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Preface

This book evolved from our experiences over several years teaching abstract algebra to mixed
audiences of mathematics majors and majors in secondary mathematics education at New Mexico
State University (the course is required for both groups at NMSU as it is in many institutions of higher
learning in the USA) along with our outreach work with Las Cruces area middle and high school
mathematics students and teachers. These undertakings left us with a dilemma. While sympathetic
to the frustrations expressed by pre-service and in-service teachers with the abstract nature of the
standard presentations of the subject matter, and the perception of its irrelevance to pre-college
teaching, we maintain that a rigorous grounding in the conceptual framework of algebra is absolutely
critical to a high school or middle mathematics teacher’s success, both in conveying content to their
students and in fostering their enthusiasm and self-confidence for future careers in STEM fields and
even public policy. The latter is particularly timely given the ubiquitous use of social media and
current controversies over corporate and governmental surveillance. Our solution was to develop the
structures and basic theorems of modern algebra through applications that have relevance to daily
life (e.g., Identification Schemes, Error Correcting Codes, Cryptography, Wallpaper Patterns) and that
directly inform topics that arise in high school or middle school mathematics classes (e.g., Number
Theory, Symmetry, Ruler and Compass Constructions).

The result is a text intended for a one semester course in modern algebra that can be used in a variety
of contexts. For an audience composed primarily of mathematics majors, the material on identification
numbers, modular arithmetic, and linear algebra over arbitrary fields can be covered quickly, so that
the chapters on codes defined over finite fields, isometries of the real plane, and ruler and compass
constructions (and the associated abstract ring, field, and group theory) can be covered in depth. For
an Applied Algebra course, with computer science majors in mind, the material on ruler and compass
constructions can be given a lighter treatment so that emphasis can be placed on error detection and
correction, cryptography, and isometries (important for computer-aided design). For courses designed
for secondary mathematics teachers, the chapters on identification numbers, linear codes, ruler and
compass constructions, and isometries (at least through the classification of frieze patterns) introduce
groups, rings, and fields through accessible applications and provide ample rigor. A course based on
these chapters would also serve programs offering a Master’s degree in middle school mathematics
education or a Master of Arts in Teaching Mathematics.

Numerous exercises are given after appropriate subsections. An exception is in Chap. 6 on ruler and
compass constructions, where some steps in proofs are given as exercises within the text. This is done
not only because the requisite drawings take up a lot of text space but also, more importantly, because
they’re fun. Exercises range from routine verifications and computations to more serious applications
of the text material and conceptual issues. Proofs of a few propositions are left as exercises because
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they give opportunities to employ important techniques that have been used earlier and will arise
again. Some of the exercises refer to electronic supplementary materials (ESM) in the form of MAPLE
worksheets. The worksheets, which give the reader practice with computations in modular arithmetic,
RSA encryption and decryption, and error correction for Reed—Solomon codes, are accessible from
this book’s page at http://link.springer.com.

While the text is self-contained, references to supplementary sources solely for more background
or further study are given at the end of each chapter.

Brooklyn, NY, USA David R. Finston
Las Cruces, NM, USA Patrick J. Morandi
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Chapter 1
Identification Numbers and Modular Arithmetic

The first topic we will investigate is the mathematics of identification numbers. Many familiar things
are described by a code of digits; zip codes, items in a grocery store, and books, to name three. One
feature to all of these codes is the inclusion of an extra numerical digit, called a check digit, designed to
detect errors in reading the code. When a machine (or a human) reads information, there is always the
possibility of the information being read incorrectly. For example, moisture or dirt on the scanner used
by a grocery store clerk can prevent an item’s code from being read correctly. It would be unacceptable
if, because of a scanning error, customers were charged for caviar when they are buying tuna fish. The
use of the check digit allows for the detection of some scanning errors. If an error is detected, the item
is re-scanned until the correct code is read.

1.1 Examples of Identification Numbers

There are many types of identification numbers in common use today. We will discuss three of them:
the United States Postal Service zip code, the Universal Product Code (UPC) used for consumer
products, and the International Standard Book Number (ISBN), exploring their design and capability
for error detection.

1.1.1 The USPS Zip Code

The United States Postal Service uses a bar code to read zip codes on mail. The following bar code is
that for the Mathematical Sciences Department of NMSU, whose zip code is 88003-8001.

Electronic supplementary material The online version of this chapter (doi:10.1007/978-3-319-04498-9_1) contains
supplementary material, which is available to authorized users. The supplementary material can also be downloaded
from http://extras.springer.com.
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The bar code represents a ten digit number. There are 52 lines in the bar code. The first and last lines
are just markers. The remaining 50 lines comprise ten groups of five, and each group of five represents
a digit. The first nine digits form the nine digit zip code of the addressee. The tenth digit is a check
digit. This digit is computed as follows: the digits forming the zip code are added, and the check digit
is the smallest nonnegative integer needed to make the sum be divisible by 10. For example, given the
zip code 88003-8001 for the Department of Mathematical Sciences at New Mexico State University,
the nine digits sum to 28. Therefore, the check digit, which is not among the nine digits of the zip
code, must be 2. Thus, the bar code represents the ten digit number 8800380012 which consists of the
full nine digit zip code with the check digit appended at the end.

This scheme allows one to determine the check digit for any nine digit zip code. For example, if
we only knew the nine digit zip code 88003-8001, the check digit x would be the number between 0
and 9 such that the sum

8+8+0+0+3+8+0+0+1+x

was evenly divisible by 10. Since this sum is 28 + x, the only choice for x is to be 2.

The purpose of the check digit is to detect errors in reading the code. For example, suppose that the
zip code 8800380012 was incorrectly read as 8800880012, by reading the fifth digit as an 8 instead
of as a 3. The sum of the digits would then be 8 4+ 8 4+ 8 4+ 8 4- 1 42 = 35, which is not divisible by
10. Therefore, the postal service’s scanners would detect an error, and the zip code would have to be
read again.

1.1.2 The Universal Product Code

41390

30860

The Universal Product Code, or UPC, appears on virtually every item that we purchase. This is a 12
digit code consisting of two blocks of five digits preceded and followed with a single digit, as the
barcode above indicates. The first six identify the country and the manufacturer of the product and the
next five identify the product itself. The final digit is the check digit.

A 12 digit code (ay, ..., a,) is valid provided that

3a; +ax+3az +as + -+ 3a; +an

is evenly divisible by 10. The UPC of the example above is 0 41390 30860 4. Therefore, the sum for
this code is

3.0+1-443-141-3+3-941-04+3-34+1-0+3-8+1:6-43-0+1-4 =80,

This sum is indeed evenly divisible by 10, so the code is recognized as a valid UPC.
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As with the zip code, given the first 11 digits, there is enough information to uniquely determine
the check digit. For example, given the partial UPC of 0 71142 00001, if the check digit is x, then

3.0+47+3-14+1+3-44+2+3-0+0+3-0+04+3-14+x =28+x,

which forces x = 2.
Just like the zip code scheme, the UPC scheme has the check digit to help detect errors. For
example, if the code

07114200001 2
was incorrectly read as
07134200001 2

by reading the fourth digit as a 3 instead of as a 1, then the computation to check if this number is
valid would give

3.0+74+3-1+3+3-442+3-04+404+3-04++0+3-1+2=232,

which is not divisible by 10. Therefore, a grocery store scanner would not recognize the code as valid,
and the cashier would have to re-scan the item.

1.1.3 International Standard Book Numbers

Prior to 2009, books had been identified by a ten digit number, abbreviated by ISBN-10. For example,
the book Field and Galois Theory, published by Springer, has for its ISBN-10 the number 0-387-
94753-1. The first digit identifies the language in which the book is written, the second block of digits
identifies the publisher, the third block identifies the book itself, and the final digit is the check digit.
In this scheme, each digit can be a numeral 0, ..., 9 or X, which represents 10. A ten digit number
(ay,...,ay) is a valid ISBN-10 provided that

10a; + 9a; + 8as + -+ + 2aq9 + ajp
is evenly divisible by 11. For the number above, we have

10.0+9-34+8:84+7-74+6-94+5-4+4-74+3-5+2-3+1
=11-24,
so the number is indeed valid. The digit X is only used, when appropriate, for the check digit.

As with the previous two examples, the check digit can be determined uniquely, given that it is
between 0 and 10. For example, for the book A Classical Introduction to Modern Number Theory,
published by Springer, whose number will start with 0-387-97329, the check digit x must result in

10-04+9-34+8-8+7-74+6-94+5-7+4-3+3-24+2-9+x
= 265 + x divisible by 11.
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Since 1124 = 264, if 265 + x is to be divisible by 11 and 0 < x < 10, then x = 10. Thus, the check
digit for this book is X, and so the ISBN-10 is 0-387-97329-X.

The ISBN-10 scheme also allows for detection of some errors. When we discuss error detection in
more detail, we will see that all of these schemes will detect an error in a single digit. On the other
hand, errors in more than one digit are not always detected. However, the ISBN-10 scheme does better,
in some sense, than the other two schemes above because it detects transposition errors. For example,
given the ISBN 0-387-97329-X, if the fifth and sixth digits are transposed, the resulting number is
0-387-79329-X. The check for validity of this number would result in the sum

10.0+9-34+8:8+7-74+6-74+5-9+4-34+3-242-9+10 =273,

which is not divisible by 11. Thus, this number is invalid. In contrast, transposing digits in a valid zip
code will always result in a number considered valid, since the sum of the digits is unchanged by this
transposition and in UPC, while most transposition errors are detected, some are not.

In 2009, ISBN-10 was replaced by the 13 digit ISBN-13 check digit scheme which uses multipliers
(1,3,1,3,1,3,1,3,1, 3,1, 3, 1) and divisibility by 10. Since ISBN-13 suffers the same deficiency with
regard to transposition errors as does UPC, it seems that some error detection was sacrificed in favor
of computational efficiency. We will discuss transposition errors in more detail later.

Exercises
1. Check whether or not the following numbers are valid ISBN-10s:

(a) 0-8218-2169-5
(b) 0-201-01361-9
(c) 2-87647-089-6
(d) 3-7643-3065-1

2. Suppose a UPC is read, but the third digit is left out, and the result is 0 7x172 38175 1, where
x represents the missing digit. Calculate, in terms of x, the sum needed to check if this is a valid
number. Then write down the condition on x required for the number to be valid, and determine x.

3. The number 0-8176-3165-1is an invalid ISBN-10 (Check this!). It was created by taking the ISBN-
10 of a book and changing one digit. Can you tell which digit was changed? Explain why not by
giving two examples of a valid ISBN-10 that differs from this one in exactly one digit.

4. Consider the following identification number scheme: If a = (a;, az,as,aq4), where each a; is
between 0 and 4, then the number a is valid provided that 4a; + 3a, + a3 + 2ay is divisible by 5.
If (3,2, 4, x) is a valid number, determine x.

5. Consider the following identification number scheme: a valid number is a 5-tuple of integers a =
(ay,as,a3,a4,as) with 0 < a; < 12 such that 2a; + 3a; + 5as + a4 + 6as is divisible by 13. If
(2,3,4,11, x) is a valid number, determine x.

6. Consider the scheme of the previous problem. If (a;, as, as, as, as) is a valid number and if a; #
a,, prove that (ay,a;, as, as, as) is not valid.

1.2 Modular Arithmetic

In order to investigate the error detection capabilities of the various identification number schemes
we have discussed, and to work with the other applications in this course, we will look carefully at
the computations involved in these schemes. In all three, a number is valid if some combination of its
entries is divisible by some specific positive integer (10 or 11 in the examples). The actual result of
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the computation is not important in its own right. Rather what is important is only whether the result
is divisible by the given integer. Phrased another way, what is important is not the numerical value
of the computation, but rather the remainder we would get if we divide this number by our specific
integer. In some sense we are doing arithmetic with these remainders when we do calculations in these
schemes. While this may sound strange, we actually do it all the time.

Consider the following well-known scenario. When we tell time in the USA, the hour value is any
whole number between 1 and 12. Three hours after 10 o’clock will be 1 o’clock. In general, to see
what time it will be # hours after 10 o’clock, you add n to 10, and then remove enough multiples of
12 until you have a value between 1 and 12. For instance, in 37 hours past 10 o’clock, the time will
be 11 o’clock since 47 = 36 + 11. In telling time, we then identify 13 o’clock with 1 o’clock, 14
o’clock with 2 o’clock, and so on. In this clock arithmetic, if we add 12 hours to any time, we get the
same time (but changing AM to PM and vice-versa). Therefore, 12 acts in clock arithmetic like O acts
in ordinary arithmetic.

There is nothing special about 12 with respect to obtaining a new type of arithmetic. As we will
see in more detail below, in doing calculations in the various identification number schemes we talked
about above, we are essentially doing clock arithmetic, but with 12 replaced by 10 for the zip code
and UPC, and by 11 for the ISBN-10 scheme. When we discuss coding theory, we will use clock
arithmetic with 12 replaced by 2, and when we discuss cryptography, we will replace 12 by very large
integers. We therefore need to discuss the general notion of clock arithmetic, more formally referred
to as modular arithmetic.

We begin with a very familiar concept.

Definition 1.1. Let a and n be integers. We say that n divides a (or a is divisible by n) if a =
nb for some integer b.

Definition 1.2. Let n be a positive integer. We say that two integers a and b are congruent
modulo 7 if b — a is divisible by n. When this occurs, we write a = b modn.

Since b —a is divisible by n exactly when b —a = gn for some integer ¢, we see thata = b modn
if b = a + gn for some g. This is a convenient way to express congruence modulo 7 in terms of an
equation. If n = 12, then to say @ = b mod 12 is equivalent to saying a o’clock is the same time as b
o’clock, if we ignore AM and PM. Congruence modulo 7 is a relation on the set of integers. The first
thing we point out is that this relation is an equivalence relation.

Proposition 1.3. The relation congruence modulo n is an equivalence relation for any
positive integer n.

Proof. Let n be a positive integer. We must prove that congruence modulo n is reflexive,
symmetric, and transitive. For reflexivity, let a be any integer. Then a = a modn sincea—a = 0
is divisible by n; for 0 = n - 0. Next, for symmetry, suppose that a and b are integers with
a = bmodn. Then b—a is divisible by n; say b—a = gn for some integer ¢. Then a—b = (—q)n,
so a — b is also divisible by n. Therefore, b = a modn, and so this relation is symmetric.
Finally, to prove transitivity, suppose that a,b,c are integers with ¢« = bmodn and
b = ¢ modn. By definition then, b — a and ¢ — b are both divisible by n so that we may write

b—a=sn

c—b=tn
for some integers s, . Adding these equations gives ¢ —a = (s + t)n, so ¢ — a is divisible by n,
and therefore a = ¢ modn. This proves transitivity.

Since we have shown that congruence modulo n is reflexive, symmetric, and transitive, it is
an equivalence relation. O
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Understanding the equivalence classes of this relation is of crucial importance. Recall that if ~
is an equivalence relation on a set X, then the equivalence class of an element @ € X is the set
{b € X : b ~ a}. For ease of notation in the context of congruence modulo n, we shall write the
equivalence class of an integer a by a. Therefore,

a={beZ:b=amodn}.

Suppose n = 12. The equivalence class of 0 consists of all integers that are congruent to 0 modulo
12. Since 12 = O mod 12 this equivalence class consists of all integers ¢ with ¢ o’clock equal to 12
o’clock. We have

0=1{...,—24,—-12,0,12,24,..}.

The equivalence class of 1 consists of all integers that are congruent to 1 modulo 12. That is, the
equivalence class contains all integers ¢ with ¢ o’clock equal to 1 o’clock. We have

T=1{..,-23—11,1,13,25,...}.
Similarly, the equivalence class of 2 consists of all integers that are congruent to 2 modulo 12:

2=1{..,-22,-10,2,14,26,...},

and so on for every positive integer.
Note that

2=1{..—12,0,12,..}

—

contains 0, demonstrating that an equivalence class can be represented in different ways. We have
12 = 0 = —24, and, more generally, 12 = 12x for any integer 7. In other words, 12 is the equivalence
class of any element of the set 12 = {...,—12,0, 12, ...}, and similarly for 1,2, etc.

If n is any positive integer, we denote by Z, the set of equivalence classes of integers for the
equivalence relation of congruence modulo n. For n = 2 we have

Z, = 1{0,1}

where 1 represents the set of odd integers and 0 represents the set of even integers. Anybody who can
tell time will see that

Notice that while Z is an infinite set, Z,, is finite; even though each equivalence class is infinite, there
are only finitely many of them! This is not special to 12; we will prove that Z, has n elements for any
n. We first need an important result that will prove useful in many places in this course. This result,
known as the Division Algorithm, can be viewed as a formal statement of the process for writing a
fraction as a proper fraction, i.e., the long division you learned in elementary school.

Theorem 1.4 (Division Algorithm). Let a and n be integers with n positive. Then there
are unique integers q and r witha =gn +r and0 <r < n.

Proof. We use the well-ordering property of the integers that says any nonempty subset of the
nonnegative integers has a smallest element. To use this property, let us define

S={se€Z:s>0ands =a—gqgn for someqg € Z}.
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Note that S consists of all nonnegative remainders arising from divisions of a by n. First, we
show that S is indeed nonempty. If ¢ > 0, thena —0-n =a € S.If a < 0, then a —an =
a(l—n) > 0 since n is positive. Therefore, a—an € S. In either case, we see that S is nonempty.
Therefore, by the well-ordering property, S contains a smallest element, which we call r. By
definition of S, there is a ¢ € Z with r = a — gn. Then a = gn + r, proving one part of the
theorem. To show that 0 < r < n, we note that r > 0 since r € S and by definition S consists
of nonnegative integers. If r > n, then r —n = a — (¢ + 1)n € S since r —n > 0. This would
be a contradiction since r — n is smaller than r. Therefore, r < n as desired. Thus, we have
produced integers g and r with a = gn + r and 0 < r < n. Next, we prove uniqueness of ¢
and r. Suppose that ¢’ and r’ are a second pair of integers with a = ¢'n + r’ and 0 < r’ < n.
Then ¢'n +r' = gn+r,s0 (¢ —q)n = r —r'. Then |¢' —¢q|n = |r —r’|. Since r and r’ are
both between 0 and n — 1, the absolute value of their difference is less than n. Since |¢' — ¢g|n
is a multiple of n, the only way the equation above can hold is if both sides are 0. Therefore,
r’ = r and ¢’ = g. This shows uniqueness of the integers g and r. O

In keeping with common terminology, the r above will be referred to as the remainder after
dividing n into a. We can use the Division Algorithm to prove a simple but useful characterization of
the relation congruence modulo 7.

Lemma 1.5. Letn be a positive integer and let a, b be integers. Then a = b modn if and only
if a and b have the same remainder after division by n. In other words, a = bmodn if and
only ifa =qn +r and b = g'n + r for some integers q and q'.

Proof. Let n be a positive integer and a, b integers. Suppose that a = bmodn. Then b — a is
divisible by n; say b — a = tn for some integer ¢. By the Division Algorithm, we may write
a =qgn+rand b = ¢g'n + s with ¢g,q’ integers, and r,s integers with 0 < r,s < n. For
concreteness, suppose that » < s. Then

m=b—a=qgn+s—(gn+r)
=(q —q@n+(s—r).

Observe that 0 < s — r < n, so the uniqueness assertion of the Division Algorithm applied
to division of b — a by n, shows that 1 = ¢’ — ¢ and 0 = s — r. Therefore s = r. The same
conclusion is reached of course if we suppose that s < r. This shows that ¢ and b have the
same remainder after division by n. Conversely, suppose that a = gn + r and b = ¢'n + r for
some integers ¢, ¢’, r. Then

b—a=qgn+r—@n+r)=(q —qn,

so b — a is divisible by n. Therefore, a = b modn. O

Corollary 1.6. Let n be a positive integer. Every integer is congruent modulo n to exactly
one integer between 0 andn — 1.

Proof. Let n be a positive integer. If a is an integer, then the Division Algorithm gives us
integers ¢ and r with a = gn +r and 0 < r < n. Thus, a — r = ¢n is divisible by n, so
a = rmodn. If s is between 0 and n — 1 and ¢ = s modn, then the previous lemma shows
us that @ and s have the same remainders after division by n. But, since s = 0-n + s and
a = gn + r, the lemma tells us that s = r. Thus, a is congruent modulo n to exactly one
integer between 0 and n — 1. O
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Definition 1.7. Let n be a positive integer and a an arbitrary integer. The unique integer
between 0 and 7 — 1 to which a is congruent modulo 7 is called the least residue of @ modulo 7.

Corollary 1.8. For every positive integer n, the cardinality |Z,| of Z, is equal to n, and

Zy =1{0.1,....n—1}.

Proof. According to Corollary 1.6, the equivalence classes of integers modulo n are in 1-1
correspondence with the remainders after division by n. These remainders are the precisely
the integers in the set {0, 1,...,n — 1}, hence the corollary. O

Exercises

1. Let n be a positive integer and let m be a positive divisor of n. If @ and b are integers with a =
b mod n, prove that a = b mod m.

2. For each nonnegative integer i, what is the least residue modulo 9 of 107?

3. Starting with i = 0 find the first few values of the least residue modulo 3 of 4. Formulate a
conjecture about these values.

4. Prove for each integer n, that n? is congruent either to 0 or to 1 modulo 4.

5. Calculate the least residues modulo 5 of 14,24, 3%, and 44,

6. Calculate the least residues modulo 7 of 1°,26,3° 4% 5% and 6°.

1.2.1 Arithmetic Operations in 7.,

We now discuss a generalization of clock arithmetic for any modulus n. Recall that to determine what
time it will be 7 hours after 9 o’clock, we add 7 4 9, getting 16, then subtract 12 to get 4, and conclude
that the time will be 4 o’clock. In other words, we add the numbers and then subtract enough multiples
of 12 to get a valid time. This is the idea behind addition in Z,,. Similarly, we can define multiplication.

Definition 1.9. Let n be a positive integer and let @ and b be elements of Z,. Thena + b =
a+banda-b=ab.

What the definition tells is that to add two elements of Z,, we represent them as the equivalence
class of some integers, then we add the integers, then take the equivalence class of the sum. Similarly,
to multiply two elements of Z, multiply two integer representatives and take the equivalence class
modulo n of the product. Working in Z;, for example, the definition of addition yields

7+9=16
=4
and
7-9=163

Il
W



1.2 Modular Arithmetic 9

Applying these definitions, we obtain addition and multiplication tables for Z,:

+mod2|0 |T -mod2 |0 T
00T T/0 0
T/1/0 T/0 1

The addition and multiplication tables for Zg are as follows:
+mod6/0 T 2 3 4 5 ‘mod6/0 1 2 3 4 35
00 T 23 45 0/0 00 00O
T|T 23450 1|0 T 23 45
21234501 210 2 40 2 %4
31345012 3103030 3
4|4 50123 410 420 42
5501 2 3 4 51054321

For alternative views of addition and multiplication, recall that the equivalence classes of 7 and of 9
mod 12 are:

7 ,—5,7,19,...},
9

{..
{...=3,9,21,...}.

A new set of integers is obtained by taking all possible sums of the integers in 7 with the integers in 9.
This set is {...,—8,4,16,28, ...}, which is precisely 4. We can view addition of equivalence classes
as this method of adding sets of integers together. Similarly, the set of all products of the integers in 7
with the integers in 9, namely {..., 15,—45,—105,-21, 63, ...}, all of which reduce to 3 modulo 12.

The definitions above allow us to do modular arithmetic more simply than these set operations.
However, there is one problem with the definition. When we write an equivalence class as @, this is
describing the class by one particular member a of it. The choice of a is not unique. For example,
still in Z;,, we have 7 = =5 = 91, giving three ways to describe the same class. Similarly, 9 =21.
The problem is this: If we use different representations of two equivalence classes, do we get the
same result when we add or multiply? If the answer is no, then we have a meaningless definition.
Therefore, we need to verify that our definition is valid. For example, we have 7 + 9 = 16 = 4, and
91 + 21 = 112 = 4, since 112 = 9- 12 + 4. That the consistency we see in this example holds in
general for modular addition and multiplication is explained by the following lemma.

Lemma 1.10. Let n be a positive integer. If a,b,c,d are integers with a = c¢modn and
b=dmodn, thena +b =c + dmodn and ab = cd modn.

Proof. Let n be a positive integer, and suppose that ¢ = ¢ modn and b = d modn. Then ¢ —a
and d — b are divisible by n, so there are integers s,¢ with « — ¢ = sn and b —d = tn. Thus
a=c+snandb =d + tn. By adding the equations, we get

a+b=(c+sn)+(d+tn)=(c+d)+ (s+t)n,
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which shows that (a + b) — (¢ + d) is a multiple of n. Therefore, a + b = ¢ + d modn. If we
multiply both equations, we get

ab = (c + sn)(d 4+ tn) = cd + ctn + snd + sntn
=cd + (ct + sd + snt)n,

so ab — cd is a multiple of n. Thus, ab = c¢d modn. This proves the lemma. O

Lemma 1.10 tells us that Definition 1.9 is meaningful, i.e., that arithmetic modulo 7 is well defined.
Because of the simple formula for addition and multiplication in Z,, we obtain analogues of many
of the common properties of integer arithmetic. In particular, the following properties hold for all
elements a, E, cof Zy:

e Commutativity of Addition: @ + b=b+ a;

* Associativity of Addition: @ + b) +¢ =a + (b + 0);
+ Existence of an Additive Identity: @ + 0 = @;

+ Existence of Additive Inverses: @ + —a = 0;
 Commutativity of Multiplication: @ -b = b - @;
* Associativity of Multiplication: (@-b)-¢ =a - (b c);
* Existence of a Multiplicative Identity: a - T

* Distributivity: - (b+¢) =a-b+a-

While we will not write out proofs for all these properties, we give the idea of how to prove them
with one example. For commutativity of addition, we have

a+b=a+b=b+a=b+a

Note that we used the definition of addition in Z, twice. The only other property used was the familiar
commutativity of addition in Z. Every other property in the list above comes from a combination of
the definition of addition and/or multiplication and the corresponding properties of these operations
in integer arithmetic.

Subtraction in Z, is defined by a — b = a — b. Another “way to write subtraction is by @ — b =
@ + —b. Because of the fourth property in the list above, —b is the additive inverse of b, and the
subtraction @ — b is the same as the sum of @ and the additive inverse —b of b, just as the case of the
real numbers.

There are some differences between arithmetic in Z, and ordinary arithmetic. In Z, if two integers
a and b satisfy ab = 0, then either a = 0 or b = 0. However, this is not always true in Z,. For
example, in Zo, we have 2.5=10=0.InZ;, we have 8- 3 = 24 = 0. In contrast though in Zq1,
one can show (and we leave it for a homework exercise) that if @ - b= 0,then@ = O or b = 0. We will
see shortly that this has consequences for detection of errors in the identification number schemes we
discussed earlier. In particular, the ISBN-10 scheme, in which 11 has a special role, can detect certain
types of errors that remain undetected by the zip code and UPC schemes, both of which utilize 10.

Another difference has to do with division. If we restrict ourselves to Z, the only time we can
solve the equation ab = lis witha = b = l ora = b = —1. In Z,, we have the corresponding
solutions to the equatlon a-b=1. However, we ‘may have more solutions. For example in Zjo, we
have3-7 =21 = 1 and in Z;; we have 8 - 7 = 56 = 1. In fact, fora € Z,; with @ #* 0, there is a
b e Z11 with @ - b = 1. This is also left to a homework exercise. As we will see below, the fact that
3.% = 1 can be solved in Z; was crucial in the decision to use the vector (3,1,...,3,1) in the UPC
scheme.
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1.2.2 Greatest Common Divisors

To facilitate our discussion of error detection, and for future applications, we need some facts about
the greatest common divisor of two integers. Later we will see that everything we do here will have
analogues for polynomials. Those results will be crucial for our treatments of ruler and compass
constructions and of error correcting codes.

Definition 1.11. Let a and b be integers, at least one of which is nonzero. Then the greatest
common divisor of ¢ and b, denoted by gcd(a, b), is the largest integer that divides both a
and b.

The greatest common divisor of any pair (a, b) of integers exists provided at least one of them is
nonzero. The reason for the condition that at least one of a or b is the simple fact that every integer
divides 0. Thus if @ = b = 0, then every integer divides both a and » and no largest common divisor
exists. If, on the other hand, a # 0, then each divisor of & is no larger than |a| so the set of common
divisors of a and b is bounded above by the larger of |a| and |b|. In particular a largest common
divisor must exist. The notation gcd(a, b) is used only under the condition that at least one of a or b is
nonzero. Clearly if a # 0, then ged(a, 0) = |a|. More generally, if the integer d divides two integers,
then so does |d| so that gcd(a, b) > 1. For example, gcd(4, 6) = 2 and ged(—20, 24) = 4. Of course
gcd(a, b) canequal 1, e.g. ged(3, 10) = 1 and ged(1, ) = 1 for every b.

Proposition 1.13 describes one of the most useful properties of the greatest common divisor of
integers a and b. This result is a consequence of the Division Algorithm, and gives an important
representation of the greatest common divisor. To help with the proof, we prove the following lemma.

Lemma 1.12. Leta and b be integers, and suppose ¢ is an integer that divides both a and b.
Then ¢ divides ax + by for any integers x and y.

Proof. Suppose ¢ divides a and b, and let x and y be arbitrary integers. Since ¢ divides @ and
¢ divides b there are integers o and 8 with ¢ = ac and b = Bc. Then

ax + by = acx + Bcy = c(ax + By).

Since ax + By is an integer, this equation shows that ¢ divides ax + by. O

For given integers a, b, expressions of the form ax 4 by with x and y integers are called integer
linear combinations of @ and b. More generally, given integers a;, as, . . . a,, an expression of the form
Z?Zl a; x;, with integers x, x», ... x, is called an integer linear combination of a;, a, ...a,.

Proposition 1.13. Let a and b be integers, at least one of which is nonzero, and set d =
gcd(a,b). Then d can be expressed as an integer linear combination of a and b, (i.e., there are
integers x and y with d = ax + by).

Proof. To prove this we use an argument reminiscent of that used to prove the Division
Algorithm. Let

S={as+bt:s,t €Z,as + bt > 0}.

Once S is shown to be nonempty, we take its least element, whose existence is guaranteed by
the well-ordering property, and prove that it is the greatest common divisor of a and b. To see
that S is nonempty, note that a®> + b? is positive and also a linear combination of @ and b,
hence an element of S.

Now let e be the least element of S. By the defining property of S there are integers x and y
with e = ax +by. Set d = ged(a, b) and we proceed to show that e = d. First, since d divides
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a and b, Lemma 1.12 implies that d divides e = ax + by. Since e and d are both positive, this
forces d < e. We show the reverse inequality by showing that e is a common divisor of ¢ and
b. From the Division Algorithm, we may write a = ge + r with ¢ and r integers and 0 < r < e.
Then

r=a—qe =a—gq(ax + by)
=a(l —qx) + b(=qy).

If r > 0, this equation would show that r € S. This is impossible since r < e and e is the
least element of S. Therefore r = 0, which means that a = ge, so e divides a. The identical
argument, with a replaced by b shows that e divides b as well, forcing e < d because d is the
greatest of the common divisors of @ and b. Since e < d and d < e, we get ¢ = d. Therefore
we have written d = ¢ = ax + by, as desired. O

Corollary 1.14. Let a and b be integers, not both zero, and let d = ged(a,b). If ¢ is any
common divisor of a and b, then ¢ divides d .

Proof. By the proposition, we may write d = ax + by for some integers x, y. If ¢ is a common
divisor of ¢ and b, then ¢ divides d = ax + by by the lemma. O

Recall that a positive integer p > 1 is prime if the only positive divisors of p are 1 and p. It follows
immediately that if a is any integer, then ged(a, p) = 1 or ged(a, p) = p. Since the latter equality
holds only if p divides a, we see that gcd(a, p) = 1 for any integer a not divisible by p. It is quite
common for the condition gcd(a,b) = 1 with neither @ nor b prime. For example, gcd(9,16) = 1
and ged(10, 21) = 1. This condition is important enough for us to study it.

Definition 1.15. Two integers a and b are said to be relatively prime if ged(a, b) = 1.
In light of this definition, Proposition 1.13 also has the following consequence.

Corollary 1.16. Ifa and b are integers, not both zero, then gcd(a, b) = 1 if and only if there
are integers x and y with 1 = ax + by.

Proof. One direction follows immediately from the proposition: if gcd(a,b) = 1, then 1 =
ax + by for some integers x and y. For the converse, suppose there are integers x and y with
1 = ax+by. We wish to show that gcd(a, b) = 1. Let d = ged(a, b). By Lemma 1.12, d divides
1 = ax + by. However, d is a positive integer, and the only positive integer that divides 1 is 1
itself. Therefore, d = 1. O

A nice consequence of this corollary, in the terminology of modular arithmetic, is the following
result.

Corollary 1.17. Letn be a positive integer. The equation@-x = 1 has a solution in Z, if and
only if ged(a,n) = 1.

Proof. Let n be a positive integer and a be an integer with ged(a,n) = 1. Then there are
integers s and ¢ with as + nt = 1. Rewriting this, we have as = 1 + n(—7), which says that
as = lmodn, or as = 1 in Z,. Thus, we have produced a solution to the equation ax = 1
in 7Z,.

Conversely, if as = 1 in Z,, then as = 1 + n(—t) for some integer t. Thus as + nt = 1 and
Corollary 1.16 yields that ged(a,n) = 1. O

Caution: Corollary 1.16 generalizes to the case in which gcd(a,b) > 1, but not perhaps in the
most obvious way. That some seemingly small integer ¢ > 1 can be expressed as a linear combination
of a and b does not guarantee ¢ = gcd(a, b). To be more specific, let ¢ = 10 and b = 7. Then
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2=10-(3)+7-(—4), but gcd(10,7) = 1 = 10(—2) + 7(3). Indeed, if a and b are not both zero,
Proposition 1.13 realizes gcd(a, b) as the smallest positive integer linear combination of them.

Although the following very important result won’t be used in the discussion of error detection
capability of identification number schemes, it will arise in other applications.

Proposition 1.18. Leta, b, and ¢ be integers such that a divides bc. If gcd(a,b) =1, thena
divides c.

Proof. Suppose a divides bc and ged(a,b) = 1. The first condition implies that there is an
integer @ with bc = aa. The second condition and the previous proposition shows that there
are integers x, y with 1 = ax + by. Multiplying this equation by ¢ yields ¢ = axc + bcy, and
so ¢ = axc + aay by substituting the equation bc = aa. Therefore, ¢ = a(xc + ay). Since
Xxc + ay is an integer, a divides c, as desired. O

1.2.3 The Euclidean Algorithm

In most applications, the method of choice for computing the greatest common divisor of two integers
is the Euclidean Algorithm. In principle, prime factorization can be used to compute the greatest
common divisor, but if the numbers are large, factorization becomes very time consuming. That fact
turns out to be the basis of the security of the RSA scheme for cryptography discussed in Chap. 8. The
Euclidean Algorithm has the advantage of computational ease; Maple and other computer programs
use this algorithm for greatest common divisor computations.

The Euclidean Algorithm to calculate ged(a, b) for two positive integers @ and b consists of the
following steps:

1. Set ay = max(a,b) and a; = min(a, b). Seti = 1.

2. If a; = 0, then ¢;—; = ged(a, b).

3. If a; # 0, then divide @; into a;_1, getting a;—; = qa; +r.
4. Replacei byi + 1.

5. Definea; = r.

6. Go to Step 2.

The Euclidean Algorithm employs the Division Algorithm iteratively to produce a strictly
decreasing sequence of remainders. Specifically, with b the larger of the two integers, divide a into b
and find the remainder. Then divide this remainder into a, finding the second remainder. Then divide
the second remainder into the first remainder, to obtain the third remainder. According to the Division
Algorithm each successive remainder is strictly less than its predecessor. But, since all the remainders
are nonnegative, eventually one of them is equal to 0, so that the algorithm terminates after some
finite stage. As we will see, the final nonzero remainder must be the greatest common divisor. Before
proving this fact, we consider some examples.

Ezample 1.19. To perform this algorithm to calculate gcd(10, 14), we list the necessary
iterations.

e Set ayp = 14 and a; = 10. We also start withi = 1. We have 14 =110+ 4. Set i = 2 and
a; = 4. Return to Step 2 and note that a, # 0.

e We have a; = 10 and a, = 4 and we see that 10 =2-4 + 2. Set i = 3 and a3 = 2. Return
to Step 2 and note that az # 0.

e Wehavea, =4 anday; =2. Write4=2-24+0. Seti = 4 and ay = 0.

* Asa; =2 andays =0, Step 2 then yields az = ged(10, 14).
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Example 1.20. Here we streamline the process and calculate ged(12342,2738470), listing the
divisions and remainders encountered.
2738470 = 221 - 12342 4 10888
12342 = 1-10888 + 1454
10888 = 7-1454 + 710
1454 =2-710 + 34
710 = 20-34 + 30

34=1-30+4
30=7-4+2
4=2-2+0.

The last nonzero remainder is 2, so 2 = ged(12342,2738470).
Ezample 1.21. To calculate gcd(849149, 9889) we do the following arithmetic:

849149 = 85 - 9889 + 8584
9889 = 1-8584 + 1305
8584 = 6-1305 4 754
1305 = 1-754 4 551

754 = 1551 + 203
551 =2-203 + 145
203 =1-145+ 58
145=2-58 +29
58=12-29+40

Since the final nonzero remainder is 29, we have 29 = gcd(849149, 9889).

That the Euclidean Algorithm works is based on two facts. First, if a is any nonzero positive integer,
then gcd(a, 0) = a. This is clear from the definition since a is clearly the largest integer that divides
a, and every nonzero integer divides 0. Second, and more important, is the following result.

Lemma 1.22. Suppose that a and b are integers, not both zero, with b = qa + r for some
integers ¢ and r. Then gcd(a, b) = ged(a, r).

Proof. Let d = ged(a,b) and e = ged(a, r). From b = ga + r we see that e divides b so that
e <d.Butr =b—gqgasothat d divides r and d < e as well, forcing e = d. O

What this lemma says is that to calculate gcd(a, b), we can divide a into b, and then replace b by
the remainder 7. The Euclidean Algorithm uses this repeatedly until a remainder of zero is obtained,
then the previous fact is applied. To make this more explicit, we work one more example.

Example 1.23. To find gcd(24, 112), we list both the calculations and what the calculation
yields.
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112=4-24+16 gcd(24,112) = gecd(24,16)
24=1-16+8 gcd(24,16) = ged(16, 8)
16=2-840 gcd(16,8) = gcd(8,0) = 8

The algorithm actually does more than just compute greatest common divisors. It also provides an
algorithm to express gcd(a, b) as the linear combination guaranteed by Proposition 1.13. To illustrate
this, we revisit the previous example. We saw that gcd(24, 112) = 8. The second to last equation is
24 = 1-16 + 8; equivalently, solving for the remainder term,

8=1-24+(=1)-16.

Thus, we have written 8 = gcd(24, 112) as a linear combination of 24 and 16. The equation before
that (the first) is 112 = 4 - 24 + 16 and, solving for the remainder term here,

16 =1-112 4 (—4) - 24.
Replacing 16 in the previous displayed equation by this expression yields
8=1-24+(-1)-(1-112+(—4)-24)
=1-24—-1-1124+4-24
=524+ (-1)-112,

which is the desired representation. Note how the coefficients of 24 and 112 were collected in the last
step.

In general, to recover ged(a, b) as a linear combination of a and b, record all of the steps in the
Euclidean Algorithm that produce gcd(a, b). Then, as in the example, view the equation in which
the greatest common divisor arises as the last nonzero remainder as an expression of the greatest
common divisor as a linear combination of the two previous remainders. Then work up the equations,
successively substituting for the remainder term arising in each step. Then rewrite this equation as an
expression of the greatest common divisor as a linear combination either of previous remainders or
the initial data @ and b (when the very first equation is reached).

Example 1.24. To express 1 = gcd(8,29) = 8x + 29y, first apply the Euclidean Algorithm:

29=3-84+5 (1)
)

8=1-5+3 (2
5=1-34+2 (3)
3=1-24+1 (4).

Next, beginning with the last equation, work up, substituting for remainders and collecting
coefficients of the remainder that arose in the previous equation:

1=3-1-2 (4)
=3-1-(5-3) (3)
=2.3-1-5

=2.8-5—-1-5 (2
=2.8-3-5.
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Finally,

1=2-8-329-3-8) (1)
=11-8-3-29.

The final result, 1 = 11-8 — 329, expresses 1 = gcd(8,29) as the desired linear combination,
with x =8,y = -3.

Exercises

1.

2.

=~

10.
11.

12.

13.

14.

15.

For which @ in Z, does the equation @ - X = 0 have only the trivial solution X = 0? When there
is a nontrivial solution, give all solutions.
For which @ in Zi, does the equation @ - X = 0 have only the trivial solution X = 0? When there
is a nontrivial solution, give all solutions.

. For which @ in Z;; does the equation @ - X = 0 have only the trivial solution X = 0? When there

is a nontrivial solution, give all solutions.
Let n be a positive integer. Based on the previous problems, come up with a precise conjecture
for which @ in Z, does the equation @ - X = 0 have only the trivial solution X = 0. State your
reasoning for coming up with your conjecture. Prove your conjecture.
For which @ in Z;, does the equation @-X = 1 have a solution? For each @ for which the equation
has a solution, state the solution.
In Z,;, verify that the equation @ - X = 1 has a solution for every @ # 0.
Solve the equation 4 - X = 2 in Zs. Can you solve the equation 4 - X = 3 in Zs? Why or why not?
Solve the equatione - X = TinZ,, where n = 7325494815531218239807 and ¢ = 1977326753.
If you do not wish to do this by hand, the values of n and e are input in the Maple worksheet
Section-1.2-Exercise-8.mw. Read fully that worksheet and follow the instructions in it.

(We will perform this type of calculation, except with much larger values of n, when we talk
about cryptography.)
Prove the distributive law in Z,,: if a, 5, and ¢ are arbitrary elements of Z,, then a - (5 +7°c) =
@-b +a-c. State explicitly which facts and/or definitions you use in your proof.
If p and ¢ are distinct prime numbers, prove that p and g are relatively prime.
Explain, with the help of Lemma 1.22, why the Euclidean Algorithm produces the gcd of two
integers.
Apply the Euclidean Algorithm, by hand, to find gcd(132,50) and to express it as a linear
combination of the two given integers. Write out all the steps you take.
Use your calculation in the previous problem to solve to the congruence 50x = 4 mod 132. Again,
do this by hand.
Letn = 7325494815531218239807 and e = 1977326753. Calculate gcd(e, n), write this ged as
a linear combination of e and n, and use this data to solve the equation ex = 1 mod n. Feel free to
use Maple; the file Section-1.2-Exercise-14.mw has the values of e and n along with a reminder
of which Maple command will help you to do this.
Suppose we have an unknown integer x such that 464-3x is a multiple of 10. Give the justification
for each step of the following calculation in Z;y. Note that some steps require more than one
property of Zjo.
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16.

17.
18.

19.

20.

21.

22.

23.

24.

25.

26.
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46+3x =0
46+3.-x=0
3.% = —46
3.x=4
73-%)=7-4=8
x=38

Let n be a positive integer. If @ and b are integers with ¢ = b mod n, prove that ¢’ = b’ modn
for all positive integers .

Suppose that a, b, n, s are integers with as = b mod n. Prove that gcd(a, n) divides b.

Suppose that a, b, n are integers such that ged(a,n) divides b. Prove that ax = bmodn has a
solution. Use the linear combination representation of the gcd to find a solution to the equation
10x = 4mod22.

(Hint: Write d = gcd(a,n) as a linear combination of @ and n and write » = gd for some
integer g. Manipulate these two equations.)

Let n be a positive integer. If a is an integer with ged(a, n) > 1, prove that there is a nonzero b
in Z, with a - b=0in Zy. Conclude that the equation @ - x = T cannot be solved in Z,,.

Prove the divisibility test for 9: A number, written in normal base 10 form, is divisible by 9 if and
only if the sum of its digits is divisible by 9.

Prove the divisibility test for 11: A number, written in normal base 10 form, is divisible by 11 if
and only if the alternating sum of its digits is divisible by 11. To get the alternating sum, add the
first digit, subtract the second, add the third, and so on.

Let a be a number written in base 9. Show that a is divisible by 8 if and only if the sum of the
base 9 digits is divisible by 8.

(Recall that a = (ana,—; ---aiaop)e is the base 9 representation of a if 0 < a; < 8 for each
ianda = a, -9 4+ ap—1 -9 " + -4+ a; -9 + ag. The sum of the base 9 digits is then
ap + ap—1 + -+ ai +ap.)

The greatest common divisor of three integers is the largest integer dividing all three. If a, b, ¢
are nonzero integers, prove that gcd(a, b, ¢) = ged(a, ged(b, ¢)).
Let n be a positive integer and let a € Z,,.

a. Prove that the additive inverse of @ is unique. In other words, prove thatif a+X = 0 = a + 7,
thenX =7y.
b. Prove that the additive inverse of @ is —a. In other words, prove that —(a) = —a.

Solve the equation 14 - x = 3 in Z7 by first writing 1 = gcd(14, 17) as a linear combination of

14 and 17.

The Twin Primes Conjecture is an open question asking whether or not there are infinitely many

twin primes; a pair of twin primes is a pair of primes whose difference is 2. Prove that (3,5, 7) is

the only set of triplet primes. That is, if a, a 4+ 2, a + 4 are all prime numbers, prove thata = 3.
(Hint: show that a,a + 2, a + 4 are distinct modulo 3).
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1.3 Error Detection with Identification Numbers

The check digit provides no identification information, i.e., it is redundant. The purpose of this
redundancy in an identification number is to detect errors in reading the number. We now discuss
this idea in more detail and describe the three examples above in a unified way. First we need a
version of the familiar dot product of vectors in R ifa = (ai,...,a,) and b = (by,...,b,) are
n-tuples of numbers, set

a-b= Zaibi =aby +---+a,b,.

i=1

The test for validity in all three schemes is then represented in terms of the dot product. A ten digit
number, or more accurately, a 10-tuple @ of digits, is a valid zip code ifa - (1,1,1,1,1,1,1,1,1, 1) is
divisible by 10. Likewise, a UPC is a 12-tuple a of digits such thata - (3,1,3,1,3,1,3,1,3,1,3, 1) is
divisible by 10. Finally, a 10-tuple a is a valid ISBN-10 provided thata - (10,9,8,7,6,5,4,3,2,1) is
divisible by 11.

There are many more examples of identification number schemes, most constructed in the
following manner: A modulus m and n-tuple w = (wy,...,w,) of positive integers are prescribed.
A valid number for this scheme is an n-tuple a = (ay,...,a,) satisfying a - w = Omodm. For
example, w = (10,9,8,7,6,5,4,3,2, 1) and m = 11 for the ISBN-10 scheme. Since the i th entry of
w multiplies the ith entry of a in calculating the dot product, it gives a certain weight to that entry.
For that reason w is referred to as the weight vector for the identification number scheme.

To be more precise, suppose we have an n-tuple w consisting of positive integers, and let m be
a positive integer. We can make an identification number scheme as follows. Consider n-tuples a =
(ay,...,a,) where 0 < a; < m — 1. Then q is a valid identification number if @ - w = Omodm.
We will refer to this scheme as the identification number scheme associated with the weight vector
w and with the integer m. The reason for the restriction on the a; is that a; and a; + m are the
same modulo m. Therefore, the scheme cannot detect the difference between these two numbers. To
eliminate this problem, we need to restrict the choices of the a; so that two different possibilities for
a; are distinguished by the scheme; that is, any two possibilities must be distinct modulo m1.

The errors which occur most frequently in identification number schemes are single digit errors
and transposition errors, in which adjacent digits are switched. The next proposition shows how to
design a scheme which will detect every single digit error.

Proposition 1.25. Given w and m as above. Then every error in reading the ith entry of a
can be detected provided that each w; is relatively prime to m.

Proof. Let a = (ay,...,a,) be a valid identification number and that only the ith entry a;
is changed to another number, say b; # a;, with 0 < b; <m — 1. If w = (wy,...,w,), then,
because a is a valid number, we have in Z,,

n n
0= E aiw; = E awi,

i=1 i=1

where the last equality comes from the definition of the operations in Z,. If b =
(a,...,a;—1,b;i,ai41,...,a,) is the number obtained by replacing the ith entry of a to b;,
set € = b; —a; # 0so that b; = a; + €. Note that 0 < a;,b; <m —1sothat 0 <e <m — 1.
The validation computation for b becomes
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i—1 n

bow=Y aw;+bw+ Yy @w;

j=1 j=i+1

i—1 n
=Y aw; + (@ +ew + Y aw;
j=1 j=i+1

=da-w-+ ew;.

But a is a valid word, so @-w = 0 and therefore b - w = ew;.

Suppose that the error is undetected, so that 0 = b - w = &w;. Assuming that w; is relatively
prime to m, Corollary 1.17 tells us that there is an X with w;x = 1 in Z,,. Multiplying both
sides of the equation 0 = éw; by X and simplifying gives 0 = € = b; —a;, or b; = a;. However,

this forces b; = a; since both a; and b; are between 0 and m — 1. This is a contradiction, so
b - w cannot be zero, and hence the error a; — b; in reading the ith entry of a will be detected
by this identification number scheme. O

Corollary 1.26. If each entry of w is relatively prime to m, then the identification number
scheme associated with w and m can detect a single error in any digit.

We now return to the three schemes we discussed earlier. The zip code scheme uses the weight
vectorw = (1,1,1,1,1,1,1,1, 1) and m = 10. Each entry of w is clearly relatively prime to 10, so the
zip code scheme will detect all single errors. The UPC schemeusesw = (3,1,3,1,3,1,3,1,3,1,3,1)
and m = 10. Both 1 and 3 are relatively prime to 10, so the UPC scheme also detects all single errors.
Clearly an identification number scheme with m = 10, and weight vector w having entries from the
set {1, 3,7, 9}, will detect all single errors. The ISBN-10 scheme, with m = 11 and weight vector
w = (10,9,8,7,6,5,4,3,2, 1), detects all single errors since every entry of w is certainly relatively
prime to the prime number 11.

The corollary above tells us when an identification number scheme detects a single error. No
scheme of the type we have discussed will always detect errors in more than one digit. For example, if
the zip code 8800380012 is replaced by 7900380012 by changing the first two digits, then this number
satisfies the test for validity. Similarly, if the UPC 0 49000 01134 0 is changed to 0 49000 01163 0 by
changing the 10th and 11th digits, as shown, the number is still valid.

Now let’s consider transposition errors since a tendency to transpose digits is common when
reading numbers. For example, the zip code 8800380012 might be read as 8800830012, by
interchanging the 3 and an 8. Some coding schemes detect this type of error, and some do not. For
example, the zip code scheme does not detect interchanging of digits. This is because the validation
test here is simply that the sum of the ten digits must be divisible by 10 and the commutative law
for addition says that interchanging two digits does not change the sum. UPC can detect some
transposition errors, e.g. interchanging an adjacent (1,2) pair, but not all, e.g. interchanging an
adjacent (1, 6). However, as is to be seen in a homework exercise, the ISBN-10 scheme detects every
interchanging of digits. For example, with the ISBN-10 0387947531, interchanging the second and
third digits yields 0837947531. The test for validity becomes

0,8,3,7,9,4,7,5,3,1)- (10,9,8,7,6,5,4,3,2, 1) = 269,

which is not divisible by 11. Therefore, the number 0837947531 is not valid. Similarly, if we
interchange the final two digits, we get 0387947513, and

(0.3,8,7.9.4,7,5,1,3)-(10,9,8,7.6,5.4,3,2, 1) = 262,
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which is also not divisible by 11. A special case of the sensitivity of ISBN-10 to transposition errors
is proved here with a much more general case left to Exercise 5.

Proposition 1.27. Suppose that (aj,as,...,apn) is a valid ISBN-10. If ay # a,, then
(az,ay,as,...,ay) is not a valid ISBN-10. Thus, the ISBN-10 scheme detects transposition
of the first two digits.

Proof. Let a = (ay,as,...,ay) be a valid ISBN-10. If
w=(10,9,8,7,6,5,4,3,2, 1),

then a-w = 0 in Z;;. Suppose that a; # a,, and set b = (a2, 4y, ...,a10). Then

a-w—>b-w=10a; + 9a; — 10a,; — 9a;

=da|; —aj.

Since a; # a; and 0 < aj,a, < 10, we see that a; # a;. Consequently, the equation above
shows thata -w—>b-w # 0,or b-w # a-w = 0. Thus, b is not a valid ISBN-10. O

Exercises

1. Let (aj,...,ajp) be an invalid ISBN-10. Show that any single digit of a can be changed
appropriately to give a valid ISBN.

2. Let (aj,...,ajz) be a valid UPC. Show that the error in transposing the first two digits of this
number is detected by the UPC scheme if and only if @, — a; is not divisible by 5. Use this to give
an example of a UPC (ay,...,a;) with a; # a; but such that (a,,a;,as...,ap) is also a valid
UPC.

3. Consider the following identification number scheme: if w = (3,5,2,7), then a 4-tuple a =
(ay,az,as,aq), with each a; an integer with 0 < @; < 7, is valid if and only if a-w = 0 in Zg.
Show that this scheme detects any error in the first, second, and fourth digit. Give an example of a
valid codeword and an error in the third digit of the codeword that is not detected.

4. Define an identification number scheme as follows: set w = (2,5,6,4,7), and a 5-tuple a =
(ay,az,as,aq,as) is a valid number if 0 < gq; < 8 for each i, and if a - w is divisible by 9.
Determine which single errors are detected by this scheme. That is, determine for which i an error
in reading the ith digit is always detected. Describe how you can change w in order to guarantee
that an error in any digit is always detected.

5. Prove that transposition of any two digits can be detected with the ISBN-10 scheme. That is, if
(ai,...,aip)isavalidISBN-10,andifi < j witha; # a;,showthat (a;,...,a;,....a;,...,aio)
is not a valid ISBN-10.

6. The number 0-387-79847-X was obtained from a valid ISBN-10 by transposing two digits. Can
you tell which two digits were transposed? Either explain how you can tell which digits were
transposed or give an example of two valid ISBN-10s obtained by transposing two digits of this
number.

7. Construct a length 5 check digit scheme that detects every single digit error and every transposition
error.

8. A jump transposition error is one in which the valid codeword

(@ai,....ai—1,a;,ai41,...,a,)
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is misread as

@i,....ai41,0;,ai-1,...,0a,).

Exercise 5 shows that ISBN-10 detects every jump transposition error. Show that ISBN-13 doesn’t
detect any.
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Chapter 2
Error Correcting Codes

The identification number schemes we discussed in the previous chapter give us the ability to
determine if an error has been made in recording or transmitting information. However, they are
limited in two ways. First, the types of errors detected are fairly restrictive, e.g. single digit errors or
interchanging digits. Second, they provide no way to recover the intended information. Some more
sophisticated ideas and mathematical concepts enable methods to encoding and transmit information
in ways that allow both detection and correction of errors. There are many applications of these so-
called error correcting codes, among them transmission of digital images from planetary probes and
playing compact discs and DVD movies.

2.1 Basic Notions

To discuss error correcting codes, we need first to set the context and define some terms. We work
throughout in binary; that is, we will work over Z,. To simplify notation, we will write the two
elements of Z as 0 and 1 instead of as 0 and 1. If n is a positive integer, then the set 77 is the set of
all n-tuples of Z,-entries. Elements of ZJ are called words, or words of length n. For convenience we
will write elements of ZJ either with the usual notation, or as a concatenation of digits. For instance,
we will write (0, 1,0, 1) and 0101 for the same 4-tuple. We can equip Z} with an operation of addition
by using point-wise addition. That is, we define

(al,...,a,,)—l—(bl,...,bn) = (al +bi,....a, +bn)-

A consequence of the factthat 0 +0 =0 =1 4 1 in Z, is that a + a = 0 for every a € Z;, where 0
is the vector (0, .. ., 0) consisting of all zeros.

A linear code of length n is a nonempty subset of Z5 that is closed under the addition in ZJ.
Although nonlinear codes exist and are studied, linear codes are used most frequently in applications
and much of the discussion simplifies greatly in this context. Because of their importance, we will
consider only linear codes and drop the adjective “linear” from now on. We will refer to elements of
a code as codewords.

Electronic supplementary material The online version of this chapter (doi:10.1007/978-3-319-04498-9_2) contains
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Ezample 2.1. The set {00, 01, 10, 11} = Z3 is a code of length 2, and the set {0000, 1010, 0101,
1111}, which is a proper subset of Zg, is a code of length 4.

Letw = a;---a, be a word of length n. Then the weight of w is the number of digits of w equal
to 1. We denote the weight of w by wt(w). An equivalent and useful way to think about the weight of
the word w = a; ---a, is to treat the a; as the integers O or 1 (rather than as residue classes for the
moment) and note that

wt(w) = Xn:ai.

i=1

There are some obvious consequences of this definition. First of all, wt(w) = 0 if and only if w = 0.
Second, wt(w) is a nonnegative integer. A more sophisticated fact about weight is its relation with
addition. If v, w € ZJ, then wt(v +w) < wt(v) 4+ wt(w). This is true because cancellation occurs when
the ith components of v and w are both equal to 1. More precisely, write x; for the ith component
of a word x. The weight of x is then given by the equation wt(x) = |{i : 1 <i < n,x; = 1}|. Note
that (v + w); = v; + w;, so that (v + w); = 1 implies that either v; = 1 or w; = 1 (but not both).
Therefore,

{i:1<i<n,(+w);=1}C{i:vy=1}U{i:w =1}.

Since |A U B| < |A| 4 | B| for any two finite sets A, B, the inclusion above and the latter description
of weight yields wt(v + w) < wt(v) + wt(w), as desired.

The idea of weight gives a notion of distance on Z. If v, w are words, then we set the distance
D(v,w) between v and w to be

Dv,w) = wt(v + w).

Alternatively, D(v,w) is equal to the number of positions in which v and w differ. The function D
shares the basic properties of distance in Euclidean space R*. More precisely, it satisfies the properties
of the following lemma.

Lemma 2.2. The distance function D defined on Z x 7 satisfies:

1. D(v,v) =0forallv e Z;

2. Forany v,w € Z3,if D(v,w) = 0, then v = w;

3. D(v,w) = D(w,v) forany v,w € Z;

4. The Triangle Inequality: D(v,w) < D(v,u) + D(u,w) for any u,v,w € ZJ.

Proof. Since v +v = 0, we have D(v,v) = wt(v + v) = wt(0) = 0. This proves (1). We note
that 0 is the only word of weight 0. Thus, if D(v,w) = 0, then wt(v + w) = 0, which forces
v+ w = 0. However, adding w to both sides yields v = w, and this proves (2). The equality
D(v,w) = D(w,v) is obvious since v + w = w + v. Finally, we prove (4), the only non-obvious
statement, with a cute argument. Given u, v, w € ZJ, we have, from the definition and the fact
about the weight of a sum given above,

Dv,w) =wtlv+w) = wt((v + u) + (u +w))
< wt(v 4+ u) + wt(u + w)
= D, u) + D(u,w).
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To discuss error correction we must first formalize the notion. Let C be a code. If w is a word, to
correct, or decode, w means to select the codeword v € C such that

Dv,w) =min{D(u,w):uec C}.

In other words, we decode w by choosing the closest codeword to w, under our notion of distance.
There need not be a unique closest codeword, however. When this happens we can either randomly
select a closest codeword, or do nothing. We refer to this notion of decoding as maximum likelihood
detection, or MLD, the assumption being that the means of transmission of information is reliable so
that if an error is introduced, the correct information is most likely to be the codeword that differs
from the received word in the fewest number of positions.

Ezxample 2.3. Let C = {00000, 10000,011000, 11100}. If w = 10001, then w is distance 1 from
10000 and distance more than 1 from the other two codewords. Thus, we would decode w as
10000. However, if u = 11000, then u is distance 1 from both 10000 and from 111000. Thus,
either is an appropriate choice to decode u.

We now define what it means for a code to be an error correcting code.

Definition 2.4. Let C be a code and let ¢ be a positive integer. Then C is a t-error correcting
code if whenever a word w differs from the nearest codeword v by a distance of at most ¢, then
v is the unique closest codeword to w.

If a codeword v is transmitted and received as w, we can express w as v + u, and we say that
u = v + w is the error in transmission. As a word, the error u has a certain weight. So C is ¢-error
correcting if for every codeword v and every word u whose weight is at most 7, then v is the unique
closest codeword to v 4 u.

If C is a t-error correcting code, then we say that C corrects ¢ errors. Thus one way of interpreting
the definition is that if v is a codeword, and if w is obtained from v by changing at most 7 entries of v,
then v is the unique closest codeword to w. Therefore, by MLD decoding, w will be decoded as v.

Example 2.5. The code C = {000000, 111000,000111} is 1-error correcting. A word which
differs from 000000 in one entry differs from the other two codewords in at least two entries.
Similarly for the other two codewords in C.

Example 2.6. The code C = {00000, 10000, 011000, 11100} above corrects no errors. Note that
the word u = 11000 given in that example is a distance 1 from a codeword, but that codeword
is not the unique closest codeword to u.

To determine for which ¢ a code corrects ¢ errors, we relate error correction to the distance of a
code.

Definition 2.7. The distance d of a code is defined by
d =min{D(u,v) :u,ve C,u#v}.

For intuitive purposes it may be useful to think of the minimum distance as the diameter of the
smallest circle containing at least two codewords.
We denote by |a ] the greatest integer less than or equal to the number a.

Proposition 2.8. Let C be a code of distance d and sett = |[(d — 1)/2]. Then C is a t-error
correcting code but not a (t 4+ 1)-error correcting code.

Proof. To prove that C is t-error correcting, let w be a word, and suppose that v is a codeword
with D(v,w) < t. We need to prove that v is the unique closest codeword to w. We do this by
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proving that D(u,w) > t for any codeword u # v. If not, suppose that u is a codeword with
u # vand D(u,w) <t. Then, by the Triangle Inequality,

D(u,v) < D(u,w)+ D(w,v) <t +t =2t <d.

This is a contradiction to the definition of d. Thus v is indeed the unique closest codeword to w.

Uy

Uy

To finish the proof, we need to prove that C does not correct ¢t 4+ 1 errors. Since the code
has distance d, there are codewords u;, u, with d = D(uy, u); in other words, u; and u, differ
in exactly d positions. Let w be the word obtained from u; by changing exactly ¢ + 1 of those
d positions. Then D(u;,w) =t + 1 and D(up,w) =d — (t + 1). Since t = [(d — 1)/2] by our
assumption, (d —2)/2 <t < (d —1)/2. In particular, d —2 < 2¢ so that D(uz,w) =d—(t+1) <
t 4+ 1. Thus u; is not the unique closest codeword to w, since u; is either equally close or closer
to w. Therefore C is not a (¢ 4+ 1)-error correcting code.

, t41

®
Y )
[

a

Example 2.9. Let C = {00000,00111,11100, 11011}. The distance of C is 3, and so C is a
1-error correcting code.

Example 2.10. Let n be an odd positive integer, and let C = {0---0,1---1} be a code of length
n.Ifn = 2t+1, then C is a t-error correcting code since the distance of C is n. Thus, by making
the length of C long enough, we can correct any number of errors that we wish. However, note

that the fraction of components of a word that can be corrected is ¢ /n, and this is always less
than 1/2.
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Exercises
1. Find distance and error correction capability of the following codes:

(a) {0000000,1010101,0101010, 1111111},

(b) {00000000,11111111,11100000,00011111},

©) {00000000, 11110000, 00001111, 10101010,
11111111, 01011010, 10100101, 01010101}

2. Construct a linear code of length 5 with more than two codewords that corrects one error. Can you
construct a linear code of length 4 with more than two words that corrects one error?
3. Let C be the code consisting of the solutions to the matrix equation Ax = 0, where

1011160
A=1011101
111000

Determine the codewords of C, and determine the distance and error correction capability of C.
4. Let A be a matrix, and let C be the code consisting of all solutions to Ax = 0. If A has neither a
column of zeros nor two equal columns, prove that the distance of C is at least 3.
(Hint: If v has weight 1 or weight 2, look at how Av can be written in terms of the columns
of A.)
5. Let C be a code such that if u,v € C, then u 4+ v € C. Prove that the distance of C is equal to the
smallest weight of a nonzero codeword.
6. Let C be the code consisting of all solutions to a matrix equation Ax = 0. Let d be the largest
integer such that any sum of fewer than d columns of A is nonzero. Prove that C has distance d.

2.2 Gaussian Elimination

In this section we recall some basic results about matrices, in particular Gaussian elimination, rank,
and nullity. Our immediate concern is with matrices whose entries lie in Z, in order to discuss the
Hamming and Golay codes, historically the first examples of error correcting codes.

A system of linear equations is equivalent to a single matrix equation AX = b, where A is the
matrix of coefficients, and X is the column matrix of variables. For example, the system of linear
equations over the rational numbers

2x+3y—z=1
x—y+5z=2
is equivalent to the matrix equation
23 -1\ (") (1
1-1s5 )\ )= \2)
b4
The primary matrix-theoretic method for solving such a system is Gaussian elimination on the

augmented matrix obtained from the coefficient matrix by appending on its right the column consisting
of the right-hand side of the equation. Recall that Gaussian elimination employs operations on the rows
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of a matrix, with the end result a matrix in row reduced echelon form. The latter represents a system
of equations whose solutions, which are identical to those of the original system, can be found easily.
The three elementary row operations are :

* Replacing a row with a multiple of it by a nonzero scalar,
* Interchanging two rows,
* Replacing a row by its sum with a scalar multiple of another row.

In Z, arithmetic the only multipliers available are 0 and 1 and 1 + 1 = 0 in Z; (so that 1 = —1
and subtraction is the same operation as addition). In this context, the first of the three row operations
listed above is not useful, since multiplying a row by 1 does not affect the row, and the third operation
reduces to adding one row to another. The desired outcome is a matrix in row reduced echelon form:

Definition 2.11. A matrix A is in row reduced echelon form if all three of the following
conditions are satisfied:

1. The first nonzero entry of each row is 1. This entry is called a leading 1.

2. If a column contains a leading 1, then all other entries of the column are 0.

3. If i > j, and if row i and row j each contain a leading 1, then the column containing the
leading 1 of row i is further to the right than the column containing the leading 1 of row ;.

To help understand Condition 3 of the definition, the leading 1’s go to the right as you go from top
to bottom in the matrix, so that the matrix is in some sense triangular.

Ezample 2.12. The following matrices over Z, are in row reduced echelon form:

1010 100

11 010
0110

(00) 0001 001

000

The columns with leading ones have the form of vectors e; with a 1 in the ith position and 0’s
elsewhere.

In Chap. 4, familiar concepts from linear algebra over the real numbers will be systematically
extended to include linear algebra over Z,. For now though, let’s recall some facts about matrices
with real entries in R that also hold for matrices with entries in Z,. First, the row space of a matrix
is the vector space spanned by its rows. If the matrix is m X n, then the rows are n-tuples, so the row
space is a subspace of the space of all n-tuples. Since Gaussian elimination operates on the rows of a
matrix in a reversible way, the row space of a matrix is identical with that of its row reduced echelon
form. The column space of a matrix is the space spanned by the columns of the matrix. Again, if the
matrix is m X n, then the columns are m-tuples, so the column space is a subspace of the space of all
m-tuples. These observations hold as well for matrices with entries in Z,. The only difference is that
the span of a collection of rows or columns is merely the sum of some subset of them, again because
the only multipliers available are 0 and 1.

The dimension of a vector space over R is the number of elements in a basis, provided this is finite.
Otherwise the dimension is infinite. For an m x n matrix A, the dimension of the row space and the
dimension of the column space are always finite and equal; this integer is called the rank of A. One
benefit to reducing A to its row reduced echelon form E 4 is that the nonzero rows of E 4 (i.e., those
that contain a leading 1) form a basis for the row space of A. Consequently, the dimension of the row
space is the number of nonzero rows in E 4. Thus, an alternative definition of the rank of a matrix
is the number of leading 1’s in the row reduced echelon form obtained from the matrix. Again these
assertions hold for matrices with entries in Z,.
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The fact that the homogeneous linear systems AX = 0 and E4X = 0 have the same solutions
can be interpreted as the statement that the columns of A and the columns of E 4 have the identical
dependence relations (but their column spaces may be different). From Condition 2 it is clear that
the columns of E 4 that contain the leading 1’s form a basis for its column space. Call these columns
Cil, - .. Cir. But then columns iy, ..., of the matrix A form a basis for its column space, hence the
assertion above about the equality of the “row rank” and “column rank.” It is clear also that the

maximum possible rank of an m x n matrix is the minimum of m and n (although the matrix ((1) 8),

for instance, shows that this bound need not be achieved).

Even though you might be most familiar with matrices whose entries are real numbers, the row
operations above require only the ability to add, subtract, multiply, and divide the entries. In many
situations, matrices arise whose entries are not real numbers, and our initial work in coding theory
leads to matrices whose entries lie in Z, (wherein we can certainly add, subtract, multiply, and divide,
with the usual proscription against division by 0). Furthermore, all the theorems of linear algebra have
analogues to this setting, and later on the fundamentals of linear algebra will be generalized to include
other sets of scalars. Again, all that is necessary is closure of the scalars under the four arithmetic
operations and the standard arithmetic properties analogous to those that hold for real number
arithmetic (i.e., commutativity and associativity of addition and multiplication, and distributivity of
multiplication over addition).

We now give several examples of reducing matrices with Z, entries to echelon form. In each
example once we have the matrix in row reduced echelon form, the leading 1’s are marked in boldface.

FEzample 2.13. Consider the matrix
1001

A=]1101
0111

We reduce the matrix with the following steps. You should determine which row operation was
done in each step.

1001 1001 1001
1101 ] — 10100} =—10100
0111 0111 0011

The rank of A is equal to 3.
Ezample 2.14. Consider the matrix

110010
101001
011110
000101
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To reduce this matrix, we can do the following steps.

110010 110010
101001 — 011011
011110 011110
011011 011011
101001

— 011011

000101

011011

The rank of A4 is equal to 3.

We now illustrate how the row reduced echelon form yields the solution of the systems of equations

giving rise to the matrices in the previous examples.

Example 2.15. The system of equations

x=1
x+y=1
y+z=1
has augmented matrix
1001
1101
0111
The reduction of this matrix
1001
0100
0011
corresponds to the system of equations
x =1
y=0
z=1
and hence solves the original system.
Example 2.16. The augmented matrix
110010
101001
011110

011011

2 Error Correcting Codes

101001
011011
011110
011011

101001
011011
000101
000000
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corresponds to the system of equations

X1+x2+x5=0
X1 +x3=1
Xo+x3+x4+x5=0

X2+ X3+ x5 = 1.
Reducing the matrix yields

101001
011011
000101 |°
000000

which corresponds to the system of equations

X1+x3=1
X2+ x3+x5=1
X4=1.

The leading 1’s in boldface in the echelon matrix correspond to the variables xi, x;, and x4.
Solving for these yields the full solution

x1 =1+ x3,
X =1+ x3+ X5
)C4=1

x3 and x5 are arbitrary.

We can write out all solutions to this system of equations, since each of x3 and x5 can take on
the two values 0 and 1. This gives us four solutions, which we write as row vectors:

(x1, X2, X3, X4, X5) = (1 4+ x3, 1 + x3 + x5, %3, 1, X5),

where x3 € {0, 1} and x5 € {0, 1}.
The general solution is
(1 + X3, 1 + X3 + X5, X3, I,XS) = (17 15 07 150) + -x3(15 17 1, 070) + .XS(O, 1705 07 1)
so that (1, 1,0, 1,0), which corresponds to the values x3 = x5 = 0, yields a particular solution to

the linear system. On the other hand, the vectors (1,1, 1,0,0), (0, 1,0, 0, 1) solve the homogeneous
system
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X1 +x2+x5 =0,
X1+ x3 =0,
Xo+Xx3+ x4 +x5 =0,
X2 +x3+ x5 =0.
(Check this!) Thus any solution to the inhomogeneous system is obtained as the sum of a particular
solution and a solution to the associated homogenous system.
Ezample 2.17. Let H be the Hamming matriz (named for Richard Hamming, mathematician,

pioneer computer scientist, and inventor of the Hamming error correcting codes):

0001111
H=\|0110011],
1010101

and consider the homogeneous system of equations HX = 0, where 0 refers to the 3 x 1 zero
matrix and X is a 7 x 1 matrix of the variables xi, ..., x7. To solve this system we reduce the
augmented matrix in one step to

00011110
01100110,
10101010

yielding

10101010
01100110
00011110

This matrix corresponds to the system of equations

X1 +x3+x5+x7=0,
Xo +Xx3+x6 +x7 =0,
X4+ X5 +x¢6 +x7 =0.
Again, we have marked the leading 1’s in boldface, and the corresponding variables can be
solved in terms of the others, which can be arbitrary. So, the solution to this system is
X1 = X3+ X5 + X7,
X2 = X3 + X6 + X7,
X4 = X5 + X¢ + X7,
X3, X5, X¢, X7 are arbitrary.

Since we have four variables, x3, x5, X¢, and x7, that can take on the values 0 or 1 in Z,
arbitrarily, there are exactly 2* = 16 solutions to this system of equations.
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To finish this chapter, we recall a theorem that will help us determine numeric data about error
correcting codes. Before stating the theorem we explore the context in which it will be applied and
recall some terminology.

The kernel, or nullspace, of a matrix A is the set of all solutions to the homogeneous equation
AX = 0. As an illustration, consider the Hamming matrix H of the previous example.

FEzxample 2.18. The solution above to the homogeneous equation HX = 0 can be described
systematically by determining a basis for the nullspace of H. Since each distinct choice of the
variables x3, x5, Xg, and x7 in Z; results in a unique solution to HX = 0, we obtain 4 solutions
by successively setting one of these variables equal to 1 and all others arbitrary variables equal
to 0, then using

X1 = X3 + x5 + x7,
X2 = X3 + X6 + X7,
X4 = X5 + X6 + X7
to determine the values for the remaining variables. This technique results in the vectors

0

SO == O O =
—_—0 O = O = =

1
0
1
0
1
0

S O OO = ==

which form a basis for the nullspace of H. Indeed, the general solution of HX = 0 is given by

X1 X3+ X5 + X7 1 1 0 1
X2 X3 + X6 + X7 1 0 1 1
X3 X3 1 0 0 0
X4 |l =1 x5+xs6+x7 | =x3] 0| +xs5] 1| +x| 1 ]|+x7]11],
X5 X5 0 1 0 0
X6 X6 0 0 1 0
X7 X7 0 0 0 1

i.e., as a linear combination of the four specific solutions written above. A little work will show
that every solution can be written in a unique way as a linear combination of these vectors. For
example, check that (0,1,1,1,1,0,0) is a solution to the system HX = 0. Writing this vector
as a linear combination of the four given vectors, we must have x3 = x5 = 1 and x¢ = x; = 0,
S0

+
S O = = O O =

O O == = = O
Il
S OO O ==

is a sum of two of the four given vectors, and can be written in no other way in terms of the
four basis vectors.
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This example indicates the general fact that for a homogeneous system AX = 0, the number of
variables not corresponding to leading 1’s (i.e., those above that could take on arbitrary values in Z,)
is equal to the dimension of the nullspace of A. Let us call these variables free variables and the other
variables (of which there are exactly the rank of A) basic variables. From the row reduced form of
A, the basic variables can be expressed in terms of the free variables. Mimicking the example above,
one obtains a distinguished set of solutions to AX = 0 by successively setting one free variable equal
to 1 and the rest equal to 0. Then any solution can be written uniquely as a linear combination of
these solutions. In particular this distinguished set of solutions is a basis for the nullspace of A and
therefore, the number of free variables is equal to the dimension of the nullspace. Since every variable
is either basic or free and the total number of variables is the number of columns of the matrix, we
have the important rank-nullity theorem. The nullity of a matrix A is the dimension of the nullspace
of A.

Theorem 2.19. Let A be an m x n matrixz. Then n is equal to the sum of the rank of A and
the nullity of A.

The point of this theorem is that once you know the rank of A, the nullity of 4 can be immediately
calculated. Since we are working over Z,, the number of solutions to AX = 0 is then 2™y T
coding theory this will allow us to determine the number of codewords in a given code.

2.3 The Hamming Code

The Hamming code, discovered independently by Hamming and Golay, was the first example of an
error correcting code. Let

0001111
H=]10110011
1010101

be the Hamming matrix, described in Example 2.17 above. Note that the columns of this matrix give
the base 2 representation of the integers 1-7. The Hamming code C of length 7 is the nullspace of H.
More precisely,

CZ{VEZ;IHVTZO}.

(The transpose is used here because codewords are typically written horizontally, i.e., as row vectors,
but without commas to separate the entries). Just as the redundant check digit in an identification
number enables the detection of certain errors by the failure of a certain dot product to result in 0, we
will see that a code defined as the nullspaces of a matrix can introduce enough redundancies to enable
the correction of certain errors.

Before proceeding to this topic, we use Gaussian elimination to gain more detailed information
about the Hamming code. Solving as above the linear system Hx = 0, we obtain the solution

X1 1 1 0 1
Xo 1 0 1 1
X3 1 0 0 0
Xg |l=x3] 0| +xs5] 1 +x6] 1 ]+x7]1
X5 0 1 0 0
X6 0 0 1 0
X7 0 0 0 1
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Therefore, C has dimension 4, and the set {1110000, 1001100,0101010, 1101001} forms a basis for
C (we will discuss these terms more rigorously in Chap. 4). If one were to write out all 16 codewords
in C, one would find the distance of C to be exactly 3.

Linear codes like C are identified by their length, dimension, and minimum distance. Thus C is
referred to as a (7, 4, 3)-code, because its length is 7, its dimension is 4, and its minimum distance is
equal to 3. In particular, we deduce from Proposition 2.8 that C corrects 1 error.

The code C has a particularly elegant decoding algorithm, which we now describe. Let {ey, ..., e7}
be the standard basis for Z]. We point out a fact of matrix multiplication: He/ is equal to the ith
column of H. Moreover, we note that the seven nonzero vectors in Zg are exactly the seven columns
of H.

Suppose that v is a codeword that is transmitted as a word w # v and that exactly one error has
been made in transmission. Then w = v+ e¢; for some i. However, we do not yet know 7, so we cannot
yet determine v from w. However,

Hw' = Hv+e¢)" = HW' + He] = He],

and H el.T is the ith column of H, as we pointed out above. Therefore i is determined by computing
HwT and comparing the result with the columns of H. The column number of H given by Hw' is
exactly i. Then w is decoded to w + e;, which must be equal to v since we assumed that only one error
was made in transmission. To summarize this error correcting algorithm: Given a word w, calculate
HwT . If the product is 0, then w is a codeword. If it is not, then it is equal to the ith column of H for
a unique integer i . Then w + ¢; is a valid codeword, and is the closest codeword to w.

The Hamming code C has an additional property: every word is within distance 1 of a codeword.
To see this, suppose that w is a word. If HwT = 0, then w is a codeword. If not, then Hw’ is a
nonzero 3-tuple. Therefore, it is equal to a column of H; say that Hw? is equal to the ith column of
H.Then Hw' = Hel.T, so H(wT +eiT) = 0,sothat w+e; € C. The word w + ¢; is then a codeword
a distance of 1 from w. A code that corrects ¢ errors and for which every word is within 7 of some
codeword is called perfect. Such codes are particularly nice, in part because a decoding procedure will
always return a codeword. Later we will see some important codes that are not perfect. So perfection
is not the ultimate goal. Nevertheless, we can be inspired by the words of Lord Chesterfield: “Aim at
perfection in everything, though in most things it is unattainable. However, they who aim at it, and
persevere, will come much nearer to it than those whose laziness and despondency make them give it
up as unattainable.”

Exercises

1. Let C be the code (of length 1) of solutions to a matrix equation Ax = 0. Define a relation on the
set Z}, of words of length n by u = vmod C if u4v € C. Prove that this is an equivalence relation,
and that for any word w, the equivalence class of w is the coset C + w.

2. Verify that 1100110 belongs to the (7, 4, 3) Hamming code.

3. 1011110 is not a codeword for the (7,4, 3) Hamming code. Use the decoding algorithm above to
identify the error and to correct it.

4. Consider the matrix A with entries in Z, whose columns consist of the base 2 representations of
the integers from 1 though 15 in increasing order. Determine the rank of H and find a basis for its
nullspace.

5. Find the minimum distance and error correction capability of the nullspace of H defined in the
previous problem. Is this code perfect?
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2.4 Coset Decoding

To apply MLD (Maximum Likelihood Decoding, Sect. 2.1) what we must do, given a received word
w, is search through all the codewords to find the codeword ¢ closest to w. This can be a slow and
tedious process. There are more efficient methods, assuming the code is built in a manner similar to
that of the Hamming code, i.e., that the code C is given as the nullspace of an m x n matrix H:

Cz{veZg:HvT=0}

and therefore has length n and dimension equal to the nullity of H. We fix the symbols C and H to
have this meaning in this section.

Definition 2.20. Let w be a word. Then the coset C + w of w is the set {c + w:c € C}.

Recall two facts about C'. First, by the definition of C, the zero vector 0 is an element of the code,
since HO0 = 0. From this we see that w € C + w, since w = 0 + w. Second, if u,v € C, our
assumption of linearity requires that u +v € C (i.e., Hu +v)T = Hu" + HvI =0+ 0 = 0).

We now discuss an important property of cosets, namely that any two cosets are either equal or are
disjoint. In fact cosets are the equivalence classes for the following equivalence relation defined on Z5:

Two words x and y are related if x + y € C.

We write x ~ y when this occurs. To see that this is an equivalence relation, we must verify the
three properties of reflexivity, symmetry, and transitivity. For reflexivity, recall that addition in Z7 is
componentwise so for every x in ZJ we have x + x = 0, which is an element of C. Thus x ~ x.
Next, suppose that x ~ y. To verify symmetry, we must show that y ~ x. The assumption that x ~ y
means x + y € C.However, x + y = y + x; therefore, since y + x € C, we have y ~ x. Finally, for
transitivity, suppose that x ~ y and y ~ z. Thenx + y € C and y 4+ z € C. Adding these codewords
results in a codeword by the previous paragraph. However,

x+»+0+2)=x+0Q0+y)+z=x+0+z=x+2

by the properties of vector addition. Since the result, x + z, is an element of C, we have x ~ z, as
desired. So ~ is an equivalence relation.
The equivalence class of a word x is

{yiy~x}={y:x+yeC}={y:y=c+xforsomec e C}
=C +x.

The third equality follows since if x + y = ¢, then y = ¢ + x.
Proposition 2.21. Ifx and y are words, then C +x = C + y if and only if HxT = HyT.

Proof. Suppose first that C+x = C+y. Then x ~ y,sox+y € C. By definition of C, we have
H(x + y)T = 0. Expanding the left-hand side, and using the fact that (x + y)7 = x7 + T,
we get HxT + HyT = 0, so HxT = HyT. Conversely, suppose that Hx? = Hy”. Then
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Hx" + Hy" =0, or H(x + y)” = 0. This last equation says x + y € C, and so x ~ y. From
this relation between x and y, we obtain C +x = C + y, since these are the equivalence classes
of x and y, and these classes are equal since x and y are related. O

Ezample 2.22. Let
1111
i = (1 1 00)'

A short calculation shows that C = {0000, 1100,0011, 1111}. The cosets of C are then seen to
be

C + 0000 = {0000, 1100,0011, 1111},
C + 1000 = {1000, 0100, 1011,0111},
C + 0010 = {0010, 1110,0001, 1101},
C + 1010 = {1010,0110, 1001, 0101} .

We also point out that C = C 40000 = C 4+ 1100 = C +0011 = C 4+ 1111; in other words,
C = C + v for any v € C. Each coset in this example is equal to the coset of four vectors,
namely the four vectors in the coset.

Introducing some coding theory terminology, call H x” the syndrome of x. Syndromes enable more
efficient decoding. Suppose that a word w is received. If ¢ is the closest codeword to w, lete = ¢ +w.
Then e is the error word, in that e has a digit equal to 1 exactly when that digit was transmitted
incorrectly in c. Note that e is the word of smallest possible weight of the form v + w withv € C
since wt(e) = D(c,w). If we can determine e, then we can determine ¢ by ¢ = e 4+ w. To see where
the syndrome comes into play, multiply both sides of the equation e’ = ¢ + w” by H to obtain

HT = H(c+w) =Hc" + Hw' =0+ Hw'

= Hw'

which is the syndrome of the received word. We therefore compute He” by computing Hw’ .
Proposition 2.21 says that C + e = C + w; in other words, ¢ € C + w. More generally, any
pair of words with the same syndrome determine the same coset of C. Since c is the closest codeword
to w, the word e is then the word of least weight in the coset C + w. We then find e by searching the
words in C + w for the word of least weight; such a word is called a coset leader. To decode with
cosets, we compute and list a coset leader for each coset (i.e., syndrome).

Ezample 2.23. Let

11000
H=110110
10101
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Then C = {00000, 11100,00111,11011}. We see that the distance of C is 3, so C is 1-error
correcting. The cosets of C are

{00000,00111, 11011, 11100},

{01110, 10010,01001, 10101},

{00010,00101, 11001, 11110},

{11111, 11000, 00011, 00100},

{01111, 01000, 10100, 10011},

{01101, 10110, 01010, 10001},

{01100, 10000, 10111,01011},

{11010, 00001, 11101, 00110}.

By searching through each of the eight cosets (a word of minimal weight in each coset has been
boldfaced), we can then build the following syndrome table:

Syndrome Coset leader

000 00000
101 10010
010 00010
011 00100
100 01000
110 01010
111 10000
001 00001

The following examples illustrate the use of a syndrome table for decoding. Suppose that w =
10010 is received. Calculating (Hw”)” = wH?T results in 101. First of all, since Hw” # 0, and by
the definition of the code as the nullspace of H, the vector w is not a codeword. From the syndrome
table, we see that 101 is the second syndrome listed. The corresponding coset leader is e = 10010.
The received word w is decoded as ¢ = w+ e = 00000. Similarly, if we receive the word w = 11111,
we calculate wH T = 011. The corresponding coset leader is e = 00100, so the corrected codeword
ise +w = 11011.

Clearly using the syndrome table requires much less computation than checking the distance
between w and all 16 codewords to find the closest one. The fact that choices of the weight 2 coset
leader were made for syndromes 110 and 101 shows that this code cannot correct two errors and also
that it is not perfect.

Exercises

1. Let C be the code consisting of all solutions of the matrix equation Ax” = 0, where
0oo11110
01100110

10101010
11111111
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a. Calculate C and determine its distance and error correcting capability.
b. Construct the syndrome table for C.
c. Use the table to decode the vectors 10101101, 01011011, and 11000000.

2. List all of the cosets of the code C = {00000, 11100,00111, 11011}.
. Find the cosets of the Hamming code.
4. Let C be the code consisting of solutions to AxT = 0, where

O8]

111000
0111060
000111
100011

Build the syndrome table for C. Determine the distance of C. Use it to decode, if possible, 111110
and 100000. Feel free to use the Maple worksheet Cosets.mw.

2.5 The Golay Code

In this section we discuss a length 24 code used by NASA in the 1970s and 1980s to transmit images of
Jupiter and Saturn photographed by the Voyager spacecraft. This code, called the extended Golay code,
is the set of solutions to the matrix equation Hx” = 0, where H is the 12 x 24 matrix H = [I | B]
whose left half is the 12 x 12 identity matrix I and whose right half is the symmetric 12 x 12 matrix

110111000101
101110001011
011100010111
111000101101
110001011011
100010110111
000101101111
001011011101
010110111001
101101110001
011011100011
111111111110

which satisfies B> = 1.

The photographs were made using 4,096 colors. Each color was encoded with a codeword from
the Golay code. By solving the matrix equation Hx” = 0, we can see that there are indeed 4,096
codewords. Furthermore, a tedious check of all codewords shows that the distance of the Golay code
has distance d = 8. Thus, the code can correct | (8 — 1)/3] = 3 errors, hence up to three out of the
24 digits of a codeword can be corrupted and still the original information will be retrievable.

Because this code can correct more than one error, any decoding procedure is bound to be more
complicated than that for the Hamming code. We give a decoding procedure based on some simple
facts about the matrix B. Its validity is left to a series of homework problems.

To make it more convenient to work with this code, we write a word u = (uy, u2), where u; consists
of the first 12 digits and u, the remaining 12. Since H = [/ | B], we see that u € C if and only if
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Hu” = 0, which is true if and only if ulT + B uzT = 0. For a received word w, the following steps are
performed to decode w. We write v for the codeword to be determined from w. As usual, e; denotes
the 12-tuple with ith-entry 1 and all other entries 0, while b; denotes the ith row of the matrix B.

. Compute s” = Hw”.If s7 = 0, then w is a codeword.

CIf 1 < wt(s) < 3,thenv =w + (s,0).

. If wt(s) > 3 and wt(s + b;) < 2 for some i, thenv = w + (s + b;, e;).

. If we haven’t yet determined v, then compute s B, which is equal to (Bs”)” by symmetry of B.
If 1 <wt(sB) < 3,thenv =w+ (0,sB).

. Ifwt(sB) > 3 and wt(sB + b;) <2 forsomei,thenv =w + (e;,sB + b;).

. If we haven’t determined v, then w cannot be decoded.

Ezxample 2.24. Suppose that w = 001001001101101000101000 is received. We calculate s” =
Hw”, and find s = 110001001001 with wt(s) = 5. We see that wt(s + bs) = 2. Therefore,
by Step 3, w is decoded as v = w + (s + bs,e5) = w + (000000010010, 000010000000) =
001001011111101010101000.

~N N BN =

Exercises

For these problems, some of the theoretical facts behind the decoding procedure for the Golay code
are verified. We use the following setup: C is the Golay code, H is the 12 x 24 matrix [/ | B]
mentioned in the text, w is a received word, s = Hw”. Our conventions are that a 24-tuple written
as (u1, up) means that each u; is a 12-tuple and that the i th row (and column) of the symmetric matrix
B is denoted by b;. Let v be the closest codeword to w and write v = w + e. Since the Golay code is
asserted to be 3-error correcting, we assume that wt(e) < 3.

Recall that B2 = I and BT = B. A straightforward but tedious check of the rows of B shows that
(i) wt(b;) > 7 for all i; (ii) wt(b; + b;) > 6 if i # j; (iii) wt(b; + b; + by) > 5forall i, j, k. Since
BT = B, the ith column of B is b;, and so Be; = b;. You are free to use these facts.

1. Suppose that e = (u, 0); with wt(u) < 3. Show that s = u, and conclude that v = w + (s, 0).

2. Suppose that e = (u, e;) with wt(u) < 2. Show that s = u + b;. Conclude that wt(s) > 3 and
wt(s + b;) <2, and thatv = w + (s + b;, ¢;).

3. Suppose that e = (0, u) with wt(u) < 3. Show that s is the sum of at most three of the b; and that
u = sB. Conclude that wt(s) > 3 but wt(Bs) < 3, and thatv = w + (0, sB).

4. Suppose that e = (e;, u) with wt(u) < 2. Show that s = ¢; + uB, and that sB = b; 4+ u. Conclude
that wt(s) > 3, wt(s + b;) > 2 for any i, and that e = (e;,sB + b;),sov =w + (e;, sB + b;).

These four problems show, given any possibility of an error vector e having weight at most 3, how
we can determine it in terms of the syndrome s. Reading these four problems backwards yields the
decoding procedure discussed in this section.
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Chapter 3
Rings and Fields

We are all familiar with the natural, rational, real, and complex number systems and their arithmetic,
but other mathematical systems exhibit similar arithmetic properties. The previous chapter, for
instance, introduced the set of integers modulo 7, and its addition, subtraction, and multiplication.
In high school algebra you worked with polynomials, and saw how to add, subtract, and multiply
them. In linear algebra you saw how arithmetic operations are performed on matrices, and might have
seen vector spaces, with their addition, subtraction, and scalar multiplication. Many of the functions
you studied in precalculus and calculus can be combined by addition, subtraction, multiplication,
division, and also composition.

There are many similarities among these different systems. The idea of abstract algebra is to distill
the algebraic properties common to systems arising naturally in mathematics, and then investigate
general systems having these properties, without specific reference to any particular one. We will
study several different algebraic systems, the first of which, that of a ring, generalizes the integers and
the integers modulo n. Looking back at the list of properties that the modular operations satisfy, notice
that analogues of these properties hold in the familiar number systems listed above. These properties,
except for commutativity of multiplication, hold also for matrix operations and occur in so many
contexts that it is necessary to study systems that satisfy them.

3.1 The Definition of a Ring

To begin, we must first formalize the meaning of an operation. With integer addition, one starts with
two integers and the process of adding them returns a single integer. Therefore, addition is a function
that takes as input a pair of integers and gives as output a single integer. Multiplication can be viewed
similarly. These are special examples of binary operations. Recall that the Cartesian product 4 x B of
two sets A and B is the set of all pairs (a,b) witha € A and b € B. In other words,

Ax B ={(a,b):aec A b e B}.

Definition 3.1. If S is a set, then a binary operation on S is a function from S x S to S.

FEzample 3.2. The operations of addition, subtraction, and multiplication on the various
number systems are all examples of binary operations. Division is not an example. Division
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42 3 Rings and Fields

on the real numbers is not a function from R x R to R but a function from R x (R — {0}) to R.
In other words, since we cannot divide by 0, division is not defined on pairs of the form (a, 0).

Example 3.3. If T is any set, then union U and intersection N are examples of binary
operations on the set of all subsets of T. That is, given any two subsets of T, the union and
intersection of the sets is again a subset of T'.

The properties of a specific binary operation f : S xS — S on a particular set S can be expressed
in terms of the function f. For instance, if f was a commutative binary operation, then f(a,b) =
f(b,a) forevery pair of elements (a, b) € SxS. Associativity would be expressed as f(a, f(b,c)) =
f(f(a,b),c) for every triple of elements (a,b,c) € S x S x S. This notation can quickly become
cumbersome so we will rarely use it, especially since the operations that arise most frequently in
practice have more natural and familiar expressions.

Example 3.4. Here is an example from multivariable calculus. Consider the set R? of 3-tuples
of real numbers. The cross product is a binary operation on R? given for 3-tuples (a1, a»,a3)
and (by, by, b3) by the formula

i ok
(al,az,a3) X (b],bz,b3) =det| ay ay a3
by by by

= (a2b3 — aszby)i + (azby —aib3)j + (a1by + arby)k,

where i, j, and k are alternative notations for the usual unit vectors e, e, and e3. The reason
for giving this example here is that it provides a natural example of a non-associative operation.
For instance,

(e1 Xxe)xey; =0xe; =0
while
e; X (e] X ey) = e Xe3 = —ep.

Thus, the associative property can’t be expected to hold for every naturally occurring binary
operation.

While it is possible to investigate sets with operations in complete generality, most useful algebraic
structures do satisfy at least some of our familiar properties, such as the commutative and associative
laws. In particular, with the notion of a binary operation on a set, we can give the definition of a ring.
This is the structure that underlies most of the examples mentioned above and will be of importance
in what follows.

Definition 3.5. A ring is a nonempty set R together with two binary operations + and - such
that, for all a, b, ¢ € R, the following properties hold:

e Foreacha,b € R, botha + b and a - b are elements of R.

¢ Commutativity of addition: a +b = b + a.

¢ Associativity of addition: a + (b +c¢) = (a + b) + c.

¢ Existence of an additive identity: There is an element 0 € R with a +0 = a for every a € R.
¢ Existence of additive inverses: For each a € R there is an element s € R witha + 5 = 0.

¢ Associativity of multiplication: a - (b-¢) = (a-b) - c.

e Left distributivity: a- (b +c¢) =a-b+a-c.
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e Right distributivity: (b +¢)-a =b-a+c-a.
* Existence of a multiplicative identity: There is an element 1 € R with 1-a =a -1 = a for
alla € R.

We tacitly assume that 0 # 1 in a ring R. Otherwise R can only be the trivial ring {0} (see
Exercise 14 below). The example above of R? with vector addition as the addition and the cross
product as multiplication does not satisfy our definition of a ring because of the failure of associativity
of the cross product and the absence of an identity for this operation. Algebraic structures with
nonassociative multiplication do have importance throughout mathematics, but these lie beyond the
scope of this book.

Before we give examples of rings, we point out a few things about the definition. The first property
is simply a restatement of what it means for 4 and - to be binary operations. One often refers to these
properties as closure under addition and under multiplication. Next, we did not include commutativity
of multiplication in this list. If a ring R satisfies a - b = b - a for all a,b € R, then we call R a
commutative ring. If a ring is commutative, then the two distributivity laws reduce to the same thing,
and the requirement that 1-a = a-1 is redundant. The definition of a ring does not include the existence
of multiplicative inverses of all nonzero elements. Indeed, for a composite integer 7, we have seen in
Z, that elements @ # 0 need not have multiplicative inverses. The existence of multiplicative inverses
is an important issue that will be addressed in several examples.

Ezample 3.6. The set Z of integers forms a ring under the usual addition and multiplication
operations. The defining properties of a ring are well known to hold for Z. The set Q of rational
numbers also forms a ring under the usual operations. So do the set R of real numbers and the
set C of complex numbers. All four of these are, of course, commutative rings.

Ezxample 3.7. The set M, (R) of n x n matrices with real number entries under matrix addition
and multiplication forms a ring. It is proved in linear algebra courses that the operations of
matrix addition and multiplication satisfy the properties above. For instance, the zero matrix

in Mz(R)
(O 0)
00

is the additive identity, and the identity matrix

(o)

is the multiplicative identity. This ring is not commutative. For example,

(16D (3)
(D)

so the order of multiplication matters.

while
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Example 3.8. If n is a positive integer, then the set Z, of integers modulo n, with addition
and multiplication of residues classes defined as in Chapter I, is a ring. In fact the ring
properties for Z, were verified there. Since the multiplication is commutative, Z, is furthermore
a commutative ring.

Ezample 8.9. Let R be the set of all continuous (real-valued) functions defined on the interval
[0, 1] and consider the binary operations of function addition and multiplication. Recall that
these function operations are defined pointwise. That is, if f and g are functions, then f + g,
f —g,and fg are defined by

(f +9)x) = f(x) + g(x),
(f =8)x) = f(x) —g(x),
(f8)(x) = f(x)g(x).

In calculus one shows that the sum, difference, and product of continuous functions are again
continuous. Thus, we have operations of addition and multiplication on the set R. It is possible
that the ring properties were verified in your calculus class. We do not verify all here, but
limit ourselves to discussing some. The additive identity of R is the zero function 0 which is
defined by 0(x) = 0 for all x € [0, 1]. The multiplicative identity of R is the constant function
1 defined by 1(x) = 1 for all x € [0, 1]. Commutativity of addition holds because if f,g € R
and x € [0, 1], then

(f +90) = f(x) +g(x)
=g+ f(x)
=g+ ).

Thus, the functions f + g and g + f agree at every value in the domain, which means, by
definition, that f + g = g + f. To prove this we used the definition of function addition and
commutativity of addition of real numbers. All of the other ring properties follow from the
definition of the operations and appropriate ring properties of R. Furthermore, multiplication
of functions is commutative, so the ring of continuous functions on [0, 1] is commutative.

Example 3.10. Let R[x] be the set of all polynomials with real number coefficients. While the
operations of addition and multiplication of polynomials are no doubt familiar, we recall their
definitions now, primarily to give a simple notation for them which will be useful in later
developments. First note that given two polynomials f(x) = Y 7'_, a;x" and g(x) = > /L, b;ix'
we can add on terms with zero as coefficients in order to be able to assume that m = n. With
this in mind, we have

(f +89kx) = Zaixi + Zbixi = Z(ai + bi)x'.

i=1 i=1 i=1

Similarly, by collecting coefficients of like powers of x, we have

n m n+m j
(f -8 = Zaixi 'Zbixi = Z (Zaibj—i) X
i=0 i=0 =

J
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It is likely that in some earlier course you saw that all of the ring properties hold for R[x], specif-
ically that multiplication of polynomials is commutative and associative, so R[x] is a commutative
ring.

Ezxample 3.11. This example is important in the study of set theory and logic. Let T be a set,
and let R be the set of all subsets of 7. We have two binary operations on R, namely union
and intersection. However, R does not form a ring under these two operations. The identity
element for union is the empty set ¢ since AU¢p = ¢pUA = A forany A € T. Similarly T serves
as the identity element for intersection. On the other hand one can check that neither operation
allows for inverses: given a nonempty subset A of T, what subset B can satisfy AUB = ¢7 And
if A is a proper subset of T what subset B can satisfy A N B = T'? In particular, neither union
nor intersection can be considered as addition. However, we can introduce new operations to
come up with a ring. Define addition and multiplication on R, respectively, by

A+B=(A-B)U(B—A)=(AUB)— (AN B),
A-B=ANB.

Then R, together with these operations, does form a commutative ring. We leave the details
of the proof to an exercise. We do point out some interesting properties of this ring. First of
all, 0 = @ for this ring since A + ¥ = (AU Z) - (ANYJ) = A— T = A for every subset
Aof T. Also, 1 = T since A-T = ANT = A for every subset A. Next, for any A we have
A4+ A=(AUA)— (AN A) = A— A = @. Therefore, —A = A for any A! This would seem to
be a very unusual property, although we will see it frequently in the sections on coding theory.
Finally, note that A- A =ANA = A.

Example 3.12. In this example we describe a method of constructing a new ring from two
existing rings. Let R and S be rings. Define operations + and - on the Cartesian product R x S
by

)+ @Y= +71,s+5),

(r,s)-(r',s") = (rr', ss)

for all r,7’ € R and 5,5’ € S, where r + r’ and s + s’ are calculated in the rings R and S,
respectively, and similarly for 77’ and ss’. Then one can verify that R x S, together with these
operations, is indeed a ring. If O and Ogs are the additive identities of R and S, respectively,
then (Og, Og) is the additive identity for R x S. Similarly, if 13 and 1g are the multiplicative
identities of R and S, respectively, then (1, 1) is the multiplicative identity of R x S.

3.2 First Properties of Rings

There are some properties with which you are very familiar for the ordinary number systems that hold
for any ring. First of all, the additive and multiplicative identities are unique. We leave one of these
facts for homework, and prove the other one now.

Lemma 3.13. Let R be a ring. The additive identity is unique.

Proof. Suppose there are elements 0 and 0’ in R that satisfy « + 0 = a and a + 0’ = a
for all a € R. Recalling that addition is commutative, we have a + 0 = 0 +a = a and
a+0 =0 +a = a for any a. If we use the first pair of equations fora = 0/, we get 0/ +0 = 0'.
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On the other hand, if we use the second pair with a = 0, we get 0’ + 0 = 0. Thus, 0 = 0’. This
shows that there can be only one additive identity for R. O

We next remark that the additive inverse of any element is unique (the proof is Exercise 1 below).
Since the additive inverse of a ring element is unique, we use the familiar notation —a to represent the
additive inverse of a. The additive inverse enables the definition of subtraction in the usual manner:
a—b=a+ (-b).

Lemma 3.14. Let R be a ring, and leta, b € R.

1. —(—a) =a;
2. —(a+b) =—a+ (—b);
8. —(a—b)=—a+b.

Proof. Let a € R. By definition of —a, we have a 4+ (—a) = (—a) + a = 0. This equation tells
us that a is the additive inverse of —a. That is, @ = —(—a), which proves the first property.
For the second property, let a,b € R. Then —(a + b) is the additive inverse of a + b. We show
—a + (—b) is also the additive inverse of a + b. To do this, we calculate
(a+b)+ (—a+ (=) = ((a+b)+ (-a)) + (=b)
= (a+ b+ (—a) + (-D)
=(a + ((—a) + b)) + (=b)
= ((a + (-a)) + b) + (=b)

— (0+b) + (=b)
— b+ (=b)
=0.

Each of these steps followed from one of the properties in the definition of a ring. Because we
have shown that (a + b) + (—a + (—b)) = 0, the element —a + (—b) is the additive inverse of
a+b. This tells us that —a+ (—b) = —(a+b). Finally, for the third property, againlet a,b € R.
We use a similar argument as for part 2, leaving out a few steps which you are encouraged to
fill in. We have
(@a—b)+(—a+b)=(a+ (-b)+ (—a+b)

=@+ (b)+(—a)+b

=@+ (—a)+ (b)) +5b

=0+Cb)+b

=(=b)+5b

=0

Therefore, —a + b = —(a — b). O

Proposition 3.15 (Cancellation Law of Addition). Let a,b,c € R. Ifa+b = a + c,
then b = c.

Proof. Let a,b,c € R, and suppose that a + b = a + ¢. By adding —a to both sides, we get
the following string of equalities.
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a+b=a+c
—a+(a+b)=—a+ (a+c)
(—a+a)+b=(—a+a)+c

0+b=0+c
b=c
Again, notice that in each line we used properties from the definition of a ring. O

The element O is defined with respect to addition, but we want to know how it behaves with respect
to multiplication. The distributive properties are the only properties in the definition of a ring that
involve both operations. They will then be necessary to use to prove anything that relates the two
operations. Such an example is the following lemma:

Lemma 3.16. Let R be aring. Ifa € R, thena-0=0-a =0.

Proof. Let a € R. To prove that a - 0 = 0, we use additive cancellation together with the
definition of an additive identity. We have

a-0+a=a-0+a-1=a-0+1)
=a-1
=a

=0+a.

Subtracting a from both sides yields a - 0 = 0. A similar argument shows that 0-a = 0. O

Remark 3.17. Lemma 3.16 shows that 0 has no multiplicative inverse in a ring with more than
one element (i.e., in a ring in which 0 # 1). Thus “division by 0” is meaningless.

Let us now address the existence of multiplicative inverses. To illustrate an underlying issue,
consider an important related concept from high school mathematics that often gets too little attention.
First an example: Suppose you wish to solve the equation x> — 5x — 6 = 0 in the real numbers by
factoring. Since x> — 5x — 6 = (x + 1) (x — 6), our equation is equivalent to (x + 1)(x — 6) = 0.
Since the real numbers have the property that the product of two nonzero numbers is again nonzero,
our problem reduces to x + 1 = 0 or x — 6 = 0, and hence the two solutions x = —1 and x = 6.

Factoring is a useful technique in solving equations precisely because of the property of the real
numbers that we just used. On the other hand, we have seen for some »n, that the ring Z, does not
possess the property that the product of nonzero elements is nonzero (e.g. in Zg we have 2 - 3 = 0).
Likewise, this behavior occurs in rings of matrices. For example,

10 00y (00
oo/\o1) \oo)’
If we are trying to solve equations in a ring, then it may be crucial to know whether or not the product

of nonzero elements can equal to zero.

Definition 3.18. Let R be a ring and a a nonzero element of R. If there is a nonzero element
b € R with a - b = 0 then a is said to be a zero divisor.



48 3 Rings and Fields

A useful alternative phrasing of the definition is the contrapositive. A nonzero elementa € R is
not a zero divisor if whenever » € R with a - b = 0, then » = 0. Terminology about zero divisors
varies from textbook to textbook. Some books only define zero divisors for commutative rings. Some
books consider 0 to be a zero divisor and others do not. Others talk about left and right zero divisors. If
a -b = 0 with both a and b nonzero, one could call a a left zero divisor and b a right zero divisor, but
we will not worry about such things. The name zero divisor comes from the usual meaning of divisor
in Z. If ¢ and d are integers, then c is called a divisor of d if there is an integer e with ce = d. If
ce = 0, then this terminology would lead us to say that c is a divisor of 0. However, since ¢ -0 = 0 for
all ¢, this would seem to lead us to call every integer a divisor of zero. This is not a useful statement.
The restriction in the definition above to require b # 0 in order to call a a zero divisor if ab = 0
eliminates this worry.

Ezxample 3.19. The rings Z, Q, R, and C have no zero divisors. Each of these rings has the
familiar property that ab = 0 impliesa = 0 or b = 0.

Ezxample 3.20. The ring of 2 x 2 matrices with real number entries has zero divisors, as the
example above shows. In fact, if
ab
A= ,
(<)

i = (477,

and from a simple calculation or a recollection from linear algebra,

A -adj(4) = det(A4) (1 0) = (“d ~be 0 )

then the adjoint of A is the matrix

01 0 ad — bc

Thus, if det(4) = 0, then A is a zero divisor.

Ezample 3.21. We have seen that Zg has zero divisors; for example, 2-3 = 0. Similarly, Zo has
zero divisors, since 3 - 3 = 0. Also, Z, has zero divisors since 6 - 4 = 24 = 0. In contrast, Zs
has no zero divisors; if we view the multiplication table for Zs, we see that the product of two
nonzero elements is always nonzero:

mod5 [0 T 2 3 4
0/0 000 O
T071T 23 4
210 2 41 3
3103 1 4 2
410 4 321

Ezxample 3.22. Let R and S be rings, and consider the ring R x S with operations defined
earlier. Then this ring has zero divisors, as long as both R and S contain nonzero elements.
For,if r € R and s € §, then (r,0) - (0,s) = (0,0). For example, if R = § = Z, then elements
of the form (n,0) or (0, m) with n, m nonzero are zero divisors in Z x Z.
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There is a cancellation law of multiplication for the ordinary number systems. Because of the
possible presence of zero divisors, the generalization to arbitrary rings has to be phrased more
carefully.

Proposition 3.23 (Cancellation Law of Multiplication). Let R be a ring. Suppose that
a,b,c € R withab = ac anda # 0. If a is not a zero divisor, then b = c.

Proof. Let a,b,c € R with ab = ac. Suppose that a is not a zero divisor. From the equation
we get ab —ac = 0, so a(b — ¢) = 0. Since a is not a zero divisor, b —c =0, or b = c. O

The cancellation law fails if a is a zero divisor. For example, in Z¢ we have 2.4 =2-1even
though 4 # 1. Therefore, we cannot cancel 2 in such an equation. Similarly, with matrices we have

the equation
10\( 20 10/ 20
(0 0) (—3 4) - (0 0) (—3 6)
20 20
(59)#(56):

More generally, in any ring, if ab = 0 with a,b # 0,thena - b = a - 0, so cancellation of the zero

divisor a is not valid.
We now return to the idea of multiplicative inverses. Recall the multiplication table for Zg:

while

mod6 |0 T 2 3 45
0/0 0000 O
T|0T 23 45
210 2 40 2 4
3/03 030 3
410 4 20 4 2
5105 4321

From this table we see that 2, 3, and 4 are zero divisors. The remaining nonzero elements Tand5
are not. In fact, 1 and 5 each have a multiplicative inverse, namely itself, since 1 - 1 = land 5-5 = 1.

Definition 3.24. If R is a ring, then an element a € R is said to be a unit if there is an
element b € R witha-b = b-a = 1. In this case a and b are said to be multiplicative inverses.

A unit is never a zero divisor, as we now prove.
Proposition 3.25. Let R be a ring. If a € R is a unit, then a is not a zero divisor.
Proof. Let a € R be a unit with multiplicative inverse ¢ € R. Then ac = ca = 1. Suppose that
b € R with ab = 0. Then
0=c-0=c(ab)
=(ca)b=1-b=0b.

We have shown that if ab = 0, then b = 0. Thus, a is not a zero divisor. An obvious
modification of the argument just given shows that if ba = 0, then b = 0 as well. O
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The example of Z, with no zero divisors but only &1 for units, shows that the converse of this

proposition does not hold in general.

Exercises

1.

*®

10.

11.
12.

Let R be a ring and a an element of R. Prove that the additive inverse of a is unique, i.e., if
a+b=a+b =0,thend =b'. o
Find all solutions in Zg to the equation x> — 1 = 0.

. Find all solutions in Zg to the equation x> — 1 = 0. How many did you find? How does this

compare with your prior experience of the number of roots a polynomial of degree n can have?

. In this problem you will show that there are infinitely many real-valued 2 x 2 matrices satisfying

the equation X> — I = 0.

(a) To begin let

a=(12))

and show that A satisfies the equation X = 1.

(b) Next let B be any invertible 2 x 2 matrix and prove that BAB™! also satisfies the equation
X} -1=0.

(c) Finally, verify that

1b\ (0—=1\[(1b\ " (b-b>—1-b

orJ\1-1)\o1) ~\1 —-1-b )’
and conclude that there are infinitely many distinct 2 x 2 matrices satisfying the equation
X—1=0.

. Let R be a commutative ring in which there are no zero divisors. Prove that the only solutions to

x>—1=0inR are 1 and —1.
(Hint: factor the left-hand side of the equation.)

. Let R and S be rings. Referring to Example 3.12, prove that R x S satisfies the distributive

properties.

If R is aring, prove that a(—b) = (—a)b = —(ab) foralla,b € R.
If R is aring, prove that a(b — ¢) = ab —ac foralla,b,c € R.
Prove that the set R of Example 3.11 with the operations

A+B=(A-B)U(B—A)=(AUB)— (AN B),
A-B=ANB.

is aring. What is the multiplicative identity? Which elements have multiplicative inverses?
Prove that if @ and b are units in the ring R, then ab is a unit.

(Hint: A fact from linear algebra about invertible matrices may stimulate your thinking.)
Prove thata € Z, is a zero divisor if and only if ged(a,n) > 1.
Prove that a matrix A € M, (R) is a zero divisor if and only if det(4) = 0. (Hint: Recall two
things:

(a) AB = 0 means that the columns of B solve the homogeneous linear system AX = 0, and
(b) The determinant criterion for the existence of nontrivial solutions to AX = 0.)
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13.
14.
15.
16.
17.
18.
19.

20.

21.

22.

23.

24.

25.
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Prove that the zero divisors of Z x Z are the elements of the form (a, 0) or (0, a) for any a € Z.
Give an example of a ring R and an element a € R that is neither a zero divisor nor a unit.

Let R be a ring in which 0 = 1. Prove that R = {0}.

Prove that the multiplicative identity of a ring is unique.

If a and b are elements of a ring R, prove that (—a) - (—b) = ab.

Prove that if @ and b are elements of a ring, then (a + b)* = a® + ab + ba + b>.

Let R be a ring in which a> = a for all ¢ € R. Prove that —a = a. Then prove that R is
commutative.

Let R be aring. If a € R, define powers of a inductively by ¢ = 1 and a" !

=a"-a.

(a) If n and m are positive integers, prove that a” - a™ = a"*™.

(b) Prove or disprove by finding a counterexample: If a,b € R, then (ab)" = a”" - b". If this is
not always true, determine conditions under which it is true.

Define a relation between elements of a commutative ring R by a ~ b if there is a unit u € R with
b = au. Prove that this relation is an equivalence relation. Determine the equivalence classes of
this relation if R = Z and if R = Zq».

Is subtraction on Z an associative operation? Is it commutative? If it is, prove it. If not, give an
example to demonstrate that it is not.

Let R be a ring. Suppose that S is a subset of R containing 1 satisfying (i) if a,b € S, then
a—be S,and (ii)ifa,b € S, thenab € S.

(a) Show that0 € S.

(b) Show thatifa € S, then —a € S.

(c) Show thatifa,b € S, thena + b € S. From this and (ii), we can view + and - as operations
on S.

(d) Conclude that all of the ring axioms hold for S from the ring axioms for R, from the
hypotheses, and from (a)—(c).
The ring S is said to be a subring of R.

Let H be the set of all 2 x 2 matrices with complex number entries of the form (Z—Z __b ) Prove
a

that H satisfies the hypotheses of the previous problem, with R = M, (C), so that we can consider
H to be a subring of M,(C). Moreover, prove that H is noncommutative, and that every nonzero
element of H has a multiplicative inverse in H.

(The ring H, discovered in 1843 by Hamilton, was the first example discovered of a
noncommutative ring in which every nonzero element has a multiplicative inverse. This matrix
theoretic description is not Hamilton’s original description. He was interested in an algebraic
method to describe rotations in R? analogous to how multiplication by the complex number i
rotates the complex plane (hence R?) by 90° in the counterclockwise direction. The ring H is
now called the ring of Hamilton’s quaternions.)

Let H be the ring of the previous problem. Let

i 0 0-1 0 —i

We write 1 for the identity matrix. Prove that /2 = J> = K? = —1 and K = —JI. Also, note
thatifa = o + Bi and b = y + §i, then

(g__b):a-1+,31+yJ+5K,
b a



52 3 Rings and Fields

if we view 1 as the 2 x 2 identity matrix. Finally, if A = & + B2 + y? + §2, show that

(a-1+,31+yJ+8K)_1=<%)-1—(§)1—(%)J—(%)K.

Remark 8.26. Hamilton defined the quaternions as all symbols of the form a + bi + ¢j + dk
with a, b, c,d € R with addition given by

(@+bi+cj+dk)y+@ +bi+cj+dk)y=@+a)+bB+b)i+(+c)j+(d+d)k
and multiplication obtained by using the distributive law along with the identities i = j2 =
k*=—landk =ij = —ji.

3.3 Fields

In the previous section we discussed the notion of a zero divisor and saw that if an element has a
multiplicative inverse then it is not a zero divisor. The ring Z has no zero divisors. However, few
integers have multiplicative inverses in Z; in fact, only 1 and —1 have multiplicative inverses in Z. On
the other hand, every nonzero integer has a multiplicative inverse in the ring Q. Even more than that,
every nonzero element of (Q has a multiplicative inverse in Q. A similar statement holds for R and
for C. Therefore, in Q, R, and C we may divide, as long as we do not try to divide by 0. However,
if we restrict ourselves to Z, we cannot always divide; we must extend to Q in order to do general
division of integers. Rings in which we can divide are important enough, and common enough, for us
to investigate.

Definition 3.27. A field is a commutative ring F containing at least two elements such that
every nonzero element of F has a multiplicative inverse in F.

The hypothesis that a field contains at least two elements ensures that 0 # 1; necessarily 0 = 1 if
the field has only one element. If it has more than one, a short argument will prove that 0 # 1. This
assumption is not important, but it is convenient. It is similar to the assumption that 1 is not a prime
number, even though it cannot be factored in a nontrivial way.

Example 3.28. The number systems Q, R, and C are all examples of fields.
The following proposition gives us infinitely many examples of fields.
Proposition 3.29. Letn be a positive integer. Then Z, is a field if and only if n is prime.

Proof. Let n be a positive integer. We know that Z, is a commutative ring, so it suffices to
prove that every nonzero element of Z, has a multiplicative inverse if and only if n is prime.
First, suppose that n is prime. Let @ € Z, be nonzero. Then a # 0 mod n. Consequently, n does
not divide a. Since n is prime, this forces ged(a,n) = 1. Thus, by Proposition 1.13, there are
integers s and ¢ with 1 = as + nt. This means as = 1 modn, or @ -5 = 1 in Z,. We have thus
produced a multiplicative inverse for @. Since @ was an arbitrary nonzero element, this proves
that Z, is a field.

For the converse, we prove the contrapositive: If n is not prime, then Z, is not a field.
Assume that n is composite and factors asn = ab with 1 <a,b <n. Thena- b=ab=m1=0.
Since @ # 0, and b # 0 we find that both are zero divisors. But a field has no zero divisors, so
Z, is not a field. |
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Example 3.30. Let F = {0,1,a,b} be a set with four elements, and define operations by the
following tables

and

SR = O+
SR = OO
S = Q &S
S O O OO
SR = O =
- S O
SIS e RS

1
1
0
b
a

— O o QR
N =l

A tedious computation, which we will not bother with, shows that F, together with these
operations, is a field. This example looks very ad-hoc. However, there is a systematic way
to obtain this example from the field Z, that is analogous to how C is obtained from R
by attaching a square root of —1. This method of building fields from others is the basis
for building Reed—Solomon codes, an important class of error correcting codes discussed in
Chap. 7.

Example 3.31. Fields can be found among certain subsets of R or C. For example, let
Q(V2) = {a +bV2:a,b e@}
and

QG)=4a+bi:abeQ}

The set Q(+/2) is a subset of R and Q(i) is a subset of C. We (partially) verify that Q(+/2) is
a field and leave the other example for an exercise. We first note that ordinary addition and
multiplication yield operations on Q(+/2). To see this, let a + b+/2 and ¢ + d +/2 be elements
of Q(+/2). Implicit in this statement is that a, b, ¢,d € Q. Then

(@a+bvV2)+(c+dN2) =(a+c)+ (b +d)V2.

Since a + ¢ and b + d are rational numbers, this sum lies in Q(+/2). Thus, the sum of two
elements of Q(+/2) is an element of Q(+/2). For multiplication, we have

(@a+bv2) (c+dv2) =ac+ad~2+ bcv2 + 2bd
= (ac + 2bd) + (ad + be)V2.

Since ac + 2bd and ad + bc are rational numbers, this product lies in Q(+/2). Therefore,
we have operations of addition and multiplication on Q(+/2). Almost all of the properties to
be a field are automatic. For example, commutativity of addition in Q(+/2) is a special case
of commutativity of addition in R. Similarly, since the additive identity 0 and multiplicative
identity 1 in R can be written, respectively, as 0 = 0 + 04/2 and 1 = 1 + 0+4/2, and hence are
elements of Q(+/2), we see that Q(+/2) does contain the multiplicative and additive identities.
Also, if a, b € Q, then the additive inverse of a +b+/2 is —(a + b/2) = (—a) + (—b)~/2, which
lies in Q(+/2). Finally, we check for multiplicative inverses. This is the most involved part of
verifying that Q(+/2) is a field. Let a, b € Q, and consider a nonzero element a + b+/2. In order
for this number to be nonzero, either a or b is nonzero. By rationalizing the denominator,
similar to the trick of multiplying by the conjugate of a complex number, we have
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1 a—b2 a—b2

at+bv2 (a—bv2)a+by2) a>—2b?
a -b
- <a2 —2b2> + (a2 —2b2) V2.

This calculation makes sense, and furthermore shows that a +b+/2 has a multiplicative inverse
in Q(+/2), provided of course that a® —2b? # 0. In that case the last expression can be viewed
as a linear combination of 1 and +/2 with rational number coefficients. It remains to verify that
a? —2b% # 0 always holds when either a or b is nonzero. To that end, assume that at least one
of a and b is nonzero and view the calculation (a +b~/2)(a —b+/2) = a> —2b? as an equation in
R, which has no zero divisors. By assumption a + b~/2 # 0 so if a — b+/2 is also nonzero, then
a® —2b? # 0 since it is a product of two nonzero real numbers. If ¢ —b~/2 = 0 and b = 0, then
a = 0, but we know that either a or b is nonzero. If b # 0, then a —bh~+/2 = 0 yields v/2 = a /b,
a rational number. However, v/2 is irrational (Exercise 7 below). Thus a — b+/2 # 0, so that
a® — 2b% # 0, and multiplicative inverses for nonzero elements in Q(+/2) always exist, i.e.,

Q(v/2) is a field.

It is not at all apparent that Examples 3.30 and 3.31 are related in any way. Later on, when we
discuss the method to build fields from others by adjoining roots of polynomials hinted at in the
previous example (i.e., the polynomial x> — 2 with coefficients in Q has two roots in Q(~/2)), we will
see that these two examples can actually be obtained by the same method applied to different base
fields. The former example is built from Z, and the latter from Q.

Definition 3.32. A commutative ring without zero divisors is called an integral domain.

Ezample 3.83. As the name implies, the ring of integers is an integral domain. Every field is
an integral domain, as is R[x] the ring of all polynomials with real number coefficients.

The proof of Proposition 3.29 shows that the ring Z, is an integral domain if and only if # is prime.
This proposition has the following generalization.

Theorem 3.34. FEvery finite integral domain is a field.

Proof. Let D be a finite integral domain and S = {d|,d>,...,d,} the set of its nonzero
elements with d; # d; for i # j. We must show that each d; has a multiplicative inverse in S.
To that end, denote by d;S the set {d;d,,d;d>,...,d;d,} and observe that d;S C S because D
is an integral domain. But in fact d; S = §, since otherwise there would be repetition among
the elements d;d;. However d;d; = d;d; holds only for j = k by the cancellation law for
multiplication. Thus ;S = § and, because 1 € §, it must be the case that 1 = d;d; for
some d;. O

Exercises

1. Recall that by reversing the steps in the Euclidean Algorithm one can always express the greatest
common divisor of a pair of integers as an integer linear combination of them: ged(a, b) = ax+by
for certain integers x, y. Use this to find an algorithm to determine the multiplicative inverse of an
arbitrary nonzero element @ in the field Z, (p prime).

2. Let F be a finite field. Prove that there is a positive integer n such that 1 41 4 --- 4+ 1 = 0. Prove

n times
that the least such 7 is a prime number.

3. Let F be a field. Prove that every linear equation ax + b = 0 with a, b € F has a unique solution
in F.
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4. Find a quadratic equation with coefficients in Z, that has no solution in Z,.

5. Find a quadratic equation with coefficients in Zj3 that has no solution in Zs.

6. Find a cubic equation with coefficients in Z, that has no solution in Z,.

7. Use unique factorization in Z to prove that +/2 is irrational (i.e., assume that v/2 = 5 with

relatively prime positive integers a and b. From 2b? = a? deduce that a and b are both even).
8. Use unique factorization in Z to prove that +/2 is irrational.
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Chapter 4
Linear Algebra and Linear Codes

In this chapter we review the main ideas of linear algebra. The one twist is that we allow our scalars to
come from any field instead of just the field of real numbers. In particular, the notion of a vector space
over the field Z, will be essential in our study of coding theory. We will also need to look at other
finite fields when we discuss Reed—Solomon codes. One benefit to working with finite dimensional
vector spaces over finite fields is that all sets in question are finite, and so computers can be useful in
working with them.

4.1 Vector Spaces

Let us review the idea of a vector space. Recall that two types of objects, vectors and scalars are
involved. For example, R3, the usual three-dimensional space, can be interpreted as a set of vectors
if we take as the set of scalars R, the set of real numbers. While vector spaces with the real number
field as the set of scalars may have been the only context in your previous study of linear algebra,
it is true that in any computation or definition about vector spaces, all you needed was the ability to
add, subtract, multiply, and divide scalars, and that these arithmetic operations had some appropriate
properties. In fact, there is nothing we need about R other than its properties as a field to do everything
you have seen about vector spaces. Therefore, we will simply review these concepts, assuming only
that the set of scalars is some field F instead of R.

In a vector space V' we have two operations, (vector) addition and scalar multiplication. The
addition operation is a binary operation on V. Scalar multiplication is somewhat different in that
the input is a pair consisting of an element of the scalar field F' and a vector in V, and the output is
a vector, so scalar multiplication is really a function from F x V to V. In keeping with convention,
write this function as « - v or simply av rather than -(c, v).

Definition 4.1. Let F be a field. An F-vector space is a nonempty set V together with an
operation + on V and an operation - : F x V' — V with the following properties (here u, v, w
denote arbitrary elements of V, and &,  arbitrary elements of F):

e u+vanda-uare elements of V;

* Uu+v=v+u;

s u+wW+w=w+v)+w;

e There is a vector 0 with u + 0 = u for any u € V;

e For every u € V there is a vector —u € V with u + (—u) = 0;
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e alu+v)=au+av;
e (¢ + Bu = au—+ Bu;
(aB)u = a(Bu);

e l-u=u.

Naturally + is referred to as addition in the vector space and - as scalar multiplication. Before
looking at examples, we point out that much of our study of abstract algebra involves an analysis
of structures and their operations. The structure of a vector space comes with an addition whose
properties are exactly the same as for addition in the definition of a ring. Ring multiplication is absent,
but we have scalar multiplication that intertwines the addition with the multiplication in the base
field. Later on we will focus on structures with only one operation. As with the definition of rings,
the above list of vector space properties begins with closure statements, i.e., that addition and scalar
multiplication are operations.

We now illustrate the definition of a vector space with several examples.

FEzample 4.2. The most basic example we will use of an F-vector space is the space F" of all
n-tuples of elements of F. That is,

F" ={(ay,...,ay) :a; € F}.

The operations that make F" into a vector space are the pointwise operations coming from the
addition and multiplication in the field F:

(als--~san)+(bls--~sbn)= (al +bls--~san+bn)s

alay,...,ay) = (aay,...,aay,).

Ezxample 4.3. Let V be the set of all n xm matrices with real number entries. We will denote by
(aij) the matrix whose 7, j entry is a;;. Recall that matrix addition and scalar multiplication
are defined by

(aij) + (bij) = (aij + bij).
a(aij) = (aa;j).

In other words, add and do scalar multiplication componentwise. You should refer to a linear
algebra text if necessary to recall that matrix arithmetic satisfies the properties required of an
R-vector space.

Example 4.4. We generalize the previous example a little. Let us replace R by any field F, and
make V' to be the set of all n x m matrices with entries from F. We use the same formulas to
define addition and scalar multiplication. The proof that shows the set of real-valued matrices
of a given size forms a vector space also shows, without any changes, that the set of matrices
with entries in F also is a vector space.

Example 4.5. Let F be a field. We denote by F[x] the set of polynomials with coefficients in
F. Our usual definitions of addition and multiplication in R[x] work fine for F[x]. As a special
example of multiplication, we can define scalar multiplication by « > /_, aix' = Yo aa;xt.
With the operations of addition and scalar multiplication, a routine argument will show that
F[x] is an F-vector space. In fact, F[x], together with addition and multiplication, is also a
commutative ring. Thus, F[x] gives us an example of both a ring and a vector space as does
the ring of n x n. matrices over the field F; the former is a commutative ring while the latter
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is noncommutative if n > 2. A structure of this type is called a commutative F-algebra if the
ring structure is commutative and a noncomutative F-algebra otherwise.

We now prove two simple properties of vector spaces. These are similar in spirit to statements we
proved for rings. First of all, note that the proofs of uniqueness of the additive identity and the additive
inverse of an element of a ring work word for word for vector spaces. This is because the proofs only
involved addition and, with respect to those axioms dealing only with their additive structures, there
is no difference between a ring and a vector space.

Lemma 4.6. Let F be a field and let V be an F-vector space. If v eV, then 0-v = 0.

Proof. Let v € V. To show that 0 - v = 0, we must show that O - v satisfies the definition of the
additive identity. By using one of the distributive laws, we see that

O-v+v=0-v+1-v=0+1)-v
=l-v=v=0+4v.

By the cancellation law of addition, which holds for vector spaces just as for rings, we get
0-v=0. O

Lemma 4.7. Let F be a field and let V be an F -vector space. If v e V, then (—1)-v = —v.

Proof. Let v € V. To prove that (—1) - v is equal to —v, we need to prove that it is the additive
inverse of v. We have

v+ (=D)ov=1-v+ (=) -v=>_0+(-1))-v
=0-v=0

by the previous lemma. These equations do indeed show that (—1)-v is the additive inverse of v.
0

To consider the types of examples that most often arise, we need the notion of a subspace.

Definition 4.8. Let F be a field and let V be an F-vector space. A nonempty subset W of
V is called a subspace of V if the operations on V induce operations on W, and if W is an
F-vector space under these operations.

Let us explain this definition. Addition on V is a function from V' x V to V. The product W x W
is a subset of V' x V, so, with addition viewed as a function V x V — V, we can restrict it to this
smaller domain. In general, the image of this function need not be inside W. However, if it is, i.e., if
addition restricts to a function W x W to W, then the restriction is a binary operation on W. When
this occurs, we say that W is closed under the addition on V. To say this more symbolically, to say
that W is closed under addition means that for all v, w € W, the sum v 4+ w must also be an element
of W. Similarly, the scalar multiplication operation on V', which is a function from F x V to V, may
restrict to a function F x W to W . If this happens, we say that W is closed under scalar multiplication.
Symbolically, this means that for all « € F and all v € W, the element ov must be an element of
W. When W is closed under addition and scalar multiplication, then we have appropriate operations
on W to discuss whether or not W is a vector space. In fact, as the following lemma shows, if W is
closed under both addition and scalar multiplication, then W is automatically a subspace of V.

Lemma 4.9. Let F be a field and let V be an F -vector space. Let W be a nonempty subset of
V, and suppose that (i) for each v,w € W, the sum v +w € W; and (ii) for each @ € F and
v e W, the product av € W. Then W is a subspace of V.
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Proof. Suppose W satisfies statements (i) and (ii) in the lemma. We must verify that W,
together with its induced operations, satisfies the definition of a vector space. Thus, we must
verify the eight properties of the definition. Six of these properties are immediate from the
fact that V is a vector space. For instance, the commutative law of addition for V yields
v+w = w+ v for all v,w € V. In particular, if v,w € W, then v and w are also in V, so
v+ w = w4+ v. In a similar way, the associative property, the two distributive properties, and
the property a(Bv) = (af)v for o, € F and v € W all hold. We therefore need to check the
two remaining properties. First, we need the existence of an additive identity. It is sufficient to
show that if 0 is the identity of V', then 0 € W. However, we are assuming that W is nonempty;
suppose w € W is any element of W. Since W is closed under scalar multiplication, if @ € F' is
any scalar, then aw € W. In particular, choose @ = 0 so that 0 = Ow € W as desired. Finally,
we need to have the additive inverse of each element of W to be inside W. Let w € W. Again,
by closure of scalar multiplication, we see that (—1) - w € W. But, since (—1) -w = —w, the
additive inverse of w lies in W. This completes the proof. O

Example 4.10. Let u; = (1,2,3) and up = (4,5, 6), two elements of the R-vector space R3. Let
W be the set

W = {ou; + Buy : a, B € R}.

This is the set of all linear combinations of u; and u,, or the span of u; and wu;, written
Span{u;,u,}. We claim that W is a subspace of R?. Note that W is nonempty, since both
uy and u, are in W. That u; is in W is because u; = 1-u; + 0 - up and similarly for u,. To
see that W is a subspace, we then need to verify that W is closed under addition and scalar
multiplication. For addition, let v, w € W. By definition of W, there are scalars «, 8, y, § with
v = au; + Bu; and w = yu; + Suy. Then

v+ w = (au; + Buz) + (yur + Suz)
= (a+ y)ur + (B + S)ua.

Since a + y and B + § are real numbers, the vector v 4+ w has the form necessary to show that
it is in element of W. Therefore, W is closed under addition. Next, for scalar multiplication,
let v € W and let ¢ be a scalar. Again, we may write v = au; + fu, for some scalars o, 8. Then

cv = c(auy + Puy) = c(aur) + c(Buz)

= (ca)uy + (cP)us,
which shows that cv is an element of W. Therefore, by Lemma 4.9, W is a subspace of R3.
Notice that we only used that u; and u; are vectors in a vector space, and not that the vector
space is R?® and that u; and u, are prescribed. This will allow us to easily generalize this
example in an important way.
We can be a little more precise about what is W. Since v = (1,2,3) and w = (4,5, 6), we
have
W ={a(1,2,3) + f(4,5,6) : o, B € R}
={(a+4B,20+58,3a + 6B :a, B € R}.
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In other words, W consists of all three-tuples that can be obtained as the product

14
25 (5)

for any o, € R. This observation was already used in the study of linear codes and
will continue to be important for the further study of coding theory. If you recall your
multivariable calculus, you can see a more geometric description of W in terms of the cross
product. Calculating v x w yields the vector (—3,6,—3) which is perpendicular to both v
and w. Thus, using the dot product, we have v-(-=3,6,—3) = 0 and w- (-3,6,-3) = 0. In
fact, some computation shows that W is exactly the set of vectors that satisfy the equation
x - (=3,6,—3) = 0. Geometrically, this set is a plane that passes through the origin.

Ezxample 4.11. Let

123
A=1456
789

Consider the nullspace (or kernel) of A, i.e., the set W of all elements x = (a, B, y) of R? that
satisfy Ax = 0. We claim that W is a subspace of R3. To do this we will use two properties of
matrix multiplication. First, note that W is nonempty since the zero vector (0, 0, 0) satisfies the
equation Ax = 0. Next, let v,w € W. Then Av = 0 and Aw = 0. Thus, A(v+w) = Av+ Aw =
0+0=0,sov+we W.Finally, ifve W and « € R, then A(av) = a(Av) = a0 = 0. Thus,
av € W, and so W is a subspace of R?. As with the previous example, we did not use that A4
was a specific 3 X 3 matrix, only that A was a matrix.

The properties of matrix multiplication we used in the proof above are (i) A(B + C) =
AB + AC, and (ii) A(eB) = a(AB) for any matrices A, B, C and any scalar C. These facts
can be found in any linear algebra text.

Exercises

1. Letw be a fixed vector in R?, and let W = {v € R* : w v = 0}. Show that W is a subspace of R?.
Find a matrix A so that W is the nullspace of A.

2. Letn be a positive integer, and let W be the set of all words in Z’ of even weight. Show that W' is
a subspace of ZJ.

3. Let V' be a vector space over a field F. If v,...,v, € V, show that the set W =
{a\vi +---+a,v, 1 a; € F}isasubspace of V. This subspace is called the span of {vi,...,v,}.

4. Let M, (F) be the set of all n x n matrices with entries from the field F.

a. Is the set of all upper triangular » x n matrices a subspace of M, (F)? (Prove or explain why
not.)
b. Is the set of all nonsingular n X n matrices a subspace of M, (F)? (Prove or explain why not.)

5. Verify that Hamilton’s quaternions, the ring H of Exercises 24 and 25 of Sect.3.2, is a
noncommutative R-algebra. Find a subspace of H which is a commutative R-algebra that can be
identified with the field C.
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4.2 Linear Independence, Spanning, and Bases

In the previous section we defined vector spaces over an arbitrary field, gave some examples, and
proved some simple properties about them. In this section we discuss the most important notions
associated with vector spaces, those that lead to the idea of a basis. From both a theoretical
and computational point of view, a basis is extremely important. Using a basis simplifies many
computations and also aids in the proofs of many results. As we will see, this definition and other
familiar concepts, structures, and operations from vector spaces over the real numbers carry over
naturally to our more general setting.

One primary notion that has arisen earlier is that of a linear combination. To formalize it we make
the following definition:

Definition 4.12. Let F be a field and let V be an F-vector space. Given a finite collection
{vi,v2,...,v,} vectors in V and a finite collection {a;,as,...,a,} of scalars in F, the vector
Yy a;v; is called a linear combination of the v;.

Note the finiteness implicit in the definition. One may speak of a linear combination of infinitely
many vectors, but the understanding is that all but finitely many of the scalar coefficients are equal to
Zero.

The next crucial notion is that of linear independence.

Definition 4.13. Let F be a field and let V be an F-vector space. A collection {vi,...,v,}
of elements of V is said to be linearly independent if whenever there are scalars ay,...,a,
with Z?=1 a;vi = 0, then each a; = 0. The set is linearly dependent if it is not linearly
independent. More generally, an arbitrary subset S of V is linearly independent provided every
linear combination of vectors in S resulting in the zero vector has all scalar coefficients equal
to 0.

Example 4.14. Let F be a field and F [x] the ring of polynomials in the variable x. Then the set
S = {1,x,x%,...} is linearly independent, since a linear combination ) '_, a;x™ of elements of
S is a polynomial in x. It is the zero polynomial if and only of all the coefficients a; are equal
to 0.

Remark 4.15. While the definition given of linear independence is standard, technically it
is problematic. For example, if v is any nonzero vector in V, then certainly {v} is linearly
independent. However, as sets, {v} = {v,v}. So if vi = v, = v, then the linear combination
1-vi+ (=1)-v, = v—v = 0 says that {v} = {vi,v,} is linearly dependent. The situation
can be repaired if, instead of sets of vectors, we use sequences or ordered lists of vectors. The
authors feel that this bit of logical fastidiousness doesn’t justify a departure from standard
terminology.

Definition 4.16. Let F be a field and let V be an F-vector space. A collection {vy,...,v,} of
elements of V is said to be a spanning set for V' if every element of V' can be expressed in the
form Y";_, a;v; for some choice of scalars ay, ..., a,.

These two definitions together give us the notion of a basis.

Definition 4.17. Let F be a field and let V be an F-vector space. A subset {v,...,v,} of V
is said to be a basis for V if it is both linearly independent and a spanning set for V.

To help understand these definitions, we look at several examples.

Example 4.18. Leti = (1,0,0), j = (0,1,0), and k = (0,0, 1), three elements of the R-vector
space R3. Then {i, j,k} is a basis. To verify this we need to prove that this set is linearly
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independent and spans R3. First, for independence, suppose there are scalars a, b, and ¢ with
ai +bj + ck = 0. Then

(0,0,0) = ai +bj + ck = a(1,0,0) + b(0,1,0) + ¢(0,0, 1)
= (a,0,0) + (0,5,0) + (0,0,¢) = (a,b,¢).

This vector equation yields a = b = ¢ = 0. Thus, {i, j, k} is indeed linearly independent. For
spanning, if (x, y,z) is a vector in R?, then the equation ai + bj + ck = (a, b, c) above shows
us that we can write this vector in terms of i, j, and k as (x, y,z) = xi + yj + zk. Thus, any
vector in R? is a linear combination of {i, j, k}, so this set spans R3. Since this set both spans
R? and is independent, it is a basis of R3.

Example 4.19. Let W = {(a.b,0) : a,b € R}, a subset of R. In fact, W is a subspace of R>.
The vectors i = (1,0,0) and j = (0, 1,0) are elements of W. We claim that {i, j} is a basis
for W. An argument similar to that of the previous example will verify this; to summarize
the ideas, we have (a,b,0) = ai + bj is the unique way of expressing the vector (a, b, 0) as
a linear combination of i and j. This proves spanning, and the uniqueness will show linear
independence. Indeed 0i + 0 = (0,0, 0), so the uniqueness shows that if xi + yj = (0,0, 0),
then x =y = 0.

Example 4.20. Recall the Hamming code C of Chap. 2. It is the nullspace of
0001111

H=]10110011],
1010101

i.e., the set of solutions to the matrix equation Hx = 0. C is a subspace of ZJ; to verify this,
first suppose that v,w € C. Then Hv = Hw = 0. Thus, Hv+w) = Hv+ Hw =040 = 0,
sov+we C. Also, if v e C and o € Z,, then H(av) = a(Hv) = 0 = 0. Thus, C is closed
under addition and scalar multiplication, so it is indeed a subspace of Z]. We have seen that
an arbitrary solution (xi, X2, X3, X4, X5, X6, X7) to Hx = 0 satisfies
X1 = X3 + X5 + X7,
X2 = X3 + X6 + X7,
X4 = X5 + X¢ + X7, and
X3, X5, Xg, X7 are arbitrary.
We get four solutions by setting one arbitrary variable equal to 1 and the other three to 0.
Doing so yields
1 =(1,1,1,0,0,0,0), ¢ = (1,0,0,1,1,0,0),
¢3 =(0,1,0,1,0,1,0), ¢4 = (1,1,0,1,0,0, 1).
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We claim that {c, ¢, c3, ¢4} constitutes a basis for C. This is seen by noting that

X1 X3+ X5 + X7 1 1 0 1
X2 X3+ Xg + X7 1 0 1 1
X3 X3 1 0 0 0
X4 | =] xs+x6+x7 | =x3| 0] +xs] 1| +xe] 1]+x7]1],
X5 X5 0 1 0 0
X6 X6 0 0 1 0
X7 X7 0 0 0 1

which shows that every solution is a linear combination of {c1, ¢3, ¢3, ¢4}, i.e., these four vectors
span the nullspace of H. The decomposition of the elements of C also demonstrates the linear
independence of {c, ¢, ¢3, ¢4} since, if a linear combination of these four vectors equals the zero
vector, then the 3rd, 5th, 6th, and 7th coordinates of the result show that the four coefficients
are all 0. This proves that {cy, ¢2, ¢3, ¢4} forms a basis for C.

Ezample 4.21. Let V be a line through the origin in R?. Analytic geometry tells us that this
line can be described as the set of points of the form ¢ (a, b, ¢), where ¢ is an arbitrary scalar, and
(a, b, ¢) is a fixed nonzero vector on the line. In particular, V is a subspace of R* and {(a, b, ¢)}
forms a basis for V. First, from the analytic geometry description of V, it is obvious that
{(a, b, c)} spans. For independence, if «(a, b, c) = 0, then since (a, b, c) # 0, one of the entries
is nonzero. Since (0,0,0) = (xa,ab, ac), we have aa = ab = ac = 0. Eithera = b = ¢ = 0,
which is false, or « = 0. More generally, every nonzero vector in a vector space constitutes a
linearly independent set.

Ezample 4.22. Let V be a plane through the origin in R3. From multivariable calculus we
know that the points (x, y,z) in V are those that satisfy the equation ax + by + ¢z = 0 for
an appropriate choice of a, b, ¢ not all equal to 0 and therefore V is a subspace of R3. Suppose
we have fixed values of @, b, and ¢ that determine V from this equation, and for convenience
suppose that a # 0. Two specific elements of V are:

v=(=b/a,l,0),
w = (—c/a,0,1).
These vectors, which were found by setting y = 1 and z = 0 and solving for x to find v,

and setting y = 0 and z = 1, and solving for x to find w, constitute a basis for V. First, for
independence, if @ and B are scalars with av + fw = 0, then

(0,0,0) = a(—b/a,1,0) + B(—c/a,0,1)
= (—ab/a — Bc/a,a, B).

Equating the second and third components yields ¢ = 0 and § = 0. Next, for spanning, let
(x,¥,z) beapoint on V. Then ax+by +cz = 0. Solving for x, we have x = (—b/a)y + (—c/a)z.
Thus,
(x.y.2) = ((=b/a)y + (—c/a)z. y.2) = ((=b/a)y.y.0) + ((—¢/a)z,0,2)
=y(=b/a,1,0) 4+ z(—c/a,0,1) = yv + zw,
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which says exactly that every point on V' is a linear combination of v and w. Since {v, w} spans
V and is linearly independent, this set forms a basis of V.

Example 4.23. Let F be any field, and let V = F?. Then an argument similar to that of the
example of R* above shows that {(1,0), (0, 1)} is a basis for V. However, we can produce lots
of other bases for V. For example, let v = (a, b) be a nonzero vector and w = (¢, d) any vector
which is not a scalar multiple of v (this implies that ad — bc # 0). Then {v, w} is a basis for V.
From Exercise 8 below it suffices to show that (1,0) and (0, 1) are in the span of {v, w} or, in
other words, that there are scalars x, y, z, w with

x(a,b) + y(c,d) = (1,0)

z(a,b) + w(c,d) = (0,1).
These equations can be written as two linear systems, the first of which is:
ax +yc=1

bx +dy =0.

The coefficient matrix for both systems is A = (Z 2
b # 0 and switch the rows). Row operations reduce 4 to

(1 ¢ )_(1 ¢ )
o | = d—be |-
0d—<2 0 ad=te

1 . . . . . .
whence to (0 i ) . Clearly every linear system with coefficient matrix A has a unique solution,

) ; assume that a # 0. (If @ = 0, then

so that (1,0) and (0, 1) are in the span of {v, w}.

From this example, we see that there are many bases for F2. An argument analogous to the one just
given shows that the columns of every n x n matrix of rank n constitute a basis for F” and conversely.
In particular, what is common to all the bases we constructed is that they contain the same number
of elements. This is a special case of a more general fact which we state now. Recall that cardinality
measures the size of a set. The cardinality of a finite set S is the number of elements in S. We refer
the reader to any linear algebra text for a proof the following theorem.

Theorem 4.24. Let F be a field and let V be an F-vector space. Then V has a basis.
Moreover, the cardinalities of any two bases V' are equal.

Definition 4.25. Let F be a field and let V be an F-vector space with basis B. Then the
dimension of V is the cardinality of B.

We will use the following result to determine the number of codewords of certain error correcting
codes. The codes we will consider will be Z,-vector spaces.

Proposition 4.26. Suppose that V is a Z,-vector space. If dim(V') = n, then |V| = 2".

Proof. We give two arguments for this. First, suppose that {vq,...,v,} is a basis for V. Then
every element of V is of the form a,v; + --- + a,v, with scalars a; € Z,. So, to produce
elements of V', we choose the scalars. Since |Z;| = 2, we have two choices for each a;. Linear
independence of vy, ..., v, shows that distinct choices of the n scalars ay,...,a, yield distinct
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vectors so, by a standard counting principle, we have 2-2 - ---- 2 = 2" total choices for the a;
and hence|V| = 2".

For an alternative argument, recall that if X and Y are finite sets, then | X x Y| = |X]|-|Y].
Using induction, it follows that }Z’27| = 2". Now, given a basis B = {vi,...,v,} for V, the
function Z5 — V given by (ai,...,a,) = aivi + -+ + a,v, is onto since B spans V, and it is
1-1 since B is linearly independent. Consequently this function is a bijection and the two finite
sets Zj and V have the same size. We conclude that |V| = 2". O

A central feature of modern algebra is to investigate algebraic structures along with the appropriate
mappings between them. For vector spaces these mappings are called linear transformations.

Definition 4.27. Let V and W be vector spaces over the scalar field F. A function T : V —
W is called a linear transformation provided

1. T(vi +w) = T(v1) + T (v,) for every pair of vectors v; and v, in V and
2. T(av) = aT (v) for every scalar a € F and every v € V.

The fundamental connection between linear transformations and matrices is effected by the notion
of basis. Indeed, the selection of bases for the domain and range enables the realization of a linear
transformation of finite dimensional vector spaces as a matrix. If B; = {vi,...,v,} is a basis for
V and B, = {wi,...,wy} is a basis for W , then each T'(v;) is uniquely expressed as the linear

m
combination T(v;) = Y a;;w;. The linear transformation 7 is then identified with the m x n matrix
j=1
(a;;). This identification is basis dependent in the sense that the same linear transformation can have
different matrix representations for different basis of V' and W. To emphasize this fact, the unique
matrix representation for the linear transformation 7" with respect to given bases B and B is denoted
B [T]Bz .

In the special case that V' = W is finite dimensional and we have a fixed basis B for V, we write
[T]p instead of g[T]p. We can then ask the following question: If B’ is another basis for V, how are
[T]p and [T] g’ related? As noted above, if the elements of B’ are written as linear combinations of the
elements of B, then the coefficients of the vectors in B are the columns of an n X n matrix S of rank
n. The matrix S is then invertible and we have the change of basis formula [T]z = S[T]3S~'. The
matrices [T']p and [T'] g/ are said to be similar. Two important scalars associated with square matrices
are the determinant and the trace (the sum of the diagonal entries). We refer to a text on linear algebra
for the basic properties of these quantities, but point out an important fact about them with respect to
similar matrices:

Theorem 4.28. Let A and B be similar n X n matrices. Then the traces of A and B are equal
and so are their determinants.

Exercises

1. Suppose that W is an m dimensional subspace of the finite dimensional vector space V' over
the field F. Explain why the following procedure will produce a basis for W. Recall that the
span of a collection of vectors in a vector space is the subspace consisting of all of their linear

k
combinations: Span{wy, ..., wg} = {> o;w; 1 a; € F}.
i=1
(a) Find a nonzero vector w; in W and construct Span{w; }.
(b) Foreachi =2,...,m — 1 find a vector w;+; € W — Span{wy,...,w;}.
(c) Then {wi,...,w,} is a basis for W.

2. If w= (1,2, 3), find a basis for the subspace W of Exercise 1 of Sect.4.1.
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3. Referring to Sect. 2.2, explain why the following procedure is an algorithm to find a basis for the
span W of a given set of m vectors in F”, where F is a field:

(a) Form the matrix A whose rows are the given vectors.
(b) Reduce A to row reduced echelon form matrix B.
(¢) The nonzero rows of B constitute a basis for W.

4. Find a basis for the Z,-vector space C = {00000, 11010,01101, 10111}.
5. Find a basis for the Z,-vector space

C = {000000, 110011, 101110, 101001, 110100,011010,011101, 000111}

and express each element of C as a linear combination of the basis vectors.
6. Let C be the Z,- subspace of Z3 spanned by the vectors 11110, 10101, 01011, 11011, 10000.
Find a basis for C.
7. Let W be a subspace of the finite dimensional vector space V. If dim(W) = dim(V'), show that
W = V. Conclude that if W is a proper subspace of V' (meaning that W is a proper subset of V),
then dim(W) < dim(V).
Let F be a field. Construct a proper subspace W of F[x] for which dim(W) = dim(F[x]).
9. Let V be a vector space over Z,.

*®

(a) If u,v € V are both nonzero and distinct, show that {u, v} is linearly independent.
(b) If u,v,w € V are all nonzero and distinct, show that {u, v, w} is linearly independent if
W u+v.

10. Let {vy,..., vt} be a set of linearly independent vectors in an F-vector space V and letw € V.
If w is not in the span of {vy, ..., v}, show that {v{, ..., v, w} is linearly independent.

11. Suppose that {vi,..., v} is a basis for the vector space V and wy, ..., w; € V have the property
that each of the v; is in the span of {wy, ..., wy}. Prove that {wy, ..., wy} is a basis for V.

12. Let C be the nullspace in Zg of the matrix

ooo11110
01100110
10101010
11111111

Determine the codewords in C, its dimension, distance, and error correction capability.

4.3 Linear Codes

A linear code is a code C which, as a subset of Z7, is subspace of ZJ.

Example 4.29. If A is an m X n matrix over Z,, then the nullspace of A is a linear code of
length n, since we know that the nullspace of a matrix is always a vector space. In particular,
the Hamming code and the Golay code are linear codes.

Ezample 4.30. The subset {(1,0), (0, 1)} of Z3 is not a linear code. The smallest linear code
containing {(1,0), (0, 1)} is the span of this set, which is equal to Z3. Similarly, {11100,00111}
is not a linear code. Its span is a linear code, and the span is {00000, 11100,00111, 11011}.
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Recall that the distance d of a code is defined to be the minimum distance between distinct
codewords:

d =min{D(u,v) :u,ve C,u#v},

and that the distance D(u, v) between any pair (u, v) of words is calculated as D(u,v) = wt(u + v).

Lemma 4.31. If C is a linear code with distance d , then
d = min{wt(v) :ve C,v # 0}.

Proof. Let e = min{wt(v) :v € C,v # 0}. We may write e = wt(u) for some nonzero vector
u € C. Then e = D(u,0). Since 0 € C, we see that d < e by definition of d. Conversely, we
may write d = D(v,w) for some distinct v,w € C. Then d = wt(v + w). Since C is a linear
code,v+w e C,and v+ w # 0 since v # w. Therefore, by definition of e, we see that e < d.
Thus, d = e, as desired. O

This lemma simplifies finding the distance of a linear code. For example, the Hamming code is

C = {1111111,0011001, 0000000, 1110000, 1101001, 1100110,0110011, 0100101,
0010110,0111100, 1011010, 1010101, 1000011, 0101010, 1001100, 0001111}.

A quick inspection shows that the smallest weight of a nonzero codeword of C is 3; therefore, d = 3.
Let C be a linear code of length n and distance d. If the dimension of C is k, then we refer to C as
an (n, k, d) linear code. Any matrix whose rows constitute a basis for C is called a generator matrix
for C. Thus a generator matrix for an (n, k, d) linear code is an n x k matrix whose rank is k. The
rows of any such matrix G span an (n, k, d) linear code C, and any matrix row equivalent to G is also
a generator matrix for C.
The reason for the terminology “generator matrix” is the following theorem.

Theorem 4.32. Let C be an (n,k,d) linear code with generator matrix G. Then C = {vG :
RS ZIZ‘}.

Proof. For v € Zé, thought of as a row vector, vG is a linear combination of the rows of G.
Allowing v range over all of Z§ results in the span of the rows of G which is, by definition, C. O

For any row vector v € Z’z‘, the vector vG is the linear combination of the rows of G whose
coefficients are the entries of v. Therefore {vG : v € Z’g} is the row space of G which, by definition,
is C.

The generator matrix thus “encodes” v as vG in C. The n — k “extra” coordinates in vG are
analogous to the check digit in the identification numbers discussed in Chap. 1.

Ezxample 4.33. Recall that the Hamming code C is defined to be the nullspace of the matrix
0001111

H=10110011
1010101

A matrix calculation shows that the solutions to the system equation HX = 0, written as
columns, are the vectors of the form
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X1 1 1 0 1
Xo 1 0 1 1
X3 1 0 0 0
X |l=x3] 0| +xs5] 1 +x6] 1 ]+x7]1
X5 0 1 0 0
X6 0 0 1 0
X7 0 0 0 1

The four vectors in the right hand side of this equation, written as rows, form a basis for C.
That is,

{1110000, 1001100,0101010, 1101001}
is a basis for C. Thus, the matrix

1110000
1001100
01010160
1101001

is a generator matrix for C. Alternatively, if we row reduce this matrix, we obtain another
generator matrix. Doing so, the matrix

1000011
0100101
00101160
0001111

is another generator matrix. Thus, we may describe the Hamming code as C = {vG : v € Z3}.
We may view encoding a four-tuple v as vG as appending three check digits to v, since for any
v, the product vG has v as the first 4 components; this is because the left 4 x 4 submatrix of G
is the identity matrix. For example, if v = 1011, then vG = 1011010.

Thus, by using a generator matrix in row reduced echelon form, we may view encoding v as vG as
adding a certain number (which is n —k) of extra digits to v. The “redundant” extra digits introduced in
the construction of linear codes generalize the “redundant” check digit that enables the error detection
in identification number schemes discussed in the first chapter.

We defined a generator matrix of an (n, k, d) linear code C to be a matrix G whose rows form a
basis for C. Thus G is a k x n matrix of rank k. Reversing this line of thought, we can instead produce
linear codes from matrices.

Remark 4.34. While it is standard to use the notation a; ---a, for words in a code of length
n (e.g. 1011010) it is unnatural and perhaps confusing to use this notation for vectors in a
subspace of the vector space F'™ in theoretical discussions. The remainder of this section uses
the standard linear algebra notation of “tuples” for vectors.

Proposition 4.35. Let G be a k x n matriz over Z; of rank k. If C = {vG Ve Zé}, then C
is an (n,k,d) linear code for some d and G is a generator matriz for C.
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Proof. Tt follows from matrix multiplication that if v = (a;,...,ax) € Z’z‘ and rq,...,r; are the
k rows of G, then vG = )", a;r;. Moreover, this equation shows that any linear combination
of rows of G can be written in the form vG. Thus C is the span of the rows of C so that C
is a subspace of Z3. Moreover, since the rows of G are linearly independent, they form a basis
for C. Thus C has dimension k and, if d is the distance of C, then C is an (n,k,d) code. By
construction, G is a generator matrix for C. O

We initially constructed codes as nullspaces of matrices. We would like to make some simple
restrictions on the matrices we use to build codes in this way. If C is an (n, k, d) code, then a matrix
H is called a parity check matrix for C if H is an (n — k) x n matrix whose nullspace is exactly C,
with its elements written as columns. Alternatively, we may say that H is a parity check matrix for C
if C is the nullspace of H and if the rows of H are linearly independent. We leave the proof of the
equivalence of these two statements as an exercise. To keep straight the difference between vectors
and column matrices, if H is a parity check matrix for C, then by writing A7 for the transpose of a
matrix,

C={veZ;: HW' =0}.

Ezample 4.36. The Hamming matrix H is a parity check matrix for the Hamming code C,
since C is the nullspace of H and since the rows of H are seen to be linearly independent.
Similarly, the matrix A = [/ : B] defined in Sect. 2.5 is a parity check matrix for the Golay
code because the code is the nullspace of A and the 12 rows of A are linearly independent.

The generator and parity check matrices of a code both have the property that their rows are linearly
independent. Thus, a parity check matrix of a code can be taken to be a generator matrix of another
code. We can be more specific about this other code. To do so, we define an analogue of the dot
product. Foru = (uy,...,u,),v= (vi...,v,) € Z;, define u - v by

U-v=uvy+ -+ u,v,.

It is an easy exercise to verify that if u,v,w € Z} anda € Z, then (u +w)-v =u-v+w-v, and
u-(av) =a(u-v).
If C is a code, we define the dual code

Ct={veZl:v.c=0forallc e C}.
Lemma 4.37. Let C be a linear code. Then C* is a linear code. Moreover, if {ci,...,ck} is a
basis for C, thenv € C* if and only if v-c; = 0 for each i.

Proof. To show that C* is linear we must show that it is closed under addition. Let v,w € C+.
Then, for each ¢ € C, we have v-c = 0 and w-c = 0. Therefore, (v+w)-c = v-c+w-c = 04+0 = 0.
Thus, v+w € cL. Next, let {cy,...,ci} be a basis for C.If v € Cl, thenv-c =0forallc € C.
Since the ¢; are elements of C, this implies that v-¢; = 0 for all i. Conversely, if v is a word
such that v-c¢; = 0 for all 7, then let ¢ € C. We may write ¢ = ajc; + --- + axcx for some
a; € Zz. Then

veec=v-(aic; 4+ -+ arcr) =v-(aic;) +---+v-(axck)

=a(v-er))+--+ar(v-ck) =a0+---+a0=0.

Thus, v € C*. This proves that C+ = {v € Z} : v-¢; = 0 for each i }. O
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Theorem 4.38. Let C be a linear code of length n and dimension k with generator matriz G
and parity check matriz H .

HGT =0.

H is a generator matriz for C+ and G is a parity check matriz for C*.

The linear code C+ has dimension n — k.

(chHt=c.

If H' is a generator matriz for C+ and G’ is a parity check matriz for CL, then H' is a
parity check matriz for C and G’ is a generator matriz for C.

Proof. Let v € lec. Then vG € C. Thus, by definition of parity check matrix, H(vG)" = 0.
But, (vG)" = GTv". Therefore, (HGT)v" = 0. Since v can be any element of Z%, we see that
(HGT)x = 0 for any column vector x. If ¢; is the column vector with a 1 in the ith coordinate
and 0 elsewhere, we see that 0 = (HGT)e;, and this product is the ith column of HG”. Since
this is true for all i, we see that HGT = 0. This proves the first statement.

For the second, we note that we only need to prove that Ct is the nullspace of G and that
the rows of H form a basis of C+. For the first part, let v € CL. To see that v is in the nullspace,
we must see that GvI = 0. However, the ith entry of Gv is the product of the ith row r; of G
with v7. In other words, it is r; - v. However, since the rows of G form a basis for C, we see that
ri -v = 0. Thus, GvT = 0. Conversely, if v is in the nullspace of G, then Gv' = 0. This means
that r; - v = 0 for all i. The rows of G form a basis for C; thus, by the lemma, v € C*.

As a consequence of knowing that the nullspace of G is Ct, we prove Statement 3. From
the rank plus nullity theorem, n is the sum of the dimensions of the nullspace and the row
space of G. By definition, the row space of G is C, so its dimension is k. Thus, the nullspace
has dimension n — k. But, this space is C*. So, dim(C+) = n — k. To finish the proof of
Statement 2 we show that the rows of H form a basis of C 1. Because we know that the rows are
independent, we only need to see that they span C1. We first show that the rows are elements
of C+. Since H is a parity check matrix for C,if v € C, then Hv' = 0. The ith entry of Hv' is
the dot product of the ith row of H with v; thus, this dot product is 0. Since this is true for all
v € C, we see that the rows of H are all elements of Ct. So, the row space of H' is contained
in Ct. However, both of these spaces have dimension n — k; we are using the assumption that
the rows of H are linearly independent to see that the row space of H has dimension n — k. It
is an exercise to show that if a subspace of a vector space has the same dimension as the vector
space, then they are equal. From this we conclude that C* is the row space of H. Thus, the
rows of H form a basis for C1, which says that H is a generator matrix for C*.

To prove (4), we note that the inclusion C € (C+)* follows from the definitions: If ¢ € C,
then ¢ -v = 0 for all v € C* by definition of CL. This is what we need to see that ¢ € (C+)+
However, from (3) we see that the dimension of (C1)* is n — (n — k) = k, which is the
dimension of C. From the inclusion C € (C1)* we then conclude C = (C1)L. Finally, (5)
follows from the previous statements, since if H’ is a generator matrix for C*, then it is a
parity check matrix for (C1)* = C, and if G’ is a parity check matrix for Ct, then it is a

SARINS

generator matrix for (C1t)* = C. O
Exercises
1. If C € Zj is a code with basis {cy, ..., cx} show that

Ct={veZl:v.c;=0foralli}.

2. Construct a nontrivial code C for which C = C+.
3. Find a basis for the Hamming code C, and use it to determine the dual code C 1. What is its
distance and error correcting capability?
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4. Find a generator matrix G and a parity check matrix H for the code C+ of the previous problem.
Check that HGT = 0. Then prove that a parity check matrix and generator matrix for any code
must satisfy this property.

5. Let

11110000
G=]100001111
10101010

be a generator matrix for a code C. Write out the codewords of C and find a parity check matrix
for C.
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Chapter 5
Quotient Rings and Field Extensions

In this chapter we describe a method for producing new rings from a given one. Of particular interest
for applications is the case of a field extension of a given field. If F is a field, then a field extension is
afield K that contains F and for which the field operations restrict to the field operation of F. In this
context F is also referred to as a subfield of K. For example, C is a field extension of R since C is a
field containing R and the field operations on the real elements of C are precisely those of the field R.
Similarly, C and R are field extensions of Q, and we can view R and Q as subfields of C. The term
intermediate field extension is used for R in this situation since QQ C R C C. When we consider ruler
and compass constructions, we will need to investigate intermediate field extensions of the extension
Q C R. For coding theory we need field extensions of Zj.

The extensions of a field F that we need are called finite algebraic field extensions and they are
produced in an analogous fashion to the construction of the integers modulo a fixed integer n. Here
the ring Z is replaced by the ring F[x] of polynomials in the indeterminate x and the integer n by a
polynomial f(x) € F[x]. In order to do this we need to know that the arithmetic of polynomials is
sufficiently similar to the arithmetic of integers. In the first section of this chapter we see that notions
relating to divisibility work just as well for polynomials over a field as for the integers. Next the
construction of the integers modulo # is generalized to arbitrary commutative rings. Finally these
ideas come together in the construction of algebraic field extensions.

5.1 Arithmetic of Polynomial Rings

Let F be a field, and let F[x] be the ring of polynomials in the indeterminate x. High school students
study the arithmetic of this ring without saying so in so many words, at least for the case F = R. In
this section we make a formal study of this arithmetic, seeing that much of what we did for integers
above can be done in the ring F[x]. We start with the most basic definition.

Definition 5.1. Let f and g be polynomials in F[x]. Then we say that f divides g, or g is
divisible by f, if there is a polynomial & € F[x] with g = fh.

Electronic supplementary material The online version of this chapter (doi:10.1007/978-3-319-04498-9_5) contains
supplementary material, which is available to authorized users. The supplementary material can also be downloaded
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The greatest common divisor of two integers a and b is the largest integer dividing both a and b.
This definition needs to be modified a little for polynomials. While we cannot talk about “largest”
polynomial in the same manner as for integers, we can talk about the degree of a polynomial. Recall
that the degree of a nonzero polynomial f is the largest integer m for which the coefficient of x™
is nonzero. If f(x) = a,x" + ay—1x" ' + -+ 4+ a;x + ap and a, # 0, then the degree of f(x)
is n. We write deg( f) for the degree of f. The degree function allows us to measure the size of
polynomials. However, there is one extra complication. For example, any polynomial of the form ax?
with @ # 0 divides x? and x>. Thus, there isn’t a unique polynomial of highest degree that divides
a pair of polynomials. To pick one out, we consider monic polynomials, whose leading coefficient is
1. For example, x? is the monic polynomial of degree 2 that divides both x? and x>, while 5x? is not
monic. As a piece of terminology, we will refer to an element f € F[x] as a polynomial over F .

Definition 5.2. Let f and g be polynomials over F, not both zero. Then a greatest common
divisor of f and g is a monic polynomial of largest degree that divides both f and g.

The problem with the definition above has to do with uniqueness. Could there be more than one
greatest common divisor of a pair of polynomials? The answer is no, and we will prove this after
we prove the analogue of the Division Algorithm. In fact the reason for working with polynomials
having coefficients in a field rather than a more general ring is to ensure that the Division Algorithm
is valid. Before we state and prove it, we need a simple lemma about degrees. For convenience, we set
deg(0) = —oo. We also make the convention that —oo + —oo0 = —oo and —oo + n = —oo for any
integer n. The point of these conventions is to make the statement in the following lemma and other
results as simple as possible.

Lemma 5.3. Let F be a field and let f and g be polynomials over F. Then deg(fg) =
deg(f) + deg(g)-

Proof. If either f = 0 or g = 0, then the equality deg(fg) = deg(f) + deg(g) is true by
our convention above. So, suppose that f # 0 and g # 0. Write f = a,x" + --- 4+ ao and
g = bux™ + -+ by with a, # 0 and b,, # 0. Therefore, deg(f) = n and deg(g) = m. The
definition of polynomial multiplication yields

fg = (anbm)xn+m + (anbm—l + an—lbm)xn—i_m_1 + e + a()b()-

Now, since the coefficients come from a field, which has no zero divisors, we can conclude that
anby, #0,s0deg(fg) =n+m =deg(f) + deg(g), as desired. O

Proposition 5.4 (Division Algorithm). Let F be a field and let f and g be polynomials
over F with f nonzero. Then there are unique polynomials g and r with g = qf + r and

deg(r) < deg(f).

Proof. The existence of g and r is clear if g = 0 since we can set ¢ = r = 0. So, assume that
g # 0. Let

S={teF[x]:t =g—qf for someq € F[x]};

this is a nonempty set of nonzero polynomials, since g € S. By the well-ordering property
of the integers, there is a polynomial r of least degree in S and the defining property of S
guarantees a g € F[x] withr = g —¢f,so g = qf + r. We need to see that deg(r) < deg(f).
If, on the other hand, deg(r) > deg(f), say n = deg(f) and m = deg(r). If f = a,x" +---+ag
and r = rpx™ + --- + ro with @, # 0 and r,, # 0, then by thinking about the method
of long division of polynomials, we realize that we may write r = (rna, )x™™" f + r’ with
deg(r’) < m = deg(r). But then

g=aqf +r=qf + (rma, X" f+r" = (q+rma, X" [+,
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which shows that r’ € S. Since deg(r’) < deg(r), this would be a contradiction to the choice of
r. Therefore, deg(r) > deg( f) is false, so deg(r) < deg( f), as we wanted to prove. This proves
existence of ¢ and r. For uniqueness, suppose that g = ¢f +r and g = ¢'f + r’ for some
polynomials ¢, ¢’ and r, ' in F[x], and with deg(r),deg(r’) < deg(f). Thengf +r =q' f + 71/,
so (¢ —q') f = r’ — r. Taking degrees and using the lemma, we have

deg(q’' — q) + deg(f) = deg(r’ —r).

Since deg(r) < deg(f) and deg(r’) < deg(f), we have deg(r’' — r) < deg(f). However, if
deg(q’ — ¢q) = 0, this is a contradiction to the equation above. The only way for this to hold is
for deg(q¢' —q) = deg(r' —r) = —00. Thus, ¢’ —q=0=r"—r,s0¢q' = q and r’ = r, proving
uniqueness. a

We now prove the existence of greatest common divisors of polynomials, and also prove the
representation theorem analogous to Proposition 1.13.

Proposition 5.5. Let F be a field and let f and g be polynomials over F, not both zero. Then
gcd(f, g) exists and is unique. Furthermore, there are polynomials h and k with ged(f, g) =
hf +kg.

Proof. We will prove this by proving the representation result. Let
S=1{hf+kg:hkeF[x]}.

Then S contains nonzero polynomialsas f =1- f +0-gandg=0-f 4+ 1-g bothliein S.
Therefore, the well-ordering property guarantees the existence of a nonzero polynomial d € S
of smallest degree. Write d = hf +kg for some h, k € F[x]. By dividing # and k by the leading
coefficient of d, we may assume that d is monic without changing the condition d € S. We
claim that d = gcd(f, g). To show that d is a common divisor of f and g, first consider f.
By the Division Algorithm, we may write f = gd + r for some polynomials g and r, and with
deg(r) < deg(d). Then

r=f—qd=f—qhf +kg)
=(1—gh) f + (—qk)g.

This shows r € §. If r # 0, this would be a contradiction to the choice of d since deg(r) <
deg(d). Therefore, r = 0, which shows that f = ¢d, and so d divides f. Similarly, d divides g.
Thus, d is a common divisor of f and g. If e is any other common divisor of f and g, then
e divides any combination of f and g; in particular, e divides hf + kg = d. This forces
deg(e) < deg(d) by Lemma 5.3. Thus, d is the monic polynomial of largest degree that divides
f and g, so d is a greatest common divisor of f and g. This proves everything but uniqueness.
For that, suppose that d and d’ are both monic common divisors of f and g of largest degree.
By the proof above, we may write both d and d’ as combinations of f and g. Applying the
Division Algorithm to d and d’ as above shows that d divides d’ and vice-versa. If d’ = ad
and d = bd’, then d = bd’ = abd. Taking degrees shows that deg(ab) = 0, which means that
a and b are both constants. But, since d and d’ are monic, for d’ = ad to be monic, a = 1.
Thus,d’ =ad =d. 0
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Exercises

1.

2.

10.

11.

Let F be a field and let f, g, ¢, r be polynomials in F[x] such that g = gf + r. Prove that
ged(f. g) = ged(f.r).
Let F be a field. If f € F[x] has a multiplicative inverse in F[x], prove that deg(f) = 0.
Conversely, show that any nonzero polynomial of degree 0 in F[x] has a multiplicative inverse in
Flx].

(This problem shows that the units of F[x] are exactly the nonzero constant polynomials.)

. Calculate, by using the Euclidean Algorithm, the greatest common divisor in R[x] of x> + 5x3 +

x2+4x 4+ 1 and x* — x> — x — 1, and write the greatest common divisor as a linear combination
of the two polynomials. You may check your work with Maple, but do the calculation by hand.
Calculate and express the greatest common divisor of x> 4+ x* 4+ x13 4 x12 4 x4 x10 4 9 4
X3+ x7T +x0+ 3 +xt + 3 +x2+x +1and x” — x® — x* — x? — x — 1 as a linear combination
of the two polynomials. You are welcome and encouraged to do this in Maple; if you do so, look
at the worksheet Section-5.1-Exercise-4.mw.

. Prove the Remainder Theorem, which asserts the following: Let f(x) be a polynomial over F

anda € F.If f(x) = q(x)(x —a) + r(x) according to the Division Algorithm, then r(x) is
equal to the constant polynomial f(a). Conclude that a is aroot of f if and only if x — a divides
f(x).

(Hint: Use the following results: if g and & are polynomials over F anda € F,then (gh)(a) =
g(a)h(a) and (g + h)(a) = g(a) + h(a).)

. Let f(x) = (x —a)g(x) forsome a € F and some g € F[x]. If b # a is aroot of f, show that

g(b) =0.
Prove that a polynomial of degree n has at most » roots in F.
(Hint: Use induction together with the previous problems.)
Let f € F|[x] be a polynomial of degree 2 or 3. Prove that f can be factored as f = gh
nontrivially (i.e., the degrees of both f and g are positive) if and only if f has a rootin F.

. Give an example of a polynomial f € R[x] of degree 4 that can be factored nontrivially as

f = gh but for which f does not have a root in R.
Rational Roots Test: Let f(x) = a,x" +---+aop be a polynomial with integer entries. If r = b/c
is a rational root of f written in reduced form, show that b divides a and ¢ divides a,,.
(Hint: Clear denominators in the equation f(b/c) = 0.)
Factor completely and determine the roots of the polynomial x> — 8x* —4x3 4+ 76x% — 5x + 84 as

(a) apolynomial over R;
(b) a polynomial over C;
(c) apolynomial over Z;.

(Feel free to do this with Maple; the file Section-5.1-Exercise-11.mw has some information
about factoring polynomials over different fields.)

5.2 Ideals and Quotient Rings

We will construct extension fields of a field F' in analogy with the construction of the rings Z,. More
generally we will study the relevant structure in general commutative rings R and then apply it to the
ring F[x]. Recall that Z,, consists of equivalence classes under the relationa ~ b iff b—a € {nt : t €
Z} = n’Z. Replacing Z by R, the structure analogous to nZ is called an ideal of R, which we proceed
to define.
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Definition 5.6. Let R be aring. An ideal / is a nonempty subset of R such that (i) ifa,b € I,
thena +b € I,and (ii) ifa € I and r € R, thenar € [ andra € I.

This definition says that an ideal is a subset of R closed under addition that satisfies a strengthened
form of closure under multiplication. Not only is the product of two elements of I also in /, but that
the product of an element of / and any element of R is an element of /.

FEzxample 5.7. For R = 7Z and n an integer, the set nZ is an ideal. For closure under addition,
recall that x, y € nZ means that there are integers a and b with x = na and y = nb. Therefore
x+y =na+nb = n(a+b) so that x+y € nZ. For the multiplicative property, let x = na € nZ
and let r € Z. Then rx = xr = r(na) = n(ra) € nZ. This proves that nZ is an ideal. If n > 0,
notice that

nZ ={0,n,2n,...,—n,—2n,...}
is the same as the equivalence class of 0 under the relation congruence modulo n. This is an

important connection that we will revisit.

Ezample 5.8. Let R = F[x] be the ring of polynomials over a field, and let f € F[x]. Let

I ={gf:ge€F[x]},

the set of all multiples of f. This set is an ideal of F[x]. For closure under addition, let &,k € I.
Thenh = gf and k = g’ f for some polynomials ¢ and g’. Thenh+k = gf +g'f = (g+¢') f,
a multiple of f, so h + k € I. For multiplication, let h = gf € I, and let a € F[x]. Then
ah =ha =agf = (ag) f, amultiple of f,soah € I. Thus [ is an ideal of F[x].

Ezample 5.9. Let R be any commutative ring, and let a € R. Let
aR ={ar :r € R},

the set of all multiples of a. We show that aR is an ideal of R. First, let x,y € aR. Then
x =ar and y = as for some r,s € R. Then x +y = ar +as = a(r +s),sox + y € aR.
Next, let x = ar € aR and let z € R. Then xz = arz = a(rz) € aR. Also, zx = xz since
R is commutative, so zx € aR. Therefore, aR is an ideal of R. This construction generalizes
the previous two examples. The ideal aR is typically called the ideal generated by a, or the
principal ideal generated by a. It is often written as (a).

Example 5.10. Let R be any commutative ring, and let a,b € R. Set
I ={ar +bs:r,s € R}.

To see that I is an ideal of R, first let x,y € I. Then x = ar + bs and y = ar’ + bs’ for some
r,s,r’,s’ € R. Then
x+y = (ar +bs) + (ar’ + bs')
= (ar +ar’) + (bs + bs')
=a(r+r)+bs+s)el

by the associative and distributive properties. Next, let x € I and z € R. Again, x = ar + bs
for some r,s € R. Then
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xz = (ar + bs)z = (ar)z + (bs)z
=a(rz) + b(sz).

This calculation shows that xz € I. Again, since R is commutative, zx = xz, so zx € I. Thus,
I is an ideal of R. We can generalize this example to any finite number of elements of R: given
ai,...,a, € R, if

J={ar+---+ayr,:r; € Rforeachi},

then a similar argument will show that J is an ideal of R. The ideal J is typically referred to
as the ideal generated by the elements ay,...,a,, and it is often denoted by (ay,...,ay).

The Division Algorithm has a nice application to the structure of ideals of Z or of F[x]. We prove
the result for polynomial rings, leaving the analogous result for Z to the exercises. An ideal with a
single generator is called a principal ideal and integral domains with the property that each of their
ideals can be generated by a single element are called principal ideal domains.

Theorem 5.11. Let F be a field. Then F[x] is a principal ideal domain. That is, if I is an
ideal of F[x], then there is a polynomial f with I = (f) = {fg:g € F[x]}.

Proof. Let I be an ideal of F[x]. If I = {0}, then I = (0). Suppose that I contains a nonzero
element. By the well-ordering property of the integers (applied to the degrees of the nonzero
elements of 1), there is a nonzero polynomial f in I of least degree. We claim that I = (f). To
prove this, let g € I. By the Division Algorithm, there are polynomials ¢, with g = gf +r
and deg(r) < deg(f). Since f € I, the product qf € I, and thus g —qf € I asg € I. We
conclude that r € I. However, the assumption on the degree of f shows that the condition
deg(r) < deg(f) forces r = 0. Thus, g = qf € (f). This proves I € (f). Since every multiple
of f isin I, the reverse inclusion ( f) C I is also true. Therefore, I = (f). O

The condition that all ideals are principal is very restrictive as the next example shows.

Example 5.12. If F is a field and x, y indeterminates, then F[x, y] is an integral domain but
not a principal ideal domain; in particular, the ideal (x, y) cannot be generated by a single
element. To see this, suppose to the contrary that (x, y) = (f). Then there are g,h € F[x, y]
with x = fg and y = fh. The first equation says that the y degree of f must equal 0 while
the second says that its x degree is 0. Thus f is constant and nonzero so that f € F and
(f) = Flx,y]. But (x,y) # F|x, y]; for instance, 1 ¢ (x, y). Otherwise ] = x4 + yB, but the
right side evaluates to 0 at x = y = 0, while the left side doesn’t.

We can give an ideal theoretic description of greatest common divisors in Z and in F[x]. Suppose
that f and g are polynomials over a field F. If ged( f, g) = d, then we have proved thatd = fh+gk
for some polynomials %, k; in particular d is an element of the ideal I = { fs + gt : 5, € F[x]}. On
the other hand, d divides f and g, so that d divides every element of / and we conclude that I = (d),
the principal ideal generated by ged( f, g). Therefore, one can identify the greatest common divisor of
f and g by identifying a monic polynomial d satisfying I = (d).

We now use ideals to define quotient rings. The construction of a quotient ring is reminiscent of
the construction used earlier in the coset decoding algorithm for certain codes. In that context cosets
arose from a subspace (namely the code) of a vector space (Z}). The idea here is essentially the same
except that the vector space is replaced by a ring and the subspace by an ideal of the ring.

Definition 5.13. Let R be a ring and let 7 be an ideal of R. If a € R, then the coset a + I is
definedasa+ 1 ={a+x:xel}.
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Recall the description of equivalence classes for the relation congruence modulo n. For example,
if n = 5, then we have five equivalence classes, and they are

0=1{0,5,10,...,—5,-10,...},

1={1,6,11,...,—4,-9,—14,...},
2=12,7,12,...,-3,-8,-13,.. .},
3=1{3,8,13,...,-2,-7,—12,...},
4=1{4,914,...,—1,—6,—11,...}.

By the first example above, the set 57 of multiples of 5 forms an ideal of Z. These five equivalence
classes can be described as cosets, namely,

0=0+5Z,
1=1+5Z,
2=2+5Z,
3=3+5Z,
4=4+57

In general, for any integer a, we have a 4+ 5Z = a. Thus, cosets for the ideal 5Z are the same as
equivalence classes modulo 5. In fact, more generally, if n is any positive integer, then the equivalence
class @ of an integer @ modulo 7 is the coset a 4 nZ of the ideal nZ.

We have seen that the same equivalence class can have different names. Modulo 5, we have 1 = 6
and 2 = —3 = 22, for example. Similarly, cosets can be represented in different ways. If R = F|[x]
and I = xR, the ideal of multiples of the polynomial x, then 0 + 1 = x + I = x>+ [ = 4x'7 + I.
Also, 1 + 1 = (x + 1) + I. For some terminology, we refer to a as a coset representative of a + 1.
One important thing to remember is that the coset representative is not unique, as the examples above
demonstrate.

When we defined operations on Z,, we defined them with the formulas a + b = a+b and
@-b = ab. Since these equivalence classes are the same thing as cosets for nZ, this leads us to
consider a generalization. If we replace Z by any ring and nZ by any ideal, we can mimic these
formulas to define operations on cosets. First, we establish a notation for the set of cosets.

Definition 5.14. If I is an ideal of a ring R, let R/I denote the set of cosets of /. In other
words, R/I ={a+1 :a € R}.

We now define operations on R/I in a manner like the operations on Z,. We define

@+ +b+1)=(@+b)+1.
@+1)-(b+1)=(ab)+1.

In other words, to add or multiply two cosets, first add or multiply their coset representatives, then take
the corresponding coset. As with the operations on Z,, we have to check that these formulas make
sense. In other words, the name we give to a coset should not affect the value we get when adding
or multiplying. We first need to know when two elements represent the same coset. To help with the
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proof, we point out two simple properties. If / is an ideal, then 0 € /. Furthermore, if r € I, then
—r € 1. The proofs of these facts are left as exercises.

Lemma 5.15. Let I be an ideal of a ring R. If a,b € R, thena + 1 = b + I if and only if
a—-bel.

Proof. Let a,b € R. First supposethata +1 = b+ [.From0Oe€ [ wegeta=a+0€a+1,
soa € b + I. Therefore, there is an x € I with a = b 4+ x. Thus, a — b = x € I. Conversely,
suppose that a — b € [. If we set x = a — b, an element of I, then a = b + x. This shows
aeb+1.50,forany y e I,wehavea+y =b+ (x +y) € I, as I is closed under addition.
Therefore, a + I € b + I. The reverse inclusion is similar; by using —x = b — a, again an
element of I, we will get the inclusion b+ 1 Ca+ I,andsoa+ 1 =b+ 1. O

In fact, we can generalize the fact that equivalence classes modulo » are the same thing as cosets
for nZ. Given an ideal, we can define an equivalence relation by mimicking congruence modulo n. To
phrase this relation in a new way, @ = b mod if and only if @ —b is a multiple of n, so a = b mod n if
and only if a —b € n’Z. Thus, given an ideal / of aring R, we may define a relation by x = y mod [ if
x —y € I.One can prove in the same manner as for congruence modulo 7 that this is an equivalence
relation, and that, for any @ € R, the coset a + I is the equivalence class of a.

Lemma 5.16. Let I be an ideal of a ring R. Leta,b,c,d € R.

1. Ifa+ I =c+ITandb+1=d+1,then(a+b)+1=(c+d)+ 1.
2. Ifa+ I =c+1Tandb+1=d+1,thenab+ 1 =cd+1.

Proof. Suppose that a,b,c,d € Rsatisfya+ 1 =c+ 1 andb+ I =d + I. To prove the first
statement, by the lemma we have elements x,y € I witha —c¢ = x and b —d = y. Then
(@a+b)—(c+d)y=a+b—-—c—d
=(@—c)+((b—-d)
=x+yel.
Therefore, again by the lemma, (a+b)+1 = (c +d)+ I. For the second statement, we rewrite
the equations aboveasa = ¢+ x and b =d + y. Then
ab=(c+x)d+y)=cld+y)+x(d+y)
=cd + (cy + xd + xy).
Since x, y € I, the three elements cy, xd, xy are all elements of 7. Thus, the sum cy+xd+xy €
1. This shows us that ab — ¢d € I, so the lemma yields ab + I = cd + I. O

The consequence of the lemma is exactly that our coset operations are well defined. Thus, we can
ask whether or not R/ is a ring. The answer is yes, and the proof is easy, and is exactly parallel to
the proof for Z,.

Theorem 5.17. Let I be an ideal of a ring R. Then R/I, together with the operations of
coset addition and multiplication, forms a ring.

Proof. We have several properties to verify. Most follow immediately from the definition of
the operations and from the ring properties of R. For example, to prove that coset addition is
commutative, we see that for any a,b € R, we have
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@+ +bB+1IH=(@+b)+1
=b+a)y+1
=b+D+@+1).

This used exactly the definition of coset addition and commutativity of addition in R. Most
of the other ring properties hold for similar reasons, so we only verify those that are a little
different.

For the existence of an additive identity, it is natural to guess that 0 + [ is the identity for
R /I where 0 is the additive identity of R. To see that this guess is correct, let a + I € R/I.
Then

a+)+O0O+1I)=@+0)+1=a+1.
Thus, 0+ 7 is the additive identity for R/I. Similarly 1+ I is the multiplicative identity, since
a@+D-Q+H)=@-H)+1=a+1
and
1+ -(a+H=0-a)+1=a+1
for alla + I € R/I. Finally, the additive inverse of a + I is —a + I since
a@+D+(—a+I)=@+(—a)+1=0+1.

Therefore, R/I is a ring. O

The ring R/ is called a quotient ring of R. This idea allows us to construct new rings from old
rings. For example, the ring Z, is really the same thing as the quotient ring Z/nZ, since we have
identified the equivalence classes modulo #; that is, the elements of Z,, with the cosets of nZ; i.e.,
the elements of Z/nZ. 1t is this construction applied to polynomial rings that we will use to build
extension fields. We recall Proposition 3.29 above that says Z, is a field if and only if n is a prime.
To generalize this result to polynomials, we first need to define the polynomial analogue of a prime
number.

Definition 5.18. Let R be a commutative ring. An element r € R is said to be irreducible if
r = ab implies that either a is a unit or b is a unit.

The case of irreducible elements in polynomial ring over a field is of such importance that we
isolate that case in the following definition.

Definition 5.19. Let F be a field. A nonconstant polynomial f € F[x] is said to be
irreducible over F if whenever f can be factored as f = gh, then either g or & is a constant
polynomial.

Note that a polynomial f € F[x] that is irreducible in this context is irreducible as an element of
the ring F [x] since a constant polynomial is simply a polynomial of degree 0; that is, it is a polynomial
of the form f(x) = a for some a € F. Any such polynomial has degree 0 and is a unit if it is not the
zero polynomial.

Example 5.20. The terminology irreducible over F in the definition above is used because
irreducibility is a relative term. The polynomial x% 4 1 factors over C as x> +1 = (x —i)(x +1).
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In contrast, x? + 1 is irreducible over R. To see this, one could write x*> + 1 = (ax +b)(cx +d)
and collect coefficients of 1, x, and x? to obtain a system of nonlinear equations in a, b, ¢, d, for
which there is no solution in real numbers. An easier method is as follows: Since deg(x?>+1) = 2,
if it factors over R, then it must have a root in R (Exercise 8 of Sect. 5.1). However, squares of
real numbers are positive, so x2 + 1 has no roots in R and is therefore irreducible over R.

Ezxample 5.21. The polynomial x is irreducible: Given a factorization x = gh, taking degrees
of both sides gives 1 = deg(g) + deg(h). Thus, one of the degrees of g and % is 1 and the
other is 0. The one with degree 0 is a constant polynomial. Since we cannot factor x with both
factors nonconstant, x is irreducible. This argument shows that every polynomial of degree 1
is irreducible.

Ezample 5.22. Consider x> + 1 as a polynomial in Zs[x]. Unlike the case of Q[x], this
polynomial does factor over Zs, since x> + 1 = (x —2)(x — 3) in Zs[x]. In particular, x> + 1 has
two roots in Zs. However, for F = Z3, the polynomial x?> + 1 is irreducible since x2 + 1 has no
roots in Zs; it is easy to see that none of the three elements 0, 1, and 2 are roots of x% + 1.

To help work with quotient rings F'[x]/I, we can use the Division Algorithm to write elements in a
normalized form. Set / = (f). Given g € F[x], by the Division Algorithm we may write g = g f +7r
for some g,r € F[x] and with deg(r) < deg(f). Theng —r =¢qf € I,sog+ [ =r + I. This
argument shows that any coset g + [ is equal to a coset r + I for some polynomial » with deg(r) <
deg(f). Thus, F[x]/(f) = {r + I : r € F[x],deg(r) < deg(f)}. This result is the analogue of the
descriptionZ, ={a:0<a <n}={a+ (n):0<a <n}.

Let F = R, and consider the irreducible polynomial f = x? + 1. In this example we will use
the normalized form of elements to relate the field R[x]/(x? + 1) to the field of complex numbers C.
The Division Algorithm implies that every element of this quotient ring can be written in the form
a + bx + I, where I = (x> + 1). Addition in this ring is given by

a@+bx+1)+(c+dx+1)=(@+c)+b+d)x+1.
For multiplication, we have

(a@a+bx+1)(c+dx+1)=(a+bx)(c+dx)+1

=ac +bdx* + (ad + bc)x + I

= (ac — bd) + (ad + bc)x + I;
the simplification in the last equation comes from the equation hdx>+1 = —bd +1. Since x> +1 € I,
we have x2 + I = —1 + I, so multiplying both sides by bd + I yields this equation. If you look at
these formulas for the operations in R[x]/(x? + 1), you may see a similarity between the operations
on C:

(a@a+bi)y+(c+di)=(@+c)+ (B +d)i
(a +bi)(c +di) = (ac — bd) + (ad + bc)i.

In fact, one can view this construction as a way of building the complex numbers from the real
numbers and the polynomial x? + 1.
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Exercises

1. Prove that every ideal in the ring Z of integers can be generated by a single element. (Hint: Follow
the proof of Theorem 5.11 and replace “nonzero polynomial f in I of least degree” by “nonzero
element of least absolute value.”)

2. Prove that the ideal (2, x) in the ring Z[x] cannot be generated by a single element.

3. Prove that if R is an integral domain then so is R[x] for an indeterminate x. Conclude for every
finite collection {xi, X2, ... x, } of indeterminates that R[xi, X2, ... X,] is an integral domain.

4. Let F be a field, let f € F[x], and let I = (f) be the ideal generated by f.

(a) Show that, for any g € F[x],if g = qf + r with deg(r) < deg(f),theng + 1 =r + I.
Conclude that any coset g + I can be represented by a polynomial of degree less than deg( f').
(b) If deg(g) < deg(f) and deg(h) < deg(f), show that g + I = h + [ if and only if g = h.

5. Determine all of the cosets of the ideal (x> + x + 1) in the ring Z;[x]. Instead of writing out all the
elements in a coset (for which there are infinitely many), just find a coset representative for each
coset and say why you have produced all cosets.

(Hint: Use the previous problem.)

6. Determine all of the cosets of the ideal (x* 4+ x + 1) in the ring Z,[x].

7. Write out the elements of F as cosets of polynomials of degree at most 2, and then write out the
addition and multiplication tables for F. Feel free to take advantage of the commands plus and
mult defined in the worksheet.

8. Write out the powers (X)' for I < i < 7 as cosets of polynomials of degree at most 2. Feel free to
use the powers command defined in the worksheet.

9. Express the following cosets as cosets of polynomials of degree at most 2.

(a) x8

(b) X5+ x + 1
(c) x* + x3 + x2
(d) x6 + x.

5.3 Field Extensions

We now see how the last example of the previous section generalizes to enable the construction of
field extensions from irreducible polynomials. Recall an earlier definition.

Definition 5.23. If F is a field, then a field extension of F is a field K that contains F, and
for which the field operations restrict to the field operation of F. Under these circumstances
we also say that F is a subfield of K.

Proposition 5.24. Let F be a field, and let f € F[x] be a polynomial. If I = (f) is the ideal
generated by an irreducible polynomial f, then F[x]/I is a field extension of F.

Proof. Let F be a field, and let f € F[x] be irreducible. Set I = (f). We wish to prove that
F[x]/I is a field. We know it is a commutative ring, so we only need to prove that every nonzero
element has a multiplicative inverse. Let g + I € F|[x]/I be nonzero. Then g + 1 # 0+ I,
so g ¢ I. This means f does not divide g. Since f is irreducible, we can conclude that
gcd(f, g) = 1. Thus, there are h,k € F[x] with 1 = hf + kg. Because hf € I, kg—1¢€ 1I,so0
kg + 1 =1+ I. By the definition of coset multiplication, this yields (k + I)(g + 1) =1+ 1.
Therefore, k+ I is the multiplicative inverse of g+ I . Because we have proved that an arbitrary
nonzero element of F[x]/I has a multiplicative inverse, this commutative ring is a field.
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The elements a + I with a € F clearly form a subfield of F[x]/I, which is identified with
the field F. In this way F[x]/I is realized as a field extension of F. O

The converse of this result is also true; if F[x]/(f) is a field, then f is an irreducible polynomial.
We leave the verification of a slightly more general statement to Exercise 11 below.

Ezample 5.25. Let F = Q and f = x* — 2. The Rational Roots Test shows that # has no
roots in Q and is therefore irreducible over that field. Thus Q[x]/(x? — 2) is a field. Moreover,
the normalization representation of elements of Q[x]/(x* — 2) shows that each element can be
writtenasa -1+ b-x + ¢ - x> + (x> — 2) for certain a, b, ¢ € Q. This representation is unique
sincea-14+b-x+c-x>+(x*=2)=d - 14+b"-x+c" x>+ (x> —2) implies that

(a—d)- 14+bB=b) x+(c—c )+ x*=2) =0+ (x*-2),

i.e., that x> — 2 divides the polynomial (@ —a’)-14 (b —b’) - x + (c — ¢’)x2. But by considering
degrees, this is impossible unless the latter polynomial is 0.

Example 5.26. Let F = 7Z,, and consider f = x2 + x + 1. This is irreducible over Z, since
it is quadratic and has no roots in Z;; the only elements of Z, are 0 and 1, and neither is a
root. Consider K = Z,[x]/(x?> 4+ x + 1). This is a field by the previous proposition. We write
out an addition and multiplication table for K once we write down all elements of K. First,
by the comment above, any coset in K can be represented by a polynomial of the form ax + b
with a,b € Z,; this is because any remainder after division by f must have degree less than

deg(f) = 2. So,
K={0+11+1,x+1,14+x+1}.

Thus, K is a field with 4 elements. The following tables then represent addition and
multiplication in K.

+ 0+17 1417 x+1 1+x+1
04171 0+17 1+1 x+1 1+x+1
1+17 1+1 0+1 1+x+1 x+1
x4+ 1 x+1 1+x+1 0+1 1+ 17
l+x+1 | 14+x+1 x+1 1417 0+1

. 0+71 1+1 x+1 1+x+1
0417 0+71 041 0+1 0+1

1+17 0+71 1+1 x+1 1+x+1
x+1 0+71 x+1 1+x+1 141
l+x+1 0+1 14+x+1 1+1 l+x+1

If you look closely at these tables, you may see a resemblance between them and the tables of
Example 3.30 above. In fact, if youlabel x + I asa and 1 + x + I as b, along with 0 =0+ [
and 1 = 1 + I, the tables in both cases are identical. In fact, the tables of Example 3.30 were
found by building K, and then labeling the elements as 0, 1, @, and b in place of 0 + 7, 1 + I,
x+I,and 1 +x+ 1.



5.3 Field Extensions 85

Ezample 5.27. Let f(x) = x> + x + 1. Then this polynomial is irreducible over Z,. To see
this, we first note that it has no roots in Z, as f(0) = f(1) = 1. Since deg(f) = 3, if it
factored, then it would have a linear factor, and so a root in Z,. Since this does not happen, it
is irreducible. We consider the field K = Z[x]/(x*> + x + 1). We write I = (x> + x + 1) and
set o = x + I. We first note an interesting fact about this field; every nonzero element of K is
a power of «. First of all, we have

K={0+11+I.x+1,(x+D)+1,x>+1,(x>+1)+1,
2+x)+ L2 +x+ 1)+ 13

‘We then see that

oa=x+1,
o> =x*+ 1,
C=x*rI=x+D)+I=a+1
r=xt+TI=xx+D)+I1=x*+x)+1 =4«
C=x"+1=x+x+I=x+x+D)+I=a"+a+1
o =x 4TI =@) =+ D)+ =0"+1
o =x"+ I =x(xP*+D)+TI=x+x+1=1+1
To obtain these equations we took several steps. For example, we used the definition of coset
multiplication. For instance, a® = (x + I)? = x?>+1 from this definition. Next, for o = x> +1,

since x3 +x+1 € I, we have x> + 1 = (x 4 1) + I. For other equations, we used combinations
of these ideas. For example, to simplify o> = x> + I, first note that

a5=a3~a2=((x+l)+1)(x2+l)
=x* 4+ x24T

P H+x+1D)+1

sincex>+x+1el.

Familiar concepts from linear algebra (i.e., linear independence, spanning, basis, and dimension)
provide essential tools for the study of field extensions. For instance, if K is an extension field of F',
then K has the structure of an F'-vector space with the field addition in K as its addition and scalar
multiplication af for ¢ € F, 8 € K given by the multiplication in the field K (since F is a subfield
of K this makes sense). A proof of this basic fact is Exercise 1 of this section.

Ezample 5.28. Let F = Q and K = {& + f~/2 : o, B € Q}. Since
(a1 + Biv2) (o2 + Pav/2) = (1 + 2B1B2) + (@1 B2 + Praa) V2,

we see that K is closed under multiplication. It is clearly closed under addition and contains Q
as the subset {& + fv/2 : @ € Q, B = 0}. Note that if either & # 0 or f # 0 then o2 + 282 # 0.
A multiplication reveals that

@ B
o +2B% o’ +2p2

( V2)(a+BV2) =1
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so that azf—zﬂz — 0%2/32\/5 is the multiplicative inverse of @ + f+/2 and is an element of K.
Thus nonzero elements of K all have multiplicative inverses.

Definition 5.29. Let K be a field extension of F. We denote the dimension of K as an F-
vector space by [K : F].

Ezample 5.80. The dimension of Q(+/2) as a Q-vector space is 2 since 1 and +/2 form a basis.
Thus, [Q (ﬁ) : Q] =2.

Given a field extension K of F and an element « € K we denote by F(«) the smallest field
extension of F which contains . By smallest we mean that for any other field extension L of F with
a € L, we have F(o) C L. For a, 8 € K we write F(«, ) instead of F(«)(fB). Similarly for any
finite collection {o, ;. ..., o, } of elements of K we write F(a, s, ...,a,) for the smallest field
extension of F' containing these elements.

Ezample 5.31. Let K = {a + B+/2 : a,f € Q} as above. Since every field extension of Q
containing +/2 must contain every real number of the form « + f+/2 with o, f € Q, and K is a
field, K = Q(v/2).

Ezample 5.32. Withi denoting a complex square root of —1, R(i) = C. Because every complex
number is represented uniquely as a + bi with a,b € R, the complex numbers {1,i} form a
basis for C as an R-vector space and [C : R] =2

Ezample 5.33. The cube roots of 1 solve x* — 1 = 0. Since x* — 1 = (x — 1)(x> + x + 1), the
three cube roots of 1 are

—14+1i4/3
1, w; = L\/_, and w,

_—1-i3
2 - ’

2

with w; and w, complex conjugates, in particular they do not lie in R. In Exercise 6 you will
show that Q(w;) contains all three cube roots of 1 and Example 5.48 shows that [Q(w;) : Q] =
2.

Proposition 5.34. Let F be a field and f € F|[x] an irreducible polynomial. Then [F[x]/(f) :
F] = deg(f).

Proof. Let n = deg(f) and to simplify notations, write elements a + (f) with a € F simply

A n—-1
as a and x' + (f) as X'. Then the normalized form of any element of F[x]/(f) is Y. a;X'
i=0
for suitable ¢; € F, so we see that {1,X,%°,...,X" !} spans F[x]/(f) as an F vector space.
n—1 X n—1 .
This set is also linearly independent. Indeed, if Y ;X' = 0, with a; € F, then ) a;x' € (f),
i=0 i=0
n—1 .
i.e., the polynomial f, which has degree n, divides the lower degree polynomial > a;x’. This
i=0
implies that the latter polynomial is the O polynomial, i.e., that a; = 0 for each i. O

We often encounter a tower of fields F' € K C L. For example, with w; w; as in Example 5.33,
the three roots of x3 — 2 € Q[x] are J2, f/ia)l, and f/ia)z so that all three roots lie in Q(Q/Z 1)
(refer again to Exercise 6 below). Since /2 € R but w;, w, ¢ R, we have the tower Q C Q(~/2) C
Q(V2, ).
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Theorem 5.35 (Dimension Formula). Let K be a field extension of F and L a field
extension of K. Then

[L:F]=I[L:K]K:F].

Proof. If either [L : K] or [K : F] is infinite, then so is [L : F] and there is nothing to show.
So suppose that [K : F] = m and [L : K] = n. Let {ay,...,a,} and {by,...,b,} be bases for
K over F and L over K, respectively. We show that the elements a;b; € L, for 1 <i < m,
1 < j < n, constitute a basis for L as an F vector space.

For linear independence, suppose that Z vijaib; = 0 for some y;; € F. Then

1<i<m,1<j=<n

Z ( Z vijai)b; =0

1<j<n 1<i<m

gives a dependence relation among by, ..., b, over K. Since they are linearly independent, we
must have the coefficient of each b; equal to 0, i.e.,

Z vija; = 0 for each j.

1<i<m

But the linear independence of the a; then forces each y;; = 0.
To see that {a;b; : 1 <i <m,1 < j < n}spans L over F, let ¢ € L. Since {b1,...,b,}
spans L over K we can write ¢ = Z a;b; for some o; € K. Each a; can be expanded as an
1<j=n
F linear combination of the a; as

a; = Z ,Bija,-.

1<i<m

Combining these expressions we obtain

Cc = Z(ijjZ Z Z,B,-ja,-bj.

I<j=n I<j=nl<i<m

d

Ezample 5.86. The polynomial x> —2 € Q[x] has the three distinct roots ~/2, v2w, v2w?
where @ = w; of Example 5.33 (see also Exercise 6). Clearly all three roots of x*> — 2 lie in
Q(~/2, w) and conversely every field which contains these roots must also contain Q(v/2, w).
Therefore Q(~/2, w) is the smallest field extension of Q containing all roots of x> — 2. Since
Q(¥2) c Rand @ ¢ R, we have the tower of fields Q € Q(+/2) C Q(+/2, ) and both inclusions
are proper. In Exercise 6 you will show that [Q(w) : Q] = 2 so that [Q(v/2, w) : Q] = 2[Q(/2 :
Q). In the next section you will see that [Q(v/2 : Q] = 3 so that [Q(V/2, w) : Q] = 6. In other
words it is necessary to extend to an extension of degree 6 to obtain the smallest field extension
of Q containing all three roots of this cubic polynomial.
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5.4 Algebraic Elements and Minimal Polynomials

We conclude this chapter with an important concept that connects the field extensions F[x]/(f) and
F(a) of F where f € F[x] is irreducible and « is a root of f. The assertion that ¢ is a root of
f means that there is some field extension K of F containing « and that as an element of K, the
evaluation of f(«) yields 0. In other words, although the coefficients of f lie in F, it can be viewed
as having its coefficients in K so that f(«) = 0 is meaningful computed in the field K.

Lemma 5.37. Let K be an extension field of F and o € K. Then
I ={geF[x]:g(a)=0}

s an ideal of F[x]. If I is not the 0 ideal, then I = (f) for some irreducible f € F[x].

Proof. That I is an ideal is an easy exercise. Suppose that I # (0) so that I = (f) for some
f € I of positive degree, indeed we can assume that the degree of f is minimal among all
nonzero elements of I. If f = gh with g,h € F[x], then 0 = f(a) = (gh)(a) = g(a)h(a).
Since this computation takes place in the field K, one of g(a) = 0 or h(«) = 0 must hold, i.e.,
g €I or h € I. Since the degree of f is minimal among all nonzero elements of /, it must be
that g or & has degree 0, i.e., that g or & is a unit. O

Definition 5.38. Let K be an extension field of F, @ € K, and [ = {g € F[x] : g(x) = 0}.
If I # (0), then « is said to be algebraic over F. If I = (0) then « is said to be transcendental
over F.

In simpler terms « is algebraic over F if « is a root of some polynomial of positive degree with
coefficients in F.
Example 5.39. Taking F =R, K = C,and o =i = +/—1, we see that I = (x> — 1) so that i
is algebraic over R.

Example 5.40. Taking F = Q, K = R, and ¢ = 7, an important and difficult theorem asserts
that 7 is transcendental over Q.

Given a field extension K of the field F, suppose that « € K is algebraic over F. Let f be a
generator of I = {g € F[x] : g(a) = 0}, written as / = Y '_,a;x' witha; € F and a, # 0.
Then a, ! f is monic of the same degree as f. Since f has least positive degree among the nonzero
elements of /, the polynomial a, ! f is the unique monic polynomial in /.

Definition 5.41. With F,K,«, f as above, the polynomial a,'f is called the minimal
polynomial of & over F.

Notation 5.42. To emphasize the roles of F and « in the definition of minimal polynomial,
the symbol ming («) is used to denote it.

Ezample 5.43. The real numbers +/2 and +/2 are clearly algebraic over Q. It is straightforward
to show that ming(+/2) = x?—2 and not very hard to show that ming(~/2) = x*—2 (Exercise 9).
Setting f = x2 — v/2 € Q(+/2)[x], and noting that f(~/2) = 0, we see that f = min@(ﬁ)((‘/i)

provided this polynomial is irreducible over Q(+/2).
Definition 5.44. Let F and K be fields. A homomorphism ¢ : F — K is a function satisfying
f(1r) = 1k and, for every a,b € F, both of the following hold:
fla+b)= fa)+ f(b)
flab) = f(a) f(D).
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A field homomorphism is always one-to-one (Exercise 18). An onto field homomorphismg¢ : F —
K is called an isomorphism and F and K are said to be isomorphic.

Theorem 5.45. Let F be a field, f € F[x] an irreducible polynomial, and o a root of f. Then
there is an isomorphism of fields F[x]/(f) — F(«). This isomorphism is also an isomorphism
of F wector spaces.

Proof. For g = Y a;x' € F[x] define p(g + (f)) = Y a;a' = g(a) € F(a). That ¢ satisfies
the three COnditilOI(l)S above is a straightforward compiltzoition. It is necessary however to prove
that ¢ is well defined and that its image is a field. If the latter is shown, then the image is
certainly the smallest field extension of F' containing o, namely F(x).

To see that ¢ is well defined, suppose that g + (f) = h + (f). Then h = g + fk for some
k € F[x] and we have

p(h + (f)) = h(a) = g(a) + (fk) (@)
= g(@) + f()k(x)
=g(@) = (g +(f))

because « is a root of f.

That the image of ¢ is a field (isomorphic to F[x]/(f)) follows if it shown that ¢ is one-
to-one. To that end, let g + (f),h + (f) € F[x]/(f) be written in normalized form, so that
deg(g),deg(h) < deg(f). If p(h+ (f)) = ¢(g + (f)), then h(a) = g(@) and (h—g)(«) = 0. By
Lemma 5.37, h — g € (f) which forces h — g = 0, again by consideration of degrees. Thus ¢ is
a field isomorphism. Noting that ¢ restricts to the identity on the field F we have, for a € F
and g € F[x], that

plag + (f)) = p(@)p(g + (f))
ap(g + (1)),

showing that ¢ is a vector space isomorphism. O

Corollary 5.46. Let K be an extension field of F and a € K algebraic over F. Then [F(x) :
F] = deg(ming(«)).

Proof. Since F(«) and F[x]/(f) are isomorphic as F vector spaces, their dimensions over F
are equal. O

Ezample 5.47. The real number ~/2 is certainly a root of the polynomial x> —2 € Q[x], and the
Rational Roots Test tells us that this polynomial has none. Since its degree is 3 we conclude
that x> — 2 = ming(+/2), and that [Q(~/2) : Q] =deg(x® —2) = 3.

Ezample 5.48. Let w = w, of Example 5.33 and Exercise 6. Since Q(v/2) C R and w; ¢ R, it
must be the case that x2 4+ x + 1 remains irreducible over Q(+/2) and therefore x2 4+ x + 1 =
ming, 373 (). In particular [Q(+2),0) : Q(V2)] = 2, and [Q(v2, @) : Q] = [Q(V2,w)) :
Q(V2)][Q(V2) : Q] = 6.

Ezample 5.49. Since 4 = [Q(v/2) : Q] =[Q(v2) : Q(v2)][Q(v?2) : Q] = 2[Q(V2) : Q(+2)] we
can conclude that [Q(+/2) : Q(+/2)]=2. Therefore minQ(ﬁ)((‘/i) =x?— 2.
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Remark 5.50. The image of the isomorphism ¢ in the Theorem 5.45 is the ring F[«] generated
over F by a. But since this ring is a field it must coincide with F(«), which is the smallest field
extension of F containing «. The following conditions characterize the algebraic elements o of
an extension field K of F. The proof is left to the exercises.

Theorem 5.51. Let K be an extension field of F and a € K. Then the following conditions
are equivalent:

1) « is algebraic over F

2) the smallest ring extension of F containing a coincides with smallest field extension of F
containing o.

3) « is a root of some irreducible polynomial in F[x], and

4) the elements 1,a, a?,... of K are linearly dependent over F.

As a consequence of the Remainder Theorem (Exercise 5 of Sect. 5.1), given f € F[x] an element
« of an extension field K of F is a root of f if and only if x — « divides f in.K[x] (i.e., if and only
if f = (x —a)g for some g € KJ[x]). It follows that all the roots of f lie in F if and only if f
factors into linear factors in F[x]. More generally, suppose that n = deg(f'), K is an extension field
of F,and f = (x —«)g forsome o € K and g € K|[x]. Clearly, deg(g) = n — 1, and an induction
on n shows that f has at most n roots in K. Viewing f € K|[x] then, f factors into linear factors
in K[x] if and only if K contains n roots of f counting multiplicity. For instance, the polynomial
x* 4+ 2x2 4+ 1 € Q[x] factors as (x + i)>(x —i)? in Q(i)[x], reflecting the fact that x* 4 2x? + 1 has
4 roots in Q(i), counting each of the roots i and —i with multiplicity 2.

Exercises

1. Given a field extension K of F, prove that the addition in K and product «ff fora € F, 8 € K,
taken as multiplication in K, endow K with a natural structure of an F vector space.

2. Prove that every field containing the ring of integers as a subring is a field extension of Q.

3. For an integer a set Q(v/a) = {a + B/a : a, B € Q}. Prove that Q(+/a) is a field extension of
Qand [Q(va) : Q] =2.

4. Let F be afield and f = ax? + bx + ¢ a quadratic polynomial in F[x]. If « is a root of £, then
[F(a) : F] = 1if and only if f is reducible. (Hint: Show that f = a(x — «@)(x — B) where
a,peF).

5. Given a field extension K of F and an element « € K prove that F(«) is the intersection of all
fields Lwith FC L € Kandw € L.

6. With w; = # and w, = # (the complex roots of x3 - 1),verify that ; = ezz.

4mi .
wy = wj = e 3, so that Q(w;) contains all three cube roots of 1.

and

7. Show for any positive integer 7 that the set of all n'" roots of 1 lies in the field Q(e%).

2mi

8. Determine [Q(+/2,e73) : Q] (Hint: Q(+/2) C R.)
9. Prove that x* — 2 is irreducible over Q so that x* — 2 = minQ((‘/E).
10. Let R be an integral domain and x an indeterminate. Prove that R[x] is an integral domain.
11. If f € R[x] and R[x]/(f) is an integral domain, prove that f is irreducible.
12. For a field extension K of F, prove K = F if and only if [K : F] = 1.
13. If K and L are field extensions of F', prove that K N L is a field extension of F.
14. If K and L are field extensions of F with [L : F] = p and [K : F] = ¢ for distinct primes p
and g, provethat K N L = F.
15. Let p and g be distinct primes. If [F(¢) : F] = p and [F(B) : F] = ¢, prove that
[F(e, B) : F] = pq.
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16. Prove that [Q(+/3, +/3) : Q] = 4.

17. Find an element & € Q(~/3, +/3) for which Q(+/3, +/3) = Q(«). Then find ming(a).
18. Prove that every field homomorphism is one-to-one.

19. Prove Theorem 5.51.
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Chapter 6
Ruler and Compass Constructions

One remarkable application of abstract algebra arises in connection with four classical questions,
originating with mathematicians of ancient Greece, about geometric constructions.

. Is it possible to trisect an arbitrary constructible angle?

. Is it possible to construct a square whose area is equal to that of a given constructible circle?
. Which regular polygons are constructible?

. Is it possible to construct a cube of exactly twice the volume of a given cube?

AW =

Questions 1-3 refer to constructions in the real plane R? and Question 4 to constructions in R?.
The tools we are allowed are only a compass and an uncalibrated ruler, i.e., devices for constructing
circles and straight line segments, without measuring. The only constructions we can make come from
a sequence of basic ones:

Connecting two given points with a straight line,

drawing the circle centered at a given point passing through another given point,
constructing a point as the intersection of two lines,

constructing a point (or points) as the intersection of a line and a circle, and
constructing a point (or points) as the intersection of two circles.

NS

As an example of a construction, consider this familiar one:

Bisecting a line segment: Suppose that A and B are two distinct points in the plane. To bisect the
line segment A B construct the circle centered at A passing through B and the one centered at B and
passing through A. These circles intersect at two points and the line segment joining them bisects A B.

© Springer International Publishing Switzerland 2014 93
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Suppose that we identify two points A and B in the plane and declare that the distance between
them is equal to 1. By drawing the line through A and B and using our unit distance A B as a reference,
we can construct all points on this line whose distance from point A is an integer. Our first construction
enables us to construct a sequence {4, }°2, of points for which the distance from A to A4; is (%)i , and
similar sequences for each of the new points we have constructed. In the exercises below you will find
that it is possible to construct points separated by certain irrational distances as well.

Our investigation of constructibility proceeds by first using familiar construction techniques to
establish a coordinate system on the plane, i.e., by constructing the points with integer coordinates.
Then we examine the coordinates of point(s) lying on the intersection of two lines joining constructed
points, on the intersection of a line with a circle of radius equal to a constructed distance centered at
a constructed point, and on the intersection of two such circles. The connection with algebra comes
from the fact that the collection of coordinates of all constructed points constitutes a field strictly
between the fields of rational numbers and real numbers. The information we gain about this field will
enable the investigation of the classical constructibility problems.

Exercises

1. Let A and B be points in the plane which we declare to be one unit apart. Denote by L; the line
through 4 and B, and by C the circle centered at A passing through B (its radius is equal to 1). Let
B’ # B be the other point of intersection of C with L, and L the perpendicular bisector of B’B.
If D is the intersection of L and C, show that the length of DB is equal to /2.

2. Complete the details of the following sketch of a proof of the irrationality of +/2 alternative to the
one in Exercise 3.3.7.

(a) Provethat 0 < V2-1<1.

(b) Prove that if b is a positive integer satisfying b~/2 € Z then b(+/2—1) is also a positive integer
satisfying b(v/2 — 1) /2 € Z.

(c) Conclude that if b is a positive integer satisfying h+/2 € Z then b, b(v/2—1),b(v/2—1)2, ...
is an infinite decreasing sequence of positive integers.

(d) Conclude that /2 is irrational.

6.1 Constructing a Coordinate System

Our first goal is to construct a coordinate system by choosing a length to be the unit length and to
construct all of the points in the real plane R? having integer coordinates relative to a fixed pair of
perpendicular axes. Begin with two points A and B in the plane and draw the line L joining them.
Declare L to be the horizontal axis and the line L’ bisecting the line segment A B (constructed at the
beginning of the chapter) the vertical axis. The point of intersection of the two axes is denoted O and
referred to as the origin of the coordinate system. Declare the length of the line segment OA to be
equal to 1.

The important construction:

Given a line L and a point A not on L, construct the unique line though A that is parallel to L:

A
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applied to the horizontal and vertical axes L and L’ enables the construction of our coordinate system.
The details of the construction are in Exercises 1— 4.

Exercises

1. (Dropping a perpendicular) Construct two points P, Q on L by intersecting L with a circle centered
at A. Bisect PQ as above and explain why the line joining A to the midpoint B of PQ is
perpendicular to L.

2. Bisect Q A and construct the line joining B and the midpoint of Q 4.

3. Intersect the circle centered at B whose radius is the length of QA with the line of the previous
exercise. Now complete the construction of the line through A parallel to L, and verify the
parallelism.

4. Explain how to construct all points (@, b) in R?> where a, b are integers.

Define a point (a, b) in the plane to be constructible if it can be reached from the integer grid
points by a sequence of the basic constructions 1-5 above. Define a real number a to be constructible
if (@, 0) is a constructible point. Together with the first exercise of this chapter, which shows that /2
is a constructible number, and our bisection procedure, which implies that if a is constructible, then so
is a/2, the grid construction shows that the constructible numbers form a set of real numbers, properly
larger than the integers containing at least some noninteger rational numbers and some irrationals. Our
next goal is to find an algebraic description of the set of constructible numbers.

6.2 The Field of Constructible Numbers

We have seen that ruler and compass constructions beginning with rational number lengths lead
immediately to irrational lengths. That is, the coordinates of constructed points lie inside a proper field
extension of Q. The main results of this section and the next show that the set of these coordinates
constitute a rather special subfield of R.

Theorem 6.1. The set C of constructible numbers is a field extension of the rational numbers.

Because the set of constructible numbers contains the ring of integers, it suffices to show that C is
closed under the field operations. We will show also that C is closed under another operation:

Theorem 6.2. Ifc is a constructible number, then so is i/c. In other words, C is closed under
taking square Toots.

To begin the proof of the first theorem, note that if a is constructible, then so is —a: construct the
lines joining (a, 0) and to (0, 1) and (0, —1) and their parallels through (0, —1) and (0, 1), respectively.
The latter intersect at (—a,0). Furthermore, if L is a line, P a constructible point on L, and a a
constructible number, then the points on L that are at distance a from P are also constructible: using
L as the horizontal axis and P as the origin of the coordinate system, the sequence of constructions
producing (£a, 0) yield the desired points. If b is also constructible, then using the horizontal axis as
L and (a,0) as P, we see that a + b is constructible, i.e., the constructible numbers are closed under
addition.

Call a line constructible if it joins two constructible points and a circle constructible if its center is
a constructible point and its radius a constructible number. Thus we can “mark off” any constructible
length on a constructible line and construct a constructible circle centered at any constructible point.

Exercise 6.3. Given that A and B are constructible numbers, with B # 0, explain why the
points and parallel line segments L; and L, in the diagram below are constructible.
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(0, B)

0, 1)

»
»

(z, 0) (4, 0)

Exercise 6.4. Use facts about similar triangles to deduce the value of x and then explain why

% is constructible.

Since AB = % we find that C is closed under multiplication as well, and hence have proved that
B
the set of constructible numbers is a field extension of Q.
Next we address the second theorem on closure under square roots.

Exercise 6.5. Suppose that a is a constructible number. Explain why the labeled points in
the diagram below are constructible:

N
Ly

0

Exercise 6.6. From the remarks above, the circle C of radius ”TH centered at (“TH,O) is
constructible. Write down its equation.

Exercise 6.7. Construct the intersection of the line through (1, 0) that is parallel to L, with
the circle C. Call this point (1, y). Evaluate y to conclude that /a is constructible and hence
that C is closed under square roots.
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(1, )

1+4/3

Ezxample 6.8. a = S5 18 constructible.

Exercise 6.9. With a as in the example above, rationalize the denominator and calculate

[Q(a) : Q.

6.3 A Criterion for Constructibility

To address the classical construction problems we will derive a necessary criterion for a real number
to be constructible. We can view the field C of constructible numbers as being built up in stages
from the rational numbers. If a construction results in a point P = (a, b), then we obtain the field
extension F' = Q(a, b) (which may be properly larger than QQ) all of whose elements are constructible.
Moreover, any point in the plane R? whose coordinates lie in F is constructible, since its coordinates
are obtained by some sequence of field operations (addition, multiplication, subtraction, division)
on constructible numbers, all of which result again in constructible numbers. We can make further
constructions using these points to obtain larger field extensions. A field K so constructed will
be called a constructible field, and the points of R? whose coordinates lie in K, all of which are
constructible, will be called the plane of K, denoted P(K). But how are the various constructible
fields related?

To answer this question, let K be some field of constructible numbers. We determine the
constructible numbers adjoined to K by the coordinates of points produced by the basic constructions
applied to P(K):

1. The intersection of two nonparallel lines in P(K) (i.e., lines joining points whose coordinates lie
in K),

2. the intersection of a line in P(K) with a circle in P(K) (i.e., a line as in 1 and a circle whose center
is in P(K) and whose radius is in K), and

3. the intersection of two circles in P(K).
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For points produced as in (1), suppose that the lines L; and L, pass through (a;, b,) and (c1, d})
and (az, by) and (c3, d3), respectively. Set

_ (di=by)

my = —— and m,
(c1 —ar)

_ (=D
(c2—az)’

noting that these slopes lie in K. Then equations for L and L, are, respectively,

y—di =mi(x —c)

y —dy = my(x — ¢a).
and they intersect where
di +mi(x —c1) = da + my(x — c2).
Solving for x, we obtain

dy —dy +macy —mic; = x(my —my)
dy —dy + mycy —mycy

(my —my) -

Since the left-hand side involves field operations on elements of K, we find that x (and therefore also
y = dy + mi(x — ¢y)) is also in K. Thus a point constructed as in (1) lies in P(K) and we don’t
enlarge the field K.

Coordinates of points produced by constructions (2) and (3) are investigated in the following
exercises and lemma.

Exercise 6.10. Show that a line in P(K) has an equation of the form ax + by + ¢ = 0 where
a,b,c allliein K.

Exercise 6.11. Show that a circle in P(K) has an equation of the form x2+y?+dx+ey+ f =
0 where d, e, f all liein K.

Exercise 6.12. Show that the coordinates of the points of intersection of a line L in P(K)
with a circle C in P(K) solve a quadratic equation whose coefficients lie in K. First consider
the case where the equation of L is ax +by + ¢ = 0 with @ # 0 and then the case where a = 0.

Exercise 6.13. Given that C; and C, are intersecting circles in P(K), suppose that C; has
equation

x4+ y’4+ax+by+c=0
and C; has equation
24+ y +dx+ey+ f=0

where all of a, b, c,d, e, f liein K.
1. If a # d show that
(a) The x coordinates of the points of intersection have the form

=Dt b=ey
B d—a
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(b) The y coordinates of the points of intersection of C; and C, solve a quadratic equation whose
coefficients lie in K.

2. If a = d, show that the y coordinates lie in K and that the x coordinates solve a quadratic equation
whose coefficients lie in K.

The discussion concluding Sect. 5.4 shows that a polynomial with coefficients in the field K factors
into linear factors in K[x] if and only if all of its roots lie in K. Applying a simple case of this
observation, the following lemma and theorem explain the special way in which constructible numbers
arise.

Lemma 6.14. Let F be a field extension of Q and f = ax? 4+ bx + ¢ a quadratic polynomial
with coefficients in F. If a is a root of f, then [F(a) : F] = 1 if f is reducible and [F(x) :
F] =2 if f is irreducible.

Proof. See Exercise 4 of Sect. 5.4 for the case that f is reducible. Assume that f is irreducible
and apply the quadratic formula to obtain the roots of f as

—b + v/b? —4ac

0=—,
! 2a

o —b — ~b? —4ac

= .
2a

Set d = b2 —4ac and § = v/d . Irreducibility of f implies that o, > ¢ F and therefore § ¢ F,
since F(«;) = F(§) = F(ay) as any field extension of F containing § must also contain «; and
vice-versa (similarly for o). From the fact that §* € F, every element y € F(§) can be written
asy = Z£% for certain r, 5, u, v in F. By calculating (:£22) (“222), as one would “rationalize the
denominator” over Q, y = e + f§ for some e, f € F. Thus 1,§ spans F(§), but a dependence
relation over F between 1 and § (i.e., e + f§ = 0 with e, f € F not both equal to 0) would

imply § € F. O

We have seen that given a constructible field K and its plane P(K), the coordinates of points that
arise from a construction in P(K) solve linear or quadratic polynomials with coefficients in K. This
gives us a numerical criterion that is necessarily satisfied by every constructible number, and can
therefore be used to demonstrate that certain numbers are not constructible:

Theorem 6.15. Ifa is a constructible number, then [Q(a) : Q] is a power of 2.
Proof. Since « is constructible a sequence of basic constructions will produce the point («, 0).
The constructions yield a sequence of field extensions

Q=FRCFHCFHC---CF,

with @« € F, and F;4+; obtained from F; by solving a quadratic equation with coefficients
in F;. From the lemma we know that [F(a) : F] = 1 or 2 so that repeated applications of
the Dimension Formula yield [F, : Q] =2" for some m < n. Since Q € Q(«) € F,, another
application of the Dimension Formula shows that [Q(«) : Q] must be a power of 2. O

Exercises

1. Use the Rational Roots Test to prove that x> — 2 € Q[x] has no rational roots and is therefore
irreducible over Q.
2. Prove that ~/2 is not a constructible number
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6.4 Classical Construction Problems

The numerical criterion proved in Theorem 6.15 above enables us to solve all of the classical
constructibility problems—the first three in the negative and the fourth through a complete description
of the regular polygons which are constructible. Since the notion of constructible angle arises in these
considerations we define it here.

Definition 6.16. An angle 0 is said to be constructible if two lines can be constructed which
intersect in that angle.

Exercise 6.17. Explain why the following construction shows that a 60° angle is con-
structible: Let A = (0,0) and B = (1,0). Denote by L the perpendicular bisector of AB
and M the midpoint of AB. Construct the circle C centered at A passing through B, and let
D be a point of intersection with L. Calculate the length of the line segment M D and show
that the measure of angle MAD is 60°.

6.4.1 Angle Trisection

While certain angles can be trisected (the trisection of a 180° angle was effectively accomplished in
Exercise 6.17 above) there is no sequence of constructions that can be applied to trisect an arbitrary
angle. To see this, we prove the following result.

Theorem 6.18. An angle of 60° cannot be trisected by ruler and compass constructions.

Proof. If it were possible to trisect a 60°, then it would be possible to construct the right
triangle OP Q below:

20°

Since the coordinates of P are (cos20°,sin20°), these numbers would also be constructible.
An exercise in trigonometry using multiple angle formulas reveals that & = cos 20° is a root of
the cubic polynomial f = 8x3 — 6x — 1. Indeed, for any angle x,
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cos 3x = cos(x 4+ 2x) = cos x cos2x — sin x sin 2x

cos x (cos® x — sin® x) — 2'sin” x cos x

= cos’ x — 3 sin® x cos x
— 3 2
=cos” x —3cosx(l —cos” x)

= 4cos® x — 3cosx.

We obtain for x = 20° that
1
— =40’ —3a
2

from which it is clear « is a root of f.
Using the Rational Roots Test, one can show that f has no rational roots and is therefore

irreducible as a polynomial with rational coefficients. Thus ming(a) = g Lf=x— —x -3 ! which
has degree equal to 3. Corollary 5.46 yields [Q(«) : Q] = 3 so that by our numerlcal crlterlon
a, and therefore the 20° angle, are not constructible. O

6.4.2 Duplicating a Cube

The problem asks whether, given a constructible cube, it is possible to construct a cube of precisely
twice the volume of the given one. To effect such constructions it is necessary of course to extend
our constructions from the plane to three-dimensional space. This is not a serious issue though. The
problem is solved in the negative by demonstrating the following result.

Theorem 6.19. The unit cube cannot be duplicated, i.e., a cube whose volume is equal to 2
cannot be constructed with ruler and compass.

Proof. If it were possible to construct a cube whose volume is equal to 2, then each side of the
cube would have length /2. From Example 5.47 we know that.[Q(v/2) : Q] = 3, so that +/2 is
not constructible, and hence that this construction is not possible. O

6.4.3 Squaring the Circle

At issue is whether, given a constructible circle, it is possible to construct a square with precisely
the same area as the given circle. This problem is also resolved in the negative by considering the
unit circle, whose area is 7. A square of area equal to 7 would have a side of length /7 so that
constructibility of said square is equivalent to constructibility of +/7. Since the constructible numbers
are closed under squaring and square roots, the issue rests on the constructibility of . A famous but
rather difficult theorem asserts that 7 is a transcendental number, i.e., 7 is not algebraic over Q so
is not a root of any nonzero polynomial with rational coefficients. From Theorem 5.51 we know that
the infinitely many powers 1, 7, 72, ... are linearly independent over Q (i.e., no finite collection of
distinct powers is linearly dependent). Thus [Q(xr) : Q] is infinite (and not a power of 2).
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6.4.4 Constructible Polygons

Consider a regular n-gon P, (i.e., P, is a polygon with n sides of equal length) inscribed within the
unit circle with one vertex at the point (1, 0).

It is most convenient here to use radian measure for angles so that the set of vertices of P, is exactly
{(cos 2%’, sin 2%]) : j = 0,...n — 1}. Thus the regular n-gon is constructible if and only if cos = 2”]

and sin 2%’ are constructible numbers. With i denoting the complex square root of —1 and 0 any

real number, de Moivre’s theorem gives us e!? = cos + i sin 6. In particular, (e = )/ = cos 2L L+

i sin zﬂ so that the coordinates of the vertices of P, all lie in the field F;,, = Q(cos =L sin —) a

subfield of R. Let K, be the field Q(e o ,1). Since for every 6,

(eiﬂ)—l — e—i0
=cosf —isinf,

we see that cos 2—” — i sin £ also lies in K,,. From cos 0 = and sinf = ¢

that the coordlnates of all Of the vertices of P, lie in K,, and also that F,,(i) = K,
In order to investigate the conditions under which [F, : Q] is a power of 2, first observe that
[K, : F,] = 2 because F, is a subfield of the real numbers and 1, i constitute a basis for K,, over Fj,.

2xi
Similarly, if i is not in the field Q(e =), then also

2i

i0 —if 6 .
+Te it follows

Qe i) : Qe )] =2.
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As a consequence we see that
(K, : Q]
2

[@(6" i):Q
2

[Fn:Q]Z

2mi

i [Q(e™) : Q]

= @) : Qlor =5,

depending on whether or not i is in the field Q(e " ) Recalling that F,, = Q(cos =L sin —) we have
proved the following proposition.

2mi

Proposition 6.20. [Q(cos =~ i 2”) Q] is a power of 2 if and only if [Q(e n) Q] is a
power of 2. In particular, if the regular n-gon is constructible, then [@(cos =L sin 27T) Q] isa
power of 2.

The field extensions Q(eznﬂ) of @, known as the cyclotomic extensions, are very well studied for
their applications in number theory and other branches of mathematics. The integer [Q(e 2%) 1 Ql,
which is denoted by ¢(n), has great significance in number theory, some of which is investigated in
later chapters. Remarkably, ¢(n) is equal to the number of positive integers less than n whose greatest
common divisor with n is equal to 1. So, for instance, ¢(3) = ¢(4) = ¢(6) = 2, p(5) = ¢(8) = 4,
©(7) = ¢(9) = 6. In general, if n is prime, then ¢(n) =n — 1.

The contrapositive of the proposition gives us a method to show that certain n-gons are not
constructible.

Ezample 6.21. The regular 9-gon is not constructible. To see this let & = cos 2X. Note that

1 2 21 3
—— =cos— =cos3(—) = 4a” — 3«
2 3 9

so that « is a root of 8x* — 6x + 1. Once again the Rational Roots Test shows that this
polynomial is irreducible and arguments similar to those used in the trisection problem show
that « is a root of no quadratic polynomial with rational coefficients. We again obtain that
[Q(@) : Q] is equal to three so that

[@(COS . sin —) Ql —[Q(COS . sin —) Q(cos —)][@(COS —) Q]

is not a power of 2.

Exercise 6.22. Use the Pythagorean theorem to show that [Q(cos,sin6) : Q(cosf)] < 2.
Conclude that it suffices to consider [Q( cos 27”) : Q] in Proposition 6.20.

While Proposition 6.20 gives the necessary condition that ¢(n) must be a power of 2 for the regular
n-gon to be constructible, the converse is also true:

Theorem 6.23. Q(e%) 18 a constructible field, and therefore the regular n-gon is con-
structible, if and only if p(n) is a power of 2.

A complete proof of this theorem is beyond the scope of this book, but using it we see that the
7-gon is not constructible, while the 17-gon is.



104 6 Ruler and Compass Constructions

Exercises

1. Prove that the angle 8 is constructible if and only if cos 6 (and sin ) are constructible numbers.
2. Prove that a 90° angle can be trisected.
3. Prove that a 45° angle can be trisected.
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Chapter 7
Cyclic Codes

In this chapter we will build codes from quotient rings of Z,[x]. One advantage of this construction
will be that we can guarantee a certain degree of error correction. We first make a connection between
words and elements of such a quotient ring.

7.1 Introduction to Cyclic Codes

Let n be a positive integer. If f(x) € Z,[x] is a polynomial of degree n, then by the Division
Algorithm, each element of the quotient ring Z,[x]/( f(x)) can be represented uniquely as the coset
of a polynomial of degree less than n. In other words, if g(x) € Z,[x], then we may write g(x) =
q(x) f(x) + r(x) with deg(r(x)) < deg(f(x)) = n. Then g(x) + (f(x)) = r(x) + (f(x)); this
yields the desired representation for the coset g(x) 4+ (f(x)). Uniqueness follows from the Division
Algorithm. However, we recall the idea. If r(x) + (f(x)) = r'(x) + (f(x)) with deg(r), deg(r’) < n,
then r(x) + r'(x) € (f(x)). Thus, f(x) divides r(x) + r’(x). However, this forces deg(r + r’) > n
unless r + r’ = 0. Since deg(r + r’) # n, we must conclude that r + r’ = 0, so r’ = r. Therefore,
there is a 1-1 correspondence between elements of Z,[x]/( f(x)) and polynomials of degree < n. On
the other hand, if Z;[x], is the set of polynomials of degree < n, then identifying a polynomial with
its n-tuple of coefficients provides a 1-1 correspondence between Z} and Z;[x], given by

—1
(@o, ... an—1) > ap + a1x + -+ + a1 x"

We will use the polynomial f(x) = x" + 1 in our discussion below and then identify Z,[x]/(x" + 1)
with the set of words of length . Since words in natural language are not typically written as vectors,
the notation a; ---a, will be used in place of (ai,...,a,) for vectors in Z; viewed as words in a
linear code. For instance, in Z,[x]/(x’ + 1) the word 101001 is identified with the residue class of
14+ x2 4+ x°.

Electronic supplementary material The online version of this chapter (doi:10.1007/978-3-319-04498-9_7) contains
supplementary material, which is available to authorized users. The supplementary material can also be downloaded
from http://extras.springer.com.
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Define a map n : Z) — 7} by n(ai---a,) = ayai---a,—1. This is the (right) shift function
because it shifts the components of a vector to the right, and moves the last component to the front.
In terms of the representation of Z} as Z,[x]/(x" + 1), the map 7 is given by

m(ao+ -+ a1 X"+ (X 1) = apg Faox -+ apax" 4+ (X" + 1),
Definition 7.1. Let C be a linear code of length n. Then C is a cyclic code if for every v € C,

we have w(v) € C.

Cyclic codes with good error correcting and decoding properties arise naturally from quotients of
polynomial rings.

Example 7.2. The codes {000, 101,110,011} and {00000, 11111} are cyclic codes.

FEzxample 7.3. The Hamming code is the linear code

C ={0111100,0100101,0011001,0010110,0001111,0110011, 1010101, 1111111,
1100110, 1011010, 1000011, 0101010, 1001100, 1110000, 0000000, 1101001}.

Since 0111100 € C but 7(0111100) = 0011110 ¢ C w see that C is not cyclic.
Ezample 7.4. Recall that the Hamming code is the nullspace of

0001111
H=]10110011
1010101

Rearranging the columns of H permutes the entries of its nullspace vectors and can result in a
cyclic code. Let

1001011
A=10101110
0010111

Then the nullspace of A4 is

C = {1010001,0110100, 1101000,0010111, 1000110,0100011, 1111111, 0001101,
1001011, 1100101, 1110010,0111001, 1011100,0101110, 0011010, 0000000}

A calculation will show that this code is cyclic. One way to verify this is to note that if v is the
first vector listed, then (v), 7%(v), ..., 7°(v) are all in the code. Note that 77 (v) = v. Also, if w
is the fourth vector, then 7(w), ..., 7%w), 77(w) = w are also in the code, and are all different
from the 7 vectors v, ..., 7°(v). Finally, the two remaining vectors are 0000000 and 1111111,
which are invariant under 7. The description

C={n"():0<i<6}U{x'(w):0=<i<6}U{0000000,1111111}.
together with a short proof shows that C is cyclic. Admittedly, this ad-hoc demonstration

that the modified Hamming code is cyclic is not very natural. A closer examination of the
connection between quotients of polynomial rings and cyclic codes will clarify this issue.
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The utility of the polynomial x"” 4 1 emerges in the next proposition. The proof, which is left to
the reader, is a straightforward comparison of 7 ( f(x) + (x" + 1)) with xf(x) 4+ (x" 4+ 1) using
the identification of Zj with Z,[x]/(x" + 1). Set I = (x" + 1) and recall that in Z,[x]/I we have
xt"=—-1=1.

Proposition 7.5. Under the identification of Z; = Z[x]/1, the map 7 is given by w(f(x) +
I=xf(x)+1.

Theorem 7.6. Let C be a cyclic code of length n. Then C is an ideal of Zy[x]/I. Conversely,
every ideal of Z,[x]/1 is a cyclic code.

Proof. Since C is closed under addition, to show that C is an ideal it suffices to show that for
n—1

f+1eCandg+1ex]/I,gf +1 =@+ I1)(f+1)eC. Writing g = Zaixi, and
i=0
using the linearity of C, it suffices to show that x’ f + I € C for each 0< i < n — 1. By the
proposition, x’ f + I = n’(f + I) which lies in C by our assumption that C is cyclic.
Conversely, if C is an ideal of Z,[x]/I, then C is a Z, vector subspace of Z,[x]/I hence a
linear code. But closure under multiplication by x + I and the proposition shows that C is also
cyclic. O

The following theorem and its corollaries are instances of the “isomorphism theorems” important
throughout modern algebra.

Theorem 7.7. Let R be a commutative Ting and I an ideal of R. Then the ideals of R/I
are in one-to-one correspondence with the ideals of R which contain I. The correspondence is
giwen as follows: For J an ideal of R containing I, the corresponding ideal of R/I is J/I =
{a+1:aelJY. ForJ anideal of R/I, the corresponding ideal of R is{a € R:a+ 1 € J}.

Remark 7.8. Three things must be shown:

1. Given J an ideal of R containing 7, J/I is an ideal of R/I.
2. Given J anidealof R/I,J ={a € R:a+ I € J}is an ideal of R containing /.
3. The processes of 1. and 2. are inverse to each other.

Proof. For 1., observe that fora,b € J,(a+ 1)+ (b +1)=(a+b)+ 1 € J/I because J is
closed under addition. Similarly, forc + 7 € R/I,(c+ I)(a+1)=ca+ 1€ J/I.

For 2., suppose that a,b € J (i.e,a+ I,b+ 1 € J), and that c € R. Then (¢ + b) + I =
(@+I)+(b+1)eJsothata+beJ. Also,ca+1 = (c+1I)a+1)eJsothatcae J. It
is clear that J contains I, sincea + I = 0+ [ lies in J bar for every ain 7.

To establish 3., note first that given an ideal J of R, J is certainly contained in {a € R :
a+ 1 € J/I}. On the other hand, this set isequalto{a € R:a+ I = b + I for some b € J}.
Buta + I = b + I implies that a —b € I C J and, since b € J, we obtain that a € J as well.
ThusJ ={aeR:a+1€J/I}.

For an ideal J of R/I and J = {a € R : a + I € J} the corresponding ideal of R, we show
that J = J/I. Observe that a + I € J if and only if @ € J, and this holds if and only if
a + I € J/I by definition of this ideal. O

We have seen that for F' a field, all ideals of F[x] are principal. The same holds for quotient rings
of F[x].

Corollary 7.9. Let F be a field, I an ideal of F[x], and J an ideal of F[x]/I. Then J is a
principal ideal.
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Proof. By Theorem 7.7, J = J/I for some ideal J of F[x]. Since every ideal of F|[x] is principal
J =(g)forsomeg € F[x].Ifa+1 € J/I,thena € J so that a = gh for some h € F[x]. Thus
a+1 =gh+1 = (g+ I)(h+ I), which lies in the principal ideal (g + I) of F[x]/I. Since
g € J, we obtain immediately that (g + 1) € J/I. O

Corollary 7.10. Let C be a cyclic code of length n. Then there is a divisor g of f(x) = x" +1
in Z[x] so that C = (g)/(f). Conversely every divisor of f gives rise to a cyclic code in this
manner.

Proof. Since C is an ideal of Z,[x]/(f) it is principal, generated say by g, and (f) C (g). But
(f) C (g) means precisely that g divides f. 0

Definition 7.11. The generator polynomial of a cyclic code C of length n is a generator of C
as an ideal of Z,[x]/(x" + 1).

Proposition 7.12. Let C be a cyclic code of length n with generator polynomial g. Then
[g(x), xg(x),...,x"" 179 g(x)] is a basis for C; therefore, dim(C) = n — deg(g).

7.2 Finite Fields

Recall Proposition 5.24, which says that if p(x) is an irreducible polynomial in Z,[x], then the
quotient ring Z,[x]/(p(x)) is a field. Recall that the degree of Z,[x]/(p(x)) as a field extension of Z,
(i.e., its dimension as a Z, vector space) is equal to the degree of p(x). Therefore, if deg(p(x)) = n,
there are 2" elements in this field. We will use this idea to construct finite fields of size a power of 2
as a tool in building codes. We remark that if Z,[x]/1 is such a field, then for any element f(x) + I,
then (f(x) + 1)+ (f(x) + 1) = (f(x) + f(x)) + I. However, since f(x) € Z;[x], we have
f(x) + f(x) = 0. Thus, any element « of Z,[x]/ I satisfies & + o = 0, or —a = «. This fact will be
used frequently.

We will denote by GF(q) a finite field with ¢ elements (g = 2" where n = [GF(q) : Z]). To
produce such fields requires the production of irreducible polynomials of degree n in Z,[x]. Given
a polynomial p(x) € Z,[x], we can determine if p(x) is irreducible by using a computer algebra
package or by a tedious calculation if deg(p) is not too large. However, if deg(p) < 3, we have an
easy test for irreducibility.

Proposition 7.13. Let F be a field, and let p(x) € F[x] with 2 < deg(p) < 3. Then p(x) is
irreducible over F if and only if p(x) has no roots in F.

Proof. One direction is easy. If a € F with p(a) = 0, then x — a divides p(x), and so p(x) =
(x —a)q(x) for some polynomial ¢(x). The assumption on the degree of p(x) shows that ¢g(x)
is not a constant polynomial. Therefore, p(x) is reducible. Conversely, suppose that p(x) is
reducible. Then we may factor p(x) = f(x)g(x) with each of f and g nonconstant. Since
deg(p) < 3 and deg(p) = deg(f) + deg(g), we conclude that either deg(f) = 1 or deg(g) = 1.
Suppose that deg(f) = 1. Then f(x) = ax + b for some a,b € F with a # 0. Then f(x)
has a root —ba~! € F; this element is then also a root of p(x). A similar conclusion holds if

deg(g) = 1. O

Example 7.14. The polynomial x> 4+ x + 1 is irreducible over Z,; thus, we obtain the field
Zo[x]/(x* + x + 1). Its elements are the cosets 0+ 1,1+ I, x + I, x + 1 + I. We write the first
two cosets as 0 and 1 and the latter two as a and b. We then see that + and - are given by the
tables below.
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+ 10 1 a b - 10 1 a b
0 /0 1 a b 0/0 0 0 O
1 /1 0 b a 1 0 1 a b
a la b 0 1 a 0 a b 1
b b a 1 0 b 0 b 1 a

These tables are exactly those of Example 3.30. Those tables were built from this quotient
ring.

One important property of finite fields is the existence of primitive elements.

Definition 7.15. A primitive element of a finite field F is an element « so that every nonzero
element of F is a power of «.

For convenience, we write F'* for the set of nonzero elements of F. Referring to Example 7.14,
both a and b are primitive elements, since F* = {1,a,b} and b = a?> and a = b>. Note that
1 =a® = b°, so 1is always a power of any nonzero element.

Example 7.16. The polynomial x3 + x + 1 is irreducible over Z, since it does not have a root
in Z,. Thus, if I = (x> + x + 1), we may form the field Z,[x]/I. This field has 8 elements.
One representation of these elements is as the cosets of polynomials of degree less than 3.
Alternatively, if « = x + I, then we have the following table.

Power of « Coset representative

af 1

1 X

2 X2

3 x+1
4 x? +x
3 xX24+x+1
6 241
7 1

QR R R R R R R

To help see how to make these calculations, we point out that a® = (x+1)* = x3+ 1. However,
x3 4+ x +1 e I; therefore, x> + I = x + 1 + I. We can use this to calculate further powers of
«. For example,

Ol4=Ol3'Ol

=(x+1+Dx+1)
=x+Dx+1
=x*+x+1
By using this idea, along with the relation x* + 1 = x + 1 + I, we can obtain all the powers

of a. Alternatively, we can use the Division Algorithm. For instance, since a® = x> + I, we
calculate that x° = (3 +x + D(x2+ 1) + x> +x + 1, yielding x> + I = x>+ x + 1+ 1.

It is true that every finite field has a primitive element. However, the proof of this fact involves more
complicated ideas than we will consider, so we do not give the proof. However, for any example, we
will be able to produce a primitive element, either by a hand calculation or by using a computer
algebra package.
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Lemma 7.17. Let a be a primitive element of GF(2"). Then o* =" = 1. Furthermore, o # 1
forallr with1 <r <2"—1.

Proof. Since GF(2")* = {ai 1> 1} is a finite set, there are positive integers r < s with
a” = . Then a*™" = 1. Thus, by the well-ordering property of Z, there is a smallest integer
t satisfying o' = 1. We next show that GF(2")* = {ai 0<i < t}. To see this, if i € Z, then
by the Division Algorithm, there are integers ¢ and r with i = gt +r and 0 < r < t. Then
o =a?"t" = (a')a” = o since &' = 1. This proves the claim. Furthermore, if 0 <i < j < ¢,
then o # a/, since if @' = @/, then @/~ = 1, contradicting minimality of ¢. This proves that
{ai 0<i< t} has exactly ¢ elements. Since this set is equal to GF(2")*, which has 2" — 1
elements, we see that t = 2" — 1. This proves that «* ~! = &' = 1. Furthermore, we have
shown that if 0 < i < 7, then a® # o, showing that o’ # 1if0 <i <t =2"—1. O

7.3 Minimal Polynomials and Roots of Polynomials

Let I be the ideal (x> + x + 1) in Z[x] and F the field Z,[x]/I described in the previous section. If
« is the coset of x, then we note that

CHo+l=+D+@x+D+A+D=x>+x+1+1
=0+1.

Therefore, « is a root of the polynomial x> + x + 1. In particular, « is algebraic over Z,. In fact,
we note that each of the three nonzero elements of F is a root of x> + 1 = (x + 1)(x? + x + 1).
Moreover, 0 is the root of the polynomial x. As we now see, each element of a finite field is algebraic
over Z,, hence a root of a nontrivial polynomial in Z,[x]. Since the base field is understood to be Z,,
the minimal polynomial min z, («) of an element alpha of an algebraic extension of Z, will be denoted
My (X).

Theorem 7.18. Let o € GF(2"). Then « is algebraic over Z, and the minimal polynomial
My (x) := ming, (&) divides x** + x.

Proof. If a = 0, then m4(x) = x, and this clearly divides x*' 4 x. So, suppose that a # 0. We
give a proof assuming the existence of a primitive element for every finite field. Suppose that
B is a primitive element of F. Then f%'~! = 1 by Lemma 7.17. Since o # 0, there is an i with
o = B. Thus,

a2”—l — (IBi)Z”—l — (ﬂZ”—l)i — 1i =1.

This proves that « is a root of x'~! 4+ 1. Multiplying by x yields x> + x, and « is then also a
root of this polynomial. Since by definition m,(x) generates the ideal of all polynomials in Z,
having « as a root, we see that m, (x) divides x>' + x. O

We give an alternative proof of the previous theorem without using the existence of primitive
elements, partly to be more complete, and also because it is a look ahead to group theory. The existence
of a primitive element was used only to prove that o>’ ~! = 1. We verify this fact without using
primitive elements.

Proposition 7.19. Let F be a finite field with |F*| = q. Then a? = 1 for each a € F*.
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Proof. List the elements of F* = {aj,...,a,} and let a be any element of this set. We claim
that F* = {aai,...,aa,}. To see why, we clearly have {aa;,...,aa,} C F* since a # 0.
For the reverse inclusion, we note that, given i, the element a;a™! € F*, so there is a j
with ;™' = a ;. Then a; = aa;. This proves the claim. Next, since multiplication in F* is
commutative (and associative), multiplying all of the element of F* together, we see that

ay---ag = (aay) - (aay) = a(a;---ay).

Cancellation yields a? = 1, as desired. O

Example 7.20. Consider the field GF(8) = Zs[x]/(x3 + x + 1) = Z,[x]/I. As we saw in
Example 7.16, « = x + [ is a primitive element. By Theorem 7.18, the minimal polynomial of
each element of GF(8) divides x® + x. If we factor this polynomial into irreducible polynomials,
we obtain

Brx=x(x+ D +x+1)(x°+xF+1).

The minimal polynomials of 0 and 1 are x and x + 1, respectively. We saw that x> + x + 1
is the minimal polynomial of «. The remaining elements o2, ...,° have minimal polynomial
equal to one of these two cubics. To see, for example, which is the minimal polynomial of a2,
we simply evaluate one at o?. Trying the first cubic, we have;

@+’ +1l=c+’+1=(@+1)+a*+1

we used that x® 4+ 7 = x>+ 141 to see that «® = a® + 1. Thus, m,2(x) = x> +x + 1. Similarly,
if we try o, we have

@+l +l1=++1=c>+*+1
=+ @+ D) +1l=0’>+a#0

since o’ = 1 and o® +a+ 1 = 0. Therefore, m,3(x) = x>+ x? + 1, the only possible choice since
o is not a root of the other three factors of x®+x. If we were to finish this calculation, we would
see that x> +x+1 = mq(x) = my2(x) = mya(x) and x> +x2 +1 = mys (x) = Mmys(x) = mye(x).
By making a simple but quite helpful observation, we can make the process of finding minimal
polynomials easier. To help motivate this result, we note that x> + x + 1 is the minimal
polynomial of &, @?, and a*, and x* + x? + 1 is the minimal polynomial of o, ® = («®)?, and
o’ = (o)™

To help us prove the following proposition, we note that if a,b € GF(2"), then (a + b)?> =
a’® + 2ab + b* = a® + b? since 2¢ = ¢ + ¢ = 0 for any ¢ € GF(2"). Thus, we have the formula

(a + b)? = a® + b%. By an induction argument, we see that (a; + -+ + a,)> = a? + - -+ + a2 for any
r and any a; € GF(2").

Proposition 7.21. Let f(x) € Zy[x]. If a € GF(2") is a root of f(x), then a? is also a root
of f(x).

Write f(x) = by + --- + b,—1x" "' + x". Note that each b; € Z, = {0, 1}. Since f(a) = 0, we
have by + bjo + + -+ + b1’ ! + . Therefore,
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2
@) =) "bi(@?) =) bl = (Z biaf) = f@?=0.
Going back to the previous example, since my(x) = x> + x + 1 has « as a root, the proposition
implies that &? and a* = (a?)? are roots as well. Their minimal polynomials must also be x> + x + 1
since the minimal polynomial of each divides x3 4+ x + 1, and x> + x + 1 is irreducible over Z,,
i.e., it has no divisors other than itself and 1. Similarly, once we know that m3(x) = x> + x2 + 1,
we conclude that this is also the minimal polynomial of (¢®)?> = «° and (¢®)* = «°. However,
(@*)® = (@°)? = a'” = &, so we do not produce any more roots of x* 4+ x> + 1. By the way, this
shows that over GF(8), we have the factorizations

¥ tx 1= —a)(x —od)(x — o),

PHxtrl= (@ —ad)x—a®)(x —a).
Thus,

Brx=xx+DEP+x+DEP+x2+1)
=x—=-0)(x—Dx—a)(x —ad)(x—ac’)(x —a*)(x —a’)(x —a®).

In other words, x8 = x has one linear factor for each element of GF (8) as must be the case from the
Remainder Theorem and its consequences.

Exercises

The following fact will be useful in some of the exercises: It is proved in a more advanced algebra
course that given any field F there is a smallest field extension K of F' in which every polynomial
p(x) in F[x] factors into linear factors, i.e., every root of p(x) lies in K. Such a field extension is
called an algebraic closure of F. For example, C is an algebraic closure of R.

1. Prove Proposition 7.5.

2. Let K be an algebraic closure of Z,. For m > 0 consider the polynomial p,,(x) = x> + x with
coefficients in Z, that arose in Theorem 7.18. Prove that the collection of roots in K of p,,(x)
is itself a field extension of Z,. For example, if « and B are roots of p,,(x), then (a + B)*" =
o?" + B?" = a + B so the collection of roots of p,,(x) is closed under addition.

In fact p,, (x) has exactly 2™ distinct roots. In this way we obtain field extensions of Z, of every
possible dimension. The next few exercises provide a demonstration of this fact. In Exercises 3—6
let F' be any field.

3. Let f € F[x]. Writing f(x) = Y o;x', define the formal derivative of f to be f'(x) =
i=0
Y ia;x'"!. Prove that formal differentiation satisfies the sum and product rules: (f + g) =
i=1
f'+ g and (fg) = f'g + fg'. The chain rule also holds. Note that if f = x? € Z;[x] then
f’ = 0, so unlike in calculus, polynomials of O derivative don’t necessarily represent constant
functions.

4. Suppose that K is an algebraic closure of F. Let f € F[x] and suppose that « € K is a root of
multiplicity greater than one of f, meaning that (x — «’)? divides f in K[x]. Prove that « is also
aroot of f”. In particular, show that as polynomials in K[x] the gcd(f, g) # 1.

5. Let L be any extension field of F. A pair of polynomials f and g in F[x] can also be viewed as
lying in L[x]. Use Proposition 5.5 to see that if d and e are the gcds of f and g computed over
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F and L respectively, then each one divides the other. Thus ged( f, g) is well defined in the sense
that it is the same polynomial in F[x] whether f and g are viewed in F[x] or L[x].

6. Prove that the polynomial f € F[x] has no multiple roots if and only if f and f” are relatively
prime.

7. Prove that the collection of roots of the polynomial p,,(x) of Exercise 2 above is a field with
exactly 2" elements.

8. Let F = GF(8) as in Example 7.22. There are three roots of the polynomial x* + x? + 1 in F;
find them. Choose one of the roots; call it . Calculate ¢, 2, and #* to see that ¢, 12, * are the three
roots of x> + x? + 1.

9. Let F = GF(8) again. There are three roots of the polynomial x> + x + 1 in F; find them.
Choose one of the roots; call it ¢. Calculate ¢, ¢, and #* to see that 7, £, t* are the three roots of
X +x+ 1

10. Let a be a root of the polynomial x* + x + 1 € Z,[x]. Foreach 0 < i < 15 express o' as a Z,
linear combination of 1, o, 2, o verifying that « is a primitive element for GF(16).

7.4 Reed-Solomon Codes

The music that you hear on a CD and the information in QR codes (the increasingly common two-
dimensional bar codes readable by smart phones) are encoded using a special class of cyclic codes
known as Reed—Solomon codes. As we saw in Sect. 7.1, we can produce a cyclic code of length m
by finding a polynomial g(x) which divides x” + 1. We use this idea to produce important codes of
length 2" — 1 using a primitive element for G F'(2"). Choose a positive integer n, and let ¢ be an integer
with ¢ < 2"~! — 1. For « a primitive element of GF(2"), let g(x) be the least common multiple of the
minimal polynomials of the elements o, o2, ..., a? (i.e., the polynomial of least degree with these
roots). The code whose generator polynomial is g(x) is called a Reed—Solomon code with designated
distance d = 2t + 1. We determine the dimension of this code and see why d is called the designated
distance in the theorem below. We denote the code constructed in this way RS(2" — 1, ¢, @), since its
length is 2" — 1 and the code depends on ¢ and the choice of a primitive element o of GF(2").

Example 7.22. Let n = 3, let a be a primitive element of GF(8), and let C = RS(7,1,).
This means that the generator polynomial g(x) is the minimal polynomial of « since this
polynomial will vanish on @ and «? Thus deg(g(x)) = 3, so the dimension k of C is 2" — 1 —
deg(g(x)) = 7 —3 = 4. To be more explicit, let us represent GF(8) as Z,[x]/(x> + x + 1)
and choose « to be the coset of x. Then g(x) = x> 4+ x + 1. From our association between
polynomials and words, the basis [g(x), xg(x), x2g(x), x3g(x)] corresponds to the four words
[1101000,0110100,0011010,0001101]. A generator matrix for C is then

1101000
0110100
0011010
0001101

If we compute a parity check matrix for C, we can get

1011100
H=|1110010
0111001
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to be such a matrix. Looking at H, we see that it closely resembles the Hamming matrix; in
fact, it is obtained from the Hamming matrix by appropriately rearranging the columns. This
Reed—Solomon code is obtained from the (7,4) Hamming code by a permutation of the entries
of the codewords. Recall that the (7,4) Hamming code corrects one error.

Theorem 7.23. Let C = RS(2" — 1,t, ). Then the distance d of C is at least 2t + 1 so that
C corrects at least t errors.

Proof. Set m = 2" — 1. The code C consists of all cosets in Z;[x]/(x” + 1) of polynomials with
roots o, a?, ..., a% . According to our convention that identifies polynomials of degree strictly
less than m with the vector of their coeflicients (of length m), C is the nullspace of the 2¢ x m
matrix

l o o ... ot

1 o (@®)? ... (@)

1o (@)% ... (@) !
H =

i O{.ZI (O[Z't)Z (O{2t')m—l

The distance of C is at least d if every set of d — 1 = 2¢ columns of H is linearly
independent (i.e., if their sum is nonzero). This condition holds if and only if every submatrix
of H consisting of 2¢ columns has nonzero determinant. To see that this is satisfied, consider
such a submatrix:

all a2 .. olu
@ @) ()
@) (@)

(ajl)Zt (aj;)2t o (ajz.z)Zt

The following lemma shows, after factoring out Aozjf from the ith column, that det(M) =
(a/'a/>---a/2)I1 where IT is the product of all (/" — /¥) where j; > ji. In particular, since
2t <m < 2", /i —a’k # 0 for each such j;, ji, we see that IT # 0. O

Lemma 7.24 (Vandermonde Determinant). Let F be a field and ay,as,...,a, distinct
elements of F. The determinant of the Vandermonde matrix

1 1 ... 1
aq ay ... dp
V =
n—1 ,n—1 n—1
aj a, e ay

is equal to (a,—ai)(an—az) - - - (an—an—1)-(An—1—a1) - - - (An—1—an—2) - .- (@1—a1) = ;5 ;(a;—a;).
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Proof. Argue by induction on n beginning with n = 2 :

det(l l)zaz—al.
a) ap

Suppose that the result holds for n elements of F', n > 2. Consider the matrix

1 1 ... 1 1
aq a ... dy X
M(x) =
aq’_l ag_l . a,’}_l X"l
@@ a X
Note that M(a,+1) is the Vandermonde matrix corresponding to ai,ds, ..., d,+1. The determi-
nant of M(x) is a polynomial of degree precisely n with the n distinct roots a;,as,...,a,. By

repeated use of the Remainder Theorem, det(M(x)) = aIl?_,(x —a;) where « is the coefficient
of x". But the coeflicient of x" is exactly the determinant of the Vandermonde matrix

1 1 ... 1

aq ay ... dy

n—1 n—1 n—1
a; a, ... ay

which, by the induction hypothesis, is equal to I1;.;(a; — a;). Thus det(M(x)) = TI7_,(x —
a;)I;-j(a; —a;) and evaluation at x = a,4 completes the proof. O

Ezxample 7.25. Let’s build a 3 error correcting code of length 15, i.e., RS(15, 3, «) where o =
X € Zs[x]/(x* + x + 1) is a primitive element for this concrete realization of GF(16). The
objective is to find the polynomial g € Z,[x] of least degree with roots a,a?, ..., a°. Note that
Mg (x) = x* + x + 1 so that x* + x + 1 divides g. Recalling that if 8 € GF(16) and f € Z,[x]
has B as a root then 8% is a root of f for every i, as a root we see that o and a* are also roots
of my(x).

Now we must determine my3(x), mys(x), and mye(x). Arguments similar to those above
show that h(x) = (x — a?)(x — a®)(x — a®)(x — «'?) divides m,3(x) and therefore g (note that
a'® = 1 so that a** = «°). Thus this product must equal m,3(x) = mye(x) if it lies in Zs[x].
One can either multiply out the factors of & and check coefficients, or argue as follows. Since
the degree of h is four, h(x) = m,3(x) if there is an irreducible polynomial of degree 4 in Z;[x]
that has ® as a root. Of the polynomials of degree 4 in Z,[x], only x* 4+ x 4+ 1, x* + x> 4+ 1, and
x* 4+ x3 + x% 4+ x + 1 are irreducible (check this!). Evaluating the last polynomial at a* reveals
that x* + x* + x2 + x + 1 = mys(x).

Finally we determine m,s(x). Consider (x — o’)(x — «!?) noting that a®® = «°. We see
that (x —a®)(x — ') = x> + (@ + a')x +1 = x> + x + 1 = mys(x). Thus g(x) =
(x* x4+ 1) (x* +x3 4+ x2 4+ x +1)(x? + x + 1) generates a 3 error correcting code of dimension 5.

Remark 7.26. Reed—Solomon codes are a special subclass of the cyclic codes known as BCH
codes. Just as with Reed—Solomon codes, BCH codes are built with a primitive element « for
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GF(2"), but instead of having length 2" — 1, a general BCH code can have as length any divisor

m of 2" — 1. Choosing f = ali e GF(2"), and some i > 0, the generator polynomial for a
BCH code correcting ¢ errors vanishes on g7, g1, ... piT2~1,

Exercises

Exercises 1-3 refer to the RS (15, 3, @) code constructed above.

1.
. Determine whether or not x'* 4+ x'2 + x!' + x!0 4+ x6 + x3 4+ x2 + 1 is a codeword polynomial.
. Check that r(x) = x> + x12 + x" + x10 4+ x% + x8 + x5 + x* + x3 + x + 1 is not a codeword.

Write down any four codeword polynomials in this code.

Calculate the S; = r(a') and write them as powers of . Next, obtain the 2¢ x 2¢ matrix A whose
i, j entryis S; ;1. Determine the number of errors v by finding the largest / for which the / x/ top
left part of A is invertible. Use Section-7.4-Exercise-3.mw to help you with these computations.

. Consider the RS(15,2, ) code determined by & = X € Z,[x]/(x* + x + 1). Find the generator

polynomial g(x) (its degree is 8) and write down two nonzero codewords. Change each by making
two errors. Run through, for each word, the steps you took for the previous problem, and see that
you recover the original codeword.

. Using the code of the previous problem, take a valid codeword and change it by making three

errors. Go through the decoding procedure for it. Do you recover the original codeword?

. A fact about RS codes is that if g is the generator polynomial for an RS code defined with a

primitive element for GF(2") and m = deg(g), then the code has dimension 2" — 1 —m. Determine
the number of codewords in the codes of Exercises 1 and 4.

. If you wish to transmit color pictures using 2,048 colors, you will need 2,048 codewords. If you

wish to do this with an RS code using the field F' of Exercise 1, what degree of a generator
polynomial will you need to use? By using the generator procedure, find the largest value of ¢ for
which the corresponding code has at least 2,048 codewords (recall that ¢ < n/2 in order for the
code to correct at least ¢ errors, so do not consider values of ¢ larger than n/2). What percentage
of errors in a codeword can be corrected?

. Continuing the previous problem, if you instead use F = Z[x]/(x> + x* + 1), determine

the length of an RS code you obtain from this field, and determine the degree of a generator
polynomial needed to have 2,048 codewords. What is the largest value of # you can use to have
2,048 codewords? By using this larger field, can you correct a larger percentage of errors in a
codeword than in the previous problem?

7.5 Error Correction for Reed—Solomon Codes

In this section a procedure is developed for the correction of any set of ¢ or fewer errors for an
RS (2" — 1,¢, o) code. Using our convention identifying words with cosets of polynomials of degree
strictly less than 2" — 1, we’ll consider only polynomial expressions. Thus, we suppose that c¢(x) is a
codeword that is received as 7 (x). If r(x) # c(x), write r(x) = c(x) + e(x), where e(x) is the error
polynomial. Note that e(x) = x™! 4+ x™2 + --- 4+ x" where k is equal to the number of errors that
have occurred in positions my, ms, ..., my. Our decoding procedure will first determine k and then
locate the m ;, thus determining e(x). The codeword c(x) is then recovered as r (x) + e(x).
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By the construction of the RS code, c(a’) = 0 fori = 1,2,...,2t. This already gives us some
information about e(x), namely, fori = 1,2,...,2¢ we have

r@) = c(@) +e@)
= e(a).
In particular, the 2¢ elements of GF(2") given by
e(@’) = (@) + (@) + ...+ (@™)

are known, and from these we will recover k and the m ;. To that end, foreach j = 1,... ,k set Y;
equal to the as yet unknown powers o/ of our primitive element for G F'(2"), so that

k
e(o) = ZY,

J=1

k
e(@?) = ZY-Z,
j=1

k
e(@*) = ZYjZ’.
j=1

To simplify the notation and to emphasize the relationship with the Y, set
k
e@) =58 =SY....Y%) =) Y]
j=1

Thus, our goal is to determine k and the Y; by constructing a polynomial in GF(2") whose roots are
precisely the Y;. Solving for the Y; as powers of « will give the positions of the errors.

Certainly L(z) = (z 4+ Y1)(z + Y2)--- (z + Y%) is the desired polynomial, called the error locator
polynomial, but we don’t as yet know its coefficients. We can, however, calculate them from the S;
together with a version of a result known as Newton’s identities. Collecting coefficients of powers of
z we have

k
L(z) = Zak_,- (Y1,....Y)Z

i=l1

where oy = 1,

k
O'l(Yl,...,Yk)z Yi+---+ Y, ZZY’

J=1
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(V1. Y) =Y2+ Yt + VYt 4 Y+ 2= Y VY,

I<i<j<k
os(Yi.....Y) = Y YY;Y, and
I<i<j<r<k
O'k(Y],... s Yk) = Yle"'Yk
are known as the elementary symmetric functions in Y;,7Y;, ..., Y;. The (to be determined) o; are

related to the (known) S; by Newton’s identities:

Lemma 7.27. For eachi =1,2,...,2t we have

Siok + Si10k—1 + -+ Sitk—101 + Si+x = 0.

k
Proof. Foreach j =1,...,k, evaluate L(z) = Zok_i(Yl, ..., Y17 at z =Y, to obtain

i=1
0=Y +0Y " +0Y 7+ -+ 0¥ + 0.
Multiplying each equation by Y results in
0= Y oy 4oy P2 g YT Y

and summing these j equations yields

k k k k k
0= YV a4 ko Y 3
j=1 j=1 j=1 j=1 j=1
which is the desired result. O

Recalling once again that we are working over Z,, view the system of equations S;ox + S +10k—1 +
~ 4 Siqx—101 = Siqr for 1 < i < k as a linear system in the k£ unknowns o; with coefficients
Si+k—j- In matrix form this becomes

Ok
St S oo Sk Ok—1 Sk+1
Sy 83 Sk+1 . _ | Sk+2 (%)
Sk Sk+1 -+ - Sk . Sk

0]

If the matrix of coefficients is invertible we solve it for the o;, which are the coefficients in the
error locator polynomial L(z), then solve L(z). Expressing the roots of L(z) as powers of « locates
the positions of the errors.

All of this development is done under the assumption that k errors have been made. But as of yet
we don’t know the value of k. The next lemma enables us to determine k.
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Lemma 7.28. Let S be thet xt matriz

St S .08
Sy 83 Si+1

St St -+ S
Then k is the largest integer for which the k X k submatrix

St S ... Sk
S, — Sy 83 Sk+1
k_

Sk Sk ... Sk
is invertible.

Thus to find k begin with the matrix S. If S is invertible, then k = ¢. Otherwise, delete the last
column and last row of S and check for invertibility. Iteration of this process will result in an invertible
matrix S; and hence the linear system % can be solved for the o;.

Proof (Of the lemma). We show that the matrix Sy is nonsingular while if / > k the matrix S;
k

is singular. Note that [ < . Recalling that S; = ZY j’ , the matrix S; factors as

j=1
St S ...8)
Sy 83 Si+1 | _
S Si41... 8
S
| I B | Y10 ...0\ /1 Y32, v/}
Y, Y, ... Y 0Y,0..0 1Y2Y22..Y21_1
ylmtyl=toooyt ) No oL /Ny, Ly
A D AT
Moreover, the entries of S; depend only on Yi,...,Y; Thus, if [ > k, we may take Y;4; =
Yiy2 = -++ = Y, = 0 to obtain that D, and therefore Sy, is singular. The Y; for 1 < j <k

are all nonzero though, and furthermore distinct, as they are distinct powers of the primitive
element «. Moreover, A4 is a Vandermonde matrix, so that with |M | denoting the determinant
of a square matrix M, we have

Skl = |A]|D||A"| = |A] | D]
= Mici<j<k (Vi = ¥’ T, Y; # 0.

O

Example 7.29. Let’s see how the decoding procedure is implemented on the RS(15,3,®)
constructed above. Suppose that the received word is the polynomial r(x) = x + x* + x> +
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x4 4+ x° + x0 + x7 4+ x'10 4+ x'2. We compute the S; = r(), i = 1,2,3,4,5 =2t — 1 using the
relations a* = + 1, "> = 1.

Si=a+a?+d +at+’ +al +a’ +a0 +a? =a?

Ss=a’4+a* +al +at +a ' +a? 4o+ 4 =+ 1
Sttt o’ +a? oS tal® o ot =1
S4=Ol4—|—0l8—I—O(lz+a16+a20+a24+a28+a40+a48=Ol2—|—1

Ss — 065 +O{10 +O{15 + 0620 +O{25 +O{30 + 0635 +O{50 +O{60 =1

Consider the matrix

S1 82 S5 a> a+1ao®+1
S=|8 S8 |=]a+la®*+1a>+1
S3 84 S5 O{3+1062+1 1

Since |S| = 0 there are fewer than 3 errors.

We next consider
S1 S, o a+1
S, = = 3 .
AV oa+1la’+1

Since |S;| = a? + a + 1 # 0, there are exactly two errors, and we can solve the system

»(5)=(5)

for the coefficients of the error locator polynomial L(z) = z> + 01z + 02. Our system

o2 a+1 o2\ _ ad 41
a+1a®+1 o) \o2+1
can be solved by inverting S,. Note that > + o + 1 = «'®, and ¢! = &° s0

3
_ +la+1
Syl =o' (¢ .
2 O[(ot—l—l o?

The solutions 07 = 2,0, = &’ + o are then obtained by matrix multiplication to obtain L(z) =
22 + a?z + o + 2. In a general situation, one could search through GF(2™) for the roots of L(z),
but in the present context observe that L(z) = (z + &)? + a?(z + «) so that either 7 = « or z =
a + a* = a°. Thus we have determined that the errors appear in positions 1 and 5 and we decode
r(xX) =x4+x2 4+ 3+ x + 0 Fx0+x7 x4 xt0 X2+ 3+ xt +x0+ xT x4 x12 = x2g.
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Chapter 8
Groups and Cryptography

The final two applications of abstract algebra we will discuss are to cryptography, i.e., secure
transmission of private information, and to the classification of geometric patterns in the plane R?.
The algebraic structure at the heart of both applications is that of a group. The structure known as a
group was perhaps the first algebraic structure to have been studied purely abstractly, and is one of
the most fundamental of mathematical structures. As we shall see, the underlying additive structures
of rings, fields, and vector spaces are all special examples of groups. Unlike these other structures, a
group has only a single operation.

The earlier chapters demonstrate the value of “abstracting” from specific cases to a general
framework. Hence we abstracted from simple identification numbers to modular arithmetic in order
to understand error detection capability and develop more sensitive identification schemes. By
abstracting the notion of redundancy in the check digit, we saw how to judiciously introduce more
redundancies to actually correct errors. Further abstraction of the notion of distance led ultimately
to algebraic extensions of finite fields, and codes with enhanced error detection capability. In a
similar vein, abstractly algebraicizing number constructions in terms of field extensions of the rational
numbers led to the solution of geometric questions dating to antiquity. This chapter will introduce the
elements of group theory necessary for the most common contemporary method to encrypt electronic
passwords.

8.1 Definition and Examples of Groups

To motivate the definition of a group, recall that a unit of a ring R is an element having a multiplicative
inverse. We denote by R* the set of all units of R. In other words,

R* ={a € R : thereisac € R withac = ca = 1}.
Recall also that if a,b are units of R, then so is ab, since ab has b~'a™! as its multiplicative
inverse. Thus, if we multiply two elements of R*, the result is another element of R*. Multiplication
then induces a binary operation on the set R*. We note three properties of this binary operation:
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multiplication on R* is associative; 1 € R*, so R* has an identity; and each element of R* has an
inverse in R*. It is these properties that make up the definition of a group.

Ezample 8.1. Let R = M, (R), the ring of all n x n matrices with real number entries (R is
a noncommutative ring if n > 1). Then R* is the set of invertible (i.e., nonsingular) n x n
matrices, equivalently n x n matrices of nonzero determinant. Recalling properties of matrix
inversion and determinants, we have for nonsingular matrices A and B:

(AB)"'=B7'4™!
det(AB) = det(A) det(B),

demonstrating closure of R* under multiplication.

Definition 8.2. Let G be a nonempty set together with a binary operation * on G. Then the
pair (G, %) is said to be a group if

l.ax(bxc)=(axb)xcforalla,b,c €,
2. thereisane € G suchthat e xa =a xe = a foralla € G, and
3. for each a € G there is an element b € G witha *b =b xa = e.

Naturally enough, the first axiom is referred to as the Associative Property, the element e is referred
to as the identity element of G, and the element b is referred to as the inverse of the element a.
Uniqueness of the identity element and of inverses will be established below, justifying the use of the
word “the.”

While the group axioms seem abstract, there are many natural examples of groups; indeed, the
motivating framework does yield a group:

Example 8.3. Let (R,+.) be a ring. Then associativity of ring multiplication and the
definition of unit shows that (R*,) is a group. The identity of R* is the multiplicative identity
1 of R. For instance, with R = Z, the group Z* is nothing more than the set {1, —1} under
multiplication.

The example above with R = M,,(R) is of such importance that M,,(R)* has its own name and
notation.

Definition 8.4. The General Linear Group of n X n matrices with real number entries,
denoted GL,(R), is the group of units of M,(R). Note that the operation, i.e., matrix
multiplication, in GL, (R) is noncommutative if n > 1.

More generally, if R is any commutative ring, the set M, (R) of n x n matrices with entries in R is
again a ring (noncommutative if # > 1). The group of units of M,,(R), denoted GL,,(R), is referred
to as the General Linear Group of n x n matrices over R. The application to symmetry groups will
make use of this group for R = Z.

The first order of business is to prove the uniqueness of the identity and of inverses.

Proposition 8.5. Let G be a group.

1. Ifexa=a*xe=a forallac€ G ande' xa=axe =a foralla € G, thene = ¢'.
2. Ifa,b,b' € G satisfyaxb=bxa=a*xb'=b' xa=e, thenb =b'.

Proof. For assertion 1., taking a = ¢’, the hypothesis e xa = a yields e xe’ = ¢’. Taking a = e,
the hypothesis @ x ¢/ = a yields e x ¢/ = e. Assertion 2. is a consequence of the associative
property of the group operation.
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b=bxe=bx(axb)
=b*xa)yxb =exb =1

a

Ezxample 8.6. Let R be a ring. Then (R, +) is a group. To see this, we remark that the
definition of a ring includes the three properties of a group when considering addition. Note
that the identity of (R, +) is 0, the additive identity of R. Here the operation is of course
commutative.

The two examples (R, +) and (R*,-) illustrate a potential source of notational difficulty. In the
first example, the group operation is multiplication, so it is natural to write, for n a positive integer,

-1 - -1 .
g8 gasg'andg'-g7'.-.n g as g~ ".In the second example, the natural notations are ng
————— —

n times n times
forg+g+:--+ g and —ng for —g — g — --- — g. When writing about general groups, it is most
S—————— S——————

n times n times
common to write the operation multiplicatively. However, the context in which the group operations

arise should make clear whether multiplicative or additive notation is most appropriate.

To formally define g”, we first define g° = e, the identity of G. If n is a positive integer, then we
define, inductively, g" ™! = g" - g. Therefore, g' = g’ - g =e-g = g,and g2 = g - g, and so on.
For negative exponents, if n > 0, we set g~ = (g")~'. The laws of exponents are consequences of
the definition of a group (these are left as homework problems): g" - g™ = g"*t™, (g")" = g"", and
(g") ' = (g7")" forany n,m € Z. (Their additive analogs are: ng+mg = (n+m)g,nmg = n(mg),
and —(ng) = —ng).

It is standard in discussions about groups in general to use multiplicative notation for the operation,
unless we are discussing a particular example or class of examples in which the operation is presented
as addition (for instance, as (R, +) for R aring). In particular, we will write gh or g - h for the product
of g and h, and g~ for the inverse of g. Unless the symbol for the operation needs to be specified, we
will refer to a group by a single symbol, such as G, rather than by a pair such as (G, *). Despite this,
it is important to remember that a group is not just a set but is a set together with a binary operation.

The special cases of (Z, +) and (Z,, +) illustrate an important class of groups.

Definition 8.7. A group G is said to be cyclic if there is an element g € G so that each
element of G has the form g”" for some n € Z when * written multiplicatively (or ng if * is
written additively). In this case, the element g is called a generator of G.

Ezample 8.8. The multiplicative group Z* = {1, —1}, since these are the only integers with
multiplicative inverses. This group is cyclic with generator —1, while the groups (Z, +) and
(Zy, +) are cyclic (additive) groups with generators 1 and 1, respectively. Every group with
two elements, say G = {a, e}, with e the identity, is cyclic generated by a.

Example 8.9. Every group with three elements is cyclic. Let G = {a, b, e} with e the identity
element. The only possibility for the product ab is e since multiplication by a~! of both sides
of the equation ab = a would yield the contradiction b = e, and multiplication of ab = a by
b~! would force a = e. It follows that a> = b since a®> # e by uniqueness of the inverse, and
again multiplication by a~! on a> = a would force a = e. Thus G is generated by a (and also

by b by a symmetric argument).

Remark 8.10. In fact every group with a prime number of elements is cyclic as follows from
Lagrange’s Theorem below (Exercise 11).
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Ezample 8.11. Let V be a vector space. Ignoring scalar multiplication and only considering
addition, we see that (V, +) is a group.

Ezxample 8.12. For more special cases of groups extracted from rings, the following are groups
under addition: (Q, +) and (R, +), while (Q*,-), and (R*,-) are groups under multiplication.
In contrast with the finite group Z* = {1, —1}, we have the infinite groups Q* = Q — {0} and
R* = R — {0} (they are groups because Q and R are fields so that every nonzero element has a
multiplicative inverse in Q or R, respectively).

Generalizing this observation we have:

Ezample 8.13. Let F be a field. Then F* = F — {0} is a group under multiplication. This is
because F is aring and F* = F — {0} by the definition of a field.

Ezxample 8.14. Let F = GF(2"). The existence of a primitive element for F says exactly that
F* is a cyclic group.

Ezample 8.15. Let X be any set. We denote by P(X) the set of all permutations of X. That is,
P(X)={f:X — X: fisal-1, onto function}.

We define an operation on P(X) by composition of functions; note that if f, g are functions
from X to X, then so is f o g, and that if f and g are both 1-1 and onto, then so is f o g.
Therefore, composition is indeed a binary operation on P(X). We leave it as an exercise to
show that P(X) is a group under composition.

An example crucial to our discussion of the RSA encryption system is the group Z;, where n is a
positive integer and Z, denotes the ring of integers modulo n. By Corollary 1.17,if @ € Z,, then there
is a solution to the equation @ - X = 1 if ged(a, n) = 1. That is, @ has a multiplicative inverse in Z, if
gcd(a,n) = 1. The converse is also true; if gcd(a,n) = 1, then we may write 1 = ax + by for some
integers x, y, by Proposition 1.13. Then T = @ - X, so @ has a multiplicative inverse. We thus have the
following description:

Zy ={a € Zy : ged(a,n) = 1}.

How many elements does this group have? For example, ZZ = {T, 5} has two elements, Zg = {T, §}
also has two elements, and ZTI = Zi1 — {6} has ten elements. In general, the number of elements
of Z} is equal to the number of integers a satisfying 1 < a < n and ged(a,n) = 1. This number
is referred to as ¢(n), and the function ¢ is called the Euler phi function. While there is a general
formula for computing ¢ (n) from the prime factorization of n, we concern ourselves only with two
cases. First, if p is a prime, then ¢(p) = p — 1. This is clear since all integers a with 1 < a < p
except for p itself are relatively prime to p. The next case is stated as a lemma.

Lemma 8.16. Let p and g be distinct primes. Then ¢p(pg) = (p — 1)(g — 1).

Proof. Set n = pg. To count ¢(n), we first count the number of integers between 1 and n and
not relatively prime to n. If 1 < a < n, then ged(a,n) > 1 only if p divides a or ¢ divides a.
The multiples of p between 1 and n are then

p.2p.....(q—1Dp.qp =n,
so there are ¢ multiples of p between 1 and n. The multiples of ¢ in this range are

q72q7---s(p_1)qqu=n’
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so there are p multiples of ¢ in this range. The only number on both lists is n; this follows
from unique factorization. Therefore, there are p 4+ g — 1 integers between 1 and n that are not
relatively prime to n. Since there are n = pg numbers total in this range, we see that

¢(n)=pqg—(p+q—-1)=pg—p—q+1
=plg—1D—-(@-1D=({p-Dg-1D,

as claimed. O

To summarize, the group Z has ¢ (n) elements, and if # = pq is the product of two distinct primes,
then Z7,, has (p —1)(g — 1) elements. The significance of this result and its application to encryption
rely on a basic result from abstract group theory, Lagrange’s Theorem, which gives surprisingly strong
information about the subgroups of a finite group, i.e., the group theoretic analogues of subspaces of
a vector space.

8.1.1 Subgroups

Definition 8.17. Let G be a group. A nonempty subset H of G is said to be a subgroup of G
if the operation on G restricts to an operation on H, and if H is a group with respect to this
restricted operation.

For example, consider the group Z under addition and let H be the set of even integers. Addition
restricts to an operation on H because the sum of two even integers is again even. Because 0 is even,
as is the additive inverse of each even integer, H is a subgroup. Just as there is a theorem helping to
determine when a subset of a vector space is a subspace (Lemma 4.9), there is a result that helps us
determine when a subset of a group is a subgroup.

Lemma 8.18. Let G be a group, and let H be a nonempty subset of G. Then H is a subgroup
of G provided that the following two conditions hold: (i) if a,b € H, then ab € H, and (ii) if
ac H, thena ' e H.

Proof. Suppose a subset H of a group G satisfies the two conditions in the statement.
Condition (i) says that the operation on G restricts to an operation on H, so we have a
binary operation on H. We need to verify for H the three axioms in the definition of a group.
Associativity is clear; if a,b,c € H, then a,b,c € G, so a(bc) = (ab)c since G is a group.
Next, Condition (%) ensures that every element of H has an inverse in H. So, the only thing
remaining is to see that H has an identity. We do this by proving that if e is the identity of G,
then e € H. To see why this is true, first note that there is an element a € H because H is
nonempty. By Condition (), a~! € H. Then, by Condition (i),a-a~' € H. Buta-a™! = e,
soee H. O

Example 8.19. Let F be a field and G = GL,(F) the group of nonsingular matrices with
entries in F. Denote by SL, (F) the subset consisting of matrices of determinant exactly equal
to 1. Since, for every pair of matrices 4 and B, det(AB) = det(A) det(B) and, for A nonsingular,
det(A™") = det(4)™!, Lemma 8.18 shows that SL,(F) is a subgroup of GL,,(F).

Ezxample 8.20. Againlet G = GL,(R) and T be the subset of nonsingular triangular matrices.
Despite the fact that the inverse of a nonsingular triangular matrix is again triangular, T is
not closed under matrix—matrix multiplication. On the other hand, the subsets of nonsingular
upper (resp. lower) triangular matrices are subgroups of G.
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There is a particularly simple construction of subgroups. Let G be a group, take some a € G,
and use it to build a subgroup, call it H, containing a. By Condition (i) of Lemma 8.14, we see that
every subgroup containing @ has to contain a - @ = a?, so a®> € H. Using the condition again, H
has to contain a®> - @ = a* and clearly H must also contain a~'. Then by Condition (i), it must
contain ¢! - a~! = a~2. An easy induction argument shows that {a" : n € Z} C H. Conversely,
an application of Lemma 8.14 shows that {a" : n € Z} is itself a subgroup of G, hence we make the

following definition.

Definition 8.21. Let G be a group and a € G, then the cyclic subgroup generated by a is the
set

(a) ={a" :n €Z}.

Ezample 8.22. Let S = {z € C : |z] = 1}. Clearly § € C* and an application of Lemma 8.14
shows that S is a subgroup of C*. Exercise 17 below shows that § is infinite and not a cyclic
group. But S has many finite cyclic subgroups. For instance, let § = e>™/”" for n any positive
integer. Then (#) = {1,0,02,...,0""!} is one example.

Ezample 8.23. Let G = Z}. Then G = {1,3,5,7}. We calculate the cyclic subgroups of G.

First, since I" = T for all n, we have (I) = {I} contains only the identity 1. Next, for 3, we see
that

3 =3,

F=9=T,
3 =27=73,
3 =8T=1

You may recognize a pattern. Since 3 = 1, the identity of G, if n = 2m is even, then 3 =
3" = (§2)”’ =1"=T1.Ifn =2m + 1 is odd, then

=3-1=3.

Therefore, the only powers of 3 are 1 and 3. Thus, (3) = {1,3}. If we do similar calculations for
1.

5 and 7, we will see similar pat_ternslfor §2_= Tand 7° = 1. Thus, the only powers _of Sarel
and 5, and the only powers of 7 are 1 and 7. Therefore {1} , {1, 3, } , {1, 5, }, and {1, 7} are the
cyclic subgroups of Zg

Example 8.24. Let G = Z’fo. Then G = {T, 3,7, §} has four elements. As with the previous
example (and any group in fact), the cyclic subgroup generated by 1 is just {T} Next consider
3. We have

3 =3,
3 =7,
3P =27=7,

wL
[
|
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[
—
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We have therefore produced all four elements of G as powers of 3; therefore, (5) =G,ie., Gis
a cyclic group. A similar calculation will show that (7) = G; this can also be seen by the fact

that 7 =3 ' and (a) = (a_l) for any group G and any a € G. Finally, for 9, we have
9 =79,

§2

I1=1.

I
oo

As with the previous example, even powers of 9 are 1 and odd powers of 9 are 9, so (5) = {T, §}.

8.1.2 Lagrange’s Theorem

We make some numerical observations from the previous two examples. The first thing to notice is that
the number of elements in a given cyclic subgroup (a) turned out to be the same as the first positive
number n for which a” was the identity. Second, the number of elements in each cyclic subgroup was
a divisor of the number of elements of the given group. Neither of these facts is a coincidence; they
are general facts that we will now prove. The second is in fact a special case of Lagrange’s Theorem.
For a piece of notation, we will write | X | for the number of elements in a set X . For a finite group G,
the number |G| is often called the order of G.

Ezample 8.25. Let p be a prime integer and G = GL,(Z,). For a 2 x 2 matrix to lie in G,
its first row can consist of any pair of residue classes mod p except for (0,0). Thus there are
exactly p?> — 1 possible first rows. Once the first row is determined, the second row can again
consist of any pair of residue classes mod p except for a Z,-multiple of the first row. Thus

|G| = (p* = D(p*>— p).

Lemma 8.26. Let G be a group anda € G. Set n = min{m : m > 0,a” = e} if this number
exists. Then n = |{a)|, the number of elements in the cyclic subgroup generated by a. This
number is called the order of the element a.

Proof. We will prove the lemma by proving that (a) = {a” : 0 < r < n} and that these elements
are all distinct. First, any element of (a) is of the form a* for some integer s. By the Division
Algorithm, we may write s = gn + r with 0 < r < n. Then

a’ = aqn-i—r =ql"q" = (an)q(ar) —a

since a” = e, so (a")? = e. Therefore, a® can be written as a power a” of @ with 0 < r < n.
This proves the first claim. For the second, suppose that a” = a’ with 0 < r,¢ < n. Suppose
that r < . Then, by the laws of exponents, ¢ = a’a™ = a'™". Since n is the smallest positive
integer satisfying a” = e, and since 0 <t —r < n, we must have t —r = 0. Thus, t = r. So, the
elements a®,a', ... ,a"! are all distinct. Since they form (a), we have proved that |(a)| = n.

O

If G is infinite and g € G generates an infinite cyclic subgroup, then g is said to have infinite order.
For instance, every nonzero integer has infinite order in (Z, +). On the other hand, —1 has order 2 in
the infinite group Q* and e>*//" has order n in C*.
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We now consider Lagrange’s Theorem. To do so we need to look at a concept we have seen twice
before, in the cases of vector spaces and rings. If H is a subgroup of a group G, and if a € G, then
the right coset of H determined by a is the set

Ha =4{ha:he H}.

Right cosets are equivalence classes for the following relation: for a,b € G, definea ~ b ifab™! €
H . In Exercise 7 below you will show that ~ is an equivalence relation and that the equivalence class
of a is the coset Ha. Therefore, the right cosets of H form a partition for the group G. If we write the
group operation as multiplication, we will usually write Ha for the coset of a. Left cosets are defined
analogously for the equivalence relation a ~ b if b~'a € H and are denoted

aH ={ah :he H}.

Theorem 8.27 (Lagrange’s Theorem). Let G be a finite group and let H be a subgroup of
G. Then |H| divides |G|.

Proof. We prove this by showing that each right coset has |H| elements (the identical
argument, suitably modified, shows that each left coset also has |H| elements). From this
it will follow that |G| is equal to the product of |H| with the number of cosets, and this will
prove the theorem. To that end, let a € G, and we proceed to demonstrate that |Ha| = |H|.
One way to prove that two sets have the same size is to produce a 1-1 onto function between
them. This is done here by defining a function f : H — Ha by f(h) = ha. The function f
is 1-1 since if f(h) = f(k), then ha = ka. Multiplying both sides on the right by a=' yields
h =k, so f is 1-1. The function f is also onto since, if x € Ha, then x = ha for some h € H,
and so x = f(h). Since f is then a 1-1 onto function from H to Ha, we have proven that
|H| = |Ha|, as desired. O

In fact, we can be a little more detailed. We let [G : H] be the number of right (and therefore also
left) cosets of H in G. This number is often called the index of H in G. The proof of Lagrange’s
Theorem shows that all cosets have the same number of elements. Therefore, |G| is equal to the
product of the size of any one coset with the number of cosets. In other words, since H = He is a
coset, |G| = |H|-[G : H].

Lagrange’s Theorem combined with Lemma 8.26 yields a result key to the RSA encryption system.

Corollary 8.28. Let G be a finite group withn = |G|. Ifa € G, thena” = e.

Proof. Let m = |{(a)|. By Lagrange’s Theorem, m divides n, so n = mt for some integer . By
Lemma 8.26, a™ = e. Therefore, a” = a™' = (a™)" = e¢' = e, as desired. O

The following theorem due to Euler is a special case of this corollary.

Corollary 8.29 (Euler’s Theorem). Let n be a positive integer. If a is an integer with
ged(a,n) = 1, then a®™ = 1 modn.

Proof. 1f ged(a,n) = 1, then @ € Z;, a group of order ¢(n). The previous corollary tells us
that @™ = 1. By definition of coset multiplication, @™ = a®®. The equation a?® = T is
equivalent to the relation a?™ = 1 modn. O

Example 8.30. The special case of Euler’s Theorem when n = p is prime is the earlier result
known as Fermat’s Little Theorem. Noting that ¢(p) = p — 1, Euler’s Theorem states that if
the integer a is not divisible by p, then a”?~! = 1 mod p. In fact a” = a mod p for every integer
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a. This follows from Fermat’s Little Theorem by multiplying both sides if @ is not a multiple
of p, and the observation that a? is a multiple of p if and only if the same s true for a.

Example 8.31. The case n = pgq for distinct primes p and ¢ is important for RSA
cryptography: If @ € Z}, then a?~V4=D = 1 modn.

Ezample 8.32. Let G = GL,(Z,) and H = SL,(Z,). To determine the order of H note, as for
G, the first row of a matrix in A can be an arbitrary pair (a,b) of elements of Z, except for
(0,0) so there are p? — 1 possible first rows. Given one such row (a, b), the second row must
consist of a solution in Z?] ofax—by = 1.1f a = 0, then x can be arbitrary in Z,, but b # 0 so
that y = —b~! is uniquely determined. If a # 0, then x = a~!(1 4+ by) is uniquely determined
by y, which can be arbitrary. Either way, for each first row, there are exactly p second rows.
Hence |H| = p(p* — 1), which is a divisor of

|G| = (p* = 1)(p* — p)
=(p—-Dp(p*-1).

Exercises

1. Prove the cancellation law for a group: If G is a group and a, b, ¢ € G, then b = c if and only if
ba = ca (if and only if ab = ac).

2. Let X be a set and P(X) the set of all permutations of X under composition. Show that P(X) is
a group. Is the operation commutative? If so, prove it. If not, find a set X and f, g € P(X) with
fog#gof.

3. Let G be a group. If a € G and n, m are positive integers, prove that

n+m

(a) a"a™ =a and

(b) (an)m = q"".

(Hint: Recall the inductive definition of a”. For (a), use induction on m for (a). Then use (a)
and induction on m for (b).)

4. Let G be a group. If a, b € G with ab = ba, show that (ab)" = a"b".

5. A group in which ab = ba for every a,b € G is said to be abelian. Let G be a group in which
every nonidentity element has order equal to 2 (i.e., a> = e for every a € G). Prove that G is
abelian.

6. Let G be a group. If a € G and n and m positive integers, prove that a"a™ = a"*™, (a")"™ = a"",
and (@")~' = (a™1)".

7. Let G be a group and let H be a subgroup of G. Prove that the relation ~ on G given by a ~ b if
ab™! € H is an equivalence relation.

8. With notation in the previous problem, if a € G, show that the right coset Ha is the equivalence
class of a.

9. Prove that every infinite cyclic group has infinitely many distinct subgroups.

10. Prove that a group is finite if and only if it has only finitely many distinct subgroups. One direction
is clear. For the other consider the cyclic subgroups.

11. Prove that every group of prime order is cyclic.

12. Let G = {a,b,c, e} be a group of order 4 with e the identity. Show that every such group is
abelian. In particular prove that every such group is either cyclic or every nonidentity element has
order 2

13. Prove that Q* is not a cyclic group. (Hint: If - € Q* with gcd(a, b) = 1 prove that blﬁ ¢ (1%)')

14. Write out the multiplication table for Z7s.

15. Find the cyclic subgroups (Z) and (7) of Z7s.
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16. Write out all the cosets in Z]; for the subgroup (5)

17. Let G be a group and suppose that a € G has finite order equal to n. If a™ = e, prove that m is
divisible by n.

18. Show that S = {z € C : |z] = 1} is an infinite non-cyclic group. (Hint: For each real number
a€0,1), e e S)

8.2 Cryptography and Group Theory

This section discusses one of the most common methods of encrypting highly sensitive data, namely
the RSA encryption system. Cryptography is the subject of transmitting private data in a secure
manner. If you make a purchase on the internet, you need to send to the merchant a credit card number.
If somebody were to intercept the transmission of this information, your credit card number would be
known to this person. Because of this, most Internet sites encrypt data identifying the user and his or
her credit card numbers. By doing so, someone intercepting the transmission will see useless strings
of digits instead of the user’s identity and credit card number. If, however, the interceptor were to
know how the merchant replaces the identifying information with other numbers, they would have a
way of recovering the information. Because of this, merchants must use methods of encryption that
are very difficult to “break.”

8.2.1 The RSA Encryption System

RSA encryption was invented in 1978 by Ron Rivest, Adi Shamir, and Leonard Adleman. Despite the
conceptual simplicity of the encryption/decryption algorithm, RSA has resisted virtually all attacks in
the 36 years since its invention and is therefore in ubiquitous use for purposes like the exchange of
passwords for identity verification. To describe the RSA system, one starts with the following data:

* Distinct prime numbers p and ¢, and
* an integer e relatively primeto (p — 1)(¢ — 1).

From this data we will build an encryption system. We will restrict our attention to encrypting
numbers. This is satisfactory, since any text message can be converted to numbers by replacing each
letter with an appropriate number. Let M be an integer, considered to be a message we wish to encrypt.
Set n = pq, the product of the two primes above. The integer e is the encryption key, in the sense
that M is encrypted via the calculation M ¢ modn, i.e., the remainder after dividing n into M °. This
remainder is our encrypted message.

For example, let

p = 34867844009,
q = 282429536483, and

e =19.
Then n = pg = 984770904450021093547. Also,
(p—1)(g — 1) = 984770904164104772656

and one can check that e = 19 is relatively prime to this number.
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Encryption of the message 12345 is effected by the calculation
12345 modn,

which comes out to be 123355218486796132288. Therefore, the encrypted message 12345 is
transmitted as

123355218486796132288.

How does somebody receiving 123355218486796132288 know that this number represents 123457
First, by our assumption that e is relatively prime to (p—1)(¢—1), we know from Corollary 1.17 that e
has a multiplicative inverse modulo (p—1)(¢—1). The integer d satisfyinged = 1 mod(p—1)(¢—1),
and chosen so that 0 < d < (p — 1)(g — 1), is the decryption key: If an encrypted number N is
received, then one calculates N¢ mod n; the result returns the original message. For example, from a
Maple computation, we can see that

d = 207320190350337846875.
Thus, to recover the original message 12345, we compute

123355218486796132288207320190350337846875 1) 14 984770904450021093547
= 12345.

While this calculation looks formidable, Maple can do it virtually instantaneously. In fact, on an
average personal computer, Maple can calculate M ¢ mod 7 in a couple of seconds even if d and n are
400 digit numbers, so the calculations in the RSA system are easy to do even with very large numbers.

To summarize, the RSA encryption system starts with two prime numbers p and ¢, and an integer
e satisfying ged(e, (p — 1)(g — 1)) = 1. One then calculates a positive integer d satisfying ed =
1 mod(p — 1)(g — 1). The integer message M is encrypted by replacing it with

N = M°modn.
To decrypt N, one sees that
M = N?modn.

The security of RSA cryptography is due to the practical difficulty of finding the prime factors of
integers, a difficulty which increases with the magnitude of the prime factors. In practice RSA uses
very large primes p and g (on the order of 100 digits each) resulting in encrypted messages with
magnitudes of roughly 200 digits. This is one reason for the importance of the search for large prime
numbers, and the related problem of primality testing, i.e., determining whether or not a given integer
is prime.

The large sizes of encrypted messages use a significant amount of computer memory, so RSA is
typically used for encryption of short messages, e.g., passwords for systems with many users. For this
type of application, the encryption key e is public, i.e., made available to all users, hence the term
“Public Key Cryptography.” The decryption key, d, is possessed only by the intended recipient. The
public uses the “public key” to lock up information, but only the intended recipient can unlock it with
the “private key.”
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That the encryption/decryption method works is a direct consequence of Euler’s Theorem applied
in the group G = Z;;, where n = pq is the product of our two distinct prime numbers. As we have
seen, |G| = ¢(n) = (p — 1)(¢ — 1). Recall that the integers e and d satisfy ed = 1 mod ¢ (n) so we
may write 1 = ed + s¢(n) for some integer s. The claim of the RSA system is that, for any message
M, we have (M¢)¢ = 1 modn. Written another way, it claims that (M*)? = M. Assuming that M
is divisible by neither p nor ¢, we have M € Zy . Therefore

o= =" = "y
= 1y =M
since M7 =1 by Euler’s Theorem. Thus, (He)d = M, and so the decryption in RSA recovers the

original message.

In the argument above, we assumed that M was divisible by neither p nor ¢ in order to conclude
that decryption would recover M. This is not a necessary assumption, but it makes the argument a
little simpler. The case in which M is divisible by p or ¢ is left to the exercises.

While the familiar Fundamental Theorem of Arithmetic asserts that every integer greater than 1
is either prime or a product of primes in a unique way up to the order of the primes, the security of
the RSA system is based on the empirical fact that finding the prime factors is an inherently difficult
problem; that is there is no known algorithm that efficiently finds those prime factors. Recall that the
public aspect of RSA is that n and the encryption key e can be public knowledge. On the other hand,
the factors p and g of n remain private. Were one to be able to factor n, then knowledge of p and
g would enable the computation of m = (p — 1)(¢ — 1) and hence the solution of the congruence
ex = 1 modm for the decryption key d.

Exercises

1. Let n = 33. Find an e, d pair and test the encryption/decryption procedure on several single digit
integers.

2. Find an e, d pair forn = 91.

3. If an eavesdropper on an RSA encrypted communication could somehow findm = (p —1)(g — 1),
then the encryption could be broken because it is easy to find the decoding integer from the publicly
available e (Maple does it via the igcdex command). Show via elementary algebra how to determine
p and g if you know m (and the public information n = pgq). Give an example of how to do this
by finding p and g from the values of n and m in the Maple worksheet Section-8.2-Exercise-3.mw.

(Hint: You cannot do this with the factor command applied to the n in that worksheet because it
is too large!)

4. Letn = pgq with p, g distinct primes. If a, b are integers, show that a = b modn if and only if
botha = bmod p and a = bmodg.

5. Let (n,e,d) be RSA data and M an integer message to be encrypted. Verify that M¢? = M modn
if the integer M is divisible by either p or g.

6. Explain why the integer message M must be less than n.

8.2.2 Secure Signatures with RSA

One issue of data transmission is the ability to verify a person’s identity. If you send a request to a bank
to transfer money out of an account, the bank wants to know that you are the owner of the account.
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If the request is made over the Internet, how can the bank verify your identity? The RSA encryption
system gives a method for checking identities, which is one of the important features of the system.

Suppose that person A transmits data to person B, and that person B wants a method to check the
identity of person A. To do this, both person A and B get sets of RSA data; person A has a modulus
n4 and an encryption exponent e 4. These are publicly available. That person also has a decryption
exponent d 4 that remains private. Person B similarly has data n g, ep, and dg. In addition, person A
has a signature, a publicly available number S. To convince person B of his identity, person A first
calculates T = S9 modn 4 and then R = T8 modn z. He then transmits R to person B. Person B
then decrypts R with her data, recovering T = R%? mod n . Finally, she encrypts T with person A’s
data, obtaining 74 modn 4 = S. By seeing that this result is the signature of person A4, the identity
has been validated.

For example, suppose that the data for person A is

n4 = 2673157
eq =23

da = 2437607
S = 837361

and the data for person B is

npg = 721864639
ep = 19823
dp = 700322447.

Person A then calculates
8373612797 mod 2673157 = 1216606,
and
1216606'*** mod 721864639 = 241279367.
Person A then transmits 241279367 to person B. When person B receives this, he/she calculates
2412793677247 mod 721864639 = 1216606,

and finally recovers S as S = 1216606} mod 2673157.

To explain why this works, we denote by encrypt, (M) and decrypt 4 (M) the integers M “4 mod n 4
and M % mod n 4, respectively. We similarly have encrypt (M) and decrypt,z (M ). The validity of the

RSA system says that

decrypt, (encrypt,(M)) = M,
encrypt, (decrypt,(M)) = M.

Similar equations hold for B. With this notation, person A calculates

R = encryptg (decrypt,(S))
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and then person B calculates

encrypt, (decryptg (R)).

Therefore, person B will calculate

encrypt, (decrypt,(S))
=S

encrypt, (decryptg (encryptg (decrypt,(S))))

because of the equations above. Therefore, person B does recover the signature of person A.

The reason that this method validates the identity of person A is because only person A can
calculate decrypt,(S). If another person tries to claim he/she is person A, i.e., tries to substitute a
number F in place of decrypt, (S), he/she will transmit encrypty (F) to person B. Person B will then
calculate

encrypt, (decryptg (encrypty (F))) = encrypt, (F).

However, in order to have encrypt, (F) = S, we must have

decrypt, (S) = decrypt 4 (encrypt, (F))
=F,

which means that this person has to have the correct decrypted number decrypt,(.S); he/she cannot
send any other number without person B realizing it is a fake number.
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Chapter 9
The Structure of Groups

The application of group theory to cryptography discussed in the previous chapter utilized abelian
groups, i.e., groups whose operation satisfies the commutative property. Nonabelian groups have
also found application in many areas including cryptography, chemistry, physics, and even in interior
and exterior decorating (wallpaper patterns and frieze patterns, respectively) as we’ll see in the final
chapter of this text. The present chapter develops some general structure theory of groups essential to
these applications.

In modern mathematics the mappings between structures are as important objects of study as the
structures themselves. Hence we study linear transformations of vector spaces and homomorphisms
of rings. For groups, the relevant mappings are called group homomorphisms, which we proceed to
investigate.

Definition 9.1. Let G and H be groups with operations % and *y. A function f : G - H
is a group homomorphism provided f(g; *x¢ g2) = f(g1) *u f(g2) for all g1, g, € G.

In other words, a group homomorphism respects the operations in the domain and codomain,
(H, in this case). When the operations are clear from the context we adopt the usual convention of
omitting them, i.e., the homomorphism satisfies f(g1g2) = f(g1) f(g2). Verification of the following
properties is left to the exercises:

1. f(eg) = ey and

2. fgH=f®™"

Ezxample 9.2. Let G = (Z,+) and H = (Z,, +). The rules for modular addition show that the
function & : G — H given by n(a) = a is a group homomorphism.

Ezxample 9.3. Let F be a field and G = GL,(F). The multiplicative property of determinants
shows that the determinant function det : G — F* is a group homomorphism.

Definition 9.4. An isomorphism f : G — H of groups is a homomorphism which is one-to-

one and onto. An isomorphism f : G — G is called an automorphism of G.
Ezample 9.5. Let G be a group and g € G. The function ¢, : G — G given by ¢, (h) = ghg™!
is an automorphism. Indeed,

cg(hk) = ghkg_l

=gh(g 'g)kg™"

© Springer International Publishing Switzerland 2014 135
D.R. Finston and P.J. Morandi, Abstract Algebra: Structure and Application,
Springer Undergraduate Texts in Mathematics and Technology, DOI 10.1007/978-3-319-04498-9_ 9



136 9 The Structure of Groups

= (ghg™")(gkg™)

= cg(h)cg (k)
shows that ¢, is a homomorphism. If ¢, (h) = cg(k), then ghg™' = gkg™'. Premultiplying
by ¢~! and postmultiplying by g show that 4 = k and therefore that ¢, is one-to-one. Given
arbitrary a € G,

a=(gg Nalgg™)

1 1

=g(g ag)g”

= c,(g'ag)

so that ¢, is onto.

If there is an isomorphism f : G — H, the groups G and H are said to be isomorphic. This
condition is denoted by G =~ H.

Ezample 9.6. Let G = (R,+) and H = (R*,:) where RT = {& € R : « > 0}. Then the
exponential function exp : R — R™ is an isomorphism of groups.

Ezample 9.7. Let G and H be cyclic groups of the same order n. For instance,n = p —1 for p
prime, G = (Z},), and H = (0) C C* where 6 = ¢7T. Then G and H are isomorphic. To see
this, let G = (g) and H = (h), so that the orders of g and h are precisely n. Define f : G - H
by f(g') = h' for all i. Then f is clearly an onto homomorphism if it is well defined, i.e., if
g’ = g/ implies that i’ = f(g') = f(g/) = h'. But ¢ = g/ if and only if g/~ = eg, which in
turn holds if and only if j —i is a multiple of n the order of g. But this latter condition holds
if and only if A’ = h'. The same argument, with the roles of & and g reversed, shows that if
f(g') = f(g’) then g' = g/, so that f is one-to-one.

Analogous to the kernel and image of a linear transformation of vector spaces, every group
homomorphism f : G — H gives rise to a special subgroup of G and a special subgroup of H.

Definition 9.8. Let f : G — H be a group homomorphism.

1. The kernel of f is {g € G : f(g) = ey} and is denoted by ker( ).
2. The image of f is { f(g) : g € G} and is denoted by im( f).

Ezxample 9.9. Here are some natural examples of kernels and images.

1. The kernel of 7 : (Z, +) — (Z,, +) is the subgroup nZ consisting of all integer multiples of .

2. Let n be a positive integer. Multiplication by # is a homomorphism p,, : Z — Z. The image of p,
is nZ.

3. The kernel of det : GL,(F) — F* is SL,(F) and its image is F*, since the diagonal matrix

a 0 ---0

01
0

0--- 01

lies in GL,, (F) for every « € F*.
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Because a homomorphism preserves the group operation, its kernel has a special property: If f :
G — H is a homomorphism and k € ker( /'), the computation

f(gkg™) = f(&) fk) f(g™")
= f(Qenf(g)™
=f(@f(@g) '=en

shows that gkg™! € ker( f) for every g € G. Subgroups with this property play a crucial role in the
structure theory of groups and therefore merit their own name.

Definition 9.10. A subgroup N of the group G is said to be normal if gng™' € N for every
n e N and every g € G.

In particular, the kernel of a group homomorphism is a normal subgroup. As will be seen below,
the converse is also true, i.e., if N is a normal subgroup of the group G, then there is a group H and
a homomorphism f : G — H whose kernel is precisely N.

Example 9.11. SL,(R) is a normal subgroup of GL, (R).

Example 9.12. If G is an abelian group, then every subgroup of G is normal. Clearly, in this
case gng~ ' = gg~'n = n for every pair of elements g,n € G.

Normality of a subgroup can be expressed in terms of its cosets. Recall that for H a subgroup of
the group G and g € G, the left coset of H determined by g is {gh : h = H} and is denoted by
gH . Similarly, the right coset of H determined by g is Hg = {hg : h € H} and, if G is finite, then
the proof of Lagrange’s Theorem shows that the index [G : H] of H in G, i.e., the common number
of right cosets and left cosets is equal to % The condition that H is normal is that gH = Hg for
every g € G, i.e., that every left coset is also a right coset. This is exploited in the following useful

proposition.

Proposition 9.13. Let G be a group and let H be a subgroup of index 2. Then H is a normal
subgroup of G.

Proof. Choose an element g in G but not in H, so that H and gH are the two left cosets of
H. Since G is the disjoint union of the left cosets of H, it must be the case that gH is the
set theoretic complement of H in G. But G is also the disjoint union of the right cosets of H,
so that Hg is also the set theoretic complement of H, i.e., gH = Hg for every g ¢ H. But
certainly hH = Hh = H for every h € H as well. O

Ezample 9.14. Let X be the three element set {1,2,3} and let P(X) be its group of
permutations. The following notation is useful. Write

123
312
for the permutation sending 1 + 3,2+ 1, and 3 + 2. Then P(X) has the 6 elements:
123 123 123
123)°\231)°\312)°
123 123 123
132)°\321/)°'\213)°
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One checks easily that the first three permutations comprise a subgroup of index 2, hence
a normal subgroup, of P(X). Each of the permutations in the second row has order 2 and
therefore, together with the identity permutation, forms a subgroup of index three. None of
these order two subgroups is normal however. For instance,

123\ _(123)_(123\" _ (123
132 321 132 S \213)°
which does not lie in the subgroup
123 123
123)°\321)f"

9.1 Direct Products

We consider a method to construct bigger groups from smaller groups or, to think of it another way,
to decompose a group into simpler subgroups. The direct product is a natural way to define a group
structure on the set theoretic Cartesian product of two groups. The semidirect product generalizes this
construction and is necessary to our investigation of symmetry; its development is left to Chap. 10.

Given two groups G; and G», there is a natural “componentwise” operation on the Cartesian
product of the sets G| x Gy:

(&1,82) * (h hy) = (g1 *1 hy, g2 %2 hy)

where g1,h; € Gy, g2, hy € G, and *, *, are the operations in the groups G| and G, respectively.
The proof of the following theorem is straightforward and is left as Exercise 8.

Theorem 9.15. Let G| and G, be groups. The Cartesian product of the sets G| X G, with the
componentwise operation (G X G, *) has the structure of a group.

Definition 9.16. The group (G; x G3, *) is called the direct product of G| and G,.

Example 9.17. The simplest case of a nontrivial direct product is the group Z, x Z,, known as
the Klein 4-group (after the great German mathematician Felix Klein, and the number of its
elements). In fact Z, x Z, as a set is exactly the Z, vector space Z% with the group operation
being vector addition.

Ezample 9.18. Let p and g be distinct prime integers and C,, C, the cyclic groups of orders p
and ¢ written multiplicatively. Then C, x C, is cyclic of order pq. Indeed, let a be a generator
of C, and b a generator of C;, and consider the element (a,b) € C, x C,. By Lagrange’s
Theorem its order can only be 1, p, ¢, or pg. Since (a, b) is not the identity element of C, x Cy,
its order is not 1. From (a,b)? = (a?,b?) = (1,b?) and the fact that ¢ does not divide p,
we find that the order is not p. Reversing the roles of p and ¢ we see that the order is not g.
Therefore C, x C,, which has pq elements, has an element of order pg, i.e., is cyclic.

It is sometimes possible to study the structure of a group by recognizing it as a direct product of
certain of its subgroups. For instance, turning the previous example around, we can see that the cyclic
group C,, decomposes as the direct product of two cyclic subgroups of orders p and g respectively.
Suppose that a € Cp, has order pq. Then a? := h must have order p and therefore generates a



9.1 Direct Products 139

subgroup H of order p. Symmetrically, a” := k generates a subgroup K of order g. By Lagrange’s
Theorem, H N K consists only of the identity element e of C,,.

Moreover, the pg products h'k/ for0 <i < p,and 0 < j < q are necessarily distinct: h'k/ =
hi'k/" implies that A h ™" = k=/'k/" € H N K = {e}. But hih™" = k=/'kJ’ = e clearly implies
that i = h’ and k/ = k/'. In particular, the function

wiHxK—Cy

w: (k) hik/
is well defined and one-to-one. Because both H x K and C,,; have pg elements, the Pigeonhole
Principle implies that u is also onto. It is straightforward to verify that

(G K KT = (1 (R ),
i.e., i respects the group operations on both sides, effecting the desired decomposition.
The next theorem formalizes the previous paragraph as a criterion to detect direct products.

Theorem 9.19. Let G be a group with subgroups H and K. Then G =~ H x K if

1. G = HK (i.e., every element g € G can be written as g = hk withh € H and k € K),
2. both H and K are normal subgroups of G, and
8. HN K = {e}.

In this case the representation g = hk is unique.

Proof. Imitating the previous example, define a function f : H x K — G by f(h,k) = hk.
By 1., f is surjective. If hiky = hok,, then h3'hy = koki' € H N K = {e} by 3. But this
forces hy = hy and k| = k; so that f is also one-to-one. It remains to show that f is a group
homomorphism. First observe that for every h € H and k € K,

hkh k™' = (hkh ™Dk e K
because K is a normal subgroup, but also
hkh k™' = h(kh 'k e H
because H is a normal subgroup. Thus hkh~ 'k~ = {e}, i.e., hk = kh. Finally,

S((h1, k1) (ha, ko)) = f(hihy, kiks) = hihokiks
= hikihaky = f((h1, k1)) f(ha, k2)).

See Exercise 8 for the converse to this theorem.

Ezample 9.20. Let G = G| X G, and let m; : G — G be the projection to the first coordinate:

mw1(g1,82) = &1.

It is simple to check that | is a homomorphism and that im(7;) = G;. With ¢, derflg/ting the
identity of G, the kernel of 7y is clearly {(e1, g2) : g2 € G»}. Denote ker(sr;) by G, which
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is a subgroup of G that is evidently isomorphic to G,. Consider now the set G/ G, of left
cosets of Gy. Recall that for g € G, the left coset ¢G> is simply the subset of G consisting of
{gh : h € Gy} and for h € G;, the coset hG, = G,. Writing elements g € G as ordered pairs
g = (g1, 82) with g1 € G, and g, € G,

G/G, = {(81.82)G : (g1.82) € G}
= {(81,62)(61,g2)6; (g1, 82) € G}
= {(g1,€2)G1 : g1 € Gy}

We can identify G/ G, as a set with G, = im(my). In fact G/ G, has - a natural structure of a
group which is isomorphic (as a group) to G; and, symmetrically, G/G1 = G,. Indeed, setting

(g1.82)Ga(g}. 85)Ga = (18], ¢2) G,

the assertion is clear if this is a well-defined operation. But (g1, gz)@; = (hy, hz)@; if and only
if (h;'g1.h5'g2) € Go, ie., if and only if iy = gi. That the operation is well defined now
follows easily.

9.2 Normal Subgroups, Quotient Groups, and Homomorphisms

Embedded in the previous example are special cases of two important theorems. The first one realizes
every normal subgroup as the kernel of some group homomorphism. The second one demonstrates
the special role of this homomorphism. First some terminology.

Definition 9.21. A group homomorphism is said to be injective if it is a one-to-one function
and surjective if it is onto.

Theorem 9.22. Let G be a group and N a normal subgroup. Then G/N has a natural
structure of a group and the function gy : G — G/N given by qn(g) = gN is a surjective
homomorphism with kernel N .

Before proceeding to the proof of this theorem, the word “natural” in the statement deserves some
explanation. The group structure on G/ N is inherited from that of G in the following sense: given two
left cosets gN and AN, we naturally enough set gNhN equal to the left coset (gh) N written ghN.
The issue to contend with is that for every n € N we have gN = gnN because

(gn)'gn=n""g7lgn=e€eN.

Reminiscent of our discussion of the ring structure on R/ I, where [ is an ideal of the ring R (in
particular Lemma 5.16), the left cosets are not uniquely represented in the form gN, but the group
operation is defined in terms of this representation. As in the example above, the main issue is that
normality of the subgroup N guarantees that the natural group operation is well defined.

Proof. Setting gNhN = ghN, it is necessary to verify that if ggN = goN and ih/N = hpN
then gih N = goh; N. In other words, if gz_lgl € N and hz_lhl € N, then

(gzhz)_lglhl € N.



9.2 Normal Subgroups, Quotient Groups, and Homomorphisms 141
Calculating

(g2h2) ' g1th1 = g2 g1y
= hy'(hh7" g™ gih
= (hy'"hp)hi' (827 g

we have the factors 15 'h; € N by hypothesis and 4;'(g27'g1)h1 € N because g5'g1 € N and
N is normal. The product in G/N is therefore independent of how the cosets are represented.
Associativity of the product is clear, as are the facts that e N is the identity for this operation
and (gN)~' = g7!N. Since the group structure on G/N is well defined, it is now clear that
gn : G — G/ N given by gy(g) = gN is a surjective homomorphism. 0

Definition 9.23. The group G/N is called the quotient group of G by the normal subgroup
N.

Recall that if V' is a vector space over the field F, then V' is an abelian group under addition, and
the zero vector is the identity element for this structure. Restricting to their abelian group structures,
it is clear from the definition that a linear transformation of vector spaces 7 : V' — W is an abelian
group homomorphism. The next lemma is the generalization to arbitrary group homomorphisms of
the fact that 7" is one-to-one if and only if its kernel consists only of the zero vector.

Lemma 9.24. Let f : G — H be a group homomorphism. Then f is injective if and only if
ker f = {eg}-

Proof. Since f(g1) = f(g2) if and only if f(g1) f(g2)™" = en, and f(g1) f(g2)™" = fg1&27"),
it follows that f(g1) = f(g2) if and only iff g1g>~! € ker f. Thus ker f = {eg} if and only if
f(g1) = f(g») implies that g1g2™" = eg, i.e., that g1 = g. O

The next fundamental theorem shows that every group homomorphism “factors” into a surjective
homomorphism followed by an injective homomorphism.

Theorem 9.25. Let f : G — H be a group homomorphism with kernel K. Then there is
a unique injective homomorphism f : G/K — H satisfying f = f o qk. In particular,
G/K =~ im(f).

Proof. Define f (gK) = f(g), noting that this is precisely the required condition f = f ogg-
In particular, this condition uniquely determines f as a function of sets provided, as above,
that f is well defined. Suppose that g1K = g,K so that g;'g; € K = ker f. Then ey =

f(g7'g1) = f(g2)~" f(g1) so that
f(&1K) = f(g1) = f(g2) = f(5:2K).
From the group operation in G/K and the definition of f , it follows for all g1, g» € G that

f(&1K) f(g2K) = f(g1) f(g2) = f(g182)
= f(219:K) = f(g1 Kg2K),

i.e., that f is a homomorphism.
To see that f is injective, we determine the kernel and use the lemma above. A coset gK €
ker f if and only if ey = f(gK) = f(g), i.e., if and only if g € K, so that gK = eK = eg/k.
O
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Ezample 9.26. Let G = (R, +) and K = (Z, +). The rules of exponentiation show that the
function ¢ : G — C* given by ¢(a) = >’ is a group homomorphism. The kernel of ¢ is clearly
equal to K, so Theorem 9.25 yields that G/K is isomorphic to its image as a subgroup of C*.
The image of ¢ consists of

{e*% .0 € R} = {cosH +isinf: 0 € R},
which is identified with the unit circle S' in R? via
cos 6 + i sinf > (cos@,sinB).

We conclude that R/Z, with its structure as a group under addition, is isomorphic to S' as a
group under multiplication.

Example 9.27. Let G = (a) be a cyclic group with |G| = oco. Define a function f : Z — G
by f(n) = a”. The laws of exponents show that f is a group homomorphism; it is onto by the
definition of G = {a" : n € Z}. The kernel of f is

ker(f)={neZ: f(ny=e}={neZ:a" =e}.

By Lemma 8.26, since G has infinite order, there is no nonzero n with a" = e. Therefore,
ker(f) = {0}. Consequently, f is 1-1 and onto, which shows G =~ Z.

Example 9.28. Let G = (a) be a cyclic group with |G| = m. As in the previous example,
define f : Z — G by f(n) = a". The argument in the previous example shows that f is a
group homomorphism and f is onto. However, by Lemma 8.26, ker( f) = {mr : r € Z} and by
Theorem 9.25, G is isomorphic to the quotient group Z/ ker( f). But, since ker( f) is the set of
multiples of m, this quotient group is precisely Z,,. Thus, G = Z,,.

As an application of Theorems 9.19 and 9.25, we have the following refinement of Exercise 12 of
Sect. 8.1, to classify groups of order four.

Proposition 9.29. Let G be a group of order 4. Then either G = Zy or G = Zy X 7.

Proof. Suppose first that G has an element a of order 4. Then G = (a) is cyclic. The previous
example then yields G = Z4. Next, suppose that G has no element of order 4. By Lagrange’s
theorem, the order of each element of G divides the order of G, which is 4. Thus, since G has no
element of order 4, the order of each element must be either 1 or 2. Because the only element
of a group of order 1 is the identity, we see that G = {e, a, b, c} with a, b, ¢ each having order
2. Let H = (a) and K = (b). Then H and K both have order 2. By Lagrange’s theorem,
both have index 2 in G, and so each is a normal subgroup of G by Proposition 9.13. Because
H = {e,a} and K = {e, b}, we see that H N K = {e}. Furthermore, HK = {e,a,b,ab}. We
must have ab = ¢, and so HK = G. Thus, by Theorem 9.19, G is the direct product of H and
K. By the previous example, both H and K are isomorphic to Z,. Thus, G = Z; X Z,. O

Quite generally, but with a bit more of advanced group theory, it can be shown that if p is any
prime number and G is a group of order p2, then

1. G is abelian, and
2. eitherG =Z,p or G = Zy X Zp.

A word of caution is in order. Several arguments have used the product of two subgroups H and
K of a group G and this construction will resurface in Chap. 10. The product of the subgroups H and
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K isthe set HK = {hk : h € H,k € K} which is not in general a subgroup of G. A condition that
guarantees that HK is a subgroup is given in Exercise 11.

For an example where HK fails to be a subgroup, take G to be the group of permutations of
the three element set {1,2,3} as in Example 9.14, with H and K any pair of distinct two element
subgroups. Then HK is not a subgroup of G. For instance, take

p=1052) (Ef +=1G30)- (2
(132)-(21)=(33)
1(:23)-(32)-G30)- G

Lagrange’s Theorem, or a calculation to show that HK is not closed under composition and inverses,

demonstrates that this subset of G is not a subgroup. Another example is given in Exercise 11.
In Exercise 12, a method is given to calculate | HK | for G finite, whether or not HK is a subgroup.

Then

so that HK =

Exercises
1. Prove for groups G| and G, :

(a) that Gi x G with the componentwise operation has the structure of a group,

(b) that both G, = G, x {e;} and G, = {e1} x G, are normal subgroups of G; x G, whose
intersection is the identity element of G| x G,

(c) that elements of ’GT and 6; commute, i.e., forall a € a and b € ’G\; we have ab = ba.

2. Prove that the direct product of abelian groups is abelian but the direct product of two cyclic
groups need not be cyclic.

. Generalize Example 9.18 to give a criterion for the direct product of two cyclic groups to be cyclic.

4. For a group homomorphism f : G — H prove that:

(@) f(eg) = en,

b flg™h=f®™"

(¢) im( f) is a subgroup of H, and
(d) ker(f') is a normal subgroup of G.

[98]

5. Let G be a group. Prove that G is abelian if and only if the function s : G — G given by
s(a) = a* is a homomorphism.

6. Let G be a group and let Aut(G) be the set of all group automorphisms of G (Definition 9.4).
Prove that Aut(G) is a group under the operation of function composition.

7. Let G be a group and g € G. Referring to Example 9.5, prove that the functionc : G — Aut(G)

given by c¢(g) = ¢, is a group homomorphism.

. Using Theorem 9.25 prove, for every field F, that GL,(F)/SL,(F) =~ F*

9. Let G be the set of n x n permutation matrices, i.e., the subset of M,,(Z) consisting of those
matrices with precisely one 1 in each row and in each column. Prove that

e}
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10.

11.

12

R

1.
2.

(a) G is a group under matrix multiplication,

(b) every element of G has determinant 1 or —1,

(c) the matrices of determinant equal to 1 comprise a normal subgroup N, and
(d) G/N is cyclic of order 2.

Let p > 2 be a prime number and let G be a group of order 2 p.

(a) Prove that G has an element (hence subgroup) of order p.

(b) Show that if H and K are subgroups of order p then H N K = {e}.

(c) Prove that G has a unique subgroup of order p and that it is normal.

(d) Prove that G has a subgroup of order 2. Note that Example 9.14 shows that this subgroup need
not be normal.

Given a group G and subgroups H and K, the set HK is the subset {hk : h € H,k € K} of G.

(a) With
lay . _ 10Y) .
6=, 1= {(1) cwerl k= f(10) ekl

show that HK is not a subgroup of G.
(b) Imitating the proof of Theorem 9.19, prove that HK is a subgroup of G if either H or K is a
normal subgroup of G.

. Given a group G and not necessarily normal subgroups H and K, it is clear that h1k; = hyk;

implies k1k;' = hi'h, € H N K. Conversely, for each g € H N K we have hk = (hg)(g™'k).

Use these facts to prove that if G is finite, then | HK | = %
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Chapter 10
Symmetry

In this chapter we explore another connection between algebra and geometry. One of the main issues
studied in plane geometry is congruence; roughly, two geometric figures are said to be congruent if
one can be moved to coincide exactly with the other. We will be more precise below in our description
of congruence, and investigating this notion will lead us to new examples of groups. The culmination
of this discussion is the mathematical classification of frieze patterns and wallpaper patterns based on
the structure of the groups that arise.

10.1 Isometries

The following two triangles:

are congruent since the first can be moved to coincide with the second. In contrast, the next pair
consists of non-congruent triangles:
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since, in order to move the first to coincide with the second, one would also have to reshape the
triangle. More precisely, they are not congruent because the distances between the vertices of the first
triangle are not the same as the distances between the vertices of the second. The idea of distance
enables a rigorous notion of congruence.

Definition 10.1. An isometry of the plane is a 1-1 and onto map of the plane to itself that
preserves distances. That is, an isometry f : R> — R? is a 1-1 onto function such that, for
every pair P, Q of points in R?, the distance between P and Q is equal to the distance between

f(P) and f(Q).

Two geometric figures are then congruent if there is an isometry that maps one figure exactly to
the other. By representing points as ordered pairs of real numbers, we can give algebraic formulas for
the distance between points. First, let || P || be the distance from P to the origin O = (0, 0); this is the
length of the line segment OP. The distance between P = (a,b) and Q = (c,d) is then given by
the distance formula

IP=Qll = V(a—c)*+ (b —d)>

The collection of all isometries of the plane R? presents us with another important example of a
group. Recalling the axioms defining this algebraic structure, the operation at hand is composition of
isometries as functions from R? to R2. Note that since an isometry is a 1-1 and onto function, it has
an inverse function.

Lemma 10.2.

1. The composition of two isometries of the plane is again an isometry.
2. The inverse of an isometry is an isometry.

Proof. To prove (1), let f and g be isometries of the plane and let P, Q be points. Then

ICf e @)(P) = (f o)D)l = llg(P) —g(Q)l = [P = QI

since f and g are each isometries. Therefore, f o g preserves distance. Moreover, f o g is
the composition of two 1-1 and onto functions, so it is also 1-1 and onto. Therefore, f o g is
an isometry. For part (2), let f be an isometry, and let f~! be its inverse function. Let P
and Q be points. We need to prove that Hf_l(P) - f_l(Q)” =||P— Q. Let P" = f~1(P)
and Q' = f71(Q). Then P = f(P’) and Q = f(Q’) by definition of f~!. Since f is an

isometry, | P/ — Q|| = [ /(P') = f(Q")|. In other words, || f~"(P)— f~"(Q)| = [IP - Q|
This is exactly what we need to see that f~! preserves distance. Since f~! is also 1-1 and
onto, it is an isometry. O

Let Isom(R?) be the set of all isometries of the plane R?. The lemma above shows that Isom(R?)
is closed under the binary operation of function composition and under taking inverses. Associativity
of composition holds automatically for functions from any set to itself, i.e., for every set 4, functions
fig,h: A— Aandeverya € A:

Jo(geom)(a) = f(g(h(a)))
= (f o g)(h(a))
= (fog)oh(a)

so that f o (goh)) = (f o g) o h. Combined with the fact that the identity function is clearly an
isometry, the lemma shows that Isom(RR?) satisfies the axioms of a group.
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An important class of isometries consists of the translations. To establish some notations that will
be useful here and later in this chapter, fix a coordinate system on R? with 0 representing the origin

and associate to a point Q in R? the displacement vector given by the directed line segment @ In
terms of coordinates, the point Q = (a, b) is identified in this way with the vector @ = {(a,b).

Translations

Definition 10.3. Let O be a fixed point in R? and v = {a, b) the vector identified with Q.
The function f(P) = P + v is the translation by the vector v.

It is trivial to see that f is an isometry. Its inverse is translation by —v. We will denote the
translation by a vector v by t,. Clearly the inverse of 7, is 7—,. In terms of coordinates, if P is the
point (x, y) and v is the vector {(a, b) then 7,(P) = (x + a,y + b).

Lemma 10.4. Let g be an isometry of R? with g(0) = v. Then t_, 0 g := g is an isometry
fixing the origin. In particular every isometry is the composition of an isometry fixing the
origin with a translation.

Proof. g =(r,01_,)og=1,0(1_y08) =T1,08. 0

As the next proposition shows, the isometries fixing the origin are in fact linear transformations of
R, thus enabling the introduction of tools from linear algebra to the analysis of isometry groups. The
General Linear Group, GL,(R), and its subgroup the Special Linear Group, SL, (R), play essential
roles in what follows, so we remind the reader of their definitions.

Recall from Chap.8 the General Linear Group, GL,(R), whose elements are the nonsingular,
i.e., invertible, linear transformations from R" to itself with the group operation being composition.
Equivalently, once a basis for R” is specified, GL, (R) is identified with the set of all nonsingular n xn
matrices with entries in R with matrix multiplication as the group operation. Its subgroup, the Special
Linear Group, SL,, (R), is the subgroup of GL, (R) consisting of those matrices of determinant equal
to 1. These groups play a special role in our discussion of isometries as the next proposition will show.

Lemma 10.5. If f is an isometry of R? and P, O, R are collinear, then f(P), f(Q), and
f(R) are collinear.

Proof. Let P, Q, R be collinear, labeled in collinear order, so that |[R— Q| + [|Q — P| =
IR — P| . Since f is an isometry
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IF(R) = f(P)| = [[R=P|
=[R=0I+]Q -7l
= I/ (R) = F(DI + 1 /(Q) = fF(P)Il.

But || f(R)— f(P)I = I/ (R)— f(QDI + /(@)= f(P)| implies that f(P), f(Q), and
f(R) are collinear, otherwise they are the vertices of a triangle for which || f(R) — f(P)| <

If(R) = f(DI + 17(Q) = f(P)]. 0

Proposition 10.6. Fiz a coordinate system on R? with origin denoted 0. The subset of
Isom(R?) consisting of all isometries fizing 0 is a subgroup isomorphic to a subgroup of
GL,(R), i.e., the origin-preserving isometries are monsingular linear transformations of the
vector space R2.

Proof. Let P,Q be points in R?> and f € Isom(R?). The directed line through P, Q is
parametrized as {(1 —#)P +1Q :t € R}. Foreacha € Rset X, = (1 —a)P + aQ. By the
previous lemma, f(X,) lies on the line joining f(P) and f(Q). Using the distance preserving
property of isometries we have
[ Xe — P = lal[|Q — P
[Xe = Ol =1 —all|Q — P
If(Xa) = F(P)I = all[(Q) — (P)I|
= lalll f(Q) — f(P)I|
If(Xa) = F(D) = [1—=alll f(Q) = f(P)II.

If0 <a <1, then X, lies on the directed line segment joining P and Q at a distance a from P,
and the same must be true for f(X,) with respect to the directed line segment joining f(P)
and f(Q). Thus f(X,) = (1—a) f(P)+af(Q). The casesa > 1 and a < 0 are symmetric and
handled similarly.

Taking P = 0, we have X, = aQ, and by assumption f(P) = 0, so the multiplicative
property f(aQ) = af(Q) for every a € R and every Q € R? holds. Taking arbitrary P and Q
with a = % we obtain

1 1 1
1 (50 +0) =571+ 55@)

Applying the multiplicative property,

1P+ 0 =237+ 570
= /() + /(0)

Corollary 10.7. Ewvery isometry of R? preserves the angles between pairs of vectors.

Proof. The assertion is clearly true for translations and by Lemma 10.4 we may restrict
our attention to origin-preserving isometries, hence to isometries f which are linear
transformations. Let v and w be vectors in R? and f € Isom(R?). The isometric property
implies that || f(v + w)|| = ||v + w||. Recall that
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v+ wll> =@ +w-+w)
=V V+V-WH+W-V+W-Ww

= VI + [wl? +2v - w.
Similarly, the additivity of f yields

Lf@+wIP =1lf0) + fFmI
= [IfOIP+ fWIP +2f) - f(w)
= (VI + [l + 2/ () - f(w).

so that f(v)- f(w) =v-w. If0 < 6 < x is the angle between v and w and 0 < ¢ < 7 the angle
between f(v) and f(w), we have

JO) - fw) = lf O flIwllcosg = [[V][[|w]| cos ¢

=v-w=|||||w]| cosb

from which we obtain cos ¢ = cos 6 and therefore that ¢ = 6. O

10.1.1 Origin-Preserving Isometries

From Proposition 10.6 we know that once a basis is chosen for R? every origin-preserving isometry
has a unique representation in GL, (R). The special features of matrices which represent isometries
will be determined in this section.

Lete, = ((1)) and e; = ((1)) be the standard basis for R? and f € Isom(R?) with f(0) = 0.

Write f in matrix form with respect to the standard basis
ac
=(5a)
so that f(e;) = (Z ) , fer) = (2 ) . Because e and e; are orthogonal unit vectors, Corollary 10.7

implies the same for (Z) and (2 ) . In other words, the points (@, b) and (c, d) lie on the unit circle

in R2, so that there is 0 < 6 < 27 with
(a,b) = (cos,sin )
TN . b4
(c,d) = (cos (9 + E) , sin (9 + E>> .

Therefore the matrix representation for f is either the matrix

cosf —sin6
Ry = .
i (sin@ cos 6 )



150 10  Symmetry

of determinant equal to 1, or the matrix
cosf sinf
Sfo=1\".
sin@ —cos 6

of determinant equal to —1. Note that f;? = id.

Another property of the matrices Rg and fy is of essential importance: They are the orthogonal 2x2
matrices, i.e., their rows constitute pairs of orthogonal unit vectors (Rg RT = fo fOT = I), hence form
an orthonormal basis for R? (and the same is true of their columns as Rg Ry = fOT fo = 1 as well).
Since we know that the collection of origin-preserving isometries is closed under composition and
inversion, the collection of such matrices forms an important subgroup of GL,(R) denoted O,(RR).
More generally:

Definition 10.8. The Orthogonal Group O, (R) is the subgroup of GL, (R) consisting of those
matrices whose rows (columns) constitute an orthonormal basis for R". The subgroup O, (R) N
SL, (R) of orthogonal matrices having determinant equal to 1 is called the Special Orthogonal
Group, and is denoted SO, (R).

That O, (R) is a subgroup of GL, (R) and SO, (R) is a subgroup of O, (R) are left as exercises. The
isometries fixing the origin then fall into two classes:

Rotations

If 6 is an angle, then the rotation (counterclockwise) by an angle 6 about the origin is given in
coordinates by the matrix
cosf —sind
Ry =: .
i ( sinf cosf )

Observe that

) T
Ry(x,y) = ((COS@ —s1n9) (X)) = (xcosf — ysin6,xsinf + ycosh).

sinf cos@ y

We can use this to describe a rotation about any point. If 7’ is the rotation by & about a point P € R?,
and if ¢ is the translation by P, then 7’ =t or ot~'. As a consequence, this shows that every rotation
is an isometry. Note that ! is rotation by —@ about the origin. If § = 27/n for some integer n, then
r'* =id.
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Reflections

Let £ be the line in R? passing through the origin at angle % with the vector ey, i.e., £ is parallel to the

vector (cos %, sin %). The map f that reflects points across £ is an isometry preserving the origin, so is

a linear transformation. To find its matrix, we calculate the unit vectors f(e;) = uj and f(ez) = up (f
is an isometry). Since the angle between £ and i is also equal to % we have u; = (cos 6, sin 8) . Write
uy = {a,b) . Since f reflects the point (0, 1) to its mirror image about £, this line is the perpendicular
bisector of the line segment £ joining (0, 1) and (a, b). In particular the slope of £’ is equal to — cot %

so that it has equation y — 1 = —cot %x. Precisely two points on £’ are at distance 1 from the origin:
2 0 2
1=x +(1—c0t§x)
0 0
2 2 ¥ 2
=X 1 —2cot—x + cot” —x
* 2 + 2
=x? l—i-cotze —2c0t9x+1
- 2 2 ’
which simplifies to

0 0
0=x{xcsc> = —2cot— ).
2 2

The solution x = 0 yields the point (0, 1), while the other

0
B 200t5

- 28
csc? 5

.26 0
2 sin 5 COS 5
-0
SIHE

= 2sin — cos —
2 2

= sinf

yields the point (sin 8, — cos 6). Thus the matrix of f with respect to the standard basis is exactly the
matrix fy above, in particular reflection across a line is an isometry satisfying f2 = id.
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Alternatively, one can verify that if £ is the line through the origin parallel to a vector w, then the
reflection across £ of the vector v is given by the formula

vew
fv)y=2 ( ) w—v.
wew
This formula comes from the formula for projection of one vector onto another that one sees in
multivariable calculus.

Proposition 10.9. FEvery isometry is determined by the images of any 3 non-collinear points
in R2.
Proof. Let P, Q. R be non-collinear points and f € Isom(R?). Choose coordinates so that

the origin O = P,set V = f(0), and v = W Then t_, o f fixes O and is therefore a

—_—>
linear transformation. By non-collinearity, the displacement vectors @ and OR are linearly
independent so that 7_, o f is determined by its values on these two vectors, i.e., by t—, 0 f(R)
and t_, 0 f(Q). Since f = 1,01_, 0 f, this isometry is determined by f(0), f(Q), and f(R).
O

10.1.2 Compositions of Isometries
10.1.2.1 Glide Reflections

Since Isom(IR?) is a group under function composition, new isometries may be produced this way.
It is clear that the composition of two rotations about the same point is again a rotation (about the
same point). In the exercises below, the composition of a rotation and a translation is seen to be a
rotation, and the composition of a rotation and a reflection is shown to result in either a rotation or a
translation. The composition of a reflection and a translation may be a reflection, although it may also
be a new type of isometry. We will call such a composition a glide reflection if it is not a reflection.

Since, by Lemma 10.4, every isometry is the composition of a translation with an isometry that
preserves the origin, we have proved the following theorem:

Theorem 10.10. FEvery isometry of R? is a composition of a translation with either a rotation
or a reflection. Therefore translations, rotations, reflections, and glide reflections account for
all types of isometries of the plane.
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10.2 Structure of the Group Isom(R?)

In this section the structure theory introduced in Chap. 9 is applied to the group of isometries of R?.
The need for those results is illustrated by the following observation. Recall the matrices Ry and fy
representing, respectively, rotation about the origin through the angle 6 and reflection about the line
through the origin parallel to the vector (cos %, sin %) Calculating the product Ry fp results in the
matrix f>¢ while fs Ry = f;. The group Isom(IR?) is therefore nonabelian. Nevertheless it is possible
to understand its structure and application to symmetries of planar regions, by studying the subsets
consisting of the translations and of the origin-preserving isometries. It is clear that the composition
of two translations and the inverse of a translation are again translations. Similarly the property of

fixing the origin is preserved under composition and taking inverses. This observation is recorded as

Proposition 10.11. The collections T of translations and P of origin-preserving isometries
are subgroups of Isom(R?).

The subgroup T has some special properties. It is an abelian group, i.e., composition of translations
is commutative, which follows because 7, o 7, = 7,4+, and vector addition is commutative. The
origin-preserving isometries constitute a nonabelian subgroup (Exercise 4). More importantly for the
structure of Isom(R?) we have:

Lemma 10.12. Let T be a translation and f an arbitrary isometry. Then f~'oT o f is
again a translation. In particular T is a normal subgroup of Isom(R?).

Proof. Choose a coordinate system with origin O, set V = f(0),v = OV and g =10 f
Then f = 1,0 g and

f'Tf =(ty0g) ' oTor,0g
=g lor,0Toro0g

1

=g oTog

so we may assume that f is origin-preserving, hence a linear transformation with matrix A. In
coordinates then, with T = t,,, we compute

FITf(x.y) = A7 (A »)" +w)
=(x,y) + A7 'w,

i.e., f7'Tf =t -1, the translation by A~'w. O

In contrast, the subgroup of origin-preserving isometries is not normal. For a simple example, let
f be the counterclockwise rotation about the origin through 7 radians and v = (1, 0). Then

e renen = ()4 (19) ()

which certainly does not fix the origin.
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10.2.1 Semidirect Products

With respect to the subgroups 7 and P of Isom(R?), we found that T is normal, Isom(R?) =TP and
TNP= {e}. However, because P is not a normal subgroup, i.e., Condition 2 of Theorem 9.19 is not
satisfied, Isom(R?) does not decompose as the direct product of the subgroups 7 and P. Nevertheless,
as will be shown later in this section, there is a closely related decomposition of Isom(RR?). To apply
these results to the structure of Isom(R?), recall that every isometry g has a unique representation as
g = to f witht €T and f €P, but it is not the case that Isom(IR?) =T xP since, as we have seen,
the elements of T and P do not in general commute. The failure of commutativity of ¢ €T and f €P
is equivalentto f ! o7 o f # 7 but normality of T implies that f "' oz o f € T.

Recall from Example 9.5 that for f € Isom(R?) the function ¢ : Isom(R?) — Isom(R?), given
by ¢/(g) = f~'ogo f, is an automorphism of Isom(R?) and is of particular importance. In fact this
type of mapping is important in the general theory of groups, so we return to our general development
of group theory and later apply the results to the structure of Isom(R?).

Definition 10.13. Let G be a group and f € G. The function ¢y : G — G given by cs(g) =
f~'ogo fiscalled conjugation by f.
The following proposition formalizes the content of Example 9.5.

Proposition 10.14. Let G be a group. For every f € G the conjugation map cs(g) =
f~Yogo f is an isomorphism of groups, hence an automorphism of the group G.

The condition of normality of a subgroup is conveniently expressed in terms of conjugation
automorphisms: If N is a normal subgroup of G, then ¢, (n) = gng™' € N forevery g € G
and n € N. More precisely, we have the following corollary. The proof, which is left to the exercises,
uses the same reasoning as in Example 9.5.

Corollary 10.15. The subgroup N of the group G is normal if and only if c; restricts to an
automorphism of N for every f in G.

We now come to the promised decomposition of Isom(IR?). It relies on a more general version of
the method used in Chap. 9 for putting a group structure on the Cartesian product of two groups.

Definition 10.16. Let G be a group with subgroups H and N satisfying the following
conditions:

1. G=HN,
2. N is a normal subgroup of G, and
3. HN N = {eg}.

Then G is said to be the semidirect product of N by H.
Remark 10.17. With this terminology, Isom(R?) is the semidirect product of T by P.

The condition H N N = {eg} implies that the representation of g € G as g = hn with h € H,
n € N is unique. Therefore the semidirect product can be interpreted as a group structure on the set
H x N.Indeed if hyny = hony, then hy'hy = ny'ny € HNN = {eg} sothathy = hy and ny = n,.
The product in G can then be realized as

h1n1h2n2 = hlhzhz_lnlhznz

= (hih2)(h5 'niho)na,
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which has the required form by the normality of N. If, in addition, H is a normal subgroup, then the
elements of H and N commute and the semidirect product is in fact the direct product of H and N.
For h € H, and n € N note that with both H and N normal

hnh™'n™' = (hnh™Y)n~' e N
=h(nh™'n ") e H,

sothat inh~'n~! = eg, i.e., hn = nh.

Remark 10.18. The natural group operation on the subgroup 7= R? of Isom(R?) is addition
while that on P~ O,(R) is by multiplication. Taking advantage of the unique representation of
elements of Isom(R?) as f4 ot, with A € O,(R) and a € R?, the group structure on Isom(R?)
can be viewed as the one on O,(R) x R? given by

(A,a)- (B,b) = (AB, B 'a + b)
(A,a)" ' = (47!, - Aa).

Proposition 10.19. Let G be the semidirect product of N by H. Then G/N =~ H. In
particular Isom(R?)/ T = P.

Proof. Since every element g € G is uniquely represented as g = hn with h € H, n € N, we
can define a function 7 : G — H by n(g) = h. Clearly 7 is onto. We show that 7 is a group
homomorphism with kernel equal to N. To that end, let gy = hyn; and g, = hyn;, be elements
of G with hy,h, € H, and n1,n; € N. Then

8182 = hinihan,
= hlhzhz_lnlhznz
= (hh2)(hy 'nihany).

The second factor is in N by normality so this is the unique expression of g; g, as the product
of an element of H with one an element of G. Thus

7(g182) = hihy = n(g1)m(g2)

and 7 is a homomorphism. The kernel of 7 is {egn : n € N} = N. Finally Theorem 9.25
implies that G/N =~ H. O

Exercises

1. Prove that the composition of a rotation and a translation is again a rotation.

2. Using f(v) =2 (VVV—’;) w — v for the reflection across the line £ of the vector v, recover the matrix

representation of the reflection across the line through the origin parallel to the vector (cos g sin %)

that was carried out above using trigonometry and analytic geometry. ’

3. Let f and f, be reflections about the lines £; and £, respectively. Suppose that £; and £, are
parallel and that b is the vector perpendicular to these lines such that translation by b sends ¢; to
£,. Show that f, f; is translation by 2b.
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z o fz and fz o f=z and interpret the resulting isometries

geometrically.

. Let r be a rotation about a point P and let f be a reflection. Prove that f7 is a rotation about P

if f(P) = P, butthat fr is a translation if f(P) # P.

. Let f be a reflection about a line £ and let 7 be a translation by a vector b. If b is parallel to £,

show that 7 f is a reflection about the line £ + b/2.

. Let f be a reflection about a line £ and let t be a translation by a vector b. If b is not parallel to

£, show that t f fixes no point, so is not a reflection. Moreover, if b = b; + b, with b; parallel to
£ and b, perpendicular to £, show that 7 is the composition 7’ /' of the translation 7’ by b, and
[ is the reflection about the line £ + b; /2.

(By this problem, it follows that any glide reflection is the composition of a reflection followed
by a translation by a vector perpendicular to the reflection line.)

. Demonstrate that the group of Example 9.14 is the semidirect product of a cyclic subgroup of

order three with a cyclic subgroup of order 2.

. Let p > 2 be a prime number. Prove that every group of order 2p is either the direct product or

the semidirect product of a of order p by a group of order 2.

Let G be the semidirect product of a normal subgroup N and a subgroup H. Following the
notation above, for each 4 € H, we have the map ¢, : N — N sending n to hnh™', which
is an automorphism of N. Show that the function H — Aut(N) given by & +— ¢j, is a group
homomorphism.

Prove that O, (R) is a subgroup of GL, (R).

Prove that SO, (R) is a normal subgroup of O, (R).

Since GL;(R) = R* and O;(R) = {1, —1} under multiplication, O (R) is a normal subgroup of
GL;(R). Is O2(R) a normal subgroup of GL,(R)? If so, prove it. If not show via example why
not.

Prove that O, (R)/ SO, (R) = Z,.

Apply the methods in Example 9.5 to prove Corollary 10.15.

10.3 Symmetry Groups

Let X be a subset of the plane. We associate a group to X, called the symmetry group of X. This
notion makes perfect sense for subsets of R” for any n; but, we will restrict our attention to plane
figures.

Definition 10.20. If X is a subset of the plane, then the symmetry group of X is the set of
all f € Isom(R?) for which f(X) = X. This group is denoted by Sym(X).

To better understand the definition, we look at it more carefully. If f is an isometry and X is
a subset of the plane, then f(X) = {f(P): P € X}. Therefore, f € Sym(X) if for every point
P € X, we have f(P) € X and, forevery Q € X thereisa P € X with f(P) = Q. We do
not require that f restricts to the identity on X, i.e., that f(P) = P for P € X. For example, if

X = {(Os l)s (ls O)s (_15 O)s (Os _1)}’
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®
®
v

then a rotation of 90° about the origin sends this set of four points to itself. Thus, this rotation is a
symmetry of X . To see, in general, that Sym(X) is a subgroup of Isom(RR?), we only need to show that
if f.g € Sym(X), then f o g=' € Sym(X). However, if f,g € Sym(X), then f(X) = g(X) = X.
Therefore, g~ (X) = X, and so f(g7' (X)) = f(X) = X.

10.3.1 Examples of Symmetry Groups

The examples we give in this subsection will help us to understand the definition of symmetry group
and to introduce as symmetry groups two important classes of groups, the cyclic and dihedral groups.

Ezample 10.21. We calculate the symmetry group of an equilateral triangle 7. For conve-
nience, we view the origin as the center of the triangle.

A

B c

The identity function is always a symmetry of any figure. Also, the rotations about the origin
by an angle of 120° or 240° are elements of Sym(7'). Furthermore, the three reflections across
the three dotted lines of the following picture are also isometries.

A
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We have so far found six isometries of the triangle. We claim that Sym(7") consists precisely
of these six isometries. To see this, first note that any isometry must send the set {4, B, C}
of vertices to itself. There are only six 1-1 functions that send {A4, B, C} to itself, and any
isometry is determined by what it does to three non-collinear points by Proposition 10.9, so
we have found all symmetries of the triangle.

If r is the rotation by 120° and f is any of the reflections, then an exercise will show that
f.rf,r? f are the three reflections. Moreover, r2 is the 240° rotation. Therefore, Sym(T) =
{e.r.r?, f.rf.r*f}. The elements r and f satisfy r* = e and f? = e. Another exercise will
show that r and f are related via the relation fr = r?f. Alternatively, this equation may be

rewritten as frf =r~!, since f~!' = f and r? = r~L.

Corollary 10.22. Sym(T) is the semidirect product of the normal subgroup {e, T, rz} by the
subgroup {e, f}.

Remark 10.23. Sym(T) is isomorphic to the group in Example 9.14.

Ezxample 10.24. Now let us determine the symmetry group of a square Q, centered at the
origin for convenience. As with the triangle, we see that any isometry that preserves the square
must permute the four vertices. There are 24 permutations of the vertices. However, not all
come from isometries. First, the rotations of 0°, 90°, 180°, and 270° about the origin are
symmetries of Q. Also, the reflections about the four dotted lines in the picture below are also
symmetries. We now have eight symmetries of the square and we claim that this is all. To see
this, we give a counting argument. There are four choices for where vertex A can be sent since
it must go to one of the vertices. Once a choice has been made, there are just two choices for
where B is sent since it must go to a vertex adjacent to the image of A4; this is forced upon us
since isometries preserve distance. After images for A and B have been chosen, the images of
the other two vertices are then fixed; C is sent to the vertex across from the image of A, and

A B

D , : a

D is sent to the vertex across from the image of B. So, there is a total of 4 -2 = 8 possible
isometries. Since we have found eight, we have them all.

If r is the rotation by 90° and f is any reflection, then the four reflections are f,rf,r2f.r3 f;
this can be seen by an exercise similar to that needed in the previous example. The four
rotations are r, 72,73, r* = e. Thus, the symmetry group of Q is {e, rr2 3, forfirt f r3f}.
We have r* = e and f? = e, and an exercise shows that fr = r3 f, or frf = r~!. This is the

same relation that holds for the corresponding elements in the previous example.

Corollary 10.25. Sym(Q) is the semidirect product of the normal subgroup {e, rr2, r3} by
the subgroup {e, f}.

Example 10.26. If we generalize the previous two examples by considering the symmetry
group of a regular n-gon, then we would find that the symmetry group has 2n elements. If
r is a rotation by 360°/n and if f is a reflection, then the rotations in the group are the powers
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r,r2, ..., 1" ¥" = e of r, and the reflections are f,rf,...,r"”' f. Thus, half of the elements
are rotations and half are reflections. The elements r and f satisfy the relations r" = e,

fP=e,and frf =r"".

Definition 10.27. The Dihedral group of order 2n, denoted D, is the group of symmetries
of the regular n—gon.

Because of the relation frf = r~!, the elements of D, can be listed as e, r,72,...,r"", f.rf,
r2f,...,r""! f. The subgroup of all rotations in D, is also of importance for us. This is the cyclic
subgroup (r) = {e,r,...,r"~'} denoted by C,.

Theorem 10.28. For everyn > 3, D, is the semidirect product of C, by {e, f}.

Proof. 1t is clear that D, = C, {f) and C, N (f) = {e}. Normality of the subgroup C, follows
from Proposition 9.13. O

The group C, also arises as a symmetry group. The following example shows how Cy can arise as
a symmetry group.

Example 10.29. The following figure has only rotations in its symmetry group; because it has
rotations only of 0°, 90°, 180°, and 270°, its symmetry group is Cj.

N
/]

AN

By drawing similar but more complicated pictures, we can represent C, as a symmetry group
of some plane figure.

V7

Example 10.30. The Zia symbol, which appears in the state flag of New Mexico, has symmetry
group Dy; we see that besides rotations by 0°, 90°, 180°, and 270°, it has horizontal, vertical,
and diagonal reflections in its symmetry group, and no other symmetry.
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Example 10.81. Consider a circle of radius 1 centered at the origin 0. Any isometry of the
circle must map the center to itself. Thus, any such isometry is linear, by Proposition 10.6.
Conversely, if ¢ is any linear isometry, and if P is any point with d(P,0) = 1, then
d(e(P),9(0)) = d(¢(P),0) = 1. Thus, ¢ sends the circle to itself. Therefore, the symmetry
group of the circle is O, (R).

Exercises

1. Let G be the symmetry group of an equilateral triangle. If  is a 120° rotation and f is a reflection,
show that f, rf, and 2 f are the three reflections of G.

2. Show that there are exactly six 1-1 functions from a set of 3 elements to itself.

3. Let G be the symmetry group of an equilateral triangle. If  is a 120° rotation and f is a reflection,
so that 7 = r2 f. Use this to show that frf = r—L.

4. Let G be the symmetry group of a square. If r is a 90° rotation and f a reflection, show that the
four reflections of G are f,rf,r>f,and r3 f.

5. Let G be the symmetry group of a square. If r is a 90° rotation and f a reflection, show that
fr = r3f. Use this to show that frf =r~".

10.4 The Seven Frieze Groups

Frieze patterns are often found as decorative borders, for instance, on fabrics or along walls. A frieze
pattern is a one-dimensional “tiling” consisting of a figure that is repeated at regular intervals in one
direction. For example,
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Since frieze patterns are subsets of the plane we can investigate their symmetry groups, which are
called frieze groups. It turns out that there are only seven possible groups of isometries that can arise
as symmetry groups of frieze patterns. Although human artistry can produce innumerable varieties of
frieze patterns, from a mathematical point of view there are only seven different types.

For concreteness assume, as in the examples above, that our frieze patterns extend infinitely
in the horizontal direction. If F is a frieze pattern, denote its symmetry group by Sym(F). By
definition, Sym(F) contains a translation 7' of some minimal length L in the horizontal direction
(e.g., the length between two consecutive triangles above the dotted line in the first two examples,
respectively). Therefore Sym(F) contains as a subgroup {n7y, : n € Z} =~ Z and this group must
equal Sym(F) N T.

Choose one tile and designate its center as the origin of a coordinate system on R?. We consider
the possibilities for Sym(F) N P. Since F extends in the horizontal direction, the only reflections
available are those about a vertical line through the origin, denoted f, (as in the third example above)
and about a horizontal line through the origin, denoted f,. Similarly, the only nontrivial rotation
available is a rotation r about the origin through 180° (as in the second example above). Recall that
fvo fu = fyo f, = r. There is only one glide reflection available, namely f, o T% , which is a
symmetry of the fourth example above.

Our objective us to show that there are only seven distinct subgroups of Isom(R?) containing 77,
and some of f,, f,r, and fj, o T% . For simplicity set g, = fj, o T% , and e equal to the identity
symmetry. Since a group is closed under its operation, the following multiplication table for these
isometries is helpful in identifying the restrictions on a pattern F imposed by its symmetries. For
instance, the equation r o g, = f, o T% says that a frieze symmetric with respect to both r and g
must be very symmetric.

o | f Ju | gh

fv e r f/t "OT%

Ju |1 e | fh Ty

ro | fHole rogn=fiofuo fuoTy = fioTL

gh |roTy |Te | fioTL |Ty

ol

If G is to be the symmetry group of a frieze pattern, G must contain {n7; : n € Z}, some subset of
{fv, fn, 1, gn}, and must be closed under composition. From the table above, we see that G that there
can only be the following seven possibilities, given with frieze patterns exhibiting precisely those

symmetry groups. For elements a;, as,...,a, of a given group G we write (a;,as,...,a,) for the
smallest subgroup of G containing {a;, as,...,a,}.
1. G =(Ty)
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3. G = (T, f)

Of these groups only groups 1, 2, and 5 are abelian. Group 1 is isomorphic to the group Z of
integers under addition. So is Group 5 because g; o g5 = Tr. Thus (T, g1) = (gn) an infinite cyclic
group, hence isomorphic to Z. Group 2 is isomorphic to the direct product of the subgroups (77 ) and
(fn) hence to Z x Z,. Groups 3, 4, and 6 are isomorphic to the semidirect of Z by Z, specifically to
the semidirect products of subgroup (7.) by (f,), of (T1) by (r), and of (g,) by ( f,), respectively.
Finally, Group 7 is isomorphic to the direct product of the subgroup ( f;) = Z, and the subgroup
(T, f,), the latter of which we have noted is isomorphic to the semidirect product of Z by Z,.

Although symmetry groups of plane figures are subgroups of Isom(R?) which, as we have seen,
has the structure of the semidirect product of the subgroups 7 and P, one cannot expect an arbitrary
symmetry group G to be isomorphic to the semidirect product of G N 7T by G N P. In Group 6 for
example, r o T% € G, but neither r nor T% lies in G. Note also that while some of these groups are
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isomorphic as “abstract groups” they represent distinct kinds of symmetry groups. In particular there
is a finer distinction than isomorphism that reflects the geometric aspects of these groups. This notion
will be explored further in the final subsection of this chapter.

10.5 Point Groups of Wallpaper Patterns

In this section we classify the symmetry groups of bounded plane figures and apply the main result to
the origin-preserving parts of the isometry groups of wallpaper patterns.

10.5.1 Symmetry Groups of Bounded Plane Figures

We will see that every such symmetry group is isomorphic to a subgroup of O,(Z). Moreover, if the
figure has a “smallest” rotation, then we will see that its symmetry group is either C,, or D,,.

To start, we will be specific about what type of figures we consider. A subset S of R? is said to be
bounded if there is a positive number r such that S is a subset of the closed disk {P eR?:|P| < r}
of radius r. All examples in the previous section were bounded figures. We begin with a simple but
important lemma restricting the type of groups that can arise as the symmetry group of a bounded
figure.

Lemma 10.32. Let S be a bounded figure, and set G = Sym(S). Then G does not contain a
nontrivial translation.

Proof. Suppose that T € G is a translation, and that t is translation by the vector b. Then,
since G is a group, " € G for every positive integer n. Thus, translation by nb is a symmetry
of S for every n. Since S is bounded, there is an r such that |P| < r for every P € S. But then
t"(P) = P +nb € S for every n. The triangle inequality implies that [nb| < |P|+ |P + nb| <
2r. This yields n |b| < 2r. However, since this is true for every n, we must have |b| = 0; thus,
b = 0. Therefore, 7 is the identity map. O

To prove the main result about symmetry groups of bounded figures, we need the following facts
about compositions of isometries, which we record as a lemma. The proofs are left for exercises.

Lemma 10.33. The following hold for compositions of isometries:

1. The composition of two reflections about lines intersecting at a point P is a rotation
about P.

The composition of two rotations about a common point P is another rotation about P.
Ifr and s are rotations about different centers, then rsr='s™! is a nontrivial translation.
If r is a rotation about P and f is a reflection not fixzing P, then rf is a glide reflection.

Let r be a rotation and f a reflection in O,(R). Then frf =r~\.

Guds o b0

Proposition 10.34. Let S be a bounded figure, and set G = Sym(S). Then G is a subgroup
of O2(R). In particular, every isometry of S is linear.

Proof. By the lemma there are no nontrivial translations in G. As a consequence, there are
no nontrivial glide reflections, since the square of a nontrivial glide is a nontrivial translation.
Thus, G must consist solely of rotations and/or reflections. If G is either the trivial group or is
generated by a single reflection, then the result is clear. We may then assume that G contains
a nontrivial rotation or two reflections. In either case G contains a nontrivial rotation since
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the composition of two reflections is a rotation. If G contains two rotations r and s, then rs is
a rotation if r and s share a common rotation center. However, if they have different centers,
then rsr~'s~! is a nontrivial translation. By the lemma, this cannot happen. Therefore, every
rotation in G has the same center, which we will view as the origin. If r € G and if f € G is
a reflection, then fr is a glide reflection if f does preserve the rotation center of r. Since G
does not contain a glide reflection, f must preserve the origin. Therefore, all symmetries of S
preserve the origin, and so G C O,(R) is comprised of linear isometries. O

Let S be a bounded figure. By the proposition above, G = Sym(S) is a subgroup of O,(R). We
can then consider the subgroup R of rotations of .S. Of importance to our application is the case where
R contains a nontrivial rotation of smallest possible angle. This is the case for instance if S is a regular
polygon, but not if S is a circle. The next lemma is a generalization of Exercise 14 of Sect. 10.2.

Lemma 10.35. Let G be a subgroup of O2(R) and set N = {g € G : det(g) = 1}. Then N is
a normal subgroup of G with [G : N] < 2.

Proof. The determinant function det : GL,(R) — R™* restricts to a homomorphism detg :
G — {1,—1} with kernel N. Since G/N = G/ ker(detg) = im(detg) there are two possibilities:
Either detg is onto, in which case [G : N] = |G/N| = 2, or im(detg) = {1}, i.e., N = G and
[G:N]=1. 0

Corollary 10.36. If S is a bounded figure such that Sym(S) contains a rotation of smallest
possible angle, then Sym(S) is either isomorphic to C, or to D, for some n.

Proof. Let r be a rotation in G = Sym(S) of smallest possible nonzero angle 6. Recall that 6
is only unique up to multiples of 2. We may assume that 0 < 6 < 7, since if G contains a
rotation by 6, then it contains a rotation by —6, and if 7 < 6 < 27, then 0 < 27 — 0 < 7, and
r~! is rotation by 2w — . If 5 is another rotation in G, and if s is rotation by ¢, then there is an
integer m with mé < ¢ < (m + 1)6. The symmetry sr~" has rotation angle ¢ — m6, which by
the inequality is smaller than 6. By choice of 8, we must have ¢ — m6O = 0, so ¢ = m6. Thus,
s = r"™. Therefore, the group R of rotations of S is the cyclic group generated by r. Moreover,
we claim that € = 27/n for some n. To prove this, let n be the smallest integer with 27 /6 < n.
Then n — 1 < 27/6. Multiplying these inequalities by 6 and rewriting a little gives

2w <nf <2+ 0,

so 0 < nf — 27w < 6. However, the rotation angle in the interval [0,2x] for r”" is n6 — 2.
Since r" € G, minimality of 6 forces nf — 2w = 0, giving 8 = 27 /n, as desired. Since we have
shown that R = (r), and r" = id but r™ # id for 0 < m < n, we see that |R| = n, and so
|R| < 0c0. If G = R, then G = C,. If not, then G contains a reflection f, so that frf = r™!
by Lemma 10.33 (5), and [G : R] = 2, by Lemma 10.35. Finally, from Theorem 10.28, with
n = |R|, we see that G is isomorphic to C, or D,. O

Exercises

1. Prove that the composition of two reflections about lines intersecting at a point P is a rotation
about P. Moreover, if 6 is the angle between the two reflection lines, prove that the composition is
a rotation by 6/2.

2. Prove that the composition of two rotations about a common point P is another rotation about P.
Moreover, if the rotations are by angles 6 and ¢, prove that the composition is rotation by 6 + ¢.
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3. If r and s are rotations about different centers, prove that rs7~'s~! is a nontrivial translation.

4. If r is a rotation about P and f is a reflection not fixing P, prove that rf is a glide reflection.
5. Prove that every subgroup of a cyclic group is cyclic.
6. Prove that every subgroup of a dihedral group is either cyclic or dihedral.

10.5.2 Point Groups of Wallpaper Patterns

Similar to the existence of only seven frieze groups, there are only 17 distinct groups of isometries
of wallpaper patterns, or two-dimensional tilings of R?> made by composing certain linear isometries
with certain translations. As in the case for bounded plane figures, the “linear parts” are necessarily
either cyclic or dihedral, and there are only ten possibilities. These ten finite groups are called the point
groups of wallpaper patterns. Translations in this case can be in two independent directions. Once the
point groups are classified, it is possible to argue, in analogy with the frieze groups, that there are only
17 ways to combine them with translations to obtain symmetry groups of wallpaper patterns. If one
considers crystals, or three-dimensional tilings of R*, then one finds exactly 230 distinct symmetries.
The technicalities of a full treatment of two- and three-dimensional tilings are beyond the scope of
this text and the reader is referred elsewhere for detailed treatments of these topics. The remainder of
this chapter is dedicated to the determination of the ten point groups and five groups of translations of
wallpaper patterns.

To make things more precise, by a wallpaper pattern VV is meant the repetition of a fixed
parallelogram P in the plane R? containing a bounded figure. Each pair of nonparallel edges of
‘P determines two linearly independent displacement vectors v, w and the set of their integer linear
combinations L,,, := {mv + nw : m,n € Z} is called the integer lattice generated by v and w.
The terminal points of the vectors in L, ,, are the vertices of the (two-dimensional) translates of the
parallelogram P. It is clear that as a subset of the vector space R the lattice £, is a subgroup under
vector addition.

Let W be a wallpaper pattern with lattice £, ,,. Because W is a plane figure, Sym(WV) is a subgroup
of Isom(IR?) whose translations are given by {t, : u € £, ,,}. In particular 7N Sym(W)= L,,,. Recall
that Isom(R?) is the semidirect product of the normal subgroup T by the subgroup P = O,(R) and
that the elements of Isom(R?) are uniquely represented as f4 oz, with 4 € O,(R) and a € R?. We
use the identification of the group Isom(R?) with the group structure on O, (RR) x R? having as product
and inversion:

(A,a)-(B,b) = (AB, B 'a + b)
(A,a)™' = (47", - Aa).

Definition 10.37. Given a wallpaper pattern W its point group is Gy := {4 € O0,(R) :
(A,a) € Sym(W) for some a € R?}.

Caution: Just as for frieze Group 6, where we saw that r o T% € G, but neither r nor T% lies
in G, we cannot expect that (I,a) € Sym(W) if (4,a) € Sym(W) fora € R> buta ¢ L,,,. This
means that Sym()V) need not be isomorphic to a semidirect product of £, ,, by Gy. For an example
of a wallpaper pattern of this type see the example labeled p4m at the end of the chapter. The point
group however is the image of Sym()V) under a surjective group homomorphism.



166 10 Symmetry

Proposition 10.38. Let W be a wallpaper pattern with lattice L,,, and point group Gy.
The mapping

7w : Sym(W) — Gy
(A,a)— A

18 a surjective group homomorphism with kernel naturally isomorphic to L,,,.

Proof. That m is a homomorphism follows directly from the interpretation above of the group
operation in Sym(W). The definition of G shows that = is surjective and, with I denoting the
identity matrix, the kernel of 7 is {(1,a) : t, € TN Sym(W)}. But ¢, € TN Sym(W) implies
thata € L,,,. O

That the point group is either cyclic or dihedral will follow from realizing that it is isomorphic to
the group of symmetries of a bounded figure in the plane.

Lemma 10.39. Gy is isomorphic to a subgroup of O»(R).

Proof. To show that Gy is isomorphic to a subgroup of O,(R) amounts to showing that if (A4, a)
and (B,b) € Sym(W) then there are ¢,d € T with (AB,c) € Sym(W) and (47!, d) € Sym(W)
where AB is the product of the orthogonal matrices 4 and B, and A~ is the matrix inverse of
A. These conditions follow from the expressions for products and inversion above in Isom(R?)
with respect to the given representation of its elements and the fact that Sym(W) is a subgroup
of Isom(IR?). O

While the matrix representations for elements of G, with respect to the standard basis for R? lie in
0,(R), the matrices with respect to a lattice basis can only be expected to lie in GL,(Z).

Lemma 10.40. Let W be a wallpaper pattern with lattice L,,, and point group Go. Then Gy
acts on L,,, in the sense that if A € Gy andu € L, ,,, then Au € L, ,,. In particular, with respect
to the basis {v, w} of R?, the elements of Gy lie in GLy(Z).

Proof. The first assertion follows from the following bit of calculation using the representation
above of the product in Sym(W). Suppose that 4 € Gy so that (47", a) € Sym(W) for some
a € R%. Since u € L,,,, we have (I,u) as well as the conjugation C(a—1 g~ (I, u) as elements of
Sym(W). Calculate ¢4—1 41 (1, u) to obtain

AN o) MU w47 a) = (A, —A7 ), u)(A7Y, a)
=(A,-A7"'a) (A7, Au+ a)
={,—a+ Au+a)
= (I, Au) € Sym(W),
as desired.
The second assertion follows from the first. Since the elements of Gy act on L, ,,, it must
be the case that for A € Gy, the vectors Av and Aw lie in L,,,, hence are integer linear
combinations of v and w. The columns of the matrix representation of A with respect to the

basis {v, w} are exactly the coefficients of v and w in the expansions of Av and Aw and, because
A~! acts as the inverse of A, this matrix is necessarily invertible. O
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Corollary 10.41. The point group Gy of a wallpaper pattern with lattice L, ,, is isomorphic
to a subgroup of the symmetry group of a bounded plane figure, hence is isomorphic to C, or to
D, for some n.

Proof. Consider a circular disc D centered at the origin in R? that contains the terminal points
of the vectors v and w. Then DNL, ,,, the collection of lattice points contained in D, is finite and
certainly a bounded region. The action of Gy on L,,, via isometries induces a homomorphism
p: Gy — Sym(D N L,,) simply by restricting the action of g € Gy to the points of DN L, ,,.
Note that p must be injective. Its kernel consists of all g € Gy restricting to the identity on
DNL,,. But DN L,, contains the vectors v and w, which comprise a basis for R?, and a
linear transformation which acts as the identity on a basis must be the identity map. Thus
Gy is isomorphic to a subgroup of Sym(D N L, ,,), hence to a subgroup of a cyclic group or
of a dihedral group. Since every subgroup of such a group is again either cyclic or dihedral
(Exercise 6 of Sect. 10.5.1) the result follows. o

We finally come to the classification of the point groups of wallpaper patterns. In the statement of
the theorem the cyclic group C; is generated by a rotation through 180°. The group D1, also cyclic of
order 2, is generated by a reflection, and D,, which is isomorphic to the Klein four group Z, x Z;, is
generated by two reflections.

Theorem 10.42. Let W be a wallpaper pattern with lattice L,,, and point group Gy. Then Gy
s one of the ten groups Cy, Cy, C3, Cy, Cq, D1, D3, D3, Dy, or Dg.

Remark 10.43. Of these ten groups the only two that are isomorphic as “abstract groups” are
the two cyclic groups of order 2, C; and D;. As in the earlier case of distinct frieze groups that
are “abstractly” isomorphic, C; and D; are distinct as point groups of wallpaper patterns.
This notion will be made clearer in the next subsection.

Proof of the Theorem. From Corollary 10.36, Gy is either cyclic or dihedral. If G contains no rotation,
then Gy = C; or Gy = Dy, i.e., consists of just the identity or the identity and a reflection. Otherwise

Gy = C, or Gy = D, with n > 1 and contains a rotation r through some minimal angle 27” The
2 2

cos =& —sin =- . . .

. o > | while the matrix for r with
S e Ccos e

respect to the lattice basis {v, w} is in O,(Z) and these matrices are similar. Since similar matrices have
the same trace, it follows that 2 cos 27” is an integer, i.e., cOs 27” € {0, £1, :I:%} andn € {1,2,3,4,6}.

Finally, if G contains no reflection, then Gy = C; for one of these i. Otherwise Gy = D;. O

matrix for r with respect to the standard basis is then (

10.5.3 Equivalence Versus Isomorphism

Recall that several of the frieze groups, while representing symmetries of distinct frieze patterns, are
nevertheless isomorphic as abstract groups. Similarly the point groups C, and D, are isomorphic as
groups but arise from distinct wallpaper patterns. The notion of equivalence within Isom(RR?) explains
this finer classification. In the following definition we make use of the identification of the lattice
associated with a wallpaper pattern V¥V with the translation subgroup of Sym(/V).

Definition 10.44. Let W (resp. W) be a wallpaper pattern with lattice £,,, (resp. Ly, ).
The groups Sym(W) and Sym(W’) are said to be equivalent if there is a group isomorphism
¢ : Sym(W) — Sym(W') with ¢(L,,,) = Ly ..
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Exzample 10.45. Suppose that Sym(W) and Sym(W') consist only of translations, i.e., the
point group just consists of the identity, so that

SymOW) ={(I,mv+nw) :m,neZ}=L,,
and

SymW') = {(I,mV +nw) :m,ne€Z} =L,

The isomorphism ¢ : Sym(W) — Sym(W’') given by @o((I,mv + nw)) = (I,mv + nw')
demonstrates the equivalence.
The presence of a nontrivial point group, however, indicates the restrictive nature of equivalence.

Theorem 10.46. Let W and W' be wallpaper patterns with lattices L,,, and. L ,s and point
groups Go and G|, both viewed as subgroups of O2(Z). If the groups Sym(W) and Sym(W’) are
equivalent then there is a matriz U € GL,(Z) with G}, = U~'G,U.

In other words, equivalent symmetry groups have point groups G and G, which are conjugate as
subgroups of GL,(Z), i.e., the elements of G|, are simultaneously similar to those in G, by the same
integer matrix U.

Example 10.47. The symmetry groups of wallpaper patterns with Gy = C, represented as
-1 1 .

{1,( 0 01)} and G(') = D, represented as {I, ((1) 0)} are not equivalent. Recall that

similar matrices have the same determinant. Since both matrices in Gy have determinant equal

to 1 while the nonidentity element in G|, has determinant equal to —1, these groups cannot be

equivalent.

Proof of the Theorem. Let ¢ : Sym(W) — Sym(W’) be a group isomorphism satisfying ¢(L, ;) =
Ly . Define U to be the matrix (Z acl ) where

() = av + bw'
ow) =cv +dw'.

Since ¢(v), p(w) € L, s, which consists of all integer linear combinations of v' and w’ and the
expansion of these vectors in the basis {V/,w'} is unique, it must be the case that a,b,c,d € Z. But
the rank of U must be equal to 2 because ¢(L,,,) = L, i.e., the image of ¢ contains the linearly
independent vectors v/,w'. Indeed for some integers a’, b’, ¢’, d’,

vV =d W) +bow) =d (@ + bw) +b'(cv + dw)
W =co() +dow) =c'(av +bw) +d (cv +dw).

Again by the uniqueness of representations in the basis {V/',w'} it follows that

ac\(a _
bd)\b'd)
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/Cl

a
b d’
the element corresponding to u € L, ,,, we have shown ¢(/,u) = (I, Uu).

Next let (4,a) € Sym(W) and set (A’,a’) = ¢(A,a). From the formula for the product in
Sym(W), in particular the action of Gy on T':

Thus U is invertible and its inverse ( ) is also an integer matrix. Writing (7, u) € Sym(W) for

(A.a)"' (1. u)(A,a) = (I, AU),
and the fact that ¢ is a group homomorphism, we have foru € L, ,,,

(I, UAu) = o(1, Au)

=9((A,a)"" (1.u)(A,a))
= (A, d) "I, Uu)(A,a)
= (I, A'Uu)

so that UAu = A'Uu for every lattice vector u. Since the lattice spans R? it must be the case that the
matrices satisfy UA = A'U, i.e., that the matrices in G(’) are similar via U to those in Gy. O

Remark 10.48. The inequivalence of C, and D, is therefore a consequence of the different
actions of these two cyclic groups of order 2 on the respective lattices.

Exercises

1. Find an explicit isomorphism between D, and Z;x Z,.

2. Determine the elements of O»(Z) and find the point group to which it is isomorphic.
3. Find an infinite abelian subgroup of O, (R).

4. Find an infinite cyclic subgroup of O, (R).

10.5.4 The Five Lattice Types

For the remainder we will use the symbol 7' both for the translation group of a wallpaper pattern and
for its associated lattice. In the previous section we proved that the point group Gy of a wallpaper
pattern is isomorphic to one of the ten groups {C,, D, : n = 1,2,3,4,6} and that this set has only
nine non-isomorphic groups. Moreover, while C, = D, as abstract groups, they are distinguished by
their actions on 7. By fixing a basis {¢;,,} of T, we have an isomorphism 7 = Z?2, and using the
basis, the action of Gy on T induces a group homomorphism Gy — Aut(Z?) 2= GL,(Z). In other
words, a choice of basis together with the action of Gy on T gives us a representation of Gy as a
specific subgroup of GL,(Z).

Viewing lattices geometrically, we will see that there are five types of lattices with respect to the
Gy-action; parallelogram, rectangular, square, rhombic, and hexagonal. We will be specific in what
we mean as we look at the actions of the ten groups above on 7.



170 10  Symmetry

10.5.4.1 Gy Is One of C; or C;: Parallelogram Lattices

As mentioned above, we will represent a point group as a subgroup of O,(Z) by choosing a basis
{t1,1,} for T. The groups C; and C; are very easy to describe and their description does not depend

on the basis. If Gy = C;, then
10
=0V}

On the other hand, if Gy = C3, then the rotation of 180° is multiplication by —1 on T'. Therefore,

Parallelogram lattice

10.54.2 GyIsOneof C,or D, forn >3

The following lemma will help us find a convenient basis for 7" in these cases.

Lemma 10.49. Suppose that Gy contains a rotation r about an angle 27/n for n > 3. If t
is a nonzero element of T of minimal length, then {t,r(t)} is a basis for T (i.e., every lattice
vector in T is an integer linear combination of t and r(t)).

Proof. Let {t1,t,} be a basis for T. Then

t =at + bt

r(t) =cty +dt,

for some integers a, b, c,d. The set {t,r(t)} is linearly independent because n > 2, so we can
solve for 71 in the two equations above: t; = at+ fBr(t) for some rational numbers «, 8. We claim
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that «, B € Z. Write @« = a9 + ¢ and 8 = By + & with ap, Bo € Z and |¢|, |¢/| < 1/2. We have
s = aot + Bor(t) € T,so (t; —s) = et +&'r(t) € T. Since t and r(¢) are not parallel, we see that

1
Ity = sl = let + &'r@)] < lletll + [er@)] = AL HOIVE
Thus ||ty — s]| < ||¢]], a contradiction to the minimality of ||#||, unless s = #; (i.e., ¢ = ¢ = 0).

Therefore, t; = s is a Z-linear combination of ¢ and r(¢). Similarly, #, is a Z-linear combination
of t and r(¢). Since {t;,1,} is a basis of T, the set {¢,r(¢)} is also a basis for T'. O

10.5.4.3 Gy Is One of C4, D4: Square Lattices

Let r be a rotation by 90°. By Lemma 10.49, if t = ¢, is a vector in 7 of minimal length, then
{t1,r(t1)} is a basis for T'. The lattice is called a square lattice.

[ ) L ] L ] ‘\ L ] [ ] L ]
A
to
. tl > > o

Square lattice

With respect to this basis, we see that if Gy = C4 = (r), then the representation of G by this basis is

0-1
«=((19))
On the other hand, if Gy = Dy, then G, contains a reflection f. The four elements f,rf, 7> f,r3 f
are all the reflections in Gy. These reflections must preserve the set of vectors in 7 of minimal length;
four such vectors are £1;, £#,. However, a short argument shows that any other point on the circle
of radius ||#; || centered at the origin is a distance of less than ||#;| from one of these four points. The
figure below makes this easy to see. The difference of these two vectors would then be a vector in T

of length less than ||#;]. Since this is impossible, we see that the four vectors above are all the vectors
of minimal length in 7. The four lines of reflection are then given in the following picture.
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_t2

The vectors of minimal length in 7 when Gy = Dy,

Since Dy is generated by r and any reflection, using the reflection about the line parallel to #;, we

obtain the representation
0-1 10
p=((00)- 6 5))

10.5.4.4 Gy Is One of C3, D3, Cs, Dg: Hexagonal Lattices

Let r be a rotation by 120°. If #; is a vector in T of minimal length, then by setting t, = r(¢;), the set
{t, 1} is a basis for 7', by Lemma 10.49. The lattice in this case is called a hexagonal lattice.

A
[ ] [ ] [ [ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ]
to
31 >
L J L J * L ] L ] L ]
[ ] [ ] [ [ ] [ ]

Hexagon lattice

The group Cj is generated by r and Cg is generated by a 60° rotation; thus, we obtain

={(12))
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and

c=((13))

The figure below indicates that we have six vectors in 7' of minimal length.

t2 tl + t2

_tl tl

—t; — 15 “ty

The vectors of minimal length when Gy = Dy

Any point on the circle above other than the six shown is a distance less than ||¢; || from one of these
six points. This shows that these six vectors are all the vectors of minimal length in 7.
If Gy = D3 or Dg, then Gy contains three or six reflections, respectively. Any reflection must

permute the six vectors in the previous figure. For Gy = Dy, then we see six lines of reflection in the
following diagram.

The group Dy is generated by Cg and any reflection; using the reflection that fixes ¢, we have

D¢ = 1-1 ’ 1-1 .
10 0—1
If Go = D3, then the point group contains three reflections. The lines of reflection are separated by
60° angles; if f is areflection in D3, then rf is a reflection whose line of reflection makes a 60° angle

with that of f. The reflection lines for D3 must be reflection lines for D¢ since D3 is a subgroup of
Dg¢. We then have two possibilities: The three lines are the lines that are at angles 30°, 90°, 150° with
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t; or are the lines at angles 0°, 60°, 120° with ¢;. This says that D3 can act in two ways with respect to
this basis. We write D3; and Ds ; to distinguish these two actions; therefore, generating D3 ; and D3 g
with the 120° rotation and with the reflection about the 30° and the 0° reflection lines, respectively,

pu=((1)-(1%)
o= {(57)-G )

To give meaning to this subscript notation, we note that / and s stand for long and short, respectively.
The vectors #; and #, span a parallelogram which has a long and a short diagonal. The group D3

contains a reflection about the 60° line, which is the short diagonal. The group D3; has a reflection
across the 150° line, which is parallel to the long diagonal.

and

131

We show that the groups D3; and Ds are not conjugate in GL,(7Z). This will tell us that two
wallpaper groups with point groups D3 ; and Ds g, respectively, are not equivalent, by Theorem 10.46.
To prove this, suppose there is a matrix U € GL,(Z) with D3; = UD3 U™, Because conjugation
preserves determinants and the determinant of a reflection is —1, the three reflections of D3 ; must be
sent to the three reflections of D3 ;. We can obtain any reflection (in D3) from any other reflection by
conjugation by one of 1, r, or r2. Therefore we may assume that

ab 01y _(0 -1 ab

cd)\10) \-10 )\cd
for some a, b, c,d € Z with ad —bc = £1. Multiplying the matrices and simplifying yields d = —a
and ¢ = —b. Since 1 = ad —bc = b>—a* = (b—a)(b + a) is a factorization in integers, one term

is 1 and the other is —1, yielding four cases,a = +1 and b = 0 ora = 0 and b = £1. Conjugation
by —1I is the identity; therefore, we may assume that

(f:lcbz) N (—Oul))

or
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However, since

GGG =00
(NN = ().

neither conjugation sends D3 to D3 since neither of these results is an element of D3 ;. The groups
D3 and Ds are thus not conjugate in GL;(Z).

and

10.5.4.5 Gy Is One of Dy, D,: Rectangular or Rhombic Lattices

If Gy = D; or D,, then Gy does not contain a rotation of order at least 3. Therefore, we cannot apply
Lemma 10.49 to obtain a basis for 7. We produce a basis in another way. In each of these cases we
have a nontrivial reflection f in Gy. Lett € T be a nonzero vector not parallel to the line of reflection
of f. Since f maps T to T, the vectors t + f(¢) and t — f(t) are elements of T, so T contains
nonzero vectors both parallel and perpendicular to the line of reflection.

t/V Tt —f@)
%A | t +>f(t)

Let s; and s, be nonzero vectors of minimal length parallel and perpendicular, respectively, to the
reflection line. The discrete nature of 7' implies that such vectors exist, and that any vector parallel to
(resp. perpendicular to) this line is an integer multiple of s; (resp. s2). Therefore, for any r € T, we
have

t+ f(1) = mys,

t—f{t) =ms,
for some m,, n, € Z. Solving for ¢ gives
" m; + n;
= —s5 + —5.
PR

If, for every t € T, both integers m;, n, are even, the set {s|, s»} spans 7, and so is a basis for 7.
On the other hand, if m; or n; is odd for some ¢, then both have to be odd, else %sl or %sz isinT,a

contradiction. If we set 1 = %(sl +sy)and f, = %(sl —s53) = f(t1),thent,t, € T, and
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m;tl —I—I’l;[2

with m}, n, € Z. Since any ¢ is then an integral linear combination of #; and #,, the set {f;,%,} is a
basis for 7.

To summarize these two cases, we either have a basis {¢{, ,} of two orthogonal vectors, one of
which is fixed by a reflection in Gy,

51 >

or we have a basis of vectors of the same length with a reflection that interchanges them.

b
T

In the first case we say that T is a rectangular lattice

[ ] [ ] 4» [ ] [ ] [ ]
(5]
t > -

Rectangular lattice
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and in the second case that T is a rhombic lattice.

L ] [ ] ‘k [ ] [
[ [ ]
L ] L ] ° [
(2
131
L ] L ] ® *
[ [ ]
L J ° [ ] [ ]

Rhombic lattice

We can now get matrix representations for D; and D,. For each group there are two possibilities,
corresponding to two different actions on 7'. We subscript the group by p for rectangular and ¢ for
rhombic to match the notation used for wallpaper groups that is standard in the literature. We have

D =<((1)—01)>
- {(2)

while for D,, which contains a rotation of 180°, we obtain

D», :<(_01 _01)((1)—01)>
Da. =<(_01 _()1)’((1)<1))>'

We prove that Dy , and D, . are not conjugate in GL,(Z), nor are D, , and D, .. This will show that

no wallpaper group whose point group is one of these is equivalent to a wallpaper group whose point
group is another. For D; , and D, suppose that

(1) 65) = () (22)

and

and
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for some a, b, c,d € Z with ad — bc = £1. Multiplying these and setting the two sides equal yields
d = —b and ¢ = —a. Then ad — bc = —2ab, which is not +1 since a and b are integers. Therefore,
Dy, and D are not conjugate in GL,(Z). For D5 , and D, ., the previous calculation shows that
we need only check that there are no @, b, ¢, d € Z withad — bc = +1 and

()62 = (50 ()

Similar calculations show that this forces 2ab = %1, again a contradiction.

10.6 The 17 Wallpaper Groups

We summarize the classification of wallpaper patterns and groups by giving pictures for each of the
17 different patterns. The table below gives standard names for these groups along with their point
group and lattice type.

Standard name | Point group | Lattice type

pl C Parallelogram
p2 C, Parallelogram
pm D, Rectangular
pg D, Rectangular
cm D, Rhombic
pmm D, Rectangular
pmg D, Rectangular
peg D, Rectangular
cmm D, Rhombic

p3 Cs Hexagonal
p3ml Ds; Hexagonal
p31m Ds Hexagonal

p4 Cy Square

p4m D, Square

pég Dy Square

p6 Ce Hexagonal

poém Dg Hexagonal
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