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Introduction: Modern communications systems need oscillators as part of the design. In most cases 

these oscillators are part of a synthesizer and they are voltage controlled, meaning that the frequency is 

determined by tuning diodes, frequently called varactors. The applied DC voltage varies the frequency. 

For high performance circuits the Colpitts Oscillator is most frequently selected [1-30].  

The Colpitts oscillator comes in three flavors – Figure 1a, shows the conventional circuit 

configuration. This type of circuit is based on a design developed by Edwin Henry Colpitts known for 

his invention of this oscillator and hence carries his name [1]. It uses a capacitive voltage divider and 

an inductor. In reality this simple circuit is not used but rather a derivation of this. This is shown in 

Figure 1b. The advantage of this circuit is that the values for C1 and C2 are fixed and the frequency 

change occurs by changing C3. If the frequency of Figure 1a needs to be changed, a better choice is to 

vary the inductor L.  

His colleague Ralph Hartley [2] invented an inductive coupling oscillator. The advantage of such an 

oscillator having capacitors C1 and C2 replaced with a tap of the inductor has been used together with 

helical resonators. The frequency tuning is achieved purely capacitively. To minimize loading, the 

transistor of choice here is a FET which has very high input impedance and provides minimum loading 

to the circuit. The disadvantage is that this circuit, using junction FETs, is limited to about 400 MHz. 

The transition frequency fT is about 500MHz. FETs can also be used in the Colpitts oscillator as shown 

in Figure 1a, because of relatively lower loading than the bipolar transistor. The drawback of Figure 1a 
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is the heavy loading of the tuned circuit by the transistor. The circuit shown in Figure 1b is frequently 

referred to as the Clapp-Gouriet circuit [3]. 

   

Figure 1a: Conventional Colpitts Configuration   Figure1b: Modified Colpitts (Clapp-Gouriet) Config. 

   

Figure 1c: Modified Colpitts Oscillator   Figure 2: Photograph of 1 GHz CRO  

 

At frequencies below 1GHz, both GaAs FETs and CMOS FETs are not a good choice because of their 

high flicker noise contribution.  
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For the circuit of Figure 1b, it is theoretically possible to have L and C3 in resonance in which case the 

oscillator will cease to work. It is important to note here that the same circuit is used also for crystal 

oscillators; here the inductor L is replaced by the crystal. The crystal is a series combination of Ls, Rs 

and Cs with Q = 𝜔L/R. In practice the product of crystal Q and frequency is a constant. For 5 MHz, a 

typical Q of 2.5×10
6
 is possible, resulting in a product of 12.5×10

12
. If this is scaled to a crystal 

oscillator operating at 100MHz, the Q would be 125000. Manufacturers typically guarantee values 

greater than 100000. 

Again, this crystal oscillator also falls into the category of Colpitts oscillator. A third variation is 

shown in Figure 1c. Here we have a parallel tuned circuit which is coupled loosely to the transistor. 

This circuit is found when building oscillators using ceramic resonators (CRO). Figure 2 shows such a 

design. 

This paper summarizes the various methods of oscillator analysis and presents a step-by-step design 

procedure, showing the simulated, measured and calculated results for phase noise and other important 

parameters and concludes with a discussion on the effect of tuning diodes.  

Linear Approach: For many years, until recently, oscillators were analyzed with a linear approach as 

will be shown below. Figures 3a and 3b illustrate the oscillator sub-circuit for the purpose of 

calculating the negative resistance. 
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Figure 3a: Oscillator sub-circuit for impedance 

analysis 

Figure 3b: Equivalent sub-oscillator circuit for the 

calculation of the negative resistance 

From Figure 3b, the circuit equation is given from Kirchoff’s voltage law (KVL) as 
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The input impedance (ZIN) of this Colpitts Oscillator circuit, including the parasitics is given as [4, 5]: 
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Figure 3c: Colpitts oscillator with base lead inductances and package capacitance 

The resonator losses are expressed by the Rs1. Now splitting the ZIN of the Colpitts oscillator into real 

and imaginary parts, including parasitics, we obtain,  
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where  

NR :     Negative resistance without lead inductance and package capacitance. 

NEQR :  Negative resistance with base-lead inductance and package capacitance. 

EQC :    Equivalent capacitance with base-lead inductance and package capacitance 
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The method shown above is called one-port oscillator design [6]. Figure 4 shows the general schematic 

diagram of a one-port negative-resistance model. The negative real part of ZIN is used to compensate 

the losses of the parallel tuned circuit. 

 

   Figure 4:  Schematic diagram of a one-port negative resistance model 

 

Linear S-parameters approach: 

It may be interesting for the readers to see how an oscillator can be analyzed using S-parameters. It 

should be noted that this method is based on linear approximations and works for practically all 

microwave oscillator designs [6, 28, pp-741]. The equivalent criteria of the negative resistance can be 

calculated in the form of S-parameters. The detailed definitions of S-parameters can be found in [31]. 

This negative resistance will cause oscillations if the following conditions are satisfied. Assume that 

the oscillation condition is satisfied at port 1 and is given by: 

1

𝑆11
′ = 𝛤𝐺       (6) 

Thus,     𝑆11
′ = 𝑆11 +

𝑆12𝑆21𝛤𝐿

1−𝑆22𝛤𝐿
=

𝑆11−𝐷𝛤𝐿

1−𝑆22𝛤𝐿
          (7) 

1

𝑆11
′ =

1−𝑆22𝛤𝐿

𝑆11−𝐷𝛤𝐿
= 𝛤𝐺       (8) 

From expanding (7) we get  
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𝛤𝐺𝑆11 − 𝐷𝛤𝐿𝛤𝐺 = 1 − 𝑆22𝛤𝐿       (9) 

𝛤𝐿(𝑆22 − 𝐷𝛤𝐺) = 1 − 𝑆11𝛤𝐺       (10) 

𝛤𝐿 =
1−𝑆11𝛤𝐺

𝑆22−𝐷𝛤𝐺
        (11) 

𝑆22
′ = 𝑆22 +

𝑆12𝑆21𝛤𝐺

1−𝑆11𝛤𝐺
=

𝑆22−𝐷𝛤𝐺

1−𝑆11𝛤𝐺
      (12) 

1

𝑆22
′ =

1−𝑆11𝛤𝐺

𝑆22−𝐷𝛤𝐺
        (13) 

Comparing equations (9) and (12), we find that 

1

𝑆22
′ = 𝛤𝐺        (14) 

where, S11 and S22 are the input and output reflection coefficients, respectively  

The discussion above means that the oscillation condition is also satisfied at port 2; which proves the 

simultaneous oscillation condition at both ports. Thus if either port is oscillating the other port must be 

oscillating as well. A load may appear at either or both ports, but normally the load is in 𝛤𝐿, the output 

termintation.  

It is helpful to use the common-source based amplifier to compute the oscillator output power. For 

oscillators, the objective is to maximize (Pout – Pin) of the amplifier, which is the useful power to the 

load. An empirical expression for the common-source amplifier output power found by Johnson [29] is  

𝑃𝑜𝑢𝑡 = 𝑃𝑠𝑎𝑡 (1 − 𝑒𝑥𝑝
−𝐺𝑃𝑖𝑛

𝑃𝑠𝑎𝑡
)     (15) 

Where Psat is the saturated output power of the amplifier and G is the tuned small-signal common-

source transducer gain of the amplifier, which is identical to |𝑆21|2. Since the objective is to maximize 

(Pout - Pin), (where Pout and Pin are the output and input power of the amplifier), 

𝑑(𝑃𝑜𝑢𝑡 − 𝑃𝑖𝑛) = 0       (16) 

𝜕𝑃𝑜𝑢𝑡

𝜕𝑃𝑖𝑛
= 1       (17) 
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𝜕𝑃𝑜𝑢𝑡

𝜕𝑃𝑖𝑛
= 𝐺𝑒𝑥𝑝 −

𝐺𝑃𝑖𝑛

𝑃𝑠𝑎𝑡
= 1      (18) 

𝑒𝑥𝑝
𝐺𝑃𝑖𝑛

𝑃𝑠𝑎𝑡
= 𝐺       (19) 

𝑃𝑖𝑛

𝑃𝑠𝑎𝑡
=

ln 𝐺

𝐺
       (20) 

At the maximum value of (𝑃𝑜𝑢𝑡 − 𝑃𝑖𝑛), the amplifier output is  

𝑃𝑜𝑢𝑡 = 𝑃𝑠𝑎𝑡(1 −
1

𝐺
)      (21) 

And the maximum oscillator output power is  

𝑃𝑜𝑠𝑐 = (𝑃𝑜𝑢𝑡 − 𝑃𝑖𝑛)      (22) 

       = 𝑃𝑠𝑎𝑡 (1 −
1

𝐺
−

ln 𝐺

𝐺
)     (23) 

Thus the maximum oscillator output power can be predicted from the common-source amplifier 

saturated output power and the small signal common source transducer gain G. For high oscillator 

output power high (loop) gain is of importance. Another definition of gain that is useful for large-

signal amplifier or oscillator design is the maximum efficient gain, defined by  

𝐺𝑀𝐸 =
𝑃𝑜𝑢𝑡−𝑃𝑖𝑛

𝑃𝑖𝑛
      (24) 

For maximum oscillator power the maximum efficient gain from (20) and (21) is 

𝐺𝑀𝐸𝑚𝑎𝑥 =
𝐺−1

𝑙𝑛𝐺
      (25) 

The RF gain GMEmax is a considerably smaller value compared to G, the small-signal gain [7-12]. 

Designing oscillators based on S-parameters in a linear mode has been quoted by many authors using 

first approximation for large signal as shown in [8]. The problem with this published approach is that it 

uses a GaAs FET, where only the transconductance gm has a major influence. S11 changes very little 

under large signal conditions, as does S22. Reliable large signal S-parameters for bipolar transistors and 

FETs are difficult to get. 
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Time-domain based analysis to analyze the transistor non-linarities’: 

A correction for the frequency dependent parameters will follow, based on “simulation” for larger 

drive level.  

The voltage )(tv across the base-emitter junction consists of a DC component and a driven signal 

voltage )cos(1 wtV .  It can be expressed as   

)cos()( 1 wtVVtv dc       (26) 

As the driven voltage )cos(1 wtV increases and develops enough amplitude across the base-emitter 

junction, the resulting current is a periodic series of pulses whose amplitude depends on the nonlinear 

characteristics of the device and is given as 

kT

tqv

se eIti

)(

)( 
            (27) 

kT

wtqV

kT

qV

se eeIti
dc )cos(1

)( 
          (28) 

)cos()( wtxkT

qV

se eeIti
dc


           (29) 

assuming Ic  Ie (>10) 

kT

qV

qkT

V
x 11

)/(


           (30) 

)(tei is the emitter current and x  is the drive level which is normalized to qkT / . 

 From the Fourier series expansion, 
)cos(wtx

e  is expressed as 

)cos()(
)cos(

nwtx
n

na
wtx

e           (31) 
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)(xan is a Fourier coefficient and given as 
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)(xI n  is the modified Bessel function. 

As 
!

)2/(
)(0

n

x
xIx

n

n           (35) 

)(0 xI  are monotonic functions having positive values for x0 and n0; )0(0I is unity, whereas all 

higher order functions start at zero. 

The short current pulses are generated from the growing large-signal drive level across the base-emitter 

junction, which leads to strong harmonic generation [5, 27]. The advantage of this pulse performance 

is the reduction of phase noise, due to the smaller duty cycle of the transistor [4]. The emitter current 

represented above can be expressed in terms of harmonics as 
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Is = collector saturation current 
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)(ln 0 xI
q

kT
VV dcQdc            (39) 
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dcQV  and dcI  are the operating DC bias voltage and the DC value of the emitter current. Furthermore, 

the Fourier transform of )(tie , a current pulse or series of pulses in the time domain yields a number of 

frequency harmonics common in oscillator circuit designs using nonlinear devices. 

The peak amplitude of the harmonic content of the output current is defined as 








)(

)(

1 xI

xI N , and the DC 

offset voltage are calculated analytically in terms of the drive level, as shown in Table 1.  It gives good 

insight of the nonlinearities involved in the oscillator design.   

Table 1: For T=300 K, data are generated at a different drive–level 

Drive level 

[x] 

Drive-Voltage 

([
𝑘𝑇

𝑞
] ∗ 𝑥)mV 

Offset-Coefficient 

ln[I0(x)] 

DC-Offset 

)]([ln 0 xI
q

kT

mV 

Fundamental 

Current 

2[I1(x)/I0(x)] 

Second-

Harmonic 

[I2(x)/I1(x)] 

0.00 0.000 0.000 0.000 0.000 0.000 

0.50 13.00 0.062 1.612 0.485 0.124 

1.00 26.00 0.236 6.136 0.893 0.240 

2.00 52.00 0.823 21.398 1.396 0.433 

3.00 78.00 1.585 41.210 1.620 0.568 

4.00 104.00 2.425 63.050 1.737 0.658 

5.00 130.00 3.305 85.800 1.787 0.719 

6.00 156.00 4.208 206.180 1.825 0.762 

7.00 182.00 5.127 330.980 1.851 0.794 

8.00 208.00 6.058 459.600 1.870 0.819 

9.00 234.00 6.997 181.922 1.885 0.835 

10.00 260.00 7.943 206.518 1.897 0.854 

15.00 390.00 12.736 331.136 1.932 0.902 
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It may be of interest to see the start-up condition of an oscillator; the transient response is shown in 

Figure 5. 

 

  

 Figure 5:   Example of the transient simulation of a ceramic resonator based high-Q oscillator showing the 

DC-offset as shown in column 4, Table 1  (The voltage displayed is taken from the emitter) 

Selecting the right transistor: 

The basic design of a Colpitts oscillator is the same, whether one uses a FET or BJT. Bipolar transistor 

based oscillators can now easily be designed up to 20GHz. The basic advantage of the bipolar 

transistor (also known as BIP) is the lower flicker noise corner frequency. Currently transistor chips 

with Fmax up to 300GHz are available in the foundry environment, commercially up to about 150GHz. 

For the purpose of this design synthesis, we have decided to use a BFG520, which is a highly linear 

transistor. It is validated with a 3-tone test (the typical 2-tone test is easier to meet), as found from the 

20.00 520.00 17.590 457.340 1.949 0.926 
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datasheet; the mixing products are better than -60dB suppressed relative to the carrier. Based on past 

experience for its good linearity, the BFG520 also has low distortion and, low noise. The key 

parameters are VCEO = 15V, Ic = 70mA, Ptot = 300mW, Noise Figure Fmin at 350MHz is less than1dB, 

at 5mA, the associated gain is more than 17dB.  

 

A Design Example for a 350MHz fixed frequency Colpitts Oscillator 

The following is an exact mathematical solution for designing the 350MHz Colpitts Oscillator. 

The circuit consists of the Colpitts configuration following Figure 1c. In order to have enough loop 

gain, a microwave transistor BFG520 is used. At the proposed starting DC current of 6mA, (being 

close to the minimum noise figure current and as a first trial to meet the output power), fT is 6GHz. 

When selecting a transistor with a higher fT there is always a possibility of unwanted microwave 

oscillation and higher flicker noise. When comparing microwave transistors with audio transistors, it 

becomes apparent that at much lower frequencies there is much less flicker noise contribution. This 

transistor can safely be operated at 30mA but the rule of thumb is, when using 10% to 15% of Icmax, 

the flicker contribution is much less. For low noise operation, the datasheet indicates 1.1dB spot noise 

figure at 900MHz at 5mA. 

The 350 MHz oscillator, using the bipolar transistor BFG520, is designed based on analytical 

equations and is later verified with simulation results.  Based on the output power requirement and 

harmonics at a given load, the drive level is fixed. The normalized drive level (of x = 15) is chosen to 

allow adequate drive level to sustain oscillation and yet, not to produce excessive harmonic content.  

Figure 6, shows the values of the optimized circuit. While simulating for a series resonant 

configuration, the value of Cp = 8.2fF, was used as a place-holder, based on impedance considerations. 

Cp was set to 8.2pF for parallel resonant configuration, the value of L = 21nH, and Cc = 3.3pF was set 
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to achieve oscillation at 350MHz. Experimenting with the simulation, it turns out that ‘Lb’ set to 0.5uH 

gives a much better phase noise, about 10dB better at 100Hz offset, but this could not be verified yet in 

a real circuit.  

The output power is taken from the collector and following is the design procedure. The goal is to 

obtain an output power over 10dBm, using a simple design for good understanding. 

 

  

Figure 6: Design of 350MHz Colpitts Oscillator – Optimized for phase noise 

Step 1: 
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The normalized drive level will be set at 15, for which the fundamental peak current  

I1 (fundamental) = 1.932Idc (is given from table 1). 

1I  is the fundamental current specified by the output power needed for the designated load. 

The primary impedance of the transformer is 200Ω and we calculate the RF voltage for  200LR and 

for a output power of Pout ≈11 dBm ≈ 14mW 

VRmWPV Loutout 37.2200210142)( 3  
 (No saturation voltage assumed! This results 

in slight variation between calculated, simulated and measured values of Pout.)   (41) 

mA
V

I out 85.11
200

37.2

200
1            (42) 

mA
I

II dce 13.6
932.1

85.11

932.1

1           (43) 

Step 2:  Biasing  

The transistor uses a 12V power supply and an 825Ω emitter resistor at ~6mA, resulting in ~5V drop, 

so the transistor can afford a large voltage swing between base and ground. This reduces flicker noise 

(resistive feedback) and distortion. The base voltage divider, for reasons pertaining to temperature 

stability uses a higher than normal dc current, is isolated from the base using a RF choke. Frequently, 

in designs, this circuit trick is not used. 

VV
R

RIV be
e

eeb 96.5
1














         (44) 

 is assumed to be around 100 and Vbe is approximately 0.8V.Bias resistor R1 and R2 is given as 

196.5
2

1

21

2 



R

R
VV

RR

R
V ccb

         (45) 
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 22701R             (46) 

 22902R             (47) 

VVcc 12              (48) 

Resistor Bias current is ~2.6mA (Vcc/(R1+R2)) 

Base current is 43𝜇A, so the safety factor is 2.6/0.043 60 

Step 3:  Determination of the large signal transconductance 

Based on the table above, and x=15, the “DC transconductance” equals  

mS
mV

mA

mV

I

V

I
Y dc

freqlfundamenta

12
1000

85.11

1000

932.1

1

1
21 



           (49) 

This is the DC transconductance, meaning the frequency dependence has not been considered. 

An analysis of the transistor shows that the small signal transconductance at 6mA (dc) is about 6×39 ≈ 

240mS.  At 350MHz this reduces itself to 200mS down from 240mS. This is valid only if the transistor 

does not have any emitter feedback. In the case of the Colpitts oscillator we have an emitter resistor 

which reduces the transconductance; therefore we have to multiply Y21 with 

                    (
1

(1/gm)+ Re)
)            (50) 

The resulting large signal loop transconductance Y21L is 
1

(
1

12×10−3)+ 825)
≅ 1.1𝑚𝑆, which is an 

acceptable approximation, as the exact value of x is about 20 (see simulation results, Figure 9) [Ref. 

26, pg.177]. 

Based on Kirchhoff’s law, the following set of equations can be used to determine the feedback factor 

‘n’.  

mSY L 1.121    (DC Transconductance – No high frequency effects included) where 99.0   
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The oscillator circuit with passive component parameters is shown in Figure 7a. 

Table 2: Large signal transconductance as a function of Drive level based on Bessel function Calculations - 

Gm(x)/gm=2[I1(x)/xI0(x)] vs. the drive level = x. 

Drive level: x Gm(x)/gm=2[I1(x)/xI0(x)] 

0.00 1 

0.50 0.970 

1.00 0.893 

2.00 0.698 

3.00 0.540 

4.00 0.432 

5.00 0.357 

6.00 0.304 

7.00 0.264 

8.00 0.233 

9.00 0.209 

10.00 0.190   

15.00 0.129 

20.00 0.0975 

25.00 0.075 

 

 

 

 

 

Figure 7a:   Oscillator circuit with the passive components 

Y1, Y2, and Y3 

Figure 7b:   Equivalent oscillator circuit for the 

analysis of the transformed conductance seen by the 
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current source 

 

Where,  

1111 CjjBGY   For 01 G                    (51-a) 
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

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2222
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


;                 (51-b) 

2G = loss parameter/load conductance of the resonator connected parallel to the resonator component 

C1, C2 and L, respectively. 

23333 CjGjBGY  ;                     (51-c) 

3G = conductance of the bias resistor placed across C2, 1/RL in Figure 7a. 

The large-signal transconductances Y21 and G1 are transformed to the current source through the 

voltage divider
cb

eb

V

V
.   The voltage Veb must be added to Vce to calculate the transformation ratio, which 

is also inverse of the feedback factor and can be written as 
nCC

C

V

V

cb

eb 1

21

2 


              (51-d) 

And 
n

n

CC

C

V

V

cb

ce 1

21

1 



                     (51-e) 

The conductance G2 is already in parallel with the current source so it remains unchanged.  The factor 

“n” represents the ratio of the collector-base voltage to the emitter-base voltage at the oscillator 

resonant frequency. 

2

1
1

n

G
G 

                                  (51-f) 
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G2 remains constant  

The transformed conductance is proportional to the square of the voltage ratios given in Equations (51-

d) and (51-e), producing a total conductance as seen by the current source at resonance as 
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For sustained oscillation, the closed loop gain at resonance is given as 
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 is assumed to be 0.0.99 and variation in the value of  does not influence the expression above 

greatly. Rearranging the device conductance and circuit conductance, the general oscillator equation, 

after multiplying (51-i) with n on both sides, is written as 
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From the quadratic equation above, the value of the factor n can be calculated, and thereby, an 

estimation of the capacitance can be done a priori.  

To ensure higher loop gain, 1n  is selected from nmax[ 21,nn ]. 

Once the value of n is fixed, then the ratio of the capacitance is calculated as 
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C 1
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If 3G and 1G are zero then the quadratic equation (51-n) reduces to 
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Loop Gain  121 
n

RY P                        (51-x) 

From equation (51-r) and (51-u) 
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The quadratic equation for n (from (51-n)) is reduced to 
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The higher value of the transformation factor, n, is selected as n = 1.888.   

The ratio for the values of C1 and C2 is calculated as  

1
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The ratio of the capacitor C1 to C2 is 1.  For larger transconductance, Y21, (C1/C2) >1 
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A discussion about drive level and noise: 

 

Figure 8:   Example for the single sideband phase noise as a function of the normalized drive level x for a high Q 

1GHz oscillator 

The plot in Figure 8 [5] shows the impact of the normalized drive level ‘x’ on the phase noise. The 

exact values have to be assessed for individual circuits, but the general trend follows the plot shown.   

In Figure 9, x=1 is the linear case (Class A – operation) and the values above x=15 produce narrow 

pulses. Class A operation gives higher output power but is not optimized for phase noise. However at 

higher drive levels, the transistor is “ON” for shorter duration, thus less loading and better phase noise, 

but at the cost of lower power output. 

If the transistor is overdriven at the base, the collector current folds back (dip) and the actual current 

gain falls to values of 1.4 in our case (From Figure 9).  

For the uncompressed current gain (Y21/Y11) ≈ (C2/C1) ≈ 270pF/10pF, the circuit will actually oscillate 

but does not have acceptable phase noise (low value of x, n=28, where n = (C1/C2) +1).  
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 Figure 9: Shows Ic as a function of drive level. X 

 

Figure 10: Optimization of Phase Noise for the series tuned circuit 

By changing the capacitors C1/C2 to 33pF/10pF, n = 4.3, the phase noise performance is optimized, as 

shown in Figure 10. This circuit is a series tuned oscillator and now we move on to a high Q (from 
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Q=220 to Q=450) circuit, where the resonator is loosely coupled to the transistor. The tuned circuit 

consists of a 22nH inductor and 8.2pF capacitor. The following shows the design calculation for the 

parallel tuned circuit as found in ceramic resonator based oscillators.  

The quality factor of the inductor is assumed 60 at 350 MHz, a low Q case.   

The value of inductor is obtained as 
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The value of the capacitor is determined as  
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C 14
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pFCC 1421                 (62) 

Taking into consideration the actual parasitics and RF parameters of the transistor, the optimized 

values are C1 =12pF and C2 = 8.2pF 

Step 4: Calculation of the coupling capacitor Cc: [5, eqn (C-23)] 

 

The expression for the coupling capacitor is 
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Cc = 3.3pF               (64) 

 

Step 5: Calculation of the Phase Noise of the Colpitts Oscillator: 

The mathematical expression of the phase noise of a Colpitts Oscillator is [5, pp180]. 
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21 ; values of p and q depends upon the drive level (x) 



21Y , 


11Y = large signal [Y] parameter of the active device 

Kf  = flicker noise coefficient 

AF  = flicker noise exponent 

£()  = ratio of sideband power in a 1Hz BW at   to total power in dB  

   = frequency offset from the carrier 

0  = center frequency 

QL  = loaded Q of the tuned circuit 

QO  = unloaded Q of the tuned circuit 

kT  = 4.1  10
-21

 at 300 K (room temperature) 

R  = equivalent loss resistance of the tuned resonator circuit 
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Ic = RF collector current 

Ib = RF base current 

Vcc = RF collector voltage 

C1, C2 = feedback capacitor 

Using a Mathcad calculation, we obtain the following results as shown in Figure 11, [5, eqn 8-109], 

which compares well with the measured data. 

 

    Figure 11: Mathcad calculation for phase noise 
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Measured results for a 350MHz Oscillator: 

 

Figure 12: Measured Phase noise result for 350MHz Oscillator 

The measured phase noise of the oscillator shown in Figure 12 is not quite comparable with the 

mathematics because it has a two stage buffer amplifier which isolates the oscillator from the output 

termination. This explains the limit of -146dBc/Hz at far-offset. At close-in, the phase noise is 

influenced by an AFC circuit. The real comparison should be done between 10Hz and 10 kHz offsets.   
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Figure 13a: Simulated Phase Noise for the 350MHz Parallel Tuned Colpitts configuration 

 

Figure 13b: Optimized - Simulated Phase Noise for the 350MHz Parallel Tuned Colpitts configuration 

In order to optimize the phase noise for this type of oscillator,), using discrete components, the 

selection of the following set of values: Cp = 8.2pF, L=21nH, C1=22pF, C2=8.2pF, Cc=3.3pF improved 

the phase noise from -122dBc/Hz to -125dBc/Hz at 10 kHz offset. This is a result of trial-and-error, as 
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we do not know all the parasitics. Figure 13a shows the simulated phase noise plot and Figure 13b 

shows further improvement after optimizing the circuit for phase noise.  

If we replace the parallel tuned circuit with a ceramic resonator (at this frequency range, Ԑr will be 88, 

the L/C ratio will be 0.048nH/pF vs. 2.44 nH/pF in case of discrete components used in our case), and 

the simulated phase noise is 105dBc/Hz at 10 kHz offset.  

Note: This is due to the fact that the characteristic impedance of a ceramic resonator is much lower, 

than the discrete case. 𝑍0 = 60Ω
1

√𝜀𝑟
ln

𝐷

𝑑
 (Where D = outer diameter and d= inner diameter of the 

ceramic resonator [[12], pp 754]. The prediction agrees well with the measured phase noise [[12], Fig 

(5-37)]. 

 

 Figure 14: showing Y21/Y11 large signal condition 

Figure 14 shows the plots of the collector and base currents Ic and Ib for the optimized case (Cp=8.2pF, 

L=21nH (Q=60 at 350MHz), Cc=3.3pF, C1=12pF, C2=8.2pF).  
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From the plot in Figure 14, we can determine that the ratio of large signal (Y21/Y11) = β = 1.4. The next 

critical parameter, shown in Figure 15 is for the normalized drive level (x) is V1/(kT/q).  

 

Figure 15: Vbe – to calculate the drive level 

From the Figure 15, the RMS value of Vbe is used to determine the approximate drive level. 

Since Vbe  =  V1, drive level (x) ≈
500 𝑚𝑉𝑟𝑚𝑠

26 𝑚𝑉
≈ 20          (66) 

A table of normalized transconductance as a function of the drive level including the large values is 

given in Table 2 [5]. 

 

Figure 16: Optimized phase noise for different values of Inductor Q 
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Figures 16 and 17, show the phase noise variation with variation in Q (L=22nH) in the LC resonator. 

The output power, collector current, and base voltage (Vb) and (Vbe) plots are also shown for the same 

combination.  

 

 Figure 17:  Results of Series and Parallel tuned circuits for same value of Inductor Q 

 

  Figure 18:  Results of Series and Parallel tuned circuits for higher value of Inductor Q 
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The parallel tuned circuit shows better phase noise performance, as seen in Figure 18, due to the fact 

that the rate of change of reactance in a parallel tuned circuit is significantly larger than in a simple 

series tuned oscillator. 

1/f Noise:  

The electrical properties of surfaces or boundary layers are influenced energetically by states, which 

are subject to statistical fluctuations and therefore, lead to the flicker noise or 1/f noise for the current 

flow. 

1/f - noise is observable at low frequencies and generally decreases with increasing frequency f 

according to the 1/f - law until it will be covered by frequency independent mechanism, like thermal 

noise or shot noise.  

Example: The noise for a conducting diode is bias dependent and is expressed in terms of AF and KF. 

〈𝑖𝐷𝑛
2 〉𝐴𝐶 = 2𝑞𝐼𝑑𝑐𝐵 + 𝐾𝐹

𝐼𝐷𝐶
𝐴𝐹

𝑓
𝐵  

 The AF is generally in range of 1 to 3 (dimensionless quantity) and is a bias dependent curve 

fitting term, typically 2. 

 The KF value is ranging from 10
-12

 to 10
-6

, and defines the flicker corner frequency. [32] 

One of the important characteristics for device evaluation and selection is 1/f noise, which is a function 

of the active device characteristics and a major contributor to phase noise, especially in applications 

such as VCOs [5, 20]. In an oscillator, 1/f noise that is present in transistors at low frequencies is 

upconverted and added to the phase noise around the carrier signal. Hence, proper characterization of 

1/f noise and its effects on phase noise is an important topic. In addition, 1/f noise is not solely an 

active device phenomenon. Passive devices such as carbon resistors, quartz resonators, SAW devices, 

and ceramic capacitors are among devices that show presence of this phenomenon when used as part of 
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low-noise electronic systems. Generally, 1/f noise is present in most physical systems and many 

electronic components [19, 22, 23]. 

Flicker noise in BJTs is also known as 1/f noise because of the 1/f slope characteristics of the noise 

spectra. This noise is caused mainly by traps associated with contamination and crystal defects in the 

emitter-base depletion layer. These traps capture and release carriers in a random fashion. The time 

constants associated with the process produce a noise signal at low frequencies. The flicker noise 

spectral density is given by: 

S(f)df =  (KF)IBAFdf/Fc       (67) 

where: 

KF = flicker noise constant 

AF = flicker noise exponent 

IB = DC base current 

Fc = flicker noise corner frequency 

The measured flicker corner frequency, Fmeas, is determined by noting the intersection of the 1/f noise 

spectrum and the white noise spectrum. This intersection is where the measured flicker noise power 

and the white noise power are equal. To determine Fbn, the intrinsic base flicker noise corner, requires 

solving the following equation [20, 21]: 

Fbn  =  Fmeas [1 +  1/β +  2VthGin/IB]     (68) 

where: 

Fbn = intrinsic base flicker noise corner 

Fmeas = measured flicker corner 

β = collector-base current gain 

Vth = thermal voltage = kT/q 
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Gin = external input conductance 

IB = DC base biasing current 

The equation for the intrinsic base flicker corner modifies the measured flicker corner to account for 

the input conductance, base current, and DC current gain of the device. The formula for Fbn is valid 

provided the measured output noise characteristics are dominated by the base flicker and base shot 

noise sources. 

 

   Figure 19: Effect of KF factor on Phase Noise 

Changing the KF and AF factors, affects the phase noise as can be seen from the plots. 

Y-intercept of the 1/f spectra increases proportionally to KF, which is in accordance with equation 

(34). The Y-intercept of the 1/f spectra decreases more rapidly with increase in AF. The following 

discussion of the tuning diodes results in a noise contribution similar to this flicker mechanism. 
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 Figure 20: Effect of AF factor on Phase Noise 

AM-to-PM Conversion from tuning diodes 

 

    Figure 21: Parallel tuned circuit with tuning diodes 

Figure 21 shows a parallel tuned circuit which is connected to the oscillator discussed above. The 

frequency change is obtained by applying a positive voltage to the + terminal. The parallel capacitor is 

replaced by the two tuning diodes. Here we will show the influence of the tuning diodes in the voltage-

controlled oscillators, the resulting phase noise generated by tuning diodes is shown in Figure 22. 

It is possible to define an equivalent noise Raeq that, inserted in Nyquist's Johnson noise equation, 

fRkTV on  4
             (69) 
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where kTo=4.2  10
21

 at about 300 K, R is the equivalent noise resistor, and f is the bandwidth, 

determines an open-circuit noise voltage across the tuning diode. Practical values of Raeq for carefully 

selected tuning diodes are in the vicinity of 200  to 50 k. If we now determine the noise voltage,

000,10102.44 21  

nV  the resulting voltage value is 1.296  10
8

 V Hz . 

This noise voltage generated from the tuning diode is now multiplied with the VCO gain Ko, resulting 

in the rms frequency deviation 

    bandwidth Hz-1in  V 10296.1 8

rms

 oKf
         (70) 

To translate this into an equivalent peak phase deviation, 

  bandwidth Hz-1in  rad  10296.1
2 8

m

o
d

f

K


         (71) 

or for a typical oscillator gain of 100 kHz/V, 

bandwidth Hz-1in  rad 
00183.0

m

d
f



          (72) 

For fm = 25 kHz (typical spacing for adjacent-channel measurements for FM mobile radios), the c = 

7.32  10
8

. This can be converted now into the SSB signal-to-noise ratio: 

          (73) 

For the typical oscillator gain of 10 MHz/V found in wireless applications, the resulting phase noise 

will be 20 dB worse [10 log (10 MHz ÷ 100 kHz)]. However, the best tuning diodes, like the BB104, 

have an Rn of 200 Ω instead of 10 kΩ, which again changes the picture. Therefore, with kTo = 4.2  

10
21

 the resulting noise voltage will be 

HzV10833.1200102.44 921  nV          (74) 

From (72), the equivalent peak phase deviation for a gain of 10 MHz/V in a 1-Hz bandwidth is then 
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  rad  10833.1
2101 9

7



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d
f



           (75)       

or 

bandwidth Hz-1in  rad 
026.0

m

d
f
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           (76) 

With fm = 25 kHz, θc = 1.04 × 10
–6

. Expressing this as phase noise: 

          (77)  

Figure 22 shows the influence of the tuning diode on the phase noise. For the purpose of discussion, 

the equivalent noise resistance is assumed 1kΩ, and 3 sensitivity curves are shown. For a tuning 

sensitivity of more than 100 kHz/V the varactor noise dominates. As the tuning sensitivity increases 

the influence of the oscillator noise itself disappears. 

Summary: 

With a systematic approach to the Colpitts oscillator this paper provides information for an optimized 

design and the resulting phase noise.  Starting with the explanation about the Colpitts oscillator, 

invented in 1918, we have discussed a linear analysis based on Y-parameters, followed by S-parameter 

approach, which is applicable to practically all oscillators and then move into the important time-

domain analysis. This allows a very reliable design, where the simulated, calculated and the measured 

results agree well. This detailed analysis gives a thorough insight into the design approach and results 

of a Colpitts oscillator. Finally the noise contribution of the tuning diodes is added.  The interested 

reader, having access to CAD tools can run some “experiments” by varying the component values. 

At this point we would also like to thank our reviewers for their valuable suggestions to optimize this 

paper. 
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   Figure 22: Influence of tuning diode on phase noise 
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