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Some Thoughts on Designing
Very High Performance
VHF Oscillators

Building a very high performance oscillator requires
some careful engineering design work.

A QEX article by Colin Horrabin about
part of the HF7070 receiver retriggered
my interest in VHF oscillators / VCOs.
(The Development of the Low Phase Noise
Double Tank Oscillator, Colin Horrabin,
G3SBI, QEX Nov/Dec 2014.)' He claimed
that a type of push-pull oscillator would
improve the phase noise roll-off from 20 dB/
dec to 40 dB/dec, and he also referred to
some receiver measurements made by Rob
Sherwood. The data points I reviewed do not
support this theory, and the reciprocal mixing
tests are not conclusive, because two signal
generators were used. The correct comment
is that the type 2, high-order phase locked
loop inherently has a 40 dB/dec roll off, not
the oscillator.

The single resonator oscillator using
lumped elements by itself is a good solu-
tion. The slope of the radiation resistance of
a quarter wave resonator does not change if a
half wave resonator will be chosen, so a push-
pull oscillator is not better.

The symmetrical oscillator proposed
by Horrabin just uses twice the inductance,
and the two capacitors, now in series, have
half their individual value. In simple terms,
Horrabin changed the LC ratio, which cannot
have any influence on the phase noise nor the
slope. The loading from the transistor may
now be different.

The best way to get the phase noise evalu-
ation right is to use a dedicated phase noise
system like the Rohde & Schwarz FSUP 26

"Notes appear on page 40
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phase noise tester, spectrum and signal ana-
lyzer that the ARRL Lab has to make their
measurements. At the same time, it is use-
ful to calculate the best possible phase noise
based on physics and using a low flicker
noise FET. FETs in oscillators are limited
to about 500 MHz because of their cut-off
frequency. For higher frequencies SiGe
HBT (heterojunction bipolar transistors) are
superior, and because modern communica-
tions equipment uses PLL systems with suf-
ficiently wide bandwidth, the flicker corner
frequency inside the loop bandwidth is of
less concern. Outside the loop bandwidth
the loaded Q of the resonator determines the
phase noise. If Colin Horrabin’s paper is cor-
rect, the roll off has to be 20 dB/decade or
40 dB/decade but not 30 dB/decade, which
would be due to flicker noise. A VCO with
1 kHz loop bandwidth was quoted. I will
comment on this later.

Only for oscillators using the evanescent
mode and distributed elements, like (multi-
ple) coupled lines, the configuration results in
an increased operating Q, which for lumped
circuit components is not possible. Using
coupled transmission line structures (distrib-
uted components) is a better choice. At VHF,
this is prohibitive because of size.

An evanescent wave is a near-field wave
with an intensity that exhibits exponential
decay without absorption as a function of
the distance from the boundary at which the
wave was formed. Evanescent waves are
solutions of wave equations, and can in prin-
ciple occur in any context to which a wave

equation applies. They are formed at the
boundary between two media with different
wave motion properties, and are most intense
within one third of a wavelength from the
surface of formation.

As evidence of how moving from lumped
to distributed techniques can improve oscil-
lator performance at frequencies where LC
tank circuits become problematic, Figure
1 compares the difference in phase-noise
performance obtainable using a resonator
consisting of an ideal 2 nH inductor and a
Y4 A transmission line (11 €, 90° long at
2.6 GHz, attenuation 0.1 dB/meter) with
the transistor biased by constant-current and
constant-voltage sources for a simulated BJT
Colpitts oscillator operating at 2.3 GHz. This
is a result of the magnetic coupling, which
does not exist for lumped (discrete) induc-
tors.? The articles described in Notes 3, 4, 5,
and 6 address this topic in practical applica-
tions.># 6

The 1 kHz loop bandwidth would be
dangerous because mechanically introduced
microphonics would then not be suppressed.
A 10 kHz loop bandwidth is much more
opportune. Better synthesized local oscilla-
tors (LOs) use multiple loops and direct digi-
tal synthesis (DDS) systems, which allow
such wide loop bandwidth. Many modern
receivers and transceivers apply this tech-
nique.”® Even better today, software defined
radios (SDR) can have excellent phase noise
performance. (See the R&S EB-500 9 kHz
to 6 GHz receiver: http:/mlul.com/eb500.
htm.)
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Figure 1 —This graph shows the phase-noise performance of a 2.3 GHz BJT oscillator with a resonator consisting of an inductor (2 nH)
and a ' A transmission line (11 Q, approximating the behavior of a dielectric resonator) with bias from a constant-current source and a low-
impedance, resistive constant-voltage source.
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Transceivers with a first IF between 45 to75 MHz, require such
VHF oscillators. This paper will try to demystify this topic and will
show the correct mathematics, proven schematics and measured
data. It is partly based on RF/Microwave Circuit Design for Wireless
Applications (see Note 2). Figure 2 shows the measured phase noise
performance of a modern receiver that uses a 60 MHz LO. This
measurement was made using the aforementioned R&S FSUP signal
analyzer.

Some Equations

David Leeson was the first to help us understand the mechanics
of phase noise, based on a low pass filter approach in 1966.!! Dieter
Scherer and others improved the model further.* 1% 12 13. 14

Phase noise is defined in terms of the noise spectral density, in
units of decibels below the carrier per hertz, and is based on Equation
1 by Leeson, Scherer and Rohde.

£(fm ) =10 log{PSideband (ﬁ)+fm, 1 Hz)

} =10log[ S, (f)]

(Eq 1]

carrier

f2
@A@Y@

g 2
£(/,)=10logs| 1+ +f”]FkT 2KTRK,

2 [1 + 2
0, ] L) 28 1,
[Eq 1A]

where:

£(f,,) is the ratio of the sideband power in a 1Hz bandwidth at f,,
to total power in dB

£, 1s the offset frequency from the carrier

Jois the carrier frequency

f.1is the flicker corner frequency

Q; is the loaded Q of the tuned circuit

Q, is the unloaded Q of the tuned circuit

F is the noise factor

k is Boltzmann’s constant

T is the temperature in Kelvins

P, is the average power at oscillator output

R is the equivalent noise resistance of the tuning diode
K, is the oscillator voltage gain.

When adding an isolating amplifier, the noise of an LC oscillator

where,

G = compressed power gain of the loop amplifier

F = noise factor of the loop amplifier

k = Boltzmann’s constant

T = temperature in kelvins

P, = carrier power level (in watts) at the output of the loop ampli-
fier

F, = carrier frequency in Hz

[, = carrier offset frequency in Hz
Q. (= nFyt,) =1loaded Q of the resonator in the feedback loop

ar and ag = flicker noise constants for the resonator and loop ampli-
fier, respectively.

The problem with this design equation, which everyone likes
to quote, is that it works after the fact. That means the designer
does not know the output power, the flicker corner frequency,
and the large signal noise figure, and finally, because the right
part of the equation is the noise from the tuning diode, the value
of the equivalent noise resistor;, R!

Influence of the Tuning Diode

It is possible to define an equivalent noise resistor, R, which
when inserted into Nyquist’s equation, determines an open-circuit
noise voltage across the tuning diode.

V. = J4kT,RAf [Eq 3]

where:

kT, =4.2 x 102" at about 300 K

R is the equivalent noise resistor

Af'is the bandwidth.

Practical values of R, for carefully selected tuning diodes are
in the vicinity of 200 Q to 50 kQ2. We can now determine the noise
voltage, V.

V. =4x42x102'x10,000 =1.296x 10"V y/Hz
This noise voltage generated from the tuning diode is now multi-

plied with the VCO gain, K, resulting in the RMS frequency devia-
tion.

(Af,,.) =K, x(1.296x10"*¥ )in 1 Hz bandwidth

s determi ’ [Eq 4]
is determined by Equation 2.
£(fm):o.sxlolog[(sw(fm))]
2 2
[h( fy j } HZGFkT]( F, j }
20 P, 20 ; -
£(£,)=0.5x10log (o) ] LA e +[2aRQ2LFO ]+&+2GFkT [Eq2]
I f; o) fo R
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Figure 3 —This graph shows the influence of the diode noise of aVCO at 150 MHz.

To translate this into an equivalent peak phase deviation, we will use
Equation 5.

_Kn\2

o, x(1.296>< IO’S)rad in 1 Hz bandwidth

! [Eq 5]
Or, for a typical oscillator gain of 100 kHz / V:
6, = Mrad in 1 Hz bandwidth (Eq 6]

d
m

For f,, = 2.4 kHz (typical spacing for adjacent-channel measure-
ments for good SSB RF radios), then 6, = 732 x 10™. This can be
converted now into the SSB signal-to-noise ratio:

(Eq7]

The tuning diode adds significant noise, so if the above mentioned
1 kHz bandwidth for the PLL is used, at 2.4 kHz, the oscillator dominates.

Figure 3 shows the influence of the diode noise of a VCO at
150 MHz. In the case of lines B and C on the graph, you can see that
the tuning diode greatly ruins the overall phase noise regardless of a
high loaded Q!

The flicker frequency component also has a huge influence on the
phase noise. Figure 4 shows the noise contribution of the flicker noise
in a circuit with fixed Q. At 1 kHz offset, the phase noise deteriorates
by 10 dB.

We can calculate the phase noise from circuit parameters, and
using large singal parameters, or deriving these with the help from
Bessel funtions, we specifically obtain Y21 for a large signal.

The total effect of all the four noise sources can be expressed as
Equation 8.

0
£(fm):2010g10?‘:—128 dBc /Hz

£(0)=1010 -
(@) =1000e 2 512| 2mc,

KT l{&}[LMQ}
2] G, 20|l o

Base Resistance

4KT |1 1 |[a
w

Resonator

27K 1"
+| 2ql, + ————
()

i e L e
21C+C, || 200,C || @

Flicker Base Current

2
+2q1, L_G ! S
21C+C, || 20,0C, |l @

Collector Current

(Eq 8]

We will use the example from the 2 Part Microwave & RF article,
“Large-Signal Approach Yields Low-Noise VHF/UHF Oscillators.”'>
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Figure 4 — Here is the phase noise contribution of the flicker noise to the oscillator noise.

16 The schematic for this circuit is shown at Figure 5, and the mea-
sured phase noise of this 144 MHz oscillator is shown in Figure 6.
From the resonator, R, = 7056 Q (oL x Q)
Q of the resonator = 200 (Q of the inductor at 144 MHz)
Resonator inductance = 39 nH
Resonator capacitance = 22 pF
Collector current of the transistor, I, = 10 mA
Base current of the transistor, 7, = 85 pA
Flicker noise exponent, AF =2
Flicker noise constant, K;= 1 x 10~
Feedback factor, n =5
Phase noise at 10 kHz:

PN,

(ibn+ifin)

(9, +10 kHz) =~ —134.2 dBc / Hz
PN,,, (®,+10 kHz)~—151 dBc / Hz
PN, (@,+10 kHz)~-169.6 dBc/Hz

PN,

icn

(e, +10 kHz) ~~150.6 dBc / Hz

P =5dBm

out

The value for K; = 1 x 1072 is vaild for small currents, and in
Equation 8 the main phase noise (measured) contribution is the reso-
nator loss. For higher frequencies and higher output power (higher
DC current, the flicker and DC current contribuion to the flicker noise
will dominate. At 30 mA and higher, a typcal K; factor of 1x 107 is
common.

Going back to the large signal phase noise analysis , the Equation
9 is really the most modern result.
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£(w)=10logq| k, +

2
Y 2
| D [

RANES

where:
L ___ kIR
" AR
K »IAF
91.g,+ = ~&,
ST
4 + 2
ky = @, (IB )
ky = ggi
k
k= 2 : 2
K C,

"

ol &

where ki, k,, and k;, are constant only for a particular drive level,
with y = C; / C,, making k, and k; also dependent on y, as the drive

level changes.

This Equation is derived in Communications Receivers (see Note 8).
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Figure 5 —This schematic shows a 144 MHz oscillator design at 60 MHz. This design is from
“Large Signal Approach Yields Low-Noise VHF/UHF Oscillators,” published in Microwaves &
RF. See Notes 15 and 16.
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Figure 6 — This is the meassured phase noise of the 144 MHz Oscillator design of Figure 5,
based on state of the art linear design, and based on an optimized design using large signal
parameters. See Notes 15 and 16.
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Figure 7 — This circuit is a possible simulation of the 60 MHz oscillator described by Colin
Horrabin.

Another phase noise calculation approach
is noted by Hajiimiri in “A General Theory of
Phase Noise in Electrical Oscillators.”'” It is
quoted by academicians frequently because
it is an elegant way, but for actual design
activities it is useless. It is mentioned here
for completeness. Also see The Design of
Modern Microwave Oscillators for Wireless
Applications: Theory and Optimization.'®

The Circuits

In order to verify the noise quoted by
Colin Horrabin, an FET circuit with 2 tuned
LC circuits was prepared for simulation
using the familiar 2N4416 JFET. Its data was
obtained from the non-linear data provided
by Philips for CAD applications, such as
SPICE or Harmonic Balance based simula-
tors."

The power supply voltage is applied via
a 1 pH RF choke, and in order to validate
the claim, the 0.1 pF capacitor in the analy-
sis could be toggled between this value and
0.1 fF = 0.1 x 107 F, in practice a value
of zero. The result showed no difference in
phase noise. There was a discussion about
why the simulator did not agree with the
expectations, but the phase noise values pub-
lished by Colin Horrabin did not support the
claim either. This topic was addressed in the
beginning of this paper. Interestingly enough,
if the circuit is made asymmetrical (see the
80 pF and 100 pF capacitors in Figure 7),
and the tap is not grounded, a better phase
noise results.

The simulation data agree fairly well with
the published data, and no correction for the
noise of the tuning diode was made. Figure 8
shows the predicted phase noise of the Figure
7 oscillator.

It is now of interest to design a better
VCO. This has been achieved with the design
shown in Figure 9. The noise improvement
comes from the constant current source
(5.6 k) in the source; the higher voltage
drop is compensated by the positive voltage
at the transistor gate.

Figure 10 shows a circuit diagram of
an ultra low noise 60 MHz FET oscillator
design that uses a 2N4416 FET. The circuit
uses a helical resonator, as shown in Figure
11. The original cicuit was modified and is
using six aditional diodes for a wider tun-
ing range, and the parallel combination of
the diodes, because of no noise correlation,
results overall in a lower noise contribution.
Figure 12 shows the phase noise simula-
tion for this oscillator circuit, and Figure 13
shows the measured result from the actual
circuit.

The diodes make the VCO noisier below
100 khz, but because the loop bandwidth
typically is wider, this compensates the noise.
If we look at Equation 8, we will find that
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the major noise contribution is the loaded Q
of the resonator. If by some magic the load-
ing of the transistor drain impedance could
be reduced, the noise would be less. Here,
flicker noise is not the dominant cause!

Summary

The design of low noise oscillators is no
longer such a mystical task. When I finally
got my own R&S FSUP 8 with optimized
internal signal sources, I went through the
task of measuring my oscillators built 40
years ago, as well as some commercial
devices. A good example was the older HP
8640B, and the famous HP 10544A 10 MHz
crystal oscillators.

HP products typically were better than
promised, something I could not claim for
all of my designs, but I was not that far off
— and yes some were better than published.

Sadly I found that many VHF crystal
oscillators around in the past did not perform
as well as we know today, and the same
applies to signal generators.

This paper also lists a large number of
references and I recommend RF/Microwave
Circuit Design for Wireless Applications

(see Note 2), Microwave and Wireless
Synthesizers: Theory and Design (see Note
7), and The Design of Modern Microwave
Oscillators for Wireless Applications (see
Note 17) for text books for any readers inter-

ested in learning more about synthesizers
and oscillators.

Microwave and Wireless Synthesizers:
Theory and Design gives a detailed insight
into PLL design, but companies now sell
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Figure 8 —This graph is the predicted phase noise of the Colin Horrabin oscillator, based on
the simulation of Figure 7.
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Figure 9 — This schematic diagram shows a 60 MHz VCO optimized for phase noise. It uses the 2N4416 FET and a =15V source, which
switches the oscillator on and off. L1 is a helical resonator. R&S 1975 Model SMDU radio tester.
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Figure 10 — Here is a typical circuit diagram of the 144 MHz low noise VCO using a 2N4416 FET. Note the six diodes for a wider tuning range
of the oscillator. [ R&S SMDU]

complete PLL chips, so the individual
designs disappear. Also the crystal chapter
written by Roger Clark, then from Vectron,
gives very valuable insight into this topic.

RF/Microwave Circuit Design for
Wireless Applications, second edition, is a
complete desk reference book, which also
covers CMOS designs, and spends many
pages on oscillators and CAD use.

The Design of Modern Microwave
Oscillators for Wireless Applications
addresses the very latest of wideband VCO
design and push-push oscillators, and pro-
vides all the interesting phase noise calcula-
tions and design rules.

Based on the mathematics and design
rules shown above, and good test equipment
to validate the data, the design has become
much easier.

As to the Horrabin oscillator, in one of
his e-mails he mentioned a Q of 70 and the
simulation supports that.

The improved oscillator above (no PLL!)
at 3 kHz has a phase noise of —135 dBc/
Hz while the Horrabin PLL design sits at
—120 dBc/Hz. At higher frequencies the
measured data published by Colin Horrabin

Figure 11 —This photo shows the helical resonator as part of the actual implementation supports a well-designed PLL based oscilla-
of the oscilltor of Figure 9. Now the phase noise will be interesting. In practice, such an tor, but not any advantage of a symmetrical
oscillator will have a buffer stage. The buffer stage will make the far off noise worse, so the design. The practical designs above for a

result will be limited to about —165 dBc/Hz. This oscillator has an output level of 10 dBm ; H ;
(10 mW).The theoretical noise limit is 177 dB + 10 dB = 187 dBc/Hz. The difference is dueto -+ M1 bipolar transistor based oscillator
and this VCO gives some insight in good

the large signal noise figure of the transistor. [R&S SMDU] g > .
designs, both from a mathematical point and

from a practical point.
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Figure 13 — Here is the measured phase noise of the oscillator of Figure 10, imbedded in
a PLL system and multiplied up. For 60 MHz, the result would be between the lowest and
second measured curve.
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