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SDR: Simplified

1Notes appear on page 44.

Ray Mack, W5IFS 

17060 Conway Springs Ct, Austin, TX 78717; w5ifs@arrl.net

In this issue, we will look at some of the 
fundamentals of sampling theory and how 
the theory works in practical situations. 
First, let’s look at the results of our lab 
from last month.

Lab 1 Results

There are a few changes necessary to 
the schematic diagram of Figure 5 in the 
first column, in the Jan/Feb 2009 issue.1 
First, I missed that pin 6 appears twice 
on the op-amp when I proofread my copy. 
The inverting input on the top op-amp 
(U2A) should be pin 2. Second, the circuit 
operates better if R3 and R4 are 10 kΩ 
instead of 100 Ω.

Figure 1 shows the oscilloscope output 
of the circuit as I presented it in the last 
issue. The top trace of the scope plot is the 
modulated waveform from the sound card 
and the bottom trace is the demodulated 
signal. Once the values are tweaked for 
optimum performance, you see three 
levels in the bottom trace. You see distinct 
levels for the one and the zero, with a blip 
for the dc level in between. This blip can 
be used to synchronize the data bits in this 
particular modulation scheme.

Time Domain and Frequency Domain

There are two ways to look at electrical 
signals. The first way we learned was to 
measure voltage or current versus time. 
Oscilloscopes measure voltage versus 
time and chart recorders measure cur-
rent versus time. This is a time domain 
representation. The second way to look 
at signals is voltage versus frequency. 
Panadapters and spectrum analyzers 
show voltage versus frequency. This is a 
frequency domain representation. Both 
time domain and frequency domain tools 
are used with digital signal processing.

The Nyquist Criterion

One of the most common applications 
of digital signal processing involves sam-
pling a continuous analog signal using 
an analog to digital converter, processing 
the samples using a digital computer, and 
converting the samples back into a new 
continuous analog signal. Both conversion 
processes can lose information if not done 
correctly. In the analog world, we call loss 
of information “distortion.”

The Nyquist criterion describes what is 
necessary so that information is not lost in 
the initial analog to digital conversion pro-

Figure 1 — The top trace of this oscilloscope plot is the modulated waveform from the 
sound card and the bottom trace is the demodulated signal.

Figure 2 — This sine wave represents a 100 Hz signal. The x marks at the crests and 
troughs represent one set of sampling points when the sampling rate is 200 samples per 
second (200 Hz). These samples can define a 100 Hz sine wave with an amplitude equal 
to the original signal — the ideal situation.
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cess. Nyquist is probably the best known 
and most misquoted of the foundations of 
digital signal processing. Nyquist states 
that a signal must be sampled at a rate 
greater than twice the highest frequency 
component of the input information. It 
is totally incorrect to say that it must be 
greater than or equal, which is how many 
authors describe Nyquist. In fact, practical 
systems require the sampling frequency 
to be much more than twice the highest 
input frequency. The Nyquist criterion 
also states that a signal that is sampled 
at a rate greater than twice the highest 
input frequency can be completely recon-
structed as an analog signal without loss 
of information. There are some impracti-
cal assumptions in this second half of the 
Nyquist criterion, however.

Let’s look at an example of why the 
“equal to” condition is just plain wrong. 
We’ll take a 100 Hz sine wave and sample 
it 200  times per second. We can do this 
manually by simply plugging in values to the 
formula for a sine function and evaluating for 
a sequence of times that are 5 milliseconds 
apart. We will look at three different cases, 
however, for the position of our first sample 
relative to where the sine function begins. 
Our first case samples the sine function at 
times 2.5 ms, 7.5 ms, 12.5 ms, 17.5 ms, 
22.5 ms and 27.5 ms. Figure 2 is a Gnuplot 
of the input sine and the samples. You can 
see that you capture all of the maximum 
and minimum values of the sine function, 
so you should be able to exactly reconstruct 
the waveform with the proper filtering. This 
reconstructed sine will have the input fre-
quency of 100 Hz and have the exact same 
phase. It will also have a peak amplitude 
equal to the value of the samples.

The second sample sequence is for 
times 0, 5 ms, 10 ms, 15 ms, 20 ms, 25 ms 
and 30  ms. You can see from Figure 3 
that this sample sequence of the very 
same sine function yields a sample result 
indistinguishable from a dc value of zero! 
This result is called aliasing. Aliasing is 
the name of the effect in which sampling 
converts one frequency to a lower fre-
quency. In this case, 100 Hz is converted 
to zero hertz.

Our third sample sequence samples 
the sine function at 1.25  ms, 6.25  ms, 
11.25  ms, 16.25  ms, 21.25  ms, and 
26.25  ms. Figure 4 shows the sample 
sequence. You can reconstruct this signal 
and create a 100  Hz sine with proper 
filtering, but notice that you will get a sine 
wave that has an amplitude only 0.707 of 
the original, and the result will be out of 
phase with the original by 45°.

So, from now on we will be certain to 
sample our input signals at some frequency 
greater than two times the highest input 
signal. Let’s look at a 10 kHz sine wave, and 
see what happens if we sample it at a rate 
of 22,050 samples per second. Figure 5 is 
an oscilloscope plot of the 10 kHz signal 
sampled at 22.05 kHz and played by our 
sound card. The sample rate is 10% above 

Figure 3 — In this oscilloscope plot, the same 100 Hz signal from Figure 2 is again 
sampled at a rate of 200 Hz, but this time the samples are taken to match the zero 
crossing points. This time the samples appear to define a dc signal with zero amplitude.

Figure 4 — Here the 100 Hz sine wave is sampled at a rate of 200 Hz, with the samples 
selected to fall 45° before the crests and troughs. With proper filtering you can create 
a 100 Hz sine wave from these samples, but the resulting signal will have a maximum 
amplitude of only 0.707 times the maximum amplitude of the original sine wave. In 
addition, the new signal will be shifted 45° in phase.
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Figure 5 — This oscilloscope plot shows a 10 kHz sine wave that was sampled at  
22.05 kHz and played through the sound card on my Dell laptop computer. The 
reconstructed signal isn’t a very good sine wave. The filter on this sound card is not 
close to a  “brick wall” filter. 

the required amount. You will notice that the 
signal created from the samples is not a 
clean sine wave. The difference from a true 
sine wave illustrates a failure to follow the 
second requirement of Nyquist: sampling 
at a rate a little above two times the highest 
input frequency requires a brick wall filter. 

A brick wall filter is an ideal (and physi-
cally impossible) filter that has a passband 
response that is an exactly rectangular 
shape (Figure 6). The filter on my Dell 
laptop is nowhere near a brick wall filter. 
The next two waveforms (Figure 7) are 
the output of my HP computer for a 10 kHz 
signal sampled at 22.05 kHz and 20 kHz 
sampled at 44.1 kHz. Notice that once the 
initial ramp occurs, then the output signal 
is a very good sine wave at 10 kHz and 
20 kHz respectively. Even though the filter 
is almost a brick wall, the difference is 
enough that the first eleven cycles are not 
a true reconstruction of the input data.

All of the issues we have looked at with 
respect to Nyquist presume that you are 
interested in digitizing a signal that spans 
from dc all the way up to some sample rate 
less than the Nyquist limit. As we move to 
looking at RF signals and how to modulate 
them or demodulate them, we will take 
advantage of properties of bandpass and 
other filters, mathematics of sampling, and 
sample rates that are chosen to keep far 
enough away from the desired signals so 
reasonable filters will do the job.

Fourier and Negative Frequencies

The Fourier transform and negative 
frequencies are two concepts where the 
“real world” doesn’t seem to square with the 
mathematics we use. The Fourier transform 
converts a continuous signal in the time 
domain to a different continuous function 
in the frequency domain. Fourier actually 
discovered two sets of functions. The one we 
will use for filtering and spectrum display is 
the Fourier transform. It applies to continu-
ous and non-repetitive waveforms. The other 
is the Fourier Series, which describes how 
to create a periodic waveform by adding up 
a sequence of cosine and sine waveforms 
that are harmonically related. 

We need the concept of I and Q again 
when dealing with the Fourier transform. 
Mathematicians call a signal that contains 
both I and Q a complex signal. That is be-
cause they play games with the imaginary 
value i (square root of –1) in order to use 
complex mathematics to generate values 
that have both magnitude and phase. Elec-
tronics folks use j instead if i, but it is the 
same thing. We saw in the last column that 
complex math is really as simple as creat-
ing two electronic signals that are a sine 
wave and a cosine wave, so there is no real 
magic involved. A Fourier transform takes 
a complex input in the time domain (I and 
Q waveforms) and transforms them into a 
new complex waveform in the frequency 
domain. This new complex waveform is 
also just an in phase and quadrature set of 

Figure 6 — This graph represents the 
transition between the pass band and 
stop band for an ideal “brick wall” Nyquist 
filter for a 44.10 kHz sample rate.

data. The combination of the transformed 
I and Q signals can be used to generate 
a pair of plots that either show magnitude 
and phase or we can work directly with just 
the I and Q components. 

The math functions for cosine and sine 
start at a time of negative infinity and go 
to positive infinity. The functions that do a 
Fourier transform also operate from nega-
tive infinity to positive infinity. The choice of 
a real world “zero” time is arbitrary for both 
the trig functions and the Fourier functions. 
When we measure a signal with an oscil-
loscope, we usually place our “zero” time 
as the left edge of the display and measure 
time as a positive value relative to that left 
edge. It is equally reasonable, however, to 
place “zero” at the middle of the screen and 
measure both positive and negative time for 
the data on the screen. If our oscilloscope 
is set for 1 second per division, our view is 
limited to –5 seconds up to +5 seconds. All 
of our digital signal processing will work with 
signals with positive and negative times and 
limited amounts of data. We use positive and 
negative times because all of the functions 
require the numbers to be symmetrical 
about “zero.” When we do a Fourier trans-
form on signals that cover time before and 
after zero, we generate a frequency domain 
representation that contains both positive 
and negative frequencies.

Now is a good time to look at two more 
important trig identities:

Sin(–x) = –sin (x) = sin (x +180°) and 
cos (–x) = cos (x)

What these two identities mean for us 
is that a sine wave of –10 Hz (based on 
our reference cosine wave from last is-
sue) is identical to a sine wave of 10 Hz 
with a 180° phase shift. The cosine wave 
has identical phase for both negative and 
positive frequencies.

The analog image reject mixer uses 
the property of negative frequencies and 
a couple of phase shifters to add one set 
of frequencies and cancel the other set. 
The Weaver method of single sideband 
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Figure 7 — The oscilloscope plot at A is the output signal from a 10 kHz signal sampled at 22.05 kHz, as processed on my HP 
computer, with a sound card that provides a much better approximation of a brick wall filter. The plot at B is the output signal from a 
20 kHz signal sampled at 44.1 kHz, and played through the sound card in my HP computer.

generation also uses the phase differences 
between positive and negative frequencies 
to perform its functions.2

You are probably familiar with the Fou-
rier series for a square wave, which con-
sists of the fundamental frequency and all 
of the odd harmonics. The concept of “zero” 
changes the Fourier series, however. Here 
is what I learned as the classic Fourier se-
ries for a 50% duty cycle square wave:

F(t) = sin(x) + 1/3 sin(3x) + 1/5 sin(5x) 
+ 1/7 sin(7x) + 1/9 sin(9x) + …

Figure 8 shows a plot of the resulting 
waveform. Let’s look at a similar Fourier 
series that I first saw in a recent QEX article 
that has all of the same frequencies with the 
same amplitudes but with different phases:

F(t) = cos(x) – 1/3 cos(3x) + 1/5 cos(5x) 
– 1/7 cos(7x) + 1/9 cos(9x) …

Figure 9 shows a plot of the resulting 
waveform for this series. We see that it is 
the same 50% duty cycle square wave, but 
with zero in the middle of the high phase. 
These waveforms are a good example of 
how changes of where we place zero in the 
time domain can affect how the frequency 
domain is presented.

Next Time

In the next column we will start working 
in earnest with a real application of the 
Nyquist criterion and Fourier transforms. 
We will look at how Fourier and Nyquist 
can be used for an under sampling receiver 
to receive the time standard WWVB at 
60 kHz, using a sound card sampling at 
48 kHz. We will also go through the steps 
necessary to set up your computer to use 
the Blackfin Stamp product.

Since I started working on this column, 
DigiKey has decided not to stock the 
AD7476-DBRD board. Analog Devices 
still makes the board and has some in 

Figure 8 — This is the square wave signal that results from a sine Fourier series. Note 
the 180° phase shift around the zero frequency axis.

Figure 9 — This is the square wave signal that results from a cosine Fourier series. Note 
the 0° phase shift around the zero frequency axis.

stock, so you can order a board directly 
from their Web site. You will need to set up 
an account. Start from the main page at 
www.analog.com/ and select “Buy Online” 
in the upper right corner. Select “Place 
Credit Card Order Now” and select “No I 
am a New User.” You will need to fill out the 
information to register with the site and set 
your password. Then you can select “Buy 

Online” again, and place an order for the 
AD7476-DBRD.
Notes
1Ray Mack, W5IFS, “SDR: Simplified,” Jan/Feb 

2009 QEX, pp 53 – 56.
2For information about the Weaver method of 

SSB signal generation, see the Wikipedia en-
try at http://en.wikipedia.org/wiki/Single-
sideband_modulation.
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