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SDR: Simplified

In this issue, we will look at some of the
fundamentals of sampling theory and how
the theory works in practical situations.
First, let's look at the results of our lab
from last month.

Lab 1 Results

There are a few changes necessary to
the schematic diagram of Figure 5 in the
first column, in the Jan/Feb 2009 issue.!
First, | missed that pin 6 appears twice
on the op-amp when | proofread my copy.
The inverting input on the top op-amp
(U2A) should be pin 2. Second, the circuit
operates better if R3 and R4 are 10 kQ
instead of 100 Q.

Figure 1 shows the oscilloscope output
of the circuit as | presented it in the last
issue. The top trace of the scope plot is the
modulated waveform from the sound card
and the bottom trace is the demodulated
signal. Once the values are tweaked for
optimum performance, you see three
levels in the bottom trace. You see distinct
levels for the one and the zero, with a blip
for the dc level in between. This blip can
be used to synchronize the data bits in this
particular modulation scheme.

Time Domain and Frequency Domain

There are two ways to look at electrical
signals. The first way we learned was to
measure voltage or current versus time.
Oscilloscopes measure voltage versus
time and chart recorders measure cur-
rent versus time. This is a time domain
representation. The second way to look
at signals is voltage versus frequency.
Panadapters and spectrum analyzers
show voltage versus frequency. This is a
frequency domain representation. Both
time domain and frequency domain tools
are used with digital signal processing.

The Nyquist Criterion

One of the most common applications
of digital signal processing involves sam-
pling a continuous analog signal using
an analog to digital converter, processing
the samples using a digital computer, and
converting the samples back into a new
continuous analog signal. Both conversion
processes can lose information if not done
correctly. In the analog world, we call loss
of information “distortion.”

The Nyquist criterion describes what is
necessary so that information is not lost in
the initial analog to digital conversion pro-

"Notes appear on page 44.
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Figure 1 — The top trace of this oscilloscope plot is the modulated waveform from the
sound card and the bottom trace is the demodulated signal.
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Figure 2 — This sine wave represents a 100 Hz signal. The x marks at the crests and
troughs represent one set of sampling points when the sampling rate is 200 samples per
second (200 Hz). These samples can define a 100 Hz sine wave with an amplitude equal
to the original signal — the ideal situation.
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cess. Nyquist is probably the best known
and most misquoted of the foundations of
digital signal processing. Nyquist states
that a signal must be sampled at a rate
greater than twice the highest frequency
component of the input information. It
is totally incorrect to say that it must be
greater than or equal, which is how many
authors describe Nyquist. In fact, practical
systems require the sampling frequency
to be much more than twice the highest
input frequency. The Nyquist criterion
also states that a signal that is sampled
at a rate greater than twice the highest
input frequency can be completely recon-
structed as an analog signal without loss
of information. There are some impracti-
cal assumptions in this second half of the
Nyquist criterion, however.

Let’'s look at an example of why the
“equal to” condition is just plain wrong.
We’ll take a 100 Hz sine wave and sample
it 200 times per second. We can do this
manually by simply plugging in values to the
formula for a sine function and evaluating for
a sequence of times that are 5 milliseconds
apart. We will look at three different cases,
however, for the position of our first sample
relative to where the sine function begins.
Our first case samples the sine function at
times 2.5 ms, 7.5 ms, 12.5 ms, 17.5 ms,
22.5 ms and 27.5 ms. Figure 2 is a Gnuplot
of the input sine and the samples. You can
see that you capture all of the maximum
and minimum values of the sine function,
s0 you should be able to exactly reconstruct
the waveform with the proper filtering. This
reconstructed sine will have the input fre-
quency of 100 Hz and have the exact same
phase. It will also have a peak amplitude
equal to the value of the samples.

The second sample sequence is for
times 0,5ms, 10 ms, 15 ms, 20 ms, 25 ms
and 30 ms. You can see from Figure 3
that this sample sequence of the very
same sine function yields a sample result
indistinguishable from a dc value of zero!
This result is called aliasing. Aliasing is
the name of the effect in which sampling
converts one frequency to a lower fre-
quency. In this case, 100 Hz is converted
to zero hertz.

Our third sample sequence samples
the sine function at 1.25 ms, 6.25 ms,
11.25 ms, 16.25 ms, 21.25 ms, and
26.25 ms. Figure 4 shows the sample
sequence. You can reconstruct this signal
and create a 100 Hz sine with proper
filtering, but notice that you will get a sine
wave that has an amplitude only 0.707 of
the original, and the result will be out of
phase with the original by 45°.

So, from now on we will be certain to
sample our input signals at some frequency
greater than two times the highest input
signal. Let’s look at a 10 kHz sine wave, and
see what happens if we sample it at a rate
of 22,050 samples per second. Figure 5 is
an oscilloscope plot of the 10 kHz signal
sampled at 22.05 kHz and played by our
sound card. The sample rate is 10% above
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Figure 3 — In this oscilloscope plot, the same 100 Hz signal from Figure 2 is again
sampled at a rate of 200 Hz, but this time the samples are taken to match the zero

crossing points. This time the samples appear to define a dc signal with zero amplitude.
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Figure 4 — Here the 100 Hz sine wave is sampled at a rate of 200 Hz, with the samples
selected to fall 45° before the crests and troughs. With proper filtering you can create
a 100 Hz sine wave from these samples, but the resulting signal will have a maximum
amplitude of only 0.707 times the maximum amplitude of the original sine wave. In
addition, the new signal will be shifted 45° in phase.




the required amount. You will notice that the
signal created from the samples is not a
clean sine wave. The difference from a true
sine wave illustrates a failure to follow the
second requirement of Nyquist: sampling
at a rate a little above two times the highest
input frequency requires a brick wall filter.

A brick wall filter is an ideal (and physi-
cally impossible) filter that has a passband
response that is an exactly rectangular
shape (Figure 6). The filter on my Dell
laptop is nowhere near a brick wall filter.
The next two waveforms (Figure 7) are
the output of my HP computer for a 10 kHz
signal sampled at 22.05 kHz and 20 kHz
sampled at 44.1 kHz. Notice that once the
initial ramp occurs, then the output signal
is a very good sine wave at 10 kHz and
20 kHz respectively. Even though the filter
is almost a brick wall, the difference is
enough that the first eleven cycles are not
a true reconstruction of the input data.

All of the issues we have looked at with
respect to Nyquist presume that you are
interested in digitizing a signal that spans
from dc all the way up to some sample rate
less than the Nyquist limit. As we move to
looking at RF signals and how to modulate
them or demodulate them, we will take
advantage of properties of bandpass and
other filters, mathematics of sampling, and
sample rates that are chosen to keep far
enough away from the desired signals so
reasonable filters will do the job.

Fourier and Negative Frequencies

The Fourier transform and negative
frequencies are two concepts where the
“real world” doesn’t seem to square with the
mathematics we use. The Fourier transform
converts a continuous signal in the time
domain to a different continuous function
in the frequency domain. Fourier actually
discovered two sets of functions. The one we
will use for filtering and spectrum display is
the Fourier transform. It applies to continu-
ous and non-repetitive waveforms. The other
is the Fourier Series, which describes how
to create a periodic waveform by adding up
a sequence of cosine and sine waveforms
that are harmonically related.

We need the concept of | and Q again
when dealing with the Fourier transform.
Mathematicians call a signal that contains
both | and Q a complex signal. That is be-
cause they play games with the imaginary
value i (square root of —1) in order to use
complex mathematics to generate values
that have both magnitude and phase. Elec-
tronics folks use j instead if i, but it is the
same thing. We saw in the last column that
complex math is really as simple as creat-
ing two electronic signals that are a sine
wave and a cosine wave, so there is no real
magic involved. A Fourier transform takes
a complex input in the time domain (I and
Q waveforms) and transforms them into a
new complex waveform in the frequency
domain. This new complex waveform is
also just an in phase and quadrature set of
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Figure 5 — This oscilloscope plot shows a 10
22.05 kHz and played through the sound card

kHz sine wave that was sampled at
on my Dell laptop computer. The

reconstructed signal isn’t a very good sine wave. The filter on this sound card is not

close to a “brick wall” filter.

data. The combination of the transformed
| and Q signals can be used to generate
a pair of plots that either show magnitude
and phase or we can work directly with just
the I and Q components.

The math functions for cosine and sine
start at a time of negative infinity and go
to positive infinity. The functions that do a
Fourier transform also operate from nega-
tive infinity to positive infinity. The choice of
a real world “zero” time is arbitrary for both
the trig functions and the Fourier functions.
When we measure a signal with an oscil-
loscope, we usually place our “zero” time
as the left edge of the display and measure
time as a positive value relative to that left
edge. It is equally reasonable, however, to
place “zero” at the middle of the screen and
measure both positive and negative time for
the data on the screen. If our oscilloscope
is set for 1 second per division, our view is
limited to —5 seconds up to +5 seconds. All
of our digital signal processing will work with
signals with positive and negative times and
limited amounts of data. We use positive and
negative times because all of the functions
require the numbers to be symmetrical
about “zero” When we do a Fourier trans-
form on signals that cover time before and
after zero, we generate a frequency domain
representation that contains both positive
and negative frequencies.

Now is a good time to look at two more
important trig identities:
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Figure 6 — This graph represents the
transition between the pass band and
stop band for an ideal “brick wall” Nyquist
filter for a 44.10 kHz sample rate.

Sin(—x) = —sin (x) = sin (x +180°) and
cos (—x) = cos (x)

What these two identities mean for us
is that a sine wave of —10 Hz (based on
our reference cosine wave from last is-
sue) is identical to a sine wave of 10 Hz
with a 180° phase shift. The cosine wave
has identical phase for both negative and
positive frequencies.

The analog image reject mixer uses
the property of negative frequencies and
a couple of phase shifters to add one set
of frequencies and cancel the other set.
The Weaver method of single sideband
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Figure 7 —The oscilloscope plot at A is the output signal from a 10 kHz signal sampled at 22.05 kHz, as processed on my HP
computer, with a sound card that provides a much better approximation of a brick wall filter. The plot at B is the output signal from a
20 kHz signal sampled at 44.1 kHz, and played through the sound card in my HP computer.

generation also uses the phase differences
between positive and negative frequencies
to perform its functions.?

You are probably familiar with the Fou-
rier series for a square wave, which con-
sists of the fundamental frequency and all
of the odd harmonics. The concept of “zero”
changes the Fourier series, however. Here
is what | learned as the classic Fourier se-
ries for a 50% duty cycle square wave:

F(t) = sin(x) + 1/3 sin(3x) + 1/5 sin(5x)
+ 1/7 sin(7x) + 1/9 sin(9x) + ...

Figure 8 shows a plot of the resulting
waveform. Let’s look at a similar Fourier
series that | first saw in a recent QEX article
that has all of the same frequencies with the
same amplitudes but with different phases:

F(t) = cos(x) — 1/3 cos(3x) + 1/5 cos(5x)
—1/7 cos(7x) + 1/9 cos(9x) ...

Figure 9 shows a plot of the resulting
waveform for this series. We see that it is
the same 50% duty cycle square wave, but
with zero in the middle of the high phase.
These waveforms are a good example of
how changes of where we place zero in the
time domain can affect how the frequency
domain is presented.

Next Time

In the next column we will start working
in earnest with a real application of the
Nyquist criterion and Fourier transforms.
We will look at how Fourier and Nyquist
can be used for an under sampling receiver
to receive the time standard WWVB at
60 kHz, using a sound card sampling at
48 kHz. We will also go through the steps
necessary to set up your computer to use
the Blackfin Stamp product.

Since | started working on this column,
DigiKey has decided not to stock the
AD7476-DBRD board. Analog Devices
still makes the board and has some in
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stock, so you can order a board directly
from their Web site. You will need to set up
an account. Start from the main page at
www.analog.com/ and select “Buy Online”
in the upper right corner. Select “Place
Credit Card Order Now” and select “No |
am a New User.” You will need to fill out the
information to register with the site and set
your password. Then you can select “Buy

Online” again, and place an order for the
AD7476-DBRD.

Notes

'Ray Mack, W5IFS, “SDR: Simplified,” Jan/Feb
2009 QEX, pp 53 — 56.

2For information about the Weaver method of
SSB signal generation, see the Wikipedia en-
try at http://en.wikipedia.org/wiki/Single-
sideband_modulation.
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Square wave with Sine Fourier Series

Figure 8 —This is the square wave signal that results from a sine Fourier series. Note
the 180° phase shift around the zero frequency axis.
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Square wave with Cosine Fourier Series

Figure 9 —This is the square wave signal that results from a cosine Fourier series. Note

the 0° phase shift around the zero frequency axis.
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