
40   January 2017 ARRL, the national association for Amateur Radio® www.arrl.org  

Bob Anding, AA5OY
Over the years, I have written several
IDer programs for various micro-
controllers, including PIC, Atmel,
and now the Arduino. The Arduino
platform has become very popular in
recent years, due in large part to the
support of an enthusiastic community
of technical and non-technical mem-
bers. The Arduino was developed as a
teaching platform for students, artists,
technologists, and anyone interested in
dabbling in electronics.

Morse code is a sequence of dits and
dahs that a computer can easily encode
as ones and zeros. Once the CW mes-
sage is encoded and stored, it can be
played back reliably. This is the basis
for my CW IDer program.

The Hardware, Software,
and Interfaces
Figure 1 shows a breadboard proto-
type of my CW Serial IDer interface.
Just load the program, start Arduino
in the program mode, and answer a
few questions. A simple IDer sketch
— an Arduino software program —
is available on the QST in Depth web
page.1 You can incorporate it into your
project. This version of the IDer can
find many uses in the shack or on Field
Day. It can be adapted to repeater use
by simply interfacing the repeater car-
rier-activated squelch (CAS) with the
IDer activation circuit, and the repeater
PTT (push-to-talk) with the IDer PTT
circuit.

Arduino Hardware
The Arduino has two basic compo-
nents. The first is the Arduino board,
which comes in a variety of sizes
and complexities. The board with all
its features is supported by the Ar-

Arduino CW Serial IDer
This simple IDer has many operating uses in the shack.

Figure 1 — A breadboard of the CW IDer.

duino organization.2 The boards are
open-source and built by a variety of
manufacturers around the world. Price
ranges from $25 for an official Arduino
UNO board, down to less-expensive
boards found on ebay.com. In addition
to the main Arduino board, a host of
shields is available. Shields are daugh-
ter-boards used to interface with the
Arduino and enhance its capabilities.

System Software
The second component of the system
is the software. The software was de-
veloped as an open-source code proj-
ect. You can download the Arduino
integrated development environment
(IDE) from the Arduino software
download web page.3 Download
the IDE and follow the instructions
to install it. Connect the USB cable
between the Arduino USB port and
your computer. The USB cable powers
the Arduino while you are testing the
sketch. The system is simple to install
and simple to hook up. The IDE soft-
ware contains fully functioning exam-
ples of code sketches. These sketches
can be loaded into the Arduino and

run. The example sketches are like a
set of LEGO® interlocking bricks that
you can connect to form a more com-
plex piece with additional features.

Interfaces
Arduino produces different types of
boards that lend themselves to differ-
ent applications. I chose the Arduino
UNO R3 for this project. The UNO
has several prewired interfaces. The
first is the USB connector for interfac-
ing with your computer to download
sketches from the IDE software. There
is also a RESET button and two rows of
general purpose input/output (GPIO)
pins.

I was able to put together a working
CW IDer using just four GPIO pins
and a simple circuit. The schematic
(see Figure 2) shows a circuit consist-
ing of an activation switch S1, active
message (PTT) LED DS1, and an
audio output to speaker SP1. Figure 3
shows a PC board layout for the CW
IDer, also available on the QST in
Depth web page.

Pressing the IDer activation switch

Mark
Typewritten Text
Copyright (C)2017 ARRL, All Rights Reserved

QST® – Devoted entirely to Amateur Radio www.arrl.org January 2017   41

starts the timer, which runs for a spe-
cific number of seconds determined
by the sketch. The timer range is 0 to
32,000 seconds. When the time ex-
pires, the software turns on the PTT
LED, and a half-second later plays
the CW message. When the message
is complete, the Arduino waits a half-
second and then turns off the PTT
LED, which completes the IDer mes-
sage cycle.

Encoding Morse Characters
The heart of the IDer is the Arduino
sketch with the CW message stored
in the Arduino memory. It can then
be reliably decoded and played back.
I chose to encode each CW character
with a byte of data, using zeros to rep-
resent dits and ones to represent dahs.
This way, each CW character is re
presented by a number between

QS1701-Anding02

U1
Arduino Uno R3

R2
330C1

100μF

SP1

Q1
2N2222

R3

10k

R1

220

DS1

S1
3,4 1,2

Figure 2 — The CW IDer uses the Arduino
Uno R3 and a handful of parts.
C1 — Capacitor, 100 mF, 25 V electrolytic

(Digi-Key Part 65-1307-ND)
DS1 — 5mm Red LED (Digi-Key Part

C503B-RAN-CY0B0AA1-ND)
R1 — Resistor, 220 W 1⁄4 W
R2 — Resistor, 330 W 1⁄4 W
R3 — Resistor, 10 kΩ 1⁄4 W
S1 — Momentary contact switch (N/O)

(Digi-Key Part Number 450-1650-ND).

Figure 3 — A printed circuit board for the
CW IDer.

0 and 255. Because CW characters are
only 6 bits long, I added an extra bit at
the end to be used as a stop bit. As an
example, the CW character “A” equals
a decimal 6, or a HEX 0x06, or the bi-
nary number 110. We’ll use the binary
number to decode the CW character.
Let’s use the binary “110” example
above. The sketch encounters, from
right to left, the zero first and plays a
dit. The second element is a 1, so it
plays a dah, and now we are left with a
single 1, which is our end-of-character
signal. From this simple start, we can
build an alphabet, and the numbers
0 through 9, and add some prosigns to
complete our set of CW characters.

Serial IDer Sketch
The Simple IDer sketch, explained in
the sidebar, “A Simple IDer Sketch,”
has a user interface that will query
the user for a message, a timer length,
and words per minute (WPM) speed.
These parameters are all stored in the
Arduino EEPROM memory. The Se-
rial IDer sketch converts the typed
message into code for the IDer and
adds the end-of-message (EOM) char-
acter automatically. So all we must do
is type the letters, numbers, and spaces
of the message.

To use the user interface, we load the
Serial IDer sketch into the Arduino
board. First, open an Arduino IDE
window and go to FILE, then select
Serial IDer sketch. It’s a good idea, at
this point, to save a backup sketch by
clicking SAVE and giving the sketch a

new name. Next, go to the top of the
Arduino IDE window and click the
VERIFY/COMPILER button. After the
compiler does its work, we should see
a “done compiling” message at the
bottom of the IDE window. We have
reached the halfway point.

The IDer sketch is compiled in the
computer and is waiting to be loaded
into the Arduino board. Next, click the
UPLOAD button (right-arrow button),
which will upload the sketch to the Ar-
duino board. After pressing the upload
button, the Arduino LEDs blink, and
the sketch loads into memory. When
all is done, we should get a completion
message at the bottom of the IDE win-
dow showing percentage of memory
used. Once the sketch is loaded into
the Arduino board, we open the “Serial
Monitor” in the Arduino IDE. The Se-
rial Monitor is found under the TOOLS
menu at the top of the IDE window.
Click on TOOLS, then click on SERIAL

MONITOR to open a second blank Serial
Monitor window.

To access the Serial IDer programming
mode, press and hold the Arduino reset
button and press the activation button
simultaneously. First, release the reset
button while still holding the activation
button down. The LEDs on the Ar-

duino will flash back and
forth for a while. Once
they have settled down,
only the one green LED
should be on. This green
LED indicates we’re in

the program mode. A message will
display at the top of the Serial Moni-
tor window asking to input a message.
Built into the Serial IDer is a set of
codes used to look up the message CW
values. Click on the input line at the
top of the Serial Monitor window and

The heart of the IDer is the Arduino
sketch with the CW message stored
in the Arduino memory.

42   January 2017 ARRL, the national association for Amateur Radio® www.arrl.org  

in Table A the HEX code for each character of a message. For
example, to send “AA5OY,” we would look up and enter the
HEX value of each character of our message inside the curly
brackets, separated by a comma. There’s no comma needed
after the last number.

Three Lines of Code Affect the Playback
The first line of code adjusts the dit duration, which changes

the WPM of the CW message. The dit duration range is 35
to 100, which corresponds to approximately 20 and 5 WPM,
respectively. To calculate the WPM, enter a message using
“paris” [Don’t forget to include the word space, SP, after each
“paris.” — Ed.], say, 10 times. Then, using a stop watch, count
the number of times “paris” is sent in 1 minute to arrive at
the number of words per minute. To change the dit duration,
change the value of INT DIT = (56 shown).

int dit = 56; // adjust WPM speed (Slow=100, Fast=35)
The second line of code adjusts the timer length over a

range of 0 to 32,000 seconds. If we were to create a routine
to convert seconds to minutes, we would lose the resolution
that a second provides. Computers are somewhat lax at
calculating time. They perform other tasks besides watching
the clock. To get an exact time takes trial and error. In the
line of code below, set the INT TIMERLNG = value (here set to
5 seconds) to change the timer length.

INT TIMERLNG = 5; // set length of timer in seconds
The third line of code adjusts the CW tone frequency INT

FREQ = to a value between 0 and 32,000 Hz. I prefer a value
between 500 and 900 Hz in the example below.

INT FREQ = 900; // CW tone frequency (500 – 900 Hz)

Verify and Run
Once edits are done, click the VERIFY/COMPILER button

(CHECK button). After the compiler has done its work, there
should be a “Done compiling” message at the bottom of the
IDE window. The IDer sketch is now compiled, in the com-
puter, and waiting to be loaded into the Arduino board. Click
the UPLOAD button (right-arrow button), which uploads the
sketch to the Arduino board. It may take a while to load the
sketch into the Arduino memory. When all is done, a comple-
tion message should appear at the bottom of the IDE window
showing percentage of memory used.

We now have a working Arduino CW IDer with a pro-
grammed message, WPM speed, tone frequency, and timer
length. Press the ACTIVATION button to start the timer. The
message is played at the end of the timer interval.

Looking Through the Sketch
Look through the main decoder function of sketch

in the function void msgReader(). It has an outer loop
to read each character and the inner loop to decode
dits and dahs. The inner loop reads each character
one bit at a time using the “if / else” statements
to send dits and dahs, shifting right to left. When
there’s just a “one” left, the sketch ends the inner
loop and checks for another character.

For the cost of an inexpensive Arduino board,
some free software, and a little time editing a few
lines of code, you have a simple, cheap IDer that
you might use in the shack, for a piece of equipment,
or for a repeater.

Table A
Encoding of the Morse Characters

0x06 = a	 0x11 = b	 0x15 = c	 0x09 = d	 0x02 = e
0x14 = f	 0x0b = g	 0x10 = h	 0x04 = i	 0x1e = j
0x0d = k	 0x12 = l	 0x07 = m	 0x05 = n	 0x0f = o
0x16 = p	 0x1b = q	 0x0a = r	 0x08 = s	 0x03 = t
0x0c = u	 0x18 = v	 0x0e = w	 0x19 = x	 0x1d = y
0x13 = z	 	 	 	
0x3e = 1	 0x3c = 2	 0x38 = 3	 0x30 = 4	 0x20 = 5
0x21 = 6	 0x23 = 7	 0x27 = 8	 0x2f = 9	 0x3f = 0
0x29 = / 	 0x4c = ? 	 0x00 = SP	 0xff = EOM	 0x6a = ‘.’
0x73 = ‘,’	 0x56 = ‘@’	 	 	
0x68 = ‘*’ = SK 0xd1 = ‘^’ = BK 0x2a = ‘+’ = AR 0x31 = ‘$’ = BT

 A Simple IDer Sketch
The basic IDer sketch can be used as a set-and-forget IDer.

It will require editing of a few lines of code and includes a sim-
ple method to encode CW characters. We encode a byte of
data with a CW character, using zeros to represent dits and
the ones to represent dahs. All the Morse code characters
can be represented by a number between 0 and 255. Once
encoded, the CW characters can be played back without
concern of a missing dit or adding an extra dah. A glance at
the binary number used to encode the CW character will give
a visual check of the Morse code character. The “A” encodes
as the binary “110,” read right to left, shows us a dit dah, fol-
lowed by a stop bit. From this example, we can build up the
alphabet, the set of numbers 0 to 9, and some prosigns to
complete the set of CW characters, shown in Table A.

There are special encodings for end-of-message (EOM)
and Word Space (SP) characters. CW uses just six bits plus a
stop bit, so the sketch can use these as special control char-
acters. The Arduino has features to calculate the EOM from
a predefined array for us. The EOM character isn’t needed in
this example, but if we were to send multiple messages, we
would need to know when one message ends and the next
begins.

Download the Arduino_Simple_CW_IDer.sch.ino file to
your computer. Open the Arduino IDE, and go to the top of
the Arduino IDE window and click FILE. Then click OPEN, and
browse to the simple IDer sketch and highlight it. Then click
OPEN.

The sketch is small, but has functioning CW audio output,
an activation switch, a timer, and a PTT LED. With this simple
sketch, the message parameters are entered manually. The
parameters are located at the top of the sketch. This is where
we’ll find CW message codes that need to be translated from
letters to HEX numbers, a timer length added in seconds, a
tone frequency in Hertz, and a CW WPM speed. This sketch
performs the entire task of an Arduino IDer or a CW routine
to add to your project.

Table A shows the HEX encoding for the letters, numbers,
and prosign characters. In playback mode, the IDer will de-
code the numbers and play the dits and dahs of the message.
At the top of the CW IDer sketch, a CW message is stored in
an array using a single line of code.

char message []={0x06, 0x06, 0x20, 0x0f, 0x1d}; //message =
“AA5OY”

When entering a message in the simple CW IDer, look up

QST® – Devoted entirely to Amateur Radio www.arrl.org January 2017 1

In the January/February
2017 Issue…
In QEX issue #300, authors describe and
analyze ionospheric propagation and
sounding, Pi-network losses, enclosures,
antennas, and RF measurements.

 In honor of this being our 300th issue,
we’ve recreated the entire first issue of
QEX.

 Flavio Egano, IK3XTV, suggests that
long path echoes might propagate by iono-
spheric ducts.

 Bill Kaune, W7IEQ, details the inductor
losses in a Pi-network.

 Tom C. McDermott, N5EG, describes
hardware and software for ionospheric
sounding.

 Scott Roleson, KC7CJ, repurposes an
enclosure from obsolete equipment.

 Robert J. Zavrel, W7SX, shows a dif-
ferent approach to a multi-band Yagi-Uda
antenna design.

QEX is edited by Kazimierz “Kai” Siwiak,
KE4PT (ksiwiak@arrl.org), and is pub-
lished bimonthly. QEX is a forum for the
free exchange of ideas among communica-
tions experimenters. The content is driven
by you, the reader and prospective author.
Effective with this issue, the subscription

rate (6 issues per year) for ARRL mem-
bers and non-members in the United States
is $29. First Class delivery in the US is
available at an annual rate of $40. For in-
ternational subscribers, including those in
Canada and Mexico, QEX can be delivered
by airmail for $35 annually. Subscribe
today at www.arrl.org/qex.

Would you like to write for QEX? We
pay $50 per published page. Get more
information and an Author Guide at
www.arrl.org/qex-author-guide. If you
prefer postal mail, send a business-size
self-addressed, stamped (US postage)
envelope to: QEX Author Guide, c/o
Maty Weinberg, ARRL, 225 Main St.,
Newington, CT 06111.

QST® – Devoted entirely to Amateur Radio www.arrl.org January 2017   43

For updates to this article,
see the QST Feedback page at

www.arrl.org/feedback.

enter the letters/numbers of your mes-
sage.

When your message is completed,
click the SEND button at the end of the
input line. This activates the IDer mes-
sage conversion routine. The routine
first shows the message entered, then

converts and writes it to the Arduino
EEPROM memory. Last, as a double-
check, it lists the HEX numbers it has
converted in the message.

Next, the interface asks for a WPM
speed. Click on the input line at the top
of the Serial Monitor window. Enter
a dit duration value between 35 and
100. Click the SEND button. A duration
of 35 corresponds to approximately
20 WPM, and 100 corresponds to ap-
proximately 5 WPM. The interface
will next ask for a tone frequency.
Click on the input line at the top of the
Serial Monitor window and enter a

number from 500 to 900 Hz. Click the
SEND button.

Last, the interface will ask for timer
duration. Click on the input line at
the top of the Serial Monitor window,
and enter a number from 0 to 32,000
seconds. After the last entry, the inter-

face routine will display
SETUP COMPLETED. The
Arduino is now loaded
and ready to play our mes-
sage using the chosen pa-
rameters.

To activate the IDer, press
the activation button,
and the green LED on

the board will begin to blink, count-
ing down the timer. When the timer
reaches zero, it activates the PTT LED,
and a half-second later plays the CW
message. At the end of the message, it
turns off the PTT LED. The IDer now
returns to monitoring the activation
button.

A user interface makes for an easy
setup of the Serial IDer and allows
for quick updates of parameters in the
field. The message length is not lim-
ited to a call sign, because the Arduino
has space for hundreds of characters.

Bob Anding, AA5OY, was first licensed in
1987 as Technician class, with the call N5LJR,
and upgraded in 1989 to Amateur Extra class,
AA5OY. He is a member of ARRL and the
Jefferson Amateur Radio Club, W5GAD. Bob
designed, built, installed, and maintained
two local repeaters. Over the years, Amateur
Radio has allowed him to enjoy operating and
pursuing his interests in designing, building,
and programming. You can reach Bob at
aa5oy@arrl.net.

From this simple start, we can build
an alphabet, the numbers 0 through 9,
and add some prosigns to complete
our set of CW characters.

If you’re interested in expanding this
sketch, I would suggest breaking it up
into multiple messages using several
activation buttons. Setting up multiple
activation buttons to play different
messages as well as acknowledge
beeps is beyond the scope of this ar-
ticle.

With your CW IDer message up and
running, you are ready to go.

Notes
1www.arrl.org/qst-in-depth
2https://www.arduino.cc/
3https://www.arduino.cc/en/Main/Software

QST® – Devoted entirely to Amateur Radio www.arrl.org January 2017 1

In the January/February
2017 Issue…
In QEX issue #300, authors describe and
analyze ionospheric propagation and
sounding, Pi-network losses, enclosures,
antennas, and RF measurements.

 In honor of this being our 300th issue,
we’ve recreated the entire first issue of
QEX.

 Flavio Egano, IK3XTV, suggests that
long path echoes might propagate by iono-
spheric ducts.

 Bill Kaune, W7IEQ, details the inductor
losses in a Pi-network.

 Tom C. McDermott, N5EG, describes
hardware and software for ionospheric
sounding.

 Scott Roleson, KC7CJ, repurposes an
enclosure from obsolete equipment.

 Robert J. Zavrel, W7SX, shows a dif-
ferent approach to a multi-band Yagi-Uda
antenna design.

QEX is edited by Kazimierz “Kai” Siwiak,
KE4PT (ksiwiak@arrl.org), and is pub-
lished bimonthly. QEX is a forum for the
free exchange of ideas among communica-
tions experimenters. The content is driven
by you, the reader and prospective author.
Effective with this issue, the subscription

rate (6 issues per year) for ARRL mem-
bers and non-members in the United States
is $29. First Class delivery in the US is
available at an annual rate of $40. For in-
ternational subscribers, including those in
Canada and Mexico, QEX can be delivered
by airmail for $35 annually. Subscribe
today at www.arrl.org/qex.

Would you like to write for QEX? We
pay $50 per published page. Get more
information and an Author Guide at
www.arrl.org/qex-author-guide. If you
prefer postal mail, send a business-size
self-addressed, stamped (US postage)
envelope to: QEX Author Guide, c/o
Maty Weinberg, ARRL, 225 Main St.,
Newington, CT 06111.

