
The Smith Chart is a sophisticated graphic tool for  
solving transmission line problems. One of the simpler ap-
plications is to determine the feed-point impedance of an 
antenna, based on an impedance measurement at the input 
of a random length of transmission line. By using the Smith 
Chart, the impedance measurement can be made with the 
antenna in place atop a tower or mast, and there is no need 
to cut the line to an exact multiple of half wavelengths. The 
Smith Chart may be used for other purposes, too, such as the 
design of impedance-matching networks. These matching 
networks can take on any of several forms, such as L and pi 
networks, a stub matching system, a series-section match, and 
more. With a knowledge of the Smith Chart, the amateur can 
eliminate much “cut and try” work. 

Named after its inventor, Phillip H. Smith, the Smith 
Chart was originally described in Electronics for January 
1939. Smith Charts may be obtained at most university book 
stores. Smith Charts are also available from ARRL HQ. (See 
the caption for Fig 3.)

The input impedance, or the impedance seen when 
“looking into” a length of line, is dependent upon the SWR, 
the length of the line, and the Z0 of the line. The SWR, in 
turn, is dependent upon the load which terminates the line. 
There are complex mathematical relationships which may be 
used to calculate the various values of impedances, voltages, 
currents, and SWR values that exist in the operation of a par-
ticular transmission line. These equations can be solved with 
a personal computer and suitable software, or the parameters 
may be determined with the Smith Chart. Even if a computer 
is used, a fundamental knowledge of the Smith Chart will 
promote a better understanding of the problem being solved. 
And such an understanding might lead to a quicker or sim-
pler solution than otherwise. If the terminating impedance is 
known, it is a simple matter to determine the input impedance 
of the line for any length by means of the chart. Conversely, 
as indicated above, with a given line length and a known 
(or measured) input impedance, the load impedance may be 
determined by means of the chart—a convenient method of 
remotely determining an antenna impedance, for example.

Although its appearance may at first seem somewhat 
formidable, the Smith Chart is really nothing more than a 

Fig 1—Resistance circles of the Smith Chart coordinate 
system.

specialized type of graph. Consider it as having curved, rather 
than rectangular, coordinate lines. The coordinate system 
consists simply of two families of circles—the resistance 
family, and the reactance family. The resistance circles, Fig 
1, are centered on the resistance axis (the only straight line 
on the chart), and are tangent to the outer circle at the right 
of the chart. Each circle is assigned a value of resistance, 
which is indicated at the point where the circle crosses the 
resistance axis. All points along any one circle have the same 
resistance value.

The values assigned to these circles vary from zero at the 
left of the chart to infinity at the right, and actually represent 
a ratio with respect to the impedance value assigned to the 
center point of the chart, indicated 1.0. This center point is 
called prime center. If prime center is assigned a value of 100 
Ω, then 200 Ω resistance is represented by the 2.0 circle, 50 
Ω by the 0.5 circle, 20 Ω by the 0.2 circle, and so on. If, in-
stead, a value of 50 is assigned to prime center, the 2.0 circle 
now represents 100 Ω, the 0.5 circle 25 Ω, and the 0.2 circle 
10 Ω. In each case, it may be seen that the value on the chart 
is determined by dividing the actual resistance by the number 
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assigned to prime center. This process is called normalizing.
Conversely, values from the chart are converted back to 

actual resistance values by multiplying the chart value times 
the value assigned to prime center. This feature permits the 
use of the Smith Chart for any impedance values, and there-
fore with any type of uniform transmission line, whatever its 
impedance may be. As mentioned above, specialized versions 
of the Smith Chart may be obtained with a value of 50 Ω at 
prime center. These are intended for use with 50-Ω lines.

Now consider the reactance circles, Fig 2, which appear 
as curved lines on the chart because only segments of the 
complete circles are drawn. These circles are tangent to the 
resistance axis, which itself is a member of the reactance 
family (with a radius of infinity). The centers are displaced 
to the top or bottom on a line tangent to the right of the chart. 
The large outer circle bounding the coordinate portion of the 
chart is the reactance axis.

Each reactance circle segment is assigned a value of 
reactance, indicated near the point where the circle touches 
the reactance axis. All points along any one segment have 
the same reactance value. As with the resistance circles, the 
values assigned to each reactance circle are normalized with 
respect to the value assigned to prime center. Values to the top 
of the resistance axis are positive (inductive), and those to the 
bottom of the resistance axis are negative (capacitive).

When the resistance family and the reactance fam-
ily of circles are combined, the coordinate system of the  
Smith Chart results, as shown in Fig 3. Complex impedances 
(R + jX) can be plotted on this coordinate system.

IMPEDANCE PLOTTING
Suppose we have an impedance consisting of 50 Ω 

resistance and 100 Ω inductive reactance (Z = 50 + j 100). 
If we assign a value of 100 Ω to prime center, we normalize 
the above impedance by dividing each component of the 

Fig 2—Reactance circles (segments) of the Smith Chart 
coordinate system.

Fig 3—The complete coordinate system of the Smith Chart.  
For simplicity, only a few divisions are shown for the 
resistance and reactance values.  Various types of Smith 
Chart forms are available from ARRL HQ.  At the time 
of this writing, five 81/2  × 11 inch Smith Chart forms are 
available for $2.

impedance by 100. The normalized impedance is then 50/100 
+ j (100/100) = 0.5 + j 1.0. This impedance is plotted on the 
Smith Chart at the intersection of the 0.5 resistance circle and 
the +1.0 reactance circle, as indicated in Fig 3. Calculations 
may now be made from this plotted value.

Now say that instead of assigning 100 Ω to prime 
center, we assign a value of 50 Ω. With this assignment, the 50 
+ j 100 Ω impedance is plotted at the intersection of the 50/50 
= 1.0 resistance circle, and the 100/50 = 2.0 positive reactance 
circle. This value, 1 + j 2, is also indicated in Fig 3. But now we 
have two points plotted in Fig 3 to represent the same imped-
ance value, 50 + j 100 Ω. How can this be?

These examples show that the same impedance may 
be plotted at different points on the chart, depending upon 
the value assigned to prime center. But two plotted points 
cannot represent the same impedance at the same time! It 
is customary when solving transmission-line problems to 
assign to prime center a value equal to the characteristic 
impedance, or Z0, of the line being used. This value should 
always be recorded at the start of calculations, to avoid pos-
sible confusion later. (In using the specialized charts with the 
value of 50 at prime center, it is, of course, not necessary to 
normalize impedances when working with 50-Ω line. The 
resistance and reactance values may be read directly from 
the chart coordinate system.)

Prime center is a point of special significance. As just 
mentioned, is is customary when solving problems to assign 
the Z0 value of the line to this point on the chart—50 Ω for 
a 50-Ω line, for example. What this means is that the center 
point of the chart now represents 50 +j 0 ohms–a pure resis-
tance equal to the characteristic impedance of the line. If this 
were a load on the line, we recognize from transmission-line 
theory that it represents a perfect match, with no reflected 



Fig 4—Smith Chart with SWR circles added.

power and with a 1.0 to 1 SWR. Thus, prime center also 
represents the 1.0 SWR circle (with a radius of zero). SWR 
circles are also discussed in a later section.

Short and Open Circuits

On the subject of plotting impedances, two special 
cases deserve consideration. These are short circuits and 
open circuits. A true short circuit has zero resistance and zero 
reactance, or 0 + j 0). This impedance is plotted at the left of 
the chart, at the intersection of the resistance and the reactance 
axes. By contrast, an open circuit has infinite resistance, and 
therefore is plotted at the right of the chart, at the intersec-
tion of the resistance and reactance axes. These two special 
cases are sometimes used in matching stubs, described later.

Standing-Wave-Ratio Circles

Members of a third family of circles, which are not 
printed on the chart but which are added during the process 
of solving problems, are standing-wave-ratio or SWR circles. 
See Fig 4. This family is centered on prime center, and ap-
pears as concentric circles inside the reactance axis. During 
calculations, one or more of these circles may be added with a 
drawing compass. Each circle represents a value of SWR, with  
every point on a given circle representing the same SWR. 
The SWR value for a given circle may be determined directly 
from the chart coordinate system, by reading the 
resistance value where the SWR circle crosses the 
resistance axis to the right of prime center. (The 
reading where the circle crosses the resistance axis 
to the left of prime center indicates the inverse ratio.)

Consider the situation where a load mismatch 
in a length of line causes a 3-to-1 SWR ratio to ex-
ist. If we temporarily disregard line losses, we may 
state that the SWR remains constant throughout the 
entire length of this line. This is represented on the 
Smith Chart by drawing a 3:1 constant SWR circle 
(a circle with a radius of 3 on the resistance axis), 
as in Fig 5. The design of the chart is such that any 
impedance encountered anywhere along the length 
of this mismatched line will fall on the SWR circle. 
The impedances may be read from the coordinate 
system merely by the progressing around the SWR 
circle by an amount corresponding to the length of 
the line involved. 

This brings into use the wavelength scales, 
which appear in Fig 5 near the perimeter of the 
Smith Chart. These scales are calibrated in terms 
of portions of an electrical wavelength along a 
transmission line. Both scales start from 0 at the left 
of the chart. One scale, running counterclockwise, 
starts at the generator or input end of the line and 
progresses toward the load. The other scale starts 
at the load and proceeds toward the generator in a 
clockwise direction. The complete circle around 
the edge of the chart represents 1/2 λ. Progressing 
once around the perimeter of these scales cor-

responds to progressing along a transmission line for 1/2 λ. 
Because impedances repeat themselves every 1/2 λ along a 
piece of line, the chart may be used for any length of line 
by disregarding or subtracting from the line’s total length an 
integral, or whole number, of half wavelengths.

Also shown in Fig 5 is a means of transferring the 

Fig 5—Example discussed in text.



radius of the SWR circle to the external scales of the chart, 
by drawing lines tangent to the circle. Another simple way to 
obtain information from these external scales is to transfer the 
radius of the SWR circle to the external scale with a drawing 
compass. Place the point of a drawing compass at the center 
or 0 line, and inscribe a short arc across the appropriate scale. 
It will be noted that when this is done in Fig 5, the external 
STANDING-WAVE VOLTAGE-RATIO scale indicates the SWR to be 
3.0 (at A)—our condition for initially drawing the circle on the 
chart (and the same as the SWR reading on the resistance axis).

SOLVING PROBLEMS WITH THE  
SMITH CHART

Suppose we have a transmission line with a characteris-
tic impedance of 50 Ω and an electrical length of 0.3 λ. Also, 
suppose we terminate this line with an impedance having a 
resistive component of 25 Ω and an inductive reactance of 25 
Ω (Z = 25 + j 25). What is the input impedance to the line?

The characteristic impedance of the line is 50 Ω, so we 
begin by assigning this value to prime center. Because the line 
is not terminated in its characteristic impedance, we know 
that standing waves will exist on the line, and that, therefore, 
the input impedance to the line will not be exactly 50 Ω. We 
proceed as follows. First, normalize the load impedance by 
dividing both the resistive and reactive components 
by 50 (Z0 of the line being used). The normalized 
impedance in this case is 0.5 + j 0.5. This is plotted 
on the chart at the intersection of the 0.5 resistance 
and the +0.5 reactance circles, as in Fig 6. Then 
draw a constant SWR circle passing through this 
point. Transfer the radius of this circle to the ex-
ternal scales with the drawing compass. From the 
external STANDING-WAVE VOLTAGE-RATIO scale, it 
may be seen (at A) that the voltage ratio of 2.62 
exists for this radius, indicating that our line is 
operating with an SWR of 2.62 to 1. This figure is 
converted to decibels in the adjacent scale, where 
8.4 dB may be read (at B), indicating that the ratio 
of the voltage maximum to the voltage minimum 
along the line is 8.4 dB. (This is mathematically 
equivalent to 20 times the log of the SWR value.)

 Next, with a straightedge, draw a radial line 
from prime center through the plotted point to in-
tersect the wavelengths scale. At this intersection, 
point C in Fig 6, read a value from the wavelengths 
scale. Because we are starting from the load, we use 
the TOWARD GENERATOR or outermost calibration, 
and read 0.088 λ.

To obtain the line input impedance, we merely 
find the point on the SWR circle that is 0.3 λ toward 
the generator from the plotted load impedance. 
This is accomplished by adding 0.3 (the length of 
the line in wavelengths) to the reference or starting 
point, 0.088; 0.3 + 0.088 = 0.388. Locate 0.388 
on the TOWARD GENERATOR scale (at D). Draw a 
second radial line from this point to prime center. 

The intersection of the new radial line with the SWR circle 
represents the normalized line input impedance, in this case 
0.6 – j 0.66.

To find the unnormalized line impedance, multiply by 
50, the value assigned to prime center. The resulting value is 
30 – j 33, or 30 Ω resistance and 33 Ω capacitive reactance. 
This is the impedance that a transmitter must match if such 
a system were a combination of antenna and transmission 
line. This is also the impedance that would be measured on 
an impedance bridge if the measurement were taken at the 
line input.

In addition to the line input impedance and the SWR, 
the chart reveals several other operating characteristics of the 
above system of line and load, if a closer look is desired. For 
example, the voltage reflection coefficient, both magnitude 
and phase angle, for this particular load is given. The phase 
angle is read under the radial line drawn through the plot of 
the load impedance, where the line intersects the ANGLE OF 

REFLECTION COEFFICIENT scale. This scale is not included 
in Fig 6, but will be found on the Smith Chart just inside 
the wavelengths scales. In this example, the reading is 116.6 
degrees. This indicates the angle by which the reflected volt-
age wave leads the incident wave at the load. It will be noted 
that angles on the bottom half, or capacitive-reactance half, 

Fig 6—Example discussed in text.



of the chart are negative angles, a “negative” lead indicating 
that the reflected voltage wave actually lags the incident wave.

The magnitude of the voltage-reflection-coefficient may 
be read from the external REFLECTION COEFFICIENT VOLTAGE 
scale, and is seen to be approximately 0.45 (at E) for this 
example. This means that 45 percent of the incident voltage 
is reflected. Adjacent to this scale on the POWER calibration, 
it is noted (at F) that the power reflection coefficient is 0.20, 
indicating that 20 percent of the incident power is reflected. 
(The amount of reflected power is proportional to the square 
of the reflected voltage.)

ADMITTANCE COORDINATES
Quite often it is desirable to convert impedance infor-

mation to admittance data—conductance and susceptance. 
Working with admittances greatly simplifies determining the 
resultant when two complex impedances are connected in 
parallel, as in stub matching. The conductance values may be 
added directly, as may be the susceptance values, to arrive at 
the overall admittance for the parallel combination. This admit-
tance may then be converted back to impedance data, if desired.

On the Smith Chart, the necessary conversion may be 
made very simply. The equivalent admittance of a plotted 
impedance value lies diametrically opposite the impedance 
point on the chart. In other words, an impedance plot and 
its corresponding admittance plot will lie on a 
straight line that passes through prime center, 
and each point will be the same distance from 
prime center (on the same SWR circle). In the 
above example, where the normalized line input 
impedance is 0.6 – j 0.66, the equivalent admit-
tance lies at the intersection of the SWR circle 
and the extension of the straight line passing 
from point D though prime center. Although not 
shown in Fig 6, the normalized admittance value 
may be read as 0.76 + j 0.84 if the line starting 
at D is extended.

In making impedance-admittance conver-
sions, remember that capacitance is considered 
to be a positive susceptance and inductance a 
negative susceptance. This corresponds to the 
scale identification printed on the chart. The 
admittance in siemens is determined by divid-
ing the normalized values by the Z0 of the line. 
For this example the admittance is 0.76/50 + j 
0.84/50 = 0.0152 + j 0.0168 siemen. Of course 
admittance coordinates may be converted to im-
pedance coordinates just as easily—by locating 
the point on the Smith Chart that is diametrically 
opposite that representing the admittance coor-
dinates, on the same SWR circle.

DETERMINING ANTENNA 
IMPEDANCES

To determine an antenna impedance from 
the Smith Chart, the procedure is similar to Fig 7—Example discussed in text.

the previous example. The electrical length of the feed line 
must be known and the impedance value at the input end 
of the line must be determined through measurement, such 
as with an impedance-measuring or a good quality noise 
bridge. In this case, the antenna is connected to the far end 
of the line and becomes the load for the line. Whether the  
antenna is intended purely for transmission of energy, or 
purely for reception makes no difference; the antenna is still 
the terminating or load impedance on the line as far as these 
measurements are concerned. The input or generator end of the 
line is that end connected to the device for measurement of the 
impedance. In this type of problem, the measured impedance 
is plotted on the chart, and the TOWARD LOAD wavelengths 
scale is used in conjunction with the electrical line length to 
determine the actual antenna impedance.

For example, assume we have a measured input 
impedance to a 50-Ω line of 70 – j 25 Ω. The line is 2.35 λ 
long, and is terminated in an antenna. What is the antenna feed 
impedance? Normalize the input impedance with respect to 
50 Ω, which comes out 1.4 – j 0.5, and plot this value on the 
chart. See Fig 7. Draw a constant SWR circle through the point, 
and transfer the radius to the external scales. The SWR of 1.7 
may be read from the VOLTAGE RATIO scale (at A). Now draw 
a radial line from prime center through this plotted point to the 
wavelengths scale, and read a reference value (at B). For this 



case the value is 0.195, on the TOWARD LOAD scale. Remember, 
we are starting at the generator end of the transmission line.

To locate the load impedance on the SWR circle, add 
the line length, 2.35 λ, to the reference value from the wave-
lengths scale; 2.35 + 0.195 = 2.545. Locate the new value on 
the TOWARD LOAD scale. But because the calibrations extend 
only from 0 to 0.5, we must first subtract a number of half 
wavelengths from this value and use only the remaining 
value. In this situation, the largest integral number of half 
wavelengths that can be subtracted with a positive result is 5, 
or 2.5 λ. Thus, 2.545 – 2.5 = 0.045. Locate the 0.045 value on 
the TOWARD LOAD scale (at C). Draw a radial line from this 
value to prime center. Now, the coordinates at the intersection 
of the second radial line and the SWR circle represent the 
load impedance. To read this value closely, some interpola-
tion between the printed coordinate lines must be made, and 
the value of 0.62 – j 0.19 is read. Multiplying by 50, we get 
the actual load or antenna impedance as 31 – j 9.5 Ω, or 31 
Ω resistance with 9.5 Ω capacitive reactance.

Problems may be entered on the chart in yet another 
manner. Suppose we have a length of 50-Ω line feeding a 
base-loaded resonant vertical ground-plane antenna which is 
shorter than 1/4 λ. Further, suppose we have an SWR monitor 
in the line, and that it indicates an SWR of 1.7 to 1. The line 
is known to be 0.95 λ long. We want to know both the input 
and the antenna impedances.

From the information available, we have no imped-
ances to enter into the chart. We may, however, draw a circle 
representing the 1.7 SWR. We also know, from the definition 
of resonance, that the antenna presents a purely resistive load 
to the line, that is, no reactive component. Thus, the antenna 
impedance must lie on the resistance axis. If we were to draw 
such an SWR circle and observe the chart with only the circle 
drawn, we would see two points which satisfy the resonance 
requirement for the load. These points are 0.59 + j 0 and 1.7 + 
j 0. Multiplying by 50, we see that these values represent 29.5 
and 85 Ω resistance. This may sound familiar, because, when 
a line is terminated in a pure resistance, the SWR in the line 
equals ZR/Z0 or Z0/ZR, where ZR=load resistance and Z0=line 
impedance.

If we consider antenna fundamentals, we know that the 
theoretical impedance of a 1/4-λ ground-plane antenna is ap-
proximately 36 Ω. We therefore can quite logically discard 
the 85-Ω impedance figure in favor of the 29.5-Ω value. This 
is then taken as the load impedance value for the Smith Chart 
calculations. To find the line input impedance, we subtract 
0.5 λ from the line length, 0.95, and find 0.45 λ on the TOWARD 

GENERATOR scale. (The wavelength-scale starting point in 
this case is 0.) The line input impedance is found to be  
0.63 – j 0.20, or 31.5 – j 10 Ω.

DETERMINATION OF LINE LENGTH
In the example problems given so far in this chapter, 

the line length has conveniently been stated in wave-
lengths. The electrical length of a piece of line depends 
upon its physical length, the radio frequency under 
consideration, and the velocity of propagation in the line. 
If an impedance-measurement bridge is capable of quite 
reliable readings at high SWR values, the line length  
may be determined through line input-impedance mea-
surements with short- or open-circuit line termina-
tions. Information on the procedure is given later in this  
chapter. A more direct method is to measure the physical 
length of the line and calculate its electrical length from

N =                                                              (Eq 1)

where
N = number of electrical wavelengths in the line
L = line length in feet
f = frequency, MHz
VF = velocity or propagation factor of the line

The velocity factor may be obtained from transmission-
line data tables.

Line-Loss Considerations with the 
Smith Chart

The example Smith Chart problems presented in the 
previous section ignored attenuation, or line losses. Quite 
frequently it is not even necessary to consider losses when 
making calculations; any difference in readings obtained are 
often imperceptible on the chart. However, when the line 
losses become appreciable, such as for high-loss lines, long 
lines, or at VHF and UHF, loss considerations may become 
significant in making Smith Chart calculations. This involves 
only one simple step, in addition to the procedures previously  
presented.

Because of line losses, the SWR does not remain con-
stant throughout the length of the line. As a result, there is a 
decrease in SWR as one progresses away from the load. To 
truly present this situation on the Smith Chart, instead of draw-
ing a constant SWR circle, it would be necessary to draw a 
spiral inward and clockwise from the load impedance toward 
the generator, as shown in Fig 8. The rate at which the curve 
spirals toward prime center is related to the attenuation in the 
line. Rather than drawing spiral curves, a simpler method is 
used in solving line-loss problems, by means of the external 
scale TRANSMISSION LOSS 1-DB STEPS. This scale may be seen 
in Fig 9. Because this is only a relative scale, the decibel steps 
are not numbered.
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Fig 8—This spiral is the actual “SWR circle” 
when line losses are taken into account.  It 
is based on calculations for a 16-ft length 
of RG-174 coax feeding a resonant 28-MHz 
300-Ω antenna (50-Ω coax, velocity factor = 
66%, attenuation = 6.2 dB per 100 ft).  The 
SWR at the load is 6:1, while it is 3.6:1 at the 
line input.  When solving problems involving 
attenuation, two constant SWR circles are 
drawn instead of a spiral, one for the line 
input SWR and one for the load SWR.

Fig 9—Example of Smith Chart calculations taking line losses into 
account.

If we start at the left end of this external 
scale and proceed in the direction indicated 
TOWARD GENERATOR, the first dB step is seen to 
occur at a radius from center corresponding to an 
SWR of about 9 (at A); the second dB step falls 
at an SWR of about 4.5 (at B), the third at 3.0 
(at C), and so forth, until the 15th dB step falls 
at an SWR of about 1.05 to 1. This means that a 
line terminated in a short or open circuit (infinite 
SWR), and having an attenuation of 15 dB, would 
exhibit an SWR of only 1.05 at its input. It will 
be noted that the dB steps near the right end of 
the scale are very close together, and a line at-
tenuation of 1 or 2 dB in this area will have only 
slight effect on the SWR. But near the left end of 
the scale, corresponding to high SWR values, a 1 
or 2 dB loss has considerable effect on the SWR.

Using a Second SWR Circle

In solving a problem using line-loss infor-
mation, it is necessary only to modify the radius 
of the SWR circle by an amount indicated on the 
TRANSMISSION-LOSS 1-DB STEPS scale. This is 
accomplished by drawing a second SWR circle, 
either smaller or larger than the first, depending 
on whether you are working toward the load or 
toward the generator.

For example, assume that we have a 50-Ω 
line that is 0.282 λ long, with 1-dB inherent at-
tenuation. The line input impedance is measured 
as 60 + j 35 Ω. We desire to know the SWR at 
the input and at the load, and the load imped-
ance. As before, we normalize the 60 + j 35-Ω 
impedance, plot it on the chart, and draw a con-
stant SWR circle and a radial line through the 
point. In this case, the normalized impedance is 
1.2 + j 0.7. From Fig 9, the SWR at the line input 
is seen to be 1.9 (at D), and the radial line is seen 
to cross the TOWARD LOAD scale, first subtract 
0.500, and locate 0.110 (at F); then draw a radial 
line from this point to prime center.	



 To account for line losses, transfer the radius of the 
SWR circle to the external 1-DB STEPS scale. This radius 
crosses the external scale at G, the fifth decibel mark from 
the left. Since the line loss was given as 1 dB, we strike a 
new radius (at H), one “tick mark” to the left (toward load) 
on the same scale. (This will be the fourth decibel tick mark 
from the left of the scale.) Now transfer this new radius back 
to the main chart, and scribe a new SWR circle of this radius. 
This new radius represents the SWR at the load, and is read as 
2.3 on the external VOLTAGE RATIO scale. At the intersection 
of the new circle and the load radial line, we read 0.65 – j 
0.6. This is the normalized load impedance. Multiplying by 
50, we obtain the actual load impedance as 32.5 – j 30 Ω. 
The SWR in this problem was seen to increase from 1.9 at 
the line input to 2.3 (at I) at the load, with the 1-dB line loss 
taken into consideration.

In the example above, values were chosen to fall 
conveniently on or very near the “tick marks” on the 
1-dB scale. Actually, it is a simple matter to interpolate  
between these marks when making a radius correction. When 
this is necessary, the relative distance between marks for 
each decibel step should be maintained while counting off 
the proper number of steps.

Adjacent to the 1-DB STEPS scale lies a LOSS COEFFICIENT 
scale. This scale provides a factor by which the matched-
line loss in decibels should be multiplied to account for the 
increased losses in the line when standing waves are present. 
These added losses do not affect the SWR or impedance 
calculations; they are merely the additional dielectric and 
copper losses caused by the higher voltages and currents in 
the presence of standing waves. For the above example, from 
Fig 9, the loss coefficient at the input end is seen to be 1.21 (at 
J), and 1.39 (at K) at the load. As a good approximation, the 
loss coefficient may be averaged over the length of line under 
consideration; in this case, the average is 1.3. This means that 
the total losses in the line are 1.3 times the matched loss of the 
line (1 dB), or 1.3 dB.

Smith Chart Procedure Summary

To summarize briefly, any calculations made on the 
Smith Chart are performed in four basic steps, although not 
necessarily in the order listed.
1) Normalize and plot a line input (or load) impedance, and 

construct a constant SWR circle.
2) Apply the line length to the wavelengths scales.
3) Determine attenuation or loss, if required, by means of a 

second SWR circle.
4) Read normalized load (or input) impedance, and convert 

to impedance in ohms.
The Smith Chart may be used for many types of 

problems other than those presented as examples here. The 
transformer action of a length of line—to transform a high 
impedance (with perhaps high reactance) to a purely resistive 
impedance of low value—was not mentioned. This is known 
as “tuning the line,” for which the chart is very helpful, elimi-
nating the need for “cut and try” procedures. The chart may 

also be used to calculate lengths for shorted or open match-
ing stubs in a system, described later in this chapter. In fact, 
in any application where a transmission line is not perfectly 
matched, the Smith Chart can be of value.

ATTENUATION AND Z0 FROM IMPED-
ANCE MEASUREMENTS

If an impedance bridge is available to make accurate 
measurements in the presence of very high SWR values, the 
attenuation, characteristic impedance and velocity factor 
of any random length of coaxial transmission line can be 
determined. This section was written by Jerry Hall, K1TD.

Homemade impedance bridges and noise bridges will 
seldom offer the degree of accuracy required to use this 
technique, but sometimes laboratory bridges can be found as 
industrial surplus at a reasonable price. It may also be possible 
for an amateur to borrow a laboratory type of bridge for the 
purpose of making some weekend measurements. Making 
these determinations is not difficult, but the procedure is not 
commonly known among amateurs. One equation treating 
complex numbers is used, but the math can be handled with 
a calculator supporting trig functions. Full details are given 
in the paragraphs that follow.

For each frequency of interest, two measurements are 
required to determine the line impedance. Just one measure-
ment is used to determine the line attenuation and velocity 
factor. As an example, assume we have a 100-foot length of 
unidentified line with foamed dielectric, and wish to know 
its characteristics. We make our measurements at 7.15 MHz. 
The procedure is as follows.
1) Terminate the line in an open circuit. The best “open circuit” 

is one that minimizes the capacitance between the center 
conductor and the shield. If the cable has a PL-259 connec-
tor, unscrew the shell and slide it back down the coax for a 
few inches. If the jacket and insulation have been removed 
from the end, fold the braid back along the outside of the 
line, away from the center conductor.

2) Measure and record the impedance at the input end of the 
line. If the bridge measures admittance, convert the mea-
sured values to resistance and reactance. Label the values 
as Roc + j Xoc. For our example, assume we measure 85 
+ j179 Ω. (If the reactance term is capacitive, record it as 
negative.)	
 3) Now terminate the line in a short circuit. If a connector 
exists at the far end of the line, a simple short is a mating 
connector with a very short piece of heavy wire soldered 
between the center pin and the body. If the coax has no 
connector, removing the jacket and center insulation from 
a half inch or so at the end will allow you to tightly twist 
the braid around the center conductor. A small clamp or 
alligator clip around the outer braid at the twist will keep 
it tight.

4) Again measure and record the impedance at the input end 
of the line. This time label the values as Rsc ± j X. Assume 
the measured value now is 4.8 – j 11.2 Ω.	
 



 This completes the measurements. Now we reach for the 
calculator. 

As amateurs we normally assume that the characteristic 
impedance of a line is purely resistive, but it can (and does) 
have a small capacitive reactance component. Thus, the Z0 
of a line actually consists of R0 + j X0. The basic equation 
for calculating the characteristic impedance is

0 oc scZ Z Z= ×                                          (Eq 2)
where

Zoc = Roc + jXoc

Zsc = Rsc +jXsc

From Eq 2 the following working equation may be derived.
     
                                                                                     (Eq 3)

The expression under the radical sign in Eq 3 is in the 
form of R + j X. By substituting the values from our example 
into Eq 3, the R term becomes 85 × 4.8 – 179 × (–11.2) = 
2412.8, and the X term becomes 85 × (–11.2) + 4.8 × 179 = 
–92.8. So far, we have determined that 

	

The quantity under the radical sign is in rectangular 
form. Extracting the square root of a complex term is 
handled easily if it is in polar form, a vector value and 
its angle. The vector value is simply the square root of 
the sum of the squares, which in this case is

2 22412.8 92.8 2414.58+ =
The tangent of the vector angle we are seek-

ing is the value of the reactance term divided by the 
value of the resistance term. For our example this is 
arctan –92.8/2412.8 = arctan –0.03846. The angle 
is thus found to be –2.20°. From all of this we have 
determined that

	
Extracting the square root is now simply a matter of 
finding the square root of the vector value, and taking 
half the angle. (The angle is treated mathematically as 
an exponent.)

Our result for this example is Z0 = 49.1/–1.1°. The 
small negative angle may be ignored, and we now know 
that we have coax with a nominal 50-Ω impedance. 
(Departures of as much as 6 to 8% from the nominal 
value are not uncommon.) If the negative angle is 
large, or if the angle is positive, you should recheck 
your calculations and perhaps even recheck the original 
measurements. You can get an idea of the validity of 
the measurements by normalizing the measured values 
to the calculated impedance and plotting them on a 
Smith Chart as shown in Fig 10 for this example. Ide-
ally, the two points should be diametrically opposite, 

but in practice they will be not quite 180° apart and not quite 
the same distance from prime center. Careful measurements 
will yield plotted points that are close to ideal. Significant 
departures from the ideal indicates sloppy measurements, or 
perhaps an impedance bridge that is not up to the task.

Determining Line Attenuation

The short circuit measurement may be used to  
determine the line attenuation. This reading is more 
reliable than the open circuit measurement because a 
good short circuit is a short, while a good open circuit is 
hard to find. (It is impossible to escape some amount of  
capacitance between conductors with an “open” circuit, and 
that capacitance presents a path for current to flow at the RF 
measurement frequency.)

Use the Smith Chart and the 1-DB STEPS external scale to 
find line attenuation. First normalize the short circuit imped-
ance reading to the calculated Z0, and plot this point on the 
chart. See Fig 10. For our example, the normalized impedance 
is 4.8/49.1 – j 11.2 / 49.1 or 0.098 – j 0.228. After plotting 
the point, transfer the radius to the 1-DB STEPS scale. This is 
shown at A of Fig 10.	
    Remember from discussions earlier in this document

Fig 10—Determining the line loss and velocity factor with  
the Smith Chart from input measurements taken with open-
circuit and short-circuit terminations.
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amateurs. One equation treating complex numbers is used,
but the math can be handled with a calculator supporting
trig functions. Full details are given in the paragraphs
that follow.

For each frequency of interest, two measurements
are required to determine the line impedance. Just one
measurement is used to determine the line attenuation and
velocity factor. As an example, assume we have a 100-
foot length of unidentified line with foamed dielectric,
and wish to know its characteristics. We make our mea-
surements at 7.15 MHz. The procedure is as follows.
1) Terminate the line in an open circuit. The best “open

circuit” is one that minimizes the capacitance between
the center conductor and the shield. If the cable has a
PL-259 connector, unscrew the shell and slide it back
down the coax for a few inches. If the jacket and insu-
lation have been removed from the end, fold the braid
back along the outside of the line, away from the cen-
ter conductor.

2) Measure and record the impedance at the input end of
the line. If the bridge measures admittance, convert
the measured values to resistance and reactance. Label
the values as Roc + j Xoc. For our example, assume we
measure 85 + j179 Ω. (If the reactance term is capaci-
tive, record it as negative.)

3) Now terminate the line in a short circuit. If a con-
nector exists at the far end of the line, a simple
short is a mating connector with a very short piece
of heavy wire soldered between the center pin and
the body. If the coax has no connector, removing
the jacket and center insulation from a half inch or
so at the end will allow you to tightly twist the
braid around the center conductor. A small clamp
or alligator clip around the outer braid at the twist
will keep it tight.

4) Again measure and record the impedance at the
input end of the line. This time label the values
as Rsc ± j X. Assume the measured value now is
4.8 – j 11.2 Ω.

 This completes the measurements. Now we reach
for the calculator.

As amateurs we normally assume that the char-
acteristic impedance of a line is purely resistive,
but it can (and does) have a small capacitive reac-
tance component. Thus, the Z0 of a line actually
consists of R0 + j X0. The basic equation for calcu-
lating the characteristic impedance is

0 oc scZ Z Z= ×                                          (Eq 2)

where

Zoc = Roc + jXoc

Zsc = Rsc +jXsc

From Eq 2 the following working equation may be
derived.

Fig 10—Determining the line loss and velocity factor with
the Smith Chart from input measurements taken with
open-circuit and short-circuit terminations.

( ) ( )ocscscocscocscoc0 XRXRXX–RRZ ++= j      (Eq 3)

The expression under the radical sign in Eq 3 is in
the form of R + j X. By substituting the values from our
example into Eq 3, the R term becomes 85 × 4.8 – 179 ×
(–11.2) = 2412.8, and the X term becomes 85 × (–11.2) +
4.8 × 179 = –92.8. So far, we have determined that

Z0 = 92.8–2412.8 j

The quantity under the radical sign is in rectangular
form. Extracting the square root of a complex term is
handled easily if it is in polar form, a vector value and its
angle. The vector value is simply the square root of the
sum of the squares, which in this case is

2414.5892.8+2412.8 22 =

The tangent of the vector angle we are seeking is
the value of the reactance term divided by the value of
the resistance term. For our example this is arctan –92.8/
2412.8 = arctan –0.03846. The angle is thus found to be
–2.20°. From all of this we have determined that

Z0 = °20.2–/58.2414

Extracting the square root is now simply a matter of finding
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amateurs. One equation treating complex numbers is used,
but the math can be handled with a calculator supporting
trig functions. Full details are given in the paragraphs
that follow.

For each frequency of interest, two measurements
are required to determine the line impedance. Just one
measurement is used to determine the line attenuation and
velocity factor. As an example, assume we have a 100-
foot length of unidentified line with foamed dielectric,
and wish to know its characteristics. We make our mea-
surements at 7.15 MHz. The procedure is as follows.
1) Terminate the line in an open circuit. The best “open

circuit” is one that minimizes the capacitance between
the center conductor and the shield. If the cable has a
PL-259 connector, unscrew the shell and slide it back
down the coax for a few inches. If the jacket and insu-
lation have been removed from the end, fold the braid
back along the outside of the line, away from the cen-
ter conductor.

2) Measure and record the impedance at the input end of
the line. If the bridge measures admittance, convert
the measured values to resistance and reactance. Label
the values as Roc + j Xoc. For our example, assume we
measure 85 + j179 Ω. (If the reactance term is capaci-
tive, record it as negative.)

3) Now terminate the line in a short circuit. If a con-
nector exists at the far end of the line, a simple
short is a mating connector with a very short piece
of heavy wire soldered between the center pin and
the body. If the coax has no connector, removing
the jacket and center insulation from a half inch or
so at the end will allow you to tightly twist the
braid around the center conductor. A small clamp
or alligator clip around the outer braid at the twist
will keep it tight.

4) Again measure and record the impedance at the
input end of the line. This time label the values
as Rsc ± j X. Assume the measured value now is
4.8 – j 11.2 Ω.

 This completes the measurements. Now we reach
for the calculator.

As amateurs we normally assume that the char-
acteristic impedance of a line is purely resistive,
but it can (and does) have a small capacitive reac-
tance component. Thus, the Z0 of a line actually
consists of R0 + j X0. The basic equation for calcu-
lating the characteristic impedance is

0 oc scZ Z Z= ×                                          (Eq 2)

where

Zoc = Roc + jXoc

Zsc = Rsc +jXsc

From Eq 2 the following working equation may be
derived.

Fig 10—Determining the line loss and velocity factor with
the Smith Chart from input measurements taken with
open-circuit and short-circuit terminations.

( ) ( )ocscscocscocscoc0 XRXRXX–RRZ ++= j      (Eq 3)

The expression under the radical sign in Eq 3 is in
the form of R + j X. By substituting the values from our
example into Eq 3, the R term becomes 85 × 4.8 – 179 ×
(–11.2) = 2412.8, and the X term becomes 85 × (–11.2) +
4.8 × 179 = –92.8. So far, we have determined that

Z0 = 92.8–2412.8 j

The quantity under the radical sign is in rectangular
form. Extracting the square root of a complex term is
handled easily if it is in polar form, a vector value and its
angle. The vector value is simply the square root of the
sum of the squares, which in this case is

2414.5892.8+2412.8 22 =

The tangent of the vector angle we are seeking is
the value of the reactance term divided by the value of
the resistance term. For our example this is arctan –92.8/
2412.8 = arctan –0.03846. The angle is thus found to be
–2.20°. From all of this we have determined that

Z0 = °20.2–/58.2414

Extracting the square root is now simply a matter of finding
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that the impedance for plotting a short circuit is 0 + j 0, 
at the left edge of the chart on the resistance axis. On 
the 1-DB STEPS scale this is also at the left edge. The 
total attenuation in the line is represented by the num-
ber of dB steps from the left edge to the radius mark  
we have just transferred. For this example it is 0.8 dB. Some 
estimation may be required in interpolating between the 
1-dB step marks.

Determining Velocity Factor

The velocity factor is determined by using the TOWARD 

GENERATOR wavelength scale of the Smith Chart. With a 
straightedge, draw a line from prime center through the point 
representing the short-circuit reading, until it intersects the 
wavelengths scale. In Fig 10 this point is labeled B. Consider 
that during our measurement, the short circuit was the load at 
the end of the line. Imagine a spiral curve progressing from  
0 + j 0 clockwise and inward to our plotted measurement 
point. The wavelength scale, at B, indicates this line length 
is 0.464 λ. By rearranging the terms of Eq 1 given early in 
this chapter, we arrive at an equation for calculating the 
velocity factor.

VF =                                                                 (Eq 4)

where
VF = velocity factor
L = line length, feet
f = frequency, MHz
N = number of electrical wavelengths in the line

Inserting the example values into Eq 4 
yields VF = 100 × 7.15/(984 × 0.464) = 1.566, 
or 156.6%. Of course, this value is an impos-
sible number—the velocity factor in coax can-
not be greater than 100%. But remember, the  
Smith Chart can be used for lengths great-
er than 1/2 λ .  Therefore, that 0.464 val-
ue could rightly be 0.964, 1.464, 1.964, and 
so on. When using 0.964 λ, Eq 4 yields a 
velocity factor of 0.753, or 75.3%. Trying succes-
sively greater values for the wavelength results in 
velocity factors of 49.6 and 37.0%. Because the 
cable we measured had foamed dielectric, 75.3% is 
the probable velocity factor. This corresponds to an 
electrical length of 0.964 λ. Therefore, we have de-
termined from the measurements and calculations 
that our unmarked coax has a nominal 50-Ω imped-
ance, an attenuation of 0.8 dB per hundred feet at 
7.15 MHz, and a velocity factor of 75.3%.

It is difficult to use this procedure with short 
lengths of coax, just a few feet. The reason is that 
the SWR at the line input is too high to permit 
accurate measurements with most impedance 
bridges. In the example above, the SWR at the 
line input is approximately 12:1.

The procedure described above may also be used 
for determining the characteristics of balanced lines. 
However, impedance bridges are generally unbalanced 
devices, and the procedure for measuring a balanced  
impedance accurately with an unbalanced bridge is com-
plicated.

LINES AS CIRCUIT ELEMENTS
Transmission-line sections may also be used as circuit 

elements. For example, it is possible to substitute transmis-
sion lines of the proper length and termination for coils 
or capacitors in ordinary circuits. While there is seldom a 
practical need for that application, lines are frequently used 
in antenna systems in place of lumped components to tune 
or resonate elements. Probably the most common use of such 
a line is in the hairpin match, where a short section of stiff 
open-wire line acts as a lumped inductor.

The equivalent “lumped” value for any “inductor” 
or “capacitor” may be determined with the aid of the 
Smith Chart. Line losses may be taken into account if de-
sired, as explained earlier. See Fig 11. Remember that the 
top half of the Smith Chart coordinate system is used  
for impedances containing inductive reactances, and the 
bottom half for capacitive reactances. For example, a 
section of 600-Ω line 3/16-λ long (0.1875 λ) and short-
circuited at the far end is represented by 1, drawn around 
a portion of the perimeter of the chart. The “load” is a 
short-circuit, 0 + j 0 Ω, and the TOWARD GENERATOR wave-
lengths scale is used for marking off the line length. At A in 

Fig 11—Smith Chart determination of input impedances for short- 
and open-circuited line sections, disregarding line losses.

f L



circuited at the far end, but in the case of 3 the line is ter-
minated in a short. The added section of line for 3 provides 
the “transformer action” for which the 1/4-λ line is noted. 	
     The equivalent inductance and capacitance as determined 
above can be found by substituting these values in the equa-
tions relating inductance and capacitance to reactance, or  
by using the various charts and calculators available. The 
frequency corresponding to the line length in degrees must 
be used, of course. In this example, if the frequency is 14 
MHz the equivalent inductance and capacitance in the two 
cases are 16.4 µH and 46.2 pF, respectively. Note that when 
the line length is 45° (0.125 λ), the reactance in either case is 
numerically equal to the characteristic impedance of the line. 
In using the Smith Chart it should be kept in mind that the 
electrical length of a line section depends on the frequency 
and velocity of propagation, as well as on the actual physi-
cal length.

At lengths of line that are exact multiples of 1/4 λ, such 
lines have the properties of resonant circuits. At lengths where 
the input reactance passes through zero at the left of the Smith 
Chart, the line acts as a series-resonant circuit. At lengths 
for which the reactances theoretically pass from “positive” 
to “negative” infinity at the right of the Smith Chart, the line 
simulates a parallel-resonant circuit.

Designing Stub Matches with 
the Smith Chart

The design of stub matches is covered in detail in Chap-
ter 26. Equations are presented there to calculate 
the electrical lengths of the main line and the 
stub, based on a purely resistive load and on the 
stub being the same type of line as the main line. 
The Smith Chart may also be used to determine 
these lengths, without the requirements that the 
load be purely resistive and that the line types 
be identical.

Fig 12 shows the stub matching arrange-
ment in coaxial line. As an example, suppose 
that the load is an antenna, a close-spaced array 
fed with a 52-Ω line. Further suppose that the 
SWR has been measured as 3.1:1. From this 
information, a constant SWR circle may be 
drawn on the Smith Chart. Its radius is such that 
it intersects the right portion of the resistance 
axis at the SWR value, 3.1, as shown at point 
B in Fig 13.

Since the stub of Fig 12 is connected in 
parallel with the transmission line, determin-
ing the design of the matching arrangement is 
simplified if Smith Chart values are dealt with 
as admittances, rather than impedances. (An 
admittance is simply the reciprocal of the as-
sociated impedance. Plotted on the Smith Chart, 
the two associated points are on the same SWR 
circle, but diametrically opposite each other.) 
Using admittances leaves less chance for errors 

Fig 12—The method of stub matching a mismatched load 
on coaxial lines.

Fig 11 may be read the normalized impedance as seen looking 
into the length of line, 0 + j 2.4. The reactance is therefore 
inductive, equal to 600 × 2.4 = 1440 Ω. The same line when 
open-circuited (termination impedance = ∞, the point at 
the right of the chart) is represented by 2 in Fig 11. At B 
the normalized line-input impedance may be read as 0 – j 
0.41; the reactance in this case is capacitive, 600 × 0.41 = 
246 Ω. (Line losses are disregarded in these examples.) From 
Fig 11 it is easy to visualize that if 1 were to be extended 
by 1/4 λ, the total length represented by 3, the line-input 
impedance would be identical to that obtained in the case 
represented by 2 alone. In the case of 2, the line is open-

Fig 13—Smith Chart method of determining the dimensions for stub 
matching.



in making calculations, by eliminating the need for making 
series-equivalent to parallel-equivalent circuit conversions 
and back, or else for using complicated equations for de-
termining the resultant value of two complex impedances 
connected in parallel.

A complex impedance, Z, is equal to R + j X. The 
equivalent admittance, Y, is equal to G – j B, where G is the 
conductive component and B the susceptance. (Inductance 
is taken as negative susceptance, and capacitance as posi-
tive.) Conductance and susceptance values are plotted and 
handled on the Smith Chart in the same manner as resistance 
and reactance.

Assuming that the close-spaced array of our example  
has been resonated at the operating frequency, it will present 
a purely resistive termination for the load end of the 52-Ω 
line. It is known that the impedance of the antenna equals 
Z0/SWR = 52/3.1 = 16.8 Ω. (We can logically discard the 
possibility that the antenna impedance is SWR × Z0, or 0.06 
Ω.) If this 16.8-Ω value were to be plotted as an impedance 
on the Smith Chart, it would first be normalized (16.8/52 = 
0.32) and then plotted as 0.32 + j 0. Although not necessary 
for the solution of this example, this value is plotted at point 
A in Fig 13. What is necessary is a plot of the admittance for 
the antenna as a load. This is the reciprocal of the impedance; 
1/16.8 Ω equals 0.060 siemen. To plot this point it is first 
normalized by multiplying the conductance and susceptance 
values by the Z0 of the line. Thus, (0.060 + j 0) × 52 = 3.1 
+ j 0. This admittance value is shown plotted at point B in 
Fig 13. It may be seen that points A and B are diametrically 
opposite each other on the chart. Actually, for the solution of 
this example, it wasn’t necessary to compute the values for  
either point A or point B as in the above paragraph, for they 
were both determined from the known SWR value of 3.1. As 
may be seen in Fig 13, the points are located on the constant 
SWR circle which was already drawn, at the two places where 
it intersects the resistance axis. The plotted value for point 
A, 0.32, is simply the reciprocal of the value for point B, 
3.1. However, an understanding of the relationship between 
impedance and admittance is easier to gain with simple ex-
amples such as this.

In stub matching, the stub is to be connected at a point 
in the line where the conductive component equals the Z0 of 
the line. Point B represents the admittance of the load, which 
is the antenna. Various admittances will be encountered along 
the line, when moving in a direction indicated by the TOWARD 

GENERATOR wavelengths scale, but all admittance plots must 
fall on the constant SWR circle. Moving clockwise around 
the SWR circle from point B, it is seen that the line input 
conductance will be 1.0 (normalized Z0 of the line) at point 
C, 0.082 λ toward the transmitter from the antenna. Thus, the 
stub should be connected at this location on the line.

The normalized admittance at point C, the point repre-
senting the location of the stub, is 1 – j 1.2 siemens, having an 
inductive susceptance component. A capacitive susceptance 
having a normalized value of + j 1.2 siemens is required 
across the line at the point of stub connection, to cancel the 
inductance. This capacitance is to be obtained from the stub 
section itself; the problem now is to determine its type of 

termination (open or shorted), and how long the stub should 
be. This is done by first plotting the susceptance required for 
cancellation, 0 + j 1.2, on the chart (point D in Fig 13). This 
point represents the input admittance as seen looking into 
the stub. The “load” or termination for the stub section is 
found by moving in the TOWARD LOAD direction around the 
chart, and will appear at the closest point on the resistance/
conductance axis, either at the left or the right of the chart. 
Moving counterclockwise from point D, this is located at E, 
at the left of the chart, 0.139 λ away. From this we know the 
required stub length. The “load” at the far end of the stub, as 
represented on the Smith Chart, has a normalized admittance 
of 0 + j 0 siemen, which is equivalent to an open circuit. 

When the stub, having an input admittance of 0 + 
 j 1.2 siemens, is connected in parallel with the line at a point 
0.082 λ from the load, where the line input admittance is 1.0 
– j 1.2, the resultant admittance is the sum of the individual 
admittances. The conductance components are added directly, 
as are the susceptance components. In this case, 1.0 – j 1.2 + 
j 1.2 = 1.0 + j 0 siemen. Thus, the line from the point of stub 
connection to the transmitter will be terminated in a load which 
offers a perfect match. When determining the physical line 
lengths for stub matching, it is important to remember that the 
velocity factor for the type of line in use must be considered. 

MATCHING WITH LUMPED CONSTANTS
It was pointed out earlier that the purpose of a matching 

stub is to cancel the reactive component of line impedance 
at the point of connection. In other words, the stub is simply 
a reactance of the proper kind and value shunted across the 
line. It does not matter what physical shape this reactance 
takes. It can be a section of transmission line or a “lumped” 
inductance or capacitance, as desired. In the above example 
with the Smith Chart solution, a capacitive reactance was 
required. A capacitor having the same value of reactance 
can be used just as well. There are cases where, from 
an installation standpoint, it may be considerably more 
convenient to connect a capacitor in place of a stub. This 
is particularly true when open-wire feeders are used. If a 
variable capacitor is used, it becomes possible to adjust the  
capacitance to the exact value required.

The proper value of reactance may be determined 
from Smith Chart information. In the previous example, 
the required susceptance, normalized, was +j 1.2 siemens. 
This is converted into actual siemens by dividing by the 
line Z0; 1.2/52 = 0.023 siemen, capacitance. The required 
capacitive reactance is the reciprocal of this latter value,  
1/0.023 = 43.5 Ω. If the frequency is 14.2 MHz, for instance, 
43.5 Ω corresponds to a capacitance of 258 pF. A 325-pF 
variable capacitor connected across the line 0.082 λ from the 
antenna terminals would provide ample adjustment range. 
The RMS voltage across the capacitor is 

E = 

For 500 W, for example, E = the square root of 500 × 
52 = 161 V. The peak voltage is 1.41 times the RMS value, 
or 227 V.



The Series-Section Transformer
The series-section transformer can be designed graphi-

cally with the aid of a Smith Chart. This information is based 
on a QST article by Frank A. Regier, OD5CG. Using the 
Smith Chart to design a series-section match requires the use 
of the chart in its less familiar off-center mode. This mode is 
described in the next two paragraphs.

Fig 14 shows the Smith Chart used in its familiar cen-
tered mode, with all impedances normalized to that of the 
transmission line, in this case 75 Ω, and all constant SWR 
circles concentric with the normalized value r = 1 at the chart 
center. An actual impedance is recovered by multiplying a 
chart reading by the normalizing impedance of 75 Ω. If the 
actual (unnormalized) impedances represented by a constant 
SWR circle in Fig 14 are instead divided by a normalizing 
impedance of 300 Ω, a different picture results. A Smith Chart 
shows all possible impedances, and so a closed path such as a 
constant SWR circle in Fig 14 must again be represented by 
a closed path. In fact, it can be shown that the path remains 
a circle, but that the constant SWR circles are no longer 
concentric. Fig 15 shows the circles that result when the im-
pedances along a mismatched 75-Ω line are normalized by 
dividing by 300 Ω instead of 75. The constant SWR circles 
still surround the point corresponding to the characteristic 
impedance of the line (r = 0.25) but are no longer concentric 
with it. Note that the normalized impedances read from cor-
responding points on Figs 14 and 15 are different but that 
the actual, unnormalized, impedances are exactly the same.

An Example

Now turn to the example shown in Fig 16. A com-
plex load of ZL = 600 + j 900 Ω is to be fed with 
300-Ω line, and a 75-Ω series section is to be used. These 
characteristic impedances agree with those used in Fig 15, 
and thus Fig 15 can be used to find the impedance variation 
along the 75-Ω series section. In particular, the constant SWR 
circle which passes through the Fig 15 chart center, SWR = 
4 in this case, passes through all the impedances (normalized 
to 300 Ω) which the 75-Ω series section is able to match to 
the 300-Ω main line. The length 1 of 300-Ω line has the job 
of transforming the load impedance to some impedance on 
this matching circle.

Fig 17 shows the whole process more clearly, with all 
impedances normalized to 300 Ω. Here the normalized load 
impedance ZL = 2 + j 3 is shown at R, and the matching 
circle appears centered on the resistance axis and passing 
through the points r = 1 and r = n2 = (75/300)2 = 0.0625. A 
constant SWR circle is drawn from R to an intersection with 
the matching circle at Q or Q′ and the corresponding length 
1 (or 1′) can be read directly from the Smith Chart. The 
clockwise distance around the matching circle represents the 
length of the matching line, from either Q′ to P or from Q to 
P. Because in this example the distance QP is the shorter of 
the two for the matching section, we choose the length 1 as 
shown. By using values from the TOWARD GENERATOR scale, 

this length is found as 0.045 – 0.213, and adding 0.5 to obtain 
a positive result yields a value of 0.332 λ. 

Although the impedance locus from Q to P is shown in Fig 
17, the length 2 cannot be determined directly from this chart. 
This is because the matching circle is not concentric with the 
chart center, so the wavelength scales do not apply to this circle. 
This problem is overcome by forming Fig 18, which is the same 
as Fig 17 except that all normalized impedances have been di-
vided by n = 0.25, resulting in a Smith Chart normalized to 75 
Ω instead of 300. The matching circle and the chart center are 
now concentric, and the series-section length 2, the distance 
between Q and P, can be taken directly from the chart. By again 
using the TOWARD GENERATOR scale, this length is found as 
0.250 – 0.148 = 0.102 λ.

In fact it is not necessary to construct the entire imped-
ance locus shown in Fig 18. It is sufficient to plot ZQ/n (ZQ 
is read from Fig 17) and Zp/n = 1/n, connect them by a cir-
cular arc centered on the chart center, and to determine the 
arc length 2 from the Smith Chart.

Procedure Summary

The steps necessary to design a series-section trans-
former by means of the Smith Chart can now be listed:
1) Normalize all impedances by dividing by the characteristic 

impedance of the main line.
2) On a Smith Chart ,  plot  the normalized load 

impe-dance ZL at R and construct the matching circle 
so that its center is on the resistance axis and it passes 
through the points r = 1 and r = n2.

3)  Construct a constant SWR circle centered on the chart 
center through point R. This circle should intersect the 
matching circle at two points. One of these points, nor-
mally the one resulting in the shorter clockwise distance 
along the matching circle to the chart center, is chosen as 
point Q, and the clockwise distance from R to Q is read 
from the chart and taken to be 1.

4)  Read the impedance ZQ from the chart, calculate ZQ/n 
and plot it as point Q on a second Smith Chart. Also plot 
r = 1/n as point P.

5)  On this second chart construct a circular arc, centered on 
the chart center, clockwise from Q to P. The length of this 
arc, read from the chart, represents 2. The design of the 
transformer is now complete, and the necessary physical 
line lengths may be determined.

The Smith Chart construction shows that two design 
solutions are usually possible, corresponding to the two 
intersections of the constant SWR circle (for the load) and 
the matching circle. These two values correspond to positive 
and negative values of the square-root radical in the equation 
for a mathematical solution of the problem. It may happen, 
however, that the load circle misses the matching circle 
completely, in which case no solution is possible. The cure 
is to enlarge the matching circle by choosing a series section 
whose impedance departs more from that of the main line.



A final possibility is that, rather than intersect-
ing the matching circle, the load circle is tangent to 
it. There is then but one solution—that of the 1/4-λ 
transformer.

BIBLIOGRAPHY
Source material and more extended discussion of 
topics covered in this chapter can be found in the 
references given below and in the textbooks listed at 
the end of the Antenna Fundamentals chapter of The 
ARRL Antenna Book.

W. N. Caron, Antenna Impedance Matching (Newing-
ton: ARRL, 1989).

C. MacKeand, “The Smith Chart in BASIC,” QST, 
Nov 1984, pp 28-31.

M. W. Maxwell, Reflections—Transmission Lines and 
Antennas (Newington: ARRL, 1990).

F. A. Regier, Series-Section Transmission-Line Imped-
ance Matching,” QST, Jul 1978, pp 14-16. 

P. H. Smith, Electronic Applications of the Smith Chart, 
reprint ed. (Malabar, FL: Krieger Pub Co, Inc, 1983).

Fig 15—Paths of constant SWR for SWR = 2, 3, 4 and 5, showing 
impedance variation along 75-Ω line, normalized to 300 Ω. 
Normalized impedances differ from those in Fig 14, but actual 
impedances are obtained by multiplying chart readings by 300 
Ω and are the same as those corresponding in Fig 14. Paths 
remain circles but are no longer concentric. One, the matching 
circle, SWR = 4 in this case, passes through the chart center 
and is thus the locus of all impedances which can be matched 
to a 300-Ω line.

Fig 16—Example for solution by Smith Chart.  All 
impedances are normalized to 300 Ω.

Fig 14—Constant SWR circles for SWR = 2, 3, 4 and 5, showing 
impedance variation along 75-Ω line, normalized to 75 Ω.  The 
actual impedance is obtained by multiplying the chart reading 
by 75 Ω.



Fig 18—The same impedance locus as shown in Fig 17 except 
normalized to 75 Ω instead of 300.  The matching circle is now 
concentric with the chart center, and 2 can be determined directly 
from the chart, 0.102 λ in this case.

Fig 17—Smith Chart representation of the example shown in Fig 
16.  The impedance locus always takes a clockwise direction from 
the load to the generator.  This path is first along the constant SWR 
circle from the load at R to an intersection with the matching circle 
at Q or Q′, and then along the matching circle to the chart center at 
P.  Length 1 can be determined directly from the chart, and in this 
example is 0.332 λ.




