Radio Mathematics

This supplement is a collection of tutorial information
on a variety of mathematics used in Amateur Radio. Many
of the fundamental relationships in electronics and radio
are best expressed in the language of math. This chapter
will expand in subsequent editions as it becomes clearer
what information will be useful to readers. Material in this
chapter has been collected from many sources, authors,
and instructors over the years — the ARRL appreciates
their contributions.

1 The Metric System

1.1 Metric Prefixes — The Language of Radio

The units of measurement employed in radio use the metric system
of prefixes. The metric system is used because the numbers involved
cover such a wide range of values. Table 1 shows metric prefixes,
symbols, and their meaning. The prefixes expand or shrink the units,
multiplying them by the factor shown in the table. For example, a
kilo-meter (km) is one thousand meters and a milli-meter (mm) is
one-thousandth of a meter.

The most common prefixes you’ll encounter in radio are pico (p),
nano (n), micro (u), milli (m), centi (c), kilo (k), mega (M) and giga
(G). It is important to use the proper case for the prefix letter. For
example, M means one million and m means one-thousandth. Using
the wrong case would make a big difference!

The metric system uses a basic unit for each different type
of measurement. For example, the basic unit of length is the
meter (or metre). The basic unit of volume is the liter (or litre).
The unit for mass (or quantity of matter) is the gram. The new-
ton is the metric unit of force, or weight, but we often use the
gramto indicate how “heavy” something is by assuming a standard
value of gravity.

Table 1 summarizes the most-used metric prefixes. The met-
ric system expresses larger or smaller quantities by multiplying
or dividing the basic unit by factors of 10 (10, 100, 1000, 10,000
and so on). These multiples result in a standard set of prefixes,
which can be used with all the basic units. Even if you come
across some terms you are unfamiliar with, you will be able to
recognize the prefixes.

We can write these prefixes as powers of 10, as shown in
Table 1. The power of 10 (called the exponent) shows how many
times you must multiply (or divide) the basic unit by 10. For
example, we can see from the table that kilo means 103. Let’s use
the meter as an example. If you multiply a meter by 10 three times,
you will have a kilometer. (1 m x103 = 1 meter x10x10 x10 =
1000 meters, or 1 kilometer.)

If you multiply 1 meter by 10 six times, you have a megameter.
(1 meter x10°=1m x10 x10 x10 x10x10 x10 = 1,000,000 meters
or 1 megameter.)

Notice that the exponent for some of the prefixes is a negative
number. This indicates that you must divide the basic unit by 10
that number of times. If you divide a meter by 10, you will have
a decimeter. (1 meter x10~! = 1 m + 10 = 0.1 meter, or 1 decime-
ter.) When we write 1079, it means you must divide by 10 six
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Table 1
International System of Units (SI) — Metric Units

Prefix Symbol Multiplication Factor
Tera T 102 = 1,000,000,000,000
Giga G 10° = 1,000,000,000
Mega M 108 = 1,000,000

Kilo k 108 = 1000

Hecto h 102 =100

Deca da 101 =10

Deci d 101 =0.1

Centi c 102 =0.01

Milli m 108 = 0.001

Micro M 10-6 = 0.000001

Nano n 109 = 0.000000001
Pico p 10-12 = 0.000000000001

1 M =1000 k; 1 m=1000 p = 1,000,000 n; 1 u=1000 n=1,000,000 p

times. (1 meter x106=1m + 10 + 10 + 10 = 10 = 10 + 10 =
0.000001 meter, or 1 micrometer.)

We can easily write very large or very small numbers with this
system. We can use the metric prefixes with the basic units, or we
can use powers of 10. Many of the quantities used in basic elec-
tronics are either very large or very small numbers, so we use
these prefixes quite a bit. You should be sure you are familiar at
least with the following prefixes and their associated powers of
10: giga (10%), mega (10°), kilo (103), centi (10-2), milli (10-3),
micro (10-6) and pico (10-12).

Let’s try an example. For this example, we’ll use a term that
you will run into quite often in the Handbook: hertz (abbreviated
Hz, a unit that refers to the frequency of a radio wave). We have
areceiver dial calibrated in kilohertz (kHz), and it shows a signal
at a frequency of 28,450 kHz. Where would a dial calibrated in
hertz show the signal? From Table 1 we see that kilo means times
1000. The basic unit of frequency is the hertz. That means that
our signal is at 28,450 kHz x1,000 = 28,450,000 hertz. There are
1000 hertz in 1 kilohertz, so 28,450,000 divided by 1000 gives us
28,450 kHz.

If we have a current of 3000 milliamperes, how many amperes
is this? From Table 1 we see that milli means multiply by 0.001
or divide by 1000. Dividing 3000 milliamperes by 1000 gives us
3 amperes. The metric prefixes make it easy to use numbers that
are a convenient size simply by changing the units. It is certainly
easier to work with a measurement given as 3 amperes than as
3000 milliamperes!

Notice that it doesn’t matter what the units are or what they
represent. Meters, hertz, amperes, volts, farads or watts make no
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difference in how we use the prefixes. Each prefix represents a
certain multiplication factor, and that value never changes.

1.2 Converting Between Types of Units

Converting between different types of units requires a conversion
factor. The conversion factor is a value representing how many units
of Type A are equivalent to a single unit of Type B, generally given
as (amount of units of Type B) per (unit of Type A).

For example, the conversion factors between pounds (Type A) and
kilograms (Type B) are 0.455 kg/Ib and 2.2 Ib/kg.

To decide which to use in converting units of Type A to Type B,
select the factor with the Type B units in the numerator of the conver-
sion factor. Multiply the amount of Type A units by the conversion
factor.

For example, to convert 3 b (Type A) to kg (Type B):

1. Select the conversion factor with Type B units (kg) in the numer-
ator, 0.455 kg/lb

2. Multiply the amount of Type A units by the conversion factor:

31b x 0.455 Ib/kg = 1.37 kg

Similarly, to convert 3 kg (Type A) to Ib (Type B):

1. Select the conversion factor with Type B units (Ib) in the numer-
ator, 2.2 Ib/kg

2. Multiply 3 kg x 2.2 Ib/kg = 6.6 1b

Note that these conversion factors are reciprocals. You can change
one conversion factor into the other by calculating 1 divided by the
conversion factor. Exchange the numerator and denominator at the
same time:

1/ (0.455 kg/lb) = 2.2 Ib/kg and 1/ (2.2 Ib/kg) = 0.455 kg/lb

You can also convert Type B units into Type A by dividing the
amount of Type B units by the conversion factor from Type A to Type
B:

10 kg / 0.455 kg/lb =22 1b

Note that not all conversions are simple multiplications or divi-
sions. Additional offsets or factors may be required. For example, to
convert degrees Fahrenheit to degrees Celsius, the formula is:

Deg C =5/9 x (Deg F — 32)

The Handbook’s Component Data and References chapter
includes a table of conversion factors for US Customary Units and
between US Customary Units and Metric Units. Online calculators
abound. Google (www.google.com) provides a unit converter acces-
sible by entering ‘“‘convert [abbreviation or name for Type A units] to
[abbreviation or name for Type B units]” into an Internet search
window.



2 Numbers and Notation

2.1 Accuracy, Precision, and Resolution

The terms accuracy, precision, and resolution are often confused
and used interchangeably, when they have very different meanings.
When dealing with measurements and test instruments, it’s important
to keep them straight.

e Accuracy is the ability of an instrument to make a measurement
that reflects the actual value of the parameter being measured. An
instrument’s accuracy is usually specified in percent or decibels (see
below) referenced to some known standard.

e Precision refers to the smallest division of measurement that an
instrument can make repeatedly. For example, a metric ruler divided
into mm is more precise than one divided into cm.

® Resolution is the ability of an instrument to distinguish between
two different quantities. If the smallest difference a meter can distin-
guish between two currents is 0.1 mA, that is the meter’s resolution.

It is important to note that the three qualities are not necessarily
mutually guaranteed. That is, a precise meter may not be accurate,
or the resolution of an accurate meter may not be very high, or the
precision of a meter may be greater than its resolution. It is important
to understand the difference between the three.

2.2 Accuracy and Significant Figures

The calculations you will find throughout the Handbook follow
the rules for accuracy of calculations. Accuracy is represented by the
number of significant digits in a number. That is, the number of
digits that carry numeric value information beyond order of magni-
tude. For example, the numbers 0.123, 1.23, 12.3, 123, and 1,230 all
have three significant digits.

The result of a calculation can only be as accurate as its least accu-
rate measurement or known value. This is important because it is rare
for measurements to be more accurate than a few percent. This limits
the number of useful significant digits to two or three. Here’s another
example; what is the current through a 12-Q resistor if
4.6Visapplied? Ohm’s Law says Iinamperes =4.6/12=0.3833333...
but because our most accurate numeric information only has two
significant digits (12 and 4.6), strictly applying the significant digits
calculation rule limits our answer to 0.38. One extra digit is often
included, 0.383 in this case, to act as a guide in rounding off the answer.

Quite often this occurs because a calculator is used, and the result
of a calculation fills the numeric window. Just because the calculator
shows 9 digits after the decimal point does not mean that is a more
correct or even useful answer.

2.3 Scientific and Engineering Notation

Modern electronics often uses numbers that are either quite large
or very close to zero. At either extreme, it is difficult to write the
numbers because of all the zeros. For example, the speed of light at
which radio waves travel in a vacuum is 300,000,000 m/s. Similarly,
a 22 pF capacitor would be written as 0.000000000022 F. These are
values written in decimal form where all of the significant digits are

present, including the place-holding zeros. This is a very inconvenient
format for calculation.

Instead, most large and small values in electronics are written in
a special type of exponential notation called scientific notation.
Numbers written this way consist of a value multiplied by 10 raised
to an integer power. A number written in normalized scientific nota-
tion looks like this:

+D.DD x 10*EE

where D.DD is a decimal value between 1 and 10, such as 3.14 or
7.07. EE is an exponent of 10, generally between 0 and 99. The fol-
lowing are a few ways of writing the same number in scientific
notation several ways:
567 kHz =5.67 x 10° Hz

=5.67 x 102 kHz

=5.67 x 10" MHz

=5.67 x 104 GHz

Because electronic units of measurements generally follow metric

prefixes such as uF or MHz, it is most convenient to give values in
these units while still using the general form of scientific notation.
This is called engineering notation. For engineering notation, the
exponent must be a multiple of 3, such as -6, -3, 3, 6, or 12. These
correspond to the various metric prefixes listed earlier. This means
the number is written:

+DDD.DD x 10*EE (units)

Because standard units are used, engineering notation is easier to
work with. For example, the most convenient units can be used
throughout a calculation:

247V =247x100V
=247 x 103 mV
=247 x 10°pV
Similarly, the value of a 151 kQ resistor could be written several
ways:
151kQ =151x103Q
=151 x 10°kQ
=151 x 103 MQ

Your calculator may have the ability to perform calculations in expo-
nential, scientific, and engineering notation. It is worth figuring out
how to use these formats if you plan on doing any electronic value
calculations.

2.4 Rate of Change

The symbol A represents “change in” a following variable, so that
Al represents “change in current” and At “change in time.” A rate of
change per unit of time is often expressed in this manner. When the
amount of time over which the change is measured becomes very
small, the letter d replaces A in both the numerator and denominator
to indicate infinitesimal changes. This notation is often used in func-
tions that describe the behavior of electric circuits.
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3 Decibels

Decibels (abbreviated dB) are just a way of expressing ratios, usu-
ally power ratios. If you are looking at the gain of an amplifier stage,
the pattern of an antenna, or the loss of a transmission line you are
generally interested in the ratio of output power to input power. In
antenna work, you are often concerned with the ratio of the power
coming from the front of a beam antenna to that coming from the
back. These are some of the places where you will find the results
expressed in dB.

Decibels are a logarithmic function. An important feature of loga-
rithms is that you can perform multiplication by adding logarithmic
quantities instead of multiplying them. Similarly, you can divide
numbers by subtracting in the same manner. This becomes a benefit
if you are dealing with multiple stages of amplification and attenua-
tion — as you often are doing in radio systems. In a radio receiver
instead of having to multiply and divide the gains or losses of each
stage to keep track of the signal processing — often with signal
levels with many zeros to the right of the decimal point — you can
just add up all the dB and determine the total gain in the system.

The deci in decibels refers to a factor of 1/10, as in deciliters for
Y10 of a liter, while the bel relates to the idea of a logarithmic ratio,
originally used to define sound power. The bel was named after
Alexander Graham Bell, the inventor of the telephone.

3.1 Calculating Decibels from Ratios

To convert a power ratio into decibels:
1. Find the base 10 logarithm of the power ratio.
2. Multiply by 10.

dB = 10 log,, (power ratio)

The same decibels can be used to represent voltage or current
ratios, rather than power ratios. Since power goes up with the square
of the voltage or current, assuming the same impedance, the voltage
or current ratios must be squared as well. With logarithms, ratios are
squared merely by multiplying by two. Thus everything works the
same way as for power calculations, except we multiply (or divide)
by 20 instead of 10:

dB =20 log, (voltage or current ratio)

If you are comparing a measured power or voltage (Py; or Vy,) to
some reference power (Pgpp or Vggp) the formulas are:

dB=10log L VIR ) log M
10 P 10 Y
REF REF

Positive values of dB mean the ratio is greater than 1 and negative
values of dB indicate a ratio of less than 1. Ratios greater than 1 can
be referred to as gain, while ratios less than 1 can be called a loss or
attenuation. Note that loss and attenuation are often given as positive
values of dB (for example, “a loss of 10 dB” or “a 6 dB attenuator”)
with the understanding that the ratio is less than one and the calculated
value of change in dB will be negative.

For example, if an amplifier turns a 5-watt signal into a 25-watt
signal, that’s a gain of:

dB=10log;, (255) =101log;( (5)=10x(0.7)=7 dB

On the other hand, if by adjusting a receiver’s volume control the
audio output signal voltage is reduced from 2 volts to 0.1 volt, that’s
a change of:
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Decibels In Your Head

Increasing power by a factor of 2 is a 3-dB increase and a
factor of 4 increase is a 6-dB increase. When you increase
power by 10 times, you have an increase of 10 dB. You can
also use these same values for decreasing power. Cut power
in half for a 3-dB loss of power. Reduce power to % the origi-
nal amount for a 6-dB loss. Reducing power to %o of the origi-
nal amount is a 10-dB loss. Power-loss values are written as
negative values: -3, —6 or —10 dB. The following tables show
these common decibel values and ratios.

You can also derive all the dB equivalents of integer ratios
by adding or subtracting dB values. For example, to calculate
a power ratio of 10/4 (2.5) in dB, subtract the dB equivalents
for 10 and 4: 10 — 6 = 4 dB. Similarly for a ratio of 10/2 (5), 10
— 38 =7 dB. The ratio of 5/4 (1.25) is 7 — 6 = 1 dB and so forth.
The same trick can be used with the voltage ratios.

dB =20 log; (Ozlj =20 log; (0.05) =20 x (—1.3) =26 dB

A very useful value to remember is that any time you double the
power (or cut it in half), there is a 3 dB change. A two-times increase
(or decrease) in power results in a gain (or loss) of:

dB=10log,, GJ =101log;y (2)=10x(0.3)=3dB

See the sidebar “Decibels In Your Head” for a guide to easy values
of dB you can remember and apply quickly without having to use a
calculator.

3.2 Calculating Ratios and
Percentages from Decibels

To convert decibels to a power ratio, we do the opposite:

1. Divide by 10 (or 20 if converting to a voltage or current ratio)

2. Find the base 10 antilog of the result.

Note that the base 10 antilog of a number is just 10 raised to the
power of the number. This is also something you probably don’t do
in your head, so let’s see how you can easily perform the computa-
tions.

Understanding a few characteristics of logs will help avoid prob-
lems interpreting results. Note that a gain of 0 dB, means that there
is no change to the signal — not that the signal has vanished! The
other important fact is that a power ratio of less than one (a loss rather
than a gain) results in a negative number in decibels.

power ratio = log7l (Cln(?j and

voltage ratio = log ™! (dBj
g g 20

Note that the antilog is the same as the inverse log (written as
log,,~" or just log™"). Most calculators use the inverse log notation.
On scientific calculators the inverse log key may be labeled LOG™,
ALOG, or 10X, which means “raise 10 to the power of this value.”
Some calculators require a two-button sequence such as INV then
LOG.

Example 1: A power ratio of 9 dB =log™! (9/10) =log™! (0.9) =8
Example 2: A voltage ratio of 32 dB = log™! (32/20) = log™! (1.6)



Since percentage is already a ratio, you can work directly in per-
centages when converting to dB:

dB=10 log ( Percentage Power)
100%
dB=20 log (Percentage Voltage
100%

To convert back to percentages, just multiply the calculated ratio
by 100%:

Percentage Power =100% x log_1 [T?j

Percentage Voltage =100% x log ™! (%j

Here’s a practical application for converting dB to percentages and
vice versa. Suppose you are using an antenna feed line with a signal
loss of 1 dB. You can calculate the amount of transmitter power that’s
actually reaching your antenna and how much is lost in the feed line.

Percentage Power =100% x log_l [1_—;) =100% x log_l(—O.l) =79.4%

S0 79.4% of your power is reaching the antenna and 20.6% is lost in
the feed line.

Example 3: A power ratio of 20% = 10 log (20% / 100%) = 10
log (0.2)=-7dB

Example 4: A voltage ratio of 150% = 20 log (150% / 100%) =
20log (1.5)=3.52dB

Example 5: -3 dB represents a percentage power = 100% x log™!
(-3/10)=50%

Example 6: 4 dB represents a percentage voltage = 100% x log_,
(4/20)=158%

3.3 Using the Windows
Scientific Calculator

If you have a suitable scientific calculator, it should easily do your
calculations. Not all have an ANTILOG button, but if not, they will
likely have a button that says XY, which can be used as above. If
youdon’t have a handheld
calculator, you can use the
Calculator accessory in
the Microsoft Windows
operating system For
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Table 2

Common dB Values For Ratios of
Power and Voltage

P2/P1 dB Va/vi dB
0.1 -10 0.1 -20
0.25 -6 0.25 -12
0.5 -3 0.5 -6
1 0 0.707 -3
2 3 1 0
4 6 1.414 3
10 10 2 6
4 12
10 20

Windows 7 and earlier versions, click START, then ALL PROGRAMS,
then ACCESSORIES. For Windows 10, click START, then look in the menu
for CALCULATOR.

On first opening the calculator, you may find a four-function
Standard calculator. Tochange toa Scientific calculatorin the Windows
7 and earlier versions, click on VIEW, then SCIENTIFIC to get the one
you want. In the Windows 10 version, click the MENU icon and select
SCIENTIFIC. The Windows 10 version is shown in Figure 1.

Let’s say you have a mismatched coax cable with a loss of 2 dB.
You may want to know how much of the 100 W generated by your
transmitter actually reaches your antenna. Remember, a 2 dB loss is
a “gain” of -2 dB. Using your Windows Calculator:

e Press 2 on your keyboard, or click 2 on the calculator keypad.
e Click on the * key, then +, 1, 0, and =. The display should show

—0.2, as in Figure 1.

e Click on 10X to raise 10 to the power of —0.2.

The display should show 0.6309573444 (a number with many
digits), which is about 0.63. That is the fraction of power left after a
2 dB loss. That means of the 100 W transmitted, the antenna sees
63 W and 37 W is heating the feed line.

3.4 Decibel Calculation
with Special References

While the general use of decibels is as a ratio of input to output,
they are also used to represent particular power or voltage levels by
defining the base power or voltage at a particular level. In this case,
the dB units will have a suffix indicating the reference. For example,
to indicate power compared to 1 W, we would use the symbol dBW.
For example, a signal level of 13 dBW would indicate power of 13
dB greater than 1 W which is 200 W. Other common references are
shown below:

dBd — decibels of gain with respect to a dipole antenna in its
preferred direction

dBi — decibels of gain with respect to that of an ideal isotropic
antenna

dBmV — voltage level in decibels compared to a millivolt

dBuV — voltage level in decibels compared to a microvolt

dBm (dBmW) — power level in decibels compared to a milliwatt

dBuW — power level in decibels compared to a microwatt

For example, if we had an amplifier with a gain of 30 dB and
applied an input signal of 10 dBm, we would have an output power
of 40 dBm or 10 dBW, which is 10 W. Note that the amplifier gain
is in dB, a unitless ratio, while the input and output levels are in dBm
or dBW, representing particular powers.
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4 Coordinate Systems

4.1 Rectangular and Polar Coordinates

Graphs are drawings of what equations describe with symbols
— they’re both saying the same thing. The way in which mathemat-
ical quantities are positioned on the graph is called the coordinate
system. Coordinate is another name for the numeric scale that divides
the graph into regular units. The location of every point on the graph
is described by a set of coordinates.

The two most common coordinate systems used in radio are the
rectangular-coordinate system shown in Figure 2A (sometimes
called Cartesian coordinates) and the polar-coordinate system shown
in Figure 2B.

The line that runs horizontally through the center of a rectangular
coordinate graph is called the X axis. The line that runs vertically
through the center of the graph is called the Y axis. Every point on a
rectangular coordinate graph has two coordinates that identify its
location, X and Y, also written as (X,Y). Every different pair of
coordinate values describes a different point on the graph. The point
at which the two axes cross — where the numeric values on both
axes are zero — is called the origin, written as (0,0).

In Figure 2A, the point with coordinates of (3,5) is located 3 units
to the right of the origin along the X axis and 5 units above the origin
along the Y axis. Another point at (-2,—4) is found 2 units to the left
of the origin along the X axis and 4 units below the origin along the
Y axis.

In the polar-coordinate system, points on the graph are also
described by a pair of numeric values called polar coordinates. In
this case we use a length, or radius, measured from the origin, and
an angle from 0° to 360° measured counterclockwise from the 0°
line as shown in Figure 2B. The symbol r is used for the radius and
0 for the angle. A number in polar coordinates is written rZ0. So the
two points described in the last paragraph could also be written as
(5.83, £59.0°) and (4.5, £243.4°) and are drawn as polar coordinates
in Figure 2B. Remember that unlike maps, the 0° direction is always
to the right and not to the top. In mathematics, 0° is not north!

A negative angle essentially means, “turn the other way.” With
positive angles measured counterclockwise from the 0° axis, the polar
coordinates of the point at lower left in Figure 2B would be
(4.5, Z-116.6°). When you encounter a negative value for the angle,
it means to measure the angle clockwise from 0°. For example,
—270° is equivalent to 90°; —90° is equivalent to 270°; 0° and —360°
are equivalent; and +180° and —180° are equivalent. An angle can
also be specified in radians (1 radian = 360 / 2n = 57.3 degrees) but
all angles are in degrees in the Handbook unless stated otherwise.
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SEMI-LOG AND LOG-LOG GRAPHS

Many elements of radio and electronics have at least one aspect
that behaves logarithmically or exponentially. Graphing that behav-
ior is difficult or unclear if a linear scale is used since the ranges of
the variables are usually quite large. A linear scale tends to compress
all the “interesting” behavior into a corner or along one edge of the
chart. In order to better view the behavior, the semi-log and log-log
charts were created. (See Figure 3.)

The semi-log chart has one axis in which the scale is divided
logarithmically. Figure 3A shows the relationship between impedance

of ferrite beads on the vertical (Y) axis and frequency on the hori-
zontal (X) axis. This allows the impedance to be plotted over the
entire frequency range of 1 MHz to 1 GHz. If a linear scale was used
for frequency, the curve would be quite flat and it would be difficult
to see the peak. When one variable has a limited range (impedance
in this case) and the other has a wide range, a semi-log graph is often
best.

The log-log chart in Figure 3B shows the relationship between two
logarithmic variables — line loss and frequency. Both variables have
a very wide range. The use of the log scale for line loss in dB greatly
expands the area occupied by the line loss curves at low VSWR,
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Figure 4 — Radiation pattern plots for a high-gain Yagi antenna on different grid coordinate systems. At A, the pattern on a linear-
power dB grid. Notice how details of side lobe structure are lost with this grid. At B, the same pattern on a grid with constant 5 dB
circles. The side lobe level is exaggerated when this scale is employed. At C, the same pattern on the modified log grid used by
ARRL.The side and rearward lobes are clearly visible on this grid. The concentric circles in all three grids are graduated in decibels
referenced to 0 dB at the outer edge of the chart. The patterns look quite different, yet they all represent the same antenna response!
D shows the rectangular azimuthal patterns of two VHF Yagi antennas. This example shows how a rectangular plot allows easier

comparison of antenna patterns away from the main lobe.
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which is of most interest. If the vertical scale was not logarithmic,
the family of curves would be very compressed in the region of
primary interest and difficult to read. When both variables have a
very wide range, use a log-log graph.

4.2 Coordinates for Radiation Patterns

A number of different systems of coordinate scales or grids are in
use for plotting antenna patterns. (Antenna radiation patterns are
discussed in the Antennas chapter.) Antenna patterns published for
amateur audiences are sometimes placed on rectangular grids, but
more often they are shown using polar coordinate systems. Polar
coordinate systems may be divided generally into three classes:
linear, logarithmic and modified logarithmic.

A very important point to remember is that the shape of a pattern
(its general appearance) is highly dependent on the grid system used
for the plotting. This is exemplified in Figure 4, where the radiation
pattern for abeam antennais presented using three coordinate systems
described below.

LINEAR COORDINATE SYSTEMS

The polar coordinate system in Figure 4A uses linear coordinates.
The concentric circles are equally spaced, and are graduated from 0
to 10. Such a grid may be used to prepare a linear plot of the power
contained in the signal. For ease of comparison, the equally spaced
concentric circles have been replaced with appropriately placed
circles representing the decibel response, referenced to 0 dB at the
outer edge of the plot. In these plots the minor lobes are suppressed.
Lobes with peaks more than 15 dB or so below the main lobe disap-
pear completely because of their small size. This is a good way to
show the pattern of an array having high directivity and small minor

lobes. Linear coordinate patterns are not common, however.

LOGARITHMIC COORDINATE SYSTEM

Another coordinate system used by antenna manufacturers is the
logarithmic grid, where the concentric grid lines are spaced accord-
ing to the logarithm of the voltage of the signal. If the logarithmically
spaced concentric circles are replaced with appropriately placed
circles representing the decibel response, the decibel circles are
graduated linearly. In that sense, the logarithmic grid might be termed
a linear-log grid, one having linear divisions calibrated in decibels.

This grid enhances the appearance of the minor lobes. If the intent
is to show the radiation pattern of an array supposedly having an
omnidirectional response, this grid enhances that appearance. An
antenna having a difference of 8 or 10 dB in pattern response around
the compass appears to be closer to omnidirectional on this grid than
on any of the others. See Figure 4B.

ARRL LOG COORDINATE SYSTEM

The modified logarithmic grid used by the ARRL has a system of
concentric grid lines spaced according to the logarithm of 0.89 times
the value of the signal voltage. In this grid, minor lobes that are 30
and 40 dB down from the main lobe are distinguishable. Such lobes
are of concern in VHF and UHF operation. The spacing between
plotted points at 0 dB and -3 dB is significantly greater than the
spacing between—20 and—23 dB, which in turnis significantly greater
than the spacing between —50 and —-53 dB.

For example, the scale distance covered by 0 to 3 dB is about %o
of the radius of the chart. The scale distance for the next 3-dB incre-
ment (to —6 dB) is slightly less, 89% of the first, to be exact. The
scale distance for the next 3-dB increment (to —9 dB) is again 89%
of the second. The scale is thus constructed so that the inner-most

ARRL0904

XY plane

XZ plane
(B)

Figure 5 — In a three-dimen-
sional rectangular coordinate
system (A), a third axis, the Z
axis, is added at right angles to
both the X and Y axes. In X-Y-Z
coordinates, the three coordi-
nates can be used to specify a
point’s location anywhere in
space. The set of axes has been
oriented to show all three posi-
tive axes. Three rectangular
coordinate planes (B). Each pair
of axes creates a plane in which
the coordinate for the third axis
is zero. All points in the X-Y
plane have a Z coordinate of
zero, for example. The set of
axes has been oriented to show
all three positive axes.

YZ plane
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two circles represent —36 and —48 dB and the chart center represents
—100 dB.

The periodicity of spacing thus corresponds generally to the rela-
tive significance of such changes in antenna performance. Antenna
pattern plots in ARRL publications are usually made on the modified-
log grid similar to that shown in Figure 4C.

RECTANGULAR GRID

Antenna radiation patterns can also be plotted on rectangular coor-
dinates with gain on the vertical axis in dB and angle on the horizon-
tal axis as shown in Figure 4D. Multiple patterns in polar coordinates
can be difficult to read, particularly close to the center of the plot.
Using a rectangular grid makes it easier to evaluate low-level minor
lobes and is especially useful when several antennas are being com-
pared.

4.3 Three-Dimensional Coordinate Systems

RECTANGULAR (X-Y-Z)

Figure 5A adds a third axis, the Z axis, to the X and Y axes. This
creates a three-dimensional system of coordinates in which any loca-
tion is specified by three numbers instead of two. In Figure 5A, the
indicated point’s location is 2 units along the X axis, 3 units along
the Y axis, and 2 units along the Z axis. The X and Y axis are usually
assigned to be the “horizontal” plane and the Z axis to be “height”
above the horizontal plane.

Each pair of axes defines a plane — an infinitely thin sheet that
extends to infinity along both axes. The X-Y-Z coordinate system has
three such planes as illustrated in Figure 5B. For all points in each
of these planes, one coordinate is always zero: in the X-Y plane, the

(r, 6, 2)

>

12

Y

I
SXLE

ARRL0905

Z coordinate is zero, in the Y-Z plane, the X coordinate is zero, and
in the X-Z plane, the Y coordinate is zero.

CYLINDRICAL (R, 0, Z)

As when specifying the location of points in the X-Y plane using
polar coordinates, r is used for the radius. The Greek letter theta (0)
is used for the angle which is measured counterclockwise from the
0° line as shown. A number in polar coordinates is written r.£0.

If the Z axis is added, a cylinder is created with a radius of r and
a height of z. The angle 6 defines a vertical line along the cylinder.
The type of coordinate system in Figure 6 is called cylindrical coor-
dinates and a point’s location is given as (7, 6, z).

SPHERICAL (R, 6, ¢) OR AZIMUTH-ELEVATION

Instead of using Z as a third coordinate, another useful method of
locating a point is with a second angle as shown in Figure 7, creating
spherical coordinates. The angle in the X-Y plane (0) is called the
azimuth angle and it corresponds to direction in the horizontal plane.
The second angle, ¢, is measured between the horizontal plane and
the point and is called the elevation angle.

When used in the real world, elevation is measured from the hor-
izontal plane to the point, so a point on the ground has an elevation
of 0° and a point directly overhead at the zenith has an elevation of
90°.

In spherical coordinates, the position of a point is given as (r, 6,
). Spherical coordinates are the standard used by antenna modelers
to describe antenna radiation patterns and the coordinates (r, azimuth,
and elevation) are used.

ARRL0906

Figure 6 — Cylindrical coordinates. By adding a Z coordinate, a
cylinder is created whose center is at the origin with a radius
of r and a height of z. A point’s location in cylindrical coordi-
nates is specified as (r, 0, z).

Figure 7 — Spherical coordinates. Each point lies on the surface
of a sphere with its center at the origin. The position of the point
is given as the radius of the sphere, r, and the azimuth (6) and
elevation (¢) angles.
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5 Exponential Equations

An exponential equation is one in which the variable is an exponent
of a constant, another variable, or some kind of mathematical formula
(expression). By far, the most common exponential equations in
electronics and radio are based on the number e, or Euler’s number,
which has a value of 2.71828... Similarly to the transcendental num-
ber © (3.14159...), the value of e is irrational and has an infinite
number of digits. It is the base of the natural logarithm, which in
written log, or In.

The most common use of e in electronics is in calculating the
charging and discharging time constants of capacitor and inductor
circuits. Two typical equations that form the basis of timing calcula-
tions are:

Charging: V(t) = E (1 — e ¥7)
Discharging: V(t) = E (e %)

where V() is the voltage across a capacitor changing with time, E
represents the final dc voltage (charging) or the initial dc voltage
(discharging) across the capacitor, t (tau) is the circuit’s time constant
which is determined by the circuit component values, and ¢ is time.
(These circuits are discussed in more detail in the chapter on Electrical
Fundamentals. Similar equations apply to current in an inductor.)

The capacitor charging and discharging voltages are show in
Figure 8, where the time axis is shown in terms of t and the vertical
axis is expressed as a percentage of the applied voltage. These graphs
are representative of all simple RC and RL circuits.

These equations can be solved fairly easily with a calculator that
is able to work with natural logarithms (it will have a key labeled LN
or LN X). You can also calculate the value for e as the inverse
natural log of —t / 1, written as In~! (-t / 7).

As shown on the graphs of Figure 8, it is common practice to think
of charge or discharge time in terms of multiples of the circuit’s time
constant. If we select times of zero (starting time), one time constant
(17), two time constants (2t), and so on, then the exponential term
in the equations simplifies to €°, e7!, €2, e and so forth. Then we
can solve the equations for those values of time.

Using the example of a capacitor being charged, assume that a dc

voltage E = 100 V is applied so that the voltages will have the same
value as a percentage of E.

V(0) =100V (1-€% = 100V(1—-1) =0V, or 0%
V(1) =100V (1 —e"') = 100V (1-0.368) = 632V, or 63.2%
V(21)=100V (1-e2) = 100V (1-0.135) = 865V, or 86.5%
V(3t)=100V (1-e38) = 100V (1-0.050) = 950V, or 95%
V(41) =100V (1-e®) = 100V (1-0.018) = 982V, or 98.2%
V(51) =100V (1 —e) = 100V (1-0.007) = 99.3V, or 99.3%

After a time equal to five time constants has passed, the capacitor
is charged to 99.3% of the applied voltage. This is fully charged for
all practical purposes.

The equation used to calculate the capacitor voltage while it is
discharging is slightly different from the one for charging. The result-
ing curve, though, is similar to the charging curve. For values of time
equal to multiples of the circuit time constant:

t=0, et = 1, so V(0) = 100V, or 100%
t=1r, e!' = 0368 soV(lt) = 36.8V, or 36.8%
t=2t, e?2 = 0.1385 soV(2r) = 135V, or 135%
t =31, ed = 0050, soV(3t) = 5V, or 5%
t=4t e* = 0018, soV@r) = 18V, or 1.8%

t =51, ed = 0007 soV(t) = 0.7V, or 0.7%

Here we see that after a time equal to five time constants has passed,
the capacitor has discharged to less than 1% of its initial value. This
is fully discharged for all practical purposes.

Another way to think of these results is that the discharge values
are the complements of the charging values. Subtract either set of
percentages from 100 and you will get the other set. You may also
notice another relationship between the discharging values. If you
take 36.8% (0.368) as the value for one time constant, then the dis-
charged value is 0.368% = 0.135 after two time constants, 0.3683 =
0.05 after three time constants, 0.368%=0.018 after four time constants
and 0.368% = 0.007 after five time constants. You can change these
values to percentages, or just remember that you have to multiply the
decimal fraction times the applied voltage. If you subtract these dec-
imal values from 1, you will get the values for the charging equation.
In either case, by remembering the percentage 63.2% you can gener-
ate all of the other percentages without logarithms or exponentials!
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Figure 8 —The graph at A shows how the voltage across a capacitor rises with
time when charged through a resistor (an RC circuit). Graph B shows how the
voltage decreases with time as the capacitor is discharged through a resistor. The
dashed lines represent voltage across the capacitor after 1, 2, 3, and 4 time con-

stants () have passed.
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6 Complex Numbers

You will frequently encounter numbers that contain the square root
of minus one (-1), represented by 7 in regular mathematics. To avoid
confusion with current in electronics, the symbol j is used instead.
Since there is no real number that when squared produces —1, any
number that contains i orj is called an imaginary number. For exam-
ple, 2j, 0.1, 7j/4, and 457.6j are all imaginary numbers.

The number j has a number of interesting properties:

1=
F=-
F=
F=1
j=1,90°

Multiplication by j can also represent a phase shift of +90°.

Real and imaginary numbers can be combined by using addition
or subtraction. Combining real and imaginary numbers creates a
hybrid called a complex number, such as 1 +j or 6 —j7. (The conven-
tion in complex numbers is for j to be first in the imaginary part of
the number.) These numbers come in very handy in radio, describing
impedances, relationships between voltage and current, and many
other phenomena.

If the complex number is broken up into its real and imaginary
parts, those two numbers can also be used as coordinates on a graph
using complex coordinates. This is a special type of rectangular-
coordinate graph that is also referred to as the complex plane. By
convention, the X axis coordinates represent the real number portion
of the complex number and the Y axis represents the imaginary por-
tion. For example, the complex number 6 — j7 would have the same
location as the point (6,—7) on a rectangular-coordinate graph.
Figure 9 shows the same points as Figure 2, but now they are repre-
senting the complex numbers 3 + j5 and -2 — j4, respectively.

6.1 Working With Complex Numbers

Complex numbers representing electrical quantities can be
expressed in either rectangular form (a + jb) or polar form (r D6).
Adding complex numbers is easiest in rectangular form:

(a+jb)+(c+jd)=(a+c)+j(b+d)

Multiplying and dividing complex numbers is easiest in polar form:

aZq; xbZq,=(axb)(q;+q,)

and

a/0; a
=|—1Z4£(6,-6

Converting from one form to another is useful in some kinds of
calculations. For example, to calculate the value of two complex
impedances in parallel you use the formula

__ %%

Z,+2Z,

To calculate the numerator (Z,Z,) you would write the impedances
in polar form. To calculate the denominator (Z, +Z,) you would write
the impedances in rectangular form. So you need to be able to convert
back and forth from one form to the other. There is a good explana-
tion of this process, with examples, in the tutorials on complex num-
bers referenced in the Tutorial on Mathematics section at the end of
this chapter.

Here is the short procedure you can save for reference:

To convert from rectangular (a + jb) to polar form (r £ 6):

r:xl(a2 +b2)

+
6 I
5+ ©(3+/5)
4.
3,,
2
6-5-4-3-2-1"T 1 23 4 5 6
-X : : : +X
-11
-2
-31
H(-2-j4)e— -4
-51
-6
ARRL0369 i

Figure 9 —TheY axis of a complex-coordinate graph represents
the imaginary portion of complex numbers. This graph shows the
same numbers as in Figure 1A, graphed as complex numbers.

0=tan"" (bj
a

To convert from polar to rectangular form:
a=rcos 0
b=rsin 0

Many calculators have polar-rectangular conversion functions
built-in and they are worth learning how to use. Be sure that your
calculator is set to the angle units you prefer, radians or degrees.

Example
Convert 3 £30° to rectangular form:

a =3 cos 30° = 3 (0.866) = 2.6
b=3sin30°=3 (0.5 =15
3/30°=2.6+/1.5

Example

Convert 0.8 + 0.6 to polar form:

r=+(0.8% +0.62) =1
0=tan"' (% =36.8°
0.8

0.8 +/0.6 =1 £36.8°

Itis also common to calculate the reciprocal of a complex number.
This is easiest to do in polar form. The reciprocal of a complex
number r£0 is (1/r) £-6. When taking the reciprocal of an angle, the
sign is changed from positive to negative or vice versa.

Many calculators have polar-rectangular conversion functions
built-in and they are worth learning how to use. Be sure that your
calculator is set to the correct units for angles, radians or degrees.
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7 Vectors and Phasors

Vectors

A vector is a quantity that has both a magnitude and a direction.
Inradio, the most commonly encountered vectors are used to describe
impedance as a complex number (described in the previous section)
and an ac signal (see the Radio Fundamentals chapter’s discussion
of Sine Waves and Rotation). For basic vector concepts, see the
excellent online tutorial about vectors at www.intmath.com/vectors/
vectors-intro.php.

Any quantity that can be represented as a complex number, can be
drawn as a vector. This is described in the Electrical Fundamentals
chapter’s section on Impedance. The mathematical rules for working
with vectors that have two coordinates (like impedance) are the same
as for complex numbers in the previous sections. A vector is usually
drawn as an arrow starting at the origin of the X-Y plane. To distin-
guish vectors from ordinary quantities, they are usually written in
bold font and often with a small half-arrow above them. For example,
VorZ are a voltage vector and an impedance vector, respectively.

Vectors can be drawn anywhere on the X-Y plane but in radio
applications, they are usually shown as an arrow beginning at the
origin (0,0). The arrow’s length is the magnitude of the vector and
the arrowhead shows the direction of the vector. For example, in the
same section of the Handbook, Figure 2.66 (2018 edition) shows the
impedance 50 +j 100 Q as a vector.

AC signals can also be drawn as vectors. In this case, the magnitude
of the vector is the signal’s voltage (or current) and you can use peak
or RMS values. (If more than one vector is being combined, the peak
or RMS convention must be the same for all of them.) The direction
of the vector represents phase. If all of the signals and vectors have
the same frequency, the angle between the vectors represents the
phase angle between the signals.

Adding vectors together graphically is very simple, as shown in
Figure 10, by arranging the vectors “head to tail”. Start by imagining
all of the vectors as starting at the origin. Figure 10 shows two ac

voltages, V, and Vp, both with the same frequency, being added
together to create V.

Begin with V4 and add Vj to it by “moving” it (without changing
its direction) so that the arrow for Vy starts at the arrowhead of V4.
(You could also move V 4 to start at the end of V. The order doesn’t
matter.) The resulting vector, V, is drawn from the head of the first
vector (at the origin) to the tail of the last vector.

Subtraction works similarly. Turn the vector to be subtracted by
180° and add as before. This is the same as subtracting an ordinary
number by multiplying it by —1 and adding. Figure 10B shows what
happens when V. is created by subtracting Vi from V5

When impedances are combined in series and parallel circuits,
their vectors are multiplied and divided according to the rules for
complex numbers above. Examples of how to work with impedances
and admittances in this way are given in the Handbook. The Extra
Class License Manual also includes a number of examples since
questions of that sort are on the exam as of 2017.

More complicated vector combinations are involved in performing
modulation, mixing signals, doing transmission line calculations, and
so forth. Should you need to “do the math” for these functions, you’ll
be well beyond what this supplement can tell you!

Phasor Notation

When working with complex numbers, using polar notation can
be much more convenient for multiplying and dividing. This is also
true for vectors, where is it called phasor notation. For example, an
impedance of 50 + j 100 Q2 would be written 112 £63.4°.

Multiplying phasor A by phasor B requires you to multiply the
magnitudes and add the angles:

VaZdp x Vg Lop - VAV ZL(s + bp)

AN \_VB

Va N

\a
Ve=Va~Vs

QS1308-HORO01
Ve =Va+ Vg
/ AN
v NEA
, /
AN
Va .
/
/
/
/
/
Va
\a
(A)

N -y,
\B

(B)

Figure 10 — Adding and subtracting vectors. Representing voltages here, vectors can be
added together (A) by placing them “head to tail” in any order. (B) shows how subtraction
is performed by reversing the vector to be subtracting and then adding it as in (A).
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Similarly, to divide phasors, divide the magnitudes and subtract one
angle from the other.

VaZda+VpLog=(Vo/Vg)Z(ha - dp)

Remember that to use phasor notation this way requires both
signals to have exactly the same frequency so that ¢, and ¢ are
constant. If that isn’t true, these formulas cannot be used. To add
phasors requires that they be converted into rectangular complex
numbers (a + jb) first.

Phasor Diagrams

When dealing with RF signals and circuitry, it’s often true that the
frequency of all signals in use is the same. Think of an RC low-pass
filter, for example: the input signal Vyy sin (ot + 0) and output signal
Vour sin (ot + ¢) have the same frequency (o = 2nf), even though
their amplitudes are different. The filter’s attenuation is given by the
ratio of [Vl / IVl and they are offset in phase by ¢.

If the same frequency can be assumed for all signals, phasor nota-
tion can used to describe each signal as IVl Z¢ where ¢ is just the
phase angle between a signal and some reference signal or phase.
The input signal to a circuit is usually the reference for measuring
phase differences. The form IVl £¢ is a phasor and when drawn on
an X-Y plane as vectors, the result is a phasor diagram. Figure 11
is a phasor diagram showing a filter’s input and output signals as
phasors. The difference in length of the phasors shows the filter’s
attenuation and the angle between them shows the phase shift through
the filter.

8 Boolean Algebra

The fundamental principle of digital electronics is that a signal can
have only a finite number of discrete values or states. In binary
digital systems signals may have two states, represented in base-2
arithmetic by the numerals 0 and 1. The binary states described as 0
and 1 may represent an OFF and ON condition or as space and mark
in a communications transmission such as CW or RTTY. Since our
interest in digital signals is primarily circuit-oriented, we will refer
to logic circuit elements in this section.

The simplest digital devices are switches and relays. Electronic
digital systems, however, are created using digital ICs — integrated
circuits that generate, detect or in some way process digital signals.
Whether switches or microprocessors, though, all digital systems use
common mathematical principles known as binary logic. We’ll start
with the rules for combining different digital signals, called combi-
national logic. These rules are derived from the mathematics of binary
numbers, called Boolean algebra, after its creator, George Boole.

In binary digital logic circuits each combination of inputs results
in a specific output or combination of outputs. Except during transi-
tions of the input and output signals (called switching transitions),
the state of the output is determined by the simultaneous state(s) of
the input signal(s). A combinational logic function has one and only
one output state corresponding to each combination of input states.
The output of a combinational logic circuit is determined entirely by
the information at the circuit’s inputs.

The simplest Boolean functions are called elements. Combinational
logic elements may perform arithmetic or logical operations.
Regardless of their purpose, these operations are usually expressed
in arithmetic terms. Digital circuits add, subtract, multiply, and divide
but normally do it in binary form using two states that we represent
with the numerals O and 1.

QS1307-HOR03
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Figure 11 — A phasor diagram showing a filter’s input signal
|Vinl£0° acting as the phase reference (thus the angle of 0°) and
the filter’s output signal [Voyr|£¢. The frequency is the same for
both signals.

Binary digital circuit functions are represented by equations using
Boolean algebra. The symbols and laws of Boolean algebra are
somewhat different from those of ordinary algebra. The symbol for
each logical function is shown here in the descriptions of the indi-
vidual logical elements. The logical function of a particular element
may be described by listing all possible combinations in input and
output values in a truth table.

ONE-INPUT ELEMENTS

The inverter or NOT circuit (Figure 12) inverts a 1 at the input to
produce a O at the output, and vice versa. NOT indicates inversion,
negation or complementation. The Boolean algebra notation for the
NOT function is a bar over the variable or expression, such as

B=A.

Logic Boolean Truth
Symbol Equation Table
Figure 12 —
QA DO B Symbols for
a AlB an inverter or
B=A 01 NOT function.
1 110
A— b—B
NOT
(Inverter) Hbk0964
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THE AND OPERATION

A gate is defined as a combinational logic element with two or
more inputs and one output state that depends on the state of the
inputs. Gates perform simple logical operations and can be combined
to form complex switching functions. So as we talk about the logical
operations used in Boolean algebra, you should keep in mind that
each function is implemented by using a gate with the same name.
For example, an AND gate implements the AND operation.

The AND operation results in a 1 only when all inputs or operands
are 1. That is, if the inputs are called A and B, the output is 1 only if
A and B are both 1. In Boolean notation, the logical operator AND
is usually represented by a dot between the variables (¢). The AND
function may also be signified by no space between the variables.
Both forms are shown in Figure 13, along with the schematic symbol
for an AND gate.

THE OR OPERATION

The OR operation results in a 1 at the output if any or all inputs
are 1. In Boolean notation, the + symbol is used to indicate the OR
function. The OR gate shown in Figure 14 is sometimes called an
INCLUSIVE OR. In Boolean algebra notation, a + sign is used
between the variables to represent the OR function. Study the truth
table for the OR function in Figure 12. You should notice that the OR

THE NOR OPERATION

The NOR operation means NOT OR. A NOR gate (Figure 16)
produces a 0 output if any or all of its inputs are 1. In Boolean nota-
tion, the variables have a + symbol between them and a bar over the
entire expression to indicate the NOR function. When you study the
truth table shown in Figure 16, you will notice that a NOR gate
produces a 1 output only when all of the inputs are 0.

THE EXCLUSIVE NOR OPERATION

The EXCLUSIVE OR (XOR) operation (Figure 17) results in an
output of 1 if only one of the inputs is 1, but if both inputs are 1 then
the outputis 0. The Boolean expression @ represents the EXCLUSIVE
OR function. Inverting the XOR function results in the EXCLUSIVE
NOR (XNOR) operation.

DE MORGAN’S THEOREMS

It is common to need to transform logical expressions from an
expression based on the AND (¢) function to one based on the OR
(+) function. Although the functions were known much earlier,
De Morgan expressed them in the language of modern logic in the
19th century. By repeatedly applying these rules, even complex logic
equations can be transformed.

gate will have a O output only when all inputs are 0. A*B=A+B
THE NAND OPERATION and
The NAND operation means NOT AND. A NAND gate (Figure
15) is an AND gate with an inverted output. A NAND gate produces ATB=A+B
a 0 at its output only when all inputs are 1. In Boolean notation,
NAND is usually represented by a dot between the variables and a
bar over the combination, as shown in Figure 13.
5 Logic Boolean Truth
Logic Boolean Truth 5 Logic Boolean Truth
Symbol Equation Table Sz S UL Symbol Equation Table
3 ¢ AlB|C B c AlB|C
ofo]o B
c=A-B |0]0]0 C=A+B 151 [ e
C=AB 0]1]0 C=A-B 0| 1|1
\— & 100 A_21_C tjogn A— & | 101
3 —1 —C 1011 B—] Tl B —o, ¢ 1010
AND ARRL0230 OR R NAND ARRL0233

Figure 13 — Symbol and Boolean
equations for the AND function.

tion.
Logic Boolean Truth
Symbol Equation Table
A
B
0|0 1
C=A+B NERE
A— 21 1/0(0
N C
B — 101]0
NOR ARRL0234

Figure 16 — Symbol and Boolean
equations for the two-input NOR func-
tion.
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Figure 14 — Symbol and Boolean
equations for the two-input OR func-

Figure 15 — Symbol and Boolean
equations for the two-input NAND

function.
Logic Boolean Truth
Symbol Equation Table
A
c A|B|C
B
- 0|01
C=he of1]o0
A— =1 1 0|0
N
B —I ¢ 1011
XNOR
(Exclusive NOR) ARRLO796

Figure 17 — Symbol and Boolean
equations for the two-input XNOR
function.



9 Tutorials on Mathematics

The following web links are a compilation of online resources
organized by topic. Many of the tutorials listed below are part of the
Interactive Mathematics website (www.intmath.com), a free, online
system of tutorials. The system begins with basic number concepts
and progresses all the way through introductory calculus. The lessons
referenced here are those of most use to a student of radio electronics.

9.1 Basic Numbers & Formulas

Order of Operations —
www.intmath.com/Numbers/3_Order-of-operations.php
Powers, Roots, and Radicals —
www.intmath.com/Numbers/4_Powers-roots-radicals.php
Scientific Notation —
www.intmath.com/numbers/6-scientific-notation.php
Ratios and Proportions —
www.intmath.com/Numbers/7_Ratio-proportion.php
Geometric Formulas —
www.equationsheet.com/sheets/Equations-4.html

9.2 Metric System and Conversion of Units

Metric System Overview —
en.wikipedia.org/wiki/Metric_system

MetricEnglish — en.wikipedia.org/wiki/Metric_yardstick

Conversion Factors — https://brownmath.com/bsci/convert.htm

Tables of Conversion Factors —
en.wikipedia.org/wiki/Conversion_of units

9.3 Fractions

Equivalent Fractions —
www.intmath.com/factoring-fractions/factoring-fractions-
intro.php

Multiplication and Division —
www.intmath.com/Factoring-fractions/6_Multiplication-
division-fractions.php

Adding and Subtracting —
www.intmath.com/Factoring-fractions/7_Addition-
subtraction- fractions.php

Equations Involving Fractions —
www.intmath.com/Factoring-fractions/8_Equations- involv-
ing-fractions.php

9.4 Graphs

Basic Graphs —
www.intmath.com/Functions-and-graphs/Functions-graphs-
intro.php

Polar Coordinates —
www.intmath.com/Plane-analytic-geometry/7_Polar-
coordinates.php

Exponents & Radicals —
www.intmath.com/Exponents-radicals/Exponent-radical.php

Exponential & Logarithmic Functions —
www.intmath.com/Exponential-logarithmic- functions/
Exponential-log-functionsintro.php

9.5 Algebra and Trigonometry

Basic Algebra —
www.intmath.com/Basic-algebra/Basic-algebra-intro.php

Basic Trig Functions —
www.intmath.com/Trigonometric-functions/Trig-functions-
intro.php

Graphs of Trig Functions —
www.intmath.com/trigonometric-graphs/trigo-graph-
intro.php

9.6 Complex Numbers

Complex Numbers —
www.intmath.com/Complex-numbers/imaginary-numbers-
intro.php

Polar-Rectangular Conversion —
www.intmath.com/Complex-numbers/4_Polar-form.php

9.7 Quadrature Signals

Quadrature Signal Tutorial —
www.dsprelated.com/showarticle/192.php

Quadrature (I-Q) Modulation —
www.fourier-series.com/IQMod

Digital Modulation —
complextoreal.com/wp-content/uploads/2013/01/mod1.pdf
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Radio Math Cheat Sheet

Here are many formulas and constants that are frequently used in
Amateur Radio. You can save this on your smartphone or tablet or
print it out and keep it in your toolbox or on the bench. No guessing
required!

CONSTANTS

e=2.71828; 1/e = 0.36788

7 =3.14159; 2n =6.28318; 41 = 12.5664 ; /2 = 1.5708,;
n/4 =0.785398

log,q =2.303 x In (or log,); In = log,, / 2.303

Time constants — charging
=1/ =0.632; 21 = 0.865; 31 ==0.95; 41 = 0.982; 51 = 0.993

Time constants — discharging
T =1=1/e =0.368; 2t = 0.135; 31 = =0.05; 4t = 0.018; 5t = 0.007

Ohm’s Law and Power Circle

During the first semester of my Electrical Power Technology
program, one of the first challenges issued by our dedicated
instructor — Roger Crerie — to his new freshman students
was to identify and develop 12 equations or formulas that
could be used to determine voltage, current, resistance and
power. Ohm’s Law is expressed as
R = E /| and it provided three of these equation forms while
the basic equation relating power to current and voltage
(P =1 x E) accounted for another three. With six known equa-
tions, it was just a matter of applying mathematical substitu-
tion for his students to develop the remaining six. Together,
these 12 equations compose the circle or wheel of voltage
(E), current (1), resistance (R) and power (P)shown in Figure
A. Just as Roger’sprevious students had learned at the
Worcester Industrial Technical Institute (Worcester,
Massachusetts), our Class of ‘82 now held the basic electri-
cal formulas needed to proceed in our studies or professions.
As can be seen in Figure A, we hbk05_04-sba

can determine any one of these —— |
four electrical quantities b, B
knowing the value of any T E
two others. You'll prob-
ably be using many
of these formulas E \
as the years go I R |
by — this has \
certainly been E2
my experience. — R|P EI
— Dana G. P
/

Reed, W1LC £2 I2R )

I R

Figure A — Electrical formulas
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TABLE OF CONVERSION FACTORS FOR SINUSOIDAL
AC VOLTAGE OR CURRENT

Conversion Factors for Sinusoidal AC Voltage or Current

From To Multiply By

Peak Peak-to-Peak 2

Peak-to-Peak Peak 0.5

Peak RMS 1/ /2 or 0.707
RMS Peak J2 or 1414
Peak-to-Peak RMS 1/(2x% \/f) or 0.35355
RMS Peak-to-Peak 2x+/2 or2.828
Peak Average 2/mor0.6366
Average Peak n/2or 1.5708
RMS Average (2x~/2)/ = or 0.90
Average RMS n/(2x+/2) or 1.11

Note: These conversion factors apply only to continuous pure sine waves.

REACTANCE

1
Xe= and X; =2nfL
€ 2nfC L

POLAR-RECTANGULAR CONVERSION

To convert from rectangular (a + jb) to polar form (r £ 0):

r= \/(a2 + bz) and O=tan"' (b)

a

To convert from polar to rectangular form:
a=rcosf andb=rsin0

DECIBELS

dB = 10 log (P/ Pggp) = 20 log (V / Vggp)

Power ratio = log! (dB/10) and Voltage ratio = log™! (dB/20)

dB = 10 log (percentage of power / 100) = 20 log (percentage of
voltage / 100)

Percentage of power = 100% x log™! (dB/10)

Percentage of voltage = 100% x log™! (dB/20)

dBm: Pggp =1 mW; dBW: Pppr=1W,; dBuW: Pppp =1 uW

dBV: Vppr=1V;dBuV: Vpgp =1 Vv

dBd =dBi - 2.15 and dBi =dBd + 2.15

1 uW =-30dBm; 1 mW =0dBm; 1 W =30 dBm

100 W =50 dBm; 1 kW = 60 dBm



PARALLEL AND SERIES
COMPONENTS

. Valuel x Value 2
Equivalent value = ——————
Valuel + Value2

How components in series and parallel
are combined into a single equivalent
value. For two resistors or inductors in
parallel or for two capacitors in series
use the simplified formula

C=C,+C,+C,

Common dB Values For Ratios of Power and Voltage

P2/P1 aB va2/ivl aB
0.1 -10 0.1 -20
0.25 -6 0.25 -12
0.5 -3 0.5 -6
1 0 0.707 -3
2 3 1 0
4 6 1414 3
10 10 2 6
4 12
10 20

PEAK ENVELOPE POWER

2 ] 2
_ Vrums
LOAD Rioap

2
|:0.707 X VPk—Pk
PEP =

FREQUENCY-WAVELENGTH CONVERSION

Frequency (in Hz) = 3 x 108 / Wavelength (in m)

Wavelength (in m) = 3 x 108 / Frequency (in Hz)

Frequency (in MHz) = 300 / Wavelength (in m)

Wavelength (in m) = 300 / Frequency (in MHz)

Half-wavelength in free space (in feet) = 492 / Frequency (in
MHz)

Quarter-wavelength in free space (in feet) = 246 / Frequency (in
MHz)

LENGTH CONVERSION

Multiply meters by 3.28 to get feet
Multiply meters by 39.4 to get inches
Multiply meters by 1.09 to get yards
Multiply yards by 0.914 to get meters
Multiply feet by 0.305 to get meters
Multiply inches by 2.54 to get centimeters
Multiply feet by 30.5 to get centimeters
Multiply centimeters by 0.0328 to get feet
Multiply centimeters by 0.394 to get inches

TRIGONOMETRY AND ANGLES

1 radian (rad) = 57.3 degrees; 2« radians in a circle
1 degree = 0.0174 radians; 360 degrees in a circle
45° = /4 rad; 90° = t /2 rad; 180° = —-180° = 7 rad
270° = -90° = 3/n/2 rad = —m/2 rad

1 revolution = 360°; 2 rev = 720°; 3 rev = 1080°

Sin (0) = -sin (-0) = cos (6 — 90°) or cos (0 — 7/2 rad)
Cos (0) = cos (=0) = sin (0 + 90°) or sin (0 + ©/2 rad)

Sin (90°) = sin (n/2 rad) = cos (0) = 1

Sin (45°) = sin (n/4 rad) = cos (45°) = cos (n/4 rad) = 0.707

Sin (30°) = cos (60°) = 0.5

Sin (0) = cos (90°) = cos (/2 rad) = 1

Sin (180°) = sin (x rad) = 0; cos (180°) = cos (nw rad) = -1

Sin (270°) = sin (3n/2 rad) = —1; cos (270°) = cos (3n/2 rad) =0

Tan(0) = sin (0) / cos (0) = height of structure / distance to struc-
ture base

Height of a structure = distance to base of structure x tan (angle to

top of structure)
Length of a guy wire =

\/ (distance to guy point)2 + (height of guy attachment)2
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