disable email delivery in development mode, edit the development.rb file in the
config/environments directory and add the following lines:

Rails.application.configure do
config.action_mailer.delivery_method = :test

end

The :sendmail setting delegates mail delivery to your local system’s sendmail
program, which is assumed to be in /usr/sbin. This delivery mechanism isn’t
particularly portable, because sendmail isn’t always installed in this directory
for every operating system. It also relies on your local sendmail supporting the
-i and -t command options.

You achieve more portability by leaving this option at its default value of :smtp.
If you do so, you’ll need also to specify some additional configuration to tell
Action Mailer where to find an SMTP server to handle your outgoing email.
This can be the machine running your web application, or it can be a separate
box (perhaps at your ISP if you’re running Rails in a noncorporate environ-
ment). Your system administrator will be able to give you the settings for
these parameters. You may also be able to determine them from your own
mail client’s configuration.

Chapter 13. Task H: Sending Emails and Processing Payments Efficiently • 190

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

The following are typical settings for Gmail: adapt them as you need.

Rails.application.configure do
config.action_mailer.delivery_method = :smtp

config.action_mailer.smtp_settings = {
address: "smtp.gmail.com",
port: 587,
domain: "domain.of.sender.net",
authentication: "plain",
user_name: "dave",
password: "secret",

enable_starttls_auto: true
}

end

As with all configuration changes, you’ll need to restart your application if
you make changes to any of the environment files.

Sending Email
Now that we have everything configured, let’s write some code to send emails.

By now you shouldn’t be surprised that Rails has a generator script to create
mailers. In Rails, a mailer is a class that’s stored in the app/mailers directory.
It contains one or more methods, with each method corresponding to an email
template. To create the body of the email, these methods in turn use views
(in the same way that controller actions use views to create HTML and XML).
So let’s create a mailer for our store application. We’ll use it to send two dif-
ferent types of email: one when an order is placed and a second when the
order ships. The rails generatemailer command takes the name of the mailer class
along with the names of the email action methods:

depot> bin/rails generate mailer Order received shipped
create app/mailers/order_mailer.rb
invoke tailwindcss
create app/views/order_mailer
create app/views/order_mailer/received.text.erb
create app/views/order_mailer/received.html.erb
create app/views/order_mailer/shipped.text.erb
create app/views/order_mailer/shipped.html.erb
invoke test_unit
create test/mailers/order_mailer_test.rb
create test/mailers/previews/order_mailer_preview.rb

Notice that we create an OrderMailer class in app/mailers and two template files,
one for each email type, in app/views/order_mailer. (We also create a test file; we’ll
look into this in Testing Email, on page 195.)

report erratum • discuss

Iteration H1: Sending Confirmation Emails • 191

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Each method in the mailer class is responsible for setting up the environment
for sending an email. Let’s look at an example before going into detail. Here’s
the code that was generated for our OrderMailer class, with one default changed:

rails80/depot_q/app/mailers/order_mailer.rb
class OrderMailer < ApplicationMailer

default from: "Sam Ruby <depot@example.com>"➤

Subject can be set in your I18n file at config/locales/en.yml
with the following lookup:
#
en.order_mailer.received.subject
#
def received

@greeting = "Hi"

mail to: "to@example.org"
end

Subject can be set in your I18n file at config/locales/en.yml
with the following lookup:
#
en.order_mailer.shipped.subject
#
def shipped

@greeting = "Hi"

mail to: "to@example.org"
end

end

If you’re thinking to yourself that this looks like a controller, that’s because
it does. It includes one method per action. Instead of a call to render(), there’s
a call to mail(). This method accepts a number of parameters including :to (as
shown), :cc, :from, and :subject, each of which does pretty much what you’d
expect it to do. Values that are common to all mail() calls in the mailer can be
set as defaults by simply calling default, as is done for :from at the top of this
class. Feel free to tailor this to your needs.

The comments in this class also indicate that subject lines are already enabled
for translation, a subject we’ll cover in Chapter 15, Task J: Internationaliza-
tion, on page 225. For now, we’ll simply use the :subject parameter.

As with controllers, templates contain the text to be sent, and controllers and
mailers can provide values to be inserted into those templates via instance
variables.

Email Templates

The generate script created two email templates in app/views/order_mailer, one for
each action in the OrderMailer class. These are regular .erb files. We’ll use them

Chapter 13. Task H: Sending Emails and Processing Payments Efficiently • 192

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_q%2Fapp%2Fmailers%2Forder_mailer.rb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

to create plain-text emails (you’ll see later how to create HTML email). As with
the templates we use to create our application’s web pages, the files contain
a combination of static text and dynamic content. We can customize the
template in received.text.erb; this is the email that’s sent to confirm an order:

rails80/depot_q/app/views/order_mailer/received.text.erb
Dear <%= @order.name %>

Thank you for your recent order from The Pragmatic Store.

You ordered the following items:

<%= render @order.line_items -%>

We'll send you a separate e-mail when your order ships.

The partial template that renders a line item formats a single line with the
item quantity and the title. Because we’re in a template, all the regular helper
methods, such as truncate(), are available:

rails80/depot_q/app/views/line_items/_line_item.text.erb
<%= sprintf("%2d x %s",

line_item.quantity,
truncate(line_item.product.title, length: 50)) %>

We now have to go back and fill in the received() method in the OrderMailer class:

rails80/depot_qa/app/mailers/order_mailer.rb
def received(order)

@order = order

mail to: order.email, subject: "Pragmatic Store Order Confirmation"
end

What we did here is add order as an argument to the method-received call, add
code to copy the parameter passed into an instance variable, and update the
call to mail() specifying where to send the email and what subject line to use.

Generating Emails

Now that we have our template set up and our mailer method defined, we
can use them in our regular controllers to create and/or send emails. Note
that just calling the method we defined isn’t enough; we also need to tell Rails
to actually send the email. The reason this doesn’t happen automatically is
that Rails can’t be 100 percent sure if you want to deliver the email right this
moment, while the user waits, or later, in a background job.

Generally, you don’t want the user to have to wait for emails to get sent,
because this can take a while. Instead, we’ll send it in a background job

report erratum • discuss

Iteration H1: Sending Confirmation Emails • 193

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_q%2Fapp%2Fviews%2Forder_mailer%2Freceived.text.erb
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_q%2Fapp%2Fviews%2Fline_items%2F_line_item.text.erb
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_qa%2Fapp%2Fmailers%2Forder_mailer.rb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

(which we’ll learn more about later in the chapter) by calling deliver_later() (to
send the email right now, you’d use deliver_now()).3

rails80/depot_qa/app/controllers/orders_controller.rb
def create

@order = Order.new(order_params)
@order.add_line_items_from_cart(@cart)

respond_to do |format|
if @order.save

Cart.destroy(session[:cart_id])
session[:cart_id] = nil
OrderMailer.received(@order).deliver_later➤

format.html { redirect_to store_index_url, notice:
"Thank you for your order." }

format.json { render :show, status: :created,
location: @order }

else
format.html { render :new, status: :unprocessable_entity }
format.json { render json: @order.errors,

status: :unprocessable_entity }
end

end
end

And we need to update shipped() as we did for received():

rails80/depot_qa/app/mailers/order_mailer.rb
def shipped(order)

@order = order

mail to: order.email, subject: "Pragmatic Store Order Shipped"
end

Now we have enough of the basics in place that you can place an order and
have a plain email sent to yourself, assuming you didn’t disable the sending
of email in development mode. Let’s spice up the email with a bit of formatting.

Delivering Multiple Content Types

Some people prefer to receive email in plain-text format, while others like the
look of an HTML email. Rails supports this directly, allowing you to send
email messages that contain alternative content formats, allowing users (or
their email clients) to decide which they’d prefer to view.

In the preceding section, we created a plain-text email. The view file for our
received action was called received.text.erb. This is the standard Rails naming
convention. We can also create HTML-formatted emails.

3. http://api.rubyonrails.org/classes/ActionMailer/MessageDelivery.html#method-i-deliver_now

Chapter 13. Task H: Sending Emails and Processing Payments Efficiently • 194

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_qa%2Fapp%2Fcontrollers%2Forders_controller.rb
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_qa%2Fapp%2Fmailers%2Forder_mailer.rb
http://api.rubyonrails.org/classes/ActionMailer/MessageDelivery.html#method-i-deliver_now
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Let’s try this with the order-shipped notification. We don’t need to modify any
code—we simply need to create a new template:

rails80/depot_qa/app/views/order_mailer/shipped.html.erb
<h3>Pragmatic Order Shipped</h3>
<p>

This is just to let you know that we've shipped your recent order:
</p>

<table>
<tr><th colspan="2">Qty</th><th>Description</th></tr>

<%= render @order.line_items -%>
</table>

We don’t need to modify the partial, because the existing one will do just fine:

rails80/depot_qa/app/views/line_items/_line_item.html.erb
<% if line_item == @current_item %>
<tr class="line-item-highlight">
<% else %>
<tr>
<% end %>

<td class="text-right"><%= line_item.quantity %></td>
<td>×</td>
<td class="pr-2">

<%= line_item.product.title %>
</td>
<td class="text-right font-bold">

<%= number_to_currency(line_item.total_price) %>
</td>

</tr>

But for email templates, Rails provides a bit more naming magic. If you create
multiple templates with the same name but with different content types
embedded in their filenames, Rails will send all of them in one email,
arranging the content so that the email client can distinguish each.

This means you’ll want to either update or delete the plain-text template that
Rails provided for the shipped notifier.

Testing Email
When we used the generate script to create our order mailer, it automatically
constructed a corresponding order_test.rb file in the application’s test/mailers
directory. It’s pretty straightforward; it simply calls each action and verifies
selected portions of the email produced. Because we’ve tailored the email,
let’s update the test case to match:

report erratum • discuss

Iteration H1: Sending Confirmation Emails • 195

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_qa%2Fapp%2Fviews%2Forder_mailer%2Fshipped.html.erb
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_qa%2Fapp%2Fviews%2Fline_items%2F_line_item.html.erb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

rails80/depot_qa/test/mailers/order_mailer_test.rb
require "test_helper"

class OrderMailerTest < ActionMailer::TestCase
test "received" do

mail = OrderMailer.received(orders(:one))➤

assert_equal "Pragmatic Store Order Confirmation", mail.subject➤

assert_equal ["dave@example.org"], mail.to➤

assert_equal ["depot@example.com"], mail.from➤

assert_match /1 x The Pragmatic Programmer/, mail.body.encoded➤

end

test "shipped" do
mail = OrderMailer.shipped(orders(:one))➤

assert_equal "Pragmatic Store Order Shipped", mail.subject➤

assert_equal ["dave@example.org"], mail.to➤

assert_equal ["depot@example.com"], mail.from➤

assert_match %r{➤

<td[^>]*>1<\/td>\s*➤

<td>×<\/td>\s*➤

<td[^>]*>\s*The\sPragmatic\sProgrammer\s*</td>➤

}x, mail.body.encoded➤

end
end

The test method instructs the mail class to create (but not to send) an email,
and we use assertions to verify that the dynamic content is what we expect.
Note the use of assert_match() to validate just part of the body content. Your results
may differ depending on how you tailored the default :from line in your OrderMailer.

Note that it’s also possible to have your Rails application receive emails. We’ll
cover that in Chapter 16, Task K: Receive Emails and Respond with Rich Text,
on page 247.

Now that we’ve implemented our mailer and tested it, let’s move on to that
pesky slow payment processor. To deal with that, we’ll put our API calls into
a job that can be run in the background so the user doesn’t have to wait.

Iteration H2: Connecting to a Slow Payment Processor
with Active Job
The code inside the controllers is relatively fast and returns a response to the
user quickly. This means we can reliably give users feedback by checking
and validating their orders and the users won’t have to wait too long for a
response.

The more we add to the controller, the slower it’ll become. Slow controllers
create several problems. First, the user must wait a long time for a response

Chapter 13. Task H: Sending Emails and Processing Payments Efficiently • 196

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_qa%2Ftest%2Fmailers%2Forder_mailer_test.rb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

even though the processing that’s going on might not be relevant to the user
experience. In the previous section, we set up sending email. The user certainly
needs to get that email but doesn’t need to wait for Rails to format and send
it just to show a confirmation in the browser.

The second problem caused by slow code is timeouts. A timeout is when Rails,
a web server, or a browser decides that a request has taken too long and
terminates it. This is jarring to the user and to the code because it means
the code is interrupted at a potentially odd time. What if we’ve recorded the
order but haven’t sent the email? The customer won’t get a notification.

In the common case of sending email, Rails handles sending it in the back-
ground. We use deliver_later() to trigger sending an email, and Rails executes
that code in the background. This means that users don’t have to wait for
email to be sent before we render a response. This is a great hidden benefit
to Rails’ integrated approach to building a web app.

Rails achieves this using Active Job, which is a generic framework for running
code in the background. We’ll use this framework to connect to the slow
payment processor.

To make this change, you’ll implement the integration with the payment proces-
sor as a method inside Order, then have the controller use Active Job to execute
that method in a background job. Because the end result will be somewhat
complex, you’ll write a system test to ensure everything is working together.

Moving Logic into the Model
It’s way outside the scope of this book to integrate with an actual payment
processor, so we’ve cooked up a fake one named Pago, along with an imple-
mentation, which we’ll see in a bit. First, this is the API it provides and a
sketch of how you can use it:

payment_result = Pago.make_payment(
order_id: order.id,
payment_method: :check,
payment_details: { routing: xxx, account: yyy }

)

The fake implementation does some basic validations of the parameters, prints
out the payment details it received, pauses for a few seconds, and returns a
structure that responds to succeeded?().

rails80/depot_qb/lib/pago.rb
require "ostruct"
class Pago

def self.make_payment(order_id:,

report erratum • discuss

Iteration H2: Connecting to a Slow Payment Processor with Active Job • 197

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_qb%2Flib%2Fpago.rb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

payment_method:,
payment_details:)

case payment_method
when :check
Rails.logger.info "Processing check: " +

payment_details.fetch(:routing).to_s + "/" +
payment_details.fetch(:account).to_s

when :credit_card
Rails.logger.info "Processing credit_card: " +

payment_details.fetch(:cc_num).to_s + "/" +
payment_details.fetch(:expiration_month).to_s + "/" +
payment_details.fetch(:expiration_year).to_s

when :po
Rails.logger.info "Processing purchase order: " +

payment_details.fetch(:po_num).to_s
else
raise "Unknown payment_method #{payment_method}"

end

sleep 3 unless Rails.env.test?
Rails.logger.info "Done Processing Payment"
OpenStruct.new(succeeded?: true)

end
end

If you aren’t familiar with OpenStruct, it’s part of Ruby’s standard library and
provides a quick-and-dirty way to make an object that responds to the
methods given to its constructor.4 In this case, we can call succeeded?() on
the return value from make_payment(). OpenStruct is handy for creating realistic
objects from prototype or faked-out code like Pago.

With the payment API in hand, you need logic to adapt the payment details
that you added in Defining Additional Fields, on page 180, to Pago’s API. You’ll
also move the call to OrderMailer into this method, because you don’t want to
send the email if there was a problem collecting payment.

In a Rails app, when a bit of logic becomes more complex than a line or two
of code, you want to move that out of the controller and into a model. You’ll
create a new method in Order called charge!() that will handle all this logic.

To prepare for this, we first define a pay_type_params() method in the controller
that will capture the parameters to be passed to the model. We put this new
method in the bottom of the controller, in the private section:

rails80/depot_qb/app/controllers/orders_controller.rb
def pay_type_params

if order_params[:pay_type] == "Credit card"

4. https://ruby-doc.org/stdlib-2.4.1/libdoc/ostruct/rdoc/OpenStruct.html

Chapter 13. Task H: Sending Emails and Processing Payments Efficiently • 198

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_qb%2Fapp%2Fcontrollers%2Forders_controller.rb
https://ruby-doc.org/stdlib-2.4.1/libdoc/ostruct/rdoc/OpenStruct.html
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

params.require(:order).permit(:credit_card_number, :expiration_date)
elsif order_params[:pay_type] == "Check"

params.require(:order).permit(:routing_number, :account_number)
elsif order_params[:pay_type] == "Purchase order"

params.require(:order).permit(:po_number)
else

{}
end

end

The method will be somewhat long and has to do three things. First, it must
adapt the pay_type_params that you just created to the parameters that Pago
requires. Second, it should make the call to Pago to collect payment. Finally,
it must check to see if the payment succeeded and, if so, send the confirmation
email. Here’s what the method looks like:

rails80/depot_qb/app/models/order.rb
require "pago"➤

class Order < ApplicationRecord
enum :pay_type, {

"Check" => 0,
"Credit card" => 1,
"Purchase order" => 2

}
has_many :line_items, dependent: :destroy
...
validates :name, :address, :email, presence: true
validates :pay_type, inclusion: pay_types.keys
def add_line_items_from_cart(cart)

cart.line_items.each do |item|
item.cart_id = nil
line_items << item

end
end

def charge!(pay_type_params)➤

payment_details = {}➤

payment_method = nil➤
➤

case pay_type➤

when "Check"➤

payment_method = :check➤

payment_details[:routing] = pay_type_params[:routing_number]➤

payment_details[:account] = pay_type_params[:account_number]➤

when "Credit card"➤

payment_method = :credit_card➤

month, year = pay_type_params[:expiration_date].split(//)➤

payment_details[:cc_num] = pay_type_params[:credit_card_number]➤

payment_details[:expiration_month] = month➤

payment_details[:expiration_year] = year➤

report erratum • discuss

Iteration H2: Connecting to a Slow Payment Processor with Active Job • 199

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_qb%2Fapp%2Fmodels%2Forder.rb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

when "Purchase order"➤

payment_method = :po➤

payment_details[:po_num] = pay_type_params[:po_number]➤

end➤
➤

payment_result = Pago.make_payment(➤

order_id: id,➤

payment_method: payment_method,➤

payment_details: payment_details➤

)➤
➤

if payment_result.succeeded?➤

OrderMailer.received(self).deliver_later➤

else➤

raise payment_result.error➤

end➤

end➤

end

If you weren’t concerned with how slow Pago’s API is, you’d change the code
in the create() method of OrdersController to call charge!():

if @order.save
Cart.destroy(session[:cart_id])
session[:cart_id] = nil
@order.charge!(pay_type_params) # do not do this➤

format.html { redirect_to store_index_url, notice:
'Thank you for your order.' }

Since you already know the call to Pago will be slow, you want it to happen
in a background job so that users can see the confirmation message in their
browser immediately without having to wait for the charge to actually happen.
To do this, you must create an Active Job class, implement that class to call
charge!(), and then add code to the controller to execute this job. The flow looks
like the figure shown on page 201.

Creating an Active Job Class
Rails provides a generator to create a shell of a job class for us. Create the
job using it like so:

> bin/rails generate job charge_order
invoke test_unit
create test/jobs/charge_order_job_test.rb
create app/jobs/charge_order_job.rb

The argument charge_order tells Rails that the job’s class name should be
ChargeOrderJob.

Chapter 13. Task H: Sending Emails and Processing Payments Efficiently • 200

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Order

ChargeOrderJob

OrdersController

User

Save
Order

Render
“Thank You”

Start
Background

Job

Call Pago Send Email

Call
Order.charge!

You’ve implemented the logic in the charge!() method of Order, so what goes in
the newly created ChargeOrderJob? The purpose of job classes like ChargeOrderJob
is to act as a glue between the controller—–which wants to run some logic
later—–and the actual logic in the models.

Here’s the code that implements this:

rails80/depot_qb/app/jobs/charge_order_job.rb
class ChargeOrderJob < ApplicationJob

queue_as :default

def perform(order, pay_type_params)➤

order.charge!(pay_type_params)➤

end
end

Next, you need to fire this job in the background from the controller.

Queuing a Background Job
Because background jobs run in parallel to the code in the controller, the
code you write to initiate the background job isn’t the same as calling a

report erratum • discuss

Iteration H2: Connecting to a Slow Payment Processor with Active Job • 201

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_qb%2Fapp%2Fjobs%2Fcharge_order_job.rb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

method. When you call a method, you expect that method’s code to be executed
while you wait. Background jobs are different. They often go to a queue, where
they wait to be executed outside the controller. Thus, when we talk about
executing code in a background job, we often use the phrase “queue the job.”

To queue a job using Active Job, use the method perform_later() on the job class
and pass it the arguments you want to be given to the perform() method you
implemented above. Here’s where to do that in the controller (note that this
replaces the call to OrderMailer, since that’s now part of the charge!() method):

rails80/depot_qb/app/controllers/orders_controller.rb
def create

@order = Order.new(order_params)
@order.add_line_items_from_cart(@cart)

respond_to do |format|
if @order.save

Cart.destroy(session[:cart_id])
session[:cart_id] = nil
ChargeOrderJob.perform_later(@order, pay_type_params.to_h)➤

format.html { redirect_to store_index_url, notice:
"Thank you for your order." }

format.json { render :show, status: :created,
location: @order }

else
format.html { render :new, status: :unprocessable_entity }
format.json { render json: @order.errors,

status: :unprocessable_entity }
end

end
end

With this in place, you can now add an item to the cart, check out, and see
everything working just as we did before, with the addition of seeing the calls
to Pago. If you look at the Rails log when you check out, you should see some
logging, like so (formatted to fit the page):

[ActiveJob] Enqueued ChargeOrderJob
(Job ID: 79da671e-865c-4d51-a1ff-400208c6dbd1)

to Async(default) with arguments:
#<GlobalID:0x007fa294a43ce0 @uri=#<URI::GID gid://depot/Order/9>>,
{"routing_number"=>"23412341234", "account_number"=>"345356345"}

[ActiveJob] [ChargeOrderJob] [79da671e-865c-4d51-a1ff-400208c6dbd1]
Performing ChargeOrderJob
(Job ID: 79da671e-865c-4d51-a1ff-400208c6dbd1) from

Async(default) with arguments:
#<GlobalID:0x007fa294a01570 @uri=#<URI::GID gid://depot/Order/9>>,
{"routing_number"=>"23412341234", "account_number"=>"345356345"}

[ActiveJob] [ChargeOrderJob] [79da671e-865c-4d51-a1ff-400208c6dbd1]
Processing check: 23412341234/345356345

Chapter 13. Task H: Sending Emails and Processing Payments Efficiently • 202

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_qb%2Fapp%2Fcontrollers%2Forders_controller.rb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

This shows the guts of how Active Job works and is useful for debugging if
things aren’t working right.

Speaking of debugging and possible failures, this interaction really should
have a test.

System Testing the Checkout Flow
In Iteration G3: Testing Our JavaScript Functionality, on page 184, you wrote
a system test that uses a real browser to simulate user interaction. To test
the entire flow of checking out, communicating with the payment processor,
and sending an email, you’ll add a second test.

To test the full, end-to-end workflow, including execution of Active Jobs, you
want to do the following:

1. Add a book to the cart.
2. Fill in the checkout form completely (including selecting a pay type).
3. Submit the order.
4. Process all background jobs.
5. Check that the order was created properly.
6. Check that email was sent.

You should already be familiar with how to write most parts of this test. Pro-
cessing background jobs and checking mail, however, are new. Rails provides
helpers for us, so the test will be short and readable when you’re done. One
of those helpers is available by mixing in the ActiveJob::TestHelper module:

rails80/depot_qb/test/system/orders_test.rb
class OrdersTest < ApplicationSystemTestCase

include ActiveJob::TestHelper➤

This provides the method perform_enqueued_jobs(), which you’ll use in your test:

rails80/depot_qb/test/system/orders_test.rb
test "check order and delivery" do

LineItem.delete_all
Order.delete_all

visit store_index_url

click_on "Add to Cart", match: :first

click_on "Checkout"

fill_in "Name", with: "Dave Thomas"
fill_in "Address", with: "123 Main Street"
fill_in "Email", with: "dave@example.com"

select "Check", from: "Pay type"
fill_in "Routing number", with: "123456"

report erratum • discuss

Iteration H2: Connecting to a Slow Payment Processor with Active Job • 203

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_qb%2Ftest%2Fsystem%2Forders_test.rb
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_qb%2Ftest%2Fsystem%2Forders_test.rb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

fill_in "Account number", with: "987654"

click_button "Place Order"
assert_text "Thank you for your order"

perform_enqueued_jobs
perform_enqueued_jobs
assert_performed_jobs 2

orders = Order.all
assert_equal 1, orders.size

order = orders.first
assert_equal "Dave Thomas", order.name
assert_equal "123 Main Street", order.address
assert_equal "dave@example.com", order.email
assert_equal "Check", order.pay_type
assert_equal 1, order.line_items.size

mail = ActionMailer::Base.deliveries.last
assert_equal ["dave@example.com"], mail.to
assert_equal "Sam Ruby <depot@example.com>", mail[:from].value
assert_equal "Pragmatic Store Order Confirmation", mail.subject

end

This test reads almost like English. Since you now need to submit the form
and assert that an order was created, you start by clearing out any orders in
the test database that might be hanging around from previous test runs.

Next, you add an item to the cart, check out and fill in the pay type details,
place your order, and verify that you get a Thank you response.

Since this test is about the user’s experience end-to-end, you don’t need to
look at the jobs that have been queued—instead we need to make sure they
are executed. It’s sufficient to assert the results of those jobs having been
executed. To that end, the method perform_enqueued_jobs() will perform any jobs
that get enqueued inside the block of code given to it.Since our ChangeOrderJob
enqueues a mail job, clearing the queue once isn’t enough, so we clear it
twice. After this, we verify that exactly two jobs were executed.

Next, check that an order was created in the way you expect by locating the
created order and asserting that the values provided in the checkout form
were properly saved.

Lastly, you need to check that the mail was sent. In the test environment,
Rails doesn’t actually deliver mail but instead saves it in an array available
via ActionMailer::Base.deliveries(). The objects in there respond to various methods
that allow you to examine the email.

Chapter 13. Task H: Sending Emails and Processing Payments Efficiently • 204

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Joe asks:

How Are Background Jobs Run in Development
or Production?

When running the application locally, the background jobs are executed and emails
are sent by Rails. By default, Rails uses an in-memory queue to manage the jobs.
This is fine for development, but it could be a problem in production. If your app were
to crash before all background jobs were processed or before emails were sent, those
jobs would be lost and unrecoverable.

In production, you’d need to use a different back end, as detailed in the Active Job
Rails Guide.a Sidekiq is a popular open source back end that works great.b Setting
it up is a bit tricky since you must have access to a Redis database to store the
waiting jobs.c If you’re using Postgres for your Active Records, Queue Classic is
another option for a back end that doesn’t require Redis—it uses your existing Postgres
database.d

a. http://guides.rubyonrails.org/active_job_basics.html#job-execution
b. http://sidekiq.org/
c. https://redis.io/
d. https://github.com/QueueClassic/queue_classic/tree/3-1-stable

If you run this test via bin/rails test test/system/orders_test.rb, it should pass. You’ve
now tested a complex workflow using the browser, background jobs, and email.

What We Just Did
Without much code and with just a few templates, we’ve managed to pull off
the following:

• We configured our development, test, and production environments for
our Rails application to enable the sending of outbound emails.

• We created and tailored a mailer that can send confirmation emails in
both plain-text and HTML formats to people who order our products.

• We used Active Job to execute slow-running code in the background so
the user doesn’t have to wait.

• We enhanced a system test to cover the entire end-to-end workflow,
including verifying that the background job executed and the email
was sent.

report erratum • discuss

Iteration H2: Connecting to a Slow Payment Processor with Active Job • 205

http://guides.rubyonrails.org/active_job_basics.html#job-execution
http://sidekiq.org/
https://redis.io/
https://github.com/QueueClassic/queue_classic/tree/3-1-stable
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Playtime
Here’s some stuff to try on your own:

• Add a ship_date column to the orders table, and send a notification when
this value is updated by the OrdersController.

• Update the application to send an email to the system administrator—
namely, yourself—when an application failure occurs, such as the one
we handled in Iteration E2: Handling Errors, on page 132.

• Modify Pago to sometimes return a failure (OpenStruct.new(succeeded?: false)),
and handle that by sending a different email with the details of the failure.

• Add system tests for all of the above.

Chapter 13. Task H: Sending Emails and Processing Payments Efficiently • 206

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

CHAPTER 14

In this chapter, you'll see:
• Using the authentication generator
• Generating scaffolding for an existing model
• Using more validations
• Using rails console
• Using database transactions
• Writing an Active Record hook

Task I: Logging In
We have a happy customer: in a short time, we’ve jointly put together a basic
shopping cart that she can start showing to her users. She’d like to see just
one more change. Right now, anyone can access the administrative functions.
She’d like us to add a basic user administration system that would force you
to log in to get into the administration parts of the site.

Chatting with our customer, it seems as if we don’t need a particularly
sophisticated security system for our application. We just need to recognize
a number of people based on email addresses and passwords. Once recognized,
these folks can use all of the administration functions.

Iteration I1: Authenticating Users
Building a user administration system is a common task in web applications.
Rails provides a generator to help you get started. The code it generates is a
good starting point, and takes care of important details like storing passwords
securely. It builds upon sessions, mailers, and jobs, which we’ve seen in
previous chapters.

We start by running the generator:

depot> bin/rails generate authentication

This creates three models: Session, User, and Current. It creates controllers for
sessions and passwords and a controller concern for authentication. Finally,
it creates views for passwords and their associated mailer. The one task it
leaves to you is the task of defining the user. We could create this from
scratch, but we’ll use the scaffold generator to get us started and tell it to not
modify what was produced by the authentication generator. The existing user
model defines the user’s email address and password; we just need to add
the user’s name.

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

depot> bin/rails generate scaffold User \
name:string email_address:string password:digest \
--skip-collision-check --skip

We declare the password as a digest type, which will automatically handle
HTTP Digest authentication1 for us—another one of the nice extra touches
that Rails provides.

Because we skipped the collision check, we need to manually update the
migration:

rails80/depot_r/db/migrate/20250420000011_create_users.rb
class CreateUsers < ActiveRecord::Migration[8.0]

def change
create_table :users do |t|
t.string :name, null: false➤

t.string :email_address, null: false
t.string :password_digest, null: false

t.timestamps
end
add_index :users, :email_address, unique: true

end
end

And then run the migration:

depot> bin/rails db:migrate

Next, we have to flesh out the user model:

rails80/depot_r/app/models/user.rb
class User < ApplicationRecord

validates :name, presence: true, uniqueness: true➤

validates :email_address, presence: true, uniqueness: true➤

has_secure_password
has_many :sessions, dependent: :destroy

normalizes :email_address, with: ->(e) { e.strip.downcase }
end

We check that the name and email addresses are present and unique (that
is, no two users can have the same name or email address in the database).

Then there’s the mysterious has_secure_password().

You know those forms that prompt you to enter a password and then make
you reenter it in a separate field so they can validate that you typed what you

1. https://api.rubyonrails.org/classes/ActionController/HttpAuthentication/Digest.html

Chapter 14. Task I: Logging In • 208

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_r%2Fdb%2Fmigrate%2F20250420000011_create_users.rb
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_r%2Fapp%2Fmodels%2Fuser.rb
https://api.rubyonrails.org/classes/ActionController/HttpAuthentication/Digest.html
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

thought you typed? That’s exactly what has_secure_password() does for you: it
tells Rails to validate that the two passwords match.

A user is defined to have many sessions, and those sessions are to be
destroyed when the user is destroyed. Finally, email addresses are normalized
to lowercase before being stored in the database.

Finally, you need to restart your server as a new gem was installed by the
authentication generator.

With this code in place, we have the ability to present both a password and
a password confirmation field in a form, as well as the ability to authenticate
a user, given a name and a password. Not bad for two commands and three
lines of code.

But now we have an embarrassing problem: there are no administrative users
in the database, so we can’t log in.

Fortunately, we can quickly add a user to the database from the command
line. If you invoke the rails console command, Rails invokes Ruby’s irb utility,
but it does so in the context of your Rails application. That means you can
interact with your application’s code by typing Ruby statements and looking
at the values they return.

We can use this to invoke our user model directly, having it add a user into
the database for us:

depot> bin/rails console
Loading development environment (Rails 8.0.2)
work(dev)* User.create(name: "dave",
work(dev)> email_address: "dave@example.org", password: "secret")
work(dev)> exit

With this in place, we can now log in as the user dave with the password secret:

Home

Questions

News

Contact

Sign in

dave@example.org

••••••

Sign in Forgot password?

If the blue button offends you, the file to change is app/views/sessions/new.html.erb.

report erratum • discuss

Iteration I1: Authenticating Users • 209

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8
http://localhost:3003/
http://localhost:3003/questions
http://localhost:3003/news
http://localhost:3003/contact
http://localhost:3003/passwords/new

You can also use this interface to send a password reset email. In development
mode, you can save the emails into files by editing the config/environments/devel-
opment.rb file.

rails80/depot_r/config/environments/development.rb
Save emails as files in tmp/mails➤

config.action_mailer.delivery_method = :file➤

We also have a small problem in that all of our controller tests are now failing.
We can fix this by defining a method in the test helper to log in as a user:

rails80/depot_r/test/test_helper.rb
ENV["RAILS_ENV"] ||= "test"
require_relative "../config/environment"
require "rails/test_help"

module ActiveSupport
class TestCase

Run tests in parallel with specified workers
parallelize(workers: :number_of_processors)

Setup all fixtures in test/fixtures/*.yml for all tests in
alphabetical order.

fixtures :all

Add more helper methods to be used by all tests here...
def login_as(user)➤

get users_path➤

post session_path, params: {➤

email_address: user.email_address,➤

password: "password"➤

}➤

end➤

end
end

And then each controller test needs to be updated to call this method:

rails80/depot_r/test/controllers/carts_controller_test.rb
setup do

@cart = carts(:one)
login_as users(:one)➤

end

rails80/depot_r/test/controllers/line_items_controller_test.rb
setup do

@line_item = line_items(:one)
login_as users(:one)➤

end

Chapter 14. Task I: Logging In • 210

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_r%2Fconfig%2Fenvironments%2Fdevelopment.rb
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_r%2Ftest%2Ftest_helper.rb
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_r%2Ftest%2Fcontrollers%2Fcarts_controller_test.rb
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_r%2Ftest%2Fcontrollers%2Fline_items_controller_test.rb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

rails80/depot_r/test/controllers/orders_controller_test.rb
setup do

@order = orders(:one)
login_as users(:one)➤

end

rails80/depot_r/test/controllers/products_controller_test.rb
setup do

@product = products(:one)
@title = "The Great Book #{rand(1000)}"
login_as users(:one)➤

end

rails80/depot_r/test/controllers/store_controller_test.rb
def setup

login_as users(:one)➤

end

rails80/depot_r/test/controllers/users_controller_test.rb
setup do

@user = users(:one)
login_as @user➤

end

We need to update the test fixtures to add names to the users.

rails80/depot_r/test/fixtures/users.yml
<% password_digest = BCrypt::Password.create("password") %>

one:
name: one➤

email_address: one@example.com
password_digest: <%= password_digest %>

two:
name: two➤

email_address: two@example.com
password_digest: <%= password_digest %>

Once the tests are passing again, we can move on to the next step: adding
the ability to administer users.

Administering Our Users
Now we turn our attention to the scaffolding we created for our users. Let’s
go through it and make some tweaks as necessary.

We start with the controller. It defines the standard methods: index(), show(),
new(), edit(), create(), update(), and destroy(). By default, Rails omits the unintelligible
password hash from the view. This means that in the case of users, there
isn’t much to show() except a name and an email. So let’s avoid the redirect to

report erratum • discuss

Iteration I1: Authenticating Users • 211

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_r%2Ftest%2Fcontrollers%2Forders_controller_test.rb
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_r%2Ftest%2Fcontrollers%2Fproducts_controller_test.rb
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_r%2Ftest%2Fcontrollers%2Fstore_controller_test.rb
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_r%2Ftest%2Fcontrollers%2Fusers_controller_test.rb
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_r%2Ftest%2Ffixtures%2Fusers.yml
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

showing the user after a create operation. Instead, let’s redirect to the user’s
index and add the username to the flash notice:

rails80/depot_r/app/controllers/users_controller.rb
def create

@user = User.new(user_params)

respond_to do |format|
if @user.save

format.html { redirect_to users_url,➤

notice: "User #{@user.name} was successfully created." }➤

format.json { render :show, status: :created, location: @user }
else

format.html { render :new, status: :unprocessable_entity }
format.json { render json: @user.errors,

status: :unprocessable_entity }
end

end
end

Let’s do the same for an update operation:

def update
respond_to do |format|
if @user.update(user_params)

format.html { redirect_to users_url,➤

notice: "User #{@user.name} was successfully updated." }➤

format.json { render :show, status: :ok, location: @user }
else

format.html { render :edit, status: :unprocessable_entity }
format.json { render json: @user.errors,

status: :unprocessable_entity }
end

end
end

While we’re here, let’s also order the users returned in the index by name:

def index
@users = User.order(:name)➤

end

Now that the controller changes are done, let’s attend to the view. We need
to update the form used to create a new user and to update an existing user.
Note this form is already set up to show the password and password confir-
mation fields. We’ll make a few aesthetic changes so the form looks nice and
matches the look and feel of the site.

rails80/depot_r/app/views/users/_form.html.erb
<%= form_with(model: user, class: "contents") do |form| %>

<% if user.errors.any? %>

Chapter 14. Task I: Logging In • 212

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_r%2Fapp%2Fcontrollers%2Fusers_controller.rb
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_r%2Fapp%2Fviews%2Fusers%2F_form.html.erb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

<div id="error_explanation" class="bg-red-50 text-red-500 px-3 py-2
font-medium rounded-md mt-3">

<h2><%= pluralize(user.errors.count, "error") %>
prohibited this user from being saved:</h2>

<ul class="list-disc ml-6">
<% user.errors.each do |error| %>

<%= error.full_message %>
<% end %>

</div>

<% end %>

<h2>Enter User Details</h2>➤
➤

<div class="my-5">
<%= form.label :name, 'Name:' %>➤

<%= form.text_field :name, class: [➤

"block shadow-sm rounded-md border px-3 py-2 mt-2 w-full",➤

{"border-gray-400 focus:outline-blue-600":➤

user.errors[:name].none?,➤

"border-red-400 focus:outline-red-600":➤

user.errors[:name].any?}] %>➤

</div>

<div class="my-5">
<%= form.label :email_address %>
<%= form.text_field :email_address, class: [➤

"block shadow-sm rounded-md border px-3 py-2 mt-2 w-full",➤

{"border-gray-400 focus:outline-blue-600":➤

user.errors[:email_address].none?,➤

"border-red-400 focus:outline-red-600":➤

user.errors[:email_address].any?}] %>➤

</div>

<div class="my-5">
<%= form.label :password, 'Password:' %>➤

<%= form.password_field :password, class: "input-field" %>➤

</div>

<div class="my-5">
<%= form.label :password_confirmation, 'Confirm:' %>➤

<%= form.password_field :password_confirmation,➤

id: :user_password_confirmation,➤

class: "input-field" %>➤

</div>

<div class="inline">
<%= form.submit class: "w-full sm:w-auto rounded-md px-3.5 py-2.5 bg-blue-600
hover:bg-blue-500 text-white inline-block font-medium cursor-pointer" %>

</div>
<% end %>

report erratum • discuss

Iteration I1: Authenticating Users • 213

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Let’s try it. Navigate to http://localhost:3000/users/new. For a stunning example of
page design, see the following screenshot.

Home

Questions

News

Contact

New user
Enter User Details

Name:

Email address

Password:

Confirm:

Create User Back to users

After Create User is clicked, the index is redisplayed with a cheery flash notice.
If we look in our database, you’ll see that we’ve stored the user details:

depot> sqlite3 -line storage/development.sqlite3 "select * from users"
id = 1

name = dave
email_address = dave@example.org

password_digest = $2a$12$p1HwU98TtNu.j/UBv74e4.ljjpvWdPk4tN6kTkWxp1QVV7UyR73em
created_at = 2025-04-20 14:43:27.934633
updated_at = 2025-04-20 14:43:27.934633

id = 2
name = sam

email_address = sam@example.org
password_digest = $2a$12$UQrQxRNRatkzGpwhnUQ3X.QjUQr57bcCui01wXYMjlosZO0rIzLLK

created_at = 2025-04-20 14:43:35.232745
updated_at = 2025-04-20 14:43:35.232745

As we’ve done before, we need to update our tests to reflect the validation and
redirection changes we’ve made. First we update the test for the create() method:

rails80/depot_r/test/controllers/users_controller_test.rb
test "should create user" do

assert_difference("User.count") do
post users_url, params: { user: {➤

email_address: "sam@example.org",➤

name: "sam",➤

password: "secret",➤

password_confirmation: "secret" } }➤

end

assert_redirected_to users_url➤

end

Chapter 14. Task I: Logging In • 214

report erratum • discuss

http://localhost:3000/users/new
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_r%2Ftest%2Fcontrollers%2Fusers_controller_test.rb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8
http://localhost:3003/
http://localhost:3003/questions
http://localhost:3003/news
http://localhost:3003/contact
http://localhost:3003/users

Because the redirect on the update() method changed too, the update test also
needs to change:

test "should update user" do
patch user_url(@user), params: { user: {
email_address: @user.email_address,
name: @user.name,
password: "secret",
password_confirmation: "secret" } }

assert_redirected_to users_url➤

end

Note the use of dynamically computed values in the fixture, specifically for the
value of password_digest. This code was also inserted by the scaffolding command
and uses the same function that Rails uses to compute the password.2

At this point, we can administer our users; and only authenticated users can
access our site. Now we need to open things up so that customers can access
the store.

Iteration I2: Administration pages
Finally, it’s about time to add the index page—the first screen that adminis-
trators see when they log in. Let’s make it useful. We’ll have it display the
total number of orders in our store. Create the template in the index.html.erb
file in the app/views/admin directory. (This template uses the pluralize() helper,
which in this case generates the order or orders string, depending on the cardi-
nality of its first parameter.)

rails80/depot_r/app/views/admin/index.html.erb
<div class="w-full">

<h1 class="mx-auto text-lg font-bold">Welcome</h1>

<p>
It's <%= Time.now %>.
We have <%= pluralize(@total_orders, "order") %>.

</p>
</div>

The index() action sets up the count:

rails80/depot_r/app/controllers/admin_controller.rb
class AdminController < ApplicationController

def index
@total_orders = Order.count➤

end
end

2. https://github.com/rails/rails/blob/5-1-stable/activemodel/lib/active_model/secure_password.rb

report erratum • discuss

Iteration I2: Administration pages • 215

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_r%2Fapp%2Fviews%2Fadmin%2Findex.html.erb
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_r%2Fapp%2Fcontrollers%2Fadmin_controller.rb
https://github.com/rails/rails/blob/5-1-stable/activemodel/lib/active_model/secure_password.rb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

We have one more task to do before we can use this. Whereas previously we
relied on the scaffolding generator to create our model and routes for us, this
time we simply generated a controller because there’s no database-backed
model for this controller. Unfortunately, without the scaffolding conventions
to guide it, Rails has no way of knowing which actions are to respond to GET
requests, which are to respond to POST requests, and so on, for this controller.
We need to provide this information by editing our config/routes.rb file:

rails80/depot_r/config/routes.rb
Rails.application.routes.draw do

get "admin" => "admin#index"➤

resources :users
resource :session
resources :passwords, param: :token
resources :orders
resources :line_items
resources :carts
root "store#index", as: "store_index"
resources :products
Define your application routes per the DSL in
https://guides.rubyonrails.org/routing.html

Reveal health status on /up that returns 200 if the app boots with no
exceptions, otherwise 500.
Can be used by load balancers and uptime monitors to verify that the
app is live.
get "up" => "rails/health#show", as: :rails_health_check

Render dynamic PWA files from app/views/pwa/*
(remember to link manifest in application.html.erb)
get "manifest" => "rails/pwa#manifest", as: :pwa_manifest
get "service-worker" => "rails/pwa#service_worker", as: :pwa_service_worker

Defines the root path route ("/")
root "posts#index"

end

We’ve touched this before, when we added a root statement in Iteration C1:
Creating the Catalog Listing, on page 101. What the generate command adds to
this file are fairly generic get statements for each action specified.

Now we change where logged-in users are redirected to after logging in:

rails80/depot_r/app/controllers/concerns/authentication.rb
def after_authentication_url
session.delete(:return_to_after_authenticating) || admin_url➤

end

With these routes in place, we can experience the joy of logging in as an
administrator. Visit http://localhost:3000/admin and log in as dave@example.org with

Chapter 14. Task I: Logging In • 216

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_r%2Fconfig%2Froutes.rb
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_r%2Fapp%2Fcontrollers%2Fconcerns%2Fauthentication.rb
http://localhost:3000/admin
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

the password secret. You’ll be redirected to the administrative index page. See
the following screenshot.

We need to replace the functional tests in the admin controller to match what
we just implemented: a logged-in user can access the admin index page, and
a session that isn’t logged in gets redirected to the login page.

rails80/depot_r/test/controllers/admin_controller_test.rb
require "test_helper"

class AdminControllerTest < ActionDispatch::IntegrationTest
test "should get index if logged in as admin" do

login_as users(:one)
get admin_url
assert_response :success

end

test "should be redirected if not logged in" do
get admin_url
assert_redirected_to new_session_url

end
end

We show our customer where we are, but she points out that customers can
no longer access the store. We need to fix that.

Iteration I3: Permitting Access
We want people without an administrative login to be able to purchase our
products. This, too, can be accomplished with very little code.

We could go back and change things so that we mark only those methods
that specifically need authorization. Such an approach, called denylisting, is
prone to errors of omission. A much better approach is to allowlist—list
methods or controllers for which authorization is not required. We do this by
inserting an allow_unauthenticated_access() call within the StoreController:

rails80/depot_r/app/controllers/store_controller.rb
class StoreController < ApplicationController

allow_unauthenticated_access➤

And we do it again for the SessionsController class.

report erratum • discuss

Iteration I3: Permitting Access • 217

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_r%2Ftest%2Fcontrollers%2Fadmin_controller_test.rb
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_r%2Fapp%2Fcontrollers%2Fstore_controller.rb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

We’re not done yet; we need to allow people to create, update, and delete carts:

rails80/depot_r/app/controllers/carts_controller.rb
class CartsController < ApplicationController

allow_unauthenticated_access only: %i[create update destroy]➤

And we allow them to create line items:

rails80/depot_r/app/controllers/line_items_controller.rb
class LineItemsController < ApplicationController

allow_unauthenticated_access only: %i[create]➤

We also allow them to create orders (which includes access to the new form):

rails80/depot_r/app/controllers/orders_controller.rb
class OrdersController < ApplicationController

allow_unauthenticated_access only: %i[new create]➤

With the authorization logic in place, we can navigate to http://localhost:3000/
without requiring a login. But if we navigate to http://localhost:3000/products, we’re
redirected to the login screen instead.

We show our customer the results of our efforts and are rewarded with a big
smile and a request: could we add a sidebar and put links to the user and
product administration stuff in it? You betcha!

Iteration I4: Adding a Sidebar, More Administration
Let’s start with adding links to various administration functions to the sidebar
in the layout and have them show up only if a :user_id is in the session:

rails80/depot_r/app/views/layouts/application.html.erb
<!DOCTYPE html>
<html>

<head>
<title><%= content_for(:title) || "Pragprog Books Online Store" %></title>

<meta name="viewport" content="width=device-width,initial-scale=1">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="mobile-web-app-capable" content="yes">
<%= csrf_meta_tags %>
<%= csp_meta_tag %>

<%= yield :head %>

<%# Enable PWA manifest for installable apps (make sure to enable in
config/routes.rb too!) %>

<%#= tag.link rel: "manifest", href: pwa_manifest_path(format: :json) %>

<link rel="icon" href="/icon.png" type="image/png">
<link rel="icon" href="/icon.svg" type="image/svg+xml">
<link rel="apple-touch-icon" href="/icon.png">

<%# Includes all stylesheet files in app/assets/stylesheets %>

Chapter 14. Task I: Logging In • 218

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_r%2Fapp%2Fcontrollers%2Fcarts_controller.rb
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_r%2Fapp%2Fcontrollers%2Fline_items_controller.rb
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_r%2Fapp%2Fcontrollers%2Forders_controller.rb
http://localhost:3000/
http://localhost:3000/products
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_r%2Fapp%2Fviews%2Flayouts%2Fapplication.html.erb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

<%= stylesheet_link_tag :app, "data-turbo-track": "reload" %>
<%= javascript_importmap_tags %>

</head>

<body>
<header class="bg-green-700">
<%= image_tag 'logo.svg', alt: 'The Pragmatic Bookshelf' %>
<h1><%= @page_title %></h1>

</header>

<section class="flex">
<nav class="bg-green-900 p-6">

<%= render partial: 'layouts/cart', locals: {cart: @cart } %>

<ul class="text-gray-300 leading-8">
Home
Questions
News
Contact

➤

<hr class="my-2">➤
➤

<ul class="text-gray-300 leading-8">➤

<% if authenticated? %>➤

<%= link_to 'Orders', orders_path %>➤

<%= link_to 'Products', products_path %>➤

<%= link_to 'Users', users_path %>➤

<%= button_to 'Logout', session_path, method: :delete %>➤

<% else %>➤

<%= link_to 'Login', new_session_path %>➤

<% end %>➤

➤

</nav>

<main class="container mx-auto mt-4 px-5 flex">
<%= yield %>

</main>
</section>

</body>
</html>

Now it’s all starting to come together. We can log in, and by clicking a link in
the sidebar, we can see a list of users. Let’s see if we can break something.

Would the Last Admin to Leave…
We bring up the user list screen that looks something like the screenshot
shown on page 220.

report erratum • discuss

Iteration I4: Adding a Sidebar, More Administration • 219

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Home

Questions

News

Contact

Orders

Products

Users

Logout

Users New user

Name:

dave

Email address:

dave@example.org

Show Edit Destroy

Name:

sam

Email address:

sam@example.org

Show Edit Destroy

If we click the Show this user link, we see the following:

Home

Questions

News

Contact

Orders

Showing user
Name:

dave

Email address:

dave@example.org

Now click the Destroy this user link to delete that user. Sure enough, our
user is removed. But to our surprise, we’re then presented with the login
screen instead. We just deleted the only administrative user from the system.
When the next request came in, the authentication failed, so the application
refused to let us in. We have to log in again before using any administrative
functions.

We once again make use of rails console.

depot> bin/rails console
Loading development environment (Rails 8.0.2)
work(dev)> User.create(name: 'dave', email: 'dave@example.org',
work(dev)* password: 'secret', password_confirmation: 'secret')
=> #<User:0x2933060 ... >
work(dev)> User.count
=> 1
work(dev)> exit

Panic over. We can now log back in to the application. But how can we stop
this from happening again? We have several ways. For example, we could
write code that prevents you from deleting your own user. That doesn’t quite
work: in theory, A could delete B at just the same time that B deletes A. Let’s

Chapter 14. Task I: Logging In • 220

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8
http://localhost:3003/
http://localhost:3003/questions
http://localhost:3003/news
http://localhost:3003/contact
http://localhost:3003/orders
http://localhost:3003/products
http://localhost:3003/users
http://localhost:3003/users/new
http://localhost:3003/users/1
http://localhost:3003/users/1/edit
http://localhost:3003/users/2
http://localhost:3003/users/2/edit
http://localhost:3003/
http://localhost:3003/questions
http://localhost:3003/news
http://localhost:3003/contact
http://localhost:3003/orders

try a different approach. We’ll delete the user inside a database transaction.
Transactions provide an all-or-nothing proposition, stating that each work
unit performed in a database must either complete in its entirety or none of
them will have any effect whatsoever. If no users are left after we’ve deleted
the user, we’ll roll the transaction back, restoring the user we just deleted.

To do this, we’ll use an Active Record hook method. We’ve already seen one
of these: the validate hook is called by Active Record to validate an object’s
state. It turns out that Active Record defines sixteen or so hook methods,
each called at a particular point in an object’s life cycle. We’ll use the
after_destroy() hook, which is called after the SQL delete is executed. If a method
by this name is publicly visible, it’ll conveniently be called in the same
transaction as the delete—so if it raises an exception, the transaction will be
rolled back. The hook method looks like this:

rails80/depot_t/app/models/user.rb
class User < ApplicationRecord

validates :name, presence: true, uniqueness: true
validates :email_address, presence: true, uniqueness: true
has_secure_password
has_many :sessions, dependent: :destroy

normalizes :email_address, with: ->(e) { e.strip.downcase }

after_destroy :ensure_an_admin_remains➤
➤

class Error < StandardError➤

end➤
➤

private➤

def ensure_an_admin_remains➤

if User.count.zero?➤

raise Error.new "Can't delete last user"➤

end➤

end➤

end

The key concept is the use of an exception to indicate an error when the user is
deleted. This exception serves two purposes. First, because it’s raised inside a
transaction, it causes an automatic rollback. By raising the exception if the users
table is empty after the deletion, we undo the delete and restore that last user.

Second, the exception signals the error back to the controller, where we use
a rescue_from block to handle it and report the error to the user in the notice.
If you want only to abort the transaction but not otherwise signal an exception,
raise an ActiveRecord::Rollback exception instead, because this is the only exception
that won’t be passed on by ActiveRecord::Base.transaction:

report erratum • discuss

Iteration I4: Adding a Sidebar, More Administration • 221

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_t%2Fapp%2Fmodels%2Fuser.rb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

rails80/depot_t/app/controllers/users_controller.rb
def destroy

@user.destroy!

respond_to do |format|
format.html { redirect_to users_path, status: :see_other,
notice: "User #{@user.name} deleted" }

format.json { head :no_content }
end

end

rescue_from "User::Error" do |exception|➤

redirect_to users_url, notice: exception.message➤

end➤

This code still has a potential timing issue: it’s still possible for two adminis-
trators each to delete the last two users if their timing is right. Fixing this
would require more database wizardry than we have space for here.

The login system described in this chapter is pretty basic, but sufficient for
many applications. Applications with more complex requirements generally
use a gem to do this.

A number of plugins are available that provide ready-made solutions that are
more comprehensive than the authentication logic shown here and often don’t
require significantly more code and effort on your part to use. Devise3 is a
common and popular gem that does this.

What We Just Did
By the end of this iteration, we’ve done the following:

• We used has_secure_password to store an encrypted version of the password
into the database.

• We controlled access to the administration functions using before action
callbacks to invoke an authorize() method.

• We used rails console to interact directly with a model (and dig us out of a
hole after we deleted the last user).

• We used a transaction to help prevent deletion of the last user.

Playtime
Here’s some stuff to try on your own:

3. https://github.com/plataformatec/devise

Chapter 14. Task I: Logging In • 222

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_t%2Fapp%2Fcontrollers%2Fusers_controller.rb
https://github.com/plataformatec/devise
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

• Modify the user update function to require and validate the current
password before allowing a user’s password to be changed.

• The system test in test/system/users_test.rb was generated by the scaffolding
generator we used at the start of the chapter. Those tests don’t pass. See
if you can get them to pass without breaking the other system tests. You’ll
recall we created the module AuthenticationHelpers and included it in all of
the system tests by default, so you might need to change the code to not
do that so that you can properly test the login functionality.

When the system is freshly installed on a new machine, no administrators
are defined in the database, and hence no administrator can log on. But if
no administrator can log on, then no one can create an administrative user.

Change the code so that if no administrator is defined in the database,
any username works to log on (allowing you to quickly create a real
administrator).

• Experiment with rails console. Try creating products, orders, and line items.
Watch for the return value when you save a model object—when validation
fails, you’ll see false returned. Find out why by examining the errors:

>> prd = Product.new
=> #<Product id: nil, title: nil, description: nil, image_url:
nil, created_at: nil, updated_at: nil, price:
#<BigDecimal:246aa1c,'0.0',4(8)>>
>> prd.save
=> false
>> prd.errors.full_messages
=> ["Image url must be a URL for a GIF, JPG, or PNG image",

"Image url can't be blank", "Price should be at least 0.01",
"Title can't be blank", "Description can't be blank"]

• We’ve gotten our tests working by performing a login, but we haven’t yet
written tests that verify that access to sensitive data requires login. Write
at least one test that verifies this by calling logout() and then attempting
to fetch or update some data that requires authentication.

report erratum • discuss

Iteration I4: Adding a Sidebar, More Administration • 223

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

CHAPTER 15

In this chapter, you'll see:
• Localizing templates
• Database design considerations for I18n

Task J: Internationalization
Now we have a basic cart working, and our customer starts to inquire about
languages other than English, noting that her company has a big push on
for expansion in emerging markets. Unless we can present something in a
language that visitors to our customer’s website will understand, our customer
will be leaving money on the table. We can’t have that.

The first problem is that none of us are professional translators. The customer
reassures us that this isn’t something we need to concern ourselves with
because that part of the effort will be outsourced. All we need to worry about
is enabling translation. Furthermore, we don’t have to worry about the
administration pages yet because all the administrators speak English. What
we have to focus on is the store.

That’s a relief—but still a tall order. We’ll need to define a way to enable the user
to select a language, we’ll have to provide the translations themselves, and we’ll
have to change the views to use these translations. But we’re up to the task,
and—armed with a bit of remembered high-school Spanish—we set off to work.

Joe asks:

If We Stick to One Language,
Do We Need to Read This Chapter?

The short answer is no. In fact, many Rails applications are for a small or homogeneous
group and never need translating. That being said, pretty much everybody who does
find that they need translation agrees that it’s best if this is done early. So unless you’re
sure that translation won’t ever be needed, it’s our recommendation that you at least
understand what would be involved so that you can make informed decisions.

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Iteration J1: Selecting the Locale
We start by creating a new configuration file that encapsulates our knowledge
of what locales are available and which one is to be used as the default:

rails80/depot_t/config/initializers/i18n.rb
#encoding: utf-8
I18n.default_locale = :en

LANGUAGES = [
["English", "en"],
["Español".html_safe, "es"]

]

This code is doing two things.

The first thing it does is use the I18n module to set the default locale. I18n is
a funny name, but it sure beats typing out internationalization all the time.
Internationalization, after all, starts with an i, ends with an n, and has eighteen
letters in between.

Then the code defines a list of associations between display names and
locale names. Unfortunately, all we have available at the moment is a
U.S. keyboard, and Español has a character that can’t be directly entered
via our keyboard. Different operating systems have different ways of
dealing with this, and often the easiest way is to copy and paste the
correct text from a website. If you do this, make sure your editor is
configured for UTF-8. Meanwhile, we’ve opted to use the HTML equivalent
of the n con tilde character in Spanish. If we didn’t do anything else, the
markup itself would be shown. But by calling html_safe, we inform Rails
that the string is safe to be interpreted as containing HTML.

For Rails to pick up this configuration change, the server needs to be
restarted.

Since each page that’s translated will have an en and an es version (for now—
more will be added later), it makes sense to include this in the URL. Let’s plan
to put the locale up front, make it optional, and have it default to the current
locale, which in turn will default to English.

To implement this cunning plan, let’s start by modifying config/routes.rb:

Chapter 15. Task J: Internationalization • 226

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_t%2Fconfig%2Finitializers%2Fi18n.rb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

rails80/depot_t/config/routes.rb
Rails.application.routes.draw do

get "admin" => "admin#index"
get "up" => "rails/health#show", as: :rails_health_check

resources :users
resources :products
resource :session
resources :passwords, param: :token

scope "(:locale)" do➤

resources :orders
resources :line_items
resources :carts
root "store#index", as: "store_index", via: :all➤

end➤

end

We’ve nested our resources and root declarations inside a scope declaration
for :locale. Furthermore, :locale is in parentheses, which is the way to say that
it’s optional. Note that we didn’t choose to put the administrative and session
functions inside this scope, because it’s not our intent to translate them at
this time.

What this means is that http://localhost:3000/ will use the default locale (namely,
English) and therefore be routed exactly the same as http://localhost:3000/en.
http://localhost:3000/es will route to the same controller and action, but we’ll want
this to cause the locale to be set differently.

At this point, we’ve made a lot of changes to config.routes, and with the nesting
and all the optional parts to the path, the gestalt might be hard to visualize.
Never fear—when running a server in development mode, Rails provides a
visual aid. All you need to do is navigate to http://localhost:3000/rails/info/routes, and
you’ll see a list of all your routes. You can even filter the list, as shown in the
screenshot shown on page 228, to quickly find the route you’re interested in.
More information on the fields shown in this table can be found in the
description of rake routes on page 352.

With the routing in place, we’re ready to extract the locale from the parameters
and make it available to the application. To do this, we need to create a
before_action callback. The logical place to do this is in the common base class
for all of our controllers, which is ApplicationController:

report erratum • discuss

Iteration J1: Selecting the Locale • 227

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_t%2Fconfig%2Froutes.rb
http://localhost:3000/
http://localhost:3000/en
http://localhost:3000/es
http://localhost:3000/rails/info/routes
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Routes
Routes match in priority from top to bottom

Helper (Path / Url) HTTP Verb Path Controller#Action Source Location

Search

/assets Propshaft::Server
propshaft (1.1.0)
lib/propshaft/railtie.rb:
47

admin_path GET /admin(.:format) admin#index
/Users/rubys/git/awdw
r8/work/config/routes.r
b:2

rails_health_check_path GET /up(.:format) rails/health#show
/Users/rubys/git/awdw
r8/work/config/routes.r
b:3

users_path GET /users(.:format) users#index
/Users/rubys/git/awdw
r8/work/config/routes.r
b:5

POST /users(.:format) users#create
/Users/rubys/git/awdw
r8/work/config/routes.r
b:5

new_user_path GET /users/new(.:format) users#new
/Users/rubys/git/awdw
r8/work/config/routes.r
b:5

edit_user_path GET /users/:id/edit(.:format) users#edit
/Users/rubys/git/awdw
r8/work/config/routes.r
b:5

rails80/depot_t/app/controllers/application_controller.rb
class ApplicationController < ActionController::Base

before_action :set_i18n_locale_from_params➤

...
def set_i18n_locale_from_params➤

if params[:locale]➤

if I18n.available_locales.map(&:to_s).include?(params[:locale])➤

I18n.locale = params[:locale]➤

else➤

flash.now[:notice] =➤

"#{params[:locale]} translation not available"➤

logger.error flash.now[:notice]➤

end➤

end➤

end➤

end

This set_i18n_locale_from_params does pretty much what it says: it sets the locale
from the params, but only if there’s a locale in the params; otherwise, it leaves
the current locale alone. Care is taken to provide a message for both the user
and the administrator when a failure occurs.

Chapter 15. Task J: Internationalization • 228

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_t%2Fapp%2Fcontrollers%2Fapplication_controller.rb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

With this in place, we can see the results in the following screenshot of navi-
gating to http://localhost:3000/en.

Home

Questions

News

Contact

Orders

Products

Users

Logout

Your Pragmatic Catalog

Modern Front-End Development for Rails, Second Edition

Hotwire, Stimulus, Turbo, and React Improve the user experience for your Rails app with rich,

engaging client-side interactions. Learn to use the Rails 7 tools and simplify the complex

JavaScript ecosystem. It’s easier than ever to build user interactions with Hotwire, Turbo, and

Stimulus. You can add great front-end flair without much extra complication. Use React to

build a more complex set of client-side features. Structure your code for different levels of

client-side needs with these powerful options. Add to your toolkit today!

$28.95 Add to Cart

Programming Ruby 3.3 (5th Edition)

The Pragmatic Programmers' Guide Ruby is one of the most important programming

languages in use for web development. It powers the Rails framework, which is the backing of

some of the most important sites on the web. The Pickaxe Book, named for the tool on the

cover, is the definitive reference on Ruby, a highly-regarded, fully object-oriented

programming language. This updated edition is a comprehensive reference on the language

itself, with a tutorial on the most important features of Ruby—including pattern matching and

Ractors—and describes the language through Ruby 3.3.

$33.95 Add to Cart

At this point, the English version of the page is available both at the root of
the website and at pages that start with /en. If you try another language code,
say “es” (or Spanish), you can see that an error message appears saying no
translations are available. The following screenshot shows what this might
look like when navigating to http://localhost:3000/es:

Home

Questions

News

Contact

Orders

Products

Users

Logout

es translation not available

Your Pragmatic Catalog

Modern Front-End Development for Rails, Second Edition

Hotwire, Stimulus, Turbo, and React Improve the user experience for your Rails app with rich,

engaging client-side interactions. Learn to use the Rails 7 tools and simplify the complex

JavaScript ecosystem. It’s easier than ever to build user interactions with Hotwire, Turbo, and

Stimulus. You can add great front-end flair without much extra complication. Use React to

build a more complex set of client-side features. Structure your code for different levels of

client-side needs with these powerful options. Add to your toolkit today!

$28.95 Add to Cart

Programming Ruby 3.3 (5th Edition)

The Pragmatic Programmers' Guide Ruby is one of the most important programming

languages in use for web development. It powers the Rails framework, which is the backing of

some of the most important sites on the web. The Pickaxe Book, named for the tool on the

cover, is the definitive reference on Ruby, a highly-regarded, fully object-oriented

programming language. This updated edition is a comprehensive reference on the language

itself, with a tutorial on the most important features of Ruby—including pattern matching and

Ractors—and describes the language through Ruby 3.3.

$33.95 Add to Cart

report erratum • discuss

Iteration J1: Selecting the Locale • 229

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8
http://localhost:3003/
http://localhost:3003/questions
http://localhost:3003/news
http://localhost:3003/contact
http://localhost:3003/orders
http://localhost:3003/products
http://localhost:3003/users
http://localhost:3003/
http://localhost:3003/questions
http://localhost:3003/news
http://localhost:3003/contact
http://localhost:3003/orders
http://localhost:3003/products
http://localhost:3003/users

Iteration J2: Translating the Storefront
Now it’s time to begin providing the translated text. Let’s start with the layout
since it’s pretty visible. We replace any text that needs to be translated with
calls to I18n.translate. Not only is this method conveniently aliased as I18n.t, but
a helper named t is provided.

The parameter to the translate function is a unique dot-qualified name. We
can choose any name we like, but if we use the t helper function provided,
names that start with a dot will first be expanded using the name of the
template.

So, let’s do that:

rails80/depot_t/app/views/layouts/application.html.erb
<!DOCTYPE html>
<html>

<head>
<title><%= content_for(:title) || "Pragprog Books Online Store" %></title>

<meta name="viewport" content="width=device-width,initial-scale=1">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="mobile-web-app-capable" content="yes">
<%= csrf_meta_tags %>
<%= csp_meta_tag %>

<%= yield :head %>

<%# Enable PWA manifest for installable apps (make sure to enable in
config/routes.rb too!) %>

<%#= tag.link rel: "manifest", href: pwa_manifest_path(format: :json) %>

<link rel="icon" href="/icon.png" type="image/png">
<link rel="icon" href="/icon.svg" type="image/svg+xml">
<link rel="apple-touch-icon" href="/icon.png">

<%# Includes all stylesheet files in app/assets/stylesheets %>
<%= stylesheet_link_tag :app, "data-turbo-track": "reload" %>
<%= javascript_importmap_tags %>

</head>

<body>
<header class="bg-green-700">
<%= image_tag 'logo.svg', alt: 'The Pragmatic Bookshelf' %>
<h1><%= @page_title %></h1>

</header>

<section class="flex">
<nav class="bg-green-900 p-6">

<%= render partial: 'layouts/cart', locals: {cart: @cart } %>

<ul class="text-gray-300 leading-8">
<%= t('.home') %>➤

Chapter 15. Task J: Internationalization • 230

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_t%2Fapp%2Fviews%2Flayouts%2Fapplication.html.erb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

<%= t('.questions') %>➤

<%= t('.news') %>➤

<%= t('.contact') %>➤

<hr class="my-2">

<ul class="text-gray-300 leading-8">
<% if authenticated? %>

<%= link_to 'Orders', orders_path %>
<%= link_to 'Products', products_path %>
<%= link_to 'Users', users_path %>
<%= button_to 'Logout', session_path, method: :delete %>

<% else %>
<%= link_to 'Login', new_session_path %>

<% end %>

</nav>

<main class="container mx-auto mt-4 px-5 flex">
<%= yield %>

</main>
</section>

</body>
</html>

Since this view is named layouts/application.html.erb, the English mappings will
expand to en.layouts.application. Here’s the corresponding locale file:

rails80/depot_t/config/locales/en.yml
en:

layouts:
application:
title: "The Pragmatic Bookshelf"
home: "Home"
questions: "Questions"
news: "News"
contact: "Contact"

Here it is in Spanish:

rails80/depot_t/config/locales/es.yml
es:

layouts:
application:
title: "Biblioteca de Pragmatic"
home: "Inicio"
questions: "Preguntas"
news: "Noticias"
contact: "Contacto"

report erratum • discuss

Iteration J2: Translating the Storefront • 231

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_t%2Fconfig%2Flocales%2Fen.yml
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_t%2Fconfig%2Flocales%2Fes.yml
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

The format is YAML, the same as the one used to configure the databases.
YAML consists of indented names and values, where the indentation in this
case matches the structure that we created in our names.

To get Rails to recognize new YAML files, the server needs to be restarted.

Navigating to http://localhost:3000/es now will show some translated text, as shown
in the following screenshot.

Inicio

Preguntas

Noticias

Contacto

Orders

Products

Users

Logout

Your Pragmatic Catalog

Modern Front-End Development for Rails, Second Edition

Hotwire, Stimulus, Turbo, and React Improve the user experience for your Rails app with rich,

engaging client-side interactions. Learn to use the Rails 7 tools and simplify the complex

JavaScript ecosystem. It’s easier than ever to build user interactions with Hotwire, Turbo, and

Stimulus. You can add great front-end flair without much extra complication. Use React to

build a more complex set of client-side features. Structure your code for different levels of

client-side needs with these powerful options. Add to your toolkit today!

28,95 $US Add to Cart

Programming Ruby 3.3 (5th Edition)

The Pragmatic Programmers' Guide Ruby is one of the most important programming

languages in use for web development. It powers the Rails framework, which is the backing of

some of the most important sites on the web. The Pickaxe Book, named for the tool on the

cover, is the definitive reference on Ruby, a highly-regarded, fully object-oriented

programming language. This updated edition is a comprehensive reference on the language

itself, with a tutorial on the most important features of Ruby—including pattern matching and

Ractors—and describes the language through Ruby 3.3.

33,95 $US Add to Cart

Next to be updated is the main title as well as the Add to Cart button. The
first can be found in the store index template:

rails80/depot_s/app/views/store/index.html.erb
<div class="w-full">
<%= render 'notice' %>

<h1 class="font-bold text-xl mb-6 pb-2 border-b-2">
<%= t('.title_html') %>➤

</h1>

The button can be found in the store product partial:

rails80/depot_s/app/views/store/_product.html.erb
<%= button_to t(".add_html"),➤

line_items_path(product_id: product),
form_class: "inline",
class: 'ml-4 rounded-lg py-1 px-2

text-white bg-green-600' %>

And here’s the corresponding updates to the locales files, first in English:

Chapter 15. Task J: Internationalization • 232

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_s%2Fapp%2Fviews%2Fstore%2Findex.html.erb
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_s%2Fapp%2Fviews%2Fstore%2F_product.html.erb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8
http://localhost:3003/
http://localhost:3003/questions
http://localhost:3003/news
http://localhost:3003/contact
http://localhost:3003/orders
http://localhost:3003/products
http://localhost:3003/users

rails80/depot_t/config/locales/en.yml
en:

store:
index:
title_html: "Your Pragmatic Catalog"

product:
add_html: "Add to Cart"

And here it is in Spanish:

rails80/depot_t/config/locales/es.yml
es:

store:
index:
title_html: "Su Catálogo de Pragmatic"

product:
add_html: "Añadir al Carrito"

Note that since title_html and add_html end in the characters _html, we’re free to
use HTML entity names for characters that don’t appear on our keyboard. If
we didn’t name the translation key this way, what you’d end up seeing on
the page is the markup. This is yet another convention that Rails has adopted
to make your coding life easier. Rails will also treat names that contain html
as a component (in other words, the string .html.) as HTML key names.

By refreshing the page in the browser window, we see the results shown in
the following screenshot.

Inicio

Preguntas

Noticias

Contacto

Orders

Products

Users

Logout

Su Catálogo de Pragmatic

Modern Front-End Development for Rails, Second Edition

Hotwire, Stimulus, Turbo, and React Improve the user experience for your Rails app with rich,

engaging client-side interactions. Learn to use the Rails 7 tools and simplify the complex

JavaScript ecosystem. It’s easier than ever to build user interactions with Hotwire, Turbo, and

Stimulus. You can add great front-end flair without much extra complication. Use React to

build a more complex set of client-side features. Structure your code for different levels of

client-side needs with these powerful options. Add to your toolkit today!

28,95 $US Añadir al Carrito

Programming Ruby 3.3 (5th Edition)

The Pragmatic Programmers' Guide Ruby is one of the most important programming

languages in use for web development. It powers the Rails framework, which is the backing of

some of the most important sites on the web. The Pickaxe Book, named for the tool on the

cover, is the definitive reference on Ruby, a highly-regarded, fully object-oriented

programming language. This updated edition is a comprehensive reference on the language

itself, with a tutorial on the most important features of Ruby—including pattern matching and

Ractors—and describes the language through Ruby 3.3.

33,95 $US Añadir al Carrito

report erratum • discuss

Iteration J2: Translating the Storefront • 233

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_t%2Fconfig%2Flocales%2Fen.yml
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_t%2Fconfig%2Flocales%2Fes.yml
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8
http://localhost:3003/
http://localhost:3003/questions
http://localhost:3003/news
http://localhost:3003/contact
http://localhost:3003/orders
http://localhost:3003/products
http://localhost:3003/users

Feeling confident, we move on to the cart partial, replacing text that needs
translation as well as adding the locale to the new_order_path:

rails80/depot_t/app/views/carts/_cart.html.erb
<div id="<%= dom_id cart %>">

<h2 class="font-bold text-lg mb-3"><%= t('.title') %></h2>➤

<table class="table-auto">
<%= render cart.line_items %>

<tfoot>
<tr>

<th class="text-right pr-2 pt-2" colspan="3">Total:</th>
<td class="text-right pt-2 font-bold border-t-2 border-black">

<%= number_to_currency(cart.total_price) %>
</td>

</tr>
</tfoot>

</table>

<div class="flex mt-1">
<%= button_to t('.empty'), cart, method: :delete,➤

class: 'ml-4 rounded-lg py-1 px-2 text-white bg-green-600' %>

<%= button_to t('.checkout'), new_order_path(locale: I18n.locale),➤

method: :get,
class: 'ml-4 rounded-lg py-1 px-2 text-black bg-green-200' %>

</div>
</div>

And again, here are the translations:

rails80/depot_t/config/locales/en.yml
en:

carts:
cart:
title: "Your Cart"
empty: "Empty cart"
checkout: "Checkout"

rails80/depot_t/config/locales/es.yml
es:

carts:
cart:
title: "Carrito de la Compra"
empty: "Vaciar Carrito"
checkout: "Comprar"

Chapter 15. Task J: Internationalization • 234

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_t%2Fapp%2Fviews%2Fcarts%2F_cart.html.erb
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_t%2Fconfig%2Flocales%2Fen.yml
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_t%2Fconfig%2Flocales%2Fes.yml
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Refreshing the page, we see the cart title and buttons have been translated,
as shown in the following screenshot.

Something to appreciate here—the logic to render the cart is rendered in two
places: first in the storefront and second in response to pushing the Añadir
al Carrito (Add to Cart) button via Turbo/Hotwire. Since both make use of
the same partial and are rendered on the server, the cart renders in Spanish
no matter which path we take.

We now notice our next problem. Languages aren’t the only thing that varies
from locale to locale; currencies do too. And the customary way that numbers
are presented varies too.

So first we check with our customer and we verify that we’re not worrying
about exchange rates at the moment (whew!), because that’ll be taken care
of by the credit card and/or wire companies, but we do need to display the
string USD or $US after the value when we’re showing the result in Spanish.

Another variation is the way that numbers themselves are displayed. Decimal
values are delimited by a comma, and separators for the thousands place are
indicated by a dot.

Currency is a lot more complicated than it first appears, with lots of decisions
to be made. Fortunately, Rails knows to look in your translations file for this
information; all we need to do is supply it.

report erratum • discuss

Iteration J2: Translating the Storefront • 235

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Here it is for en:

rails80/depot_t/config/locales/en.yml
en:

number:
currency:
format:

unit: "$"
precision: 2
separator: "."
delimiter: ","
format: "%u%n"

Here it is for es:

rails80/depot_t/config/locales/es.yml
es:

number:
currency:
format:

unit: "$US"
precision: 2
separator: ","
delimiter: "."
format: "%n %u"

We’ve specified the unit, precision, separator, and delimiter for number.curren-
cy.format. That much is pretty self-explanatory. The format is a bit more
involved: %n is a placeholder for the number; is a nonbreaking space
character, preventing this value from being split across multiple lines; and
%u is a placeholder for the unit. See the following screenshot for the result.

Chapter 15. Task J: Internationalization • 236

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_t%2Fconfig%2Flocales%2Fen.yml
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_t%2Fconfig%2Flocales%2Fes.yml
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Iteration J3: Translating Checkout
Now we’re entering the homestretch. The new order page is next:

rails80/depot_t/app/views/orders/new.html.erb
<% content_for :title, "New order" %>

<div class="md:w-2/3 w-full">
<h1 class="font-bold text-4xl"><%= t('.legend') %></h1>➤

<%= render "form", order: @order %>
</div>

Here’s the form that’s used by this page, updated to ensure that the locale is
passed along with any requests, and to translate the fields and submit button:

rails80/depot_t/app/views/orders/_form.html.erb
<%= form_with(model: order, class: "contents",➤

url: orders_path(locale: I18n.locale)) do |form| %>➤

<% if order.errors.any? %>
<div id="error_explanation" class="bg-red-50 text-red-500 px-3 py-2
font-medium rounded-md mt-3">
<h2><%= pluralize(order.errors.count, "error") %>
prohibited this order from being saved:</h2>

<ul class="list-disc ml-6">
<% order.errors.each do |error| %>

<%= error.full_message %>
<% end %>

</div>

<% end %>

<div class="my-5">
<%= form.label :name, t('.name') %>➤

<%= form.text_field :name, class: "input-field" %>
</div>

<div class="my-5">
<%= form.label :address, t('.address_html') %>➤

<%= form.textarea :address, rows: 4, class: "input-field" %>
</div>

<div class="my-5">
<%= form.label :email, t('.email') %>➤

<%= form.email_field :email, class: "input-field" %>
</div>

<div data-controller="payment">
<div class="my-5">
<%= form.label :pay_type, t(".pay_type") %>
<%= form.select :pay_type,

Order.pay_types.keys.map {|key| [t(".pay_types.#{key}"), key] },➤

{ prompt: t('.pay_prompt_html') },➤

report erratum • discuss

Iteration J3: Translating Checkout • 237

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_t%2Fapp%2Fviews%2Forders%2Fnew.html.erb
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_t%2Fapp%2Fviews%2Forders%2F_form.html.erb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

'data-payment-target' => 'selection',
'data-action' => 'payment#showAdditionalFields',
class: "input-field" %>

</div>

<%= render partial: 'check', locals: {form: form} %>
<%= render partial: 'cc', locals: {form: form} %>
<%= render partial: 'po', locals: {form: form} %>

</div>

<div class="inline">

<%= form.submit t('.submit'),➤

class: "w-full sm:w-autorounded-md
px-3.5 py-2.5 bg-green-200 hover:bg-blue-500 text-black
inline-block font-medium cursor-pointer" %>

</div>
<% end %>

That covers the form elements that Rails is rendering, but what about the
Stimulus-controlled additional payment details we added in Defining Addi-
tional Fields, on page 180? Once again, the ability to have everything rendered
by the server from a common set of templates makes this concern go away.
First, we update the credit card fields:

rails80/depot_t/app/views/orders/_cc.html.erb
<fieldset data-payment-target="additionalFields" data-type="Credit card">

<div class="my-5">
<%= form.label :credit_card_number, t('.cc_number') %>➤

<%= form.password_field :credit_card_number, class: "input-field" %>
</div>

<div class="my-5">
<%= form.label :expiration_date, t('.expiration_date') %>➤

<%= form.text_field :expiration_date, class: "input-field",
size:9, placeholder: "e.g. 03/22" %>

</div>
</fieldset>

Next, we do the check fields:

rails80/depot_t/app/views/orders/_check.html.erb
<fieldset data-payment-target="additionalFields" data-type="Check">

<div class="my-5">
<%= form.label :routing_number, t('.routing_number') %>➤

<%= form.text_field :routing_number, class: "input-field" %>
</div>

<div class="my-5">
<%= form.label :account_number, t('.account_number') %>➤

<%= form.password_field :account_number, class: "input-field" %>
</div>

</fieldset>

Chapter 15. Task J: Internationalization • 238

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_t%2Fapp%2Fviews%2Forders%2F_cc.html.erb
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_t%2Fapp%2Fviews%2Forders%2F_check.html.erb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

And finally, update the purchase order fields:

rails80/depot_t/app/views/orders/_po.html.erb
<fieldset data-payment-target="additionalFields" data-type="Purchase order">

<div class="my-5">
<%= form.label :po_number, t('.po_number') %>➤

<%= form.number_field :po_number, class: "input-field" %>
</div>

</fieldset>

With those done, here are the corresponding locale definitions:

rails80/depot_t/config/locales/en.yml
en:

orders:
new:
legend: "Please Enter Your Details"

form:
name: "Name"
address_html: "Address"
email: "E-mail"
pay_type: "Pay with"
pay_prompt_html: "Select a payment method"
submit: "Place Order"
pay_types:

"Check": "Check"
"Credit card": "Credit Card"
"Purchase order": "Purchase Order"

check:
routing_number: "Routing #"
account_number: "Account #"

cc:
cc_number: "CC #"
expiration_date: "Expiry"

po:
po_number: "PO #"

rails80/depot_t/config/locales/es.yml
orders:

new:
legend: "Por favor, introduzca sus datos"

form:
name: "Nombre"
address_html: "Dirección"
email: "E-mail"
pay_type: "Forma de pago"
pay_prompt_html: "Seleccione un método de pago"
submit: "Realizar Pedido"
pay_types:
"Check": "Cheque"
"Credit card": "Tarjeta de Crédito"

report erratum • discuss

Iteration J3: Translating Checkout • 239

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_t%2Fapp%2Fviews%2Forders%2F_po.html.erb
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_t%2Fconfig%2Flocales%2Fen.yml
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_t%2Fconfig%2Flocales%2Fes.yml
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

"Purchase order": "Orden de Compra"
check:

routing_number: "# de Enrutamiento"
account_number: "# de Cuenta"

cc:
cc_number: "Número"
expiration_date: "Expiración"

po:
po_number: "Número"

See the following screenshot for the completed form.

All looks good until we click the Realizar Pedido button prematurely and see
the results shown in the following screenshot.

The error messages that Active Record produces can also be translated; what
we need to do is supply the translations:

Chapter 15. Task J: Internationalization • 240

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

rails80/depot_t/config/locales/es.yml
es:

activerecord:
errors:
messages:

inclusion: "no está incluido en la lista"
blank: "no puede quedar en blanco"

errors:
template:
body: "Hay problemas con los siguientes campos:"
header:

one: "1 error ha impedido que este %{model} se guarde"
other: "%{count} errores han impedido que este %{model} se guarde"

Although you can create these with many trips to Google Translate, the Rails
i18n gem’s GitHub repo contains a lot of translations for common strings in
many languages.1

Note that messages with counts typically have two forms: errors.template.header.one
is the message that’s produced when there’s one error, and errors.template.header.other
is produced otherwise. This gives the translators the opportunity to provide the
correct pluralization of nouns and to match verbs with the nouns.

Since we once again made use of HTML entities, we want these error messages
to be displayed as is (or in Rails parlance, raw). We also need to translate the
error messages. So, again, we modify the form:

rails80/depot_u/app/views/orders/_form.html.erb
<%= form_with(model: order, class: "contents",➤

url: orders_path(locale: I18n.locale)) do |form| %>➤

<% if order.errors.any? %>
<div id="error_explanation" class="bg-red-50 text-red-500 px-3 py-2
font-medium rounded-md mt-3">
<h2><%=raw t('errors.template.header', count: @order.errors.count,➤

model: t('activerecord.models.order')) %>.</h2>➤

<p><%= t('errors.template.body') %></p>➤

<ul class="list-disc ml-6">
<% order.errors.each do |error| %>

<%=raw error.full_message %>➤

<% end %>

</div>
<% end %>

<!-- ... -->

1. https://github.com/svenfuchs/rails-i18n/tree/master/rails/locale

report erratum • discuss

Iteration J3: Translating Checkout • 241

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_t%2Fconfig%2Flocales%2Fes.yml
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_u%2Fapp%2Fviews%2Forders%2F_form.html.erb
https://github.com/svenfuchs/rails-i18n/tree/master/rails/locale
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Note that we’re passing the count and model name (which is, itself, enabled for
translation) on the translate call for the error template header. With these
changes in place, we try again and see improvement, see the following screenshot.

Carrito de la Compra

1×

Modern Front-End

Development for Rails,

Second Edition

28,95 $US

Total: 28,95 $US

Vaciar Carrito Comprar

Por favor, introduzca
sus datos
4 errores han impedido que este Order se guarde.

Hay problemas con los siguientes campos:

Name no puede quedar en blanco

Address no puede quedar en blanco

That’s better, but the names of the model and the attributes bleed through
the interface. This is OK in English, because the names we picked work for
English. We need to provide translations for each model. This, too, goes into
the YAML file:

rails80/depot_u/config/locales/es.yml
es:

activerecord:
models:
order: "pedido"

attributes:
order:

address: "Dirección"
name: "Nombre"
email: "E-mail"
pay_type: "Forma de pago"

Note that there’s no need to provide English equivalents for this, because
those messages are built into Rails. We’re pleased to see the model and
attribute names translated in the following screenshot; we fill out the form,
we submit the order, and we get a “Thank you for your order” message.

Carrito de la Compra

1×

Modern Front-End

Development for Rails,

Second Edition

28,95 $US

Total: 28,95 $US

Vaciar Carrito Comprar

Inicio

Preguntas

Noticias

Contacto

Login

Por favor, introduzca
sus datos
4 errores han impedido que este pedido se guarde.

Hay problemas con los siguientes campos:

Nombre no puede quedar en blanco

Dirección no puede quedar en blanco

E-mail no puede quedar en blanco

Forma de pago no está incluido en la lista

Nombre

Dirección

E-mail

Forma de pago

Seleccione un método de pago

Realizar Pedido

Chapter 15. Task J: Internationalization • 242

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_u%2Fconfig%2Flocales%2Fes.yml
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8
http://localhost:3003/
http://localhost:3003/questions
http://localhost:3003/news
http://localhost:3003/contact
http://localhost:3003/session/new

We need to update the flash messages and add the locale to the store_index_url:

rails80/depot_u/app/controllers/orders_controller.rb
def create

@order = Order.new(order_params)
@order.add_line_items_from_cart(@cart)

respond_to do |format|
if @order.save

Cart.destroy(session[:cart_id])
session[:cart_id] = nil
ChargeOrderJob.perform_later(@order, pay_type_params.to_h)
format.html { redirect_to store_index_url(locale: I18n.locale),➤

notice: I18n.t(".thanks") }➤

format.json { render :show, status: :created,
location: @order }

else
format.html { render :new, status: :unprocessable_entity }
format.json { render json: @order.errors,

status: :unprocessable_entity }
end

end
end

Next, we adjust the test to match:

rails80/depot_u/test/controllers/orders_controller_test.rb
test "should create order" do

assert_difference("Order.count") do
post orders_url, params: { order: { address: @order.address,

email: @order.email, name: @order.name,
pay_type: @order.pay_type } }

end

assert_redirected_to store_index_url(locale: "en")➤

end

Finally, we provide the translations:

rails80/depot_u/config/locales/en.yml
en:

thanks: "Thank you for your order"

rails80/depot_u/config/locales/es.yml
es:

thanks: "Gracias por su pedido"

See the cheery message in the screenshot shown on page 244.

report erratum • discuss

Iteration J3: Translating Checkout • 243

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_u%2Fapp%2Fcontrollers%2Forders_controller.rb
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_u%2Ftest%2Fcontrollers%2Forders_controller_test.rb
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_u%2Fconfig%2Flocales%2Fen.yml
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_u%2Fconfig%2Flocales%2Fes.yml
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Iteration J4: Adding a Locale Switcher
We’ve completed the task, but we need to advertise its availability more. We
spy some unused area in the top-right side of the layout, so we add a form
immediately before the image_tag:

rails80/depot_u/app/views/layouts/application.html.erb
<header class="bg-green-700">
<aside data-controller="locale">➤

<%= form_with url: store_index_path, class: 'locale' do %>➤

<%= select_tag 'set_locale',➤

options_for_select(LANGUAGES, I18n.locale.to_s),➤

class: 'text-white',➤

onchange: 'this.form.submit()' %>➤

<%= submit_tag 'submit', data: {'locale-target' => 'submit'} %>➤

<% end %>➤

</aside>➤

<%= image_tag 'logo.svg', alt: 'The Pragmatic Bookshelf' %>
<h1><%= @page_title %></h1>

</header>

The url specifies the path to the store as the page to be redisplayed when the
form is submitted. A class attribute lets us associate the form with some CSS.

The select_tag is used to define the input field for this form—namely, locale. It’s
an options list based on the LANGUAGES array we set up in the configuration file,
with the default being the current locale (also made available via the I18n module).
We also set up an onchange event handler, which submits this form whenever
the value changes. This works only if JavaScript is enabled, but it’s handy. For
cases where JavaScript isn’t enabled, we’ve also put a submit_tag() in so there’s a
button the user can press to switch locales.

That said, since we don’t need the submit button if JavaScript is enabled, it
might be nice to hide it. The simplest way to do that is to write some JavaScript
to do the hiding. If JavaScript is disabled, the JavaScript won’t execute and
the button remains to allow those users to submit the form. You’ll notice we
included a data-controller attribute on the aside element, and a locale-target on the

Chapter 15. Task J: Internationalization • 244

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_u%2Fapp%2Fviews%2Flayouts%2Fapplication.html.erb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

submit_tag() in preceding the code. This allows us to locate that exact submit
button in JavaScript.

Once again, we start by generating a stimulus controller:

depot> bin/rails generate stimulus locale

Now we update this code to set the style.display for the submit button to "none",
which is the programmatic way of setting the CSS display property to none.

rails80/depot_u/app/javascript/controllers/locale_controller.js
import { Controller } from "@hotwired/stimulus"

// Connects to data-controller="locale"
export default class extends Controller {

static targets = ["submit"]➤
➤

initialize() {➤

this.submitTarget.style.display = 'none'➤

}➤

}

Next, we modify the root route to accept POST requests, as that’s the default
for forms:

rails80/depot_u/config/routes.rb
scope "(:locale)" do

resources :orders
resources :line_items
resources :carts
root "store#index", as: "store_index", via: :all

end

Finally, we modify the store controller to redirect to the store path for a given
locale if the :set_locale form is used:

rails80/depot_u/app/controllers/store_controller.rb
def index

if params[:set_locale]➤

redirect_to store_index_url(locale: params[:set_locale])➤

else➤

@products = Product.order(:title)
end➤

end

For the actual selector, see the screenshot on page 246. We can now switch
back and forth between languages with a single mouse click.

At this point, we can place orders in two languages, and our thoughts turn
to deployment. But because it’s been a busy day, it’s time to put down our
tools and relax. We’ll start on deployment in the morning.

report erratum • discuss

Iteration J4: Adding a Locale Switcher • 245

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_u%2Fapp%2Fjavascript%2Fcontrollers%2Flocale_controller.js
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_u%2Fconfig%2Froutes.rb
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_u%2Fapp%2Fcontrollers%2Fstore_controller.rb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

What We Just Did
By the end of this iteration, we’ve done the following:

• We set the default locale for our application and provided means for the
user to select an alternative locale.

• We created translation files for text fields, currency amounts, errors, and
model names.

• We altered layouts and views to call out to the I18n module by way of the
t() helper to translate textual portions of the interface.

Playtime
Here’s some stuff to try on your own:

• Add a locale column to the products database and adjust the index view
to select only the products that match the locale. Adjust the products
view so that you can view, enter, and alter this new column. Enter a few
products in each locale and test the resulting application.

• Determine the current exchange rate between U.S. dollars and euros, and
localize the currency display to display euros when ES_es is selected.

Chapter 15. Task J: Internationalization • 246

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

CHAPTER 16

In this chapter, you'll see:
• Receiving email with Action Mailbox
• Writing and storing rich text with Action Text
• Managing cloud storage with Active Storage

Task K: Receive Emails
and Respond with Rich Text

We’ve now got a fully functioning store, internationalized for global domination,
but what if a customer has a problem they can’t solve using our site? With
Rails, we can easily do what most e-commerce sites do, which is allow cus-
tomers to email us so we can solve their problem and write them back with
a solution.

Hopefully, you’ve come to expect by now that Rails has us covered. We sent
emails to our customers in Iteration H1: Sending Confirmation Emails, on
page 189, but Rails includes a powerful way to receive emails called Action
Mailbox.1 You’ll learn how that works in this chapter. You’ll also learn how
to create richly formatted text in your replies by using a rich-text editing
system included with Rails called Action Text.2

Both Action Text and Action Mailbox rely on another Rails library called Active
Storage. Active Storage is an abstraction around cloud storage systems like
Amazon’s S3. Both incoming emails and rich-text attachments are stored in
the cloud using Active Storage. We’ll explain why as we go.

Iteration K1: Receiving Support Emails
with Action Mailbox
Configuring Rails to receive emails requires three steps: initially setting up
Action Mailbox, setting up Active Storage to hold the raw emails we receive, and
implementing a mailbox, which is like a controller that handles incoming emails.

1. https://guides.rubyonrails.org/action_mailbox_basics.html
2. https://guides.rubyonrails.org/action_text_overview.html

report erratum • discuss

https://guides.rubyonrails.org/action_mailbox_basics.html
https://guides.rubyonrails.org/action_text_overview.html
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Setting Up Action Mailbox
To set up Action Mailbox in our app, we’ll run a Rake task that will create
some configuration files, a base mailbox class we’ll inherit from, and some
database tables that Rails will use to store information about incoming emails.
Let’s run the Rake task:

> bin/rails action_mailbox:install
Copying application_mailbox.rb to app/mailboxes

create app/mailboxes/application_mailbox.rb
Copied migration

20250420000011_create_active_storage_tables.active_storage.rb
from active_storage

Copied migration
20250420000012_create_action_mailbox_tables.action_mailbox.rb

from action_mailbox

Note that a) we’ve reformatted our output to fit the pages in the book and b)
since there were two migrations created and migration filenames have a date
and timestamp in them, your filenames won’t exactly match ours. Next, we’ll
add the tables that the Rake task created to our development and test
databases:

> bin/rails db:migrate
== 20250420191846 CreateActiveStorageTables: migrating ======================
-- create_table(:active_storage_blobs, {})

-> 0.0015s
-- create_table(:active_storage_attachments, {})

-> 0.0013s
== 20250420191846 CreateActiveStorageTables: migrated (0.0029s) =============

== 20250420191847 CreateActionMailboxTables: migrating ======================
-- create_table(:action_mailbox_inbound_emails)

-> 0.0017s
== 20250420191847 CreateActionMailboxTables: migrated (0.0017s) =============

In the real world, we’d also need to configure Action Mailbox for our particular
incoming email service provider. The Rails Guide3 is the best place to look for
how to do that. We won’t set one up here since setting up accounts with ser-
vices like Amazon SES or Mailgun is somewhat involved (though once you
have your account set up, configuring Rails to use it is a snap). For our
immediate needs, Rails provides a way to simulate sending emails, which
we’ll see in a moment.

3. https://guides.rubyonrails.org/action_mailbox_basics.html#configuration

Chapter 16. Task K: Receive Emails and Respond with Rich Text • 248

report erratum • discuss

https://guides.rubyonrails.org/action_mailbox_basics.html#configuration
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

The way Action Mailbox works is that all incoming emails get stored in a cloud
storage system like Amazon’s S3. Rails includes a library called Active Storage
that abstracts away the details of the cloud service you’re using.

Active Storage Configuration
As with your real-world email provider, your real-world cloud storage provider
will require specific configuration in Rails, which we’ll do in Configure Active
Storage, on page 286. For development purposes, we’ll use the disk-based
service that works with our local disk. This will allow us to fully use Active
Storage locally, which means Action Mailbox can work locally.

Rails has already preconfigured the development and test environments for
you to use Active Storage.

If you take a peek in config/environments/development.rb, you’ll see:

rails80/depot_ta/config/environments/development.rb
Store uploaded files on the local file system
(see config/storage.yml for options).
config.active_storage.service = :local➤

We’ll explain what :local means in a moment. And you’ll see a similar line
in config/environments/test.rb but using the :test service instead:

rails80/depot_ta/config/environments/test.rb
Store uploaded files on the local file system in a temporary directory.
config.active_storage.service = :test➤

The definition of those symbols is contained in config/storage.yml:

rails80/depot_ta/config/storage.yml
test:

service: Disk
root: <%= Rails.root.join("tmp/storage") %>➤

local:
service: Disk
root: <%= Rails.root.join("storage") %>➤

The root keys in this file match the values used in the files in config/environ-
ments. In this case, both :local and :test are configured to use Active Storage’s
disk-based service, with our development environment (:local) using the
directory storage that’s in the root of our project and the test environment (:test)
using tmp/storage.

With this setup, when we receive an email, the entire payload gets written to
our storage service, and as we’ll see in a moment, we can access parts of that
email to trigger whatever logic we need in our Rails app. The reason Rails

report erratum • discuss

Iteration K1: Receiving Support Emails with Action Mailbox • 249

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_ta%2Fconfig%2Fenvironments%2Fdevelopment.rb
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_ta%2Fconfig%2Fenvironments%2Ftest.rb
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_ta%2Fconfig%2Fstorage.yml
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

does this is that emails can be large (especially if they have attachments),
and you don’t necessarily want to store very large objects in a relational
database. It’s much more common to store such data to disk or with a cloud
storage provider and store a reference to that object in the database.

Now that we’ve done the one-time setup, let’s create a mailbox to receive our
support request emails from customers.

Creating a Mailbox to Receive Emails
Action Mailbox works by routing incoming emails to a mailbox. A mailbox is
a subclass of ApplicationMailbox with a method named process() that’s called for
each email routed to that mailbox. The way emails get routed is similar to
how web requests get routed in config/routes.rb. For email, you’ll tell Rails what
sorts of emails you want routed where.

We want emails to support@example.com to get routed to a mailbox so we can
handle them. The way to do that is to insert a call to the method routing() inside
ApplicationMailbox:

rails80/depot_ta/app/mailboxes/application_mailbox.rb
class ApplicationMailbox < ActionMailbox::Base

routing /something/i => :somewhere

routing "support@example.com" => :support➤

end

This tells Rails that any email to (or cc’d to) support@example.com should be
handled by the class SupportMailbox. We can create that class using a Rails
generator:

> bin/rails generate mailbox support
create app/mailboxes/support_mailbox.rb
invoke test_unit
create test/mailboxes/support_mailbox_test.rb

If you look at app/mailboxes/support_mailbox.rb, you’ll see a few lines of code, notably
an empty method called process():

class SupportMailbox < ApplicationMailbox
def process
end

end

Chapter 16. Task K: Receive Emails and Respond with Rich Text • 250

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_ta%2Fapp%2Fmailboxes%2Fapplication_mailbox.rb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Now, every email we receive at support@example.com will trigger a call to process()
in SupportMailbox. Inside the process() method, we have access to the special
variable mail. This is an instance of Mail::Message4 and allows us to access the
various bits of an email you might expect to have, such as who sent it,
the subject, and the contents.

Before getting too far along, let’s see how this works by adding some puts()
calls into our mailbox:

rails80/depot_ta/app/mailboxes/support_mailbox.rb
class SupportMailbox < ApplicationMailbox

def process
puts "START SupportMailbox#process:"➤

puts "From : #{mail.from_address}"➤

puts "Subject: #{mail.subject}"➤

puts "Body : #{mail.body}"➤

puts "END SupportMailbox#process:"➤

end
end

Since we didn’t configure a real email provider, how do we trigger our mailbox
locally? The answer is a special UI included with Rails called a conductor.

Using the Conductor to Send Emails Locally
Action Mailbox includes a special developer-only UI we can use to send emails
to ourselves. This allows us to see our mailbox working end-to-end without
having to configure a real email provider. To see it, start up your server (or
restart it if it’s already running).

Navigate to http://localhost:3000/rails/conductor/action_mailbox/inbound_emails and you
should see a bare-bones UI that includes a link labeled “New inbound email
by form”:

All inbound emails
New inbound email by form | New inbound email by source
Message ID Status

Click that link, and you should see a very basic UI to write an email, as shown
in the screenshot on page 252.

4. https://www.rubydoc.info/github/mikel/mail/Mail/Message

report erratum • discuss

Iteration K1: Receiving Support Emails with Action Mailbox • 251

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_ta%2Fapp%2Fmailboxes%2Fsupport_mailbox.rb
https://www.rubydoc.info/github/mikel/mail/Mail/Message
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8
http://localhost:3003/rails/conductor/action_mailbox/inbound_emails/new
http://localhost:3003/rails/conductor/action_mailbox/inbound_emails/sources/new

Deliver new inbound email
From
customer@example.com
To
support@example.com
CC

BCC

X-Original-To

In-Reply-To

Subject
I need help!
Body
I can't find my order. It's #12345

Attachments
Choose Files No file chosen
Deliver inbound email

Fill this in, remembering to use support@example.com as the To email so that the
email gets routed to your mailbox. If you then click "Deliver inbound email"
and flip back to where you ran your server, you should see, among other log
output, the puts() you inserted:

START SupportMailbox#process:
From : test@somewhere.com
Subject: I need help!
Body : I can't find my order. It's #12345
END SupportMailbox#process:

Chapter 16. Task K: Receive Emails and Respond with Rich Text • 252

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Now that we see how all the parts fit together, let’s write the real code to store
the request for help from the customer (as well as how to test our mailbox
with a unit test).

Iteration K2: Storing Support Requests from Our Mailbox
As we mentioned above, the purpose of mailboxes is to allow us to execute code
on every email we receive. Because emails come in whenever the sender sends
them, we’ll need to store the details of a customer support request somewhere
for an administrator to handle later. To that end, we’ll create a new model called
SupportRequest that will hold the relevant details of the request, and have the process()
method of SupportMailbox create an instance for each email we get (in the final
section of this chapter, we’ll display these in a UI so an admin can respond).

Creating a Model for Support Requests
We want our model to hold the sender’s email, the subject and body of the
email, and a reference to the customer’s most recent order if there’s one on
file. First, let’s create the model using a Rails generator:

> bin/rails generate model support_request
invoke active_record
create db/migrate/20250420000014_create_support_requests.rb
create app/models/support_request.rb
invoke test_unit
create test/models/support_request_test.rb
create test/fixtures/support_requests.yml

This created a migration for us, which is currently empty (remember that
migration filenames have a date and time in them, so your filename will be
slightly different). Let’s fill that in.

rails80/depot_tb/db/migrate/20250420000014_create_support_requests.rb
class CreateSupportRequests < ActiveRecord::Migration[8.0]

def change
create_table :support_requests do |t|
t.string :email, comment: "Email of the submitter"➤

t.string :subject, comment: "Subject of their support email"➤

t.text :body, comment: "Body of their support email"➤

t.references :order,➤

foreign_key: true,➤

comment: "their most recent order, if applicable"➤

t.timestamps
end

end
end

report erratum • discuss

Iteration K2: Storing Support Requests from Our Mailbox • 253

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_tb%2Fdb%2Fmigrate%2F20250420000014_create_support_requests.rb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

With this in place, we can create this table via bin/rails db:migrate:

> bin/rails db:migrate
== 20250420121503 CreateSupportRequests: migrating ==========================
-- create_table(:support_requests)

-> 0.0016s
== 20250420121503 CreateSupportRequests: migrated (0.0017s) =================

We’ll also need to adjust the model itself to optionally reference an order:

rails80/depot_tb/app/models/support_request.rb
class SupportRequest < ApplicationRecord

belongs_to :order, optional: true➤

end

And we’ll need to create the inverse relationship in the Order model:

rails80/depot_tb/app/models/order.rb
class Order < ApplicationRecord

enum :pay_type, {
"Check" => 0,
"Credit card" => 1,
"Purchase order" => 2

}
has_many :line_items, dependent: :destroy
has_many :support_requests, dependent: :nullify➤

...

Now, we can create instances of SupportRequest from our mailbox.

Creating Support Requests from Our Mailbox
Our mailbox needs to do two things. First, it needs to create an instance of
SupportRequest for each email that comes in. But it also needs to connect that
request to the user’s most recent order, if there’s one in our database (this
will allow our admin to quickly reference the order that might be causing
trouble).

As you recall, all orders have an email associated with them. So, to get the
most recent order for an email, we can use where() to search all orders by
email: order() to order the results by the create data and first() to grab the most
recent one. With that, we can use the methods on mail we saw earlier to create
the SupportRequest.

Here’s the code we need in app/mailboxes/support_mailbox.rb (which replaces the
calls to puts() we added before):

rails80/depot_tb/app/mailboxes/support_mailbox.rb
class SupportMailbox < ApplicationMailbox

def process

Chapter 16. Task K: Receive Emails and Respond with Rich Text • 254

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_tb%2Fapp%2Fmodels%2Fsupport_request.rb
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_tb%2Fapp%2Fmodels%2Forder.rb
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_tb%2Fapp%2Fmailboxes%2Fsupport_mailbox.rb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

recent_order = Order.where(email: mail.from_address.to_s).➤

order("created_at desc").➤

first➤

SupportRequest.create!(➤

email: mail.from_address.to_s,➤

subject: mail.subject,➤

body: mail.body.to_s,➤

order: recent_order➤

)➤

end
end

Why Don’t We Access Emails Directly When Needed?

It might seem easier to simply access the customer emails whenever we need them
rather than pluck out the data we want and store it in a database. There are two
reasons not to do this.

The first and most practical reason is about separation of concerns. Our support
requests only need part of what is in the emails, but they also might need more
metadata than the customer sends us. To keep our code organized and clean, it’s
better to store what we need explicitly.

The second reason is one of Rails’ famously held opinions. Rails arranges for all emails
to be deleted after thirty days. The reasoning is that emails contain personal data
that we don’t want to hold onto unnecessarily.

Protecting the personal data of your customers is a good practice, and it’s one that’s
more and more required by law. For example, the European General Data Protection
Regulation (GDPR) requires, among other things, that you delete any personal data
you have within one month of a request to do so. By auto-deleting personal data every
thirty days, you automatically comply with this requirement.a

a. We’re not lawyers, so please don’t take this sidebar as legal advice!

Now, restart your server and navigate to the conductor at http://localhost:3000/rails/con-
ductor/action_mailbox/inbound_emails. Click "Deliver new inbound email" and send
another email (remember to send it to support@example.com).

Now, quit your server and start up the Rails console. This will allow us to
check that a new SupportRequest was created (remember we have to format this
to fit in the book, so your output will be on fewer, longer lines):

> bin/rails console
irb(main):001:0> SupportRequest.first

(1.5ms) SELECT sqlite_version(*)
SupportRequest Load (0.1ms)

report erratum • discuss

Iteration K2: Storing Support Requests from Our Mailbox • 255

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

SELECT "support_requests".* FROM "support_requests"
ORDER BY "support_requests"."id" ASC LIMIT ? [["LIMIT", 1]]

=> #<SupportRequest
id: 1,
email: "chris@somewhere.com",
subject: "Missing book!",
body: "I can't find my book that I ordered. Please help!",
order_id: nil,
created_at: "2021-01-19 12:29:17",
updated_at: "2021-01-19 12:29:17">

You should see the data you entered into the conductor saved in the Support-
Request instance. You can also try this using the email of an order you have
in your system to verify it locates the most recent order. Of course, manually
checking our code isn’t ideal. We would like to have an automated test. For-
tunately, Rails provides a simple way to test our mailboxes, which you’ll learn
about now.

Testing Our Mailbox
When we used the generator to create our mailbox, you probably noticed the
file test/mailboxes/support_mailbox_test.rb gets created. This is where we’ll write our test.
Since we generally know how to write tests, all we need to know now is how to
trigger an email. Action Mailbox provides the method, receive_inbound_email_from_mail(),
which we can use in our tests to do just that.

We need two tests to cover the functionality of our mailbox. The first is to
send an email from a customer without an order and verify we created a Sup-
portRequest instance. The second is to send an email from a customer who does
have orders and verify that the SupportRequest instance is correctly connected
to their most recent order.

The first test is most straightforward since we don’t need any test setup, so
we’ll create a new test() block inside test/mailboxes/support_mailbox_test.rb:

rails80/depot_tb/test/mailboxes/support_mailbox_test.rb
require "test_helper"

class SupportMailboxTest < ActionMailbox::TestCase
test "we create a SupportRequest when we get a support email" do➤

receive_inbound_email_from_mail(➤

to: "support@example.com",➤

from: "chris@somewhere.net",➤

subject: "Need help",➤

body: "I can't figure out how to check out!!"➤

)➤
➤

support_request = SupportRequest.last➤

assert_equal "chris@somewhere.net", support_request.email➤

Chapter 16. Task K: Receive Emails and Respond with Rich Text • 256

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_tb%2Ftest%2Fmailboxes%2Fsupport_mailbox_test.rb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

assert_equal "Need help", support_request.subject➤

assert_equal "I can't figure out how to check out!!", support_request.body➤

assert_nil support_request.order➤

end➤

end

If we run this test now, it should pass:

> bin/rails test test/mailboxes/support_mailbox_test.rb
Run options: --seed 26908

Running:

.

Finished in 0.322222s, 3.1035 runs/s, 12.4138 assertions/s.
1 runs, 4 assertions, 0 failures, 0 errors, 0 skips

Great! For the second test, we’ll need to create a few orders before we send
the email. You’ll recall from Test Fixtures, on page 92, that we can use fixtures
to set up test data in advance. We have one we can use already, but ideally,
we’d have a total of two orders for the user sending the email and a third
order from another user. That would validate that we’re both searching for
the right user and selecting the most recent order.

Let’s add two new fixtures to test/fixtures/orders.yml

rails80/depot_tb/test/fixtures/orders.yml
Read about fixtures at
https://api.rubyonrails.org/classes/ActiveRecord/FixtureSet.html

one:
name: Dave Thomas
address: MyText
email: dave@example.org
pay_type: Check

another_one:➤

name: Dave Thomas➤

address: 123 Any St➤

email: dave@example.org➤

pay_type: Check➤

created_at: <%= 2.days.ago %>➤
➤

other_customer:➤

name: Chris Jones➤

address: 456 Somewhere Ln➤

email: chris@nowhere.net➤

pay_type: Check➤

two:
name: MyString
address: MyText

report erratum • discuss

Iteration K2: Storing Support Requests from Our Mailbox • 257

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_tb%2Ftest%2Ffixtures%2Forders.yml
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

email: MyString
pay_type: 1

Note how we’re using ERB inside our fixture. This code is executed when we
request a fixture, and we’re using it to force an older creation date for one of
our orders. By default, Rails sets created_at on models it creates from fixtures
to the current time. When we ask Rails to create that particular fixture with
orders(:another_one), it will execute the code inside the <%= and %>, effectively
setting the created_at value to the date as of two days ago.

With these fixtures available, we can write our second test:

rails80/depot_tb/test/mailboxes/support_mailbox_test.rb
require "test_helper"

class SupportMailboxTest < ActionMailbox::TestCase

previous test

test "we create a SupportRequest with the most recent order" do➤

recent_order = orders(:one)➤

older_order = orders(:another_one)➤

non_customer = orders(:other_customer)➤
➤

receive_inbound_email_from_mail(➤

to: "support@example.com",➤

from: recent_order.email,➤

subject: "Need help",➤

body: "I can't figure out how to check out!!"➤

)➤
➤

support_request = SupportRequest.last➤

assert_equal recent_order.email, support_request.email➤

assert_equal "Need help", support_request.subject➤

assert_equal "I can't figure out how to check out!!", support_request.body➤

assert_equal recent_order, support_request.order➤

end➤

end

Next, rerun the test, and we should see our new test is passing:

> bin/rails test test/mailboxes/support_mailbox_test.rb
Run options: --seed 47513

Running:

..

Finished in 0.384217s, 5.2054 runs/s, 20.8216 assertions/s.
2 runs, 8 assertions, 0 failures, 0 errors, 0 skips

Nice! We can now confidently write code to handle incoming emails and test it
with an automated test. Now, what do we do with these SupportRequest instances

Chapter 16. Task K: Receive Emails and Respond with Rich Text • 258

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_tb%2Ftest%2Fmailboxes%2Fsupport_mailbox_test.rb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

we’re creating? We’d like to allow an administrator to respond to them. We
could do that with plain text, but let’s learn about another part of Rails called
Action Text that will allow us to author rich text we can use to respond.

Iteration K3: Responding with Rich Text
To allow our admins to respond to support requests, we’ll need to make a
new UI for them to see the requests that need a response, a way for them to
provide a response, and then some code to email the customer back. We know
how to do all of these things, but this is a great opportunity to learn about
Action Text, which is a Rails library that allows us to easily provide a rich-
text editing experience. We can use this to allow our admins to write a fully
formatted response and not just plain text.

Let’s first quickly create the UI where we’ll see the support requests and edit
them. This should be old hat for you by now, so we’ll go quickly. Add a new
route to config/routes.rb for the index() and update() methods:

rails80/depot_tb/config/routes.rb
Rails.application.routes.draw do

get "admin" => "admin#index"
get "up" => "rails/health#show", as: :rails_health_check

resources :support_requests, only: %i[index update]➤

resources :users
resources :products
resource :session
resources :passwords, param: :token

scope "(:locale)" do
resources :orders
resources :line_items
resources :carts
root "store#index", as: "store_index", via: :all

end
end

Now, create app/controllers/support_requests_controller.rb and implement index() (we’ll
see update() in a moment):

rails80/depot_tb/app/controllers/support_requests_controller.rb
class SupportRequestsController < ApplicationController➤

def index➤

@support_requests = SupportRequest.all➤

end➤
➤

end➤

report erratum • discuss

Iteration K3: Responding with Rich Text • 259

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_tb%2Fconfig%2Froutes.rb
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_tb%2Fapp%2Fcontrollers%2Fsupport_requests_controller.rb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Next, we’ll create the view in app/views/support_requests/index.html.erb:

rails80/depot_tb/app/views/support_requests/index.html.erb
➤

<% @support_requests.each do |support_request| %>➤

➤

<h1 class="text-2xl font-bold">➤

On <%= support_request.created_at.to_formatted_s(:long) %>➤

<code><%= support_request.email %></code> writes:➤

</h1>➤

<blockquote class="ml-4">➤

<h2 class="font-bold"><%= support_request.subject %></h2>➤

<%= support_request.body %>➤

</blockquote>➤

<% if support_request.order %>➤

<h3 class="mt-4 text-xl font-bold">Recent Order</h3>➤

<dl>➤

<dt>Name</dt>➤

<dd class="ml-4"><%= support_request.order.name %></dd>➤
➤

<dt>Email</dt>➤

<dd class="ml-4"><%= support_request.order.email %></dd>➤
➤

<dt>Address</dt>➤

<dd class="ml-4"><%= support_request.order.address %></dd>➤
➤

<dt>PayType</dt>➤

<dd class="ml-4"><%= support_request.order.pay_type %></dd>➤
➤

<dt>Line Items</dt>➤

<dd>➤

<ul class="ml-4 list-disc">➤

<% support_request.order.line_items.each do |line_item| %>➤

➤

<%= line_item.product.title %>➤

(<%= line_item.product.price %>)➤

➤

<% end %>➤

➤

</dd>➤

</dl>➤

<% else %>➤

<h3 class="notice">No associated order</h3>➤

<% end %>➤

<%= form_with(model: support_request,➤

local: true,➤

class: "depot_form") do |form| %>➤

<div class="field">➤

<%= form.label :response, "Write Response" %>➤

<%= form.rich_textarea :response, id: :support_request_response %>➤

</div>➤

Chapter 16. Task K: Receive Emails and Respond with Rich Text • 260

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_tb%2Fapp%2Fviews%2Fsupport_requests%2Findex.html.erb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

<div class="actions">➤

<%= form.submit "Send Response" %>➤

</div>➤

<% end %>➤

<hr>

<% end %>

Restart your server, create a few orders and, using the Rails conductor we
saw earlier, create a few support tickets. Be sure that at least one of them is
from an email you used to create an order. When you’ve done that, navigate
to http://localhost:3000/admin and log in. Once you’ve done that, navigate to
http://localhost:3000/support_requests and you should see the UI you just created
with your support requests rendered:

It’s not pretty, but it’ll work for now. Next, we need to add the ability to write
a response. If we were OK with plain text, we would make a new attribute on
SupportRequest to hold the response, then wire up a form to write it, just like
we’ve done several times. With rich text, it works a bit differently.

Action Text stores the rich text in its own table outside of the model’s. In our
SupportRequest model, we’ll tell Rails that we have a rich-text field that we want
Action Text to manage by using the has_rich_text() method, like so:

rails80/depot_tc/app/models/support_request.rb
class SupportRequest < ApplicationRecord

belongs_to :order, optional: true
has_rich_text :response➤

end

report erratum • discuss

Iteration K3: Responding with Rich Text • 261

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_tc%2Fapp%2Fmodels%2Fsupport_request.rb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

This method (and the rest of Action Text) won’t work without some setup,
which we can do with the Rake task action_text:install:

> bin/rails action_text:install
append app/javascript/application.js
append config/importmap.rb
create app/assets/stylesheets/actiontext.css
append app/assets/stylesheets/application.tailwind.css
create app/views/active_storage/blobs/_blob.html.erb
create app/views/layouts/action_text/contents/_content.html.erb

Ensure image_processing gem has been enabled so image uploads will work
(remember to bundle!)

gsub Gemfile
rails railties:install:migrations FROM=active_storage,action_text

Copied migration 20250420145849_create_action_text_tables.action_text.rb
from action_text

invoke test_unit
create test/fixtures/action_text/rich_texts.yml

Because this changed the Gemfile, we need to run bundle install:

> bin/bundle install

You’ll notice that the generator created a database migration. This is for the
tables that Action Text uses to store the rich text itself.

Let’s add those by running the db:migrate task:

> bin/rails db:migrate
== 20250420120454 CreateActionTextTables: migrating ======================
-- create_table(:action_text_rich_texts, {:id=>:primary_key})

-> 0.0016s
== 20250420120454 CreateActionTextTables: migrated (0.0017s) =============

With all of that back-end setup out of the way, we can now make our UI.
We’ll create this in the same way we’ve created other forms in our app,
with the exception of the text area. Instead of using the text_area() form
helper to make a regular HTML textarea tag, we’ll use rich_textarea(), which
will set up the Trix editor for us, enabling the UI part of Action Text.

Add this to app/views/support_requests/index.html.erb:

rails80/depot_tc/app/views/support_requests/index.html.erb

<% @support_requests.each do |support_request| %>

<h1 class="text-2xl font-bold">

On <%= support_request.created_at.to_formatted_s(:long) %>
<code><%= support_request.email %></code> writes:

</h1>
<blockquote class="ml-4">

Chapter 16. Task K: Receive Emails and Respond with Rich Text • 262

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_tc%2Fapp%2Fviews%2Fsupport_requests%2Findex.html.erb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

<h2 class="font-bold"><%= support_request.subject %></h2>
<%= support_request.body %>

</blockquote>
<% if support_request.order %>

<h3 class="mt-4 text-xl font-bold">Recent Order</h3>
<dl>

<dt>Name</dt>
<dd class="ml-4"><%= support_request.order.name %></dd>

<dt>Email</dt>
<dd class="ml-4"><%= support_request.order.email %></dd>

<dt>Address</dt>
<dd class="ml-4"><%= support_request.order.address %></dd>

<dt>PayType</dt>
<dd class="ml-4"><%= support_request.order.pay_type %></dd>

<dt>Line Items</dt>
<dd>
<ul class="ml-4 list-disc">

<% support_request.order.line_items.each do |line_item| %>

<%= line_item.product.title %>
(<%= line_item.product.price %>)

<% end %>

</dd>

</dl>
<% else %>

<h3 class="notice">No associated order</h3>
<% end %>
<% if support_request.response.blank? %>➤

<%= form_with(model: support_request,➤

local: true,➤

class: "depot_form") do |form| %>➤

<div class="field">➤

<%= form.label :response, "Write Response" %>➤

<%= form.rich_textarea :response, id: :support_request_response %>➤

</div>➤

<div class="actions">➤

<%= form.submit "Send Response" %>➤

</div>➤

<% end %>➤

<% else %>➤

<h4>Our response:</h4>➤

<p>➤

<blockquote>➤

<%= support_request.response %>➤

</blockquote>➤

</p>➤

report erratum • discuss

Iteration K3: Responding with Rich Text • 263

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

<% end %>➤

<hr>

<% end %>

Note that we check to see if the support request has a response, and if it does,
we render it. As we’ll see, this has been enhanced by Action Text.

Next, we implement update() in our controller:

rails80/depot_tc/app/controllers/support_requests_controller.rb
class SupportRequestsController < ApplicationController

def index
@support_requests = SupportRequest.all

end

def update➤

support_request = SupportRequest.find(params[:id])➤

support_request.update(response: params.require(:support_request)[:response])➤

SupportRequestMailer.respond(support_request).deliver_now➤

redirect_to support_requests_path➤

end➤

end

You learned how to send emails in Chapter 13, Task H: Sending Emails, on
page 189, but when dealing with rich text and the need to send a plain-text
email, we have to strip out the rich text. So, let’s set up the mailer to respond
to the user, and when we create the plain-text template, we’ll see how to strip
out the rich text. We’ll start this off by creating the mailer using the Rails
generator:

> bin/rails generate mailer support_request respond
create app/mailers/support_request_mailer.rb
invoke erb
create app/views/support_request_mailer
create app/views/support_request_mailer/respond.text.erb
create app/views/support_request_mailer/respond.html.erb
invoke test_unit
create test/mailers/support_request_mailer_test.rb
create test/mailers/previews/support_request_mailer_preview.rb

Our mailer will look similar to the mailers we’ve created in the past. This is
what your app/mailers/support_request_mailer.rb should look like:

rails80/depot_tc/app/mailers/support_request_mailer.rb
class SupportRequestMailer < ApplicationMailer

Subject can be set in your I18n file at config/locales/en.yml
with the following lookup:
#

Chapter 16. Task K: Receive Emails and Respond with Rich Text • 264

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_tc%2Fapp%2Fcontrollers%2Fsupport_requests_controller.rb
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_tc%2Fapp%2Fmailers%2Fsupport_request_mailer.rb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

en.support_request_mailer.respond.subject
#
default from: "support@example.com"➤

➤

def respond(support_request)➤

@support_request = support_request➤

mail to: @support_request.email, subject: "Re: #{@support_request.subject}"➤

end➤

end

For the views, we’ll show our response and quote the user’s original email.
As we saw in our web view, Rails will handle rendering the rich text for us,
so the HTML mail view in app/views/support_request_mailer/respond.html.erb will look
fairly straightforward:

rails80/depot_tc/app/views/support_request_mailer/respond.html.erb
<%= @support_request.response %>
<hr>
<blockquote>

<%= @support_request.body %>
</blockquote>

We also want to include a plain-text version, since not everyone wants rich
text in their emails. In the case of a plain-text email, we want to strip out the
rich text from our response. Action Text provides a method to do that, called
to_plain_text(), which we can use in app/views/support_request_mailer/respond.text.erb:

rails80/depot_tc/app/views/support_request_mailer/respond.text.erb
<%= @support_request.response.to_plain_text %>

<%= @support_request.body %>

The last step is to add a call to our mailer when we update the SupportRequest:

class SupportRequestsController < ApplicationController
def index

@support_requests = SupportRequest.all
end

def update
support_request = SupportRequest.find(params[:id])
support_request.update(response: params.require(:support_request)[:response])
SupportRequestMailer.respond(support_request).deliver_now➤

redirect_to support_requests_path
end

end

report erratum • discuss

Iteration K3: Responding with Rich Text • 265

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_tc%2Fapp%2Fviews%2Fsupport_request_mailer%2Frespond.html.erb
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_tc%2Fapp%2Fviews%2Fsupport_request_mailer%2Frespond.text.erb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Now, start up your server, and assuming you’ve created some support requests,
you should see a rich-text editor instead of a plain old text area:

You can see in the following screenshot that we’ve added rich text to the text
area using the editor’s controls. Try that in your environment, then click Send
Response. The page will refresh, and because we’ve now saved a response
with this SupportRequest, you’ll see the rich text rendered…in rich text!

Chapter 16. Task K: Receive Emails and Respond with Rich Text • 266

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

You’ll also see the mail printed out in your log, and you should see that the
plain-text part of the email is free of formatting.

What We Just Did
• We configured and set up Action Mailbox to allow our app to receive

support emails. We saw how to configure Rails to inspect each incoming
email and route it to the right bit of code, called a mailbox.

• We also configured Active Storage, which Rails uses to store the raw emails
it processes. With this setup, we could easily access cloud storage for any
other purpose we might need.

• We used Action Text to enable rich-text editing for responding to support
requests. With just a few lines of code, we have a cross-browser rich-text
editing experience that works.

• We stripped out the rich text to send a plain-text email of our rich-text
response.

Playtime
Here are some things you can try on your own:

• Modify the product editor to allow products to have rich text.

• Change the support request to find all orders for the email, not just the
most recent.

report erratum • discuss

Iteration K3: Responding with Rich Text • 267

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

CHAPTER 17

In this chapter, you'll see:
• Running our application in a Docker container
• Using Kamal to deploy our application on a host machine
• Monitoring your application and backups

Task L: Deployment and Production
Deployment is supposed to mark a happy point in the lifetime of our applica-
tion. It’s when we take the code that we’ve so carefully crafted and upload it
to a server so that other people can use it. It’s when the beer, champagne,
and hors d’oeuvres are supposed to flow. Shortly thereafter, our application
will be written about in Hacker News, and we’ll become overnight sensations
in the geek community.

But the reality is that it often takes quite a bit of up-front planning to pull
off a smooth and repeatable deployment of your application.

In this chapter, we’ll take the Depot application that we’ve been working on
and deploy it to a server. We’ll start by deploying it locally, and then move on
to deploying it to a cloud provider, and finally we’ll add backups and monitor-
ing to our application.

Iteration L1: Deploying Locally
In the past, there was a bewildering number of options available for deploy-
ment: Ansible, Capistrano, Chef, and Puppet were all popular choices. But
starting with Rails 7.1, Docker has become the official default for deployment.

If you’re not familiar with Docker images, you can find out more in Docker
for Rails Developers [Ise19]. Meanwhile, all you need to know is that they’re
essentially self-contained and portable runtimes that can be deployed by
pretty much any cloud-hosting provider. This means you can build and test
your deployment locally and then choose your cloud provider later, and even
change your mind and move hosts at any time.

You control what goes into a Docker image by creating a Dockerfile. Helpfully,
Rails provides a Dockerfile for you to start with. We won’t be changing it, so

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

if you’re in a hurry, you can skip to Orchestrate the Deployment, on page 274
and refer back to this later.

Base Image
We’ll look at the Dockerfile in three parts. We’ll start with the base image:

rails80/depot_td/Dockerfile
syntax=docker/dockerfile:1
check=error=true

This Dockerfile is designed for production, not development. Use with
Kamal or build'n'run by hand:
docker build -t work .
docker run -d -p 80:80 \
-e RAILS_MASTER_KEY=<value from config/master.key> --name work work

For a containerized dev environment, see Dev Containers:
https://guides.rubyonrails.org/getting_started_with_devcontainer.html

Make sure RUBY_VERSION matches the Ruby version in .ruby-version
ARG RUBY_VERSION=3.4.3
FROM docker.io/library/ruby:$RUBY_VERSION-slim AS base

Rails app lives here
WORKDIR /rails

Install base packages
RUN apt-get update -qq && \

apt-get install --no-install-recommends -y curl libjemalloc2 \
libvips sqlite3 && \

rm -rf /var/lib/apt/lists /var/cache/apt/archives

Set production environment
ENV RAILS_ENV="production" \

BUNDLE_DEPLOYMENT="1" \
BUNDLE_PATH="/usr/local/bundle" \
BUNDLE_WITHOUT="development"

This part contains five instructions, each of which by convention is capitalized.
The first instruction is ARG, which defines a variable that can be used in
subsequent instructions. The second instruction is FROM, which specifies the
base image to build upon. Taken together, they instruct Docker to start with
an image that has Ruby 3.4.3 installed. You can find the image on Docker
Hub.1

The third instruction is WORKDIR, which creates and sets the current working
directory.

1. https://hub.docker.com/_/ruby

Chapter 17. Task L: Deployment and Production • 270

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_td%2FDockerfile
https://hub.docker.com/_/ruby
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

The fourth instruction is RUN, which runs a series of commands. The first
command updates the package list, and the second installs a number of
packages. The third command cleans up files that are no longer necessary.

While the full ruby image contains everything you might need, including plenty
that you’ll never use, ruby:slim doesn’t contain things that will be needed to
generate your demo application—things like make and git.

Scanning the list of Debian Bookworm packages,2 you can find libjemalloc2 and
curl, but it takes some perseverance. The last time I ran a count, there were
58,733 packages on that list. Sifting through thousands of packages to find
what you need is too cumbersome. Instead, when you have failed to include
what you need, it’s better to paste the resulting error message in your favorite
search engine and review the answer in places like StackOverflow.

For the curious, these are some of the packages:

• curl is a command-line tool for transferring data with URLs.
• libjemalloc2 is a library that speeds up memory-hungry applications.
• libvips is a fast image-processing library.
• sqlite3 is the command line interface to Sqlite3.

The way to install packages on Debian is to use a tool named apt-get.

The final instruction in this part is ENV, which sets a number of environment
variables.

Overall, the docker portions (ARG, FROM, RUN, WORKDIR, and ENV) are very
straightforward.

The parts that need explaining are the operating system parts like apt-get and
build-essential. This will remain true as you continue your journey: the hard
part isn’t learning Docker, but rather getting to know what for many of you
is an entirely new operating system—in this case, Debian Linux.

Build Image
The next part is the build image. As you might expect, this is where the
application is built.

rails80/depot_td/Dockerfile
Throw-away build stage to reduce size of final image
FROM base AS build

Install packages needed to build gems
RUN apt-get update -qq && \

2. https://packages.debian.org/stable/allpackages

report erratum • discuss

Iteration L1: Deploying Locally • 271

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_td%2FDockerfile
https://packages.debian.org/stable/allpackages
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

apt-get install --no-install-recommends -y build-essential git \
libyaml-dev pkg-config && \

rm -rf /var/lib/apt/lists /var/cache/apt/archives

Install application gems
COPY Gemfile Gemfile.lock ./
RUN bundle install && \

rm -rf ~/.bundle/ "${BUNDLE_PATH}"/ruby/*/cache \
"${BUNDLE_PATH}"/ruby/*/bundler/gems/*/.git && \

bundle exec bootsnap precompile --gemfile

Copy application code
COPY . .

Precompile bootsnap code for faster boot times
RUN bundle exec bootsnap precompile app/ lib/

Precompiling assets for production without requiring secret
RAILS_MASTER_KEY
RUN SECRET_KEY_BASE_DUMMY=1 ./bin/rails assets:precompile

This FROM instruction specifies that the previous image is to be used as the
base for this step. The importance of this will become clear when we get to
the final image.

Next, we install some packages that are needed to build the application:

• build-essential is a package that installs the basic tools needed to compile
software.

• git is a version control system.

• pkg-config is a helper tool used when compiling software.

Next, is a COPY instruction which copies the Gemfile and Gemfile.lock from your
application to the image. This is done separately from the rest of the applica-
tion code to take advantage of Docker’s caching mechanism. If neither of
these files has changed, Docker will use the cached image from the previous
build. If either of these files has changed, Docker will rebuild the image from
this point on.

The next instruction will run bundle install to install the gems needed by the
application. This step may take a while, which is why it’s important to only
be run if the Gemfile or Gemfile.lock file havs changed. It will also run bootsnap
precompile on the Gemfile to speed up the start time of the application.3

Once this is complete, the rest of your application is copied to the image.
Then, bootsnap is run again, this time on the application code and libraries.

3. https://github.com/Shopify/bootsnap?tab=readme-ov-file#bootsnap-for-rails

Chapter 17. Task L: Deployment and Production • 272

report erratum • discuss

https://github.com/Shopify/bootsnap?tab=readme-ov-file#bootsnap-for-rails
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

The final step is to run rails assets:precompile to precompile the assets for the
application. This is a step that’s only needed when deploying the application.
In development, the assets are served dynamically from the app/assets directory.
The setting of SECRET_KEY_BASE is a work-around to Rails requiring a master
key even on commands that won’t make use of it.

Deploy Image
The last image in any Dockerfile is the image that will be run when the con-
tainer is started. Note that this step too specifies the original image is to be
used as the base. This avoids the inclusion of all of the build tools in the final
image.

rails80/depot_td/Dockerfile
Final stage for app image
FROM base

Copy built artifacts: gems, application
COPY --from=build "${BUNDLE_PATH}" "${BUNDLE_PATH}"
COPY --from=build /rails /rails

Run and own only the runtime files as a non-root user for security
RUN groupadd --system --gid 1000 rails && \

useradd rails --uid 1000 --gid 1000 --create-home --shell \
/bin/bash && \

chown -R rails:rails db log storage tmp
USER 1000:1000

Entrypoint prepares the database.
ENTRYPOINT ["/rails/bin/docker-entrypoint"]

Start server via Thruster by default, this can be overwritten at
runtime
EXPOSE 80
CMD ["./bin/thrust", "./bin/rails", "server"]

Next, the installed gems and the application code are copied from the build
image to the final deploy image.

A non-root user is then created, and only specific directories are owned by
that user. This is a security measure to prevent an attacker from gaining
access to the entire system if they manage to break out of the application.

An ENTRYPOINT is defined that will set up the application. This is a separate
script that will set up libjemalloc2 and then run the database preparation
commands.

EXPOSE 80 identifies the port that the Thruster HTTP/2 proxy will be listening on.

report erratum • discuss

Iteration L1: Deploying Locally • 273

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_td%2FDockerfile
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Finally, the CMD instruction specifies the command that will be run when
the container is started. In this case, it runs Thruster. The last two entries
in the CMS list are arguments to Thruster, which is the command to start
the Rails server and the parameter to pass to Rails. Note that this is not
the bin/dev command as that command is only used in development.

Using Thruster as an HTTP/2 Proxy
Thruster is a high-performance HTTP/2 proxy that can be used to serve your
application. It’s a good choice for serving Rails applications as it can handle
the large number of connections that Rails can generate.

Thruster serves three purposes:

• It can serve static files quickly. It does this by making direct use of oper-
ating system functionality and implementing compression.

• It serves as an HTTP/2 proxy. Puma implements HTTP 1.1 and Puma’s
threads can only handle one request at a time. HTTP 2 allows clients to
make multiple concurrent requests that are multiplexed, which is a fancy
term for saying that responses can come back in any order.

• It can provide certificate management. This is used in single-machine
Kamal deployments to provide SSL.

Orchestrate the Deployment
To run this image, we’ll need to associate various paths on our machine with
paths in the container. We’ll also need to set up a network so that the web
service can communicate with the database service. And we’ll need to pass
in the master key that we created earlier. We can do all this on the command
line, but it’s easier to use a file to orchestrate the deployment. We can do that
all by creating a docker-compose.yml:

rails80/depot_td/docker-compose.yml
services:

web:
build: .
volumes:
- ./log:/rails/log
- ./storage:/rails/storage

ports:
- "3000:3000"

secrets:
- source: master_key

target: /rails/config/master.key

Chapter 17. Task L: Deployment and Production • 274

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_td%2Fdocker-compose.yml
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

secrets:
master_key:

file: ./config/master.key

Note that docker-compose.yml is useful for deploying locally. Production deploy-
ments generally won’t use this file, but overall the principles will be very
similar.

This file starts with build. The value of the period . here means that the Dockerfile
used to build this image can be found in the current directory.

Then, there’s a volumes element that, in this case, maps the log directory in
the container to our local log directory and the storage directory in the con-
tainer to our local storage directory.

Next, there’s a ports element. This maps port 3000 on our development machine
to port 3000 in the container. This means that we’ll be able to access our
application as http://localhost:3000 once it’s up and running.

Managing Secrets

When we defined our seed data back in Iteration A2: Making Prettier Listings,
on page 74, our database didn’t have any users. After we added our first user
in Chapter 14, Task I: Logging In, on page 207, we added code to require a
valid login to access pages that update the database.

This means that, if we were to deploy a new installation starting with the seed
data alone, we would be locked out of our own application. That’s not good.
So let’s fix it!

Adding an initial user to our seed data solves the problem, but checking
in a password into our version control and deploying it’s hardly secure.
Fortunately, Rails has provided a way to encrypt secrets such as this one.
Rails calls such secrets credentials.

We get started by editing our credentials:

$ EDITOR='code --wait' bin/rails credentials:edit

Feel free to replace the editor with vim or another editor of your choice.

You’ll see that Rails has already defined one credential that’s used to
encrypt cookies, which is how Rails implements sessions such as the one
used to track a user’s cart. Leave that credential alone, and add another
one to the file:

dave_password: secret

report erratum • discuss

Iteration L1: Deploying Locally • 275

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

When you save the file, Rails will update config/credentials.yml.enc using the
master key defined in config/master.key. The encoded file can be checked into
version control and shared publicly. The key, however, needs to be kept
private.

Now that we have a credential defined, let’s make use of it by adding the fol-
lowing to db/seeds.rb:

rails80/depot_td/db/seeds.rb
User.create! name: 'dave',

password: Rails.application.credentials.dave_password

So far, we’ve defined a credential and made use of it. The one task remaining
is to set things up to deploy the master key at runtime. The following lines
in docker-compose.yml take care of this:

rails80/depot_td/docker-compose.yml
services:

web:
secrets:
- source: master_key

target: /rails/config/master.key

secrets:
master_key:

file: ./config/master.key

The general pattern of placing a secret in a file, listing all of the secrets
you’ll be using in one place, and then referencing individual secrets by
the containers that use them is common in cloud deployments. Rails
makes it easy in that there’s only one secret you need for Rails applica-
tions, namely a master key. That key can be used to unlock all of the
credentials that you’ll need.

Configuring SSL

When you deploy your application to the web, you’ll want to use SSL. SSL is
a protocol that encrypts the data between the client and the server. But for
now, we’re going to disable SSL. This is because we’re deploying to a local
machine. SSL isn’t needed for local deployments.

In config/environments/production.rb edit the following line to disable SSL:

Force all access to the app over SSL, use Strict-Transport-Security,
and use secure cookies.
config.force_ssl = !ENV["RAILS_MASTER_KEY"].nil?➤

Chapter 17. Task L: Deployment and Production • 276

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_td%2Fdb%2Fseeds.rb
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_td%2Fdocker-compose.yml
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Note that this checks for a RAILS_MASTER_KEY environment variable. This will be
set when you deploy using Kamal or Cloud hosting providers. It won’t be set
when you deploy locally.

Getting Up and Running
We’ve covered a lot of ground. Whether you skimmed or read every word in
the preceding sections, you can see that a lot of thought and expertise has
gone into the creation of the Dockerfile that Rails provides.

Now it’s time to get things up and running. The first thing we need to do is
install Docker itself. You can get it at the Docker website.4

Next, we use docker to build our image for the web service with a single
command:

$ docker compose build

This command will take a while. It will download an image. And most of the
remaining time will be spent installing gems. If you run the same command
again, it’ll run quickly as nothing needs to be redone. If you change any file
other than your Gemfile, the image will be updated quickly with the change. If
you change the Gemfile, run bundle update, and then rerun docker compose build.
This will take longer as it will rerun the bundle install step on a fresh image.

Next, we start the web container with a single command:

$ docker compose up

Normally, this command will be run with the --detach or -d option, which will
run the containers in the background, but for now it’s helpful to see the
output.

At this point, your application is up and running! It can be accessed at
http://localhost:3000/.

Using Console to Look at a Live Application

We’ve already created a large amount of functionality in our application’s
model classes. Of course, we created these to be used by our application’s
controllers—but we can also interact with them directly. The gateway to this
world is the rails console script. We can launch it on our server with this:

$ docker compose exec web bin/rails console
Loading production environment (Rails 8.0.2)
work(prod)> p = Product.last

4. https://docs.docker.com/get-docker/

report erratum • discuss

Iteration L1: Deploying Locally • 277

http://localhost:3000/
https://docs.docker.com/get-docker/
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

=> #<Product:0x0000ffff745c3f18 id: 3>
work(prod)> p.title
=> "Modern CSS with Tailwind"
work(prod)> p.price = 29.00
=> 29.0
work(prod)> p.save
=> true

Once we have a console session open, we can poke and prod all the various
methods in our models. We can create, inspect, and delete records. In a way,
it’s like having a root console for your application.

Now that we’ve deployed to our local machine, we can move on to conquering
the world. By placing our application into a container, we’ve made it portable.
It can be deployed to any cloud provider. It can be deployed to your own
server. It can be deployed to a Raspberry Pi. It can be deployed to a Kubernetes
cluster. The possibilities are endless.

Iteration L2: Deployment to the Cloud
Deploying to production isn’t hard at all; it’s just a number of small steps.
And these steps will go quicker if you do them in the correct order and start
with a code base that you’ve deployed locally first. But first, let’s review what
resources are available:

• kamal-deploy.org5 contains a 32-minute video demonstrating the creation
and deployment of a simple application to a Hetzner server.

• Kamal docs6 contains some reference material that may be useful.

• Kamal Handbook: The Missing Manual7 is a short and practical book and,
at the time of this writing, the only book on the subject.

What follows is neither a video nor a manual, but rather a recipe. And like
most recipes, it starts with assembling your ingredients. Along the way, we
will share some general ideas of what prices you can expect to pay for each.
We’ll also list a number of popular choices. These lists are neither endorse-
ments nor meant to be exhaustive.

We’re going to start with a single machine, running Sqlite3. Later, in Horizontal
Scaling, on page 292, we’ll outline the steps you need to take to scale to multiple
machines, running PostgreSQL or another database.

5. https://kamal-deploy.org/
6. https://kamal-deploy.org/docs/
7. https://kamalmanual.com/handbook/

Chapter 17. Task L: Deployment and Production • 278

report erratum • discuss

https://kamal-deploy.org/
https://kamal-deploy.org/docs/
https://kamalmanual.com/handbook/
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Assemble Your Ingredients
While in theory you can assemble ingredients in any order, things might go
faster if you do them in the order shown. Think of this as a scavenger hunt,
where sometimes the item you pick up is needed for your next clue.

SSH Key

SSH keys are used to authenticate you to a server. You can think of them as
a password that you don’t have to remember.

You probably already have one, but if not, create one. GitHub has some good
docs on the subject.8 It generally is a good idea to have a separate ssh key
for each activity anyway.

$ ssh-keygen -t ed25519 -C "your_email@example.com"

SSH keys are free.

Machine

A machine is a computer that you can access over the Internet. You can think
of it as a computer that you rent by the month (and in some cases, by the
hour). You can also time-share a machine with others by requesting a Virtual
Private Server (VPS).

Most Kamal demos start with Hetzner.9 Digital Ocean posts a list of alterna-
tives.10

For demo or hobby purposes head to Hetzner Cloud. You can get a VPS
starting at less than $10 a month. Such a machine could handle up to around
20 requests per second.11

For production purposes head to Hetzner Robot and consider a dedicated
machine. Here you’ll need to work out your application profile before deciding
on a machine configuration. It’s probably a good idea to start fairly small,
and then load test once you’re deployed. You can then add any upgrades you
need.

Sign up, provide your public ssh key, and select the latest LTS version of
Ubuntu (24.04). In all, this process will take about 15 minutes, and you’ll
end up with an IPv4 address.

8. https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-
it-to-the-ssh-agent

9. https://www.hetzner.com/
10. https://www.digitalocean.com/resources/articles/hetzner-alternatives
11. https://fractaledmind.github.io/2023/12/23/rubyconftw/

report erratum • discuss

Iteration L2: Deployment to the Cloud • 279

https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
https://docs.github.com/en/authentication/connecting-to-github-with-ssh/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
https://www.hetzner.com/
https://www.digitalocean.com/resources/articles/hetzner-alternatives
https://fractaledmind.github.io/2023/12/23/rubyconftw/
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Before proceeding, click the Firewall tab, select the WebServer template, and
click Apply and Save.

You’ll also want Object Storage. You’ll find this is priced both on the size you
store and the bandwidth you use each month. While you can add this later,
it’s needed to store your book cover images. Be aware that although there are
free quotas, you’re charged for every hour you have at least one Bucket, even
if it’s empty.

Domain Name

A domain name is a human-readable name that points to an ip address. This
is what your users will put in the URL bar of their browser.

CloudFlare12 is a domain registrar that prices domains at or close to cost and
has other benefits. Shopify posts a list of alternatives.13

After any initial teaser rates, plan to spend $10 to $25 a year for a domain
name. (Vanity names can be considerably more.)

Once you’ve obtained your domain name, go into the DNS settings and create
an A record with your ip address as the content. If you’re using CloudFlare,
disable the "orange cloud" by clicking the Proxied setting for now—if needed,
you can add that back later.

Container Registry

Kamal works by building a Docker image and pushing it to a registry, and
then pulling that image onto your deployment machines.

DockerHub14 is effectively the default container registry and can range from
free to $24/user/month. quay.io,15 gcr.io,16 public.ecr.aws,17 ghcr.io,18 and
Gitlab19 are alternatives. You can also use CNCF’s Distribution Registry20 to
self-host a registry.

Realistically, you can get a container registry for a small number of personal
projects for free.

12. https://www.cloudflare.com/products/registrar/
13. https://www.shopify.com/blog/best-domain-registrars#
14. https://hub.docker.com/
15. https://quay.io/
16. https://cloud.google.com/artifact-registry/docs
17. https://gallery.ecr.aws/
18. https://docs.github.com/en/packages/working-with-a-github-packages-registry/working-with-the-container-registry
19. https://docs.gitlab.com/ee/user/packages/container_registry/
20. https://distribution.github.io/distribution/

Chapter 17. Task L: Deployment and Production • 280

report erratum • discuss

https://www.cloudflare.com/products/registrar/
https://www.shopify.com/blog/best-domain-registrars#
https://hub.docker.com/
https://quay.io/
https://cloud.google.com/artifact-registry/docs
https://gallery.ecr.aws/
https://docs.github.com/en/packages/working-with-a-github-packages-registry/working-with-the-container-registry
https://docs.gitlab.com/ee/user/packages/container_registry/
https://distribution.github.io/distribution/
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

When done, you’ll end up with a rather opaque registry password that you’ll
need later.

Password Manager (Optional but Highly Recommended)

A password manager is a tool that stores your passwords in an encrypted
form. If you’re working as a team, a password manager can be used to share
secrets.

Password managers supported by Kamal are 1Password21 LastPass,22 Bitwar-
den,23 AWS Secrets Manager,24 and Doppler.25 Plan for $2 to $10/user/month,
unless you decide to self-host, which is an option with Bitwarden.26

It’s not recommended, but you can directly put your passwords into
.kamal/secrets, just be sure to add this file to your .gitignore and .dockerignore files.

Builder (Optional)

Kamal can use Docker to build your images locally, but there are at least two
good reasons why you wouldn’t want to do so:

• If you’re developing on ARM64 (like Apple Silicon), but you want to deploy
on AMD64 (x86 64-bit), the build can be quite slow27 and buggy.28

• If you have an asymmetric network connection (where downloads are
faster than uploads), you may benefit from a configuration where you
only upload your changed source to another server, where that server is
responsible for uploading the considerably larger resulting Docker image.

A builder is just a host you have ssh access to that’s running Docker—
preferably running the target instruction set architecture. You already have
exactly that: you commissioned a server and Kamal will automatically install
Docker on it for you.

There are more choices in Iteration L2: Deployment to the Cloud, on page 278,
but you don’t need to worry about them at the moment. Now that you finished
your preparations, the next part will move quickly.

21. https://1password.com/
22. https://www.lastpass.com/
23. https://bitwarden.com/
24. https://aws.amazon.com/secrets-manager/
25. https://www.doppler.com/
26. https://bitwarden.com/help/self-host-an-organization/
27. https://kamal-deploy.org/docs/configuration/builder-examples/#using-remote-builder-for-single-arch
28. https://github.com/docker/for-mac/issues/5342#issuecomment-779133157

report erratum • discuss

Iteration L2: Deployment to the Cloud • 281

https://1password.com/
https://www.lastpass.com/
https://bitwarden.com/
https://aws.amazon.com/secrets-manager/
https://www.doppler.com/
https://bitwarden.com/help/self-host-an-organization/
https://kamal-deploy.org/docs/configuration/builder-examples/#using-remote-builder-for-single-arch
https://github.com/docker/for-mac/issues/5342#issuecomment-779133157
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Recipe
You’ve gathered your ingredients, and now it’s time to start cooking. Much
of the data you’ve gathered gets deposited into two files.

First up is config/deploy.yml.

rails80/depot_td/config/deploy.yml
Name of your application. Used to uniquely configure containers.
service: depot➤

Name of the container image.
image: samruby/depot➤

Deploy to these servers.
servers:

web:
- 192.168.0.1➤

job:
hosts:
- 192.168.0.1
cmd: bin/jobs

Enable SSL auto certification via Let's Encrypt and allow for multiple apps
on a single web server. Remove this section when using multiple web
servers and ensure you terminate SSL at your load balancer.
#
Note: If using Cloudflare, set encryption mode in SSL/TLS setting to "Full"
to enable CF-to-app encryption.
proxy:

ssl: true
host: depot.example.com➤

Credentials for your image host.
registry:

Specify the registry server, if you're not using Docker Hub
server: registry.digitalocean.com / ghcr.io / ...
username: samruby➤

Always use an access token rather than real password when possible.
password:

- KAMAL_REGISTRY_PASSWORD

Inject ENV variables into containers (secrets come from .kamal/secrets).
env:

secret:
- RAILS_MASTER_KEY
- ACCESS_KEY_ID➤

- SECRET_ACCESS_KEY➤

- ENDPOINT_URL_S3➤

- REGION➤

- BUCKET_NAME➤

clear:
Run the Solid Queue Supervisor inside the web server's Puma process to

Chapter 17. Task L: Deployment and Production • 282

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_td%2Fconfig%2Fdeploy.yml
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

do jobs. When you start using multiple servers, you should split out
job processing to a dedicated machine.
SOLID_QUEUE_IN_PUMA: true

Set number of processes dedicated to Solid Queue (default: 1)
JOB_CONCURRENCY: 3

Set number of cores available to the application on each server
(default: 1).
WEB_CONCURRENCY: 2

Match this to any external database server to configure Active Record
correctly. Use work-db for a db accessory server on same machine via
local kamal docker network.

Log everything from Rails
RAILS_LOG_LEVEL: debug

Aliases are triggered with "bin/kamal <alias>".
You can overwrite arguments on invocation:
"bin/kamal logs -r job" will tail logs from the first server
in the job section.
aliases:

console: app exec --interactive --reuse "bin/rails console"
shell: app exec --interactive --reuse "bash"
logs: app logs -f
dbc: app exec --interactive --reuse "bin/rails dbconsole"

Use a persistent storage volume for sqlite database files
and local Active Storage files.
Recommended to change this to a mounted volume path that is backed➤

up off server.➤

volumes:
- "work_storage:/rails/storage"

Bridge fingerprinted assets, like JS and CSS, between versions to avoid
hitting 404 on in-flight requests. Combines all files from new and old
version inside the asset_path.
asset_path: /rails/public/assets

Configure the image builder.
builder:

arch: amd64
context: .➤

remote: ssh://root@192.168.0.1➤

local: false➤

Build image via remote server (useful for faster amd64 builds on
arm64 computers)
remote: ssh://docker@docker-builder-server
#
Pass arguments and secrets to the Docker build process
args:
RUBY_VERSION: ruby-3.4.3

report erratum • discuss

Iteration L2: Deployment to the Cloud • 283

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

secrets:
- GITHUB_TOKEN
- RAILS_MASTER_KEY

Configure logging➤

logging:➤

driver: local➤

options:➤

max-size: 20m➤

max-file: 5➤

Use a different ssh user than root
ssh:
user: app

Use accessory services (secrets come from .kamal/secrets).
accessories:
db:
image: mysql:8.0
host: 192.168.0.2
Change to 3306 to expose port to the world instead of just
local network.
port: "127.0.0.1:3306:3306"
env:
clear:
MYSQL_ROOT_HOST: '%'
secret:
- MYSQL_ROOT_PASSWORD
files:
- config/mysql/production.cnf:/etc/mysql/my.cnf
- db/production.sql:/docker-entrypoint-initdb.d/setup.sql
directories:
- data:/var/lib/mysql
redis:
image: redis:7.0
host: 192.168.0.2
port: 6379
directories:
- data:/data

Kamal provides full documentation on this file.29 Here are the fields you’ll be
updating:

• service and image are completely up to you. service is the container name
prefix, and image is where the containers will be pushed.

• You put the ip address of your host in this file twice, once as the deploy-
ment target and once as your builder.

29. https://kamal-deploy.org/docs/configuration/overview/

Chapter 17. Task L: Deployment and Production • 284

report erratum • discuss

https://kamal-deploy.org/docs/configuration/overview/
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

• You put your domain name in the proxy section; https certificates will be
provided for you using Let’s Encrypt.30

• In the registry section you put your server (defaults to Docker Hub), username,
and password. This can either be inline or a reference to a secret.

• In the secret section you list your S3 secrets. Alternatively, they can be
placed in your credentials file.31 Some of these values (for example, END-
POINT_ID, REGION, and BUCKET_NAME) could be passed in the clear instead.

• Volume is used to retain your data across deployments: it maps a direc-
tory in your container to a directory on your host machine. We’re not
changing it, but note the recommendation in the comment above it
("Recommended to change this to a mounted volume path that is backed
up off server").

• The default for building is to use your last git commit. Initially, it’s
sometimes easier to deploy the files as they exist on your development
machine until things are working. That’s what "context: ." does. This does
mean that at times you’ll deploy changes and not commit them. For this
reason, it’s recommended that you delete this line once you’re comfortable
with your setup.

• The remainder of the builder section specifies to do remote builds on your
deployment machine. If you have a separate builder, you can specify that
here.

• For logging, you can keep the default (json-file) or go with Docker’s recom-
mendation (local).32 Either way, you likely will want to adjust max-size and/or
max-file.

While not related to data you’ve captured, aliases33 are useful for commands
that you’re likely to repeat.

Secrets
In your config/deploy.yml you listed your secrets but not their values. Those values
are extracted using a script that you can find in .kamal/secrets.

rails80/depot_td/.kamal/secrets
Secrets defined here are available for reference under registry/password,
env/secret, builder/secrets, and accessories/*/env/secret in

30. https://letsencrypt.org/
31. https://guides.rubyonrails.org/security.html#custom-credentials/url
32. https://docs.docker.com/engine/logging/configure/
33. https://kamal-deploy.org/docs/configuration/aliases/

report erratum • discuss

Iteration L2: Deployment to the Cloud • 285

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_td%2F.kamal%2Fsecrets
https://letsencrypt.org/
https://guides.rubyonrails.org/security.html#custom-credentials/url
https://docs.docker.com/engine/logging/configure/
https://kamal-deploy.org/docs/configuration/aliases/
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

config/deploy.yml. All secrets should be pulled from either password
manager, ENV, or a file. DO NOT ENTER RAW CREDENTIALS HERE! This file
needs to be safe for git.

Example of extracting secrets from 1password (or another compatible
pw manager)
SECRETS=$(kamal secrets fetch --adapter 1password --account your-account \➤

--from Vault/Item KAMAL_REGISTRY_PASSWORD RAILS_MASTER_KEY \➤

ACCESS_KEY_ID SECRET_ACCESS_KEY ENDPOINT_URL REGION BUCKET_NAME)➤
➤

KAMAL_REGISTRY_PASSWORD=$(kamal secrets extract KAMAL_REGISTRY_PASSWORD➤

${SECRETS})➤

RAILS_MASTER_KEY=$(kamal secrets extract RAILS_MASTER_KEY ${SECRETS})➤

ACCESS_KEY_ID=$(kamal secrets extract ACCESS_KEY_ID ${SECRETS})➤

SECRET_ACCESS_KEY=$(kamal secrets extract SECRET_ACCESS_KEY ${SECRETS})➤

ENDPOINT_URL=$(kamal secrets extract ENDPOINT_URL ${SECRETS})➤

REGION=$(kamal secrets extract REGION ${SECRETS})➤

BUCKET_NAME=$(kamal secrets extract BUCKET_NAME ${SECRETS})➤

Use a GITHUB_TOKEN if private repositories are needed for the image
GITHUB_TOKEN=$(gh config get -h github.com oauth_token)

Grab the registry password from ENV
KAMAL_REGISTRY_PASSWORD=$KAMAL_REGISTRY_PASSWORD➤

Improve security by using a password manager.
Never check config/master.key into git!
RAILS_MASTER_KEY=$(cat config/master.key)➤

This file has examples of three ways to get your secrets: from a password
manager, from the environment, or from a file. A password manager is the
most secure and the one we recommend.

Uncomment out this section, select the appropriate adapter,34 and add the
S3 secrets, unless you added them to config/credentials.yml.enc.

Now place all of the secrets you gathered while assembling your ingredients
into your password manager. You can find the MASTER_KEY in your Rails app
at config/master.key.

While it’s possible to list your secrets here, it’s strongly discouraged. If you
chose to do it anyway, be sure to add this file to your .gitignore and .dockerignore
files.

Configure Active Storage
Active Storage is the Rails way to store files. The Depot application uses it to
store book cover images. Configure it using the environment variables you
extracted from your password manager:

34. https://kamal-deploy.org/docs/commands/secrets/

Chapter 17. Task L: Deployment and Production • 286

report erratum • discuss

https://kamal-deploy.org/docs/commands/secrets/
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

rails80/depot_td/config/storage.yml
test:

service: Disk
root: <%= Rails.root.join("tmp/storage") %>

local:
service: Disk
root: <%= Rails.root.join("storage") %>

hetzner:➤

service: S3➤

access_key_id: <%= ENV["ACCESS_KEY_ID"] %>➤

secret_access_key: <%= ENV["SECRET_ACCESS_KEY"] %>➤

endpoint: <%= ENV["ENDPOINT_URL"] %>➤

region: <%= ENV["REGION"] %>➤

bucket: <%= ENV["BUCKET_NAME"] %>➤

Use bin/rails credentials:edit to set the AWS secrets
(as aws:access_key_id|secret_access_key)
amazon:
service: S3
access_key_id: <%= Rails.application.credentials

.dig(:aws, :access_key_id) %>
secret_access_key: <%= Rails.application.credentials

.dig(:aws, :secret_access_key) %>
region: us-east-1
bucket: your_own_bucket-<%= Rails.env %>

Remember not to checkin your GCS keyfile to a repository
google:
service: GCS
project: your_project
credentials: <%= Rails.root.join("path/to/gcs.keyfile") %>
bucket: your_own_bucket-<%= Rails.env %>

Use bin/rails credentials:edit to set the Azure Storage secret
(as azure_storage:storage_access_key)
microsoft:
service: AzureStorage
storage_account_name: your_account_name
storage_access_key: <%= Rails.application.credentials

.dig(:azure_storage, :storage_access_key) %>
container: your_container_name-<%= Rails.env %>

mirror:
service: Mirror
primary: local
mirrors: [amazon, google, microsoft]

Note that if you used the Rails credentials file, you can use the Rails.applica-
tion.credentials hash to extract these values. The amazon example in this file uses
this approach.

report erratum • discuss

Iteration L2: Deployment to the Cloud • 287

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_td%2Fconfig%2Fstorage.yml
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Finally, update your config/environments/production.rb to use the S3 service:

rails80/depot_td/config/environments/production.rb
Store uploaded files in S3 object storage➤

(see config/storage.yml for options)➤

config.active_storage.service = :hetzner➤

First Deploy
Congratulations! You’ve gathered all the ingredients necessary for your first
deploy. You’ve configured Kamal and also Active Storage.

With all this in place, your first deploy is as simple as this:

$ bin/kamal setup

Messages will scroll by as commands are executed and can be useful to help
you spot any problems.

This command does the following:

• Installs Docker on your host
• Builds your image
• Pushes your image to your registry
• Pulls your image onto your host
• Starts your container, passing in your secrets
• Runs your migrations and seed your database
• Waits for your health check to pass
• Configures your proxy to forward requests to your container
• Sets up your SSL certificate

Subsequent deploys can be done via this:

$ bin/kamal deploy

Once we put an application into production, we need to take care of a few
chores to keep the application running smoothly. These chores aren’t auto-
matically taken care of for us, but luckily we can automate them.

Iteration L3: Moving to Production
Running in production is so much more than just deploying your application.
It’s about keeping your application running smoothly and keeping your data
safe. If your server goes down, a new one can be started in minutes. If your
data is lost, it’s lost forever.

Chapter 17. Task L: Deployment and Production • 288

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_td%2Fconfig%2Fenvironments%2Fproduction.rb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Backing Up Your Database
If you look at your config/database.yml, you’ll see that it contains definitions for
four databases: primary, cache, queue, and cable. These are stored in a
storage directory, which is mapped to a directory on your host machine. This
is where your data is stored. It’s quite possible to back up all four, but for
now we’re going to focus on the primary database. The primary database is
the one that contains your users, products, and orders. It’s the one that you
can’t afford to lose. Because you set up a volume, your data is safe as long
as your host machine is running. But what if your host machine goes down?

Docker stores its data in a directory called /var/lib/docker. Inside that directory
is a directory called volumes. You created a volume called work_storage. Inside
the volumes directory is a file named production.sqlite3. This is your database.

Litestream35 is a tool that can be used to back up your database. It’s free and
open source. It’s easy to set up and can be used to back up to the S3 Object
Storage you’ve already set up. It can also be used to restore your database
to a point in time.

We could run it in your Kamal container or as a Kamal accessory, but instead,
we’re going to run it on your host machine. This ensures it’s always running
and we don’t have to worry about multiple instances of it running as you
deploy new versions of your application.

Following Litestream’s installation instructions,36 we first need to install
Litestream. SSH into your host, and run the following commands:

apt-get update
apt-get install -y wget
export LITESTREAM=https://github.com/benbjohnson/litestream/releases/download
wget $LITESTREAM/v0.3.13/litestream-v0.3.13-linux-amd64.deb
dpkg -i litestream-v0.3.13-linux-amd64.deb
rm litestream-v0.3.13-linux-amd64.deb

Now find the ACCESS_KEY_ID, SECRET_ACCESS_KEY, ENDPOINT_URL, REGION, and BUCKET_NAME
in your password manager. Then run nano /etc/litestream.yml. Replace the file with
the following, substituting in the values you found in your password manager:

This is the configuration file for litestream.
#
For more details, see: https://litestream.io/reference/config/
#
dbs:

35. https://litestream.io/
36. https://litestream.io/install/debian/

report erratum • discuss

Iteration L3: Moving to Production • 289

https://litestream.io/
https://litestream.io/install/debian/
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

- path: /var/lib/docker/volumes/work_storage/production.sqlite3
replicas:
- type: s3

access-key-id: ACCESS_KEY_ID
secret-access-key: SECRET_ACCESS_KEY
endpoint: ENDPOINT_URL
region: REGION
bucket: BUCKET_NAME
path: storage/production.sqlite3

Exit nano by pressing Ctrl-X, and then press Y to save the file.

Now start the Litestream service:

systemctl enable litestream
systemctl start litestream

Once configured, Litestream is pretty much set and forget. It will back up
your database after every write and can be used to restore your database to
a point in time. The Litestream reference37 is a good place to start if you want
to learn more.

Making Logs Searchable
When you deploy your application to production, you’ll want to be able to find
information contained in your logs. This is especially true if you have a lot of
users, as you’ll want to be able to quickly find and fix any issues that arise.

Kamal provides a command to watch your logs in real time: bin/kamal app logs -
-follow. This is useful if you’re actively watching at the time of a failure.

Docker captures logs and places them in /var/lib/docker/containers/*/local-logs/*.log.
You can use a tool like grep to search these logs, but it’s not very user-
friendly. You also have to know which container to look in.

Kamal (by default) keeps the last five containers, so if you deploy infrequently
your logs may have gaps, and if you deploy too frequently, you may not have
log entries that span enough time.

A more robust approach is to send your logs to a service like DataDog,38

Elastic Search,39 or Loki.40 These services can be used to search your logs,
and can be used to create alerts when certain conditions are met.

37. https://litestream.io/reference/
38. https://www.datadoghq.com/
39. https://www.elastic.co/
40. https://grafana.com/oss/loki/

Chapter 17. Task L: Deployment and Production • 290

report erratum • discuss

https://litestream.io/reference/
https://www.datadoghq.com/
https://www.elastic.co/
https://grafana.com/oss/loki/
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Most come with some sort of free tier and can be set up in minutes. Prices
are generally based on the amount of data you send them. Some can be self-
hosted, but if you go this route, you’ll want to set up a separate machine to
run them on.

Vector41 is a tool that can be used to send your logs to a number of services
and filter your logs before they are sent.

To install Vector, SSH into your host, and run the following command:

apt-get install -y vector

Once installed, you’ll need to configure Vector. Vector is configured using a
file named /etc/vector.yaml. Instructions for a number of services can be found
in the Vector documentation.42

Run nano /etc/vector.yaml, and replace the file with the following:

sources:
docker:

type: "docker_logs"

sinks:
nats:

inputs:
- "docker"

type: "console"
encoding:
codec: "text"

Fill in the definition of the sink based on the service you selected. Exit nano
by pressing Ctrl-X, and then press Y to save the file. You can run Vector by
running the following command:

vector --config vector.yaml

Visit your application’s website and perform some actions. You should see
the logs in your console. Next, edit /etc/vetor.yaml once again and replace the
definition of the sink based on the service you selected. Finally, give Vector
permission to access Docker’s information, and start the Vector service:

usermod -aG docker vector
systemctl enable vector
systemctl start vector

41. https://vector.dev/
42. https://vector.dev/docs/reference/configuration/sinks/

report erratum • discuss

Iteration L3: Moving to Production • 291

https://vector.dev/
https://vector.dev/docs/reference/configuration/sinks/
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Note that the service you choose can be one that you write yourself. Vector
can be used to send logs to Nats,43 which you can subscribe to in a service
that you write yourself. Vector can even be used to send logs to multiple ser-
vices at once.

Additional Monitoring Tools
AppSignal.44 Honeybadger,45New Relic,46Rollbar,47 Sentry,48 and Scout49 are
tools that can be used to monitor your application’s performance and create
alerts when certain conditions are met.

Mobi/dev has a list of security considerations and tools.50

The host you select will often offer tools to prevent DDoS attack and monitor
your server’s performance. You’ll want to enable these.

Horizontal Scaling
As your needs increase, you can move to bigger and bigger servers.51 At some
point you may need more, or simply want resiliency, or perhaps want to serve
requests close to users.

This generally means that you’ll need to convert from Sqlite3 to a database
like PostgreSQL. For this, you’ll want a managed PostgreSQL solution. Trust
me on this.

• In your Dockerfile replace sqlite3 with libpq-dev postgresql-client.
• The active record guides52 recommend updating config/database.yml, but it

generally is easier to set a DATABASE_URL secret.53

There is a tool named pgloader54 that you can use to copy your Sqlite3
database to PostgreSQL.

43. https://nats.io/
44. https://appsignal.com/
45. https://www.honeybadger.io/
46. https://newrelic.com/
47. https://rollbar.com/
48. https://sentry.io/
49. https://scoutapm.com/
50. https://mobidev.biz/blog/security-considerations-for-ruby-on-rails-applications
51. https://x.com/dhh/status/1799107964412056012
52. https://guides.rubyonrails.org/v5.0/configuring.html#configuring-a-postgresql-database
53. https://guides.rubyonrails.org/v5.0/configuring.html#configuring-a-database
54. https://github.com/dimitri/pgloader?tab=readme-ov-file#pgloader

Chapter 17. Task L: Deployment and Production • 292

report erratum • discuss

https://nats.io/
https://appsignal.com/
https://www.honeybadger.io/
https://newrelic.com/
https://rollbar.com/
https://sentry.io/
https://scoutapm.com/
https://mobidev.biz/blog/security-considerations-for-ruby-on-rails-applications
https://x.com/dhh/status/1799107964412056012
https://guides.rubyonrails.org/v5.0/configuring.html#configuring-a-postgresql-database
https://guides.rubyonrails.org/v5.0/configuring.html#configuring-a-database
https://github.com/dimitri/pgloader?tab=readme-ov-file#pgloader
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Once you define a second application machine, you’ll need to add a load bal-
ancer to route requests between machines. This generally is a paid feature.55

You’ll also need an SSL certificate56 for your load balancer, as Kamal’s ssl57

is only for one server.

As PostgreSQL requests tend to have a higher latency per request than Sqlite3,
you likely will need to tune your application. Look for places where you execute
a query and iterate over the results, and inside the iteration you traverse over
relationships—this will generally require multiple queries. You can avoid this
using includes,58 preloads,59 or eager-load.60

See High Performance PostgreSQL for Rails [Atk24] for more information on
how to scale your application with PostgreSQL.

Although our job is just starting when we first deploy our application to pro-
duction, we’ve completed our tour of the Depot application. After we recap
what we did in this chapter, let’s look back at what we’ve accomplished in
remarkably few lines of code.

What We Just Did
We covered a lot of ground in this chapter. We took our code that ran locally
on our development machine for a single user and placed it on a different
machine where it could be accessed worldwide. We also took steps to ensure
that our data would be safe.

To accomplish this, we used a number of products:

• We used the Dockerfile provided by Rails as a starting point and deployed
our application in a container.

• We configured Kamal to deploy our application to a server.

• We used LiteStream and Vector to back up our data and make our logs
searchable.

Playtime
Here’s some stuff to try on your own:

55. https://www.hetzner.com/cloud/load-balancer/
56. https://www.cloudflare.com/learning/ssl/what-is-an-ssl-certificate/
57. https://kamal-deploy.org/docs/configuration/proxy/#ssl
58. https://apidock.com/rails/ActiveRecord/QueryMethods/includes
59. https://apidock.com/rails/v5.2.3/ActiveRecord/QueryMethods/preload
60. https://apidock.com/rails/v5.2.3/ActiveRecord/QueryMethods/eager_load

report erratum • discuss

Iteration L3: Moving to Production • 293

https://www.hetzner.com/cloud/load-balancer/
https://www.cloudflare.com/learning/ssl/what-is-an-ssl-certificate/
https://kamal-deploy.org/docs/configuration/proxy/#ssl
https://apidock.com/rails/ActiveRecord/QueryMethods/includes
https://apidock.com/rails/v5.2.3/ActiveRecord/QueryMethods/preload
https://apidock.com/rails/v5.2.3/ActiveRecord/QueryMethods/eager_load
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

• While our data is backed up in S3, it’s not truly backed up off-site. On a
separate machine (which can be your laptop), install rclone61 and use
rclone sync to extract a copy of your data. Set up a cron job to run this
command daily.

• While Rails selected some good defaults for rubocop, ruby gems doesn’t
follow them. Try running rubocop -A to correct this, or tell rubocop to ignore
this error in the .rubocop.yml:

rails80/depot_td/.rubocop.yml
Avoid flagging bundler added statements➤

Style/HashSyntax:➤

Exclude:➤

- Gemfile➤

61. https://rclone.org/

Chapter 17. Task L: Deployment and Production • 294

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_td%2F.rubocop.yml
https://rclone.org/
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

CHAPTER 18

In this chapter, you'll see:
• Reviewing Rails concepts: model, view, controller,

configuration, testing, and deployment
• Documenting what we’ve done

Depot Retrospective
Congratulations! By making it this far, you’ve obtained a solid understanding
of the basics of every Rails application. There’s much more to learn, which
we’ll pick back up again in Part III. For now, relax, and let’s recap what you’ve
seen in Part II.

Rails Concepts
In Chapter 3, The Architecture of Rails Applications, on page 33, we introduced
models, views, and controllers. Now let’s see how we applied each of these
concepts in the Depot application. Then let’s explore how we used configura-
tion, testing, and deployment.

Model
Models are where all of the persistent data retained by your application is
managed. In developing the Depot application, we created five models: Cart,
LineItem, Order, Product, SupportRequest, and User.

By default, all models have id, created_at, and updated_at attributes. To our models,
we added attributes of type string (examples: title, name), integer (quantity), text (description,
address), and decimal (price), as well as foreign keys (product_id, cart_id). We even created
a virtual attribute that’s never stored in the database—namely, a password.

We created has_many and belongs_to relationships that we can use to navigate
among our model objects, such as from Carts to LineItems to Products.

We employed migrations to update the databases, not only to introduce new
schema information but also to modify existing data. We demonstrated that
they can be applied in a fully reversible manner.

The models we created weren’t merely passive receptacles for our data. For starters,
they actively validate the data, preventing errors from propagating. We created

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

validations for presence, inclusion, numericality, range, uniqueness, format, and
confirmation (and length, too, if you completed the exercises). We created custom
validations for ensuring that deleted products aren’t referenced by any line item.
We used an Active Record hook to ensure that an administrator always remains
and used a transaction to roll back incomplete updates on failure.

We also created logic to add a product to a cart, add all line items from a cart
to an order, encrypt and authenticate a password, and compute various totals.

Finally, we created a default sort order for products for display purposes.

View
Views control the way our application presents itself to the external world.
By default, Rails scaffolding provides edit, index, new, and show, as well as a
partial named form that’s shared between edit and new. We modified a number
of these and created new partials for carts and line items.

In addition to the model-backed resource views, we created entirely new views
for admin, sessions, and the store itself.

We updated an overall layout to establish a common look and feel for the
entire site. We updated a style sheet. We made use of partials and added
JavaScript to take advantage of Hotwire and WebSocket technologies to make
our website more interactive.

We localized the customer views for display in both English and Spanish.

Not all of the views were designed for browsers: we created views for email
too, and those views were able to share partials for displaying line items.

Controller
By the time we were done, we created nine controllers: one each for the six
models and the three additional ones to support the views for admin, sessions,
and the store itself.

These controllers interacted with the models in a number of ways, from finding
and fetching data and putting it into instance variables to updating models
and saving data entered via forms. When done, we either redirected to another
action or rendered a view.

We limited the set of permitted parameters on the line item controller.

We created callback actions that were run before selected actions to find the
cart, set the language, and authorize requests. We placed logic common to a
number of controllers into a concern—namely, the CurrentCart module.

Chapter 18. Depot Retrospective • 296

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

We managed sessions, keeping track of the logged-in user (for administrators)
and carts (for customers). We kept track of the current locale used for inter-
nationalization of our output. We captured errors, logged them, and informed
the user via notices.

We employed fragment caching on the storefront.

We also sent confirmation emails on receipt of an order.

Configuration
Conventions keep to a minimum the amount of configuration required for a
Rails application, but we did do a bit of customization.

We modified our database configuration to use PostgreSQL in production.

We defined routes for our resources, admin and session controllers, and the
root of our website—namely, our storefront.

We created an initializer for i18n purposes and updated the locales information
for both English (en) and Spanish (es).

We created seed data for our database.

We created a Docker configuration for local deployment, including the defini-
tion of a secret.

We updated the Kamal configuration to use our builder, docker repository,
DNS name, IP address, object storage secrets, and to configure logging; we
placed our secrets in a password manager and updated .kamal/secrets to refer-
ence them. We configured Active Storage.

Testing
We maintained and enhanced tests throughout.

We employed unit tests to validation methods. We also tested increasing the
quantity on a given line item.

Rails provided basic tests for all our scaffolded controllers, which we main-
tained as we made changes. We added tests along the way for things such as
Ajax and ensuring that a cart has items before we create an order.

We used fixtures to provide test data to fuel our tests.

We created an integration test to test an end-to-end scenario involving a user
adding product to a cart, entering an order, and receiving a confirmation email.

report erratum • discuss

Rails Concepts • 297

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Deployment
We assembled our ingredients:

• Obtained an SSH key
• Acquired a machine
• Purchased a Domain Name
• Selected a Container Registry
• Used a Password Manager
• Set up a Builder

We deployed using Kamal.

We installed litestream and vector to provide backups and monitoring.

Documenting What We’ve Done
To complete our retrospective, let’s see how much code we’ve written. There’s
a Rails command for that too:

% bin/rails stats
+----------------------+--------+--------+---------+---------+-----+-------+
| Name | Lines | LOC | Classes | Methods | M/C | LOC/M |
+----------------------+--------+--------+---------+---------+-----+-------+
Controllers	670	462	11	71	6	4
Helpers	16	16	0	0	0	0
Jobs	18	8	2	1	0	6
Models	191	126	10	8	0	13
Mailers	53	28	4	4	1	5
Mailboxes	22	16	2	1	0	14
Channels	31	25	3	4	1	4
Views	1158	908	0	1	0	906
Stylesheets	470	417	0	0	0	0
JavaScript	82	51	0	0	0	0
Libraries	34	33	1	1	1	31
Controller tests	389	269	7	42	6	4
Helper tests	0	0	0	0	0	0
Job tests	7	3	1	0	0	0
Model tests	145	102	6	9	1	9
Mailer tests	64	49	5	7	1	5
Mailbox tests	58	32	1	2	2	14
Channel tests	8	3	1	0	0	0
Integration tests	0	0	0	0	0	0
System tests	137	99	2	6	3	14
Model specs	58	36	0	0	0	0
+----------------------+--------+--------+---------+---------+-----+-------+						
Total	3611	2683	56	157	2	15
+----------------------+--------+--------+---------+---------+-----+-------+

Code LOC: 2090 Test LOC: 593 Code to Test Ratio: 1:0.3

Chapter 18. Depot Retrospective • 298

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Think about it: you’ve accomplished a lot and with not all that much code.
And much of it was generated for you. This is the magic of Rails.

report erratum • discuss

Documenting What We’ve Done • 299

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Part III

Rails in Depth

CHAPTER 19

In this chapter, you'll see:
• The directory structure of a Rails application
• Naming conventions
• Adding Rake tasks
• Configuration

Finding Your Way Around Rails
Having survived our Depot project, you’re now prepared to dig deeper into
Rails. For the rest of the book, we’ll go through Rails topic by topic (which
pretty much means module by module). You’ve seen most of these modules
in action before. We’ll cover not only what each module does but also how to
extend or even replace the module and why you might want to do so.

The chapters in Part III cover all the major subsystems of Rails: Active Record,
Active Resource, Action Pack (including both Action Controller and Action
View), and Active Support. This is followed by an in-depth look at migrations.

Then we’re going to delve into the interior of Rails and show how the compo-
nents are put together, how they start up, and how they can be replaced.
Having shown how the parts of Rails can be put together, we’ll complete this
book with a survey of a number of popular replacement parts, many of which
can be used outside of Rails.

We need to set the scene first. This chapter covers all the high-level stuff you
need to know to understand the rest: directory structures, configuration, and
environments.

Where Things Go
Rails assumes a certain runtime directory layout and provides application
and scaffold generators, which will create this layout for you. For example, if
we generate my_app using the command rails newmy_app, the top-level directory
for our new application appears as shown in the figure on page 304.

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Joe asks:

So, Where’s Rails?
One of the interesting aspects of Rails is how componentized it is. From a developer’s
perspective, you spend all your time dealing with high-level modules such as Active
Record and Action View. There’s a component called Rails, but it sits below the other
components, silently orchestrating what they do and making them all work together
seamlessly. Without the Rails component, not much would happen. But at the same
time, only a small part of this underlying infrastructure is relevant to developers in their
day-to-day work. We’ll cover the parts that are relevant in the rest of this chapter.

Let’s start with the text files in the top of the application directory:

• config.ru configures the Rack Webserver Interface, either to create Rails
Metal applications or to use Rack Middlewares in your Rails application.
These are discussed further in the Rails Guides.1

1. http://guides.rubyonrails.org/rails_on_rack.html

Chapter 19. Finding Your Way Around Rails • 304

report erratum • discuss

http://guides.rubyonrails.org/rails_on_rack.html
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

• Gemfile specifies the dependencies of your Rails application. You’ve already
seen this in use when the bcrypt-ruby gem was added to the Depot applica-
tion. Application dependencies also include the database, web server, and
even scripts used for deployment.

Technically, this file isn’t used by Rails but rather by your application. You
can find calls to the Bundler2 in the config/application.rb and config/boot.rb files.

• Gemfile.lock records the specific versions for each of your Rails application’s
dependencies. This file is maintained by Bundler and should be checked
into your repository.

• Rakefile defines tasks to run tests, create documentation, extract the current
structure of your schema, and more. Type rake -T at a prompt for the full
list. Type rake -D task to see a more complete description of a specific task.

• README contains general information about the Rails framework.

Let’s look at what goes into each directory (although not necessarily in order).

A Place for Our Application
Most of our work takes place in the app directory. The main code for the
application lives below the app directory, as shown in the figure on page 306.
We’ll talk more about the structure of the app directory as we look at the var-
ious Rails modules such as Active Record, Action Controller, and Action View
in more detail later in the book.

A Place for Our Tests
As we’ve seen in Iteration B2: Unit Testing of Models, on page 89, Iteration
C4: Functional Testing of Controllers, on page 108, and Iteration G3: Testing
Our JavaScript Functionality, on page 184, Rails has ample provisions for
testing your application, and the test directory is the home for all testing-
related activities, including fixtures that define data used by our tests.

A Place for Supporting Libraries
The lib directory holds application code that doesn’t fit neatly into a model,
view, or controller. For example, you may have written a library that creates
PDF receipts that your store’s customers can download. These receipts are
sent directly from the controller to the browser (using the send_data() method).
The code that creates these PDF receipts will sit naturally in the lib directory.

2. https://github.com/bundler/bundler

report erratum • discuss

Where Things Go • 305

https://github.com/bundler/bundler
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

The lib directory is also a good place to put code that’s shared among models,
views, or controllers. Maybe you need a library that validates a credit card
number’s checksum, that performs some financial calculation, or that works
out the date of Easter. Anything that isn’t directly a model, view, or controller
should be slotted into lib.

Don’t feel that you have to stick a bunch of files directly into the lib directory.
Feel free to create subdirectories in which you group related functionality
under lib. For example, on the Pragmatic Programmer site, the code that gen-
erates receipts, customs documentation for shipping, and other PDF-formatted
documentation is in the directory lib/pdf_stuff.

In previous versions of Rails, the files in the lib directory were automatically
included in the load path used to resolve require statements. This is now an

Chapter 19. Finding Your Way Around Rails • 306

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

option that you need to explicitly enable. To do so, place the following in
config/application.rb:

config.autoload_paths += %W(#{Rails.root}/lib)

Once you have files in the lib directory and the lib added to your autoload
paths, you can use them in the rest of your application. If the files contain
classes or modules and the files are named using the lowercase form of the
class or module name, then Rails will load the file automatically. For example,
we might have a PDF receipt writer in the file receipt.rb in the directory lib/pdf_stuff.
As long as our class is named PdfStuff::Receipt, Rails will be able to find and load
it automatically.

For those times where a library can’t meet these automatic loading conditions,
you can use Ruby’s require mechanism. If the file is in the lib directory, you
can require it directly by name. For example, if our Easter calculation library
is in the file lib/easter.rb, we can include it in any model, view, or controller
using this:

require "easter"

If the library is in a subdirectory of lib, remember to include that directory’s
name in the require statement. For example, to include a shipping calculation
for airmail, we might add the following line:

require "shipping/airmail"

A Place for Our Rake Tasks

You’ll also find an empty tasks directory under lib. This is where you can write
your own Rake tasks, allowing you to add automation to your project. This
isn’t a book about Rake, so we won’t elaborate, but here’s a simple example.

Rails provides a Rake task to tell you the latest migration that’s been per-
formed. But it may be helpful to see a list of all the migrations that have been
performed. We’ll write a Rake task that prints the versions listed in the
schema_migration table. These tasks are Ruby code, but they need to be placed
into files with the extension .rake. We’ll call ours db_schema_migrations.rake:

rails80/depot_u/lib/tasks/db_schema_migrations.rake
namespace :db do

desc "Prints the migrated versions"
task schema_migrations: :environment do

puts ActiveRecord::Base.connection.select_values(
"select version from schema_migrations order by version")

end
end

report erratum • discuss

Where Things Go • 307

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_u%2Flib%2Ftasks%2Fdb_schema_migrations.rake
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

We can run this from the command line just like any other Rake task:

depot> bin/rails db:schema_migrations
(in /Users/rubys/Work/...)
20250420000001
20250420000002
20250420000003
20250420000004
20250420000005
20250420000006
20250420000007

Consult the Rake documentation at https://github.com/ruby/rake#readme for more
information on writing Rake tasks.

A Place for Our Logs
As Rails runs, it produces a bunch of useful logging information. This is stored
(by default) in the log directory. Here you’ll find three main log files, called
development.log, test.log, and production.log. The logs contain more than just trace
lines; they also contain timing statistics, cache information, and expansions
of the database statements executed.

Which file is used depends on the environment in which your application is
running (and we’ll have more to say about environments when we talk about
the config directory in A Place for Configuration, on page 309).

A Place for Static Web Pages
The public directory is the external face of your application. The web server
takes this directory as the base of the application. In here you place static (in
other words, unchanging) files, generally related to the running of the server.

A Place for Script Wrappers
If you find it helpful to write scripts that are launched from the command
line and perform various maintenance tasks for your application, the bin
directory is the place to put wrappers that call those scripts.

This directory also holds the Rails script. This is the script that’s run when
you run the rails command from the command line. The first argument you
pass to that script determines the function Rails will perform:

console
Allows you to interact with your Rails application methods.

dbconsole
Allows you to directly interact with your database via the command line.

Chapter 19. Finding Your Way Around Rails • 308

report erratum • discuss

https://github.com/ruby/rake#readme
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

destroy
Removes autogenerated files created by generate.

generate
A code generator. Out of the box, it will create controllers, mailers, models,
scaffolds, and web services. Run generate with no arguments for usage
information on a particular generator; here’s an example:

bin/rails generate migration

new
Generates Rails application code.

runner
Executes a method in your application outside the context of the Web.
This is the noninteractive equivalent of rails console. You could use this to
invoke cache expiry methods from a cron job or handle incoming email.

server
Runs your Rails application in a self-contained web server, using the web
server listed in your Gemfile, or WEBrick if none is listed. We’ve been using
Puma in our Depot application during development.

A Place for Temporary Files
It probably isn’t a surprise that Rails keeps its temporary files tucked in the
tmp directory. You’ll find subdirectories for cache contents, sessions, and
sockets in here. Generally these files are cleaned up automatically by Rails,
but occasionally if things go wrong, you might need to look in here and delete
old files.

A Place for Third-Party Code
The vendor directory is where third-party code lives. You can install Rails and
all of its dependencies into the vendor directory.

If you want to go back to using the system-wide version of gems, you can
delete the vendor/cache directory.

A Place for Configuration
The config directory contains files that configure Rails. In the process of
developing Depot, we configured a few routes, configured the database, created
an initializer, modified some locales, and defined deployment instructions.
The rest of the configuration was done via Rails conventions.

report erratum • discuss

Where Things Go • 309

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Before running your application, Rails loads and executes config/environment.rb
and config/application.rb. The standard environment set up automatically by these
files includes the following directories (relative to your application’s base
directory) in your application’s load path:

• The app/controllers directory and its subdirectories
• The app/models directory
• The vendor directory and the lib contained in each plugin subdirectory
• The directories app, app/helpers, app/mailers, and app/*/concerns

Each of these directories is added to the load path only if it exists.

In addition, Rails will load a per-environment configuration file. This file lives
in the environments directory and is where you place configuration options that
vary depending on the environment.

This is done because Rails recognizes that your needs, as a developer, are
very different when writing code, testing code, and running that code in pro-
duction. When writing code, you want lots of logging, convenient reloading
of changed source files, in-your-face notification of errors, and so on. In
testing, you want a system that exists in isolation so you can have repeatable
results. In production, your system should be tuned for performance, and
users should be kept away from errors.

The switch that dictates the runtime environment is external to your applica-
tion. This means that no application code needs to be changed as you move
from development through testing to production. When starting a server with
the bin/rails server command, we use the -e option:

depot> bin/rails server -e development
depot> bin/rails server -e test
depot> bin/rails server -e production

If you have special requirements, such as if you favor having a staging environ-
ment, you can create your own environments. You’ll need to add a new section
to the database configuration file and a new file to the config/environments directory.

What you put into these configuration files is entirely up to you. You can find
a list of configuration parameters you can set in the Configuring Rails Appli-
cations guide.3

3. http://guides.rubyonrails.org/configuring.html

Chapter 19. Finding Your Way Around Rails • 310

report erratum • discuss

http://guides.rubyonrails.org/configuring.html
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Naming Conventions
Newcomers to Rails are sometimes puzzled by the way it automatically handles
the naming of things. They’re surprised that they call a model class Person and
Rails somehow knows to go looking for a database table called people. In this
section, you’ll learn how this implicit naming works.

The rules here are the default conventions used by Rails. You can override
all of these conventions using configuration options.

Mixed Case, Underscores, and Plurals
We often name variables and classes using short phrases. In Ruby, the con-
vention is to have variable names where the letters are all lowercase and
words are separated by underscores. Classes and modules are named differ-
ently: there are no underscores, and each word in the phrase (including the
first) is capitalized. (We’ll call this mixed case, for fairly obvious reasons.)
These conventions lead to variable names such as order_status and class names
such as LineItem.

Rails takes this convention and extends it in two ways. First, it assumes that
database table names, such as variable names, have lowercase letters and
underscores between the words. Rails also assumes that table names are
always plural. This leads to table names such as orders and third_parties.

On another axis, Rails assumes that files are named using lowercase with
underscores.

Rails uses this knowledge of naming conventions to convert names automat-
ically. For example, your application might contain a model class that handles
line items. You’d define the class using the Ruby naming convention, calling
it LineItem. From this name, Rails would automatically deduce the following:

• The corresponding database table will be called line_items. That’s the class
name, converted to lowercase, with underscores between the words, and
pluralized.

• Rails would also know to look for the class definition in a file called
line_item.rb (in the app/models directory).

Rails controllers have additional naming conventions. If our application has
a store controller, then the following happens:

• Rails assumes the class is called StoreController and that it’s in a file named
store_controller.rb in the app/controllers directory.

report erratum • discuss

Naming Conventions • 311

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

• Rails also looks for a helper module named StoreHelper in the file store_helper.rb
located in the app/helpers directory.

• It will look for view templates for this controller in the app/views/store
directory.

• It will by default take the output of these views and wrap them in the layout
template contained in the file store.html.erb or store.xml.erb in the directory
app/views/layouts.

All these conventions are shown in the following tables.

Model Naming

line_itemsTable

app/models/line_item.rbFile

LineItemClass

Controller Naming

http://../store/listURL

app/controllers/store_controller.rbFile

StoreControllerClass

listMethod

app/views/layouts/store.html.erbLayout

View Naming

http://../store/listURL

app/views/store/list.html.erb (or .builder)File

module StoreHelperHelper

app/helpers/store_helper.rbFile

There’s one extra twist. In normal Ruby code you have to use the require keyword
to include Ruby source files before you reference the classes and modules in
those files. Since Rails knows the relationship between filenames and class
names, require isn’t normally necessary in a Rails application. The first time you
reference a class or module that isn’t known, Rails uses the naming conventions
to convert the class name to a filename and tries to load that file behind the
scenes. The net effect is that you can typically reference (say) the name of a
model class, and that model will be automatically loaded into your application.

Grouping Controllers into Modules
So far, all our controllers have lived in the app/controllers directory. It’s sometimes
convenient to add more structure to this arrangement. For example, our store

Chapter 19. Finding Your Way Around Rails • 312

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

might end up with a number of controllers performing related but disjoint
administration functions. Rather than pollute the top-level namespace, we
might choose to group them into a single admin namespace.

David says:

Why Plurals for Tables?
Because it sounds good in conversation. Really. “Select a Product from products.”
And “Order has_many :line_items.”

The intent is to bridge programming and conversation by creating a domain language
that can be shared by both. Having such a language means cutting down on the
mental translation that otherwise confuses the discussion of a product description
with the client when it’s really implemented as merchandise body. These communica-
tions gaps are bound to lead to errors.

Rails sweetens the deal by giving you most of the configuration for free if you follow
the standard conventions. Developers are thus rewarded for doing the right thing, so
it’s less about giving up “your ways” and more about getting productivity for free.

Rails does this using a simple naming convention. If an incoming request has
a controller named (say) admin/book, Rails will look for the controller called
book_controller in the directory app/controllers/admin. That is, the final part of the
controller name will always resolve to a file called name_controller.rb, and any
leading path information will be used to navigate through subdirectories,
starting in the app/controllers directory.

Imagine that our program has two such groups of controllers (say, admin/xxx
and content/xxx) and that both groups define a book controller. There’d be a file
called book_controller.rb in both the admin and content subdirectories of app/controllers.
Both of these controller files would define a class named BookController. If Rails
took no further steps, these two classes would clash.

To deal with this, Rails assumes that controllers in subdirectories of the
directory app/controllers are in Ruby modules named after the subdirectory. Thus,
the book controller in the admin subdirectory would be declared like this:

class Admin::BookController < ActionController::Base
...

end

The book controller in the content subdirectory would be in the Content module:

class Content::BookController < ActionController::Base
...

end

report erratum • discuss

Naming Conventions • 313

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

The two controllers are therefore kept separate inside your application.

The templates for these controllers appear in subdirectories of app/views. Thus,
the following is the view template corresponding to this request:

http://my.app/admin/book/edit/1234

And it will be in this file:

app/views/admin/book/edit.html.erb

You’ll be pleased to know that the controller generator understands the con-
cept of controllers in modules and lets you create them with commands such
as this:

myapp> bin/rails generate controller Admin::Book action1 action2 ...

What We Just Did
Everything in Rails has a place, and we systematically explored each of those
nooks and crannies. In each place, files and the data contained in them follow
naming conventions, and we covered that too. Along the way, we filled in a
few missing pieces:

• We added a Rake task to print the migrated versions.
• We showed how to configure each of the Rails execution environments.

Next up are the major subsystems of Rails, starting with the largest, Active
Record.

Chapter 19. Finding Your Way Around Rails • 314

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

CHAPTER 20

In this chapter, you'll see:
• The establish_connection method
• Tables, classes, columns, and attributes
• IDs and relationships
• Create, read, update, and delete operations
• Callbacks and transactions

Active Record
Active Record is the object-relational mapping (ORM) layer supplied with Rails.
It’s the part of Rails that implements your application’s model.

In this chapter, we’ll build on the mapping data to rows and columns that
we did in Depot. Then we’ll look at using Active Record to manage table rela-
tionships and in the process cover create, read, update, and delete operations
(commonly referred to in the industry as CRUD methods). Finally, we’ll dig
into the Active Record object life cycle (including callbacks and transactions).

Defining Your Data
In Depot, we defined a number of models, including one for an Order. This
particular model has a number of attributes, such as an email address of type
String. In addition to the attributes that we defined, Rails provided an attribute
named id that contains the primary key for the record. Rails also provides
several additional attributes, including attributes that track when each row
was last updated. Finally, Rails supports relationships between models, such
as the relationship between orders and line items.

When you think about it, Rails provides a lot of support for models. Let’s
examine each in turn.

Organizing Using Tables and Columns
Each subclass of ApplicationRecord, such as our Order class, wraps a separate
database table. By default, Active Record assumes that the name of the table
associated with a given class is the plural form of the name of that class. If
the class name contains multiple capitalized words, the table name is assumed
to have underscores between these words, as shown in the table on page 316.

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Table NameClassname

ordersOrder

tax_agenciesTaxAgency

batchesBatch

diagnosesDiagnosis

line_itemsLineItem

peoplePerson

dataDatum

quantitiesQuantity

These rules reflect Rails’ philosophy that class names should be singular
while the names of tables should be plural.

Although Rails handles most irregular plurals correctly, occasionally you may
stumble across one that’s incorrect. If you encounter such a case, you can
add to Rails’ understanding of the idiosyncrasies and inconsistencies of the
English language by modifying the inflection file provided:

rails80/depot_u/config/initializers/inflections.rb
Be sure to restart your server when you modify this file.

Add new inflection rules using the following format. Inflections
are locale specific, and you may define rules for as many different
locales as you wish. All of these examples are active by default:
ActiveSupport::Inflector.inflections(:en) do |inflect|
inflect.plural /^(ox)$/i, "\\1en"
inflect.singular /^(ox)en/i, "\\1"
inflect.irregular "person", "people"
inflect.uncountable %w(fish sheep)
end

These inflection rules are supported but not enabled by default:
ActiveSupport::Inflector.inflections(:en) do |inflect|
inflect.acronym "RESTful"
end

ActiveSupport::Inflector.inflections do |inflect|
inflect.irregular 'tax', 'taxes'

end

If you have legacy tables you have to deal with or don’t like this behavior, you
can control the table name associated with a given model by setting the
table_name for a given class:

class Sheep < ApplicationRecord
self.table_name = "sheep"

end

Chapter 20. Active Record • 316

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_u%2Fconfig%2Finitializers%2Finflections.rb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

David says:

Where Are Our Attributes?
The notion of a database administrator (DBA) as a separate role from programmer
has led some developers to see strict boundaries between code and schema. Active
Record blurs that distinction, and no other place is that more apparent than in the
lack of explicit attribute definitions in the model.

But fear not. Practice has shown that it makes little difference whether we’re looking
at a database schema, a separate XML mapping file, or inline attributes in the model.
The composite view is similar to the separations already happening in the model-
view-controller pattern—just on a smaller scale.

Once the discomfort of treating the table schema as part of the model definition has
dissipated, you’ll start to realize the benefits of keeping DRY. When you need to add
an attribute to the model, you simply have to create a new migration and reload the
application.

Taking the “build” step out of schema evolution makes it just as agile as the rest of
the code. It becomes much easier to start with a small schema and extend and change
it as needed.

Instances of Active Record classes correspond to rows in a database table.
These objects have attributes corresponding to the columns in the table. You
probably noticed that our definition of class Order didn’t mention any of the
columns in the orders table. That’s because Active Record determines them
dynamically at runtime. Active Record reflects on the schema inside the
database to configure the classes that wrap tables.

In the Depot application, our orders table is defined by the following migration:

rails80/depot_r/db/migrate/20250420000008_create_orders.rb
class CreateOrders < ActiveRecord::Migration[8.0]

def change
create_table :orders do |t|
t.string :name
t.text :address
t.string :email
t.integer :pay_type

t.timestamps
end

end
end

Let’s use the handy-dandy bin/rails console command to play with this model.
First, we’ll ask for a list of column names:

report erratum • discuss

Defining Your Data • 317

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_r%2Fdb%2Fmigrate%2F20250420000008_create_orders.rb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

depot> bin/rails console
Loading development environment (Rails 8.0.2)
3.1.3 :001 > Order.column_names
=> ["id", "name", "address", "email", "pay_type", "created_at", "updated_at"]

Then we’ll ask for the details of the pay_type column:

>> Order.columns_hash["pay_type"]
=>

#<ActiveRecord::ConnectionAdapters::Column:0x00000001094cc200
@collation=nil,
@comment=nil,
@default=nil,
@default_function=nil,
@name="pay_type",
@null=true,
@sql_type_metadata=
#<ActiveRecord::ConnectionAdapters::SqlTypeMetadata:0x00000001094dc178
@limit=nil,
@precision=nil,
@scale=nil,
@sql_type="integer",
@type=:integer>>

Notice that Active Record has gleaned a fair amount of information about the
pay_type column. It knows that it’s an integer, it has no default value, it isn’t
the primary key, and it may contain a null value. Rails obtained this infor-
mation by asking the underlying database the first time we tried to use the
Order class.

The attributes of an Active Record instance generally correspond to the data
in the corresponding row of the database table. For example, our orders table
might contain the following data:

depot> sqlite3 -line storage/development.sqlite3 "select * from orders limit 1"
id = 1

name = Dave Thomas
address = 123 Main St

email = customer@example.com
pay_type = 0

created_at = 2022-02-14 14:39:12.375458
updated_at = 2022-02-14 14:39:12.375458

If we fetched this row into an Active Record object, that object would have
seven attributes. The id attribute would be 1 (an Integer), the name attribute
would be the string "Dave Thomas", and so on.

Chapter 20. Active Record • 318

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

We access these attributes using accessor methods. Rails automatically
constructs both attribute readers and attribute writers when it reflects on
the schema:

o = Order.find(1)
puts o.name #=> "Dave Thomas"
o.name = "Fred Smith" # set the name

Setting the value of an attribute doesn’t change anything in the database—
we must save the object for this change to become permanent.

The value returned by the attribute readers is cast by Active Record to an
appropriate Ruby type if possible (so, for example, if the database column is
a timestamp, a Time object will be returned). If we want to get the raw value
of an attribute, we append _before_type_cast to its name, as shown in the follow-
ing code:

Order.first.pay_type #=> "Check", a string
Order.first.pay_type_before_type_cast #=> 0, an integer

Inside the code of the model, we can use the read_attribute() and write_attribute()
private methods. These take the attribute name as a string parameter.

We can see the mapping between SQL types and their Ruby representation
in the following table. Decimal and Boolean columns are slightly tricky.

Ruby ClassSQL Type

Integerint, integer

Floatfloat, double

BigDecimaldecimal, numeric

Stringchar, varchar, string

Dateinterval, date

Timedatetime, time

Stringclob, blob, text

See textboolean

Rails maps columns with Decimals with no decimal places to Integer objects;
otherwise, it maps them to BigDecimal objects, ensuring that no precision is lost.

In the case of Boolean, a convenience method is provided with a question
mark appended to the column name:

user = User.find_by(name: "Dave")
if user.superuser?

grant_privileges
end

report erratum • discuss

Defining Your Data • 319

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

In addition to the attributes we define, there are a number of attributes that
either Rails provides automatically or have special meaning.

Additional Columns Provided by Active Record
A number of column names have special significance to Active Record. Here’s
a summary:

created_at, created_on, updated_at, updated_on
These are automatically updated with the timestamp of a row’s creation
or last update. Make sure the underlying database column is capable of
receiving a date, datetime, or string. Rails applications conventionally use
the _on suffix for date columns and the _at suffix for columns that include
a time.

id
This is the default name of a table’s primary key column (in Identifying
Individual Rows, on page 320).

xxx_id
This is the default name of a foreign key reference to a table named with
the plural form of xxx.

xxx_count
This maintains a counter cache for the child table xxx.

Additional plugins, such as acts_as_list,1 may define additional columns.

Both primary keys and foreign keys play a vital role in database operations
and merit additional discussion.

Locating and Traversing Records
In the Depot application, LineItems have direct relationships to three other
models: Cart, Order, and Product. Additionally, models can have indirect relation-
ships mediated by resource objects. The relationship between Orders and
Products through LineItems is an example of such a relationship.

All of this is made possible through IDs.

Identifying Individual Rows
Active Record classes correspond to tables in a database. Instances of a class
correspond to the individual rows in a database table. Calling Order.find(1), for

1. https://github.com/rails/acts_as_list

Chapter 20. Active Record • 320

report erratum • discuss

https://github.com/rails/acts_as_list
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

instance, returns an instance of an Order class containing the data in the row
with the primary key of 1.

If you’re creating a new schema for a Rails application, you’ll probably want
to go with the flow and let it add the id primary key column to all your tables.
But if you need to work with an existing schema, Active Record gives you a
way of overriding the default name of the primary key for a table.

For example, we may be working with an existing legacy schema that uses
the ISBN as the primary key for the books table.

We specify this in our Active Record model using something like the following:

class LegacyBook < ApplicationRecord
self.primary_key = "isbn"

end

Normally, Active Record takes care of creating new primary key values for
records that we create and add to the database—they’ll be ascending integers
(possibly with some gaps in the sequence). However, if we override the pri-
mary key column’s name, we also take on the responsibility of setting the
primary key to a unique value before we save a new row. Perhaps surpris-
ingly, we still set an attribute called id to do this. As far as Active Record
is concerned, the primary key attribute is always set using an attribute
called id. The primary_key= declaration sets the name of the column to use
in the table. In the following code, we use an attribute called id even though
the primary key in the database is isbn:

book = LegacyBook.new
book.id = "0-12345-6789"
book.title = "My Great American Novel"
book.save
...
book = LegacyBook.find("0-12345-6789")
puts book.title # => "My Great American Novel"
p book.attributes #=> {"isbn" =>"0-12345-6789",

"title"=>"My Great American Novel"}

Just to make life more confusing, the attributes of the model object have the
column names isbn and title—id doesn’t appear. When you need to set the pri-
mary key, use id. At all other times, use the actual column name.

Model objects also redefine the Ruby id() and hash() methods to reference the
model’s primary key. This means that model objects with valid IDs may be
used as hash keys. It also means that unsaved model objects can’t reliably
be used as hash keys (because they won’t yet have a valid ID).

report erratum • discuss

Locating and Traversing Records • 321

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

One final note: Rails considers two model objects as equal (using ==) if they
are instances of the same class and have the same primary key. This means
that unsaved model objects may compare as equal even if they have different
attribute data. If you find yourself comparing unsaved model objects (which
isn’t a particularly frequent operation), you might need to override the ==
method.

As we’ll see, IDs also play an important role in relationships.

Specifying Relationships in Models
Active Record supports three types of relationship between tables: one-to-one,
one-to-many, and many-to-many. You indicate these relationships by adding
declarations to your models: has_one, has_many, belongs_to, and the wonderfully
named has_and_belongs_to_many.

One-to-One Relationships

A one-to-one association (or, more accurately, a one-to-zero-or-one relation-
ship) is implemented using a foreign key in one row in one table to reference
at most a single row in another table. A one-to-one relationship might exist
between orders and invoices: for each order there’s at most one invoice.

class Invoice < ActiveRecord::Base
 belongs_to :order
 # . . .
end

invoices

id

order_id

. . .

orders

id

name

. . .

class Order < ActiveRecord::Base
 has_one :invoice
 # . . .
end

As the example shows, we declare this in Rails by adding a has_one declaration
to the Order model and by adding a belongs_to declaration to the Invoice model.

An important rule is illustrated here: the model for the table that contains
the foreign key always has the belongs_to declaration.

One-to-Many Relationships

A one-to-many association allows you to represent a collection of objects. For
example, an order might have any number of associated line items. In the
database, all the line item rows for a particular order contain a foreign key
column referring to that order, as shown in the figure on page 323.

Chapter 20. Active Record • 322

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

class LineItem < ActiveRecord::Base
 belongs_to :order
 # . . .
end

line_items

id

order_id

. . .

orders

id

name

. . .

class Order < ActiveRecord::Base
 has_many :line_items
 # . . .
end

In Active Record, the parent object (the one that logically contains a collection
of child objects) uses has_many to declare its relationship to the child table,
and the child table uses belongs_to to indicate its parent. In our example, class
LineItem belongs_to :order, and the orders table has_many :line_items.

Note that, again, because the line item contains the foreign key, it has the
belongs_to declaration.

Many-to-Many Relationships

Finally, we might categorize our products. A product can belong to many
categories, and each category may contain multiple products. This is an
example of a many-to-many relationship. It’s as if each side of the relationship
contains a collection of items on the other side.

class Category< ActiveRecord::Base
 has_and_belongs_to_many :products
 # . . .
end

categories

id

name

. . .

products

id

name

. . .

class Product< ActiveRecord::Base
 has_and_belongs_to_many :categories
 # . . .
end

categories_products

category_id

product_id

In Rails we can express this by adding the has_and_belongs_to_many declaration
to both models.

Many-to-many associations are symmetrical—both of the joined tables declare
their association with each other using “habtm.”

Rails implements many-to-many associations using an intermediate join
table. This contains foreign key pairs linking the two target tables. Active
Record assumes that this join table’s name is the concatenation of the two
target table names in alphabetical order. In our example, we joined the table
categories to the table products, so Active Record will look for a join table named
categories_products.

report erratum • discuss

Locating and Traversing Records • 323

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

We can also define join tables directly. In the Depot application, we defined
a LineItems join, which joined Products to either Carts or Orders. Defining it ourselves
also gave us a place to store an additional attribute, namely, a quantity.

Now that we’ve covered data definitions, the next thing you would naturally
want to do is access the data contained within the database, so let’s do that.

Creating, Reading, Updating, and Deleting (CRUD)
Names such as SQLite and MySQL emphasize that all access to a database
is via the Structured Query Language (SQL). In most cases, Rails will take
care of this for you, but that’s completely up to you. As you’ll see, you can
provide clauses or even entire SQL statements for the database to execute.

If you’re familiar with SQL already, as you read this section take note of how
Rails provides places for familiar clauses such as select, from, where, group by,
and so on. If you’re not already familiar with SQL, one of the strengths of
Rails is that you can defer knowing more about such things until you actually
need to access the database at this level.

In this section, we’ll continue to work with the Order model from the Depot
application for an example. We’ll be using Active Record methods to apply
the four basic database operations: create, read, update, and delete.

Creating New Rows
Given that Rails represents tables as classes and rows as objects, it follows
that we create rows in a table by creating new objects of the appropriate class.
We can create new objects representing rows in our orders table by calling
Order.new(). We can then fill in the values of the attributes (corresponding to
columns in the database). Finally, we call the object’s save() method to store
the order back into the database. Without this call, the order would exist only
in our local memory.

rails80/e1/ar/new_examples.rb
an_order = Order.new
an_order.name = "Dave Thomas"
an_order.email = "dave@example.com"
an_order.address = "123 Main St"
an_order.pay_type = "check"
an_order.save

Active Record constructors take an optional block. If present, the block is
invoked with the newly created order as a parameter. This might be useful if
you wanted to create and save an order without creating a new local variable.

Chapter 20. Active Record • 324

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fe1%2Far%2Fnew_examples.rb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

rails80/e1/ar/new_examples.rb
Order.new do |o|

o.name = "Dave Thomas"
. . .
o.save

end

Finally, Active Record constructors accept a hash of attribute values as an
optional parameter. Each entry in this hash corresponds to the name and
value of an attribute to be set. This is useful for doing things like storing
values from HTML forms into database rows.

rails80/e1/ar/new_examples.rb
an_order = Order.new(

name: "Dave Thomas",
email: "dave@example.com",
address: "123 Main St",
pay_type: "check")

an_order.save

Note that in all of these examples we didn’t set the id attribute of the new row.
Because we used the Active Record default of an integer column for the pri-
mary key, Active Record automatically creates a unique value and sets the id
attribute as the row is saved. We can subsequently find this value by querying
the attribute:

rails80/e1/ar/new_examples.rb
an_order = Order.new
an_order.name = "Dave Thomas"
...
an_order.save
puts "The ID of this order is #{an_order.id}"

The new() constructor creates a new Order object in memory; we have to
remember to save it to the database at some point. Active Record has a con-
venience method, create(), that both instantiates the model object and stores
it into the database:

rails80/e1/ar/new_examples.rb
an_order = Order.create(

name: "Dave Thomas",
email: "dave@example.com",
address: "123 Main St",
pay_type: "check")

You can pass create() an array of attribute hashes; it’ll create multiple rows in
the database and return an array of the corresponding model objects:

report erratum • discuss

Creating, Reading, Updating, and Deleting (CRUD) • 325

http://media.pragprog.com/titles/rails8/code/rails80%2Fe1%2Far%2Fnew_examples.rb
http://media.pragprog.com/titles/rails8/code/rails80%2Fe1%2Far%2Fnew_examples.rb
http://media.pragprog.com/titles/rails8/code/rails80%2Fe1%2Far%2Fnew_examples.rb
http://media.pragprog.com/titles/rails8/code/rails80%2Fe1%2Far%2Fnew_examples.rb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

rails80/e1/ar/new_examples.rb
orders = Order.create(

[{ name: "Dave Thomas",
email: "dave@example.com",
address: "123 Main St",
pay_type: "check"

},
{ name: "Andy Hunt",
email: "andy@example.com",
address: "456 Gentle Drive",
pay_type: "po"

}])

The real reason that new() and create() take a hash of values is that you can
construct model objects directly from form parameters:

@order = Order.new(order_params)

If you think this line looks familiar, it’s because you’ve seen it before. It
appears in orders_controller.rb in the Depot application.

Reading Existing Rows
Reading from a database involves first specifying which particular rows of
data you’re interested in—you’ll give Active Record some kind of criteria, and
it will return objects containing data from the row(s) matching the criteria.

The most direct way of finding a row in a table is by specifying its primary
key. Every model class supports the find() method, which takes one or more
primary key values. If given just one primary key, it returns an object contain-
ing data for the corresponding row (or throws an ActiveRecord::RecordNotFound
exception). If given multiple primary key values, find() returns an array of the
corresponding objects. Note that in this case a RecordNotFound exception is
raised if any of the IDs can’t be found (so if the method returns without
raising an error, the length of the resulting array will be equal to the number
of IDs passed as parameters).

an_order = Order.find(27) # find the order with id == 27

Get a list of product ids from a form, then
find the associated Products
product_list = Product.find(params[:product_ids])

Often, though, you need to read in rows based on criteria other than their
primary key value. Active Record provides additional methods enabling you
to express more complex queries.

Chapter 20. Active Record • 326

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fe1%2Far%2Fnew_examples.rb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

David says:

To Raise or Not to Raise?
When you use a finder driven by primary keys, you’re looking for a particular record.
You expect it to exist. A call to Person.find(5) is based on our knowledge of the people
table. We want the row with an ID of 5. If this call is unsuccessful—if the record with
the ID of 5 has been destroyed—we’re in an exceptional situation. This mandates the
raising of an exception, so Rails raises RecordNotFound.

On the other hand, finders that use criteria to search are looking for a match. So,
Person.where(name: 'Dave').first is the equivalent of telling the database (as a black box)
“Give me the first person row that has the name Dave.” This exhibits a distinctly
different approach to retrieval; we’re not certain up front that we’ll get a result. It’s
entirely possible the result set may be empty. Thus, returning nil in the case of finders
that search for one row and an empty array for finders that search for many rows is
the natural, nonexceptional response.

SQL and Active Record

To illustrate how Active Record works with SQL, pass a string to the where()
method call corresponding to a SQL where clause. For example, to return a list
of all orders for Dave with a payment type of “po,” we could use this:

pos = Order.where("name = 'Dave' and pay_type = 'po'")

The result will be an ActiveRecord::Relation object containing all the matching
rows, each neatly wrapped in an Order object.

That’s fine if our condition is predefined, but how do we handle it when the
name of the customer is set externally (perhaps coming from a web form)?
One way is to substitute the value of that variable into the condition string:

get the name from the form
name = params[:name]
DON'T DO THIS!!!
pos = Order.where("name = '#{name}' and pay_type = 'po'")

As the comment suggests, this isn’t a good idea. Why? It leaves the database
wide open to something called a SQL injection attack, which the Ruby on Rails
Guides2 describe in more detail. For now, take it as a given that substituting
a string from an external source into a SQL statement is effectively the same
as publishing your entire database to the whole online world.

2. http://guides.rubyonrails.org/security.html#sql-injection

report erratum • discuss

Creating, Reading, Updating, and Deleting (CRUD) • 327

http://guides.rubyonrails.org/security.html#sql-injection
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Instead, the safe way to generate dynamic SQL is to let Active Record handle
it. Doing this allows Active Record to create properly escaped SQL, which is
immune from SQL injection attacks. Let’s see how this works.

If we pass multiple parameters to a where() call, Rails treats the first parameter
as a template for the SQL to generate. Within this SQL, we can embed
placeholders, which will be replaced at runtime by the values in the rest of
the array.

One way of specifying placeholders is to insert one or more question marks
in the SQL. The first question mark is replaced by the second element of the
array, the next question mark by the third, and so on. For example, we could
rewrite the previous query as this:

name = params[:name]
pos = Order.where(["name = ? and pay_type = 'po'", name])

We can also use named placeholders. We do that by placing placeholders of
the form :name into the string and by providing corresponding values in a
hash, where the keys correspond to the names in the query:

name = params[:name]
pay_type = params[:pay_type]
pos = Order.where("name = :name and pay_type = :pay_type",

pay_type: pay_type, name: name)

We can take this a step further. Because params is effectively a hash, we can
simply pass it all to the condition. If we have a form that can be used to enter
search criteria, we can use the hash of values returned from that form
directly:

pos = Order.where("name = :name and pay_type = :pay_type",
params[:order])

We can take this even further. If we pass just a hash as the condition, Rails
generates a where clause using the hash keys as column names and the hash
values as the values to match. Thus, we could have written the previous code
even more succinctly:

pos = Order.where(params[:order])

Be careful with this latter form of condition: it takes all the key-value pairs
in the hash you pass in when constructing the condition. An alternative would
be to specify which parameters to use explicitly:

pos = Order.where(name: params[:name],
pay_type: params[:pay_type])

Chapter 20. Active Record • 328

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Regardless of which form of placeholder you use, Active Record takes great
care to quote and escape the values being substituted into the SQL. Use these
forms of dynamic SQL, and Active Record will keep you safe from injection
attacks.

Using Like Clauses

We might be tempted to use parameterized like clauses in conditions:

Doesn't work
User.where("name like '?%'", params[:name])

Rails doesn’t parse the SQL inside a condition and so doesn’t know that the
name is being substituted into a string. As a result, it will go ahead and add
extra quotes around the value of the name parameter. The correct way to do
this is to construct the full parameter to the like clause and pass that
parameter into the condition:

Works
User.where("name like ?", params[:name]+"%")

Of course, if we do this, we need to consider that characters such as percent
signs, should they happen to appear in the value of the name parameter, will
be treated as wildcards.

Subsetting the Records Returned

Now that we know how to specify conditions, let’s turn our attention to the
various methods supported by ActiveRecord::Relation, starting with first() and all().

As you may have guessed, first() returns the first row in the relation. It returns
nil if the relation is empty. Similarly, all() returns all the rows as an array.
ActiveRecord::Relation also supports many of the methods of Array objects, such
as each() and map(). It does so by implicitly calling the all() first.

It’s important to understand that the query isn’t evaluated until one of these
methods is used. This enables us to modify the query in a number of ways,
namely, by calling additional methods, prior to making this call. Let’s look at
these methods now.

order

SQL doesn’t require rows to be returned in any particular order unless we
explicitly add an order by clause to the query. The order() method lets us specify
the criteria we’d normally add after the order by keywords. For example, the
following query would return all of Dave’s orders, sorted first by payment type
and then by shipping date (the latter in descending order):

report erratum • discuss

Creating, Reading, Updating, and Deleting (CRUD) • 329

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

orders = Order.where(name: 'Dave').
order("pay_type, shipped_at DESC")

limit

We can limit the number of rows returned by calling the limit() method. Gener-
ally when we use the limit method, we’ll probably also want to specify the
sort order to ensure consistent results. For example, the following returns
the first ten matching orders:

orders = Order.where(name: 'Dave').
order("pay_type, shipped_at DESC").
limit(10)

offset

The offset() method goes hand in hand with the limit() method. It allows us to
specify the offset of the first row in the result set that will be returned:

The view wants to display orders grouped into pages,
where each page shows page_size orders at a time.
This method returns the orders on page page_num (starting
at zero).
def Order.find_on_page(page_num, page_size)

order(:id).limit(page_size).offset(page_num*page_size)
end

We can use offset in conjunction with limit to step through the results of a query
n rows at a time.

select

By default, ActiveRecord::Relation fetches all the columns from the underlying
database table—it issues a select * from... to the database. Override this with
the select() method, which takes a string that will appear in place of the * in
the select statement.

This method allows us to limit the values returned in cases where we need
only a subset of the data in a table. For example, our table of podcasts might
contain information on the title, speaker, and date and might also contain a
large BLOB containing the MP3 of the talk. If you just wanted to create a list
of talks, it would be inefficient to also load the sound data for each row. The
select() method lets us choose which columns to load:

list = Talk.select("title, speaker, recorded_on")

joins

The joins() method lets us specify a list of additional tables to be joined to the
default table. This parameter is inserted into the SQL immediately after the
name of the model’s table and before any conditions specified by the first

Chapter 20. Active Record • 330

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

parameter. The join syntax is database-specific. The following code returns
a list of all line items for the book called Programming Ruby:

LineItem.select('li.quantity').
where("pr.title = 'The Pragmatic Programmer'").
joins("as li inner join products as pr on li.product_id = pr.id")

readonly

The readonly() method causes ActiveRecord::Resource to return Active Record objects
that cannot be stored back into the database.

If we use the joins() or select() method, objects will automatically be marked
readonly.

group

The group() method adds a group by clause to the SQL:

summary = LineItem.select("sku, sum(amount) as amount").
group("sku")

lock

The lock() method takes an optional string as a parameter. If we pass it a string,
it should be a SQL fragment in our database’s syntax that specifies a kind of
lock. With MySQL, for example, a share mode lock gives us the latest data in
a row and guarantees that no one else can alter that row while we hold the
lock. We could write code that debits an account only if there are sufficient
funds using something like the following:

Account.transaction do
ac = Account.where(id: id).lock("LOCK IN SHARE MODE").first
ac.balance -= amount if ac.balance > amount
ac.save

end

If we don’t specify a string value or we give lock() a value of true, the database’s
default exclusive lock is obtained (normally this will be "for update"). We can
often eliminate the need for this kind of locking using transactions (discussed
starting in Transactions, on page 344).

Databases do more than simply find and reliably retrieve data; they also do
a bit of data reduction analysis. Rails provides access to these methods too.

Getting Column Statistics

Rails has the ability to perform statistics on the values in a column. For
example, given a table of products, we can calculate the following:

report erratum • discuss

Creating, Reading, Updating, and Deleting (CRUD) • 331

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

average = Product.average(:price) # average product price
max = Product.maximum(:price)
min = Product.minimum(:price)
total = Product.sum(:price)
number = Product.count

These all correspond to aggregate functions in the underlying database, but
they work in a database-independent manner.

As before, methods can be combined:

Order.where("amount > 20").minimum(:amount)

These functions aggregate values. By default, they return a single result,
producing, for example, the minimum order amount for orders meeting some
condition. However, if you include the group method, the functions instead
produce a series of results, one result for each set of records where the
grouping expression has the same value. For example, the following calculates
the maximum sale amount for each state:

result = Order.group(:state).maximum(:amount)
puts result #=> {"TX"=>12345, "NC"=>3456, ...}

This code returns an ordered hash. You index it using the grouping element
("TX", "NC", … in our example). You can also iterate over the entries in order
using each(). The value of each entry is the value of the aggregation function.

The order and limit methods come into their own when using groups.

For example, the following returns the three states with the highest orders,
sorted by the order amount:

result = Order.group(:state).
order("max(amount) desc").
limit(3)

This code is no longer database independent—to sort on the aggregated col-
umn, we had to use the SQLite syntax for the aggregation function (max, in
this case).

Scopes

As these chains of method calls grow longer, making the chains themselves
available for reuse becomes a concern. Once again, Rails delivers. An Active
Record scope can be associated with a Proc and therefore may have arguments:

class Order < ActiveRecord::Base
scope :last_n_days, ->(days) { where('updated < ?' , days) }

end

Chapter 20. Active Record • 332

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Such a named scope would make finding the worth of last week’s orders a
snap.

orders = Order.last_n_days(7)

Simpler scopes may have no parameters at all:

class Order < ActiveRecord::Base
scope :checks, -> { where(pay_type: :check) }

end

Scopes can also be combined. Finding the last week’s worth of orders that
were paid by check is just as straightforward:

orders = Order.checks.last_n_days(7)

In addition to making your application code easier to write and easier to read,
scopes can make your code more efficient. The previous statement, for
example, is implemented as a single SQL query.

ActiveRecord::Relation objects are equivalent to an anonymous scope:

in_house = Order.where('email LIKE "%@pragprog.com"')

Of course, relations can also be combined:

in_house.checks.last_n_days(7)

Scopes aren’t limited to where conditions; we can do pretty much anything
we can do in a method call: limit, order, join, and so on. Just be aware that Rails
doesn’t know how to handle multiple order or limit clauses, so be sure to use
these only once per call chain.

In nearly every case, the methods we’ve been describing are sufficient. But
Rails isn’t satisfied with only being able to handle nearly every case, so for
cases that require a human-crafted query, there’s an API for that too.

Writing Our Own SQL

Each of the methods we’ve been looking at contributes to the construction of
a full SQL query string. The method find_by_sql() lets our application take full
control. It accepts a single parameter containing a SQL select statement (or
an array containing SQL and placeholder values, as for find()) and returns an
array of model objects (that’s potentially empty) from the result set. The
attributes in these models will be set from the columns returned by the query.
We’d normally use the select * form to return all columns for a table, but this
isn’t required:

report erratum • discuss

Creating, Reading, Updating, and Deleting (CRUD) • 333

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

rails80/e1/ar/find_examples.rb
orders = LineItem.find_by_sql("select line_items.* from line_items, orders " +

" where order_id = orders.id " +
" and orders.name = 'Dave Thomas' ")

Only those attributes returned by a query will be available in the resulting
model objects. We can determine the attributes available in a model object
using the attributes(), attribute_names(), and attribute_present?() methods. The first
returns a hash of attribute name-value pairs, the second returns an array of
names, and the third returns true if a named attribute is available in this
model object:

rails80/e1/ar/find_examples.rb
orders = Order.find_by_sql("select name, pay_type from orders")
first = orders[0]
p first.attributes
p first.attribute_names
p first.attribute_present?("address")

This code produces the following:

{"name"=>"Dave Thomas", "pay_type"=>"check"}
["name", "pay_type"]
false

find_by_sql() can also be used to create model objects containing derived column
data. If we use the as xxx SQL syntax to give derived columns a name in the
result set, this name will be used as the name of the attribute:

rails80/e1/ar/find_examples.rb
items = LineItem.find_by_sql("select *, " +

" products.price as unit_price, " +
" quantity*products.price as total_price, " +
" products.title as title " +
" from line_items, products " +
" where line_items.product_id = products.id ")

li = items[0]
puts "#{li.title}: #{li.quantity}x#{li.unit_price} => #{li.total_price}"

As with conditions, we can also pass an array to find_by_sql(), where the first
element is a string containing placeholders. The rest of the array can be either
a hash or a list of values to be substituted.

Order.find_by_sql(["select * from orders where amount > ?",
params[:amount]])

In the old days of Rails, people frequently resorted to using find_by_sql(). Since
then, all the options added to the basic find() method mean you can avoid
resorting to this low-level method.

Chapter 20. Active Record • 334

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fe1%2Far%2Ffind_examples.rb
http://media.pragprog.com/titles/rails8/code/rails80%2Fe1%2Far%2Ffind_examples.rb
http://media.pragprog.com/titles/rails8/code/rails80%2Fe1%2Far%2Ffind_examples.rb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

David says:

But Isn’t SQL Dirty?
Ever since developers first wrapped relational databases with an object-oriented layer,
they’ve debated the question of how deep to run the abstraction. Some object-relational
mappers seek to eliminate the use of SQL entirely, hoping for object-oriented purity
by forcing all queries through an OO layer.

Active Record does not. It was built on the notion that SQL is neither dirty nor bad,
just verbose in the trivial cases. The focus is on removing the need to deal with the
verbosity in those trivial cases (writing a ten-attribute insert by hand will leave any
programmer tired) but keeping the expressiveness around for the hard queries—the
type SQL was created to deal with elegantly.

Therefore, you shouldn’t feel guilty when you use find_by_sql() to handle either perfor-
mance bottlenecks or hard queries. Start out using the object-oriented interface for
productivity and pleasure and then dip beneath the surface for a close-to-the-metal
experience when you need to do so.

Reloading Data

In an application where the database is potentially being accessed by multiple
processes (or by multiple applications), there’s always the possibility that a
fetched model object has become stale—someone may have written a more
recent copy to the database.

To some extent, this issue is addressed by transactional support (which we
describe in Transactions, on page 344). However, there will still be times where
you need to refresh a model object manually. Active Record makes this possible
with one line of code—call its reload() method, and the object’s attributes will
be refreshed from the database:

stock = Market.find_by(ticker: "RUBY")
loop do

puts "Price = #{stock.price}"
sleep 60
stock.reload

end

In practice, reload() is rarely used outside the context of unit tests.

Updating Existing Rows
After such a long discussion of finder methods, you’ll be pleased to know that
there’s not much to say about updating records with Active Record.

report erratum • discuss

Creating, Reading, Updating, and Deleting (CRUD) • 335

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

If you have an Active Record object (perhaps representing a row from our
orders table), you can write it to the database by calling its save() method. If
this object had previously been read from the database, this save will update
the existing row; otherwise, the save will insert a new row.

If an existing row is updated, Active Record will use its primary key column
to match it with the in-memory object. The attributes contained in the
Active Record object determine the columns that will be updated—a column
will be updated in the database only if its value has been changed. In the
following example, all the values in the row for order 123 can be updated
in the database table:

order = Order.find(123)
order.name = "Fred"
order.save

However, in the following example, the Active Record object contains just
the attributes id, name, and paytype—only these columns can be updated
when the object is saved. (Note that you have to include the id column if
you intend to save a row fetched using find_by_sql().)

orders = Order.find_by_sql("select id, name, pay_type from orders where id=123")
first = orders[0]
first.name = "Wilma"
first.save

In addition to the save() method, Active Record lets us change the values of
attributes and save a model object in a single call to update():

order = Order.find(321)
order.update(name: "Barney", email: "barney@bedrock.com")

The update() method is most commonly used in controller actions where it
merges data from a form into an existing database row:

def save_after_edit
order = Order.find(params[:id])
if order.update(order_params)

redirect_to action: :index
else

render action: :edit
end

end

We can combine the functions of reading a row and updating it using the
class methods update() and update_all(). The update() method takes an id
parameter and a set of attributes. It fetches the corresponding row, updates

Chapter 20. Active Record • 336

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

the given attributes, saves the result to the database, and returns the
model object.

order = Order.update(12, name: "Barney", email: "barney@bedrock.com")

We can pass update() an array of IDs and an array of attribute value hashes,
and it will update all the corresponding rows in the database, returning an
array of model objects.

Finally, the update_all() class method allows us to specify the set and where
clauses of the SQL update statement. For example, the following increases the
prices of all products with Java in their title by 10 percent:

result = Product.update_all("price = 1.1*price", "title like '%Java%'")

The return value of update_all() depends on the database adapter; most (but
not Oracle) return the number of rows that were changed in the database.

save, save!, create, and create!

It turns out that there are two versions of the save and create methods. The
variants differ in the way they report errors.

• save returns true if the record was saved; it returns nil otherwise.

• save! returns true if the save succeeded; it raises an exception otherwise.

• create returns the Active Record object regardless of whether it was suc-
cessfully saved. You’ll need to check the object for validation errors if you
want to determine whether the data was written.

• create! returns the Active Record object on success; it raises an exception
otherwise.

Let’s look at this in a bit more detail.

Plain old save() returns true if the model object is valid and can be saved:

if order.save
all OK

else
validation failed

end

It’s up to us to check on each call to save() to see that it did what we expected.
The reason Active Record is so lenient is that it assumes save() is called in the
context of a controller’s action method and the view code will be presenting
any errors back to the end user. And for many applications, that’s the case.

report erratum • discuss

Creating, Reading, Updating, and Deleting (CRUD) • 337

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

But if we need to save a model object in a context where we want to make
sure to handle all errors programmatically, we should use save!(). This method
raises a RecordInvalid exception if the object couldn’t be saved:

begin
order.save!

rescue RecordInvalid => error
validation failed

end

Deleting Rows
Active Record supports two styles of row deletion. First, it has two class-level
methods, delete() and delete_all(), that operate at the database level. The delete()
method takes a single ID or an array of IDs and deletes the corresponding
row(s) in the underlying table. delete_all() deletes rows matching a given condi-
tion (or all rows if no condition is specified). The return values from both calls
depend on the adapter but are typically the number of rows affected. An
exception isn’t thrown if the row doesn’t exist prior to the call.

Order.delete(123)
User.delete([2,3,4,5])
Product.delete_all(["price > ?", @expensive_price])

The various destroy methods are the second form of row deletion provided by
Active Record. These methods all work via Active Record model objects.

The destroy() instance method deletes from the database the row corresponding
to a particular model object. It then freezes the contents of that object, pre-
venting future changes to the attributes.

order = Order.find_by(name: "Dave")
order.destroy
... order is now frozen

There are two class-level destruction methods: destroy() (which takes an ID or
an array of IDs) and destroy_all() (which takes a condition). Both methods read
the corresponding rows in the database table into model objects and call the
instance-level destroy() method of those objects. Neither method returns any-
thing meaningful.

Order.destroy_all(["shipped_at < ?", 30.days.ago])

Why do we need both the delete and destroy class methods? The delete methods
bypass the various Active Record callback and validation functions, while the
destroy methods ensure that they’re all invoked. In general, it’s better to use
the destroy methods if you want to ensure that your database is consistent
according to the business rules defined in your model classes.

Chapter 20. Active Record • 338

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

We covered validation in Chapter 7, Task B: Validation and Unit Testing, on
page 85. We cover callbacks next.

Participating in the Monitoring Process
Active Record controls the life cycle of model objects—it creates them, monitors
them as they’re modified, saves and updates them, and watches sadly as
they’re destroyed. Using callbacks, Active Record lets our code participate in
this monitoring process. We can write code that gets invoked at any significant
event in the life of an object. With these callbacks we can perform complex
validation, map column values as they pass in and out of the database, and
even prevent certain operations from completing.

Active Record defines sixteen callbacks. Fourteen of these form before-after
pairs and bracket some operation on an Active Record object. For example,
the before_destroy callback will be invoked just before the destroy() method is
called, and after_destroy will be invoked after. The two exceptions are after_find
and after_initialize, which have no corresponding before_xxx callback. (These two
callbacks are different in other ways too, as we’ll see later.)

In the following figure we can see how Rails wraps the fourteen paired call-
backs around the basic create, update, and destroy operations on model
objects. Perhaps surprisingly, the before and after validation calls aren’t
strictly nested.

before_validation

validation operations

after_validation

before_save

before_update

after_update

after_save

before_validation

validation operations

after_validation

before_save

before_create

after_create

after_save

before_destroy

after_destroy

insert operation update operation delete operation

model.save() model.destroy()

new record existing record

The before_validation and after_validation calls also accept the on: :create or on: :update
parameter, which will cause the callback to be called only on the selected
operation.

report erratum • discuss

Participating in the Monitoring Process • 339

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

In addition to these sixteen calls, the after_find callback is invoked after any
find operation, and after_initialize is invoked after an Active Record model object
is created.

To have your code execute during a callback, you need to write a handler and
associate it with the appropriate callback.

We have two basic ways of implementing callbacks.

The preferred way to define a callback is to declare handlers. A handler can
be either a method or a block. You associate a handler with a particular event
using class methods named after the event. To associate a method, declare
it as private or protected, and specify its name as a symbol to the handler
declaration. To specify a block, simply add it after the declaration. This block
receives the model object as a parameter:

class Order < ActiveRecord::Base
before_validation :normalize_credit_card_number
after_create do |order|

logger.info "Order #{order.id} created"
end
protected
def normalize_credit_card_number

self.cc_number.gsub!(/[-\s]/, '')
end

end

You can specify multiple handlers for the same callback. They will generally
be invoked in the order they’re specified unless a handler throws :abort, in
which case the callback chain is broken early.

Alternatively, you can define the callback instance methods using callback
objects, inline methods (using a proc), or inline eval methods (using a string).
See the online documentation for more details.3

Grouping Related Callbacks Together
If you have a group of related callbacks, it may be convenient to group them
into a separate handler class. These handlers can be shared between multiple
models. A handler class is simply a class that defines callback methods
(before_save(), after_create(), and so on). Create the source files for these handler
classes in app/models.

3. http://api.rubyonrails.org/classes/ActiveRecord/Callbacks.html#label-Types+of+callbacks

Chapter 20. Active Record • 340

report erratum • discuss

http://api.rubyonrails.org/classes/ActiveRecord/Callbacks.html#label-Types+of+callbacks
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

In the model object that uses the handler, you create an instance of this
handler class and pass that instance to the various callback declarations. A
couple of examples will make this clearer.

If our application uses credit cards in multiple places, we might want to share
our normalize_credit_card_number() method across multiple models. To do that, we’d
extract the method into its own class and name it after the event we want it
to handle. This method will receive a single parameter, the model object that
generated the callback:

class CreditCardCallbacks

Normalize the credit card number
def before_validation(model)

model.cc_number.gsub!(/[-\s]/, '')
end

end

Now, in our model classes, we can arrange for this shared callback to be
invoked:

class Order < ActiveRecord::Base
before_validation CreditCardCallbacks.new
...

end

class Subscription < ApplicationRecord
before_validation CreditCardCallbacks.new
...

end

In this example, the handler class assumes that the credit card number is
held in a model attribute named cc_number; both Order and Subscription would
have an attribute with that name. But we can generalize the idea, making
the handler class less dependent on the implementation details of the classes
that use it.

For example, we could create a generalized encryption and decryption handler.
This could be used to encrypt named fields before they’re stored in the
database and to decrypt them when the row is read back. You could include
it as a callback handler in any model that needed the facility.

The handler needs to encrypt a given set of attributes in a model just before
that model’s data is written to the database. Because our application needs
to deal with the plain-text versions of these attributes, it arranges to decrypt
them again after the save is complete. It also needs to decrypt the data when
a row is read from the database into a model object. These requirements mean
we have to handle the before_save, after_save, and after_find events. Because we

report erratum • discuss

Participating in the Monitoring Process • 341

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

need to decrypt the database row both after saving and when we find a new
row, we can save code by aliasing the after_find() method to after_save()—the same
method will have two names:

rails80/e1/ar/encrypter.rb
class Encrypter

We're passed a list of attributes that should
be stored encrypted in the database
def initialize(attrs_to_manage)

@attrs_to_manage = attrs_to_manage
end

Before saving or updating, encrypt the fields using the NSA and
DHS approved Shift Cipher
def before_save(model)

@attrs_to_manage.each do |field|
model[field].tr!("a-z", "b-za")

end
end

After saving, decrypt them back
def after_save(model)

@attrs_to_manage.each do |field|
model[field].tr!("b-za", "a-z")

end
end

Do the same after finding an existing record
alias_method :after_find, :after_save

end

This example uses trivial encryption—you might want to beef it up before
using this class for real.

We can now arrange for the Encrypter class to be invoked from inside our orders
model:

require "encrypter"
class Order < ActiveRecord::Base

encrypter = Encrypter.new([:name, :email])
before_save encrypter
after_save encrypter
after_find encrypter

protected
def after_find
end

end

We create a new Encrypter object and hook it up to the events before_save,
after_save, and after_find. This way, just before an order is saved, the method
before_save() in the encrypter will be invoked, and so on.

Chapter 20. Active Record • 342

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fe1%2Far%2Fencrypter.rb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

So why do we define an empty after_find() method? Remember that we said that
for performance reasons after_find and after_initialize are treated specially. One of
the consequences of this special treatment is that Active Record won’t know
to call an after_find handler unless it sees an actual after_find() method in the
model class. We have to define an empty placeholder to get after_find processing
to take place.

This is all very well, but every model class that wants to use our encryption
handler would need to include some eight lines of code, just as we did with
our Order class. We can do better than that. We’ll define a helper method that
does all the work and make that helper available to all Active Record models.
To do that, we’ll add it to the ApplicationRecord class:

rails80/e1/ar/encrypter.rb
class ApplicationRecord < ActiveRecord::Base

self.abstract_class = true

def self.encrypt(*attr_names)
encrypter = Encrypter.new(attr_names)

before_save encrypter
after_save encrypter
after_find encrypter

define_method(:after_find) { }
end

end

Given this, we can now add encryption to any model class’s attributes using
a single call:

class Order < ApplicationRecord
encrypt(:name, :email)

end

A small driver program lets us experiment with this:

o = Order.new
o.name = "Dave Thomas"
o.address = "123 The Street"
o.email = "dave@example.com"
o.save
puts o.name

o = Order.find(o.id)
puts o.name

On the console, we see our customer’s name (in plain text) in the model object:

ar> ruby encrypter.rb
Dave Thomas
Dave Thomas

report erratum • discuss

Participating in the Monitoring Process • 343

http://media.pragprog.com/titles/rails8/code/rails80%2Fe1%2Far%2Fencrypter.rb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

In the database, however, the name and email address are obscured by our
industrial-strength encryption:

depot> sqlite3 -line storage/development.sqlite3 "select * from orders"
id = 1

user_id =
name = Dbwf Tipnbt

address = 123 The Street
email = ebwf@fybnqmf.dpn

Callbacks are a fine technique, but they can sometimes result in a model
class taking on responsibilities that aren’t really related to the nature of the
model. For example, in Participating in the Monitoring Process, on page 339,
we created a callback that generated a log message when an order was created.
That functionality isn’t really part of the basic Order class—we put it there
because that’s where the callback executed.

When used in moderation, such an approach doesn’t lead to significant
problems. If, however, you find yourself repeating code, consider using con-
cerns4 instead.

Transactions
A database transaction groups a series of changes in such a way that either
the database applies all of the changes or it applies none of the changes. The
classic example of the need for transactions (and one used in Active Record’s
own documentation) is transferring money between two bank accounts. The
basic logic is straightforward:

account1.deposit(100)
account2.withdraw(100)

But we have to be careful. What happens if the deposit succeeds but for some
reason the withdrawal fails (perhaps the customer is overdrawn)? We’ll have
added $100 to the balance in account1 without a corresponding deduction from
account2. In effect, we’ll have created $100 out of thin air.

Transactions to the rescue. A transaction is something like the Three Muske-
teers with their motto “All for one and one for all.” Within the scope of a
transaction, either every SQL statement succeeds or they all have no effect.
Putting that another way, if any statement fails, the entire transaction has
no effect on the database.

4. https://api.rubyonrails.org/classes/ActiveSupport/Concern.html

Chapter 20. Active Record • 344

report erratum • discuss

https://api.rubyonrails.org/classes/ActiveSupport/Concern.html
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

In Active Record we use the transaction() method to execute a block in the context
of a particular database transaction. At the end of the block, the transaction
is committed, updating the database, unless an exception is raised within
the block, in which case the database rolls back all of the changes. Because
transactions exist in the context of a database connection, we have to invoke
them with an Active Record class as a receiver.

Thus, we could write this:

Account.transaction do
account1.deposit(100)
account2.withdraw(100)

end

Let’s experiment with transactions. We’ll start by creating a new database
table. (Make sure your database supports transactions, or this code won’t
work for you.)

rails80/e1/ar/transactions.rb
create_table :accounts, force: true do |t|

t.string :number
t.decimal :balance, precision: 10, scale: 2, default: 0

end

Next, we’ll define a rudimentary bank account class. This class defines
instance methods to deposit money to and withdraw money from the account.
It also provides some basic validation—for this particular type of account,
the balance can never be negative.

rails80/e1/ar/transactions.rb
class Account < ActiveRecord::Base

validates :balance, numericality: {greater_than_or_equal_to: 0}
def withdraw(amount)

adjust_balance_and_save!(-amount)
end
def deposit(amount)

adjust_balance_and_save!(amount)
end
private
def adjust_balance_and_save!(amount)

self.balance += amount
save!

end
end

Let’s look at the helper method, adjust_balance_and_save!(). The first line simply
updates the balance field. The method then calls save! to save the model
data. (Remember that save!() raises an exception if the object cannot be

report erratum • discuss

Transactions • 345

http://media.pragprog.com/titles/rails8/code/rails80%2Fe1%2Far%2Ftransactions.rb
http://media.pragprog.com/titles/rails8/code/rails80%2Fe1%2Far%2Ftransactions.rb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

saved—we use the exception to signal to the transaction that something
has gone wrong.)

So now let’s write the code to transfer money between two accounts. It’s
pretty straightforward:

rails80/e1/ar/transactions.rb
peter = Account.create(balance: 100, number: "12345")
paul = Account.create(balance: 200, number: "54321")

Account.transaction do
paul.deposit(10)
peter.withdraw(10)

end

We check the database, and, sure enough, the money got transferred:

depot> sqlite3 -line storage/development.sqlite3 "select * from accounts"
id = 1

number = 12345
balance = 90

id = 2
number = 54321

balance = 210

Now let’s get radical. If we start again but this time try to transfer $350, we’ll
run Peter into the red, which isn’t allowed by the validation rule. Let’s try it:

rails80/e1/ar/transactions.rb
peter = Account.create(balance: 100, number: "12345")
paul = Account.create(balance: 200, number: "54321")

rails80/e1/ar/transactions.rb
Account.transaction do

paul.deposit(350)
peter.withdraw(350)

end

When we run this, we get an exception reported on the console:

.../validations.rb:736:in `save!': Validation failed: Balance is negative
from transactions.rb:46:in `adjust_balance_and_save!'

: : :
from transactions.rb:80

Looking in the database, we can see that the data remains unchanged:

depot> sqlite3 -line storage/development.sqlite3 "select * from accounts"
id = 1

number = 12345
balance = 100

Chapter 20. Active Record • 346

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fe1%2Far%2Ftransactions.rb
http://media.pragprog.com/titles/rails8/code/rails80%2Fe1%2Far%2Ftransactions.rb
http://media.pragprog.com/titles/rails8/code/rails80%2Fe1%2Far%2Ftransactions.rb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

id = 2
number = 54321

balance = 200

However, there’s a trap waiting for you here. The transaction protected the
database from becoming inconsistent, but what about our model objects?
To see what happened to them, we have to arrange to intercept the exception
to allow the program to continue running:

rails80/e1/ar/transactions.rb
peter = Account.create(balance: 100, number: "12345")
paul = Account.create(balance: 200, number: "54321")

rails80/e1/ar/transactions.rb
begin

Account.transaction do
paul.deposit(350)
peter.withdraw(350)

end
rescue

puts "Transfer aborted"
end

puts "Paul has #{paul.balance}"
puts "Peter has #{peter.balance}"

What we see is a little surprising:

Transfer aborted
Paul has 550.0
Peter has -250.0

Although the database was left unscathed, our model objects were updated
anyway. This is because Active Record wasn’t keeping track of the before and
after states of the various objects—in fact, it couldn’t, because it had no easy
way of knowing just which models were involved in the transactions.

Built-In Transactions
When we discussed parent and child tables in Specifying Relationships in
Models, on page 322, we said that Active Record takes care of saving all the
dependent child rows when you save a parent row. This takes multiple SQL
statement executions (one for the parent and one each for any changed or
new children).

Clearly, this change should be atomic, but until now we haven’t been using
transactions when saving these interrelated objects. Have we been negligent?

Fortunately, no. Active Record is smart enough to wrap all the updates and
inserts related to a particular save() (and also the deletes related to a destroy())

report erratum • discuss

Transactions • 347

http://media.pragprog.com/titles/rails8/code/rails80%2Fe1%2Far%2Ftransactions.rb
http://media.pragprog.com/titles/rails8/code/rails80%2Fe1%2Far%2Ftransactions.rb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

in a transaction; either they all succeed or no data is written permanently to
the database. You need explicit transactions only when you manage multiple
SQL statements yourself.

While we’ve covered the basics, transactions are actually very subtle. They
exhibit the so-called ACID properties: they’re Atomic, they ensure Consis-
tency, they work in Isolation, and their effects are Durable (they’re made
permanent when the transaction is committed). It’s worth finding a good
database book and reading up on transactions if you plan to take a database
application live.

What We Just Did
We learned the relevant data structures and naming conventions for tables,
classes, columns, attributes, IDs, and relationships. We saw how to create,
read, update, and delete this data. Finally, we now understand how transac-
tions and callbacks can be used to prevent inconsistent changes.

This, coupled with validation as described in Chapter 7, Task B: Validation
and Unit Testing, on page 85, covers all the essentials of Active Record that
every Rails programmer needs to know. If you have specific needs beyond
what is covered here, look to the Rails Guides5 for more information.

The next major subsystem to cover is Action Pack, which covers both the view
and controller portions of Rails.

5. http://guides.rubyonrails.org/

Chapter 20. Active Record • 348

report erratum • discuss

http://guides.rubyonrails.org/
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

CHAPTER 21

In this chapter, you'll see:
• Representational State Transfer (REST)
• Defining how requests are routed to controllers
• Selecting a data representation
• Testing routes
• The controller environment
• Rendering and redirecting
• Sessions, flash, and callbacks

Action Dispatch and Action Controller
Action Pack lies at the heart of Rails applications. It consists of three Ruby
modules: ActionDispatch, ActionController, and ActionView. Action Dispatch routes
requests to controllers. Action Controller converts requests into responses.
Action View is used by Action Controller to format those responses.

As a concrete example, in the Depot application, we routed the root of the
site (/) to the index() method of the StoreController. At the completion of that
method, the template in app/views/store/index.html.erb was rendered. Each of these
activities was orchestrated by modules in the Action Pack component.

Working together, these three submodules provide support for processing
incoming requests and generating outgoing responses. In this chapter, we’ll look
at both Action Dispatch and Action Controller. In the next chapter, we’ll cover
Action View.

When we looked at Active Record, we saw it could be used as a freestanding
library; we can use Active Record as part of a nonweb Ruby application. Action
Pack is different. Although it’s possible to use it directly as a framework, you
probably won’t. Instead, you’ll take advantage of the tight integration offered
by Rails. Components such as Action Controller, Action View, and Active
Record handle the processing of requests, and the Rails environment knits
them together into a coherent (and easy-to-use) whole. For that reason, we’ll
describe Action Controller in the context of Rails. Let’s start by looking at
how Rails applications handle requests. We’ll then dive down into the details
of routing and URL handling. We’ll continue by looking at how you write code
in a controller. Finally, we’ll cover sessions, flash, and callbacks.

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Dispatching Requests to Controllers
At its most basic, a web application accepts an incoming request from a
browser, processes it, and sends a response.

A question immediately springs to mind: how does the application know what
to do with the incoming request? A shopping cart application will receive
requests to display a catalog, add items to a cart, create an order, and so on.
How does it route these requests to the appropriate code?

It turns out that Rails provides two ways to define how to route a request: a
comprehensive way that you’ll use when you need to and a convenient way
that you’ll generally use whenever you can.

The comprehensive way lets you define a direct mapping of URLs to actions
based on pattern matching, requirements, and conditions. The convenient
way lets you define routes based on resources, such as the models that you
define. And because the convenient way is built on the comprehensive way,
you can freely mix and match the two approaches.

In both cases, Rails encodes information in the request URL and uses a
subsystem called Action Dispatch to determine what should be done with
that request. The actual process is flexible, but at the end of it Rails has
determined the name of the controller that handles this particular request
along with a list of any other request parameters. In the process, either one
of these additional parameters or the HTTP method itself is used to identify
the action to be invoked in the target controller.

Rails routes support the mapping between URLs and actions based on the
contents of the URL and on the HTTP method used to invoke the request.
We’ve seen how to do this on a URL-by-URL basis using anonymous or named
routes. Rails also supports a higher-level way of creating groups of related
routes. To understand the motivation for this, we need to take a little diversion
into the world of representational state transfer (REST).

REST: Representational State Transfer
The ideas behind REST were formalized in Chapter 5 of Roy Fielding’s 2000
PhD dissertation.1 In a REST approach, servers communicate with clients
using stateless connections. All the information about the state of the inter-
action between the two is encoded into the requests and responses between
them. Long-term state is kept on the server as a set of identifiable resources.

1. http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

Chapter 21. Action Dispatch and Action Controller • 350

report erratum • discuss

http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Clients access these resources using a well-defined (and severely constrained)
set of resource identifiers (URLs in our context). REST distinguishes the
content of resources from the presentation of that content. REST is designed
to support highly scalable computing while constraining application architec-
tures to be decoupled by nature.

This description contains a lot of abstract stuff. What does REST mean in
practice?

First, the formalities of a RESTful approach mean that network designers
know when and where they can cache responses to requests. This enables
load to be pushed out through the network, increasing performance and
resilience while reducing latency.

Second, the constraints imposed by REST can lead to easier-to-write (and
maintain) applications. RESTful applications don’t worry about implementing
remotely accessible services. Instead, they provide a regular (and straightfor-
ward) interface to a set of resources. Your application implements a way of listing,
creating, editing, and deleting each resource, and your clients do the rest.

Let’s make this more concrete. In REST, we use a basic set of verbs to operate
on a rich set of nouns. If we’re using HTTP, the verbs correspond to HTTP
methods (GET, PUT, PATCH, POST, and DELETE, typically). The nouns are the
resources in our application. We name those resources using URLs.

The Depot application that we produced contained a set of products. There
are implicitly two resources here: first, the individual products, each of which
constitutes a resource, and second, the collection of products.

To fetch a list of all the products, we could issue an HTTP GET request against
this collection, say on the path /products. To fetch the contents of an individual
resource, we have to identify it. The Rails way would be to give its primary
key value (that is, its ID). Again we’d issue a GET request, this time against
the URL /products/1.

To create a new product in our collection, we use an HTTP POST request
directed at the /products path, with the post data containing the product to
add. Yes, that’s the same path we used to get a list of products. If you issue
a GET to it, it responds with a list, and if you do a POST to it, it adds a new
product to the collection.

Take this a step further. We’ve already seen you can retrieve the content of
a product—you just issue a GET request against the path /products/1. To update
that product, you’d issue an HTTP PUT request against the same URL. And,
to delete it, you could issue an HTTP DELETE request, using the same URL.

report erratum • discuss

Dispatching Requests to Controllers • 351

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Take this further. Maybe our system also tracks users. Again, we have a set
of resources to deal with. REST tells us to use the same set of verbs (GET, POST,
PATCH, PUT, and DELETE) against a similar-looking set of URLs (/users, /users/1, and
so on).

Now we see some of the power of the constraints imposed by REST. We’re
already familiar with the way Rails constrains us to structure our applications
a certain way. Now the REST philosophy tells us to structure the interface to
our applications too. Suddenly our world gets a lot simpler.

Rails has direct support for this type of interface; it adds a kind of macro
route facility, called resources. Let’s take a look at how the config/routes.rb file
might have looked back in Creating a Rails Application, on page 65:

Depot::Application.routes.draw do
resources :products➤

end

The resources line caused seven new routes to be added to our application.
Along the way, it assumed that the application will have a controller named
ProductsController, containing seven actions with given names.

You can take a look at the routes that were generated for us. We do this by
making use of the handy rails routes command.

Prefix Verb URI Pattern
Controller#Action

products GET /products(.:format)
{:action=>"index", :controller=>"products"}

POST /products(.:format)
{:action=>"create", :controller=>"products"}

new_product GET /products/new(.:format)
{:action=>"new", :controller=>"products"}

edit_product GET /products/:id/edit(.:format)
{:action=>"edit", :controller=>"products"}

product GET /products/:id(.:format)
{:action=>"show", :controller=>"products"}

PATCH /products/:id(.:format)
{:action=>"update", :controller=>"products"}

DELETE /products/:id(.:format)
{:action=>"destroy", :controller=>"products"}

All the routes defined are spelled out in a columnar format. The lines will
generally wrap on your screen; in fact, they had to be broken into two lines
per route to fit on this page. The columns are (optional) route name, HTTP
method, route path, and (on a separate line on this page) route requirements.

Chapter 21. Action Dispatch and Action Controller • 352

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Fields in parentheses are optional parts of the path. Field names preceded
by a colon are for variables into which the matching part of the path is placed
for later processing by the controller.

Now let’s look at the seven controller actions that these routes reference.
Although we created our routes to manage the products in our application,
let’s broaden this to talk about resources—after all, the same seven methods
will be required for all resource-based routes:

index
Returns a list of the resources.

create
Creates a new resource from the data in the POST request, adding it to the
collection.

new
Constructs a new resource and passes it to the client. This resource won’t
have been saved on the server. You can think of the new action as creating
an empty form for the client to fill in.

show
Returns the contents of the resource identified by params[:id].

update
Updates the contents of the resource identified by params[:id] with the data
associated with the request.

edit
Returns the contents of the resource identified by params[:id] in a form
suitable for editing.

destroy
Destroys the resource identified by params[:id].

You can see that these seven actions contain the four basic CRUD operations
(create, read, update, and delete). They also contain an action to list resources
and two auxiliary actions that return new and existing resources in a form
suitable for editing on the client.

If for some reason you don’t need or want all seven actions, you can limit the
actions produced using :only or :except options on your resources:

resources :comments, except: [:update, :destroy]

Several of the routes are named routes enabling you to use helper functions
such as products_url and edit_product_url(id:1).

report erratum • discuss

Dispatching Requests to Controllers • 353

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Note that each route is defined with an optional format specifier. We’ll cover
formats in more detail in Selecting a Data Representation, on page 359.

Let’s take a look at the controller code:

rails80/depot_a/app/controllers/products_controller.rb
class ProductsController < ApplicationController

before_action :set_product, only: %i[show edit update destroy]

GET /products or /products.json
def index

@products = Product.all
end

GET /products/1 or /products/1.json
def show
end

GET /products/new
def new

@product = Product.new
end

GET /products/1/edit
def edit
end

POST /products or /products.json
def create

@product = Product.new(product_params)

respond_to do |format|
if @product.save

format.html { redirect_to @product,
notice: "Product was successfully created." }

format.json { render :show, status: :created,
location: @product }

else
format.html { render :new,

status: :unprocessable_entity }
format.json { render json: @product.errors, status: :unprocessable_entity }

end
end

end

PATCH/PUT /products/1 or /products/1.json
def update

respond_to do |format|
if @product.update(product_params)

format.html { redirect_to @product,
notice: "Product was successfully updated." }

format.json { render :show, status: :ok, location: @product }

Chapter 21. Action Dispatch and Action Controller • 354

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_a%2Fapp%2Fcontrollers%2Fproducts_controller.rb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

else
format.html { render :edit,

status: :unprocessable_entity }
format.json { render json: @product.errors, status: :unprocessable_entity }

end
end

end

DELETE /products/1 or /products/1.json
def destroy

@product.destroy!

respond_to do |format|
format.html { redirect_to products_path, status: :see_other,

notice: "Product was successfully destroyed." }
format.json { head :no_content }

end
end

private
Use callbacks to share common setup or constraints between actions.
def set_product
@product = Product.find(params.expect(:id))

end

Only allow a list of trusted parameters through.
def product_params
params.expect(product: [:title, :description, :image, :price])

end
end

Notice how we have one action for each of the RESTful actions. The comment
before each shows the format of the URL that invokes it.

Notice also that many of the actions contain a respond_to() block. As we
saw in Chapter 11, Task F: Hotwiring the Storefront, on page 143, Rails
uses this to determine the type of content to send in a response. The
scaffold generator automatically creates code that will respond appropri-
ately to requests for HTML or JSON content. We’ll play with that in a little
while.

The views created by the generator are fairly straightforward. The only tricky
thing is the need to use the correct HTTP method to send requests to the
server.

For example, the view for the index action looks like this:

report erratum • discuss

Dispatching Requests to Controllers • 355

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

rails80/depot_a/app/views/products/index.html.erb
<div class="w-full">

<% if notice.present? %>
<p class="py-2 px-3 bg-green-50 mb-5 text-green-500 font-medium

rounded-lg inline-block" id="notice">
<%= notice %>

</p>
<% end %>

<div class="flex justify-between items-center pb-8">
<h1 class="mx-auto font-bold text-4xl">Products</h1>

</div>

<table id="products" class="mx-auto">
<tfoot>
<tr>

<td colspan="3">
<div class="mt-8">
<%= link_to 'New product',

new_product_path,
class: "inline rounded-lg py-3 px-5 bg-green-600

text-white block font-medium" %>
</div>

</td>
</tr>

</tfoot>

<tbody>
<% @products.each do |product| %>

<tr class="<%= cycle('bg-green-50', 'bg-white') %>">

<td class="px-2 py-3">
<%= image_tag(product.image, class: 'w-40') %>

</td>

<td>
<h1 class="text-xl font-bold"><%= product.title %></h1>
<p class="my-3">

<%= truncate(strip_tags(product.description),
length: 80) %>

</p>
<p>

<%= number_to_currency(product.price) %>
</p>

</td>

<td class="px-3">

<%= link_to 'Show',

product,
class: 'hover:underline' %>

Chapter 21. Action Dispatch and Action Controller • 356

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_a%2Fapp%2Fviews%2Fproducts%2Findex.html.erb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

<%= link_to 'Edit',

edit_product_path(product),
class: 'hover:underline' %>

<%= button_to 'Destroy',

product,
method: :delete,
class: 'hover:underline',
data: { turbo_confirm: "Are you sure?" } %>

</td>
</tr>

<% end %>
</tbody>

</table>
</div>

The links to the actions that edit a product and add a new product should
both use regular GET methods, so a standard link_to works fine. However, the
request to destroy a product must issue an HTTP DELETE, so the call includes
the method: :delete option to button_to.

Adding Additional Actions
Rails resources provide you with an initial set of actions, but you don’t need
to stop there. For example, if you want to add an interface to allow people to
fetch a list of people who bought any given product, you can add an extension
to the resources call:

Depot::Application.routes.draw do
resources :products do

get :who_bought, on: :member
end

end

That syntax is straightforward. It says “We want to add a new action named
who_bought, invoked via an HTTP GET. It applies to each member of the collection
of products.”

Instead of specifying :member, if we instead specified :collection, then the route
would apply to the collection as a whole. This is often used for scoping; for
example, you may have collections of products on clearance or products that
have been discontinued.

report erratum • discuss

Dispatching Requests to Controllers • 357

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Nested Resources
Often our resources themselves contain additional collections of resources.
For example, we may want to allow folks to review our products. Each review
would be a resource, and collections of reviews would be associated with each
product resource. Rails provides a convenient and intuitive way of declaring
the routes for this type of situation:

resources :products do
resources :reviews

end

This defines the top-level set of product routes and additionally creates a set
of subroutes for reviews. Because the review resources appear inside the
products block, a review resource must be qualified by a product resource.
This means that the path to a review must always be prefixed by the path to
a particular product. To fetch the review with ID 4 for the product with an ID
of 99, you’d use a path of /products/99/reviews/4.

The named route for /products/:product_id/reviews/:id is product_review, not simply
review. This naming simply reflects the nesting of these resources.

As always, you can see the full set of routes generated by our configuration
by using the rails routes command.

Routing Concerns
So far, we’ve been dealing with a fairly small set of resources. On a larger
system there may be types of objects for which a review may be appropriate
or to which a who_bought action might reasonably be applied. Instead of
repeating these instructions for each resource, consider refactoring your
routes using concerns to capture the common behavior.

concern :reviewable do
resources :reviews

end

resources :products, concern: :reviewable
resources :users, concern: :reviewable

The preceding definition of the products resource is equivalent to the one in the
previous section.

Shallow Route Nesting
At times, nested resources can produce cumbersome URLs. A solution to this
is to use shallow route nesting:

Chapter 21. Action Dispatch and Action Controller • 358

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

resources :products, shallow: true do
resources :reviews

end

This will enable the recognition of the following routes:

/products/1 => product_path(1)
/products/1/reviews => product_reviews_index_path(1)
/reviews/2 => reviews_path(2)

Try the rails routes command to see the full mapping.

Selecting a Data Representation
One of the goals of a REST architecture is to decouple data from its representa-
tion. If a human uses the URL path /products to fetch products, they should see
nicely formatted HTML. If an application asks for the same URL, it could elect
to receive the results in a code-friendly format (YAML, JSON, or XML, perhaps).

We’ve already seen how Rails can use the HTTP Accept header in a respond_to
block in the controller. However, it isn’t always easy (and sometimes it’s plain
impossible) to set the Accept header. To deal with this, Rails allows you to
pass the format of response you’d like as part of the URL. As you’ve seen,
Rails accomplishes this by including a field called :format in your route defini-
tions. To do this, set a :format parameter in your routes to the file extension
of the MIME type you’d like returned:

GET /products(.:format)
{:action=>"index", :controller=>"products"}

Because a full stop (period) is a separator character in route definitions, :format
is treated as just another field. Because we give it a nil default value, it’s an
optional field.

Having done this, we can use a respond_to() block in our controllers to select
our response type depending on the requested format:

def show
respond_to do |format|

format.html
format.json { render json: @product.to_json }

end
end

Given this, a request to /store/show/1 or /store/show/1.html will return HTML content,
while /store/show/1.xml will return XML, and /store/show/1.json will return JSON.
You can also pass the format in as an HTTP request parameter:

GET HTTP://pragprog.com/store/show/123?format=xml

report erratum • discuss

Dispatching Requests to Controllers • 359

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Although the idea of having a single controller that responds with different
content types seems appealing, the reality is tricky. In particular, it turns out
that error handling can be tough. Although it’s acceptable on error to redirect
a user to a form, showing them a nice flash message, you have to adopt a
different strategy when you serve XML. Consider your application architecture
carefully before deciding to bundle all your processing into single controllers.

Rails makes it straightforward to develop an application that’s based on
resource-based routing. Many claim it greatly simplifies the coding of their
applications. However, it isn’t always appropriate. Don’t feel compelled to use
it if you can’t find a way of making it work. And you can always mix and
match. Some controllers can be resource based, and others can be based on
actions. Some controllers can even be resource based with a few extra actions.

Processing of Requests
In the previous section, we worked out how Action Dispatch routes an
incoming request to the appropriate code in your application. Now let’s see
what happens inside that code.

Action Methods
When a controller object processes a request, it looks for a public instance
method with the same name as the incoming action. If it finds one, that method
is invoked. If it doesn’t find one and the controller implements method_missing(),
that method is called, passing in the action name as the first parameter and
an empty argument list as the second. If no method can be called, the con-
troller looks for a template named after the current controller and action. If
found, this template is rendered directly. If none of these things happens, an
AbstractController::ActionNotFound error is generated.

Controller Environment

The controller sets up the environment for actions (and, by extension, for the
views that they invoke). Many of these methods provide direct access to
information contained in the URL or request:

action_name
The name of the action currently being processed.

cookies
The cookies associated with the request. Setting values into this object
stores cookies on the browser when the response is sent. Rails support
for sessions is based on cookies. We discuss sessions in Rails Sessions,
on page 372.

Chapter 21. Action Dispatch and Action Controller • 360

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

headers
A hash of HTTP headers that will be used in the response. By default,
Cache-Control is set to no-cache. You might want to set Content-Type headers for
special-purpose applications. Note that you shouldn’t set cookie values
in the header directly—use the cookie API to do this.

params
A hash-like object containing request parameters (along with pseudopa-
rameters generated during routing). It’s hash-like because you can index
entries using either a symbol or a string—params[:id] and params['id'] return
the same value. Idiomatic Rails applications use the symbol form.

request
The incoming request object. It includes these attributes:

• request_method returns the request method, one of :delete, :get, :head,
:post, or :put.

• method returns the same value as request_method except for :head, which
it returns as :get because these two are functionally equivalent from
an application point of view.

• delete?, get?, head?, post?, and put? return true or false based on the request
method.

• xml_http_request? and xhr? return true if this request was issued by one
of the Ajax helpers. Note that this parameter is independent of the
method parameter.

• url(), which returns the full URL used for the request.

• protocol(), host(), port(), path(), and query_string(), which return components
of the URL used for the request, based on the following pattern:
protocol://host:port/path?query_string.

• domain(), which returns the last two components of the domain name
of the request.

• host_with_port(), which is a host:port string for the request.

• port_string(), which is a :port string for the request if the port isn’t the
default port (80 for HTTP, 443 for HTTPS).

• ssl?(), which is true if this is an SSL request; in other words, the request
was made with the HTTPS protocol.

• remote_ip(), which returns the remote IP address as a string. The string
may have more than one address in it if the client is behind a proxy.

report erratum • discuss

Processing of Requests • 361

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

• env(), the environment of the request. You can use this to access values
set by the browser, such as this:

request.env['HTTP_ACCEPT_LANGUAGE']

• accepts(), which is an array with Mime::Type objects that represent the
MIME types in the Accept header.

• format(), which is computed based on the value of the Accept header,
with Mime[:HTML] as a fallback.

• content_type(), which is the MIME type for the request. This is useful for
put and post requests.

• headers(), which is the complete set of HTTP headers.

• body(), which is the request body as an I/O stream.

• content_length(), which is the number of bytes purported to be in the body.

Rails leverages a gem named Rack to provide much of this functionality.
See the documentation of Rack::Request for full details.

response
The response object, filled in during the handling of the request. Normally,
this object is managed for you by Rails. As we’ll see when we look at
callbacks in Callbacks, on page 378, we sometimes access the internals
for specialized processing.

session
A hash-like object representing the current session data. We describe this
in Rails Sessions, on page 372.

In addition, a logger is available throughout Action Pack.

Responding to the User

Part of the controller’s job is to respond to the user, which is done in four ways:

• The most common way is to render a template. In terms of the MVC
paradigm, the template is the view, taking information provided by the
controller and using it to generate a response to the browser.

• The controller can return a string directly to the browser without invoking
a view. This is fairly rare but can be used to send error notifications.

• The controller can return nothing to the browser. This is sometimes used
when responding to an Ajax request. In all cases, however, the controller
returns a set of HTTP headers because some kind of response is expected.

Chapter 21. Action Dispatch and Action Controller • 362

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

• The controller can send other data to the client (something other than
HTML). This is typically a download of some kind (perhaps a PDF docu-
ment or a file’s contents).

A controller always responds to the user exactly one time per request. This
means you should have just one call to a render(), redirect_to(), or send_xxx()
method in the processing of any request. (A DoubleRenderError exception is thrown
on the second render.)

Because the controller must respond exactly once, it checks to see whether
a response has been generated just before it finishes handling a request.
If not, the controller looks for a template named after the controller and
action and automatically renders it. This is the most common way that
rendering takes place. You may have noticed that in most of the actions in
our shopping cart tutorial we never explicitly rendered anything. Instead,
our action methods set up the context for the view and return. The controller
notices that no rendering has taken place and automatically invokes the
appropriate template.

You can have multiple templates with the same name but with different
extensions (for example, .html.erb, .xml.builder, and .js.erb). If you don’t specify an
extension in a render request, Rails assumes html.erb.

Rendering Templates

A template is a file that defines the content of a response for our application.
Rails supports three template formats out of the box: erb, which is embedded
Ruby code (typically with HTML); builder, a more programmatic way of con-
structing XML content; and RJS, which generates JavaScript. We’ll talk about
the contents of these files starting in Using Templates, on page 381.

By convention, the template for action of controller will be in the file
app/views/controller/action.type.xxx (where type is the file type, such as html, atom, or
js; and xxx is one of erb, builder, or scss). The app/views part of the name is the
default. You can override this for an entire application by setting this:

ActionController.prepend_view_path dir_path

The render() method is the heart of all rendering in Rails. It takes a hash of
options that tell it what to render and how to render it.

It’s tempting to write code in our controllers that looks like this:

DO NOT DO THIS
def update

@user = User.find(params[:id])
if @user.update(user_params)

report erratum • discuss

Processing of Requests • 363

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

render action: show
end
render template: "fix_user_errors"

end

It seems somehow natural that the act of calling render (and redirect_to) should
somehow terminate the processing of an action. This isn’t the case. The pre-
vious code will generate an error (because render is called twice) in the case
where update succeeds.

Let’s look at the render options used in the controller here (we’ll look separately
at rendering in the view starting in Partial-Page Templates, on page 402):

render()
With no overriding parameter, the render() method renders the default
template for the current controller and action. The following code will
render the template app/views/blog/index.html.erb:

class BlogController < ApplicationController
def index

render
end

end

So will the following (as the default behavior of a controller is to call render()
if the action doesn’t):

class BlogController < ApplicationController
def index
end

end

And so will this (because the controller will call a template directly if no
action method is defined):

class BlogController < ApplicationController
end

render(text: string)
Sends the given string to the client. No template interpretation or HTML
escaping is performed.

class HappyController < ApplicationController
def index

render(text: "Hello there!")
end

end

Chapter 21. Action Dispatch and Action Controller • 364

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

render(inline: string, [type: "erb"|"builder"|"scss"], [locals: hash])
Interprets string as the source to a template of the given type, rendering
the results back to the client. You can use the :locals hash to set the values
of local variables in the template.

The following code adds method_missing() to a controller if the application is
running in development mode. If the controller is called with an invalid
action, this renders an inline template to display the action’s name and
a formatted version of the request parameters:

class SomeController < ApplicationController

if RAILS_ENV == "development"
def method_missing(name, *args)
render(inline: %{

<h2>Unknown action: #{name}</h2>
Here are the request parameters:

<%= debug(params) %> })

end
end

end

render(action: action_name)
Renders the template for a given action in this controller. Sometimes folks
use the :action form of render() when they should use redirects. See the
discussion starting in Redirects, on page 368, for why this is a bad idea.

def display_cart
if @cart.empty?

render(action: :index)
else

...
end

end

Note that calling render(:action...) doesn’t call the action method; it simply
displays the template. If the template needs instance variables, these
must be set up by the method that calls the render() method.

Let’s repeat this, because this is a mistake that beginners often make:
calling render(:action...) doesn’t invoke the action method. It simply renders
that action’s default template.

render(template: name, [locals: hash])
Renders a template and arranges for the resulting text to be sent back to
the client. The :template value must contain both the controller and action
parts of the new name, separated by a forward slash. The following code
will render the template app/views/blog/short_list:

report erratum • discuss

Processing of Requests • 365

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

class BlogController < ApplicationController
def index

render(template: "blog/short_list")
end

end

render(file: path)
Renders a view that may be entirely outside of your application (perhaps
one shared with another Rails application). By default, the file is rendered
without using the current layout. This can be overridden with layout: true.

render(partial: name, …)
Renders a partial template. We talk about partial templates in depth in
Partial-Page Templates, on page 402.

render(nothing: true)
Returns nothing—sends an empty body to the browser.

render(xml: stuff)
Renders stuff as text, forcing the content type to be application/xml.

render(json: stuff, [callback: hash])
Renders stuff as JSON, forcing the content type to be application/json. Spec-
ifying :callback will cause the result to be wrapped in a call to the named
callback function.

render(:update) do |page| ... end
Renders the block as an RJS template, passing in the page object.

render(:update) do |page|
page[:cart].replace_html partial: 'cart', object: @cart
page[:cart].visual_effect :blind_down if @cart.total_items == 1

end

All forms of render() take optional :status, :layout, and :content_type parameters.
The :status parameter provides the value used in the status header in the HTTP
response. It defaults to "200 OK". Do not use render() with a 3xx status to do
redirects; Rails has a redirect() method for this purpose.

The :layout parameter determines whether the result of the rendering will be
wrapped by a layout. (We first came across layouts in Iteration C2: Adding a
Page Layout, on page 105. We’ll look at them in depth starting in Reducing
Maintenance with Layouts and Partials, on page 398.) If the parameter is false,
no layout will be applied. If set to nil or true, a layout will be applied only if
there’s one associated with the current action. If the :layout parameter has a
string as a value, it’ll be taken as the name of the layout to use when render-
ing. A layout is never applied when the :nothing option is in effect.

Chapter 21. Action Dispatch and Action Controller • 366

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

The :content_type parameter lets you specify a value that will be passed to the
browser in the Content-Type HTTP header.

Sometimes it’s useful to be able to capture what would otherwise be sent to
the browser in a string. The render_to_string() method takes the same parameters
as render() but returns the result of rendering as a string—the rendering isn’t
stored in the response object and so won’t be sent to the user unless you take
some additional steps.

Calling render_to_string doesn’t count as a real render. You can invoke the real
render method later without getting a DoubleRender error.

Sending Files and Other Data

We’ve looked at rendering templates and sending strings in the controller.
The third type of response is to send data (typically, but not necessarily, file
contents) to the client.

send_data(data, options…)

This sends a data stream to the client. Typically the browser will use a com-
bination of the content type and the disposition, both set in the options, to
determine what to do with this data.

def sales_graph
png_data = Sales.plot_for(Date.today.month)
send_data(png_data, type: "image/png", disposition: "inline")
end

The options are as follows:

:disposition (string)
Suggests to the browser that the file should be displayed inline (option
inline) or downloaded and saved (option attachment, the default).

:filename string
A suggestion to the browser of the default filename to use when saving
this data.

:status (string)
The status code (defaults to "200 OK").

:type (string)
The content type, defaulting to application/octet-stream.

:url_based_filename boolean
If true and :filename isn’t set, this option prevents Rails from providing
the basename of the file in the Content-Disposition header. Specifying

report erratum • discuss

Processing of Requests • 367

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

the basename of the file is necessary to make some browsers handle
i18n filenames correctly.

A related method is send_file, which sends the contents of a file to the client.

send_file(path, options…)

This sends the given file to the client. The method sets the Content-Length,
Content-Type, Content-Disposition, and Content-Transfer-Encoding headers.

:buffer_size (number)
The amount sent to the browser in each write if streaming is enabled
(:stream is true).

:disposition (string)
Suggests to the browser that the file should be displayed inline (option
inline) or downloaded and saved (option attachment, the default).

:filename (string)
A suggestion to the browser of the default filename to use when saving
the file. If not set, defaults to the filename part of path.

:status string
The status code (defaults to "200 OK").

:stream (true or false)
If false, the entire file is read into server memory and sent to the client.
Otherwise, the file is read and written to the client in :buffer_size chunks.

:type (string)
The content type, defaulting to application/octet-stream.

You can set additional headers for either send_ method by using the headers
attribute in the controller:

def send_secret_file
send_file("/files/secret_list")
headers["Content-Description"] = "Top secret"

end

We show how to upload files starting in Uploading Files to Rails Applications,
on page 387.

Redirects

An HTTP redirect is sent from a server to a client in response to a request. In
effect, it says, “I’m done processing this request, and you should go here to
see the results.” The redirect response includes a URL that the client should
try next along with some status information saying whether this redirection

Chapter 21. Action Dispatch and Action Controller • 368

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

is permanent (status code 301) or temporary (307). Redirects are sometimes
used when web pages are reorganized; clients accessing pages in the old
locations will get referred to the page’s new home. More commonly, Rails
applications use redirects to pass the processing of a request off to some
other action.

Redirects are handled behind the scenes by web browsers. Normally, the only
way you’ll know that you’ve been redirected is a slight delay and the fact that
the URL of the page you’re viewing will have changed from the one you
requested. This last point is important—as far as the browser is concerned,
a redirect from a server acts pretty much the same as having an end user
enter the new destination URL manually.

Redirects turn out to be important when writing well-behaved web applica-
tions. Let’s look at a basic blogging application that supports comment posting.
After a user has posted a comment, our application should redisplay the
article, presumably with the new comment at the end.

It’s tempting to code this using logic such as the following:

class BlogController
def display

@article = Article.find(params[:id])
end

def add_comment
@article = Article.find(params[:id])
comment = Comment.new(params[:comment])
@article.comments << comment
if @article.save
flash[:note] = "Thank you for your valuable comment"

else
flash[:note] = "We threw your worthless comment away"

end
DON'T DO THIS
render(action: 'display')

end
end

The intent here was clearly to display the article after a comment has been
posted. To do this, the developer ended the add_comment() method with a call to
render(action:'display'). This renders the display view, showing the updated article to
the end user. But think of this from the browser’s point of view. It sends a URL
ending in blog/add_comment and gets back an index listing. As far as the browser
is concerned, the current URL is still the one that ends in blog/add_comment. This
means that if the user hits Refresh or Reload (perhaps to see whether anyone
else has posted a comment), the add_comment URL will be sent again to the

report erratum • discuss

Processing of Requests • 369

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

application. The user intended to refresh the display, but the application sees
a request to add another comment. In a blog application, this kind of uninten-
tional double entry is inconvenient. In an online store, it can get expensive.

In these circumstances, the correct way to show the added comment in the
index listing is to redirect the browser to the display action. We do this using
the Rails redirect_to() method. If the user subsequently hits Refresh, it will
simply reinvoke the display action and not add another comment.

def add_comment
@article = Article.find(params[:id])
comment = Comment.new(params[:comment])
@article.comments << comment
if @article.save

flash[:note] = "Thank you for your valuable comment"
else

flash[:note] = "We threw your worthless comment away"
end
redirect_to(action: 'display')➤

end

Rails has a lightweight yet powerful redirection mechanism. It can redirect
to an action in a given controller (passing parameters), to a URL (on or off
the current server), or to the previous page.

Let’s look at these three forms in turn:

redirect_to(action: ..., options…) Sends a temporary redirection to the browser
based on the values in the options hash. The target URL is generated
using url_for(), so this form of redirect_to() has all the smarts of Rails
routing code behind it.

redirect_to(path) Redirects to the given path. If the path doesn’t start with a
protocol (such as http://), the protocol and port of the current request will
be prepended. This method doesn’t perform any rewriting on the URL, so
it shouldn’t be used to create paths that are intended to link to actions
in the application (unless you generate the path using url_for or a named
route URL generator).

def save
order = Order.new(params[:order])
if order.save

redirect_to action: "display"
else

session[:error_count] ||= 0
session[:error_count] += 1
if session[:error_count] < 4
self.notice = "Please try again"

Chapter 21. Action Dispatch and Action Controller • 370

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

else
Give up -- user is clearly struggling
redirect_to("/help/order_entry.html")

end
end

end

redirect_to(:back) Redirects to the URL given by the HTTP_REFERER header in the
current request.

def save_details
unless params[:are_you_sure] == 'Y'

redirect_to(:back)
else

...
end

end

By default all redirections are flagged as temporary (they’ll affect only the
current request). When redirecting to a URL, it’s possible you might want to
make the redirection permanent. In that case, set the status in the response
header accordingly:

headers["Status"] = "301 Moved Permanently"
redirect_to("http://my.new.home")

Because redirect methods send responses to the browser, the same rules
apply as for the rendering methods—you can issue only one per request.

So far, we’ve been looking at requests and responses in isolation. Rails also
provides a number of mechanisms that span requests.

Objects and Operations That Span Requests
While the bulk of the state that persists across requests belongs in the
database and is accessed via Active Record, some other bits of state have
different life spans and need to be managed differently. In the Depot applica-
tion, while the Cart itself was stored in the database, knowledge of which cart
is the current cart was managed by sessions. Flash notices were used to
communicate messages such as “Can’t delete the last user” to the next request
after a redirect. And callbacks were used to extract locale data from the URLs
themselves.

In this section, we’ll explore each of these mechanisms in turn.

report erratum • discuss

Objects and Operations That Span Requests • 371

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Rails Sessions
A Rails session is a hash-like structure that persists across requests. Unlike
raw cookies, sessions can hold any objects (as long as those objects can be
marshaled), which makes them ideal for holding state information in web
applications. For example, in our store application, we used a session to hold
the shopping cart object between requests. The Cart object could be used in
our application just like any other object. But Rails arranged things such
that the cart was saved at the end of handling each request and, more
important, that the correct cart for an incoming request was restored when
Rails started to handle that request. Using sessions, we can pretend that our
application stays around between requests.

And that leads to an interesting question: exactly where does this data stay
around between requests? One choice is for the server to send it down to
the client as a cookie. This is the default for Rails. It places limitations on
the size and increases the bandwidth but means that there’s less for the
server to manage and clean up. Note that the contents are (by default)
encrypted, which means that users can neither see nor tamper with the
contents.

The other option is to store the data on the server. It requires more work to
set up and is rarely necessary. First, Rails has to keep track of sessions. It
does this by creating (by default) a 32-hex character key (which means there
are 1632 possible combinations). This key is called the session ID, and it’s
effectively random. Rails arranges to store this session ID as a cookie (with
the key _session_id) on the user’s browser. Because subsequent requests come
into the application from this browser, Rails can recover the session ID.

Second, Rails keeps a persistent store of session data on the server, indexed
by the session ID. When a request comes in, Rails looks up the data store
using the session ID. The data that it finds there is a serialized Ruby object.
It deserializes this and stores the result in the controller’s session attribute,
where the data is available to our application code. The application can add
to and modify this data to its heart’s content. When it finishes processing
each request, Rails writes the session data back into the data store. There it
sits until the next request from this browser comes along.

What should you store in a session? You can store anything you want, subject
to a few restrictions and caveats:

• Some restrictions apply on what kinds of object you can store in a
session. The details depend on the storage mechanism you choose
(which we’ll look at shortly). In the general case, objects in a session

Chapter 21. Action Dispatch and Action Controller • 372

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

must be serializable (using Ruby’s Marshal functions). This means, for
example, that you can’t store an I/O object in a session.

• If you store any Rails model objects in a session, you’ll have to add model
declarations for them. This causes Rails to preload the model class so
that its definition is available when Ruby comes to deserialize it from the
session store. If the use of the session is restricted to just one controller,
this declaration can go at the top of that controller.

class BlogController < ApplicationController

model :user_preferences

. . .

However, if the session might get read by another controller (which is
likely in any application with multiple controllers), you’ll probably want
to add the declaration to application_controller.rb in app/controllers.

• You probably don’t want to store massive objects in session data—put
them in the database and reference them from the session. This is partic-
ularly true for cookie-based sessions, where the overall limit is 4 KB.

• You probably don’t want to store volatile objects in session data. For
example, you might want to keep a tally of the number of articles in a
blog and store that in the session for performance reasons. But if you do
that, the count won’t get updated if some other user adds an article.

It’s tempting to store objects representing the currently logged-in user in
session data. This might not be wise if your application needs to be able
to invalidate users. Even if a user is disabled in the database, their session
data will still reflect a valid status.

Store volatile data in the database, and reference it from the session
instead.

• You probably don’t want to store critical information solely in session
data. For example, if your application generates an order confirmation
number in one request and stores it in session data so that it can be saved
to the database when the next request is handled, you risk losing that
number if the user deletes the cookie from their browser. Critical informa-
tion needs to be in the database.

One more caveat—and it’s a big one. If you store an object in session data,
then the next time you come back to that browser, your application will end
up retrieving that object. However, if in the meantime you’ve updated your
application, the object in session data may not agree with the definition of

report erratum • discuss

Objects and Operations That Span Requests • 373

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

that object’s class in your application, and the application will fail while pro-
cessing the request. You have three options here. One is to store the object
in the database using conventional models and keep just the ID of the row
in the session. Model objects are far more forgiving of schema changes than
the Ruby marshaling library. The second option is to manually delete all the
session data stored on your server whenever you change the definition of a
class stored in that data.

The third option is slightly more complex. If you add a version number to
your session keys and change that number whenever you update the stored
data, you’ll only ever load data that corresponds with the current version of
the application. You can potentially version the classes whose objects are
stored in the session and use the appropriate classes depending on the session
keys associated with each request. This last idea can be a lot of work, so you’ll
need to decide whether it’s worth the effort.

Because the session store is hash-like, you can save multiple objects in it,
each with its own key.

There’s no need to also disable sessions for particular actions. Because ses-
sions are lazily loaded, simply don’t reference a session in any action in which
you don’t need a session.

Session Storage

Rails has a number of options when it comes to storing your session data.
Each has good and bad points. We’ll start by listing the options and then
compare them at the end.

The session_store attribute of ActionController::Base determines the session storage
mechanism—set this attribute to a class that implements the storage strategy.
This class must be defined in the ActiveSupport::Cache::Store module. You use
symbols to name the session storage strategy; the symbol is converted into
a CamelCase class name.

session_store = :cookie_store
This is the default session storage mechanism used by Rails, starting
with version 2.0. This format represents objects in their marshaled form,
which allows any serializable data to be stored in sessions but is limited
to 4 KB total. This is the option we used in the Depot application.

Chapter 21. Action Dispatch and Action Controller • 374

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

session_store = :active_record_store
You can use the activerecord-session_store gem2 to store your session data in
your application’s database using ActiveRecordStore.

session_store = :drb_store
DRb is a protocol that allows Ruby processes to share objects over a net-
work connection. Using the DRbStore database manager, Rails stores
session data on a DRb server (which you manage outside the web appli-
cation). Multiple instances of your application, potentially running on
distributed servers, can access the same DRb store. DRb uses Marshal to
serialize objects.

session_store = :mem_cache_store
memcached is a freely available, distributed object caching system main-
tained by Dormando.3 memcached is more complex to use than the other
alternatives and is probably interesting only if you’re already using it for
other reasons at your site.

session_store = :memory_store
This option stores the session data locally in the application’s memory.
Because no serialization is involved, any object can be stored in an
in-memory session. As we’ll see in a minute, this generally isn’t a good
idea for Rails applications.

session_store = :file_store
Session data is stored in flat files. It’s pretty much useless for Rails
applications because the contents must be strings. This mechanism
supports the additional configuration options :prefix, :suffix, and :tmpdir.

Comparing Session Storage Options

With all these session options to choose from, which should you use in your
application? As always, the answer is “it depends.”

When it comes to performance, there are few absolutes, and everyone’s context
is different. Your hardware, network latencies, database choices, and possibly
even the weather will impact how all the components of session storage
interact. Our best advice is to start with the simplest workable solution and
then monitor it. If it starts to slow you down, find out why before jumping
out of the frying pan.

2. https://github.com/rails/activerecord-session_store#installation
3. http://memcached.org/

report erratum • discuss

Objects and Operations That Span Requests • 375

https://github.com/rails/activerecord-session_store#installation
http://memcached.org/
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

If you have a high-volume site, keeping the size of the session data small and
going with cookie_store is the way to go.

If we rule out memory store as being too simplistic, file store as too restrictive,
and memcached as overkill, the server-side choices boil down to CookieStore,
Active Record store, and DRb-based storage. Should you need to store more
in a session than you can with cookies, we recommend you start with an
Active Record solution. If, as your application grows, you find this becoming
a bottleneck, you can migrate to a DRb-based solution.

Session Expiry and Cleanup

One problem with all the server-side session storage solutions is that each
new session adds something to the session store. This means you’ll eventually
need to do some housekeeping or you’ll run out of server resources.

Another reason to tidy up sessions is that many applications don’t want a
session to last forever. Once a user has logged in from a particular browser,
the application might want to enforce a rule that the user stays logged in only
as long as they’re active; when they log out or some fixed time after they last
use the application, their session should be terminated.

You can sometimes achieve this effect by expiring the cookie holding the
session ID. But this is open to end-user abuse. Worse, it’s hard to synchronize
the expiry of a cookie on the browser with the tidying up of the session data
on the server.

We therefore suggest you expire sessions by simply removing their server-side
session data. Should a browser request subsequently arrive containing a
session ID for data that’s been deleted, the application will receive no session
data; the session will effectively not be there.

Implementing this expiration depends on the storage mechanism being used.

For Active Record–based session storage, use the updated_at columns in the sessions
table. You can delete all sessions that haven’t been modified in the last hour
(ignoring daylight saving time changes) by having your sweeper task issue SQL
such as this:

delete from sessions
where now() - updated_at > 3600;

For DRb-based solutions, expiry takes place within the DRb server process.
You’ll probably want to record timestamps alongside the entries in the session
data hash. You can run a separate thread (or even a separate process) that
periodically deletes the entries in this hash.

Chapter 21. Action Dispatch and Action Controller • 376

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

In all cases, your application can help this process by calling reset_session()
to delete sessions when they’re no longer needed (for example, when a user
logs out).

Flash: Communicating Between Actions
When we use redirect_to() to transfer control to another action, the browser
generates a separate request to invoke that action. That request will be han-
dled by our application in a fresh instance of a controller object—instance
variables that were set in the original action aren’t available to the code
handling the redirected action. But sometimes we need to communicate
between these two instances. We can do this using a facility called the flash.

The flash is a temporary scratchpad for values. It’s organized like a hash and
stored in the session data, so you can store values associated with keys
and later retrieve them. It has one special property. By default, values
stored into the flash during the processing of a request will be available during
the processing of the immediately following request. Once that second request
has been processed, those values are removed from the flash.

Probably the most common use of the flash is to pass error and informational
strings from one action to the next. The intent here is that the first action
notices some condition, creates a message describing that condition, and
redirects to a separate action. By storing the message in the flash, the second
action is able to access the message text and use it in a view. An example of
such usage can be found in Iteration E1 on page 134.

It’s sometimes convenient to use the flash as a way of passing messages into
a template in the current action. For example, our display() method might want
to output a cheery banner if there isn’t another, more pressing note. It doesn’t
need that message to be passed to the next action—it’s for use in the current
request only. To do this, it could use flash.now, which updates the flash but
doesn’t add to the session data.

While flash.now creates a transient flash entry, flash.keep does the opposite,
making entries that are currently in the flash stick around for another request
cycle. If you pass no parameters to flash.keep, then all the flash contents are
preserved.

Flashes can store more than just text messages—you can use them to pass
all kinds of information between actions. Obviously, for longer-term informa-
tion you’d want to use the session (probably in conjunction with your database)
to store the data, but the flash is great if you want to pass parameters from
one request to the next.

report erratum • discuss

Objects and Operations That Span Requests • 377

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Because the flash data is stored in the session, all the usual rules apply. In
particular, every object must be serializable. We strongly recommend passing
only basic objects like Strings or Hashes in the flash.

Callbacks
Callbacks enable you to write code in your controllers that wrap the processing
performed by actions—you can write a chunk of code once and have it be
called before or after any number of actions in your controller (or your con-
troller’s subclasses). This turns out to be a powerful facility. Using callbacks,
we can implement authentication schemes, logging, response compression,
and even response customization.

Rails supports three types of callbacks: before, after, and around. Such call-
backs are called just prior to and/or just after the execution of actions.
Depending on how you define them, they either run as methods inside the
controller or are passed to the controller object when they are run. Either
way, they get access to details of the request and response objects, along with
the other controller attributes.

Before and After Callbacks

As their names suggest, before and after callbacks are invoked before or after
an action. Rails maintains two chains of callbacks for each controller. When
a controller is about to run an action, it executes all the callbacks on the before
chain. It executes the action before running the callbacks on the after chain.

Callbacks can be passive, monitoring activity performed by a controller. They
can also take a more active part in request handling. If a before action callback
returns false, then processing of the callback chain terminates and the action
isn’t run. A callback may also render output or redirect requests, in which
case the original action never gets invoked.

Callback declarations also accept blocks and the names of classes. If a block
is specified, it’ll be called with the current controller as a parameter. If a class
is given, its filter() class method will be called with the controller as a parameter.

By default, callbacks apply to all actions in a controller (and any subclasses
of that controller). You can modify this with the :only option, which takes one
or more actions on which the callback is invoked, and the :except option, which
lists actions to be excluded from callback.

The before_action and after_action declarations append to the controller’s chain of
callbacks. Use the variants prepend_before_action() and prepend_after_action() to put
callbacks at the front of the chain.

Chapter 21. Action Dispatch and Action Controller • 378

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

After callbacks can be used to modify the outbound response, changing the
headers and content if required. Some applications use this technique to
perform global replacements in the content generated by the controller’s
templates (for example, by substituting a customer’s name for the string
<customer/> in the response body). Another use might be compressing the
response if the user’s browser supports it.

Around callbacks wrap the execution of actions. You can write an around
callback in two different styles. In the first, the callback is a single chunk of
code. That code is called before the action is executed. If the callback code
invokes yield, the action is executed. When the action completes, the callback
code continues executing.

Thus, the code before the yield is like a before action callback, and the code
after is the after action callback. If the callback code never invokes yield, the
action isn’t run—this way you can achieve the same result as a before action
callback returning false.

The benefit of around callbacks is that they can retain context across the
invocation of the action.

As well as passing around_action the name of a method, you can pass it a block
or a filter class.

If you use a block as a callback, it’ll be passed two parameters: the controller
object and a proxy for the action. Use call() on this second parameter to invoke
the original action.

A second form allows you to pass an object as a callback. This object should
implement a method called filter(). This method will be passed the controller
object. It yields to invoke the action.

Like before and after callbacks, around callbacks take :only and :except
parameters.

Around callbacks are (by default) added to the callback chain differently: the
first around action callback added executes first. Subsequently added around
callbacks will be nested within existing around callbacks.

Callback Inheritance

If you subclass a controller containing callbacks, the callbacks will be run
on the child objects as well as in the parent. But callbacks defined in the
children won’t run in the parent.

report erratum • discuss

Objects and Operations That Span Requests • 379

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

If you don’t want a particular callback to run in a child controller, you can
override the default processing with the skip_before_action and skip_after_action
declarations. These accept the :only and :except parameters.

You can use skip_action to skip any action callback (before, after, and around).
However, it works only for callbacks that were specified as the (symbol) name
of a method.

What We Just Did
We learned how Action Dispatch and Action Controller cooperate to enable
our server to respond to requests. The importance of this can’t be emphasized
enough. In nearly every application, this is the primary place where the cre-
ativity of your application is expressed. While Active Record and Action View
are hardly passive, our routes and our controllers are where the action is.

We started this chapter by covering the concept of REST, which was the
inspiration for the way in which Rails approaches the routing of requests. We
saw how this provided seven basic actions as a starting point and how to add
more actions. We also saw how to select a data representation (for example,
JSON or XML). And we covered how to test routes.

We then covered the environment that Action Controller provides for your
actions as well as the methods it provides for rendering and redirecting.
Finally, we covered sessions, flash, and callbacks, each of which is available
for use in your application’s controllers.

Along the way, we showed how these concepts were used in the Depot appli-
cation. Now that you’ve seen each in use and have been exposed to the theory
behind each, how you combine and use these concepts is limited only by your
own creativity.

In the next chapter, we’ll cover the remaining component of Action Pack,
namely, Action View, which handles the rendering of results.

Chapter 21. Action Dispatch and Action Controller • 380

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

CHAPTER 22

In this chapter, you'll see:
• Templates
• Forms including fields and uploading files
• Helpers
• Layouts and partials

Action View
We’ve seen how the routing component determines which controller to use and
how the controller chooses an action. We’ve seen how the controller and action
between them decide what to render to the user. Normally, rendering takes place
at the end of the action and involves a template. That’s what this chapter is all
about. Action View encapsulates all the functionality needed to render templates,
most commonly generating HTML, XML, or JavaScript back to the user. As its
name suggests, Action View is the view part of our MVC trilogy.

In this chapter, we’ll start with templates, for which Rails provides a range
of options. We’ll then cover a number of ways in which users provide input:
forms, file uploads, and links. We’ll complete this chapter by looking at a
number of ways to reduce maintenance using helpers, layouts, and partials.

Using Templates
When you write a view, you’re writing a template: something that will get
expanded to generate the final result. To understand how these templates
work, we need to look at three areas:

• Where the templates go
• The environment they run in
• What goes inside them

Where Templates Go
The render() method expects to find templates in the app/views directory of the
current application. Within this directory, the convention is to have a separate
subdirectory for the views of each controller. Our Depot application, for
instance, includes products and store controllers. As a result, our application
has templates in app/views/products and app/views/store. Each directory typically
contains templates named after the actions in the corresponding controller.

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

You can also have templates that aren’t named after actions. You render such
templates from the controller using calls such as these:

render(action: 'fake_action_name')
render(template: 'controller/name')
render(file: 'dir/template')

The last of these allows you to store templates anywhere on your filesystem.
This is useful if you want to share templates across applications.

The Template Environment
Templates contain a mixture of fixed text and code. The code in the template
adds dynamic content to the response. That code runs in an environment
that gives it access to the information set up by the controller:

• All instance variables of the controller are also available in the template.
This is how actions communicate data to the templates.

• The controller object’s flash, headers, logger, params, request, response, and session
are available as accessor methods in the view. Apart from the flash, view
code probably shouldn’t use these directly, because the responsibility for
handling them should rest with the controller. However, we do find this
useful when debugging. For example, the following html.erb template uses
the debug() method to display the contents of the session, the details of
the parameters, and the current response:

<h4>Session</h4> <%= debug(session) %>
<h4>Params</h4> <%= debug(params) %>
<h4>Response</h4> <%= debug(response) %>

• The current controller object is accessible using the attribute named con-
troller. This allows the template to call any public method in the controller
(including the methods in ActionController::Base).

• The path to the base directory of the templates is stored in the attribute
base_path.

What Goes in a Template
Out of the box, Rails supports two types of templates:

• ERB templates are a mixture of content and embedded Ruby. They’re
typically used to generate HTML pages.

• Jbuilder1 templates generate JSON responses.

1. https://github.com/rails/jbuilder

Chapter 22. Action View • 382

report erratum • discuss

https://github.com/rails/jbuilder
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

By far, the one that you’ll be using the most will be ERB. In fact, you made
extensive use of ERB templates in developing the Depot application.

So far in this chapter, we’ve focused on producing output. In Chapter 21,
Action Dispatch and Action Controller, on page 349, we focused on processing
input. In a well-designed application, these two aren’t unrelated: the output
we produce contains forms, links, and buttons that guide the end user to
producing the next set of inputs. As you might expect by now, Rails provides
a considerable amount of help in this area too.

Generating Forms
HTML provides a number of elements, attributes, and attribute values that
control how input is gathered. You certainly could hand-code your form
directly into the template, but there’s no need to.

In this section, we’ll cover a number of helpers that Rails provides that assist
with this process. In Using Helpers, on page 391, we’ll show you how you can
create your own helpers.

HTML provides a number of ways to collect data in forms. A few of the more
common means are shown in the following screenshot. Note that the form
itself isn’t representative of any sort of typical use; in general, you’ll use only
a subset of these methods to collect data.

Let’s look at the template that was used to produce that form:

rails80/views/app/views/form/input.html.erb
<%= form_for(:model) do |form| %>Line 1

<p>-

<%= form.label :input %>-

<%= form.text_field :input, :placeholder => 'Enter text here...' %>-

</p>5

report erratum • discuss

Generating Forms • 383

http://media.pragprog.com/titles/rails8/code/rails80%2Fviews%2Fapp%2Fviews%2Fform%2Finput.html.erb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

-

<p>-

<%= form.label :address, :style => 'float: left' %>-

<%= form.text_area :address, :rows => 3, :cols => 40 %>-

</p>10

-

<p>-

<%= form.label :color %>:-

<%= form.radio_button :color, 'red' %>-

<%= form.label :red %>15

<%= form.radio_button :color, 'yellow' %>-

<%= form.label :yellow %>-

<%= form.radio_button :color, 'green' %>-

<%= form.label :green %>-

</p>20

-

<p>-

<%= form.label 'condiment' %>:-

<%= form.check_box :ketchup %>-

<%= form.label :ketchup %>25

<%= form.check_box :mustard %>-

<%= form.label :mustard %>-

<%= form.check_box :mayonnaise %>-

<%= form.label :mayonnaise %>-

</p>30

-

<p>-

<%= form.label :priority %>:-

<%= form.select :priority, (1..10) %>-

</p>35

-

<p>-

<%= form.label :start %>:-

<%= form.date_select :start %>-

</p>40

-

<p>-

<%= form.label :alarm %>:-

<%= form.time_select :alarm %>-

</p>45

<% end %>-

In that template, you’ll see a number of labels, such as the one on line 3. You
use labels to associate text with an input field for a specified attribute. The
text of the label will default to the attribute name unless you specify it
explicitly.

You use the text_field() and text_area() helpers (on lines 4 and 9, respectively) to
gather single-line and multiline input fields. You may specify a placeholder,
which will be displayed inside the field until the user provides a value. Not

Chapter 22. Action View • 384

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

every browser supports this function, but those that don’t simply will display
an empty box. Since this will degrade gracefully, there’s no need for you to
design to the least common denominator—make use of this feature, because
those who can see it will benefit from it immediately.

Placeholders are one of the many small “fit and finish” features provided
with HTML5, and once again, Rails is ready even if the browser your users
have installed is not. You can use the search_field(), telephone_field(), url_field(),
email_field(), number_field(), and range_field() helpers to prompt for a specific type
of input. How the browser will make use of this information varies. Some
may display the field slightly differently to more clearly identify its function.
Safari on Mac, for example, will display search fields with rounded corners
and will insert a little x for clearing the field once data entry begins. Some
may provide added validation. For example, Opera will validate URL fields
prior to submission. The iPad will even adjust the virtual onscreen keyboard
to provide ready access to characters such as the @ sign when entering an
email address.

Although the support for these functions varies by browser, those that don’t
provide extra support for these functions simply display a plain, unadorned
input box. Once again, nothing is gained by waiting. If you have an input field
that’s expected to contain an email address, don’t simply use text_field()—go
ahead and start using email_field() now.

Lines 14, 24, and 34 demonstrate three different ways to provide a constrained
set of options. Although the display may vary a bit from browser to browser,
these approaches are all well supported across all browsers. The select() method
is particularly flexible—it can be passed an Enumeration as shown here, an
array of pairs of name-value pairs, or a Hash. A number of form options
helpers2 are available to produce such lists from various sources, including
the database.

Finally, lines 39 and 44 show prompts for a date and time, respectively. As
you might expect by now, Rails provides plenty of options here too.3

Not shown in this example are hidden_field() and password_field(). A hidden field
isn’t displayed at all, but the value is passed back to the server. This may be
useful as an alternative to storing transient data in sessions, enabling data
from one request to be passed onto the next. Password fields are displayed,
but the text entered in them is obscured.

2. http://api.rubyonrails.org/classes/ActionView/Helpers/FormOptionsHelper.html
3. http://api.rubyonrails.org/classes/ActionView/Helpers/DateHelper.html

report erratum • discuss

Generating Forms • 385

http://api.rubyonrails.org/classes/ActionView/Helpers/FormOptionsHelper.html
http://api.rubyonrails.org/classes/ActionView/Helpers/DateHelper.html
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

This is more than an adequate starter set for most needs. Should you find
that you have additional needs, you’re likely to find a helper or gem is already
available for you. A good place to start is with the Rails Guides.4

Meanwhile, let’s explore how the data form’s submit is processed.

Processing Forms
In the figure on page 387 we can see how the various attributes in the
model pass through the controller to the view, on to the HTML page, and
back again into the model. The model object has attributes such as name,
country, and password. The template uses helper methods to construct an
HTML form to let the user edit the data in the model. Note how the form
fields are named. The country attribute, for example, maps to an HTML input
field with the name user[country].

When the user submits the form, the raw POST data is sent back to our
application. Rails extracts the fields from the form and constructs the params
hash. Simple values (such as the id field, extracted by routing from the form
action) are stored directly in the hash. But if a parameter name has brackets
in it, Rails assumes that it is part of more structured data and constructs a
hash to hold the values. Inside this hash, the string inside the brackets acts
as the key. This process can repeat if a parameter name has multiple sets of
brackets in it.

ParamsForm Parameters

{ id: "123" }id=123

{ user: { name: "Dave" }}user[name]=Dave

{ user: { address: { city: "Wien" }}}user[address][city]=Wien

In the final part of the integrated whole, model objects can accept new attribute
values from hashes, which allows us to say this:

user.update(user_params)

Rails integration goes deeper than this. Looking at the .html.erb file in the
preceding figure, we can see that the template uses a set of helper methods
to create the form’s HTML; these are methods such as form_with() and
text_field().

Before moving on, it’s worth noting that params may be used for more than
text. Entire files can be uploaded. We’ll cover that next.

4. http://guides.rubyonrails.org/form_helpers.html

Chapter 22. Action View • 386

report erratum • discuss

http://guides.rubyonrails.org/form_helpers.html
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

def edit
 @user = User.find(params[:id])
end

myapp_controller.rb

<% form_for :user,
 url: { action: 'save',
 id: @user } do |f| %>
 <%= f.text_field 'name' %>
 <%= f.text_field 'country' %>
 <%= f.password_field 'password' %>
 ...
<% end %>

edit.html.erb

<form action="/myapp/save/1234">
 <input name="user[name]" ... >
 <input name="user[country]" ... >
 <input name="user[password]" ... >
 ...
</form>

@params = {
 id: 1234,
 user: {
 name: "...",
 country: "...",
 password: "...",
 }
}

def save
 user = User.find(params[:id])
 if user.update(params[:user])
 ...
 end
end

myapp_controller.rb

1

2

3

4

5

The application receives a request to
edit a user. It reads data into the new
User model object.

The edit.html.erb template is called.
It uses the information in the user
object to generate…

…the HTML is sent to the browser.
When the response is received…

…the parameters are extracted into a
nested hash.

The save action uses the parameters
to find the user record and update it.

1

2

3

4

5

Uploading Files to Rails Applications
Your application may allow users to upload files. For example, a bug-reporting
system might let users attach log files and code samples to a problem ticket,
or a blogging application could let its users upload a small image to appear
next to their articles.

In HTTP, files are uploaded as a multipart/form-data POST message. As the
name suggests, forms are used to generate this type of message. Within that
form, you’ll use <input> tags with type="file". When rendered by a browser, this
allows the user to select a file by name. When the form is subsequently sub-
mitted, the file or files will be sent back along with the rest of the form data.

To illustrate the file upload process, we’ll show some code that allows a user
to upload an image and display that image alongside a comment. To do this,
we first need a pictures table to store the data:

report erratum • discuss

Uploading Files to Rails Applications • 387

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

rails80/e1/views/db/migrate/20170425000004_create_pictures.rb
class CreatePictures < ActiveRecord::Migration

def change
create_table :pictures do |t|
t.string :comment
t.string :name
t.string :content_type
If using MySQL, blobs default to 64k, so we have to give
an explicit size to extend them
t.binary :data, :limit => 1.megabyte

end
end

end

We’ll create a somewhat artificial upload controller just to demonstrate the
process. The get action is pretty conventional; it simply creates a new picture
object and renders a form:

rails80/e1/views/app/controllers/upload_controller.rb
class UploadController < ApplicationController

def get
@picture = Picture.new

end
. . .
private

Never trust parameters from the scary internet, only allow the white
list through.
def picture_params
params.require(:picture).permit(:comment, :uploaded_picture)

end
end

The get template contains the form that uploads the picture (along with a
comment). Note how we override the encoding type to allow data to be sent
back with the response:

rails80/e1/views/app/views/upload/get.html.erb
<%= form_for(:picture,

url: {action: 'save'},
html: {multipart: true}) do |form| %>

Comment: <%= form.text_field("comment") %>

Upload your picture: <%= form.file_field("uploaded_picture") %>

<%= submit_tag("Upload file") %>
<% end %>

The form has one other subtlety. The picture uploads into an attribute called
uploaded_picture. However, the database table doesn’t contain a column of that
name. That means that there must be some magic happening in the model:

Chapter 22. Action View • 388

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fe1%2Fviews%2Fdb%2Fmigrate%2F20170425000004_create_pictures.rb
http://media.pragprog.com/titles/rails8/code/rails80%2Fe1%2Fviews%2Fapp%2Fcontrollers%2Fupload_controller.rb
http://media.pragprog.com/titles/rails8/code/rails80%2Fe1%2Fviews%2Fapp%2Fviews%2Fupload%2Fget.html.erb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

rails80/e1/views/app/models/picture.rb
class Picture < ActiveRecord::Base

validates_format_of :content_type,
with: /\Aimage/,
message: "must be a picture"

def uploaded_picture=(picture_field)
self.name = base_part_of(picture_field.original_filename)
self.content_type = picture_field.content_type.chomp
self.data = picture_field.read

end

def base_part_of(file_name)
File.basename(file_name).gsub(/[^\w._-]/, '')

end
end

We define an accessor called uploaded_picture=() to receive the file uploaded by
the form. The object returned by the form is an interesting hybrid. It’s file-
like, so we can read its contents with the read() method; that’s how we get the
image data into the data column. It also has the attributes content_type and
original_filename, which let us get at the uploaded file’s metadata. Accessor
methods pick all this apart, resulting in a single object stored as separate
attributes in the database.

Note that we also add a validation to check that the content type is of the
form image/xxx. We don’t want someone uploading JavaScript.

The save action in the controller is totally conventional:

rails80/e1/views/app/controllers/upload_controller.rb
def save

@picture = Picture.new(picture_params)
if @picture.save

redirect_to(action: 'show', id: @picture.id)
else

render(action: :get)
end

end

Now that we have an image in the database, how do we display it? One way
is to give it its own URL and link to that URL from an image tag. For example,
we could use a URL such as upload/picture/123 to return the image for picture
123. This would use send_data() to return the image to the browser. Note how
we set the content type and filename—this lets browsers interpret the data
and supplies a default name should the user choose to save the image:

report erratum • discuss

Uploading Files to Rails Applications • 389

http://media.pragprog.com/titles/rails8/code/rails80%2Fe1%2Fviews%2Fapp%2Fmodels%2Fpicture.rb
http://media.pragprog.com/titles/rails8/code/rails80%2Fe1%2Fviews%2Fapp%2Fcontrollers%2Fupload_controller.rb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

rails80/e1/views/app/controllers/upload_controller.rb
def picture

@picture = Picture.find(params[:id])
send_data(@picture.data,

filename: @picture.name,
type: @picture.content_type,
disposition: "inline")

end

Finally, we can implement the show action, which displays the comment and
the image. The action simply loads the picture model object:

rails80/e1/views/app/controllers/upload_controller.rb
def show

@picture = Picture.find(params[:id])
end

In the template, the image tag links back to the action that returns the picture
content. In the following screenshot, we can see the get and show actions.

rails80/e1/views/app/views/upload/show.html.erb
<h3><%= @picture.comment %></h3>

<img src="<%= url_for(:action => 'picture', :id => @picture.id) %>"/>

If you’d like an easier way of dealing with uploading and storing images, take
a look at Active Storage,5 which we used in Chapter 16, Task K: Receive Emails
and Respond with Rich Text, on page 247.

Forms and uploads are just two examples of helpers that Rails provides. Next
we’ll show you how you can provide your own helpers and introduce you to
a number of other helpers that come with Rails.

5. https://edgeguides.rubyonrails.org/active_storage_overview.html

Chapter 22. Action View • 390

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fe1%2Fviews%2Fapp%2Fcontrollers%2Fupload_controller.rb
http://media.pragprog.com/titles/rails8/code/rails80%2Fe1%2Fviews%2Fapp%2Fcontrollers%2Fupload_controller.rb
http://media.pragprog.com/titles/rails8/code/rails80%2Fe1%2Fviews%2Fapp%2Fviews%2Fupload%2Fshow.html.erb
https://edgeguides.rubyonrails.org/active_storage_overview.html
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Using Helpers
Earlier we said it’s OK to put code in templates. Now we’re going to modify
that statement. It’s perfectly acceptable to put some code in templates—that’s
what makes them dynamic. However, it’s poor style to put too much code in
templates.

Three main reasons for this stand out. First, the more code you put in the
view side of your application, the easier it is to let discipline slip and start
adding application-level functionality to the template code. This is definitely
poor form; you want to put application stuff in the controller and model layers
so that it’s available everywhere. This will pay off when you add new ways of
viewing the application.

The second reason is that html.erb is basically HTML. When you edit it, you’re
editing an HTML file. If you have the luxury of having professional designers
create your layouts, they’ll want to work with HTML. Putting a bunch of Ruby
code in there just makes it hard to work with.

The final reason is that code embedded in views is hard to test, whereas code
split out into helper modules can be isolated and tested as individual units.

Rails provides a nice compromise in the form of helpers. A helper is simply a
module containing methods that assist a view. Helper methods are output-
centric. They exist to generate HTML (or XML, or JavaScript)—a helper extends
the behavior of a template.

Your Own Helpers
By default, each controller gets its own helper module. Additionally, there’s
an application-wide helper named application_helper.rb. It won’t be surprising to
learn that Rails makes certain assumptions to help link the helpers into the
controller and its views. While all view helpers are available to all controllers,
it’s often good practice to organize helpers. Helpers that are unique to the
views associated with the ProductController tend to be placed in a helper module
called ProductHelper in the file product_helper.rb in the app/helpers directory. You don’t
have to remember all these details—the rails generate controller script creates a
stub helper module automatically.

We can use helpers to clean up the application layout a bit. Currently we
have the following:

<h3><%= @page_title || "Pragmatic Store" %></h3>

report erratum • discuss

Using Helpers • 391

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Let’s move the code that works out the page title into a helper method. Because
we’re in the store controller, we edit the store_helper.rb file in app/helpers:

module StoreHelper
def page_title

@page_title || "Pragmatic Store"
end

end

Now the view code simply calls the helper method:

<h3><%= page_title %></h3>

(We might want to eliminate even more duplication by moving the rendering
of the entire title into a separate partial template, shared by all the controller’s
views, but we don’t talk about partial templates until Partial-Page Templates,
on page 402.)

Helpers for Formatting and Linking
Rails comes with a bunch of built-in helper methods, available to all views.
Here, we’ll touch on the highlights, but you’ll probably want to look at the
Action View RDoc for the specifics—there’s a lot of functionality in there.

Aside from the general convenience these helpers provide, many of them also
handle internationalization and localization. In Chapter 15, Task J: Interna-
tionalization, on page 225, we translated much of the application. Many of the
helpers we used handled that for us, such as number_to_currency(). It’s always a
good practice to use Rails helpers where they’re appropriate, even if it seems
just as easy to hard-code the output you want.

Formatting Helpers

One set of helper methods deals with dates, numbers, and text:

<%= distance_of_time_in_words(Time.now, Time.local(2016, 12, 25)) %>
4 months

<%= distance_of_time_in_words(Time.now, Time.now + 33, include_seconds: false) %>
1 minute

<%= distance_of_time_in_words(Time.now, Time.now + 33, include_seconds: true) %>
Half a minute

<%= time_ago_in_words(Time.local(2012, 12, 25)) %>
7 months

<%= number_to_currency(123.45) %>
$123.45

Chapter 22. Action View • 392

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

<%= number_to_currency(234.56, unit: "CAN$", precision: 0) %>
CAN$235

<%= number_to_human_size(123_456) %>
120.6 KB

<%= number_to_percentage(66.66666) %>
66.667%

<%= number_to_percentage(66.66666, precision: 1) %>
66.7%

<%= number_to_phone(2125551212) %>
212-555-1212

<%= number_to_phone(2125551212, area_code: true, delimiter: " ") %>
(212) 555 1212

<%= number_with_delimiter(12345678) %>
12,345,678

<%= number_with_delimiter(12345678, delimiter: "_") %>
12_345_678

<%= number_with_precision(50.0/3, precision: 2) %>
16.67

The debug() method dumps out its parameter using YAML and escapes the
result so it can be displayed in an HTML page. This can help when trying to
look at the values in model objects or request parameters:

<%= debug(params) %>

--- !ruby/hash:HashWithIndifferentAccess
name: Dave
language: Ruby
action: objects
controller: test

Yet another set of helpers deals with text, using methods to truncate strings
and highlight words in a string:

<%= simple_format(@trees) %>
Formats a string, honoring line and paragraph breaks. You could give it
the plain text of the Joyce Kilmer poem Trees,6 and it would add the HTML
to format it as follows.

6. https://www.poetryfoundation.org/poetrymagazine/poems/12744/trees

report erratum • discuss

Using Helpers • 393

https://www.poetryfoundation.org/poetrymagazine/poems/12744/trees
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

<p> I think that I shall never see
A poem lovely as a tree.</p> <p>A
tree whose hungry mouth is prest
Against the sweet earth’s flowing
breast; </p>

<%= excerpt(@trees, "lovely", 8) %>
...A poem lovely as a tre...

<%= highlight(@trees, "tree") %>
I think that I shall never see A poem lovely as a <strong class="high-
light">tree. A <strong class="highlight">tree whose
hungry mouth is prest Against the sweet earth’s flowing breast;

<%= truncate(@trees, length: 20) %>
I think that I sh...

There’s a method to pluralize nouns:

<%= pluralize(1, "person") %> but <%= pluralize(2, "person") %>
1 person but 2 people

If you’d like to do what the fancy websites do and automatically hyperlink
URLs and email addresses, there are helpers to do that. Another one strips
hyperlinks from text.

Back in Iteration A2 on page 77, we saw how the cycle() helper can be used to
return the successive values from a sequence each time it’s called, repeating
the sequence as necessary. This is often used to create alternating styles for
the rows in a table or list. The current_cycle() and reset_cycle() methods are also
available.

Finally, if you’re writing something like a blog site or you’re allowing users to
add comments to your store, you could offer them the ability to create their text
in Markdown (BlueCloth)7 or Textile (RedCloth)8 format. These are formatters
that take text written in human-friendly markup and convert it into HTML.

Linking to Other Pages and Resources

The ActionView::Helpers::AssetTagHelper and ActionView::Helpers::UrlHelper modules contain
a number of methods that let you reference resources external to the current
template. Of these, the most commonly used is link_to(), which creates a
hyperlink to another action in your application:

<%= link_to "Add Comment", new_comments_path %>

7. https://github.com/rtomayko/rdiscount
8. http://redcloth.org/

Chapter 22. Action View • 394

report erratum • discuss

https://github.com/rtomayko/rdiscount
http://redcloth.org/
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

The first parameter to link_to() is the text displayed for the link. The next is a
string or hash specifying the link’s target.

An optional third parameter provides HTML attributes for the generated link:

<%= link_to "Delete", product_path(@product),
{ class: "dangerous", method: 'delete' }

%>

This third parameter also supports two additional options that modify the
behavior of the link. Each requires JavaScript to be enabled in the browser.

The :method option is a hack—it allows you to make the link look to the appli-
cation as if the request were created by a POST, PUT, PATCH, or DELETE, rather
than the normal GET method. This is done by creating a chunk of JavaScript
that submits the request when the link is clicked—if JavaScript is disabled
in the browser, a GET will be generated.

The :data parameter allows you to set custom data attributes. The most com-
monly used one is the :confirm option, which takes a short message. If present,
an unobtrusive JavaScript driver will display the message and get the user’s
confirmation before the link is followed:

<%= link_to "Delete", product_path(@product),
method: :delete,
data: { confirm: 'Are you sure?' }

%>

The button_to() method works the same as link_to() but generates a button in a
self-contained form rather than a straight hyperlink. This is the preferred
method of linking to actions that have side effects. However, these buttons
live in their own forms, which imposes a couple of restrictions: they cannot
appear inline, and they cannot appear inside other forms.

Rails has conditional linking methods that generate hyperlinks if some condi-
tion is met or just return the link text otherwise. link_to_if() and link_to_unless()
take a condition parameter, followed by the regular parameters to link_to. If
the condition is true (for link_to_if) or false (for link_to_unless), a regular link will be
created using the remaining parameters. If not, the name will be added as
plain text (with no hyperlink).

The link_to_unless_current() helper creates menus in sidebars where the current
page name is shown as plain text and the other entries are hyperlinks:

report erratum • discuss

Using Helpers • 395

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

<% %w{ create list edit save logout }.each do |action| %>

<%= link_to_unless_current(action.capitalize, action: action) %>

<% end %>

The link_to_unless_current() helper may also be passed a block that’s evaluated
only if the current action is the action given, effectively providing an alternative
to the link. There’s also a current_page() helper method that simply tests whether
the current page was generated by the given options.

As with url_for(), link_to() and friends also support absolute URLs:

<%= link_to("Help", "http://my.site/help/index.html") %>

The image_tag() helper creates tags. Optional :size parameters (of the form
widthxheight) or separate width and height parameters define the size of the
image:

<%= image_tag("/assets/dave.png", class: "bevel", size: "80x120") %>
<%= image_tag("/assets/andy.png", class: "bevel",

width: "80", height: "120") %>

If you don’t give an :alt option, Rails synthesizes one for you using the image’s
filename. If the image path doesn’t start with a / character, Rails assumes
that it lives under the app/assets/images directory.

You can make images into links by combining link_to() and image_tag():

<%= link_to(image_tag("delete.png", size: "50x22"),
product_path(@product),
data: { confirm: "Are you sure?" },
method: :delete)

%>

The mail_to() helper creates a mailto: hyperlink that, when clicked, normally
loads the client’s email application. It takes an email address, the name of
the link, and a set of HTML options. Within these options, you can also use
:bcc, :cc, :body, and :subject to initialize the corresponding email fields. Finally,
the magic option encode: "javascript" uses client-side JavaScript to obscure the
generated link, making it harder for spiders to harvest email addresses from
your site. Unfortunately, it also means your users won’t see the email link if
they have JavaScript disabled in their browsers.

<%= mail_to("support@pragprog.com", "Contact Support",
subject: "Support question from #{@user.name}",
encode: "javascript") %>

Chapter 22. Action View • 396

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

As a weaker form of obfuscation, you can use the :replace_at and :replace_dot
options to replace the at sign and dots in the displayed name with other
strings. This is unlikely to fool harvesters.

The AssetTagHelper module also includes helpers that make it easy to link to
style sheets and JavaScript code from your pages and to create autodiscovery
Atom feed links. We created links in the layouts for the Depot application
using the stylesheet_link_tag() and javascript_importmap_tags() methods in the head:

rails80/depot_r/app/views/layouts/application.html.erb
<!DOCTYPE html>
<html>

<head>
<title><%= content_for(:title) || "Pragprog Books Online Store" %></title>

<meta name="viewport" content="width=device-width,initial-scale=1">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="mobile-web-app-capable" content="yes">
<%= csrf_meta_tags %>
<%= csp_meta_tag %>

<%= yield :head %>

<%# Enable PWA manifest for installable apps (make sure to enable in
config/routes.rb too!) %>

<%#= tag.link rel: "manifest", href: pwa_manifest_path(format: :json) %>

<link rel="icon" href="/icon.png" type="image/png">
<link rel="icon" href="/icon.svg" type="image/svg+xml">
<link rel="apple-touch-icon" href="/icon.png">

<%# Includes all stylesheet files in app/assets/stylesheets %>
<%= stylesheet_link_tag :app, "data-turbo-track": "reload" %>
<%= javascript_importmap_tags %>

</head>

The javascript_importmap_tags() method produces a list JavaScript filenames
(assumed to live in app/javascript) which enables these resources to be imported
by your application.

By default, image and style sheet assets are assumed to live in the images
and stylesheets directories relative to the application’s assets directory. If
the path given to an asset tag method starts with a forward slash, then
the path is assumed to be absolute and no prefix is applied. Sometimes
it makes sense to move this static content onto a separate box or to dif-
ferent locations on the current box. Do this by setting the configuration
variable asset_host:

config.action_controller.asset_host = "http://media.my.url/assets"

report erratum • discuss

Using Helpers • 397

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_r%2Fapp%2Fviews%2Flayouts%2Fapplication.html.erb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Although this list of helpers may seem to be comprehensive, Rails provides
many more; new helpers are introduced with each release, and a select few
are retired or moved off into a plugin where they can be evolved at a different
pace than Rails.

Reducing Maintenance with Layouts and Partials
So far in this chapter we’ve looked at templates as isolated chunks of code
and HTML. But one of the driving ideas behind Rails is honoring the DRY
principle and eliminating the need for duplication. The average website,
though, has lots of duplication:

• Many pages share the same tops, tails, and sidebars.

• Multiple pages may contain the same snippets of rendered HTML (a blog
site, for example, may display an article in multiple places).

• The same functionality may appear in multiple places. Many sites have
a standard search component or a polling component that appears in
most of the sites’ sidebars.

Rails provides both layouts and partials that reduce the need for duplication
in these three situations.

Layouts
Rails allows you to render pages that are nested inside other rendered pages.
Typically this feature is used to put the content from an action within a
standard site-wide page frame (title, footer, and sidebar). In fact, if you’ve
been using the generate script to create scaffold-based applications, then you’ve
been using these layouts all along.

When Rails honors a request to render a template from within a controller,
it actually renders two templates. Obviously, it renders the one you ask for
(or the default template named after the action if you don’t explicitly render
anything). But Rails also tries to find and render a layout template (we’ll talk
about how it finds the layout in a second). If it finds the layout, it inserts the
action-specific output into the HTML produced by the layout.

Let’s look at a layout template:

<html>
<head>

<title>Form: <%= controller.action_name %></title>
<%= stylesheet_link_tag 'scaffold' %>

</head>

Chapter 22. Action View • 398

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

<body>

<%= yield :layout %>

</body>
</html>

The layout sets out a standard HTML page, with the head and body sections.
It uses the current action name as the page title and includes a CSS file. In
the body is a call to yield. This is where the magic takes place. When the
template for the action was rendered, Rails stored its content, labeling it :layout.
Inside the layout template, calling yield retrieves this text. In fact, :layout is the
default content returned when rendering, so you can write yield instead of yield
:layout. We personally prefer the slightly more explicit version.

Suppose the my_action.html.erb template contained this:

<h1><%= @msg %></h1>

And also suppose the controller set @msg to Hello, World!. Then the browser
would see the following HTML:

<html>
<head>

<title>Form: my_action</title>
<link href="/stylesheets/scaffold.css" media="screen"

rel="Stylesheet" type="text/css" />
</head>
<body>

<h1>Hello, World!</h1>

</body>
</html>

Locating Layout Files

As you’ve probably come to expect, Rails does a good job of providing defaults
for layout file locations, but you can override the defaults if you need some-
thing different.

Layouts are controller-specific. If the current request is being handled by a
controller called store, Rails will by default look for a layout called store (with
the usual .html.erb or .xml.builder extension) in the app/views/layouts directory. If
you create a layout called application in the layouts directory, it will be applied
to all controllers that don’t otherwise have a layout defined for them.

You can override this using the layout declaration inside a controller. The most
basic invocation is to pass it the name of a layout as a string. The following

report erratum • discuss

Reducing Maintenance with Layouts and Partials • 399

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

declaration will make the template in the file standard.html.erb or standard.xml.builder
the layout for all actions in the store controller.

The layout file will be looked for in the app/views/layouts directory:

class StoreController < ApplicationController

layout "standard"

...
end

You can qualify which actions will have the layout applied to them using the
:only and :except qualifiers:

class StoreController < ApplicationController

layout "standard", except: [:rss, :atom]

...
end

Specifying a layout of nil turns off layouts for a controller.

Sometimes you need to change the appearance of a set of pages at runtime.
For example, a blogging site might offer a different-looking side menu if the
user is logged in, or a store site might have different-looking pages if the site
is down for maintenance. Rails supports this need with dynamic layouts. If the
parameter to the layout declaration is a symbol, it’s taken to be the name of a
controller instance method that returns the name of the layout to be used:

class StoreController < ApplicationController

layout :determine_layout
...
private

def determine_layout
if Store.is_closed?
"store_down"

else
"standard"

end
end

end

Subclasses of a controller use the parent’s layout unless they override it using
the layout directive. Finally, individual actions can choose to render using a
specific layout (or with no layout at all) by passing render() the :layout option:

def rss
render(layout: false) # never use a layout

end

Chapter 22. Action View • 400

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

def checkout
render(layout: "layouts/simple")

end

Passing Data to Layouts

Layouts have access to all the same data that’s available to conventional
templates. In addition, any instance variables set in the normal template will
be available in the layout (because the regular template is rendered before
the layout is invoked). This might be used to parameterize headings or menus
in the layout. For example, the layout might contain this:

<html>
<head>

<title><%= @title %></title>
<%= stylesheet_link_tag 'scaffold' %>

</head>
<body>

<h1><%= @title %></h1>
<%= yield :layout %>

</body>
</html>

An individual template could set the title by assigning to the @title variable:

<% @title = "My Wonderful Life" %>
<p>

Dear Diary:
</p>
<p>

Yesterday I had pizza for dinner. It was nice.
</p>

We can take this further. The same mechanism that lets us use yield :layout to
embed the rendering of a template into the layout also lets you generate arbitrary
content in a template, which can then be embedded into any template.

For example, different templates may need to add their own template-specific
items to the standard page sidebar. We’ll use the content_for mechanism in
those templates to define content and then use yield in the layout to embed
this content into the sidebar.

In each regular template, use a content_for to give a name to the content rendered
inside a block. This content will be stored inside Rails and won’t contribute to
the output generated by the template:

<h1>Regular Template</h1>

<% content_for(:sidebar) do %>

report erratum • discuss

Reducing Maintenance with Layouts and Partials • 401

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

this text will be rendered
and saved for later
it may contain <%= "dynamic" %> stuff

<% end %>
<p>

Here's the regular stuff that will appear on
the page rendered by this template.

</p>

Then, in the layout, use yield :sidebar to include this block in the page’s sidebar:

<!DOCTYPE >
<html>

<body>
<div class="sidebar">
<p>

Regular sidebar stuff
</p>
<div class="page-specific-sidebar">

<%= yield :sidebar %>➤

</div>
</div>

</body>
</html>

This same technique can be used to add page-specific JavaScript functions
into the <head> section of a layout, create specialized menu bars, and so on.

Partial-Page Templates
Web applications commonly display information about the same applica-
tion object or objects on multiple pages. A shopping cart might display
an order line item on the shopping cart page and again on the order
summary page. A blog application might display the contents of an article
on the main index page and again at the top of a page soliciting comments.
Typically this would involve copying snippets of code between the different
template pages.

Rails, however, eliminates this duplication with the partial-page templates
(more frequently called partials). You can think of a partial as a kind of
subroutine. You invoke it one or more times from within another template,
potentially passing it objects to render as parameters. When the partial
template finishes rendering, it returns control to the calling template.

Internally, a partial template looks like any other template. Externally, there’s
a slight difference. The name of the file containing the template code must

Chapter 22. Action View • 402

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

start with an underscore character, differentiating the source of partial tem-
plates from their more complete brothers and sisters.

For example, the partial to render a blog entry might be stored in the file
_article.html.erb in the normal views directory, app/views/blog:

<div class="article">
<div class="articleheader">

<h3><%= article.title %></h3>
</div>
<div class="articlebody">

<%= article.body %>
</div>

</div>

Other templates use the render(partial:) method to invoke this:

<%= render(partial: "article", object: @an_article) %>
<h3>Add Comment</h3>
. . .

The :partial parameter to render() is the name of the template to render (but
without the leading underscore). This name must be both a valid filename
and a valid Ruby identifier (so a-b and 20042501 aren’t valid names for partials).
The :object parameter identifies an object to be passed into the partial. This
object will be available within the template via a local variable with the same
name as the template. In this example, the @an_article object will be passed to
the template, and the template can access it using the local variable article.
That’s why we could write things such as article.title in the partial.

You can set additional local variables in the template by passing render() a
:locals parameter. This takes a hash where the entries represent the names
and values of the local variables to set:

render(partial: 'article',
object: @an_article,
locals: { authorized_by: session[:user_name],

from_ip: request.remote_ip })

Partials and Collections

Applications commonly need to display collections of formatted entries. A blog
might show a series of articles, each with text, author, date, and so on. A
store might display entries in a catalog, where each has an image, a descrip-
tion, and a price.

The :collection parameter to render() works in conjunction with the :partial
parameter. The :partial parameter lets us use a partial to define the format of

report erratum • discuss

Reducing Maintenance with Layouts and Partials • 403

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

an individual entry, and the :collection parameter applies this template to each
member of the collection.

To display a list of article model objects using our previously defined
_article.html.erb partial, we could write this:

<%= render(partial: "article", collection: @article_list) %>

Inside the partial, the local variable article will be set to the current article from
the collection—the variable is named after the template. In addition, the
variable article_counter will have its value set to the index of the current article
in the collection.

The optional :spacer_template parameter lets you specify a template that will be
rendered between each of the elements in the collection. For example, a view
might contain the following:

rails80/e1/views/app/views/partial/_list.html.erb
<%= render(partial: "animal",

collection: %w{ ant bee cat dog elk },
spacer_template: "spacer")

%>

This uses _animal.html.erb to render each animal in the given list, rendering the
partial _spacer.html.erb between each. Say _animal.html.erb contains this:

rails80/e1/views/app/views/partial/_animal.html.erb
<p>The animal is <%= animal %></p>

And _spacer.html.erb contains this:

rails80/e1/views/app/views/partial/_spacer.html.erb
<hr />

Your users would see a list of animal names with a line between each.

Shared Templates

If the first option or :partial parameter to a render call is a String with no
slashes, Rails assumes that the target template is in the current controller’s
view directory. However, if the name contains one or more / characters, Rails
assumes that the part up to the last slash is a directory name and the rest
is the template name. The directory is assumed to be under app/views. This
makes it easy to share partials and subtemplates across controllers.

The convention among Rails applications is to store these shared partials in
a subdirectory of app/views called shared. Render shared partials using statements
such as these:

Chapter 22. Action View • 404

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fe1%2Fviews%2Fapp%2Fviews%2Fpartial%2F_list.html.erb
http://media.pragprog.com/titles/rails8/code/rails80%2Fe1%2Fviews%2Fapp%2Fviews%2Fpartial%2F_animal.html.erb
http://media.pragprog.com/titles/rails8/code/rails80%2Fe1%2Fviews%2Fapp%2Fviews%2Fpartial%2F_spacer.html.erb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

<%= render("shared/header", locals: {title: @article.title}) %>
<%= render(partial: "shared/post", object: @article) %>
. . .

In this previous example, the @article object will be assigned to the local variable
post within the template.

Partials with Layouts

Partials can be rendered with a layout, and you can apply a layout to a block
within any template:

<%= render partial: "user", layout: "administrator" %>

<%= render layout: "administrator" do %>
...

<% end %>

Partial layouts are to be found directly in the app/views directory associated
with the controller along with the customary underbar prefix, such as
app/views/users/_administrator.html.erb.

Partials and Controllers

It isn’t just view templates that use partials. Controllers also get in on the
act. Partials give controllers the ability to generate fragments from a page
using the same partial template as the view. This is particularly important
when you’re using Ajax support to update just part of a page from the
controller—use partials, and you know your formatting for the table row or
line item that you’re updating will be compatible with that used to generate
its brethren initially.

Taken together, partials and layouts provide an effective way to make sure
that the user interface portion of your application is maintainable. But being
maintainable is only part of the story; doing so in a way that also performs
well is also crucial.

What We Just Did
Views are the public face of Rails applications, and we’ve seen that Rails
delivers extensive support for what you need to build robust and maintainable
user and application programming interfaces.

We started with templates, of which Rails provides built-in support for three
types: ERB, Builder, and SCSS. Templates make it easy for us to provide
HTML, JSON, XML, CSS, and JavaScript responses to any request. We’ll
discuss adding another option in Creating HTML Templates with Slim, on
page 430.

report erratum • discuss

Reducing Maintenance with Layouts and Partials • 405

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

We dove into forms, which are the primary means by which users will interact
with your application. Along the way, we covered uploading files.

We continued with helpers, which enable us to factor out complex application
logic to allow our views to focus on presentation aspects. We explored a number
of helpers that Rails provides, ranging from basic formatting to hypertext links,
which are the final way in which users interact with HTML pages.

We completed our tour of Action View by covering two related ways of fac-
toring out large chunks of content for reuse. We use layouts to factor out
the outermost layers of a view and provide a common look and feel. We use
partials to factor out common inner components, such as a single form or
table.

That covers how a user with a browser will access our Rails application. Next
up: covering how we define and maintain the schema of the database our
application will use to store data.

Chapter 22. Action View • 406

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

CHAPTER 23

In this chapter, you'll see:
• Naming migration files
• Renaming and columns
• Creating and renaming tables
• Defining indices and keys
• Using native SQL

Migrations
Rails encourages an agile, iterative style of development. We don’t expect to
get everything right the first time. Instead, we write tests and interact with
our customers to refine our understanding as we go.

For that to work, we need a supporting set of practices. We write tests to help
us design our interfaces and to act as a safety net when we change things,
and we use version control to store our application’s source files, allowing us
to undo mistakes and to monitor what changes day to day.

But there’s another area of the application that changes, an area that we
can’t directly manage using version control. The database schema in a Rails
application constantly evolves as we progress through the development: we
add a table here, rename a column there, and so on. The database changes
in step with the application’s code.

With Rails, each of those steps is made possible through the use of a migration.
You saw this in use throughout the development of the Depot application,
starting when we created the first products table in Generating the Scaffold, on
page 66, and when we performed such tasks as adding a quantity to the line_items
table in Iteration E1: Creating a Smarter Cart, on page 127. Now it’s time to dig
deeper into how migrations work and what else you can do with them.

Creating and Running Migrations
A migration is simply a Ruby source file in your application’s db/migrate direc-
tory. Each migration file’s name starts with a number of digits (typically
fourteen) and an underscore. Those digits are the key to migrations, because
they define the sequence in which the migrations are applied—they’re the
individual migration’s version number.

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

The version number is the Coordinated Universal Time (UTC) timestamp at
the time the migration was created. These numbers contain the four-digit
year, followed by two digits each for the month, day, hour, minute, and second,
all based on the mean solar time at the Royal Observatory in Greenwich,
London. Because migrations tend to be created relatively infrequently and
the accuracy is recorded down to the second, the chances of any two people
getting the same timestamp is vanishingly small. And the benefit of having
timestamps that can be deterministically ordered far outweighs the miniscule
risk of this occurring.

Here’s what the db/migrate directory of our Depot application looks like:

depot> ls db/migrate
20250420000001_create_products.rb
20250420000002_create_carts.rb
20250420000003_create_line_items.rb
20250420000004_add_quantity_to_line_items.rb
20250420000005_combine_items_in_cart.rb
20250420000006_create_orders.rb
20250420000007_add_order_id_to_line_item.rb
20250420000008_create_users.rb

Although you could create these migration files by hand, it’s easier (and less
error prone) to use a generator. As we saw when we created the Depot appli-
cation, two generators create migration files:

• The model generator creates a migration to in turn create the table asso-
ciated with the model (unless you specify the --skip-migration option). As the
example that follows shows, creating a model called discount also creates
a migration called yyyyMMddhhmmss_create_discounts.rb:

depot> bin/rails generate model discount
invoke active_record
create db/migrate/20250420133549_create_discounts.rb➤

create app/models/discount.rb
invoke test_unit
create test/models/discount_test.rb
create test/fixtures/discounts.yml

• You can also generate a migration on its own.

depot> bin/rails generate migration add_price_column
invoke active_record
create db/migrate/20250420133814_add_price_column.rb➤

Later, starting in Anatomy of a Migration, on page 410, we’ll see what goes in
the migration files. But for now, let’s jump ahead a little in the workflow and
see how to run migrations.

Chapter 23. Migrations • 408

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Running Migrations
Migrations are run using the db:migrate Rake task:

depot> bin/rails db:migrate

To see what happens next, let’s dive down into the internals of Rails.

The migration code maintains a table called schema_migrations inside every Rails
database. This table has just one column, called version, and it will have one
row per successfully applied migration.

When you run bin/rails db:migrate, the task first looks for the schema_migrations
table. If it doesn’t yet exist, it’ll be created.

The migration code then looks at the migration files in db/migrate and skips
from consideration any that have a version number (the leading digits in the
filename) that’s already in the database. It then proceeds to apply the remainder
of the migrations, creating a row in the schema_migrations table for each.

If we were to run migrations again at this point, nothing much would happen.
Each of the version numbers of the migration files would match with a row
in the database, so there’d be no migrations to apply.

But if we subsequently create a new migration file, it will have a version
number not in the database. This is true even if the version number was
before one or more of the already applied migrations. This can happen when
multiple users are using a version control system to store the migration files.
If we then run migrations, this new migration file—and only this migration
file—will be executed. This may mean that migrations are run out of order,
so you might want to take care and ensure that these migrations are indepen-
dent. Or you might want to revert your database to a previous state and then
apply the migrations in order.

You can force the database to a specific version by supplying the VERSION=
parameter to the rake db:migrate command:

depot> bin/rails db:migrate VERSION=20250420000009

If the version you give is greater than any of the migrations that have yet to
be applied, these migrations will be applied.

If, however, the version number on the command line is less than one or more
versions listed in the schema_migrations table, something different happens. In
these circumstances, Rails looks for the migration file whose number matches
the database version and undoes it. It repeats this process until there are no
more versions listed in the schema_migrations table that exceed the number you

report erratum • discuss

Creating and Running Migrations • 409

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

specified on the command line. That is, the migrations are unapplied in reverse
order to take the schema back to the version that you specify.

You can also redo one or more migrations:

depot> bin/rails db:migrate:redo STEP=3

By default, redo will roll back one migration and rerun it. To roll back multiple
migrations, pass the STEP= parameter.

Anatomy of a Migration
Migrations are subclasses of the Rails class ActiveRecord::Migration. When neces-
sary, migrations can contain up() and down() methods:

class SomeMeaningfulName < ActiveRecord::Migration
def up

...
end

def down
...

end
end

The name of the class, after all uppercase letters are downcased and preceded
by an underscore, must match the portion of the filename after the version
number. For example, the previous class could be found in a file named
20250420000017_some_meaningful_name.rb. No two migrations can contain classes
with the same name.

The up() method is responsible for applying the schema changes for this
migration, while the down() method undoes those changes. Let’s make this more
concrete. Here’s a migration that adds an e_mail column to the orders table:

class AddEmailToOrders < ActiveRecord::Migration
def up

add_column :orders, :e_mail, :string
end

def down
remove_column :orders, :e_mail

end
end

See how the down() method undoes the effect of the up() method? You can also
see a bit of duplication here. In many cases, Rails can detect how to automat-
ically undo a given operation. For example, the opposite of add_column() is
clearly remove_column(). In such cases, by simply renaming up() to change(), you
can eliminate the need for a down():

Chapter 23. Migrations • 410

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

class AddEmailToOrders < ActiveRecord::Migration
def change

add_column :orders, :e_mail, :string
end

end

Now isn’t that much cleaner?

Column Types
The third parameter to add_column specifies the type of the database column. In
the prior example, we specified that the e_mail column has a type of :string. But
what does this mean? Databases typically don’t have column types of :string.

Remember that Rails tries to make your application independent of the
underlying database; you could develop using SQLite 3 and deploy to Postgres
if you wanted, for example. But different databases use different names for
the types of columns. If you used a SQLite 3 column type in a migration, that
migration might not work if applied to a Postgres database. So, Rails migra-
tions insulate you from the underlying database type systems by using logical
types. If we’re migrating a SQLite 3 database, the :string type will create a col-
umn of type varchar(255). On Postgres, the same migration adds a column with
the type char varying(255).

The types supported by migrations are :binary, :boolean, :date, :datetime, :decimal,
:float, :integer, :string, :text, :time, and :timestamp. The default mappings of these
types for the database adapters in Rails are shown in the following tables:

oracleopenbasemysqldb2

blobobjectblobblob(32768):binary

number(1)booleantinyint(1)decimal(1):boolean

datedatedatedate:date

datedatetimedatetimetimestamp:datetime

decimaldecimaldecimaldecimal:decimal

numberfloatfloatfloat:float

number(38)integerint(11)int:integer

varchar2(255)char(4096)varchar(255)varchar(255):string

clobtexttextclob(32768):text

datetimetimetime:time

datetimestampdatetimetimestamp:timestamp

report erratum • discuss

Anatomy of a Migration • 411

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

sybasesqlserversqlitepostgresql

imageimageblobbytea:binary

bitbitbooleanboolean:boolean

datetimedatedatedate:date

datetimedatetimedatetimetimestamp:datetime

decimaldecimaldecimaldecimal:decimal

float(8)float(8)floatfloat:float

intintintegerinteger:integer

varchar(255)varchar(255)varchar(255)(note 1):string

texttexttexttext:text

timetimedatetimetime:time

timestampdatetimedatetimetimestamp:timestamp

Using these tables, you could work out that a column declared to be :integer
in a migration would have the underlying type integer in SQLite 3 and number(38)
in Oracle.

You can use three options when defining most columns in a migration; decimal
columns take an additional two options. Each of these options is given as a
key: value pair. The common options are as follows:

null: true or false If false, the underlying column has a not null constraint added
(if the database supports it). Note that this is independent of any presence:
true validation, which may be performed at the model layer.

limit: size This sets a limit on the size of the field. It appends the string (size)
to the database column type definition.

default: value This sets the default value for the column. Since it’s performed
by the database, you don’t see this in a new model object when you initialize
it or even when you save it. You have to reload the object from the database
to see this value. Note that the default is calculated once, at the point the
migration is run, so the following code will set the default column value to
the date and time when the migration was run:

add_column :orders, :placed_at, :datetime, default: Time.now

In addition, decimal columns take the options :precision and :scale. The :precision
option specifies the number of significant digits that will be stored, and the
:scale option determines where the decimal point will be located in these digits
(think of the scale as the number of digits after the decimal point). A decimal
number with a precision of 5 and a scale of 0 can store numbers from -99,999

Chapter 23. Migrations • 412

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

to +99,999. A decimal number with a precision of 5 and a scale of 2 can store
the range -999.99 to +999.99.

The :precision and :scale parameters are optional for decimal columns. However,
incompatibilities between different databases lead us to strongly recommend
that you include the options for each decimal column.

Here are some column definitions using the migration types and options:

add_column :orders, :attn, :string, limit: 100
add_column :orders, :order_type, :integer
add_column :orders, :ship_class, :string, null: false, default: 'priority'
add_column :orders, :amount, :decimal, precision: 8, scale: 2

Renaming Columns
When we refactor our code, we often change our variable names to make them
more meaningful. Rails migrations allow us to do this to database column
names too. For example, a week after we first added it, we might decide that
e_mail isn’t the best name for the new column. We can create a migration to
rename it using the rename_column() method:

class RenameEmailColumn < ActiveRecord::Migration
def change

rename_column :orders, :e_mail, :customer_email
end

end

As rename_column() is reversible, separate up() and down() methods aren’t required
in order to use it.

Note that the rename doesn’t destroy any existing data associated with the
column. Also be aware that renaming isn’t supported by all the adapters.

Changing Columns
change_column() Use the change_column() method to change the type of a column
or to alter the options associated with a column. Use it the same way you’d
use add_column, but specify the name of an existing column. Let’s say that the
order type column is currently an integer, but we need to change it to be a
string. We want to keep the existing data, so an order type of 123 will become
the string "123". Later, we’ll use noninteger values such as "new" and "existing".

Changing from an integer column to a string is one line of code:

def up
change_column :orders, :order_type, :string

end

report erratum • discuss

Anatomy of a Migration • 413

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

However, the opposite transformation is problematic. We might be tempted
to write the obvious down() migration:

def down
change_column :orders, :order_type, :integer

end

But if our application has taken to storing data like "new" in this column, the
down() method will lose it—"new" can’t be converted to an integer. If that’s
acceptable, then the migration is acceptable as it stands. If, however, we want
to create a one-way migration—one that can’t be reversed—we’ll want to stop
the down migration from being applied. In this case, Rails provides a special
exception that we can throw:

class ChangeOrderTypeToString < ActiveRecord::Migration
def up

change_column :orders, :order_type, :string, null: false
end

def down
raise ActiveRecord::IrreversibleMigration

end
end

ActiveRecord::IrreversibleMigration is also the name of the exception that Rails will
raise if you attempt to call a method that can’t be automatically reversed from
within a change() method.

Managing Tables
So far we’ve been using migrations to manipulate the columns in existing
tables. Now let’s look at creating and dropping tables:

class CreateOrderHistories < ActiveRecord::Migration
def change

create_table :order_histories do |t|
t.integer :order_id, null: false
t.text :notes

t.timestamps
end

end
end

create_table() takes the name of a table (remember, table names are plural) and
a block. (It also takes some optional parameters that we’ll look at in a minute.)
The block is passed a table definition object, which we use to define the
columns in the table.

Chapter 23. Migrations • 414

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Generally the call to drop_table() isn’t needed, as create_table() is reversible.
drop_table() accepts a single parameter, which is the name of the table to drop.

The calls to the various table definition methods should look familiar—they’re
similar to the add_column method we used previously, except these methods
don’t take the name of the table as the first parameter and the name of the
method itself is the data type desired. This reduces repetition.

Note that we don’t define the id column for our new table. Unless we say oth-
erwise, Rails migrations automatically add a primary key called id to all tables
they create. For a deeper discussion of this, see Primary Keys, on page 418.

The timestamps method creates both the created_at and updated_at columns, with
the correct timestamp data type. Although there’s no requirement to add these
columns to any particular table, this is yet another example of Rails making
it easy for a common convention to be implemented easily and consistently.

Options for Creating Tables
You can pass a hash of options as a second parameter to create_table. If you
specify force: true, the migration will drop an existing table of the same name
before creating the new one. This is a useful option if you want to create a
migration that forces a database into a known state, but there’s clearly a
potential for data loss.

The temporary: true option creates a temporary table—one that goes away when
the application disconnects from the database. This is clearly pointless in the
context of a migration, but as we’ll see later, it does have its uses elsewhere.

The options: "xxxx" parameter lets you specify options to your underlying
database. They’re added to the end of the CREATE TABLE statement, right after
the closing parenthesis. Although this is rarely necessary with SQLite 3, it
may at times be useful with other database servers. For example, some ver-
sions of MySQL allow you to specify the initial value of the autoincrementing
id column. We can pass this in through a migration as follows:

create_table :tickets, options: "auto_increment = 10000" do |t|
t.text :description
t.timestamps

end

Behind the scenes, migrations will generate the following DDL from this table
description when configured for MySQL:

report erratum • discuss

Managing Tables • 415

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

CREATE TABLE "tickets" (
"id" int(11) default null auto_increment primary key,
"description" text,
"created_at" datetime,
"updated_at" datetime

) auto_increment = 10000;

Be careful when using the :options parameter with MySQL. The Rails MySQL
database adapter sets a default option of ENGINE=InnoDB. This overrides any local
defaults you have and forces migrations to use the InnoDB storage engine for
new tables. Yet, if you override :options, you’ll lose this setting; new tables will
be created using whatever database engine is configured as the default for your
site. You may want to add an explicit ENGINE=InnoDB to the options string to force
the standard behavior in this case. You probably want to keep using InnoDB
if you’re using MySQL because this engine gives you transaction support. You
might need this support in your application, and you’ll definitely need it in your
tests if you’re using the default of transactional test fixtures.

Renaming Tables
If refactoring leads us to rename variables and columns, then it’s probably
not a surprise that we sometimes find ourselves renaming tables too. Migra-
tions support the rename_table() method:

class RenameOrderHistories < ActiveRecord::Migration
def change

rename_table :order_histories, :order_notes
end

end

Rolling back this migration undoes the change by renaming the table back.

Problems with rename_table

When we rename tables in migrations, a subtle problem arises.

For example, let’s assume that in migration 4 we create the order_histories table
and populate it with some data:

def up
create_table :order_histories do |t|
t.integer :order_id, null: false
t.text :notes

t.timestamps
end

order = Order.find :first
OrderHistory.create(order_id: order, notes: "test")

end

Chapter 23. Migrations • 416

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Later, in migration 7, we rename the table order_histories to order_notes. At this
point we’ll also have renamed the model OrderHistory to OrderNote.

Now we decide to drop our development database and reapply all migrations.
When we do so, the migrations throw an exception in migration 4: our appli-
cation no longer contains a class called OrderHistory, so the migration fails.

One solution, proposed by Tim Lucas, is to create local dummy versions of
the model classes needed by a migration within the migration. For example,
the following version of the fourth migration will work even if the application
no longer has an OrderHistory class:

class CreateOrderHistories < ActiveRecord::Migration

class Order < ApplicationRecord::Base; end➤

class OrderHistory < ApplicationRecord::Base; end➤

def change
create_table :order_histories do |t|
t.integer :order_id, null: false
t.text :notes

t.timestamps
end

order = Order.find :first
OrderHistory.create(order: order_id, notes: "test")

end
end

This works as long as our model classes don’t contain any additional func-
tionality that would have been used in the migration—all we’re creating here
is a bare-bones version.

Defining Indices
Migrations can (and probably should) define indices for tables. For example,
we might notice that once our application has a large number of orders in
the database, searching based on the customer’s name takes longer than
we’d like. It’s time to add an index using the appropriately named add_index()
method:

class AddCustomerNameIndexToOrders < ActiveRecord::Migration
def change

add_index :orders, :name
end

end

If we give add_index the optional parameter unique: true, a unique index will be
created, forcing values in the indexed column to be unique.

report erratum • discuss

Managing Tables • 417

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

By default the index will be given the name index_table_on_column. We can
override this using the name: "somename" option. If we use the :name option when
adding an index, we’ll also need to specify it when removing the index.

We can create a composite index—an index on multiple columns—by passing
an array of column names to add_index.

Indices are removed using the remove_index() method.

Primary Keys
Rails assumes every table has a numeric primary key (normally called id) and
ensures the value of this column is unique for each new row added to a table.
We’ll rephrase that.

Rails doesn’t work too well unless each table has a primary key that Rails
can manage. By default, Rails will create numeric primary keys, but you can
also use other types such as UUIDs, depending on what your actual database
provides. Rails is less fussy about the name of the column. So for your average
Rails application, our strong advice is to go with the flow and let Rails have
its id column.

If you decide to be adventurous, you can start by using a different name for
the primary key column (but keeping it as an incrementing integer). Do this
by specifying a :primary_key option on the create_table call:

create_table :tickets, primary_key: :number do |t|
t.text :description

t.timestamps
end

This adds the number column to the table and sets it up as the primary key:

$ sqlite3 storage/development.sqlite3 ".schema tickets"
CREATE TABLE tickets ("number" INTEGER PRIMARY KEY AUTOINCREMENT
NOT NULL, "description" text DEFAULT NULL, "created_at" datetime
DEFAULT NULL, "updated_at" datetime DEFAULT NULL);

The next step in the adventure might be to create a primary key that isn’t an
integer. Here’s a clue that the Rails developers don’t think this is a good idea:
migrations don’t let you do this (at least not directly).

Tables with No Primary Key

Sometimes we may need to define a table that has no primary key. The most
common case in Rails is for join tables—tables with just two columns where
each column is a foreign key to another table. To create a join table using
migrations, we have to tell Rails not to automatically add an id column:

Chapter 23. Migrations • 418

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

create_table :authors_books, id: false do |t|
t.integer :author_id, null: false
t.integer :book_id, null: false

end

In this case, you might want to investigate creating one or more indices on
this table to speed navigation between books and authors.

Advanced Migrations
Most Rails developers use the basic facilities of migrations to create and
maintain their database schemas. But every now and then it’s useful to push
migrations just a bit further. This section covers some more advanced
migration usage.

Using Native SQL
Migrations give you a database-independent way of maintaining your applica-
tion’s schema. However, if migrations don’t contain the methods you need to
be able to do what you need to do, you’ll need to drop down to database-
specific code. Rails provides two ways to do this. One is with options arguments
to methods like add_column(). The second is the execute() method.

When you use options or execute(), you might well be tying your migration to a
specific database engine, because any SQL you provide in these two locations
uses your database’s native syntax.

An example of where you might need to use raw SQL is if you’re creating a
custom data type inside your database. Postgres, for example, allows you to
specify enumerated types. Enumerated types work just fine with Rails; but
to create them in a migration, you have to use SQL and thus execute(). Suppose
we wanted to create an enumerated type for the various pay types we support-
ed in our checkout form (which we created in Chapter 12, Task G: Check
Out!, on page 165):

class AddPayTypes < ActiveRecord::Migrations[6.0]
def up

execute %{
CREATE TYPE

pay_type
AS ENUM (

'check',
'credit card',
'purchase order'

)
}

end

report erratum • discuss

Advanced Migrations • 419

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

def down
execute "DROP TYPE pay_type"

end
end

Note that if you need to model your database using execute(), you should con-
sider changing your schema dump format from “ruby” to “SQL,” as outlined
in the Rails Guide.1 The schema dump is used during tests to create an
empty database with the same schema you’re using in production.

Custom Messages and Benchmarks
Although not exactly an advanced migration, something that’s useful to do
within advanced migrations is to output our own messages and benchmarks.
We can do this with the say_with_time() method:

def up
say_with_time "Updating prices..." do

Person.all.each do |p|
p.update_attribute :price, p.lookup_master_price

end
end

end

say_with_time() prints the string passed before the block is executed and prints
the benchmark after the block completes.

When Migrations Go Bad
Migrations suffer from one serious problem. The underlying DDL statements
that update the database schema aren’t transactional. This isn’t a failing in
Rails—most databases don’t support the rolling back of create table, alter table,
and other DDL statements.

Let’s look at a migration that tries to add two tables to a database:

class ExampleMigration < ActiveRecord::Migration
def change

create_table :one do ...
end
create_table :two do ...
end

end
end

1. http://guides.rubyonrails.org/active_record_migrations.html#schema-dumping-and-you

Chapter 23. Migrations • 420

report erratum • discuss

http://guides.rubyonrails.org/active_record_migrations.html#schema-dumping-and-you
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

In the normal course of events, the up() method adds tables, one and two, and
the down() method removes them.

But what happens if there’s a problem creating the second table? We’ll end
up with a database containing table one but not table two. We can fix whatever
the problem is in the migration, but now we can’t apply it—if we try, it will
fail because table one already exists.

We could try to roll the migration back, but that won’t work. Because the
original migration failed, the schema version in the database wasn’t updated,
so Rails won’t try to roll it back.

At this point, you could mess around and manually change the schema
information and drop table one. But it probably isn’t worth it. Our recommen-
dation in these circumstances is simply to drop the entire database, re-create
it, and apply migrations to bring it back up-to-date. You’ll have lost nothing,
and you’ll know you have a consistent schema.

All this discussion suggests that migrations are dangerous to use on produc-
tion databases. Should you run them? We really can’t say. If you have
database administrators in your organization, it’ll be their call. If it’s up to
you, you’ll have to weigh the risks. But if you decide to go for it, you really
must back up your database first. Then you can apply the migrations by
going to your application’s directory on the machine with the database role
on your production servers and executing this command:

depot> RAILS_ENV=production bin/rails db:migrate

This is one of those times where the legal notice at the start of this book kicks
in. We’re not liable if this deletes your data.

Schema Manipulation Outside Migrations
All the migration methods described so far in this chapter are also available
as methods on Active Record connection objects and so are accessible within
the models, views, and controllers of a Rails application.

For example, you might have discovered that a particular long-running report
runs a lot faster if the orders table has an index on the city column. But that
index isn’t needed during the day-to-day running of the application, and tests
have shown that maintaining it slows the application appreciably.

Let’s write a method that creates the index, runs a block of code, and then
drops the index. This could be a private method in the model or could be
implemented in a library:

report erratum • discuss

Schema Manipulation Outside Migrations • 421

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

def run_with_index(*columns)
connection.add_index(:orders, *columns)
begin

yield
ensure

connection.remove_index(:orders, *columns)
end

end

The statistics-gathering method in the model can use this as follows:

def get_city_statistics
run_with_index(:city) do

.. calculate stats
end

end

What We Just Did
While we had been informally using migrations throughout the development
of the Depot application and even into deployment, in this chapter we saw
how migrations are the basis for a principled and disciplined approach to
configuration management of the schema for your database.

You learned how to create, rename, and delete columns and tables, to manage
indices and keys, to apply and back out entire sets of changes, and even to
add your own custom SQL into the mix, all in a completely reproducible
manner.

At this point we’ve covered the externals of Rails. The next chapter is going
to show a few more involved ways of customizing Rails to demonstrate just
how flexible Rails can be when you need it. We’ll see how to use RSpec for
testing, use Slim instead of ERB for templating, and use Webpack to manage
your CSS.

Chapter 23. Migrations • 422

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

CHAPTER 24

In this chapter, you'll see:
• Replacing Rails’ testing framework with RSpec
• Using Slim for HTML templates instead of ERB

Customizing and Extending Rails
As you’ve come to learn, Rails provides an answer for almost every question
you have about building a modern web application. It provides the basics for
handling requests, accessing a database, writing user interfaces, and running
tests. It does this by having a tightly integrated design, which is often referred
to as Rails being “opinionated software.”

This tight coupling comes at a price. If, for example, the way Rails manages
CSS doesn’t meet the needs of your project, you could be in trouble. Or if you
prefer to write your tests in a different way, Rails doesn’t give you a lot of
options. Or does it? In the early days of Rails, customizing it was difficult or
impossible. Starting with Rails 3, much effort was expended to make Rails
more customizable. With Rails 8, developers have the flexibility to use the
tools they prefer or that work the way they want them to work. That’s what
we’ll explore in this chapter.

We’ll replace four parts of Rails in this chapter. First, we’ll write a Web Com-
ponent instead of using Stimulus. Then we’ll see how to use RSpec instead
of Rails’ default testing library to write our tests. Next, we’ll replace ERB for
the alternative templating language Slim. Finally, we’ll see how to manage
CSS using Webpack instead of putting it in app/assets/stylesheets. This chapter
will demonstrate another benefit to Rails, which is that you don’t have to
throw out the parts that work for you to use alternatives that work better.
Let’s get started.

Creating a Reusable Web Component
Web Components1 are an industry standard way of extending HTML itself to
implement custom behaviors and presentation.

1. https://developer.mozilla.org/en-US/docs/Web/Web_Components

report erratum • discuss

https://developer.mozilla.org/en-US/docs/Web/Web_Components
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

You don’t need to start from scratch when building a web component. You
can build upon a rich ecosystem of npm2 packages. We’ll make use of lit.3 We
start by “pinning” it to our application so that it can be imported:

> bin/importmap pin lit
Pinning "lit" to https://.../index.js
Pinning "@lit/reactive-element" to https://.../reactive-element.js
Pinning "lit-element/lit-element.js" to https://.../lit-element.js
Pinning "lit-html" to https://.../lit-html.js
Pinning "lit-html/is-server.js" to https://.../is-server.js

Next, we’ll write a web component. The following example renders the current
time in blue. Create a directory named app/javascript/elements and create a file
named current-time.js in that directory with the following contents:

import {html, css, LitElement} from 'lit';

class CurrentTime extends LitElement {
static styles = css`span { color: blue }`;

render() {
return html`${new Date().toLocaleTimeString()}`;

}
}

customElements.define('current-time', CurrentTime);

This code imports three properties from the lit package and defines a class
that extends LitElement by defining a style that’s scoped to this single element
function that returns an HTML fragment. Finally, a new custom element is
defined and associated with this class.

Next, we import this file into our application by adding a single line to
app/javascript/application.js:

// Configure your import map in config/importmap.rb.
// Read more: https://github.com/rails/importmap-rails
import "@hotwired/turbo-rails"
import "controllers"

import "./elements/current-time.js"➤

With this in place, the current time can be added to any HTML template by
adding the following HTML:

<current-time>

2. https://www.npmjs.com/
3. https://lit.dev/

Chapter 24. Customizing and Extending Rails • 424

report erratum • discuss

https://www.npmjs.com/
https://lit.dev/
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

This just scratches the surface of what can be done with Web Components.
On the lit site you can find plenty of examples. A good place to start is on the
page for Reactive Controllers,4 which shows how you can add state and
reactivity to a clock element.

Testing with RSpec
RSpec is an alternative to MiniTest, which Rails uses. It’s different in almost
every way, and many developers prefer it. Here’s what one of our existing
tests might look like written in RSpec:

RSpec.describe Cart do

let(:cart) { Cart.create }
let(:book_one) { products(:pragprog) }
let(:book_two) { products(:two) }

before do
cart.add_product(book_one).save!
cart.add_product(book_two).save!

end

it "can have multiple products added" do
expect(cart.line_items.size).to eq(2)

end

it "calculates the total price of all products" do
expect(cart.total_price).to eq(book_one.price + book_two.price)

end
end

It almost looks like a different programming language! Developers who prefer
RSpec like that the test reads like English: “Describe Cart, it can have multiple
products added, expect cart.line_items.size to eq 2.”

We’re going to quickly go through how to write tests in RSpec without too
much explanation. A great book for that is already available—Effective Testing
with RSpec 3 [MD17]—so we’ll learn just enough RSpec to see it working with
Rails, which demonstrates Rails’ configurability. Although many developers
who use RSpec set it up from the start of a project, you don’t have to. RSpec
can be added at any time, and that’s what we’ll do here.

Add rspec-rails to your Gemfile, putting it in the development and test groups:

group :development, :test do
gem 'rspec-rails'

end

4. https://lit.dev/docs/composition/controllers/

report erratum • discuss

Testing with RSpec • 425

https://lit.dev/docs/composition/controllers/
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

After you bundle install, a new generator will set up RSpec for you:

> bin/rails generate rspec:install
create .rspec
create spec
create spec/spec_helper.rb
create spec/rails_helper.rb

Verify the configuration is working by running the new task Rspec installed, spec:

> bin/rails spec
No examples found.

Finished in 0.00058 seconds (files took 0.11481 seconds to load)
0 examples, 0 failures

Let’s reimplement the test for Cart as an RSpec test or spec. RSpec includes
generators to create starter specs for us, similar to what Rails does with
scaffolding. To create a model spec, use the spec:model generator:

> bin/rails generate spec:model Cart
create spec/models/cart_spec.rb

Now rerun spec, and we can see RSpec’s generator has created a pending spec:

> bin/rails spec
Pending: (Failures listed here are expected and do not affect

your suite's status)

1) Cart add some examples to (or delete) spec/models/cart_spec.rb
Not yet implemented
./spec/models/cart_spec.rb:4

Finished in 0.00284 seconds (files took 1.73 seconds to load)
1 example, 0 failures, 1 pending

To reimplement the test for Cart as a spec, let’s first review the existing test:

rails80/depot_u/test/models/cart_test.rb
require "test_helper"

class CartTest < ActiveSupport::TestCase
def setup

@cart = Cart.create
@book_one = products(:pragprog)
@book_two = products(:two)

end

test "add unique products" do
@cart.add_product(@book_one).save!
@cart.add_product(@book_two).save!
assert_equal 2, @cart.line_items.size
assert_equal @book_one.price + @book_two.price, @cart.total_price

end

Chapter 24. Customizing and Extending Rails • 426

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_u%2Ftest%2Fmodels%2Fcart_test.rb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

test "add duplicate product" do
@cart.add_product(@book_one).save!
@cart.add_product(@book_one).save!
assert_equal 2*@book_one.price, @cart.total_price
assert_equal 1, @cart.line_items.size
assert_equal 2, @cart.line_items[0].quantity

end
end

The setup creates a cart and fetches two products from the fixtures. It then
tests the add_product() in two ways: by adding two distinct products and by
adding the same product twice.

Let’s start with the setup. By default, RSpec is configured to look in spec/fixtures
for fixtures. This is correct for a project using RSpec from the start, but for
us, the fixtures are in test/fixtures. Change this by editing spec/rails_helper.rb:

rails80/depot_xa/spec/rails_helper.rb
RSpec.configure do |config|

Remove this line if you're not using ActiveRecord or ActiveRecord fixtures
config.fixture_paths = [

Rails.root.join('test/fixtures')➤

]

Back to the spec—its setup will need to create a Cart to use in our tests as well as
fetch two products from fixtures. By default, fixtures aren’t available in specs, but
you can call fixtures() to make them available. Here’s what the setup looks like:

rails80/depot_xa/spec/models/cart_spec.rb
require 'rails_helper'

RSpec.describe Cart, type: :model do

fixtures :products➤

subject(:cart) { Cart.new }➤
➤

let(:book_one) { products(:pragprog) }➤

let(:book_two) { products(:two) }➤

This definitely doesn’t look like our original test! The call to subject() declares the
variable cart, which you’ll use in the tests later. The calls to let() declare other
variables that can be used in the tests. The reason for two methods that seemingly
do the same thing is an RSpec convention. The object that’s the focus of the test
is declared with subject(). Ancillary data needed for the test is declared with let().

The tests themselves will also look different from their equivalents in a standard
Rails test. For one thing, they aren’t called tests but rather examples. Also, it’s
customary for each example to make only one assertion. The existing test of adding
different products makes two assertions, so in the spec, that means two examples.

report erratum • discuss

Testing with RSpec • 427

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_xa%2Fspec%2Frails_helper.rb
http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_xa%2Fspec%2Fmodels%2Fcart_spec.rb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Assertions look different in RSpec as well:

expect(actual_value).to eq(expected_value)

Applying this to the two assertions around adding distinct items, we have
two examples (we’ll show you where this code goes in a moment):

it "has two line items" do
expect(cart.line_items.size).to eq(2)

end
it "has a total price of the two items' price" do

expect(cart.total_price).to eq(book_one.price + book_two.price)
end

These assertions won’t succeed unless items are added to the cart first. That
code could go inside each example, but RSpec allows you to extract duplicate
setup code into a block using before():

before do
cart.add_product(book_one).save!
cart.add_product(book_two).save!

end
it "has two line items" do

expect(cart.line_items.size).to eq(2)
end
it "has a total price of the two items' price" do

expect(cart.total_price).to eq(book_one.price + book_two.price)
end

This setup is only relevant to some of the tests of the add_product() method,
specifically the tests around adding different items. To test adding the same
item twice, you’ll need different setups. To make this happen, wrap the above
code in a block using context(). context() takes a string that describes the context
we’re creating and acts as a scope for before() blocks. It’s also customary to
wrap all examples of the behavior of a method inside a block given to describe().
Given all that, here’s what the first half of your spec should look like:

rails80/depot_xa/spec/models/cart_spec.rb
describe "#add_product" do➤

context "adding unique products" do➤

before do➤

cart.add_product(book_one).save!➤

cart.add_product(book_two).save!➤

end➤
➤

it "has two line items" do➤

expect(cart.line_items.size).to eq(2)➤

end➤

Chapter 24. Customizing and Extending Rails • 428

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_xa%2Fspec%2Fmodels%2Fcart_spec.rb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

it "has a total price of the two items' price" do➤

expect(cart.total_price).to eq(book_one.price + book_two.price)➤

end➤

end➤

Here’s the second half of the spec, which tests the behavior of add_product()
when adding the same item twice:

rails80/depot_xa/spec/models/cart_spec.rb
require 'rails_helper'

RSpec.describe Cart, type: :model do

fixtures :products➤

subject(:cart) { Cart.new }➤
➤

let(:book_one) { products(:pragprog) }➤

let(:book_two) { products(:two) }➤
➤

describe "#add_product" do➤

context "adding unique products" do➤

before do➤

cart.add_product(book_one).save!➤

cart.add_product(book_two).save!➤

end➤
➤

it "has two line items" do➤

expect(cart.line_items.size).to eq(2)➤

end➤

it "has a total price of the two items' price" do➤

expect(cart.total_price).to eq(book_one.price + book_two.price)➤

end➤

end➤

context "adding duplicate products" do➤

before do➤

cart.add_product(book_one).save!➤

cart.add_product(book_one).save!➤

end➤
➤

it "has one line item" do➤

expect(cart.line_items.size).to eq(1)➤

end➤

it "has a line item with a quantity of 2" do➤

expect(cart.line_items.first.quantity).to eq(2)➤

end➤

it "has a total price of twice the product's price" do➤

expect(cart.total_price).to eq(book_one.price * 2)➤

end➤

end➤

end

end

report erratum • discuss

Testing with RSpec • 429

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_xa%2Fspec%2Fmodels%2Fcart_spec.rb
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Running bin/rails spec, it should pass:

> bin/rails spec
.....

Finished in 0.11007 seconds (files took 1.72 seconds to load)
5 examples, 0 failures

A lot of code in this file isn’t executing a test, but all the calls to describe(),
context(), and it() aren’t for naught. Passing SPEC_OPTS="--format=doc" to the spec
task, the test output is formatted like the documentation of the Cart class:

> bin/rails spec SPEC_OPTS="--format=doc"

Cart
#add_product

adding unique products
has two line items
has a total price of the two items' price

adding duplicate products
has one line item
has a line item with a quantity of 2
has a total price of twice the product's price

Finished in 0.14865 seconds (files took 1.76 seconds to load)
5 examples, 0 failures

Also note that rspec-rails changes the Rails generators to create empty spec files
in spec/ instead of test files in test/. This means that you use all the generators
and scaffolding you’re used to in your normal workflow without having to
worry about the wrong type of test file being created.

If all of this seems strange to you, you’re not alone. It is strange, and the
reasons RSpec is designed this way, as well as why you might want to use it,
are nuanced and beyond the scope of this book. The main point all this proves
is that you can replace a major part of Rails with an alternative and still get
all the benefits of the rest of Rails. It’s also worth noting that RSpec is popular,
and you’re very likely to see it in the wild.

Let’s learn more about Rails’ configurability by replacing another major piece
of Rails—ERB templates.

Creating HTML Templates with Slim
Slim is a templating language that can replace ERB.5 It’s designed to require
much less code to achieve the same results, and it does this by using a
nested structure instead of HTML tags. Consider this ERB:

5. http://slim-lang.com

Chapter 24. Customizing and Extending Rails • 430

report erratum • discuss

http://slim-lang.com
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

<h2><%= t('.title') %></h2>
<table>

<%= render(cart.line_items) %>

<tr class="total_line">
<td colspan="2">Total</td>
<td class="total_cell"><%= number_to_currency(cart.total_price) %></td>

</tr>

</table>

In Slim, it would look like so:

h2
= t('.title')

table
= render(cart.line_items)

tr.total_line
td.colspan=2
Total

td.total_cell
= number_to_currency(cart.total_price)

Slim treats each line as an opening HTML tag, and anything indented under
that line will be rendered inside that tag. Helper methods and instance vari-
ables can be accessed using =, like so:

ul
li = link_to @product.name, product_path(@product)

To execute logic, such as looping over a collection, use -, like so:

ul
- @products.each do |product|

li
- if product.available?

= link_to product.name, product_path(product)
- else

= "#{product.name} out of stock"

The code after - is executed as Ruby, but note that no end keyword is needed—
Slim inserts that for you.

Slim allows you to specify HTML classes by following a tag with a . and the
class name:

h1.title This title has the "title" class!

And, in a final bit of ultracompactness, if you want to create a div with an
HTML class on it, you can omit div entirely. This creates a div with the class
login-form that contains two text inputs:

report erratum • discuss

Creating HTML Templates with Slim • 431

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

.login-form
input type=text name=username
input type=password name=password

Putting all this together, let’s install Slim and reimplement the home page in
app/views/store/index.html.erb using it. This will demonstrate how Rails allows us
to completely replace its templating engine.

First, install slim-rails:

bundle add slim-rails

Once this command completes, your Rails app will now render files ending
in .slim as a Slim template. We can see this by removing
app/views/store/index.html.erb and creating app/views/stores/index.slim like so:

rails80/depot_xb/app/views/store/index.slim
- if notice

aside#notice = notice

h1 = t('.title_html')

ul.catalog
- cache @products do

- @products.each do |product|
- cache product do

li
= image_tag(product.image)
h2 = product.title
p = sanitize(product.description)
.price
= number_to_currency(product.price)
= button_to t('.add_html'),

line_items_path(product_id: product, locale: I18n.locale),
remote: true

Restart your server if you have it running, and you should see the home page
render the same as before.

In addition to being able to render Slim, installing slim-rails changes Rails
generators to create Slim files instead of ERB, so all of the scaffolding and
other generators you’re used to will now produce Slim templates automatically.
You can even convert your existing ERB templates to Slim by using the erb2slim
command, available by installing the html2slim RubyGem.6

6. https://github.com/slim-template/html2slim

Chapter 24. Customizing and Extending Rails • 432

report erratum • discuss

http://media.pragprog.com/titles/rails8/code/rails80%2Fdepot_xb%2Fapp%2Fviews%2Fstore%2Findex.slim
https://github.com/slim-template/html2slim
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Customizing Rails in Other Ways
Customizing the edges of Rails, like you did in the preceding section with CSS,
HTML templates, and tests, tends to be more straightforward, and more options
are out there for you. Customizing Rails’ internals is more difficult. If you want,
you can remove Active Record entirely and use libraries like Sequel or ROM,7,8

but you’d be giving up a lot—Active Record is tightly coupled with many parts
of Rails.

Tight coupling is usually viewed as a problem, but it’s this coupling that
allows you to be so productive using Rails. The more you change your Rails
app into a loosely coupled assembly of unrelated libraries, the more work you
have to do getting the pieces to talk to each other. Finding the right balance
is up to you, your team, or your project.

The Rails ecosystem is also filled with plugins and enhancements to address
common needs that aren’t common enough to be added to Rails itself. For
example, Kaminari provides pagination for when you need to let a user browse
hundreds or thousands of records.9 Ransack and Searchkick provide advanced
ways of searching your database with Active Record.10,11 CarrierWave makes
uploading files to your Rails app much more straightforward than hand-rolling
it yourself.12

And if you want to analyze and improve the code inside your Rails app,
RuboCop can check that you’re using a consistent style,13 while Brakeman
can check for common security vulnerabilities.14

These extras are the tip of the iceberg. The community of extensions and
plugins for Rails is yet another benefit to building your next web application
with Rails.

Where to Go from Here
Congratulations! We’ve covered a lot of ground together.

7. http://sequel.jeremyevans.net/
8. http://rom-rb.org/
9. https://github.com/kaminari/kaminari
10. https://github.com/activerecord-hackery/ransack
11. https://github.com/ankane/searchkick
12. https://github.com/carrierwaveuploader/carrierwave
13. https://github.com/bbatsov/rubocop
14. https://github.com/presidentbeef/brakeman

report erratum • discuss

Customizing Rails in Other Ways • 433

http://sequel.jeremyevans.net/
http://rom-rb.org/
https://github.com/kaminari/kaminari
https://github.com/activerecord-hackery/ransack
https://github.com/ankane/searchkick
https://github.com/carrierwaveuploader/carrierwave
https://github.com/bbatsov/rubocop
https://github.com/presidentbeef/brakeman
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

In Part I, you installed Rails, verified the installation using a basic application,
got exposed to the architecture of Rails, and got acquainted (or maybe reac-
quainted) with the Ruby language.

In Part II, you iteratively built an application and built up test cases along the
way. We designed this application to touch on all aspects of Rails that every
developer needs to be aware of.

Whereas Parts I and II of this book each served a single purpose, Part III
served a dual role.

For some of you, Part III methodically filled in the gaps and covered enough
for you to get real work done. For others, these will be the first steps of a
much longer journey.

For most of you, the real value is a bit of both. A firm foundation is required
for you to be able to explore further. And that’s why we started this part with
a chapter that not only covered the convention and configuration of Rails but
also covered the generation of documentation.

Then we proceeded to devote a chapter each to the model, view, and controller,
which are the backbone of the Rails architecture. We covered topics ranging
from database relationships to the REST architecture to HTML forms and
helpers.

We covered migration as an essential maintenance tool for the deployed
application’s database.

Finally, we split Rails apart and explored the concept of gems from a number
of perspectives, from making use of individual Rails components separately
to making full use of the foundation upon which Rails is built and, finally, to
building and extending the framework to suit your needs.

At this point, you have the necessary context and background to more deeply
explore whatever areas suit your fancy or are needed to solve that vexing
problem you face. We recommend you start by visiting the Ruby on Rails site
and exploring each of the links across the top of that page.15 Some of this will
be quick refreshers of materials presented in this book, but you’ll also find
plenty of links to current information on how to report problems, learn more,
and keep up-to-date.

Additionally, please continue to contribute to the forums mentioned in the
book’s introduction.

15. http://rubyonrails.org/

Chapter 24. Customizing and Extending Rails • 434

report erratum • discuss

http://rubyonrails.org/
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Pragmatic Bookshelf has more books on Ruby and Rails subjects as well as
plenty of related categories that go beyond Ruby and Rails, such as technical
practices; testing, design, and cloud computing; and tools, frameworks, and
languages.

You can find these and many other categories at http://www.pragprog.com/.

We hope you’ve enjoyed learning about Ruby on Rails as much as we’ve
enjoyed writing this book!

report erratum • discuss

Where to Go from Here • 435

http://www.pragprog.com/
http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Bibliography

[Atk24] Andrew Atkinson. High Performance PostgreSQL for Rails. The Pragmatic
Bookshelf, Dallas, TX, 2024.

[Ise19] Rob Isenberg. Docker for Rails Developers. The Pragmatic Bookshelf, Dallas,
TX, 2019.

[MD17] Myron Marston and Erin Dees (formerly Ian Dees). Effective Testing with
RSpec 3. The Pragmatic Bookshelf, Dallas, TX, 2017.

[TH19] David Thomas and Andrew Hunt. The Pragmatic Programmer, 20th
Anniversary Edition. The Pragmatic Bookshelf, Dallas, TX, 2019.

[Tho24] Noel Rappin, with Dave Thomas. Programming Ruby 3.3 (5th Edition). The
Pragmatic Bookshelf, Dallas, TX, 2024.

report erratum • discuss

http://pragprog.com/titles/rails8/errata/add
http://forums.pragprog.com/forums/rails8

Index

SYMBOLS
& (ampersand), prefix opera-

tor, 49

<<() append method, 45

=> arrow syntax, 45

@ (at sign), prefixing instance
variables, 42, 50

\ (backslash)
multiple-line commands,

67
regular expressions, 47
string substitutions, 44

{} (braces)
array of words, 45
blocks, 48
hashes, 45–46

[] (brackets)
array indices, 44
array of words, 45
hash indices, 46

^ (caret), multiple-line com-
mands, 67

: (colon), prefixing symbols,
42

|| conditional evaluation, 55

. (dot)
CSS selectors, 109
filenames, 83
prefixing translation

function, 230
specifying HTML classes

in Slim, 431

" (double quotes), strings, 43,
75

<%=...%> embedded Ruby
code, 23

== equality operator, 322

! (exclamation point), bang
methods, 55

#{…} expression interpolation,
44

/ (forward slash), regular ex-
pressions, 46

(hash mark)
comments, 43
CSS selectors, 109

-> lambda syntax, 56

=~ match operator, 46

() (parentheses)
method calls, 42
regular expressions, 46
in REST routes, 353

? (question mark)
predicate methods, 55
SQL placeholders, 328

%r{…} regular expressions, 46

; (semicolon), ending state-
ments, 43

' (single quotes), strings, 43

%(…) string literals, 75

_ (underscore)
in names, 42, 311, 315
partial templates, 145
prefixing partial tem-

plates, 402

| (vertical bar)
arguments in blocks, 48
regular expressions, 46

DIGITS
1Password, 281

A
-a option for committing, 100

\A sequence, 47

:abort symbol, 118

Accept header, 359

accepts() method, 362

accessors, 51, 102, 319, 389

ACID properties, 348

Action Cable, broadcasting
updates, 158–162

Action Controller
about, 349
action methods, 360–371
callbacks and controllers,

378–380
dispatching requests,

350–360
flash and, 377
objects and operations

that span requests,
371–380

processing requests, 360–
371

redirects, 368–371
rendering templates,

363–367
sending files and data,

367–368
sending strings, 364, 367
sessions and controllers,

372–377

Action Dispatch
about, 349
concerns, 358
dispatching requests,

350–360
REST and, 350–360

Action Mailbox
about, 247
conductors, 251–253
creating mailboxes, 250
receiving email, 247–253
responding with rich text,

259–267
setup, 248
storing email, 253–259
testing, 256–259

Action Mailer
checking sent mail, 204
configuring email, 190–

191
sending email, 189–195,

264
testing email, 195

action methods
about, 360
environment, 360–362
user response, 362–371

Action Pack, 39, 349, see al-
so Action Controller; Action
Dispatch; Action View

Action Text, 247, 259–267

Action View
about, 349, 381–406
files, uploading, 387–390
forms, generating, 383–

386
forms, processing, 386
helpers, using, 391–398
layouts, 398–402
partial templates, 402–

405
templates, using, 381–

383

action_name parameter, 360

ActionMailer::Base.deliveries()
method, 204

ActionNotFound error, 360

actions, see also Action Ca-
ble; Action Controller; Ac-
tion Dispatch; Action Mail-
er; Action View; REST

about, 34
adding, 357
callbacks and controllers,

378–380
flash and controllers, 377
limiting, 353
link_to_unless_current(), 396
list of, 353
mapping URLs to, 216,

350
qualifying layouts, 400

redirecting to, 370
selecting in callbacks,

378

Active Job
about, 189, 197
background processing,

197–205
creating classes, 200
real time page updates

with Hotwire, 80
resources, 205

Active Record, see also migra-
tions

about, 37, 315
callbacks for monitoring

of objects, 339–344
column statistics, 331
CRUD, 324–339
custom SQL queries,

333–334
data, defining, 315–320
encryption, 341–344
hook methods, 221
plugins, 433
relationships, specifying,

322–324
reloading data, 335
rows returned, ordering,

329, 333
rows returned, subset-

ting, 329–331
rows, creating, 324–326
rows, deleting, 338
rows, finding, 326–331
rows, finding by ID, 320–

322
rows, updating, 335–338
scopes, 332
session data, storing,

375–376
SQL and, 335
tables associated with

classes, 315–320
transactions, 331, 344–

348

Active Storage
about, 38, 247
configuration, 249–250
connecting views to, 78
deploying to cloud with

Kamal, 286
uploading and storing

images, 390

ActiveJob::TestHelper module, 203

activerecord-session_store gem,
375

ActiveSupport::TestCase class, 89

acts_as_list plugin, 320

add_column() method, 410–411

add_index() method, 417

add_product() method, 140

AddXXXToTABLE pattern, 127

after callbacks, 378

after_action callback, 378

after_commit() callback, 80

after_create callback, 339

after_destroy callback, 221, 339

after_find callback, 339–341,
343

after_initialize callback, 339–
340, 343

after_save callback, 339, 341

after_update callback, 339

after_validation callback, 339

Agile Manifesto, xix

agile practices, xix–xx

Ajax, partial templates, 405

all() method, 329

allow_unauthenticated_access(), 217

allowlisting, 217

AlmaLinux, 10

ampersand (&), prefix opera-
tor, 49

animation attribute, 156

animations, CSS, 156–158

any?() method, 90

APIs, documentation, xxiii

app directory, 18, 305

application.html.erb file, 105

application.rb file, 310

application_helper.rb file, 391

ApplicationController class, 227

applications
accessible by other ma-

chines, 20
architecture, 33–40
creating, 17–19, 65
dependencies, 305
directories, 17, 22, 305
helpers, 391
layouts, 105–107
quitting, 19, 31
reloading automatically,

24
running, 19–20, 70
starting when deploying,

277
URL of, 21, 25, 70, 102

@apply directive, 170

Index • 440

AppSignal, 292

apt-get, 271

ARG instruction, 270

around callbacks, 379

around_action callback, 379

array literals, 44

arrays
about, 44
SQL queries, 329
of words, 45

arrow syntax (=>), 45

as: option, 102

asdf, 8

assert() method, 89–92, 185–
186

assert_match() method, 196

assert_redirected_to() method, 137

assert_select() method, 109–
110, 113

assertions, 90–92, 109–110,
185–186, 196, 427, see al-
so testing

asset_host variable, 397

assets, precompiling, 273

assets directory, 397

AssetTagHelper class, 394–398

assignment shortcut, 55

_at suffix, 320

at sign (@), prefixing instance
variables, 42, 50

Atom feeds, 397

attr_accessor method, 51

attr_reader method, 51

attr_writer method, 51

attribute_names() method, 334

attribute_present?() method, 334

attributes
accessor methods, 319
custom SQL queries, 334
custom data, 395
labels, 384
lack of explicit defini-

tions, 317
raw values, 319
reloading, 335
setting, 324

attributes() method, 334

authenticating
authentication generator,

xiii, 207
exercises, 223

permitting access, 217–
218

users, 207–215

autoload paths, 306

average() method, 331

AWS Secrets Manager, 281

B
back end, 205

:back parameter, 371

background colors, cycling,
77

background processing, 197–
205

backing up databases, 289

backslash (\)
multiple-line commands,

67
regular expressions, 47
string substitutions, 44

bang methods, 55

banners, adding, 105

base_path attribute, 382

:bcc parameter, 396

bcrypt-ruby gem, 305

before callbacks, 378

before() method, 428

before_action callback, 121,
167, 227, 378

before_create callback, 339

before_destroy callback, 339

before_save callback, 339, 341

_before_type_cast suffix, 319

before_update callback, 339

before_validation callback, 339

belongs_to() method, 117, 174,
176, 322–323

benchmarks, 420

bin directory, 18, 308

bin/dev command, 69

:binary column type, 411

binstubs, 18

Bitwarden, 281

blocks
about, 48
callbacks, 340, 378–379
converting into a Proc

class, 56
passing, 48

blogging application, 369

BlueCloth, 394

body() method, 362

:body parameter, 396

:boolean column type, 411

Booleans, 319, 411

braces ({})
array of words, 45
blocks, 48
hashes, 45–46

brackets ([])
array indices, 44
array of words, 45
hash indices, 46

Brakeman, 433

brew install command, 8

broadcast_replace_later_to()
method, 162

broadcasting updates, 158–
163

browsers
JavaScript debugging fa-

cilities, 163
system tests using, 184–

187

build method, 122

build-essential package, 272

bundle exec command, 19

bundle install command, 11

Bundler, 305

button_to() method, 81, 119,
136, 395

buttons
adding, 119–124, 136,

166, 395
decrementing, 163
deleting items, 141
disabling, 183
styling, 120
translating, 234

C
Cache-Control parameter, 361

caching
controller role, 40
counter, 320
headers, 361
partial results, 110–112
resources, 112
REST, 351
Russian doll, 112
toggling, 110

call() method, 379

callbacks
Active Record, 339–344
after, 378
around, 379
before, 378

Index • 441

cart example, 121
controllers and, 378–380
grouping, 340–344
handlers, 340–344
inheritance, 379
limiting access, 378
locale, setting, 227
nesting, 379
ordering, 340
passing objects as, 379
permitting access, 217–

218
rendering JSON, 366
selecting actions, 378
skipping, 217, 380
types, 378

capitalize() method, 44

Capybara, 184–187

caret (^), multiple-line com-
mands, 67

CarrierWave, 433

cart for Depot, see also check-
out for Depot; orders for
Depot

broadcasting updates,
158–162

buttons, 119–124, 136,
148

capturing cart items into
order, 174–178

Checkout button, 166
connecting to products,

116–119
counter, 125
creating, 115–116
deleting, 175
emptying, 136–140
error handling, 132–136
hiding, 391
highlighting changes,

155–158
identifier, 115
item count, adding, 127–

132
orders, capturing, 165–

178
partial templates, 144–

147
price totals, 139
retrieving, 115
security, 132, 136
in sidebar, 144–155
styling, 138
testing, 118, 124, 132,

137, 140, 148–150,
158, 168, 173, 426–
430

translations, 234
Turbo-based, 150–155

case, of names, 42, 311

catalog for Depot, see al-
so products for Depot

broadcasting updates,
158–162

caching partial results,
110–112

cart in sidebar, 144–155
creating listing, 101–104
displaying, 101–113
testing, 108–110

:cc parameter, 192, 396

cd command, 66

certificate management,
Thruster, 274

change() method, 410, 414

change, agile practices for, xx

change_column() method, 413

channels, 160

checkout . command, 100

checkout for Depot, see al-
so cart for Depot; orders for
Depot

Checkout button in cart,
166

checkout form, 168–174
confirmation emails, 189–

196
dynamic fields for pay-

ment, 178–182
errors, 167, 176
order form, 166–174
orders, capturing, 165–

178
payment processing,

running in back-
ground, 196–205

system testing, 203–205
testing, 168, 173, 184–

187
translations, 237–243
validations, 173, 184

Chrome browser, system tests
using, 184–187

chruby, 8

CI (continuous integration),
12

class attribute, 244

class keyword, 50

class methods, 37, 50, 55,
340

classes
about, 41, 50–51

Active Job, 200
attributes of, associated

with columns, 317–322
automatic loading, 312
callbacks, 378–379
combining utility classes

in Tailwind, 170
defining, 50
instances of, associated

with rows, 317–320
loading, for marshaled

objects, 53
migrations and names,

410
names, 42, 50, 311–314,

410
specifying HTML classes

in Slim, 431
tables associated with,

315–320
versioning and storing

session data, 374

cleanup, session, 376

click_on() method, 186

CloudFlare, 280

CMD instruction, 274

CNCF’s Distribution Registry,
280

code
limiting in templates, 391
shared, 116, 306
statistics, 298
third-party, 309
for this book, xxii

:collection parameter, 403

collections
partial templates, 403
scoping, 357

colon (:), prefixing symbols,
42

colors, highlighting changes,
155–158

columns
adding, 127–132, 410
changing column type,

413
class attributes associat-

ed with, 317–322
column types and migra-

tions, 411–413
default data type, 165
default value, 127
fixtures, 93
listing, 317
mapped to attributes, 37
null value, allowing, 166
removing, 127, 410

Index • 442

renaming, 413
special, provided by Ac-

tive Record, 320
statistics, 331
timestamps, 320, 411
updating records, 336

command line
about, 12
adding users, 209
multiple-line commands,

67
tab completion, 12

comments
formatting helpers, 394
Ruby, 43
uploading images, 390

committing, Git, 100

composite index, 418

concern statement, 358

concerns, 116, 121, 344, 358

concerns, separation of, 25,
34, 39, 359

conditional evaluation, 55

conductors, 251–253

config directory, 309–310

config.routes file, 227

config.ru file, 304

configuration
Bundler, 305
databases, 95
in Depot application, 297
directories, 309–310
documentation, 310
email, 190–191
environments, 310
Git, 7, 82
Rack, 304
routes, 216
selecting locale, 226

:confirm parameter, 395

confirmation boxes, 77

console
dbconsole, 177, 308
rails console, 209, 223,

255, 277, 308, 317
server console, 19, 70,

309
web console, 28–30, 149

console.log file, 182

constants, 42

constraints, REST, 350

constructors, 42

content types
forcing when rendering,

366
multiple, delivering, 194,

360
sending files and data,

367–368

Content-Disposition header,
368

Content-Length header, 368

Content-Transfer-Encoding
header, 368

Content-Type header, 367–
368

content_for mechanism, 401

content_length() method, 362

content_type() method, 362, 389

:content_type parameter, 367

context, forms, 169

context() method, 428

continuous integration (CI),
12

control structures, 47

controller attribute, 382

controllers, see also Action
Controller; Action Dispatch;
MVC architecture

about, 20, 34
action methods, 360–371
Action Pack support, 39
callbacks and, 378–380
creating, 20, 66, 101
default behavior, 21
in Depot application, 296
directory location, 22
dispatching requests,

350–360
environment, 360–362
error logging, 135
flash and, 377
form details, capturing,

174–178
grouping into modules,

312
mapping URLs to, 350
marshaled objects, 53
modifying, 128–132, 137–

140
names, 70, 311–314
objects and operations

that span requests,
371–380

overriding layouts, 399
partial templates and,

405

processing requests, 360–
371

redirects, 368–371
rendering template ac-

tions, 362–367
sending files and data,

367–368
separating logic from da-

ta, 25
sessions and, 372–377
slow processing of, 196–

205
Stimulus, 178–182
switching locales, 245
testing, 108–110, 118,

124, 137, 140, 148–
150, 158, 168, 214–
215, 217

user response, 362–371
writing helper methods,

391

convention over configura-
tion, xviii, 26, 34, 66, 95

conventions, for this book,
xxii

cookies
associated with request,

360
expiring, 376
storing session data,

372–374, 376

cookies object, 360

COPY instruction, 272

count() method, 331

counters, 125, 320

coupling, 34

create action, 150, 176, 353

create() method
about, 35
buttons, 119–124
error reports, 337
model objects, 325
order details for cart,

174–178
validation errors and, 97

create!() method, 74, 337

create_table() method, 414–415,
418

created_at column, 320, 415

created_on column, 320, 415

credentials (secrets), 275–276

cross-site request forgery at-
tacks, 106

Index • 443

CRUD (create, read, update,
delete) operations, 324–
339, 353

csp_meta_tag() method, 106

csrf_meta_tags() method, 106

CSS, see also styling and
style sheets

animations, 156–158
class attribute and, 244
selector notation, 109
Tailwind, 65–66, 75–80,

106, 170

curl, 271

currency
converting numbers to,

107, 113
formatting, 107, 113, 392
internationalization, 107,

235–236, 246

current time, 24

current_cycle() method, 394

current_page() method, 396

cycle() method, 77, 394

D
-d option, containers, 277

\d sequence, 47

data, see also databases;
models

custom attributes, 395
defining, 315–320
fixture data, 92–95
passing to layouts, 401
reloading, 335
seed data, 74–75
sending, 367–368

:data parameter, 395

data types
column types and migra-

tions, 411–413
default, for columns, 165
Ruby, 43–47
SQL to Ruby mappings,

319

data-controller field, 182

database drivers, 416

databases, see also Active
Record; columns; migra-
tions; models; rows; tables

adapters, 16
backing up, 289
column statistics, 331
column type mapping ta-

ble, 411
configuration files, 95

connecting tables in,
116–119

creating, 66–69
deleting rows, 118, 338
development database,

95
drivers, 15, 416
encryption, 341–344
locale exercise, 246
mapping types, 319
in MVC diagram, 34
production database, 95
Rails support, 36
saving form fields to,

174–178
searching, 326–331
seed data, 74–75
SQL access to, 324–339
supported by Rails, 15
test database, 95
transactions, 344–348
updating rows, 335–338
validating data, 85–88

DataDog, 290

:date column type, 411

dates
column type, 411
exercises, 113, 206
form helpers, 385
formatting helpers, 392
mapping, 319
_on suffix, 320

:datetime column type, 411

DB2, 411

Debian Bookworm, 271

Debian-based Linuxes, 9

debug() method, 382, 393

debugging
Hotwire, 163
JavaScript, 163
templates, 382, 393
viewing errors in web

console, 28–30

:decimal column type, 411

decimals, 319, 411–412

declarations, 50, 117, 176,
322–324

decryption, see encryption

default values, 55

default: value option, 412

delete() method, 338

DELETE request
linking helpers, 395
links, 81

POST substituted for, 81
in REST, 351, 357

delete? attribute, 361

delete_all() method, 338

deleting
cart items, 117
columns, 127
exercises, 141
linking helpers, 395
migrations, 131
products, 77
REST, 353
rows, 118, 174, 338
sessions, 373, 376–377
tables, 414–419
users, 219–222

deliver_later() method, 193, 197

deliver_now() method, 193

denylisting, 217

dependencies, directory, 305

dependent: parameter, 117

deploy command (Kamal), 288

deployment
about, 269
backing up databases,

289
building images, 271–273
changes with Rails 8, xiii
converting SQLite

database to Post-
greSQL, 292

Docker containers, start-
ing, 277

Docker images, 277
Docker, installing, 277
exercises, 293
local deployment with

Docker, 269–278
logs, making searchable,

290–292
monitoring tools, 292
requirements, 3
review of, 298
running in production,

288–293
scaling, 292
secrets (credentials),

managing, 275–276
starting application, 277
to cloud, 274, 278–288

Depot application, see al-
so cart for Depot; catalog
for Depot; checkout for De-
pot; orders for Depot; prod-
ucts for Depot

about, 59–64, 295–299

Index • 444

administration in side-
bar, 218–222

administrative users,
adding, 209

administrative users,
permitting access for,
217–218

controllers, 296
creating application, 65–

74
CRUD operations, 324–

339
data requirements, 62–64
database, creating, 66–69
database, migrating, 68–

69
deployment, 269–293,

298
development approach,

59
directories, 66
email, receiving, 247–253
email, responding with

rich text, 259–267
email, sending, 189–196,

264
email, storing, 253–259
email, testing, 256–259
migrations, 408
models, 295–296
page flow, 61
REST, 351–360
running, 70
scaffold, 66–68
Slim templates, 432
specification, 60–64
statistics, 298
testing, 297, 426–430
translations, 230–243
use cases, 60
views, 296

describe() method, 428

deserialization, see encryption

desktop organization, 15

destroy action, 353

destroy() method, 136–138,
338–339, 347

destroy: parameter, 117, 174

destroy_all() method, 338

--detach option, containers, 277

development, incremental, 59

development environment
Active Storage setup, 249
automatic reloading, 24
setup, 3, 12–15

development.log, 308

Devkit, 4

dialog boxes, confirmation, 77

digest password type, 208, 215

Digital Ocean, 279

digits, regular expressions, 47

dir command, 18, 66

directories
applications, 305
assets, 397
fixtures, 92
images, 397
layouts, 399, 405
library, 305–307
listing contents, 18, 66
structure, 17, 22, 303–

310
tasks, 307
templates, 363, 381, 404
tests, 89, 305
views, 381

distance_of_time_in_words()
method, 392

div in Slim, 431

do/end blocks, 48

Docker
base images, 270
cloud deployment with

Kamal, 278–288
container registeries, 280
containers, starting, 277
development setup, 3–4
images, about, 269
images, building, 271–

273, 277, 281
installing, 277
instructions, 270
local deployment with,

269–278

docker compose build command,
277

docker compose up command,
277

docker-compose.yml file, 274

DockerHub, 280

documentation, Rails, xxiii,
15, see also resources

DOM (Document Object Mod-
el), 151, 156–157, 163

domain() method, 361

domain names, deploying to
cloud with Kamal, 280, 284

Don’t Repeat Yourself princi-
ple, see DRY principle

Doppler, 281

Dormando, 375

dot (.)
CSS selectors, 109
filenames, 83
prefixing translation

function, 230
specifying HTML classes

in Slim, 431

DoubleRenderError exception, 363

down() method, 129, 410, 414

downloads, 363

DRb, 375–376

DRbStore, 375–376

drivers, database, 416

drop_table() method, 415

DRY (Don’t Repeat Yourself)
principle, xviii, xx, 317,
398–405

duplication, avoiding,
see DRY principle

dynamic content, see ERB
templates

E
each() method, 329, 332

eager-loads, 293

edit action, 353

editors, selecting, 13–14

Effective Testing with RSpec
3, 425

Elastic Search, 290

Emacs, 13

email
auto-deletion of, 255
configuring, 190–191
delivery method, 190
exercises, 206, 267
form helpers, 385
internationalization, 192
linking helpers, 394, 396
multiple content types,

194
plain-text, 265
processing in back-

ground, 197
receiving, 247–253
responding with rich text,

259–267
sending, 189–195, 264–

265
storing, 253–259
templates, 192, 195
testing, 190, 195, 256–

259

email_field() method, 172, 385

Index • 445

Embedded Ruby, see ERB
templates

:encode parameter, 396

encryption
DRbStore, 375
flash data, 378
session data, 372
using callback handler,

341–344

end keyword, 43, 47

ENGINE=InnoDB option, 416

entity names, 233, 241

ENTRYPOINT, deploying with
Docker, 273

enum declaration, 165, 172

enumerated types
Postgres, 419
Ruby, 165, 172

ENV instruction, 271

env() method, 362

environment.rb file, 310

environments
configuring, 310
roles, 310
staging, 310
switching, 310

environments directory, 310

ERB templates
about, 23, 39, 363, 382
catalog display, 103–104
compared to Slim, 430
converting to Slim, 432
names, 26
testing Action Mailbox,

258
for views, 22–23

erb2slim command, 432

errors, see also exceptions
empty form fields, 176
exercises, 140, 206
form fields, 170
handling different content

types, 360
handling in before_action,

167
handling with flashes,

132–136, 377
handling with rollback,

221, 344
installation, 18
logging, 134–136
marshaling, 53
messages, adding to, 92
messages, built-in, 96

messages, returning as
string without a view,
362

messages, translating,
240–241, 243

missing methods, 360
partials, 148–150
readability, xxiii
redirecting after, 135
rendering, 363
start-up, 70
validation, 86–87, 90–92,

100
viewing in web console,

28–30

errors() method, 90

errors object, 118

escape sequence, \u00D7, 132

escaping, SQL, 327

European General Data Pro-
tection Regulation (GDPR),
255

:except option
actions, 353
qualifying layouts, 400

exceptions, see also errors
create! and save! raising,

337, 345
DoubleRenderError exception,

363
handling with rollback,

221
intercepted by rescue

clauses, 49, 134, 221
IrreversibleMigration excep-

tion, 414
RecordInvalid exception, 338
RecordNotFound exception,

132, 326–327
save!() method, 337

excerpt() method, 394

exchange rates, 246

exclamation point (!), bang
methods, 55

execute() method, 419–420

exercises, see Playtime exer-
cises

expand_path() method, 56

expiry, session, 376

EXPOSE 80, 273

expression interpolation, 44

extensions, templates, 363

F
field_with_errors, 170

Fielding, Roy, 350

fields
dynamic, 178–182
form helpers, 385
hiding, 385
limiting size, 412
validating, 86

:file_store option, 375

files
directory structure, 303–

310
fixtures, 92
ignoring in Git, 82
layouts, 399
listing, 18, 66, 83
metadata, 389
names, 83, 311–314, 367
navigation, editor support

for, 13
rendering to, 366
requiring full path for, 56
RSpec, 430
sending, 367–368
storing session data, 375
uploading, 387–390

filter() method, 378–379

find() method, 326–327, 334

find_by() method, 128

find_by_sql() method, 333–335

Firebird, 16

first() method, 329

fixtures, 92–99, 257, 427

fixtures() directive, 95, 427

flash
about, 134–136
controllers and, 377
error messages, 377
removing messages, 138
translating messages,

243

flash attribute, 382

flash.keep option, 377

flash.now option, 377

floating numbers, 319, 411

force: option, 415

foreign keys
about, 117
custom migrations exam-

ple, 419–420
relationships, 322
set automatically, 176
xxx_id column, 320

Index • 446

form helpers, 168–174

form.select element, 182

form_with helper, 244

form_with() method, 169

format() method, 362

:format parameter, 359

formats
data representation,

REST, 359
helper methods, 392–398
request actions, 362
route specifier, 354, 359
templates, 363

forms
capturing information

from, 174–178
constrained options,

fields for, 385
context, 169
creating, 168–174
dynamic, 178–182
generating, 383–386
helpers, 383–386
labels, 384
modifying, 71–72
names, 169
new user, 212
order form, 166–174
processing, 386
relationships to tables,

174
switching locale, 244–245
text areas, 384
text fields, 384
validations, 173

forward slash (/), regular ex-
pressions, 46

fragment caching, 110–112

FROM instruction, 270, 272

:from mail parameter, 192

functional testing, 108–110,
124, 305

G
gcr.io, 280

GDPR (European General
Data Protection Regula-
tion), 255

gem install command, 7, 9, 11

gem list command, 11

gem server command, xxiii

Gemfile file, 305

Gemfile.lock file, 305

generators, see rails generate
command

get action, 388, 390

GET request
linking helpers, 395
in REST, 351
side effects, 81

get? attribute, 361

ghcr.io, 280

Git
about, 12
checking status, 100
committing work, 100
configuring, 7, 82
exercises, 82
ignoring files, 82
resources, 12

git config command, 7

git package, deploying with
Docker, 272

.gitignore file, 82

Gitlab, 280

global replacements with
callbacks, 379

:greater_than_or_equal_to option,
87, 91

group() method, 331–332

H
handler class, 340–344

handlers, callbacks, 340–344

has_and_belongs_to_many declara-
tion, 323

has_many() method, 117, 174,
176, 323

has_no_field?(), 186

has_one() method, 322

has_rich_text() method, 261

has_secure_password() method,
208

hash keys, 45

hash literals, 45

hash mark (#)
comments, 43
CSS selectors, 109

hash() method, 321

hashes
about, 44–46
hash keys, 45, 321
passing as parameters,

46
placeholders, 328

head? attribute, 361

headers
caching, 361
cookies, 361

request actions, 362
sending files, 368

headers attribute, 382

headers() method, 362

headers parameter, 361, 368

Heinemeier Hansson, David,
xxiii

Hello, World! app, 20–30, 399

helper methods
directory, 391
for formatting and link-

ing, 392–398
forms, 168–174, 383–386
named routes, 353
organizing, 391
uploading files, 387–390
using, 391–398
for view templates, 27–28
writing, 391

helper modules
about, 52, 391
controller role, 40
default, 391

Hetzner, 279

Hetzner Cloud, 279

Hetzner Robot, 279

hidden_div_if() method, 391

hidden_field() method, 385

hiding
cart, 391
form fields, 385

High Performance PostgreSQL
for Rails, 293

highlight() method, 394

highlighting
changes, 155–158, 163
formatting helpers, 394
syntax, in editor, 13
testing, 158

Homebrew, 7

Honeybadger, 292

hook methods, 118, 221

host() method, 361

host_with_port() method, 361

hosts
binding to, 20
request actions, 361

Hotwire
about, 143
incremental style, 163
real time page updates,

78, 81
troubleshooting, 163

Index • 447

HTML, see also ERB tem-
plates

entity names, 233, 241
mailers, 194
Slim templates, 430–432
stripping tags from, 77

.html.erb files, see ERB tem-
plates

html2slim gem, 432

html_safe method, 226

HTTP requests, see redirects;
requests

HTTP/2 proxies, 273

HTTP_REFERER header, 371

HTTPS, 361

I
-i email option, 190

I18n module
selecting locale, 226–229
switching locale, 244–245
translations, 230–243

id column
about, 320
automatically set, 325,

415
default primary key, 321
importance of, 120
records, finding by ID,

320–322
renaming, 321, 418
storing in session, 115

id() method, 321

IDEs, 14

IDs
migration version/ID,

131, 408–409
session ID, 372, 376

IETF (Internet Engineering
Task Force), 159

if statements, 47

image field, deploying to cloud
with Kamal, 284

image_tag() method, 77, 104,
396

images
Depot product listing, 74–

80
directory, 397
displaying, 389
exercises, 163
linking helpers, 396
making into links, 396
tags, 104, 396

uploading files, 387–390
validating URLS for, 88,

91

images directory, 397

import maps
importmap pin command,

424
javascript_importmap_tags()

method, 397

import statement, 424

importmap pin command, 424

include statement, 121, 293

incremental development, 59

indentation
automatic, in editor, 13
fixtures, 93
Ruby, 43
YAML, 52, 232

index action, 353, 355

index() method, 102–103, 215

indices
arrays, 44
composite, 418
defining, 417
functional testing, 109
hashes, 46
manipulating outside mi-

grations, 421

inflections, 316

inheritance, callbacks, 379

InnoDB storage, 416

installing
development environ-

ment, 12–15
errors, 18
examining results, 18
on Linux, 9–11
on macOS, 7–9
packages on Debian, 271
Rails, 3–16
RSpec, 425
Ruby, 4, 7, 10
Slim, 432
on Windows, 4–7

instance methods
for actions, 360
defining, 50–51
for layouts, 400
in ORM, 37

instance variables
about, 50
accessing, 51
available in templates,

382
lost after redirect, 134
names, 42, 50

:integer column type, 411, 413

internationalization
about, 225
characters, 226, 233
currency, 107, 235–236,

246
exercises, 246
locale, selecting, 226–229
locale, switching, 244–

245
mailers, 192
routes, 226–227
scope, 227
sending files and data,

367
translations, 230–243

Internet Engineering Task
Force (IETF), 159

invalid?() method, 90

IP address
deploying to cloud with

Kamal, 284
request actions, 361

IrreversibleMigration exception,
414

iterators, 48

J
JavaScript, see also React;

Webpack
Action Cable, 159–162
debugging, 163
email helpers, 396
linking helpers, 395, 397
RJS templates, 363, 366
testing, 184–187

javascript_importmap_tags()
method, 397

Jbuilder templates, 382

JDBC, 16

join tables, 323, 330, 418

joins() method, 330

JSON
exercises, 183
Jbuilder templates gener-

ating, 382
rendering templates, 366
specifying data format,

359
templates, 39

K
Kamal

building images locally,
281

deploy command, 288

Index • 448

deployment to cloud with,
274, 278–288

logs, watching in real
time, 290

resources on, 278
setup command, 288

Kamal Handbook, 278

Kaminari, 433

keyframes, 156

@keyframes directive, 156

keys, see also primary keys
foreign, 117, 176, 320,

322, 419–420
hash keys, 45, 321

L
label() method, 169

labels, forms, 384

lambda expressions, 56

lambda operator, 56

LANGUAGES array, 244

LastPass, 281

layout directive, 399–400

:layout parameter, 399–402

layouts, see also styling and
style sheets; templates

about, 398
for application, 105–107
avoiding duplication with,

398–402
directories, 399
dynamic, 400
files, 399
functional testing, 109
internationalization, 230–

245
overriding for controllers,

399
partial templates and,

405
passing data to, 401
switching locale, 244–245
wrapping renderings, 366

layouts directory, 399

:length option, 100

less command, 15, 135

let() method, 427

lib directory, 305–307

libjemalloc2, 271, 273

libraries
directory, 305–307
Linux installation and, 9
loading, 306
requiring, 307

libvips, 271

like clauses, 329

limit() method, 330, 332–333

limit: size option, 412

line breaks, 393

line_items_path() method, 119

link_to() method, 27, 77, 394–
398

link_to_if() method, 395

link_to_unless() method, 395

link_to_unless_current() method,
395

links
between pages, 26–28
generating conditionally,

395
helper methods, 394–398
images as, 396
tags for, generating, 106
to REST actions, 357

Linux
database drivers, 16
installing Rails, 9–11
scrolling log files, 135

lit package, 424–425

Litestream, 289

load balancers, 293

load path
about, 310
enabling autoloading,

306
requiring files not in, 56

loading, automatic, 312

local variables
names, 42
partial templates, 403

locale
selecting, 226–229
switching, 244–245
translations, 239

:locals parameter, 403

lock() method, 331

log directory, 275, 308

log files
deploying to cloud with

Kamal, 285, 290–292
directory, 308
errors, 134–136
scrolling, 15, 135
searchable, 290–292
viewing, 135

logger, 134–135, 362

logger object, 362, 382

logging out, 376

logic, Ruby, 47–50, see al-
so separation of concerns

login
authenticating users,

207–215
deleting users, 219–222
exercises, 222
log out, 376
permitting access, 217–

218
plugins, 222
styling, 218–222
testing, 217

Loki, 290

looping, see blocks; iterators

ls -a command, 83

ls command, 18, 66, 83

Lucas, Tim, 417

M
macOS

database drivers, 16
installing Rails, 7–9
tracking log files, 135

machines, deploying with Ka-
mal, 279

mail() method, 192

mail_to() method, 396

mailboxes, see Action Mailbox

mailers, 191–195, see al-
so email

many-to-many relationships,
323

map() method, 329

mapping, see also ORM li-
braries

arrays, 329
column types, 411
models to tables, 66
objects to forms, 168
SQL to Ruby types, 319
URLs to actions, 350

Markdown (BlueCloth), 394

marshaling, 53, 375

master key, 276, 286

maximum() method, 331

memcached system, 375

:memory_store option, 375

messages, see email; errors;
exceptions

method attribute, 361

:method parameter, 395

method: :delete method, 81

method_missing() method, 360

Index • 449

methods, see also helper
methods; instance methods

about, 50–51, 144
accessors, 51, 102, 319,

389
action methods, 360–371
bang methods, 55
callback handlers, 340
class methods, 37, 50,

55, 340
defining, 43
hook methods, 118, 221
invoking, 42
missing methods, 360
names, 42
passing blocks, 48
predicate methods, 55
private methods, 51, 116
protected methods, 51
public methods, 51

Migration class, 410

migrations
about, 68, 407–408, 410–

414
advanced, 419–420
applying, 68
checking status, 131
column types, 411–413
columns, adding or re-

moving, 127–132
columns, changing, 413
columns, renaming, 413
creating, 129, 407–408
custom benchmarks, 420
custom messages, 420
deleting, 131
directory, 407
down, 129, 410, 414
exercises, 81, 140
filenames, 408
indices, defining, 417
irreversible, 414
join tables, 418
listing, 307
multiple, 166
names, 127
naming convention, 407
one-way, 414
order, 409
redoing, 410
rolling back, 131, 221,

409, 420
running, 128, 409–410
schema manipulation

outside of, 421
tables defined by, 317–

320
tables, creating, 414–419
tables, dropping, 415

tables, force dropping,
415

tables, renaming, 416
timestamps, 68, 408
troubleshooting, 420
undoing and reapplying,

63
up, 129, 410
using native SQL, 419–

420
version number, 131,

408–409
version, forcing, 409

MIME types
request actions, 362
specifying, 359

minimum() method, 331

MiniTest, 89

MiniTest::Test class, 89

mise-en-place, installing with,
7, 10

Model-View-Controller (MVC)
architecture, see MVC archi-
tecture

models, see also Active
Record; databases; MVC
architecture; unit testing

about, 20, 33, 176, 295
creating, 66, 253
in Depot application,

295–296
equality, 322
foreign keys, 117, 322
generator, 408
mapping to forms, 168
mapping to tables, 66
marshaled objects, 53
moving logic from con-

troller, 198
names, 66, 311–314
object life cycle, 339–344
objects and storing ses-

sion data, 373
Rails support, 36–38
records, finding by ID,

320–322
relationships, specifying,

322–324
reloading, 335
testing, 89–99
translating names, 242
validating, 85–88

modules
about, 52
automatic loading, 312

grouping controllers into,
312

names, 42, 52, 311–314

monitoring tools, 292

MSYS2, 4–5

MVC (Model-View-Controller)
architecture

about, xvii, 20, 33–36
diagram, 34

mx-auto class, 77

MySQL
column type table, 411
database adapter, 16
database driver, 416
options: parameter, 415
share mode, 331

N
%n placeholder, 236

\n, forcing newlines with, 44

name completion, 13

:name option, 418

named routes, 353, 358

names
channels, 160
classes, 42, 50, 410
columns, renaming, 413
constants, 42
controller, 70
controllers, 311–314
email templates, 195
files, 83, 367
fixtures, 92–93
form fields, 169
instance variables, 42, 50
internationalization, 230,

233
local variables, 42
methods, 42
migrations, 127, 408
models, 66
modifying the inflection

file, 316
modules, 42, 52
naming conventions,

311–314
parameters, 42
partial templates, 145,

402
primary keys, 418
routes, 352
Ruby, 42
tables, 66, 315–320, 414
tables, renaming, 416
templates, 195, 363, 381
uploading images, 389

Index • 450

users, 211
variables, 42

naming conventions, 311–314

 for nonbreaking space,
236

NeoVim, 14

nested resources, 358

nesting, callbacks, 379

new action, 166, 168–169,
176, 353

new() method, 42, 324

New Relic, 292

newline character, replacing
string with, 44

nil, 44, 46

no-cache parameter, 361

nonbreaking space character,
236

NoScript plugin, 163

:notice parameter, 135

notices
error redirects, 135
flash and controller, 377

npm packages, 424

null value, allowing for
columns, 166

null: option, 412

number.currency.format configura-
tion, 235

number_field() method, 385

number_to_currency() method, 77,
107, 113, 392

number_to_human_size() method,
392–393

number_to_percentage() method,
392–393

number_to_phone() method, 392–
393

number_with_delimiter() method,
392–393

number_with_precision() method,
392–393

numbers
column types, 411–412
converting to currency,

107, 113
formatting, 107, 109, 392
functional testing, 109
internationalization, 235–

236, 246
mapping, 319

precision, 393, 412
validating, 87, 91

numericality() option, 87

O
:object parameter, 403

Object Storage, deploying to
cloud with Kamal, 280

object-oriented programming,
see OO programming

object-relational mapping
(ORM) libraries, xxiv, 36–
38, see also Active Record

objects
associating errors with,

118
creating, 42
equality, 322
life cycle, 339–344
mapping to forms, 168
marshaling, 53
passing as callback, 379
passing into partial tem-

plates, 403
saving, 176
storing session data, 372

offset() method, 330

onchange event handler, 244

one-to-many relationships,
322

one-to-one relationships, 322

:only option
limiting actions, 353
qualifying layouts, 400

_on suffix, 320

OO (object-oriented) program-
ming

relational databases and,
36

Ruby used for, 41–43

op= assignment shortcut, 55

Openbase, column type table,
411

OpenStruct class, 198

options: parameter, 415

Oracle, 16, 411

order() method, 103, 329, 332–
333

ordering
callback handlers, 340
of items, 103
migrations, 409
SQL queries, 329, 332–

333
users, 212

orders for Depot, see also cart
for Depot; checkout for De-
pot

capturing, 165–178
confirmation emails, 189–

196
connecting to slow pay-

ment processor, 197–
205

deleting, 174
exercises, 206
order form, 166–174
support emails, 254
translations, 237–243

ORM (object-relational map-
ping) libraries, xxiv, 36–38,
see also Active Record

P
page flow, 61

Pago (fictional payment pro-
cessor), 197–205

paragraph breaks, 393

parameters
names, 42
passing with flash, 377
passing hashes as, 46
passing to partials, 144
processing forms, 386

params object
about, 122, 361
forms, 386
placeholders, 328
views, 382

parentheses (())
method calls, 42
regular expressions, 46
in REST routes, 353

:partial parameter, 403

partial templates
about, 144, 402
avoiding duplication with,

402–405
collections, 403
controllers, 405
for dynamic fields, 180
mailers, 193, 195
names, 145, 402
passing parameters to,

144
rendering, 144–147, 366,

403–405
shared, 404
with Turbo, 151–155

partials, see partial templates

password managers, 281, 286

password_field() method, 385

Index • 451

passwords
exercises, 223
form helpers, 385
hashing, 207, 215
obscuring, 385
password managers,

281, 286
validating, 208

PATCH request
linking helpers, 395
POST substituted for, 81

_path, appending to controller
name, 119

path() method, 361

paths, see also load path
base_path attribute, 382
expanding, 56
pathnames to views, 103
redirecting to, 370
request actions, 361
requiring full path for, 56
REST requests, 352

payment
processing in back-

ground, 196–205
types, 184
validations, 184

percentages, formatting
helpers, 392

perform_enqueued_jobs() method,
203

perform_later() method, 202

performance, REST, 351

pessimistic version operator,
11

pgloader, 292

phone numbers, formatting
helpers, 392

pkg-config package, 272

placeholders, 328, 384

Playtime exercises
administration, 222
authentication, 223
broadcasting, 163
buttons, 163
counters, 125
date, 113, 206
deployment, 293
email, 206, 267
error messages, 140
errors, 206
expressions, 31
images, 163
internationalization, 246
iteration, 31
JSON, 183

layouts, 113
migration, 187
migrations, 81, 140
order checkout, 206
passwords, 223
rollbacks, 81
sessions, 125
tests, 113, 140, 187, 223
time, 113
validations, 100, 184,

223
version control, 82
XML, 183

plugins
customizing with, 433
login, 222

pluralize() method, 125, 215,
394

plurals
naming conventions,

311, 313, 316
translations, 241

port_string() method, 361

ports
deploying locally with

Docker, 275
request actions, 361

POST request
about, 35
for buttons, 119
linking helpers, 395
locale switchers and

forms, 245
processing forms, 386
in REST, 351
substitution for other

HTTP methods, 81
uploading files, 387

post? attribute, 361

PostgreSQL
about, 3
column type table, 411
converting SQLite to, 292
database adapter, 16
Queue Classic, 205

:precision option, 412

precompile, 273

predicate methods, 55

preloads, 293

prepend_after_action() method,
378

prepend_before_action() method,
378

presence: true parameter, 86

prices
exercises, 140

formatting, 107, 109
internationalization, 107,

235–236, 246
validating, 87, 91

primary database, backing
up, 289

primary keys
about, 315, 418
automatic creation, 415
default, 321
finding rows, 320, 326
id column, 320
names, 418
overriding, 321
tables without, 418

primary_key attribute, 321

:primary_key option, 418

private directive, 51, 116

private methods, 51, 116

Proc
converting blocks to, 56
scopes, 332

process() method, 250

Procfile.dev file, 70

Product Maintenance applica-
tion, see Depot application

production, database for, 95

production.log, 308

products for Depot
adding, 71–72
catalog display, 101–113
connecting to cart, 116–

119
count, adding, 127–132
database, creating, 66–69
database, migrating, 68–

69
form for, modifying, 71–

72
formatting prices, 107
list of, styling, 75–80
list of, viewing, 69–80
locale exercise, 246
ordering, 103
seed data, 74–75
testing validations, 89–99
validating, 85–88

products() method, 96

Programming Ruby 3.3, 41

:prompt parameter, 172

Propshaft Digest stamping,
xxi

protected methods, 51

protocol() method, 361

public directory, 308

Index • 452

public methods, 51

public.ecr.aws, 280

PUT request
linking helpers, 395
POST substituted for, 81
in REST, 351

put? attribute, 361

puts() method, 43, 97

px-2 class, 78

py-3 class, 78

Q
quay.io, 280

query_string() method, 361

question mark (?)
predicate methods, 55
SQL placeholders, 328

Queue Classic, 205

queuing, background jobs,
201, 205

quotation marks, strings, 43,
75

R
Rack, 304, 362

Rack Middlewares, 304

Rails
advantages, xvii–xx
customizing and extend-

ing, 423–433
directory structure, 303–

310
documentation, xxiii, 15
installing, 3–16
requirements, 3
resources, 434
standards, xix
upgrading version used,

11
versions, 3, 11, 17–18

rails about command, 18

rails command, 17–19, 308

Rails component, 304

rails console command, 209,
223, 255, 277, 308, 317

rails db:migrate command, 68,
116, 128, 166, 254, 409

rails db:migrate redo command,
410

rails db:migrate:status command,
131

rails db:rollback command, 131

rails db:seed command, 75

rails dbconsole command, 177,
308

rails destroy command, 309

rails dev:cache command, 110

Rails Doctrine, xviii

rails generate authentication com-
mand, 207

rails generate command, 200,
309

rails generate controller command,
20, 101, 314

rails generate mailbox command,
250

rails generate mailer command,
191, 264

rails generatemigration command,
127, 129, 408

rails generate model command,
253, 408

rails generate rspec:install com-
mand, 426

rails generate scaffold command,
66–68, 115–116

Rails Metal, 304

rails new command, 17, 65,
303, 309

rails routes command, 352

rails runner command, 309

rails server -e command, 310

rails server command, 19, 70,
309

rails spec command, 426

rails stats command, 298

rails test command, 97

rails test:all command, 182

rails test:system command, 184

rails.vim plugin, 14

RAILS_ENV=production command,
421

RAILS_MASTER_KEY, 277

raise method, 49

Rake
resources, 308
tasks, 131, 248, 262,

305, 307, 409

rake -D command, 305

rake -T command, 305

Rakefile file, 305

Ransack, 433

rbenv, 8

Reactive Controllers, 425

read() method, 389

read_attribute() method, 319

readability
errors, xxiii
fixture names, 93
Rails, xviii
Ruby structures, 54

README file, 305

readonly() method, 331

receive_inbound_email_from_mail()
method, 256

received() method, 193

RecordInvalid exception, 338

RecordNotFound exception, 132,
326

records, see Active Record;
databases; rows

recovery, 63

RedCloth, 394

RedHat-based Linuxes, 10

redirect_to() method, 135, 175,
363, 370–371

redirects
back to previous page,

371
controllers and, 368–371
errors, 135
exactly one call, 363
permanent, 371
switching locales, 245
testing, 215
to display, 175, 370–371

redis, background jobs requir-
ing, 205

redo command, 63

Reenskaug, Trygve, 33

regular expressions
about, 46
in assert_select(), 110

Relation class, 329, 333

relational databases, 36, see
also databases

relationships
creating, 122
forms, 169
between forms and ta-

bles, 174
locating and traversing

records, 320–322
order checkout, 169
specifying, 322–324
between tables, 117–119
types, 322–324

reload() method, 335

Index • 453

reloading
apps, 24
data, 335

remote_ip() method, 361

remove_column() method, 410

remove_index() method, 418

RemoveXXXFromTABLE pattern,
127

rename_column() method, 413

rename_table() method, 416

renaming
columns, 413
primary key, 418
tables, 416

render() method
about, 363–367
exactly one call, 363
layouts, specifying, 400
partial templates, 145,

403–405
template location, 381

render_to_string() method, 162,
367

rendering, see also Action
View

about, 363–367
actions, 362–367
caching and, 110
errors, 363
to files, 366
layouts, specifying, 400
partial templates, 144–

147, 366, 403–405
redirects and, 366
rerendering, 110
to strings, 162, 364, 367

repetition, regular expres-
sions, 47

:replace_at option, 397

:replace_dot option, 397

Representational State
Transfer (REST), 350–360

request URLs, 21

request object, 361, 382

request_method attribute, 361

requests
about, 34, 81
actions for, specifying,

216
callbacks and, 378–380
dispatching, 350–360
flash and controllers, 377
objects and operations

that span requests,
371–380

passing parameters with
flash, 377

processing , 360–371
redirects, 368–371
REST and, 350–360
sessions and, 372–377
status response, 366–

368, 371

require method, 56

require statement, 307, 312

rescue clauses, 49, 134, 221

rescue_from clause, 134, 221

reset_cycle() method, 394

reset_session() method, 377

Resource class, 331

resources
Action Mailbox, 248
Active Job, 205
Active Storage, 249, 390
assert_select() method, 110
for this book, xxiv
caching, 112
callbacks, 340
Capybara, 186
configuration, 310
creating, 353
form options helpers, 385
Git, 12
Kamal, 278
Rack, 304, 362
Rails, xxiii, 15, 434
Rake, 308
RSpec, 425
Ruby, 56
translations of common

strings, 241

resources (REST), 350–360

resources statement, 352, 358

respond_to() method, 150, 355,
359

response object, 362, 382

REST (Representational State
Transfer), 350–360

return keyword, 43

rich_textarea() method, 262

RJS templates, 363, 366

rollbacks
automatic, 221
exercises, 81
of migrations, 131, 409,

420

Rollbar, 292

ROM, 433

root statement, 216

routes, see also Action Con-
troller; Action Dispatch;
Action View

concerns, 358
dispatching requests,

350–360
editing config/routes.rb file,

216
format specifiers, 354
generating, 352
internationalization, 226–

227
listing, 227, 352, 358
named, 353, 358
naming, 352
nesting resources, 358
processing requests, 360–

371
REST, 350–360
selecting data representa-

tion, 359
setting root URL, 102
shallow route nesting,

358
specifying actions for re-

quests, 216
specifying format, 359
URL parsing, 25
ways to define, 350

routes command, 358

routing, 34, 40

routing() method, 250

rows
class instances associat-

ed with, 317–320
creating, 324–326
deleting, 118, 174, 338
encryption, 341–344
finding, 326–331
fixtures, 93
locking, 331
mapped to objects, 37
specifying, 320
timestamps, 320
updating, 335–338

RSpec, testing with, 425–430

rspec-rails gem, 425, 430

RuboCop, 433

Ruby
about, 41–43
advantages, xviii
blocks, 48
control structures, 47
data types, 43–47
example, 53
exceptions, 49
idioms, 54–56

Index • 454

installing, 4, 7, 10
iterators, 48
logic, 47–50
marshaling, 53
names, 42, 311
as object-oriented lan-

guage, 41–43
organizing structures,

50–52
resources, 56
versions, 3–4, 7–8, 10, 16
versions, installing multi-

ple, 10

RubyGems, xxiii, 11

RubyInstaller, 4

RubyMine, 14

RUN instruction, 271

Russian doll caching, 112

RVM, 8

S
\s sequence, 47

sanitize() method, 104

save action, 389

save() method, 324, 336–337,
339, 347

save!() method, 75, 337, 345

saving
exceptions, 337, 345
rows, 324, 336
transactions, 347
uploading files, 389

say_with_time() method, 420

scaffolding
about, 34
actions, 119
directory structure creat-

ed by, 303–305
fixtures defaults, 95
generating authentica-

tion, 207
generating scaffold, 66–

68, 115–116
REST actions, 355

:scale option, 412

scaling, deployment, 292

schema_migrations table, 409

schemas, see databases; mi-
grations

scopes, Active Record, 332

scoping routes for REST ac-
tions, 357

Scout, 292

script wrappers, 308

scripts, see generators

search_field() method, 385

searching, databases, 326–
331

Searchkick, 433

SECRET_KEY_BASE, 273

secrets, deploying to cloud
with Kamal, 285

secrets (credentials), 275–276

security
channels, 160
cross-site forgery request

attacks, 106
email helpers, 396
forms, 173
passwords, 207
permitted parameters,

removing, 136
permitting access, 217–

218
personal data protec-

tions, 255
plugins, 433
RecordNotFound exception,

132
sanitize() method, 104
SQL injection attack, 327

seed data, importing, 74–75

seeds.rb file, 74

select() method, 186, 330, 333–
334, 385

select_tag helper, 244

selectors, CSS, 109

self. prefix, 50

self.new method, 55

semicolon (;), ending state-
ments, 43

send_data() method, 367–368,
389

send_file() method, 368

send_xxx() method, 363

:sendmail symbol, 190

Sentry, 292

separation of concerns, 25,
34, 39, 255, 359

Sequel, 433

serialization, see encryption

servers, see also Apache
quitting, 19, 70
restarting for recovery, 63
starting, 69, 309
storing session data, 372

service field, deploying to cloud
with Kamal, 284

session ID, 372, 376

session object, 362, 382

session_store attribute, 374

sessions
controller role, 40, 372–

377
deleting, 376–377
exercises, 125
expiry and cleanup, 376
storing and retrieving

items with, 115
storing session data,

372–376

set_cart() method, 121

set_i18n_locale_from_params
method, 228

:set_locale helper, 245

setup command (Kamal), 288

setup() method, 98

shallow route nesting, 358

share mode lock, 331

shared directory, 404

shipped() method, 194

Shopify, 280

show action, 353, 390

sidebars
adding, 105
creating, 146
exercises, 113
linking helpers, 395
login, 218–222
moving cart to, 144–155
passing data to layouts,

401

Sidekiq, 205

simple_format() method, 393

size, limiting field, 412

skip_action callback, 380

skip_after_action declaration, 380

skip_before_action declaration,
380

skip_before_action() method, 217

Slim templates, 430–432

slim-railsgem, 432

:smtp symbol, 190

:spacer_template parameter, 404

spaces
fixtures, 93
nonbreaking space char-

acter, 236
whitespaces in regular

expressions, 47

specs, see RSpec

Index • 455

sprintf() method, 107

SQL
Active Record and, 324–

339
custom migrations, 419–

420
database adapter, 16
escaping, 327
injection attacks, 327
mapping to Ruby types,

319
verbosity, 335
writing custom queries,

333–334

SQLite 3
advantages, 66
column type table, 411
command-line interface

package, 271
configuration files, 95
converting to PostgreSQL,

292
database adapter, 16
examples for this book

and, 15
versions, 3

sqlite3 package, 271

SSH keys, 279

SSL
configuring, 276
disabling, 276
load balancers, 293
request process, 361

ssl?() method, 361

staging environment, 310

state, REST, see REST

state, maintaining, see mod-
els

statement modifiers, 48

static web pages, 308

statistics
of code, 298
column, 331

status, of migration, 131

Stimulus framework, 178–
182, 238

store_index_path method, 102

store_index_url method, 102

streams, 160, 368

:string column type, 411, 413

string literals, 43, 75

strings
column type, 411, 413
creating, 43

formatting helpers, 393–
394

interpolation, 44
quotes, 43, 75
regular expressions, 46
rendering to, 162, 364,

367
returning without a view,

362
sending files and data,

367

strip_tags() method, 77

stylesheet_link_tag() method,
106, 397

stylesheets directory, 397

styling and style sheets, see
also CSS; layouts; tem-
plates

buttons, 120
cycling, 394
directory, 397
helpers, 397
highlighting changes,

155–158
locale switcher, 244
login, 218–222
new user form, 212
product list, 75–80
sanitize() method, 104
table-based, 138

:subject mail parameter, 192,
396

subject() method, 427

substitutions, 44

sudo apt-get install command, 9

sudo apt-get update command, 9

sudo dnf install command, 10

sum() method, 139, 331

support emails, see Action
Mailbox

Sybase, column type table,
411

symbols
hash keys, 45
in Ruby, 42

syntax highlighting, 13

system testing, 184–187,
203–205

T
t (translate method), 230

-t email option, 190

tab completion, 12

table_name attribute, 316

tables
associated with classes,

315–320
columns, adding, 127–

132
columns, removing, 127,

338
columns, statistics, 331
creating, 66, 320, 414–

419
foreign keys, 176
indices, defining, 417
join tables, 323, 330, 418
mapped to classes, 37
mapping to models, 66
migrations defining, 317–

320
names, 66, 311–320, 414
without primary key, 418
records, finding by ID,

320–322
relationship to forms, 174
renaming, 416
rows, creating, 324–326
rows, removing, 118, 338
searching, 326–331
setting table name, 316
temporary, 415
updating, 335–338

tail command, 15, 135

Tailwind CSS framework
about, 65–66
combining utility classes,

170
page layouts, 106
table templates, using,

75–80

tasks directory, 307

tasks, Rake, 131, 248, 262,
305, 307, 409

telephone_field() method, 385

templates, see also Action
View; ERB templates; lay-
outs; partial templates;
rendering; styling and style
sheets

about, 382
caching partial results,

111
catalog display, 103–104
code in, limiting, 391
controller object accessi-

ble in, 382
creating, 215
debugging, 382
defined, 363
directory, 381–382, 404
email, 191–195

Index • 456

extensions, 363
form helpers, 168–174,

383–386
forms, 168–174
instance variables acces-

sible in, 382
Jbuilder, 382
modifying, 128
names, 195, 363, 381
passing messages with

flash, 377
rendering, 363–367
rendering actions, 362–

367
RJS, 363, 366
shared, 382, 404
Slim, 430–432
for tables, 75
translating, 230–235
types, 39, 363, 382
uploading files, 387–390
XML, 363

temporary files, 309

temporary tables, 415

temporary: option, 415

Terminal, 7

terminals, Windows, 6

test directory, 305

:test symbol, 190

test...do syntax, 89

test.log, 308

testing, see also functional
testing

about, 149, 297
agile principles, xx
cart for Depot, 118, 124,

132, 137, 140, 148–
150, 158, 168, 173,
426–430

catalog for Depot, 108–
110

checkout for Depot, 168,
173, 184–187

connecting to slow pay-
ment processor, 197

controllers, 215, 217
directories, 89, 305
email, 190, 195, 256–259
exercises, 113, 140, 187,

223
fixtures, 92–99, 257
functional testing, 108–

110, 124
JavaScript, 184–187
logs, 308
MiniTest framework, 89

products for Depot, 89–
99

Rails support for, xvii
redirects, 215
with RSpec, 425–430
running all tests, 182
running tests, 97
seed data for, 74–75
syntax, 89
system testing, 184–187,

203–205
test data, 74–75
test database, 95
unit testing, 89–99
user administration,

214, 217

:text column type, 411

text_area() method, 172, 262,
384

text_field() method, 169, 172,
384

Textile (RedCloth), 394

third-party code, 309

Thruster, 273

tight coupling, 423, 433

time
_at suffix, 320
column type, 411
exercises, 113
form helpers, 385
formatting helpers, 392
Hello, World! app, 23–25
mapping, 319

:time column type, 411

Time.now() method, 24

time_ago_in_words() method, 392

timeouts, 197

:timestamp column type, 411

timestamps
column type, 411
columns and rows, 320
DRbStore, 376
migrations, 68, 408
tables, 415
updating, xxii

timestamps method, 415

titles
translating, 232
validating, 87, 92
writing with helper, 391

tmp directory, 309

:to mail parameter, 192

to_a() method, 329

to_plain_text() method, 265

touch command, xxii

transaction() method, 345–348

transactions, 220, 331, 344–
348, 416

translate method, 230–236

translations
common strings, re-

sources, 241
error messages, 240–

241, 243
pluralization, 241
supplying, 230–243

troubleshooting, see also test-
ing

Hotwire, 163
migrations, 420
recovery, 63

truncate() method, 77, 193, 394

trust command (mise), 8
Turbo framework, xxi, 80,

106, 150–155

turbo streams, 150–155

turbo_frame_tag() method, 161

turbo_stream_from() method, 161

twiddle-wakka, 11

types, enumerated, 419

U
%u placeholder, 236

\u00D7 escape sequence, 132

Ubuntu Linux, installing
Rails, 9–11

underscore (_)
in names, 42, 311, 315
partial templates, 145
prefixing partial tem-

plates, 402

Unicode, 132

unique: option, 417

:uniqueness parameter, 87

unit testing, 89–99, 305

unless statement, 48

until statement, 48

up() method, 129, 410

update action, 353

update() method, 215, 336

update_all() method, 336

updated_at column, 320

updated_on column, 320

updates to user, broadcast-
ing, 158–163

Index • 457

updating, see also migrations
conflicts between applica-

tion and session data,
373

Rails version, 11
REST, 353
RJS templates, 366
tracking, 320

uploading, files, 387–390

url() attribute, 361

url_field() method, 385

url_for() method, 370

UrlHelper class, 394–398

URLs
of applications, 21, 25,

70
broken, 30
displaying images, 389
form helpers, 385
internationalization, 226–

227
linking helpers, 394–398
mapping to actions, 216,

350
redirects, 135, 368–371
request actions, 361
root URL of applications,

102
shallow route nesting,

358
validating, 88, 91

use cases, 60

use command (mise), 8
:user_id, login, 218

users
adding from command

line, 209
allowlisting, 217
authenticating, 207–215
deleting, 219–222
permitting access, 217–

218
storing current user in

session data, 373
styling login, 218–222
testing user administra-

tion, 214, 217

UTF-8, 226

V
validate() method, 88

validates() method, 86–88

validations
callbacks diagram, 339
checkout, 184
Depot, 184

email, 195
errors, 86–87, 90–92, 100
exercises, 100, 184, 223
forms, 173
implementing, 85–88
passwords, 208
testing, 89–99
uploading files, 389
uploading images, 88

values
aggregating, 332
default value for

columns, 412
form fields, 169
limiting in SQL queries,

330
statistics, 331

variables, names, 42, 311–
314

Vector, 291

vendor directory, 309

version control, see also Git
about, 12
credentials and, 276
exercises, 82
ignoring files, 82
migrations and, 409

version number
migrations, 408–409
session data, 374

versions
Rails, 3, 11, 17–18
Ruby, 3–4, 7–8, 10, 16
Ruby, installing multiple,

10
SQLite, 3

vertical bar (|)
arguments in blocks, 48
regular expressions, 46

views, see also Action View;
MVC architecture; tem-
plates

about, 20, 33, 296
Action Pack support, 39
buttons, 136
catalog display, 101–104
connecting Active Storage

to, 78
creating, 22, 66
in Depot application, 296
directory, 22, 381
ERB templates for, 22–23
linking pages, 26–28
names, 311–314
partial templates, 144–

147
pathnames to, 103

rendering to strings, 162
REST actions, 355
returning a string with-

out, 362
separating logic from da-

ta, 25

views directory, 381

Vim, 13

virtual machine, running
Rails, 19

Virtual Private Server (VPS),
279

visit() method, 186

Visual Studio Code, 4, 14

volumes, deploying to cloud
with Kamal, 285

volumes directory, 289

VPS Virtual Private Server,
279

W
%w sequence, 45

\w sequence, 47

Web Components, 423–425

web console, 28–30, 149

WebSockets, 158–162

where() method, 327

which ruby command, 16

while statement, 47

whitespaces, regular expres-
sions, 47

wildcards
regular expressions, 47
SQL, 329

Windows
database drivers, 16
development environment

for, 4
installing Rails, 4–7
launching terminal, 6
listing directory contents,

66
log file viewing, 135
multiple-line commands,

67
quitting applications, 31
scrolling log files, 135

Windows Defender, 4

Windows Subsystem for Lin-
ux, 4

Windows Terminal, 4, 15

WORKDIR instruction, 270

wrappers, script, 308

Index • 458

write_attribute() method, 319

WSL (Windows Subsystem for
Linux), 4

X
xhr? attribute, 361

XML
exercises, 183
rendering templates, 366
requests, 361

specifying data format,
359

templates, 39, 363

xml_http_request? attribute, 361

xxx_count column, 320

xxx_id column, 320

Y
YAML

about, 52

format for fixtures, 92
internationalization, 232,

242

Yellow Fade Technique, 155

yield method
about, 48
around callbacks, 379
layouts, 106, 399, 401

Z
\z sequence, 47

Zed, 14

Index • 459

Thank you!
We hope you enjoyed this book and that you’re already thinking about what
you want to learn next. To help make that decision easier, we’re offering
you this gift.

Head on over to https://pragprog.com right now, and use the coupon code
BUYANOTHER2025 to save 30% on your next ebook. Offer is void where
prohibited or restricted. This offer does not apply to any edition of The
Pragmatic Programmer ebook.

And if you’d like to share your own expertise with the world, why not propose
a writing idea to us? After all, many of our best authors started off as our
readers, just like you. With up to a 50% royalty, world-class editorial services,
and a name you trust, there’s nothing to lose. Visit https://pragprog.com/become-
an-author/ today to learn more and to get started.

Thank you for your continued support. We hope to hear from you again
soon!

The Pragmatic Bookshelf

SAVE 30%!
Use coupon code
BUYANOTHER2025

https://pragprog.com
https://pragprog.com/become-an-author/
https://pragprog.com/become-an-author/

Rails Scales!
Rails doesn’t scale. So say the naysayers. They’re
wrong. Ruby on Rails runs some of the biggest sites
in the world, impacting the lives of millions of users
while efficiently crunching petabytes of data. This book
reveals how they do it, and how you can apply the
same techniques to your applications. Optimize every-
thing necessary to make an application function at
scale: monitoring, product design, Ruby code, software
architecture, database access, caching, and more. Even
if your app may never have millions of users, you re-
duce the costs of hosting and maintaining it.

Cristian Planas
(270 pages) ISBN: 9798888651025. $52.95
https://pragprog.com/book/cprpo

Agile Web Development with Rails 7.2
Rails 7.2 completely redefined what it means to pro-
duce fantastic user experiences and provides a way to
achieve all the benefits of single-page applications—at
a fraction of the complexity. Rails 7.2 integrated the
Hotwire frameworks of Stimulus and Turbo directly as
the new defaults, together with that hot newness of
import maps. The result is a toolkit so powerful that
it allows a single individual to create modern applica-
tions upon which they can build a competitive busi-
ness. The way it used to be.

Sam Ruby
(472 pages) ISBN: 9798888651049. $67.95
https://pragprog.com/book/rails72

https://pragprog.com/book/cprpo
https://pragprog.com/book/rails72

Programming Ruby 3.3 (5th Edition)
Ruby is one of the most important programming lan-
guages in use for web development. It powers the Rails
framework, which is the backing of some of the most
important sites on the web. The Pickaxe Book, named
for the tool on the cover, is the definitive reference on
Ruby, a highly-regarded, fully object-oriented program-
ming language. This updated edition is a comprehen-
sive reference on the language itself, with a tutorial on
the most important features of Ruby—including pattern
matching and Ractors—and describes the language
through Ruby 3.3.

Noel Rappin, with Dave Thomas
(716 pages) ISBN: 9781680509823. $65.95
https://pragprog.com/book/ruby5

High Performance PostgreSQL for Rails
Build faster, more reliable Rails apps by taking the
best advanced PostgreSQL and Active Record capabili-
ties, and using them to solve your application scale
and growth challenges. Gain the skills needed to com-
fortably work with multi-terabyte databases, and with
complex Active Record, SQL, and specialized Indexes.
Develop your skills with PostgreSQL on your laptop,
then take them into production, while keeping every-
thing in sync. Make slow queries fast, perform any
schema or data migration without errors, use scaling
techniques like read/write splitting, partitioning, and
sharding, to meet demanding workload requirements
from Internet scale consumer apps to enterprise SaaS.

Andrew Atkinson
(454 pages) ISBN: 9798888650387. $64.95
https://pragprog.com/book/aapsql

https://pragprog.com/book/ruby5
https://pragprog.com/book/aapsql

Learn to Program, Third Edition
It’s easier to learn how to program a computer than it
has ever been before. Now everyone can learn to write
programs for themselves—no previous experience is
necessary. Chris Pine takes a thorough, but lightheart-
ed approach that teaches you the fundamentals of
computer programming, with a minimum of fuss or
bother. Whether you are interested in a new hobby or
a new career, this book is your doorway into the world
of programming.

Chris Pine
(230 pages) ISBN: 9781680508178. $45.95
https://pragprog.com/book/ltp3

Modern Front-End Development for Rails, Second Edition
Improve the user experience for your Rails app with
rich, engaging client-side interactions. Learn to use
the Rails 7 tools and simplify the complex JavaScript
ecosystem. It’s easier than ever to build user interac-
tions with Hotwire, Turbo, and Stimulus. You can add
great front-end flair without much extra complication.
Use React to build a more complex set of client-side
features. Structure your code for different levels of
client-side needs with these powerful options. Add to
your toolkit today!

Noel Rappin
(408 pages) ISBN: 9781680509618. $55.95
https://pragprog.com/book/nrclient2

https://pragprog.com/book/ltp3
https://pragprog.com/book/nrclient2

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by professional developers for professional
developers. The titles continue the well-known Pragmatic Programmer style and continue
to garner awards and rave reviews. As development gets more and more difficult, the Prag-
matic Programmers will be there with more titles and products to help you stay on top of
your game.

Visit Us Online
This Book’s Home Page
https://pragprog.com/book/rails8
Source code from this book, errata, and other resources. Come give us feedback, too!

Keep Up-to-Date
https://pragprog.com
Join our announcement mailing list (low volume) or follow us on Twitter @pragprog for new
titles, sales, coupons, hot tips, and more.

New and Noteworthy
https://pragprog.com/news
Check out the latest Pragmatic developments, new titles, and other offerings.

Buy the Book
If you liked this ebook, perhaps you’d like to have a paper copy of the book. Paperbacks are
available from your local independent bookstore and wherever fine books are sold.

Contact Us
https://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://write-for-us.pragprog.comWrite for Us:

https://pragprog.com/book/rails8
https://pragprog.com
https://pragprog.com/news
https://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://write-for-us.pragprog.com

	Cover
	Table of Contents
	Foreword to the Rails 8 Edition
	Preface to the Rails 8 Edition
	Acknowledgments
	Introduction
	Rails Simply Feels Right
	Rails Is Agile
	Who This Book Is For
	How to Read This Book

	Part I—Getting Started
	1. Installing Rails
	Installing on Windows
	Installing on macOS
	Installing on Linux
	Choosing a Rails Version
	Setting Up Your Development Environment
	Rails and Databases

	2. Instant Gratification
	Creating a New Application
	Hello, Rails!
	Linking Pages Together
	When Things Go Wrong

	3. The Architecture of Rails Applications
	Models, Views, and Controllers
	Rails Model Support
	Action Pack: The View and Controller

	4. Introduction to Ruby
	Ruby Is an Object-Oriented Language
	Data Types
	Logic
	Organizing Structures
	Marshaling Objects
	Pulling It All Together
	Ruby Idioms

	Part II—Building an Application
	5. The Depot Application
	Incremental Development
	What Depot Does
	Let's Code

	6. Task A: Creating the Application
	Iteration A1: Creating the Product Maintenance Application
	Iteration A2: Making Prettier Listings
	Iteration A3: Making the Page Update in Real Time

	7. Task B: Validation and Unit Testing
	Iteration B1: Validating!
	Iteration B2: Unit Testing of Models

	8. Task C: Catalog Display
	Iteration C1: Creating the Catalog Listing
	Iteration C2: Adding a Page Layout
	Iteration C3: Using a Helper to Format the Price
	Iteration C4: Functional Testing of Controllers
	Iteration C5: Caching of Partial Results

	9. Task D: Cart Creation
	Iteration D1: Finding a Cart
	Iteration D2: Connecting Products to Carts
	Iteration D3: Adding a Button

	10. Task E: A Smarter Cart
	Iteration E1: Creating a Smarter Cart
	Iteration E2: Handling Errors
	Iteration E3: Finishing the Cart

	11. Task F: Hotwiring the Storefront
	Iteration F1: Moving the Cart
	Iteration F2: Creating a Hotwired Cart
	Iteration F3: Highlighting Changes
	Iteration F4: Broadcasting Updates with Action Cable

	12. Task G: Check Out!
	Iteration G1: Capturing an Order
	Iteration G2: Adding Fields Dynamically to a Form
	Iteration G3: Testing Our JavaScript Functionality

	13. Task H: Sending Emails and Processing Payments Efficiently
	Iteration H1: Sending Confirmation Emails
	Iteration H2: Connecting to a Slow Payment Processor with Active Job

	14. Task I: Logging In
	Iteration I1: Authenticating Users
	Iteration I2: Administration pages
	Iteration I3: Permitting Access
	Iteration I4: Adding a Sidebar, More Administration

	15. Task J: Internationalization
	Iteration J1: Selecting the Locale
	Iteration J2: Translating the Storefront
	Iteration J3: Translating Checkout
	Iteration J4: Adding a Locale Switcher

	16. Task K: Receive Emails and Respond with Rich Text
	Iteration K1: Receiving Support Emails with Action Mailbox
	Iteration K2: Storing Support Requests from Our Mailbox
	Iteration K3: Responding with Rich Text

	17. Task L: Deployment and Production
	Iteration L1: Deploying Locally
	Iteration L2: Deployment to the Cloud
	Iteration L3: Moving to Production

	18. Depot Retrospective
	Rails Concepts
	Documenting What We've Done

	Part III—Rails in Depth
	19. Finding Your Way Around Rails
	Where Things Go
	Naming Conventions

	20. Active Record
	Defining Your Data
	Locating and Traversing Records
	Creating, Reading, Updating, and Deleting (CRUD)
	Participating in the Monitoring Process
	Transactions

	21. Action Dispatch and Action Controller
	Dispatching Requests to Controllers
	Processing of Requests
	Objects and Operations That Span Requests

	22. Action View
	Using Templates
	Generating Forms
	Processing Forms
	Uploading Files to Rails Applications
	Using Helpers
	Reducing Maintenance with Layouts and Partials

	23. Migrations
	Creating and Running Migrations
	Anatomy of a Migration
	Managing Tables
	Advanced Migrations
	When Migrations Go Bad
	Schema Manipulation Outside Migrations

	24. Customizing and Extending Rails
	Creating a Reusable Web Component
	Testing with RSpec
	Creating HTML Templates with Slim
	Customizing Rails in Other Ways
	Where to Go from Here

	Bibliography
	Index
	– SYMBOLS –
	– DIGITS –
	– A –
	– B –
	– C –
	– D –
	– E –
	– F –
	– G –
	– H –
	– I –
	– J –
	– K –
	– L –
	– M –
	– N –
	– O –
	– P –
	– Q –
	– R –
	– S –
	– T –
	– U –
	– V –
	– W –
	– X –
	– Y –
	– Z –

