Copyright

Ray Mack, W5IFS

(C)2012 ARRL, All

Rights

17060 Conway Springs Ct, Austin, TX 78717; wbifs@arrl.net

SDR: Simplified

Reserved

Danger — Math Ahead

The Fourier Transform and Variations

Every DSP based radio of which | am
aware has some sort of spectrum display.
These come in panadapter and waterfall
flavors. These are all “real time” displays of
energy versus frequency. The heart of the
spectrum display in all of these cases is the
Discrete Fourier Transform (DFT). In this
column we will look at the DFT and a spe-
cial case called the Fast Fourier Transform
(FFT).

The general form of the continuous
Fourier Transform is:

X(f)=j_ix(t)e‘j2”ﬁdt [Eq 1]

This yields a complex frequency func-
tion (contains both sine and cosine terms
from the e¥>*" term) that is continuous in
frequency from a frequency of —o to . The
transform is derived from a continuous time
function that is not periodic (in general) and
extends from time —oo to . The Fourier
Series we use to describe a periodic signal
such as a square wave or triangle wave
is a special case of the general Fourier
Transform. If you plot a periodic function
in time, it is continuous from —oo to oo, but
the spectrum is composed of discrete fre-
quency elements. There is also an inverse
function that will transform a continuous
frequency function into a corresponding
continuous time function (Inverse Fourier
Transform):

x(t)=[" x(f)e” " af

Notice that the only difference is the
sign of the complex exponent. Likewise,
there is an inverse of the Fourier Series that
takes all of the component sine and cosine
waves and adds the frequencies from —o
to o. The integral is replaced by a summa-
tion of the discrete frequencies from —o to
0. These are not terribly useful in the real
world since we cannot really go forward or
backward in time to plus or minus infinity.

The math so far has been ugly, with
imaginary exponents, infinities, and inte-
grals, but the math gets really ugly when
you do the transformation from the continu-
ous Fourier and Inverse Fourier forms to
the Discrete Fourier and inverse Discrete
Fourier forms. To see just how ugly, go to
the Wikipedia page for Discrete Fourier
Transform — http://en.wikipedia.org/
wiki/Discrete_Fourier_transform. Quite
a few folks did the really hard math over
the past 250 years. Oddly, the first Fourier

[Eq 2]

36 QEX — November/December 2012

work was actually for the discrete forms
rather than the continuous forms! Nyquist
detailed part of the theory of practical DFT
in 1928, and his work was expanded by
Shannon and others later in the 20" cen-
tury (all before practical DSP computers).
When all the math is done, they showed
that you can sample a continuous function
at equally spaced intervals for a finite time,
convert that sequence of samples into a
limited discrete frequency set (the DFT),
and then convert that limited frequency set
back into a continuous time function. All of
those conversions come with some spe-
cific constraints in order to make the con-
versions work in both directions to produce
the output the same as the input.

The first constraint is the Nyquist limit,
which requires that we sample at a rate
greater than twice the highest frequency
component. A discrete transform always
acts on a limited number of samples. The
discrete transform is much like a Fourier
Series because the transform only con-
tains a sequence of discrete frequencies.
The Fourier Series is a consequence of
the input signal being periodic. The limited
number of discrete frequencies of the DFT
forces the math to look like we have applied
a rectangular window to a periodic signal.
The second constraint is that a periodic
function must be an exact sub-multiple of
the sample frequency in order to do an
exact transform or inverse transform.

The definition of the DFT is an opera-
tion that transforms a finite sequence of
time samples into a sequence of the same
number of complex frequency samples. In
math form:

N-1

X[f]=2 x [

where:

X[f] is the set of frequency samples,
x[t] is the set of time samples,
Nis the number of samples in each set, and
W is the transform operator. Each of the
elements (X, x, and W) can be represented
as an array of values in a computer, so this
is perfect for implementation in software.

(Eq 3]

Consequences of Signals in the Real
World

Let’'s look at some examples to see what
happens with respect to the constraints.
We will look at a spectrum for a system
sampled at 8 kHz and look at the signal
every 12.5 ms. This means we update
the spectrum 80 times per second. The

12.5 ms will result in 100 samples of the
signal. The first example is for a 240 Hz sig-
nal. The update rate of 80 corresponds to
each frequency sample mapping to exactly
80 Hz. The 80 Hz comes about because
we can fit exactly one cycle of 80 Hz in
100 samples at 8000 samples per second.
This is a discrete transform, so mathemati-
cally there is no energy at 5 Hz or 60 Hz for
example, just energy at dc, 80 Hz, 160 Hz,
... 4 kHz. Each of those exact frequencies
is called a “bin.” Figure 1 shows the continu-
ous and sampled 240 Hz signal. Notice that
it holds exactly three cycles of the 240 Hz
waveform but it has 45° negative offset
from a sine wave. Figure 2 shows the DFT
of the signal. It is important to note that the
DFT is a complex function that has both a
cosine term (real) and a sine term (imagi-
nary). In our example, the cosine term at
240 Hz is positive and the sine term is
negative because of that —45° offset. If the
samples had started at 1 for a cosine wave,
the real part would have been one and the
imaginary would have been zero. If it had
started at zero for a sine wave, the real part
would have been zero and the imaginary
part would have been one.

Now, let’s look at a cosine wave at
280 Hz. Figure 3A shows the 100 sam-
ples of our waveform that we use in our
computer. Figure 3B shows what the
math “sees” The math assumes that the
3% cycles of the 280 Hz repeats with
that discontinuity occurring every 12.5 ms
from —o to . Figure 4 shows the DFT of
this new signal. Now, we have energy in
multiple bins because the real energy falls
between adjacent bins for the fundamental
sine wave. There is also additional energy
in other bins because of the discontinuity at
the end of the set of samples.

More Math

A DFT is really a conversion from a
complex (real and imaginary) set of sam-
ples in time to a set of complex samples
in frequency. Our first two examples imple-
ment what is called a “real” transform.
These examples placed all of the time
samples in the real part of the input set and
loaded all of the imaginary samples with
zero. Many SDR systems do all of their
work with | and Q channels, so we have
both a real set of samples (I) and an imagi-
nary set of samples (Q). For spectral analy-
sis, there is no real advantage for complex
or real transforms. The Nyquist rate is
required for a real time sequence in order

Mark
Typewritten Text
Copyright (C)2012 ARRL, All Rights Reserved

Voltage

Voltage

Source Waveforms for 240 Hz DFT

0.8
0.6
0.4
0.2

-0.2
-0.4
-0.6
-0.8
-1
-0.01 -0.005 0 0.005 0.01 0.015

.
el
L

~

Lt

-

=,

~

L
i
Lt

R

0.8 // y
0.6 o /
04 \
02 /

s
-
LT

i

P SR
Lt
PR

L
o
e
-

-0.2

RIS e o
-
-
it
L
.
s
—
Pt

bt
—
e~

Lt

s
—
s AN
e~
L

e
T
[
=
L

-0.6

.
-
el

-0.01 -0.005 0 0.005 0.01 0.015

Time

Figure 1 — Sampled and continuous versions of a 240 Hz sinusoid offset by 45°.

Voltage

Voltage

240 Hz DFT

15 i T T
Real Part

0.5

-0.5

-1.5
0 80 160 240 320 400 480 560 640 720 800 880 960

Time

1.5 i : ‘ : ‘
Imaginary Part

0.5

0 80 160 240 320 400 480 560 640 720 800 880 960

Time

Figure 2 —The Discrete Fourier Transform (DFT) of the sinusoid in Figure 1.

QEX — November/December 2012 37

|||L[l!l la B | | Il”. lwl

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

Voltage

L+
-y
-
—

0.8]
0.6
04
0.2

—

L

Voltage
=

-0.2
-0.4
-0.6
-0.8 / \iJ \ |

P

g
o

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

Time

Figure 3 — Part A shows the sampled waveform for a 280 Hz sinusoid. Part B shows the effective signal that is transformed by the DFT.

280 Hz DFT

Voltage
=}

-5
0 240 480 720 960 1200 1440 1680 1920 2160 2400 2640 2880 3120 3360 3600 3840

Frequency

Figure 4 —The DFT of the signal of Figure 3.

38 QEX — November/December 2012

to be able to determine both phase and fre-
quency of the component signals, but only
for positive frequencies. If we use an I-Q
system we essentially double the sample
rate and obtain exact phase and frequency
for both positive and negative frequencies.
I-Q systems double the sample rate, the
computational load, and the covered output
spectrum. The cost is twice the number of
pieces of hardware for conversion.

The DFT is a general case function.
J. W. Cooley and J.W. Tukey developed
a computer algorithm in 1965 that takes
advantage of the symmetry of the DFT if
the number of samples is a power of two.
This algorithm is called a Fast Fourier
Transform (FFT) because it has significantly
fewer arithmetic operations than a general
DFT. The Cooley-Tukey FFT is just one of
many possible fast transforms, but it is the
one usually implemented. A DFT requires
approximately N2 operations, where an
FFT requires approximately Nlog,N opera-
tions (where N is the number of samples).
The software for this article contains an
implementation of the FFT from Numerical
Recipes in C.":2

The examples so far have looked at the
real or complex input and complex output of
the DFT. The complex output tells us both
phase and frequency relative to a cosine
wave that would begin at time sample zero.
Phase is arbitrary since we almost never
have a real reference between the signal
we see and the place it was generated. For
that reason, it is normal practice to convert
the rectangular I-Q presentation to polar
form with magnitude and phase (which we
discard or simply choose not to calculate).
This is called the power spectrum, since it
is formed from squaring the two rectangular
components. If we want the results in deci-
bels, we save computation by doing just
a log calculation rather than doing both a
square root and log function. The log func-
tion allows us to multiply the result by 10
instead of 20 to get the magnitude in dB.

MATLAB and Octave

MATLAB and Octave contain functions
for calculating the FFT and inverse FFT
of data sets. Of course, Octave is a more
useful tool for experimenters since it is
free compared to hundreds of dollars for
MATLAB. | find that the book Computer
Based Exercises for Signal Processing
Using MATLAB 5 is a useful reference for
understanding DSP concepts and using
the computer tools for experiments.® It has
a significant amount of engineering level
math, though.

The FFT Algorithm

The heart of most FFT algorithms is a
data flow pattern called a butterfly. Figure
5 shows a two element butterfly. The input
contains two elements x(0) and x(1), and
the output has two elements y(0) and y(1).
The equations for the butterfly are:

TNotes appear on page 00.

Y0) = x(0) + x(1) W*
y(1) = x(0) — x(1) W*

where W¥is the appropriate element
[cos (2 x k) + jsin (2 x K)].

Figure 6 shows the data flow diagram
of the scrambled in/natural out (the output
is ordered from lowest to highest element).
The number in the circle at each stage indi-
cates the value of k for WX It is interesting
that the values of k are even for all stages
except the final stage. A dashed line indi-
cates an element that is added and a solid
line indicates the element is multiplied by

[Eq 4]
[Eq 5]

Wk Notice that the first stage of calculation
performs four 2x2 butterfly operations, the
second is two 4x4 butterfly operations, and
the final is one 8x8 butterfly. Each stage
has fewer butterfly operations so it is called
a decimation in time algorithm. The other
thing to notice is that the input is grouped
with the even time elements in the top group
and the odd time elements in the bottom
group.

This example requires just 24 complex
multiplication operations. One other large
advantage of the FFT is that the algorithm
is a “multiply accumulate” type operation,
where each horizontal position in Figure
6 has a multiply in place at each stage.

x(0)

x(1) (1)

¥(0) = x(0) + W(0) x(1)
¥(1) = x(0) - W(1) x(1)

Figure 5 — A two element “butterfly” signal flow diagram. The crossing of the solid and
dashed lines make the diagram look like stylized butterfly wings.

X(4)

X(5)

X(6)

Figure 6 — A complete flow diagram for an 8 element Fast Fourier Transform (FFT)
calculation. Each solid line represents a direct contribution of the element to the left.
Each dashed line represents a contribution that is multiplied by the complex operator.
Each number in a circle represents the k value for the W* complex operator that is used
for the multiplication.

QEX — November/December 2012 39

+b0

7-

-a1 +b1
1 X X
-1
-a2 Z +b2

X

Figure 7 — A z space representation of an Infinite Impulse Response (lIR) filter. Each “b” value is a forward time contribution to the output, as
in a Finite Impulse Response (FIR) filter, and each “a” value is a feedback element.

The result is that an N element FFT only
requires an array of N registers to hold the
entire data. The fixed sizes allow hardware
implementation of an FFT with a very mod-
est cost in resources. Our eight element
FFT requires eight complex registers, logic
to scramble the input as the data arrives,
just eight W values (because the sine and
cosine values will all use the same array
from —x to =), and eight multipliers. For this
reason it is very easy for a processor such as
the TMS320C5535 to include a fixed length
(1024 in this case) hardware FFT block.

IR Filters

We looked recently at Finite Impulse
Response filters (FIR), which are non-
recursive. They have the advantage that
one can easily (more or less) calculate the
filter tap values from a basic filter shape
and apply a window function to minimize
the Gibbs phenomenon. They also have the
advantage of linear phase response and
constant group delay. The biggest disad-
vantage to FIR filters is the large number of
taps necessary for filters with maximum flat-
ness and best transition band performance.

Infinite Impulse Response filters are a
special case of a recursive digital filter. A
recursive filter is built so that some of the
output is fed back to the input. In an lIR filter,
the output will continue to change forever
even after the input signal is removed. It is
possible to build recursive filters that do not
have infinite impulse response but they are
not very interesting.

I have been asked if there are programs
to design IIR filters. Fortunately, the answer
is yes. A group called Octave-forge has a
large array of signal processing functions
that work with Octave to perform an array

40 QEX - November/December 2012

of DSP design and analysis functions.
We are interested in four functions: butter,
cheby1, cheby2, and ellip. These let us
design Butterworth, Chebyshev with pass
band ripple, Chebyshev with stop band
ripple, and elliptical filters. Each of these will
return a filter design in a number of different
formats. We will be interested in the z coeffi-
cient form. Octave tries to be as compatible
with MATLAB as possible. | have found that
it is frequently better to look at the MATLAB
documentation on line rather than the docu-
ments from Octave-forge. The MATLAB
documentation is professionally written and
is easily understood. Frequently, the Octave
documentation does not even exist.

The continuous time analysis uses the
LaPlace transform s space to define a fre-
quency response. In general, the response
looks like:

()_ l+a,s+as’ +a,s +...
1+b,s+b,s> +b,s* +...
[Eq 6]

We factor the numerator polynomial
to get the zeros of the response and fac-
tor the denominator polynomial to get the
poles of the response. The response for a
Butterworth filter is:

1

H(s)=
() 1+s

2N (Eq 7]

where N is the order of the filter. The math
allows us to convert from the polynomial
form for an analog filter to an equivalent IIR
digital filter. The equation follows the form:

H(Z) _ aoz’l -i—a,z’2 -i—azz’3 +..
-1 -2 -3
byz" +bz " +bz +.
[Eq 8]

The filter design functions in Octave
return two arrays containing the coefficients
of “a” and “b” for the filter being designed.
The filter design follows the method of
Figure 7. The “a” coefficients appear on
the left side of the system and apply to
the feedback operation of the filter. The “b”
coefficients appear on the right side of the
system and apply to the forward operating
part of the filter. Most of the filter design
methods for IIR filters attempt to use poly-
nomial representations from analog filters
and adapt them to the z transform polyno-
mials. Designing an analog filter using poly-
nomial synthesis is a non-trivial process
that involves a lot of math to achieve the
desired features of a filter. The same is true
of designing an IR filter using those meth-
ods. That is one of the main reasons you
won't see a lot of IR filters in the literature;
it is just a whole lot easier to do an impulse
response and a DFT to generate an FIR
filter from a desired frequency response.

Notes

'William Press, Saul Teukolsky, William
Vetterling and Brian Flannery, Numerical
Recipes in C; The Art of Scientific
Computing, Cambridge University Press,
1992. This publication is available free on
line at: apps.nrbook.com/c/index.html.

2The software for this column is available for
download from the ARRL QEX files website.
Go to www.arrl.org/gexfiles and look for
the file 11x12_Mack_SDR.zip.

3McClellan, Burrus, Oppenheim, Parks,
Schafer, Schuessler , Computer Based
Exercises for Signal Processing Using
MATLAB 5, Prentice-Hall, 1997

