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Danger — Math Ahead

SDR: Simplified

The Fourier Transform and Variations
Every DSP based radio of which I am 

aware has some sort of spectrum display. 
These come in panadapter and waterfall 
flavors. These are all “real time” displays of 
energy versus frequency. The heart of the 
spectrum display in all of these cases is the 
Discrete Fourier Transform (DFT). In this 
column we will look at the DFT and a spe-
cial case called the Fast Fourier Transform 
(FFT).

The general form of the continuous 
Fourier Transform is:
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This yields a complex frequency func-
tion (contains both sine and cosine terms 
from the e–j2pft term) that is continuous in 
frequency from a frequency of –∞ to ∞. The 
transform is derived from a continuous time 
function that is not periodic (in general) and 
extends from time –∞ to ∞. The Fourier 
Series we use to describe a periodic signal 
such as a square wave or triangle wave 
is a special case of the general Fourier 
Transform. If you plot a periodic function 
in time, it is continuous from –∞ to ∞, but 
the spectrum is composed of discrete fre-
quency elements. There is also an inverse 
function that will transform a continuous 
frequency function into a corresponding 
continuous time function (Inverse Fourier 
Transform):
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Notice that the only difference is the 
sign of the complex exponent. Likewise, 
there is an inverse of the Fourier Series that 
takes all of the component sine and cosine 
waves and adds the frequencies from –∞ 
to ∞. The integral is replaced by a summa-
tion of the discrete frequencies from –∞ to 
∞. These are not terribly useful in the real 
world since we cannot really go forward or 
backward in time to plus or minus infinity.

The math so far has been ugly, with 
imaginary exponents, infinities, and inte-
grals, but the math gets really ugly when 
you do the transformation from the continu-
ous Fourier and Inverse Fourier forms to 
the Discrete Fourier and inverse Discrete 
Fourier forms. To see just how ugly, go to 
the Wikipedia page for Discrete Fourier 
Transform — http://en.wikipedia.org/
wiki/Discrete_Fourier_transform. Quite 
a few folks did the really hard math over 
the past 250 years. Oddly, the first Fourier 

work was actually for the discrete forms 
rather than the continuous forms! Nyquist 
detailed part of the theory of practical DFT 
in 1928, and his work was expanded by 
Shannon and others later in the 20th cen-
tury (all before practical DSP computers). 
When all the math is done, they showed 
that you can sample a continuous function 
at equally spaced intervals for a finite time, 
convert that sequence of samples into a 
limited discrete frequency set (the DFT), 
and then convert that limited frequency set 
back into a continuous time function. All of 
those conversions come with some spe-
cific constraints in order to make the con-
versions work in both directions to produce 
the output the same as the input.

The first constraint is the Nyquist limit, 
which requires that we sample at a rate 
greater than twice the highest frequency 
component. A discrete transform always 
acts on a limited number of samples. The 
discrete transform is much like a Fourier 
Series because the transform only con-
tains a sequence of discrete frequencies. 
The Fourier Series is a consequence of 
the input signal being periodic. The limited 
number of discrete frequencies of the DFT 
forces the math to look like we have applied 
a rectangular window to a periodic signal. 
The second constraint is that a periodic 
function must be an exact sub-multiple of 
the sample frequency in order to do an 
exact transform or inverse transform.

The definition of the DFT is an opera-
tion that transforms a finite sequence of 
time samples into a sequence of the same 
number of complex frequency samples. In 
math form:
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where: 
X[f] is the set of frequency samples, 
x [ t ]  is  the set  of  t ime samples, 
N is the number of samples in each set, and 
W is the transform operator. Each of the 
elements (X, x, and W) can be represented 
as an array of values in a computer, so this 
is perfect for implementation in software.

Consequences of Signals in the Real 
World

Let’s look at some examples to see what 
happens with respect to the constraints. 
We will look at a spectrum for a system 
sampled at 8 kHz and look at the signal 
every 12.5  ms. This means we update 
the spectrum 80  times per second. The 

12.5 ms will result in 100 samples of the 
signal. The first example is for a 240 Hz sig-
nal. The update rate of 80 corresponds to 
each frequency sample mapping to exactly 
80 Hz. The 80 Hz comes about because 
we can fit exactly one cycle of 80 Hz in 
100 samples at 8000 samples per second. 
This is a discrete transform, so mathemati-
cally there is no energy at 5 Hz or 60 Hz for 
example, just energy at dc, 80 Hz, 160 Hz, 
… 4 kHz. Each of those exact frequencies 
is called a “bin.” Figure 1 shows the continu-
ous and sampled 240 Hz signal. Notice that 
it holds exactly three cycles of the 240 Hz 
waveform but it has 45° negative offset 
from a sine wave. Figure 2 shows the DFT 
of the signal. It is important to note that the 
DFT is a complex function that has both a 
cosine term (real) and a sine term (imagi-
nary). In our example, the cosine term at 
240 Hz is positive and the sine term is 
negative because of that –45° offset. If the 
samples had started at 1 for a cosine wave, 
the real part would have been one and the 
imaginary would have been zero. If it had 
started at zero for a sine wave, the real part 
would have been zero and the imaginary 
part would have been one.

Now, let’s look at a cosine wave at 
280 Hz. Figure 3A shows the 100 sam-
ples of our waveform that we use in our 
computer. Figure 3B shows what the 
math “sees.” The math assumes that the 
3½  cycles of the 280  Hz repeats with 
that discontinuity occurring every 12.5 ms 
from –∞ to ∞. Figure 4 shows the DFT of 
this new signal. Now, we have energy in 
multiple bins because the real energy falls 
between adjacent bins for the fundamental 
sine wave. There is also additional energy 
in other bins because of the discontinuity at 
the end of the set of samples.

More Math
A DFT is really a conversion from a 

complex (real and imaginary) set of sam-
ples in time to a set of complex samples 
in frequency. Our first two examples imple-
ment what is called a “real” transform. 
These examples placed all of the time 
samples in the real part of the input set and 
loaded all of the imaginary samples with 
zero. Many SDR systems do all of their 
work with I and Q channels, so we have 
both a real set of samples (I) and an imagi-
nary set of samples (Q). For spectral analy-
sis, there is no real advantage for complex 
or real transforms. The Nyquist rate is 
required for a real time sequence in order 
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Figure 1 — Sampled and continuous versions of a 240 Hz sinusoid offset by 45°.

Figure 2 — The Discrete Fourier Transform (DFT) of the sinusoid in Figure 1.
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Figure 4 — The DFT of the signal of Figure 3.

Figure 3 — Part A shows the sampled waveform for a 280 Hz sinusoid. Part B shows the effective signal that is transformed by the DFT.
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to be able to determine both phase and fre-
quency of the component signals, but only 
for positive frequencies. If we use an I-Q 
system we essentially double the sample 
rate and obtain exact phase and frequency 
for both positive and negative frequencies. 
I-Q systems double the sample rate, the 
computational load, and the covered output 
spectrum. The cost is twice the number of 
pieces of hardware for conversion.

The DFT is a general case function. 
J. W. Cooley and J.W. Tukey developed 
a computer algorithm in 1965 that takes 
advantage of the symmetry of the DFT if 
the number of samples is a power of two. 
This algorithm is called a Fast Fourier 
Transform (FFT) because it has significantly 
fewer arithmetic operations than a general 
DFT. The Cooley-Tukey FFT is just one of 
many possible fast transforms, but it is the 
one usually implemented. A DFT requires 
approximately N 2 operations, where an 
FFT requires approximately N log2N opera-
tions (where N is the number of samples). 
The software for this article contains an 
implementation of the FFT from Numerical 
Recipes in C.1, 2 

The examples so far have looked at the 
real or complex input and complex output of 
the DFT. The complex output tells us both 
phase and frequency relative to a cosine 
wave that would begin at time sample zero. 
Phase is arbitrary since we almost never 
have a real reference between the signal 
we see and the place it was generated. For 
that reason, it is normal practice to convert 
the rectangular I-Q presentation to polar 
form with magnitude and phase (which we 
discard or simply choose not to calculate). 
This is called the power spectrum, since it 
is formed from squaring the two rectangular 
components. If we want the results in deci-
bels, we save computation by doing just 
a log calculation rather than doing both a 
square root and log function. The log func-
tion allows us to multiply the result by 10 
instead of 20 to get the magnitude in dB.

MATLAB and Octave
MATLAB and Octave contain functions 

for calculating the FFT and inverse FFT 
of data sets. Of course, Octave is a more 
useful tool for experimenters since it is 
free compared to hundreds of dollars for 
MATLAB. I find that the book Computer 
Based Exercises for Signal Processing 
Using MATLAB 5 is a useful reference for 
understanding DSP concepts and using 
the computer tools for experiments.3 It has 
a significant amount of engineering level 
math, though.

The FFT Algorithm
The heart of most FFT algorithms is a 

data flow pattern called a butterfly. Figure 
5 shows a two element butterfly. The input 
contains two elements x(0) and x(1), and 
the output has two elements y(0) and y(1). 
The equations for the butterfly are:

Figure 5 — A two element “butterfly” signal flow diagram. The crossing of the solid and 
dashed lines make the diagram look like stylized butterfly wings.

1Notes appear on page 00.

Figure 6 — A complete flow diagram for an 8 element Fast Fourier Transform (FFT) 
calculation. Each solid line represents a direct contribution of the element to the left.  

Each dashed line represents a contribution that is multiplied by the complex operator.  
Each number in a circle represents the k value for the Wk complex operator that is used 

for the multiplication.

y(0) = x(0) + x(1)W k	 [Eq 4]

y(1) = x(0) – x(1)W k	 [Eq 5] 
where W k is the appropriate element

[cos (2 × k) + jsin (2 × k)]. 

Figure 6 shows the data flow diagram 
of the scrambled in/natural out (the output 
is ordered from lowest to highest element). 
The number in the circle at each stage indi-
cates the value of k for Wk. It is interesting 
that the values of k are even for all stages 
except the final stage. A dashed line indi-
cates an element that is added and a solid 
line indicates the element is multiplied by 

Wk. Notice that the first stage of calculation 
performs four 2×2 butterfly operations, the 
second is two 4×4 butterfly operations, and 
the final is one 8×8 butterfly. Each stage 
has fewer butterfly operations so it is called 
a decimation in time algorithm. The other 
thing to notice is that the input is grouped 
with the even time elements in the top group 
and the odd time elements in the bottom 
group. 

This example requires just 24 complex 
multiplication operations. One other large 
advantage of the FFT is that the algorithm 
is a “multiply accumulate” type operation, 
where each horizontal position in Figure 
6 has a multiply in place at each stage. 
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The result is that an N element FFT only 
requires an array of N registers to hold the 
entire data. The fixed sizes allow hardware 
implementation of an FFT with a very mod-
est cost in resources. Our eight element 
FFT requires eight complex registers, logic 
to scramble the input as the data arrives, 
just eight W values (because the sine and 
cosine values will all use the same array 
from –p to p), and eight multipliers. For this 
reason it is very easy for a processor such as 
the TMS320C5535 to include a fixed length 
(1024 in this case) hardware FFT block.

IIR Filters
We looked recently at Finite Impulse 

Response filters (FIR), which are non-
recursive. They have the advantage that 
one can easily (more or less) calculate the 
filter tap values from a basic filter shape 
and apply a window function to minimize 
the Gibbs phenomenon. They also have the 
advantage of linear phase response and 
constant group delay. The biggest disad-
vantage to FIR filters is the large number of 
taps necessary for filters with maximum flat-
ness and best transition band performance.

Infinite Impulse Response filters are a 
special case of a recursive digital filter. A 
recursive filter is built so that some of the 
output is fed back to the input. In an IIR filter, 
the output will continue to change forever 
even after the input signal is removed. It is 
possible to build recursive filters that do not 
have infinite impulse response but they are 
not very interesting.

I have been asked if there are programs 
to design IIR filters. Fortunately, the answer 
is yes. A group called Octave-forge has a 
large array of signal processing functions 
that work with Octave to perform an array 

of DSP design and analysis functions. 
We are interested in four functions: butter, 
cheby1, cheby2, and ellip. These let us 
design Butterworth, Chebyshev with pass 
band ripple, Chebyshev with stop band 
ripple, and elliptical filters. Each of these will 
return a filter design in a number of different 
formats. We will be interested in the z coeffi-
cient form. Octave tries to be as compatible 
with MATLAB as possible. I have found that 
it is frequently better to look at the MATLAB 
documentation on line rather than the docu-
ments from Octave-forge. The MATLAB 
documentation is professionally written and 
is easily understood. Frequently, the Octave 
documentation does not even exist.

The continuous time analysis uses the 
LaPlace transform s space to define a fre-
quency response. In general, the response 
looks like:
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We factor the numerator polynomial 
to get the zeros of the response and fac-
tor the denominator polynomial to get the 
poles of the response. The response for a 
Butterworth filter is:
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where N is the order of the filter. The math 
allows us to convert from the polynomial 
form for an analog filter to an equivalent IIR 
digital filter. The equation follows the form:
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The filter design functions in Octave 
return two arrays containing the coefficients 
of “a” and “b” for the filter being designed. 
The filter design follows the method of 
Figure 7. The “a” coefficients appear on 
the left side of the system and apply to 
the feedback operation of the filter. The “b” 
coefficients appear on the right side of the 
system and apply to the forward operating 
part of the filter. Most of the filter design 
methods for IIR filters attempt to use poly-
nomial representations from analog filters 
and adapt them to the z transform polyno-
mials. Designing an analog filter using poly-
nomial synthesis is a non-trivial process 
that involves a lot of math to achieve the 
desired features of a filter. The same is true 
of designing an IIR filter using those meth-
ods. That is one of the main reasons you 
won’t see a lot of IIR filters in the literature; 
it is just a whole lot easier to do an impulse 
response and a DFT to generate an FIR 
filter from a desired frequency response.

Notes
1William Press, Saul Teukolsky, William 

Vetterling and Brian Flannery, Numerical 
Recipes in C; The Art of Scientific 
Computing, Cambridge University Press, 
1992. This publication is available free on 
line at: apps.nrbook.com/c/index.html.

2The software for this column is available for 
download from the ARRL QEX files website. 
Go to www.arrl.org/qexfiles and look for 
the file 11x12_Mack_SDR.zip.

3McClellan, Burrus, Oppenheim, Parks, 
Schafer, Schuessler , Computer Based 
Exercises for Signal Processing Using 
MATLAB 5, Prentice-Hall, 1997

Figure 7 — A z space representation of an Infinite Impulse Response (IIR) filter. Each “b” value is a forward time contribution to the output, as 
in a Finite Impulse Response (FIR) filter, and each “a” value is a feedback element.




