

An Overvoltage Protection Circuit

This circuit uses a series pass device to disconnect the power supply from the load in the event of an overvoltage condition.

Ralph Gable, WA2PUX

I designed an overvoltage protection (OVP) device for use between my 13.8 V dc, 35 A Pyramid PS-35 power supply and the load. The circuit uses a series pass device that disconnects the power supply from the load. The design operates around the following parameters:

- Overvoltage set point of 15 V (adjustable)
- Maximum normal operating current of 35 A
- Minimum input voltage of 10 V dc
- Maximum input voltage of 25 V dc
- Optional latching in OVP mode
- Input and output active indicator
- Visual and audible overvoltage alarm indicators

I chose a P-channel power MOSFET (see Figure 1) with a maximum drain current capability of 78 A, a maximum **ON** resistance of 6.6 mΩ at 39 A drain current and 10 V gate voltage, with a maximum power dissipation of 40 W.

This power MOSFET is either **ON** or **OFF**, so the power dissipation is relatively low. The gate of the MOSFET is controlled by a high-speed voltage comparator. To further speed things up, I used a 1 nF capacitor across the resistor responsible for reporting the overvoltage condition and the one responsible for controlling the MOSFET.

In normal operation, the MOSFET is turned on with $V_{GS} > 10$ V. At the maximum design current of 35 A,

the MOSFET would have to dissipate about 8 W as the worst case.

In the case of an overvoltage condition, the series pass MOSFET is simply shut off, removing power from whatever equipment is being powered by it.

You can choose to add the diode (D7) to enable latching mode. In that case, the voltage comparator reference is pulled low when the alarm annunciator activates, ensuring that the input has to be essentially removed before the OVP mode can be exited. Capacitor C9 prevents the unit from going into a latched OVP mode at startup or in the case of transient events.

Testing of the OVP device shutoff speed is described on the *QST in Depth* web page at www.arrl.org/QST-in-Depth. Based on my testing, I am comfortable saying that this OVP device responds within about 12 µs of an overvoltage event.

Building the OVP Device

See the schematic in Figure 1. Set potentiometer R12 to its center position before you power up the circuit. Then set the threshold voltage to 15 V. The five-way binding posts are rated at 35 A. I use the braided shield from some small coax to connect the ground on the board. Additional images and build details, including Gerber files for the PCB, are on the *QST in Depth* web page.

Keep the leads really short for anything that is associated with the speed of response, especially anything associated with Pins 1 and 4 of the comparator.

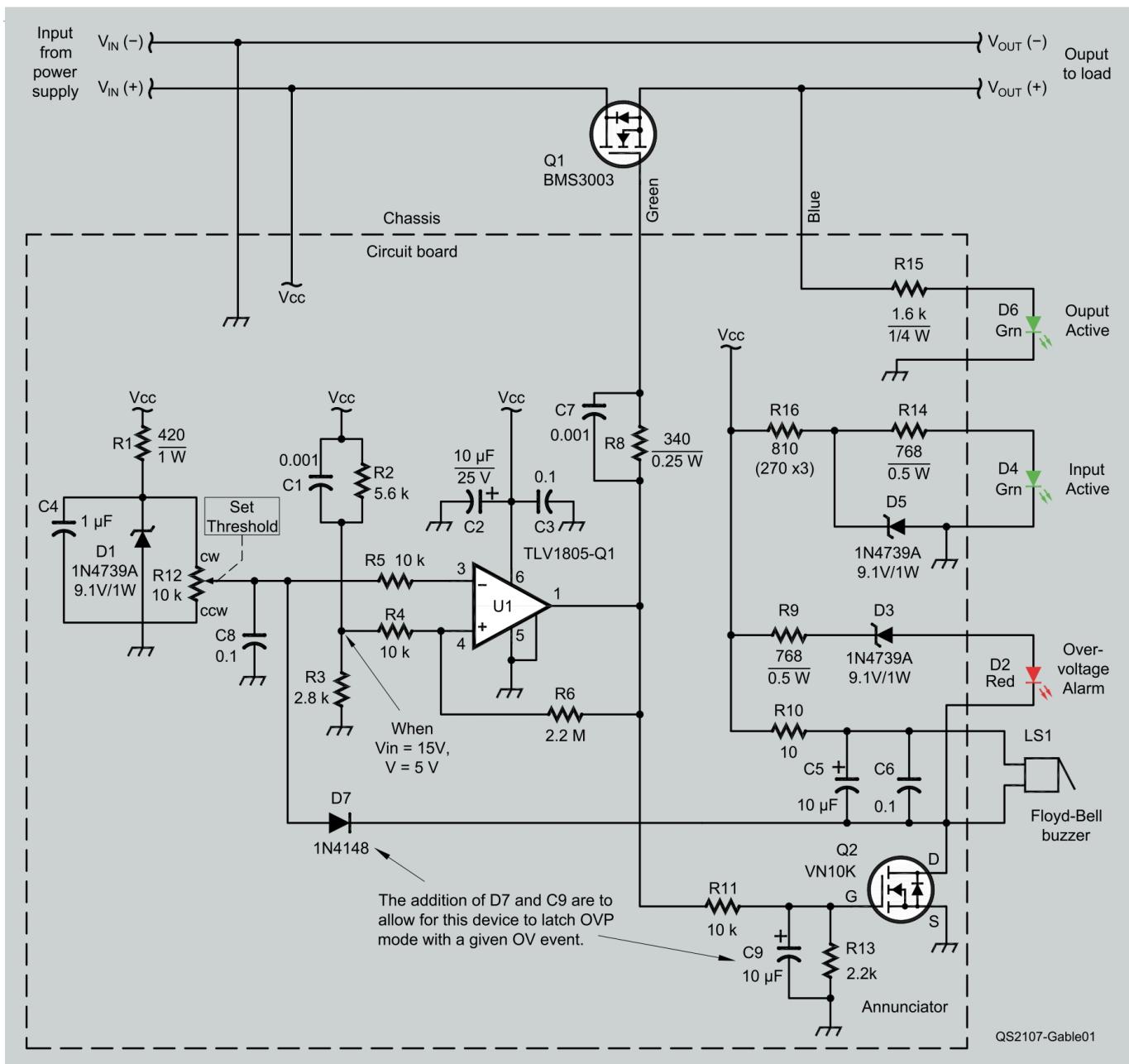


Figure 1 — The schematic diagram and bill of materials.

C1, C7 — 1 nF, 100 V, ceramic
 C2, C5, C9 — 10 μ F, 50 V, ceramic
 C3, C6, C8 — 0.1 μ F, 50 V, ceramic
 C4 — 1 μ F, 25 V, ceramic
 D1, D3, D5 — 1N4739ATR, Zener diode, 9.1 V, 1 W, 5%;
 ON Semiconductor
 D2 — Red LED
 D4, D6 — Green LED
 D7 — 1N4148 or equivalent general-purpose switching diode
 LS1 — MB-09-530-S or equivalent buzzer, 5 – 30 V dc; Floyd Bell
 Q1 — BMS3003-1E, MOSFET, P channel; ON Semiconductor
 Q2 — VN10K3-G, MOSFET, N channel; Microchip
 R1 — 402 Ω , 1 W (or greater) 1% metal film resistor,
 CPF1402R00FEE6; Vishay
 R2 — 5.6 k Ω , 0.25 W (or greater), 1% resistor
 R3 — 2.8 k Ω , 0.25 W, 1% resistor
 R4, R5, R11 — 10 k Ω , 0.25 W, 1% resistor
 R6 — 2.2 M Ω , 0.25 W, 1% resistor
 R8 — 340 Ω , 0.4 W (or greater) 1% resistor,
 SFR2500003400FR500; Vishay
 R9, R14 — 768 Ω , 0.6 W (or greater) 1% resistor,
 MRS25000C7680FCT00; Vishay

R10 — 10 Ω , 0.25 W (or greater) resistor
 R12 — 10 k Ω , 0.1 W (or greater) trimmer potentiometer
 R13 — 2.2 k Ω , 0.25 W resistor
 R15 — 1.6 k Ω , 0.25 W (or greater) resistor
 R16 — 810 Ω , 0.75 W (or greater) resistor [or three 270 Ω ,
 0.25 W resistors in series]
 U1 — TLV1805-Q1, high-speed comparator; TI
 Heatsink — scrap box item
 Misc. — Five-way binding posts rated at 35 A; two red, two black

Amateur Extra-class licensee Ralph Gable, WA2PUX, was first licensed in 1970. He retired in 2019 from a 20-year career in electronics engineering product development. Ralph maintains a YouTube channel, "Electronics for the Inquisitive Experimenter." You can reach Ralph at wa2pux@gmail.com.

For updates to this article,
 see the QST Feedback page
 at www.arrl.org/feedback.

