
   

 

 

Calculation of FM and AM Noise Signals of Colpitts Oscillators in the Time Domain 
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Introduction 

An oscillator is a combination of an amplifier, a 

resonator and phase modulator in a feedback loop. The 

value of the loop gain and its phase needs to be enough 

to start oscillation and after the steady state condition 

maintains oscillation. This is achieved either by voltage 

or current limiting, by AGC or limiting diodes and is 

well explained in [1], probably the best explanation of its 

kind. If such amplitude stabilization would not exist, the 

amplifier-oscillator would self-destruct. The limiting part 

of the oscillator keeps the AM (noise) well below the FM 

noise close-in, but very far-off they reach the same 

amplitude. Any deviation from this is due to a heavy 

unwanted non-linearity.  

Figure 1 —  Block diagram of oscillator and its low pass 

equivalent based on Leeson’s model. 

The topic here is to look at the noise of an oscillator.  

The oscillator is under large signal condition and also 

acts like a mixer. Figure 1 shows the block diagram and 

its low pass equivalent based on Leeson’s model [2]. The 

loop requirement was first mentioned in the Barkhausen 

analysis [3]. Initial open loop gain for getting started 

needs to be 3, because the steady state value is 

approximately 1/3 of the dc transconductance. 

The noise has various sources and the following will 

look at all the steps [4-7]. For the reason of accuracy the 

following is a very detailed but complete mathematical 

analysis. 

At the end of this, there will be a set of measurements 

including details about the results. 

In all systems, amplifiers and oscillators, conditions of 

saturation (specifically with memory effects), tend to 

amplify AM components. 

Noise Generation in Oscillators  

As shown above, the qualitative linearized picture of 

noise generation in oscillators is very well known. The 

physical effects of random fluctuations taking place in 

the circuit are different depending on their spectral 

allocation with respect to the carrier: 

Noise components at low frequency deviations result in 

frequency modulation of the carrier through mean square 

frequency fluctuation proportional to the available noise 

power. 

Noise components at high frequency deviations result in 

phase modulation of the carrier through mean square 

phase fluctuation proportional to the available noise 

power. 

Figure 2 — Equivalent circuit of a general noisy nonlinear 

network  

We will demonstrate that the same conclusions can be 

quantitatively derived from the HB equations for an 

autonomous circuit [5, 8]. 

 



   

 

 

Equivalent Representation of a Noisy Nonlinear 

Circuit 

A general noisy nonlinear network can be described by 

the equivalent circuit shown in Figure 2. The circuit is 

divided into linear and nonlinear subnetworks as noise-

free multi-ports. Noise generation is accounted for by 

connecting a set of noise voltage and noise current 

sources at the ports of the linear subnetwork [9-11]. 

Frequency Conversion Approach  

The circuit supports a large-signal time periodic steady 

state of fundamental angular frequency 0 (carrier). 

Noise signals are small perturbations superimposed on 

the steady state, represented by families of pseudo-

sinusoids located at the sidebands of the carrier 

harmonics. Therefore, the noise performance of the 

circuit is determined by the exchange of the power 

among the sidebands of the unperturbed steady state 

through frequency conversion in the nonlinear 

subnetwork. Due to the perturbative assumption, the 

nonlinear subnetwork can be replaced with a multi-

frequency linear multi-port described by a conversion 

matrix. The flow of noise signals can be computed by 

means of conventional linear circuit techniques. 

The frequency conversion approach frequently used has 

the following limitations: 

The frequency conversion approach is not sufficient to 

predict the noise performance of an autonomous circuit. 

The spectral density of the output noise power, and 

consequently the PM noise computed by the conversion 

analysis are proportional to the available power of the 

noise sources. 

 In the presence of both thermal and flicker noise 

sources, PM noise increases: as 1  for 0 ; 

tends to a finite limit for . 

 Frequency conversion analysis correctly predicts the 

far carrier noise behavior of an oscillator, and in 

particular the oscillator noise floor; does not provide 

results consistent with the physical observations at 

low deviations from the carrier. 

This inconsistency can be removed by adding the 

modulation noise analysis. In order to determine the far 

away noise using the autonomous circuit perturbation 

analysis, the following applies. 

The circuit supports a large-signal time-periodic 

autonomous regime. The circuit is perturbed by a set of 

small sources located at the carrier harmonics and at the 

sidebands at a deviation  from carrier harmonics. The 

perturbation of the circuit state  HB  , XX   is given by 

the uncoupled sets of equations, 

 

)(HH

ssH

H JX
X

E












     (1) 

)(BB

ssB

B JX
X

E












     (2) 

where,  

EB, EH = vectors of HB errors 

XB, XH = vectors of state variable (SV) harmonics (since 

the circuit is autonomous, one of the entries X is replaced 

by the fundamental frequency 0) 

JB, JH = vectors of forcing terms 

The subscripts B and H denote sidebands and carrier 

harmonics, respectively. 

For a spot noise analysis at a frequency , the noise 

sources can be interpreted in either of two ways: 

 Pseudo-sinusoids with random amplitude and phase 

located at the sidebands. Noise generation is 

described by Equation (1) which is essentially a 

frequency conversion equation relating the sideband 

harmonics of the state variables and of the noise 

sources. This description is exactly equivalent to the 

one provided by the frequency conversion approach. 

This mechanism is referred to as conversion noise 

[12-15].  

Sinusoids located at the carrier harmonics are randomly 

phase-and-amplitude-modulated by pseudo-sinusoidal 

noise at frequency . Noise generation is described by 

Equation (2), which describes noise-induced jitter of the 

circuit-state, represented by the vector XH . The 

modulated perturbing signals are represented by 

replacing the entries of JH with the complex modulation 

laws. This mechanism is referred to as modulation noise. 

One of the entries of XH
 is 0  where 0   = 

phasor of the pseudo-sinusoidal components of the 

fundamental frequency fluctuations in a 1 Hz band at 

frequency . Equation (2) provides a frequency jitter 

with a mean square value proportional to the available 

noise power. In the presence of both thermal and flicker 

noise, PM noise raises as 
3

 for  0 and tends to 0 

for  . Modulation noise analysis correctly 

describes the noise behavior of an oscillator at low 

deviations from the carrier and does not provide results 

consistent with physical observations at high deviations 

from the carrier.  

The combination of both phenomena explains the noise 

in the oscillator shown in Figure 3, where the near carrier 

noise dominates below X and far carrier noise 

dominates above X.  



   

 

 

 

Figure 3 — Oscillator noise components. 

Figure 4 (itemized form) shows the noise sources as they 

are applied at the IF. We have arbitrarily defined the low 

oscillator output as IF. This applies to the conversion 

matrix calculation. 

 

Figure 4 — Noise sources where the noise at each sideband 

contributes to the output noise at the IF through frequency 

conversion. 

Figure 5 shows the total contributions which have to be 

taken into consideration for calculation of the noise at the 

output. The accuracy of the calculation of the phase 

noise depends highly on the quality of the parameter 

extraction for the nonlinear device; in particular, high 

frequency phenomena must be properly modeled. In 

addition, the flicker noise contribution is essential. This 

is also valid for mixer noise analysis. 

Conversion Noise Analysis  

The actual mathematics used to calculate the noise result 

(Ansoft Serenade 8.x) is as follows [19], 
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Figure 5 — Noise mechanisms. 
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where 

Nk(), N-k() = noise power spectral densities at the 

upper and lower sidebands of the k
th

 harmonic 

Ck() = normalized correlation coefficient of the upper 

and lower sidebands of the k
th

 carrier harmonic 

R = load resistance 

Ik
ss

 = k
th

 harmonic of the steady-state current through the 

load. 

 

Modulation Noise Analysis 
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where 

JH() = vector of Norton equivalent of the noise sources 

TF = frequency transfer matrix 

R = load resistance 
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 harmonic of the steady-state current through the 

load. 

 

Figure 6 — Colpitts Oscillator configuration for the 

intrinsic case, no parasitics assumed, and an ideal transistor 

considered. 

 

The following two circuits show the transition from a 

series tuned circuit connected with the series time-

dependent negative resistance and the resulting input 

capacitance marked CIN. Translated, the resulting 

configuration consists of a series circuit with inductance 

L and the resulting capacitance C'. The noise voltage 

eN(t) describes a small perturbation, which is the noise 

resulting from RL and –RN(t). Figure 7 shows the 

equivalent representation of the oscillator circuit in the 

presence of noise. 

-RN(t)

CIN

RL

L

C -RN(t)

RLL

C'

eN(t)

i(t)

Figure 7 — Equivalent representation of the oscillator 

circuit in presence of noise. 

 

The circuit equation of the oscillator circuit of Figure 7 

can be given as 
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where i(t) is the time varying resultant current. Due to 

the noise voltage eN(t), Equation (9) is a 

nonhomogeneous differential equation. If the noise 

voltage is zero, it translates into a homogeneous 

differential equation. 

For a noiseless oscillator, the noise signal eN(t) is zero 

and the expression of the free-running oscillator current 

i(t) can be assumed to be a periodic function of time and 

can be given as 
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where I1, I2 …..In, are peak harmonic amplitudes of the 

current and 1, 2…..n are time invariant phases. 

In the presence of the noise perturbation eN(t), the current 

i(t) may no longer be a periodic function of time and can 

be expressed as  
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where I1(t), I2(t)…..In(t) are time variant amplitudes of 

the current and 1(t), 2(t)…..n(t) are time variant 

phases. 

Considering that In(t) and n(t) do not change much over 

the period of 2/n; each corresponding harmonic over 

one period of oscillation cycle remains small and more or 

less invariant. The solution of the differential equation 

becomes easy since the harmonics are suppressed due to 

a Q > 10, which prevents i(t) to flow for the higher 

terms. 

After the substitution of the value of 
dt

di  and  dtti )( , 

the complete oscillator circuit equation, as given in 

Equation (9), can be rewritten as 
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Because Q > 10 we approximate: 
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a very small amount). 

After the substitution of the value of dtdi  and  dtti )( , 

the oscillator circuit Equation (12) can be rewritten as 
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Following [18], and for simplification purposes, the 

equations above are multiplied with )](sin[ 1 tt   or 

)](cos[ 1 tt    and integrated over one period of the 

oscillation cycle, which will give an approximate 

differential equation for phase (t) and amplitude i(t) as  
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where )(tR N
 is the average negative resistance under 

large signal condition.  
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Since the magnitude of the higher harmonics are not 

significant, the subscript of (t)and (t)are dropped. 

Based on [18], we now determine the negative 

resistance. 

 

Calculation of the Region of the Nonlinear Negative 

Resistance 

Under steady-state free running oscillation condition,  

0
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implies steady current, and 
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with I is the fundamental RF current. Solving the now 

homogeneous differential equation for RL - RN(t) and 

inserting the two terms into 15, we obtain 
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term  0 

now we introduce 

 ;    = IR  ; for  0,  0  
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0)(])([  tItRR NL
 gives the intersection of 

])([ tR N
and [RL]. This value is defined as I0 which is the 

minimum value of the current needed for the steady-state 

sustained oscillation condition. 

Figure 8 shows the plot of the nonlinear negative 

resistance, which is a function of the amplitude of the RF 

current. As the RF amplitude gets larger the conducting 

angle becomes narrower. 

 

Figure 8 — Plot of negative resistance of ])([ tRN
 vs. 

amplitude of current I. 

 

For a small variation of the current I from I0, the 

relation above is expressed as  

ItRR NL  ])([
              (20) 

I can be found from the intersection on the vertical 

axis by drawing the tangential line on [ )(tR N
] at I = I0. 

 I  decreases exponentially with time for  > 0.  

Hence, I0 represents the stable operating point. On the 

other hand, if [ )(tR N
] intersects [RL] from the other side 

for <0 then  I  grows indefinitely with time. Such an 

operating point does not support stable operation [18]. 

Calculation of the Noise Signal in Time Domain 

From solving the two orthogonal equations, we need to 

obtain information about current I(t) and (t). 
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The analysis of the noise signal can be accomplished by 

decomposing the noise signal eN(t) to an infinite number 

of random noise pulses represented by 
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               (23) 

where  is the strength of the pulse at the time instant t0, 

and both  and t0 are independent random variables from 

one pulse to next pulse! 

The time average of the square of the current pulses over 

a period of time can be shown to be 
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The mean square noise voltage )(2 teN
 is generated in the 

circuit in Figure 7. 
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Figure 9 — The noise pulse at I = t0. 

 

Figure 9 shows the noise pulse at time instant t = t0.  
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Figure 10 — The amplitude of the rectangular pulse. 



   

 

 

The integral of the single noise pulse above gives the 

rectangular pulse with the height )](sin[
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and the length of T0 as shown in Figure 10.  

The integration of the single elementary noise pulse, 

following the Dirac  function, results in 
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since the length of time T0 is considered to be sufficiently 

small for any variation of (t)and I(t) during the time T0. 

The corresponding rectangular pulse of the magnitude 

)](sin[
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0
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T

   is considered to be another pulse 

located at t = t0 and can be expressed in the form of an 

impulse function with the amplitude 

)(sin[2 0 tt   located at t = t0 for calculating the effect 

using Equations (21) and (22). 
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[n1(t)] which consists of a number of rectangular pulses. 

The time average of the square of these pulses, following 

[18], can be calculated as 
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From the equation above,  
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Similarly, the total response of  
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 can be expressed by [n2(t)], 

which consists of a large number of such pulses and the 

time average of the square of these pulses is  
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 are orthogonal functions, 

and in the frequency domain are the upper and lower side 

bands relative to the carrier, and the correlation of [n1(t)] 

and [n2(t)] is 
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Now consider the narrow band noise signal, which is  
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and )(2 teN

are orthogonal functions, and 

)(1 te and )(2 te are slowly varying functions of time. 
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Figure 11 — Vector presentation of the oscillator signal and 

its modulation by the voltage eN1 and eN2 . 

 

The calculation of In(t) and n(t) for the free running 

oscillator can be derived from Equations (21) and (22) as 
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If Equation (39) is transformed in the frequency domain, 

(t) can be expressed as 
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Now the spectral density of [(f)] is 
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where f varies from – to + . 

The amplitude of the current can be written as 

)()( 0 tIItI  , where I0 represents the stable 

operating point of the free-running oscillator with a loop 

gain slightly greater than 1.  

From Equation (22), we can calculate 
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Since the amplitude of )(2 tI  is negligible, its value can 

be set to 0; 
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The spectral density of [ )(2 fn ] is 

22

0

222

2 )(])(4[)( fIILfn                (48) 

and the spectral density of )( fI  can be expressed in 

terms of 
2

2 )( fn  as 

2

22

0

22

2
)(

])(4[

1
)( fn

IL
fI

 
             (49) 

])(4[

)(2
)(

)(2)(

2

0

22

2

2

22

2

 IL

fe
fI

fefn

N

N





                           (50) 

since n1(t) and n2(t) are orthogonal function and there is 

no correlation between current and phase 
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The output power noise spectral density of the current is 

given as 
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The noise spectral density of the current is given as 
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where RI() is the auto-correlation function of the current 

and can be written as 
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Since I(t) and (t) are uncorrelated, auto-correlation 

function o   f the current RI() can be given as 

From [18], but taking into consideration that both side 

bands are correlated, we can write 
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Since the publication [18] skipped many stages of the 

calculation, up to here, a more complete and detailed 

flow is shown. These results are needed to calculate the 

noise performance at the component level later. Note the 

factor of 2, which results from the correlation. 
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 , the noise spectral density 

of the current is given by 
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with I = I0 + I(t); all RF-currents. 
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for 0 , FM noise predominates over the AM noise. 

For 0, both the FM noise and AM noise terms give 

equal contribution. 

Considering 0>>0, then 
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Since
oLLoad RRR  , the effective dynamic resistance of 

the free running oscillator is given by  

oLoadN

effective

tot RRtRR  ])(                              (64) 

where Ro is the output resistance; R0 – Rtot = 0. 

The Q of the resonator circuit is expressed as  
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The oscillator output noise power in terms of Q is given 

by 
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Figure 12 shows the Colpitts oscillator with a series 

resonator and the small signal ac equivalent circuit. 
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Figure 12 — Colpitts oscillator with series resonator and 

small signal ac equivalent circuit. 

 

From the analytical expression of the noise analysis 

above, the influence of the circuit components on the 

phase noise can be explicitly calculated as 
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where the frequency f varies from  to . 

The resulting single sideband phase noise is  
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The unknown variables are 2
)( feN

and )(2

0 fI , which 

need to be determined next. )(2

0 fI will be transformed 

into )(
2

0
fI c

 by multiplying )(2

0 fI  with the effective 

current gain Y21
+
/Y11

+
 = . 

Calculation of )(2

0 fI c
 

From Figure 12, the LC-series resonant circuit is in shunt 

between the base and the emitter with the capacitive 

negative conductance portion of the transistor. We now 

introduce a collector load RLoad at the output, or better 

yet, an impedance Z. 

The oscillator base current i(t) is 
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and the collector current is 
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The voltage Vce is the RF voltage across the collector-

emitter terminals of the transistor. Considering the 

steady-state oscillation 0, the total loss resistance is 

compensated by the negative resistance of the active 

device as )(tRR NL  . The expression of 
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where CIN is the equivalent capacitance of the negative 

resistor portion of the oscillator circuit. 
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For a reasonably high Q resonator  
00

)(2

0    INc CfI  

Calculation of the noise voltage )( feN
 

The equivalent noise voltage from the negative resistance 

portion of the oscillator circuit is given an open-circuit 

noise voltage [EMF] of the circuit as shown in Figure 13 

below. 

 

 

Figure 13 — Equivalent representation of negative 

resistance portion of the circuit at the input for the open 

circuit noise voltage. 

 

The noise voltage associated with the resonator loss 

resistance Rs is 

sR kTBRfe 4)(
0

2 
                             (77) 

Rs denotes the equivalent series loss resistor, which can 

be calculated from the parallel loading resistor Rload, see 

Figure 12. 
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The total noise voltage power within 1 Hz bandwidth can 

be given as 
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Derivation of Equation (80): 

The total noise voltage power within 1 Hz bandwidth can 

be given as 

)()()( 222

0
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              (80) 

The first term in Equation (80) is the noise voltage power 

due to the loss resistance R, and the second term is 

associated with the negative resistance of the active 

device RN.  

Figure 14 and 15 illustrate the oscillator circuit for the 

purpose of the calculation of the negative resistance. 

 

Figure 14 — Oscillator circuit for the calculation of the 

negative resistance. 

 

Figure 15 — Equivalent oscillator circuit for the calculation 

of the negative resistance.  

 

From Figure 15, the circuit equation is given from 

Kirchoff’s voltage law (KVL) as 
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From (96) and (98) 
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From (80), the total noise voltage power within a 1 Hz 

bandwidth can be given as 
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The values of p and q depend upon the drive level. 

The flicker noise contribution in Equation (80) is 

introduced by adding term 


AF

bf IK
 in Ic0, where Kf is the 

flicker noise coefficient and AF is the flicker noise 

exponent. This is valid only for the bipolar transistor. For 

an FET, the equivalent currents have to be used. 

In this case we use a value of 10
–8

, some publications 

claim much smaller numbers such as 10
–11

. The authors 

must have done some magic to get the measured curve 

fitted. In my opinion these small numbers violate the 

laws of physics for bipolar transistors.  

The first term in the expression above is related to the 

thermal noise due to the loss resistance of the resonator 

tank and the second term is related to the shot noise and 

flicker noise in the transistor. 

Now, the phase noise of the oscillator can be expressed 

as 
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Since the phase noise is always expressed in dBc/Hz, we 

now calculate, after simplification of Equation (84),  
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For the bias condition (which is determined from the 

output power requirement), the loaded quality factor, and 

the device parameters [transconductance and +
], the best 

phase noise can be found by differentiating 
SSB)(2   

with respect to 
21 CC . 

Considering that all the parameters of 
SSB)(2   are 

constants for a given operating condition (except the 

feedback capacitor), the minimum value of the phase 

noise can be determined for any fixed value of C1 as 
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Where k1, k2, and k3, are constant only for a particular 

drive level, with
21 CCy  . Making k2 and k3 also 

dependent on y, as the drive level changes, the final noise 

equation is 
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Figure 16 shows the simulated phase noise and its 

minimum for two values of C1, 2 pF and 5 pF. 5 pF, 

provides a better phase noise and a flatter response. For 

larger C1, the oscillator will cease to oscillate.  
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From curve-fitting attempts, the following values for q 

and p in Equation (114) were determined: 

q=1 to 1.1; p = 1.3 to 1.6. 

q and p are a function of the normalized drive level x and 

need to be determined experimentally. 

The transformation factor n is defined as  
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Figure 16 — Phase noise vs. n and output power. 

The following plot in Figure 17 shows the predicted 

phase noise resulting from Equation (114). For the first 

time, the flicker corner frequency was properly 

implemented and gives answers consistent with the 

measurements. In the following chapter all the noise 

sources will be added, but the key contributors are still 

the resonator noise and the flicker noise. The Schottky 

noise dominates further out. The break point for the 

flicker noise can be clearly seen.  

  

Figure 17 — Using Equation (114), the phase noise for 

different values of n for constant C2 can be calculated. 

 

Summary Results 

The analysis of the oscillator in the time domain has 

given us a design criteria to find the optimum value of 



   

 

 

21 CCy   with values for y + 1 (or n) ranging from 1.5 

to 4. For values above 3.5, the power is reduced 

significantly.  

Consistent with the previous chapters, we note  
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In the case of a large value of CP (CPC1), X1 has to be 

inductive to compensate extra contributions of the device 

package capacitance to meet the desired value of C1!  

The following is a set of design guides to calculate the 

parameters of the oscillator.  
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C2 is best be determined graphically from the noise plot. 
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The phase noise in dBc/Hz is shown as 
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The phase noise improves with the square of the loaded 

QL! 10% higher Q  20% better phase noise! 
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The loaded Q of the resonator determines the minimum 

possible level of the oscillator phase noise for given bias 

voltage and oscillator frequency.  

To achieve close to this minimum phase noise level set 

by the loaded QL of the resonator, the optimum (rather, 

how large the value of the CIN can be) value of CIN is to 

be fixed. 

To achieve the best possible phase noise level, the 

feedback capacitors C1 and C2 should be made as large as 

possible, but still generate sufficient negative resistance 

for sustaining steady-state oscillation. 
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The negative resistance of the oscillator circuit is 

inversely proportional to the feedback capacitors. 

Therefore, the limit of the feedback capacitor value is 

determined by the minimum negative resistance for a 

loop gain greater than unity. 

From the phase noise equation discussed, the feedback 

capacitor C2 has more influence compared to C1. The 

drive level and conduction angle of the Colpitts oscillator 

circuit is a strong function of C2.  

The time domain approach has provided us with the 

design guide for the key components of the oscillator; 

however, it did not include all the noise sources of the 

transistor. By using the starting parameters, such as C1 

and C2 and the bias point, as well as the information 

about the resonator and the transistor, a complete noise 

model/analysis will now be shown. 

The time domain approach has provided us with the 

design guide for the key components of the oscillator; 

however, it did not include all the noise sources of the 

transistor. By using the starting parameters, such as C1 

and C2 and the bias point, as well as the information 

about the resonator and the transistor, a complete noise 

model/analysis will be shown now. 

After some lengthy calculations and approximations, 

adding shot noise, flicker noise and the loss resistor, the 

equivalent expression of the phase noise can be derived 

as  
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The flicker noise contribution in equation (126) is 

introduced by adding term 


AF

bf IK
 in RF collector 

current IC, where Kf is the flicker noise coefficient and 

AF is the flicker noise exponent. This is valid only for 

the bipolar transistor. For an FET, the equivalent current 

transformations have to be used. 

Figure 18 — Colpitts Configuration – Test Circuit. 

This is the most complete noise model derived and 

tested. 

 

Validation 

After so many calculations a proof of concept is called 

for [14-20]. Figure 18 shows the test circuit. It is the 

typical Colpitts oscillator with the RF output taken from 

the collector. The transistor BFG 520 is made by Philips 

and is a 9 GHz NPN device used at a small fraction of IC 

max.  

 

Figure 19: Measured Data for a 350MHz Oscillator.  

The measured phase noise data is shown in Figure 19 

and the simulated data in Figure 20. When applying the 

analytical noise equation we obtain good agreement with 

the actual measurements also. 

This proves that the calculations are valid, any one need 

not spend $ 25,000 for a Harmonic Balance based 

simulator.  

The phase noise, far out, is limited by the needed 

isolation/buffer stage. 

 

 

Figure 20 — Simulated Phase Noise Data for the test circuit 

of Figure 18. 

 

 

Figure 21 — Phase Noise Measurements (AM and FM 

noise) of a popular Wenzel 100 MHz Crystal Oscillator. 

With the latest test equipment (R&S FSWP) FM and AM 

noise can be measured separately. Using a popular 

crystal oscillator at 100 MHz made by Wenzel, both AM 

and FM components can be inspected. 

There is an area where the AM noise (unfortunately) is 

larger than the FM noise. That indicates the internal 

buffer stage is partially driven into saturation. By 

changing some component values this can be avoided.  

  



   

 

 

 

Figure 22 — Mathcad Worksheet for calculated Phase Noise of a 350 MHz Colpitts Oscillator.  

 

 

The MathCad worksheet, Eqn_107_350MHz.mcd file, can be found at www.arrl.org/QEXfiles. 
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