Digital Basics

This supplement to The ARRL
Handbook presents digital theory
fundamentals and some applications
of that theory in Amateur Radio. The
fundamentals introduce digital mathe-
matics, including number systems, logic
devices and simple digital circuits. Next,
the implementation of these simple
circuits is explored in integrated circuits,
their families and interfacing. Finally,
some Amateur Radio applications are
discussed involving digital logic, em-
bedded microcontrollers and interfacing
to personal computers. This material
was written by Dale Botkin, NOXAS,
building on material in previous editions
by Christine Montgomery, KGOGN and
Paul Danzer, N1II.

Copyright® 2017 ARRL, all rights reserved.

1 Digital vs Analog

Ananalog signal canrepresent an infinitely variable indication of voltage, current, frequency,
the position of a dial, or some other condition or value. As an example, using a potentiometer
as a volume control will give you infinitely variable control over the volume of a signal. In
theory, there is no limit to the difference in volume that can be produced. Though the control
may be marked from 1 to 10, the actual value would have to be represented by a real number
somewhere between 0 and 10. There are an infinite number of settings in between.

In its simplest form, a digital signal simply indicates the on or off state of some value or
input signal. For example, the straight key you may use to key your CW transmitter (or the
PTT switch of your voice transmitter) produces an on or off binary signal. In one state the
transmitter produces an output signal of some sort; in the other state it does not. Another
example is a simple light switch. The light is either on, or it’s off. We represent these two
states using O for off and 1 for on.

Digital electronics gets more interesting when we combine several or many simple on/off
digital states to perform more complex tasks. For example, a relatively simple digital circuit
can connect the antenna to either the transmitter or the receiver depending on a PTT or other
keying signal. It can turn a preamp on or off depending on the state of the transmitter, mute
the speaker while transmitting, and even select an antenna based on the selected frequency
band. No special digital integrated circuits (chips) are needed to do any of these tasks; we can
simply use bipolar transistors or MOSFETS, driven to saturation, as on/off switches. Simple
circuits like this can often even be implemented with relays or diodes. The important fact is
that the system is digital. There is no “almost transmitting” or “PTT switch partially pressed”
state — it’s either on, or it’s off.

A very useful aspect of digital electronics is our ability to construct simple circuits that can
maintain their on/off state indefinitely, until
some event causes them to change. These
Alip-flop circuits can be used in various com-
binations to form registers that store infor-
mation for later use or counters that count
events and can be read or reset when needed. 4
All of these circuits can be combined in ever
larger groups until we finally arrive at the
modern microprocessor. A microprocessor
can accept input signals from many sources,
follow a stored program to perform complex
data storage and mathematical calculations,
and produce output that we can use to do
things that would be far more difficult with
analog circuits.

So let’s revisit our volume control exam-
ple from the earlier paragraph. Let’s assume
we have a volume control, but it is used as
an input to a digital system that will pro-
duce output at the desired level. This is quite

Analog Signal HBK05_05-52

Quantized Analog
Approximations

Voltage

Time ——=

Figure 1 — An analog signal and its
analog approximation. Note that the
analog waveform has continuously
varying voltage while the approximated
waveform is composed of discrete steps.

Digital Basics 1

common in modern equipment, whether it is
amateur or consumer gear. Since the control
isnow digital, we know we can’t have an infi-
nite number of values. However, a simple on/
off volume control would not be very useful.
Using digital electronics, we can break the
range between “off” and “fully on” into as
many discrete steps as we need. With enough
steps, we can give the user of the equipment
an approximation of the original analog con-

2 Number Systems

If you have been around computer hob-
byists, some of whom are also hams, you
may have seen a T-shirt or bumper sticker
that reads, “There are 10 kinds of people in
the world: those who understand binary, and
those who don’t.” If this has puzzled you in
the past, after reading this chapter you will
be able to laugh with the rest of us.

In order to understand digital electronics,
you must first understand the binary num-
bering system. Any number system has two
distinctcharacteristics: asetof symbols (digits
or numerals) and a base or radix. A number
is a collection of these digits, where the left-
most digit is the most significant digit (MSD)
and the right-most digit is the least signifi-
cant digit (LSD). The value of this number
is a weighted sum of its digits. The weights
are determined by the system’s base and the
digit’s position relative to the decimal point.

While these definitions may seem strange
with all the technical terms, they will be

trol while keeping the actual control digital.

By using coding, as discussed in the follow-
ing pages, the two binary values (off and on,
or 0 and 1) can represent any number of real
values. Figure 1 illustrates the contrast of an
analog signal (in this case a sine wave) and its
digital approximation. Four positive and four
negative values are shown as an approxima-
tion to the sine wave, but any number of coded
value steps can be used as an approximation.

more familiar when seen in a decimal sys-
tem example. See Table 1. This is the “tra-
ditional” number system with which we are
all familiar. In the base-10 or decimal num-
bering system we use every day, the digits
used are O through 9. The weights are powers
of ten: 100 or 1 for the right-most column,
10! or 10 for the next column, 102 or 100
for the next and so on. Thus the number 548
represents five hundreds, four tens and eight
ones. In this case, 5 is the MSD, and 8 is the
LSD. Once you understand this concept, it
can be applied to numbering systems using
bases other than 10 such as base-2, base-8,
or even base-16.

2.1 Binary

Binary is a base-2 number system and
therefore limited to two symbols: {0, 1}. The
weight factors are now powers of 2, like 20,21
and 22. For example, the decimal number, 163

The more values are used to approximate the
wave, the closer you can come to the actual
wave form.

While the focus in this chapter will be on
digital theory, many circuits and systems
involve both digital and analog components.
Often, a designer may choose between using
digital technology, analog technology or a
combination.

and its equivalent binary number, 10100011,
are shown in Table 2.

The digits of a binary number are now bits
(short for binary digit). The MSD is the most
significant bit (MSB) and the LSD is the least
significant bit (LSB). Four bits make a nib-
ble (which you will occasionally see spelled
nybble) and two nibbles, or eight bits, make a
byte. The length of a word is dependent upon
the hardware; it generally can consist of two
or four or more bytes, but occasionally will be
some other number of bits. These groupings
are useful when converting to hexadecimal
notation, which is explained later. It is impor-
tant to remember that while everyone agrees
on the meaning of a bit, a nibble (regardless
of spelling) and a byte, the meaning of word
can vary.

Counting in binary follows the same
pattern we would use for decimal or
any other number system. Consider the three
digit binary number XXX. First fill up the
right-hand column.

Binary Decimal
Tabl_e 1 Number Equivalent
Decimal Numbers 0000 0
Example: 548 0001 1
Digit = 5; Weight = 10; Position = 2 The column has been filled, and much
_ P 1 0 quicker than with decimal, since there are
548 _ gg 80; : 388)) : 28?) only two values instead of 10. But just as we
- 500 + 40 + 8 would with a decimal number, we now reset
=5 4 8 the right-hand column to 0, increase the next
MSD LSD column by 1, and continue.
Table 2
Decimal and Binary Number Equivalents
163 = 128 + 0 + 32 + 0 + 0 +0 + 2+ 1 decimal
= 1(128) + 0(64) + 1(32) + 0(16) + 0(8) +0(4) + 1(2) +1(1)
= 1(27) + 026 + 1(25) + 024 + 0(23) +0(22) + 121 +1(20)
10100011 = 1 0 1 0 0 0 1 1 binary
MSB LSB
I I I |
Nibble Nibble
| |
Byte = 8 digits

2 Digital Basics

0010 2
0011 3

Now the first two columns are full, so reset
both back to 0 and increase the next column
by 1 and continue:

0100
0101
0110
0111
1000

0NN n B

111 15
And so on.

2.2 Hexadecimal

The hexadecimal, or hex, base-16 number
system is widely used in computer systems
for its ease in conversion to and from binary
numbers and the fact that itis somewhat more
human-friendly than long strings of 1s and
0Os. A base-16 number requires 16 symbols.
Since our normal mathematical number, as
set up in the decimal system, has only 10
digits (0 through 9), a set of additional new
symbols is required. Hex uses both numbers
and characters in its set of sixteen symbols:
{0,1,2,3,4,5,6,7,8,9,A,B,C,D, E, F}.
Here, the letters A to F have the decimal
equivalents of 10 to 15 respectively: A=10,
B=11,C=12,D=13, E=14 and F=15. Again,
the weights are powers of the base, such as
160, 16! and 162.

The four-bit binary listing in the previous
paragraph shows that the individual 16 hex
digits can be represented by a four-bit binary
number. Since a byte is equal to eight binary
digits, two hex digits provide a byte — the
equivalent of 8 binary digits. Conversion from
binary to hex is therefore simplified. Take a
binary number, divide it into groups of four
binary digits starting from the right, and con-
vert each of the four binary digits to an indi-
vidual value.

Conversion from hex to binary is equally
convenient; simply replace each hex digit with
its four-bit binary equivalent. As an example,
the decimal number 163 is shownin Table 2 as
binary 10100011. Divide the binary number
in groups of four, so 1010 is equivalent to
decimal 10 or “A” hex, and 0011 is equivalent
to decimal 3, thus decimal number 163 is
equivalent to hex A3.

2.3 Binary Coded Decimal
(BCD)

The binary number system representation
is the most appropriate form for fast internal
computations since there is a direct math-
ematical relationship for every bit in the num-
ber. To interface with a human user — who
usually wants to see inputs and outputs in
terms of decimal numbers — other codes
are more useful. The Binary Coded Decimal

(BCD) system is asimple method for convert-
ing binary values to and from decimal for
inputs and outputs for user-oriented digital
systems. Back in the days when the most
common method of presenting output to a
user was via seven-segment LED displays,
BCD was widely used. Since we now mostly
use powerful microprocessors that can easily
present information in decimal form, BCD is
notnearly ascommon as itonce was. You may,
however, run into BCD when using or repair-
ing older digital gear. It is also used in some
chips intended for use in digital voltmeters.

In the BCD system, each decimal digit is
expressed as a corresponding 4-bit binary
number. In other words, the decimal digits
0 to 9 are encoded as the bit strings 0000 to
1001. To make the number easier to read, a
space is left between each 4-bit group. For
example, the decimal number 163 is equiva-
lent to the BCD number 0001 0110 0011, as
shown in Table 3.

The important difference between BCD
and the previous number systems is that, start-
ing with decimal 10, BCD loses the standard
mathematical relationship of a weighted sum.
BCDis simply a cut-off hexadecimal. Instead
of using the 4-bit code strings 1010 to 1111
for decimal 10 to 15, BCD uses 0001 0000
to 0001 0101. This is one of the reasons that
we have moved away from BCD.

2.4 Conversion Techniques

An easy way to convert a number from
decimal to another number system is to do
repeated division, recording the remainders

in a tower just to the right. The converted
number, then, is the remainders, reading up
the tower. This technique is illustrated in
Table 4 for hexadecimal and binary conver-
sions of the decimal number 163.

Forexample, to convert decimal 163 to hex,
repeated divisions by 16 are performed. The
first division gives 163/16 = 10 remainder 3.
The remainder 3 is written in a column to the
right. The second division gives 10/16 = 0
remainder 10. Since 10 decimal = A hex, A is
written in the remainder column to the right.
This division gave a divisor of 0 so the pro-
cess is complete. Reading up the remainders
column, the result is A3. The most common
mistake in this technique is to forget that the
Most Significant Digit ends up at the bottom.

Another technique that should be briefly
mentioned can be even easier: use a calculator
with a binary and/or hex mode option. Many
inexpensive and readily available calculators
intended for scientific and programming use
will convert between number systems quite
easily. In addition, calculator programs are
available for all types of personal computers
regardless of the operating system used.

One warning for this technique: this chap-
ter doesn’t discuss negative binary numbers.
Ifyour calculator does not give you the answer
you expected, it may have interpreted the
number as negative. This would happen when
the number’s binary form has a 1 in its MSB,
such as the highest (leftmost) bit for the binary
mode’s default size. To avoid learning about
negative binary numbers the hard way, always
use a leading O when you enter a number in
binary or hex into your calculator.

Table 3
Binary Coded Decimal Number Conversion
0O 0 O 1 0 1 0 0o O 1 1 BCD
I | I | | |
= 1(20) 1(22) + 1(21) 1(21) + 1(20)
= (1) (4 +2) 2+1)
163 = 1 6 3 decimal
Table 4
Number System Conversions
Hex Remainder Binary Remainder
16 |163 2 1163
10 3 LSB 181 1 LSB
[0 A MSB 140 1
120 0
|10 0
15 0
12 1
11 0
[0 1 MSB
A3 hex 1010 0011 binary

Digital Basics 3

3 Physical Representation of Binary States

3.1 State Levels

Mostdigital systems use the binary number
system because many simple physical sys-
tems are most easily described by two state
levels (0 and 1). For example, the two states
may represent “on” and “off” or a “mark’ and
“space” inacommunications transmission. In
electronic systems, state levels are physically
represented by voltages. A typical choice is
state 0 =0V
state 1 =5V

Since it is unrealistic to obtain these exact
voltage values, a more practical choice is a
range of values, such as
state 0=0.0t0 04 V
state 1 =2.4t05.0 V

Figure 2 illustrates this representation of
states by voltage levels. The undefined region
between the two binary states is alsoknown as
the transition region or noise margin.

3.2 Transition Time

The gap in Figure 2, between binary 0 and
binary 1, shows that a change in state does
not occur instantly. There is a transition time
between states. This transition time is a result
of the time it takes to charge or discharge the
stray capacitance in wires and other compo-
nents because voltage cannot change instanta-
neously across a capacitor. (Stray inductance
in the wires also has an effect because the
current through an inductor can’t change
instantaneously.) The transition from a 0 to
a 1 state is called the rise time, and is usually
specified as the time for the pulse to rise from
10% of its final value to 90% of its final value.
Similarly, the transition from a 1 to a O state
is called the fall time, with a similar 10% to
90% definition. Note that these times need not
be the same. Figure 3A shows an ideal signal,
or pulse, with zero-time switching. Figure 3B
shows a typical pulse, as it changes between
states in a smooth curve.

Rise and fall times vary with the logic fam-
ily used and the location in a circuit. Typical
values of transition time are in the microsec-
ond to nanosecond range. In a circuit, distrib-
uted inductances and capacitances in wires or

Volts HBK05_05-53
5
Binary 1
24
} Undefined
0'2 Binary 0 7

Figure 2 — Representation of binary
states 1 and 0 by a selected range of
voltage levels.

PC-board traces may cause rise and fall times
to increase as the pulse moves away from the
source. One reason rise and fall times may be
of interest to the radio designer is because of
the possibility of generating RF noise in a
digital circuit.

3.3 Propagation Delay

Rise and fall times only describe a relation-
ship within a pulse. For a circuit, a pulse input
into the circuit must propagate through the
circuit; in other words it must pass through
each component in the circuit until eventually
it arrives at the circuit output. The time delay
between providing an input to a circuit and
seeing a response at the output is the propa-
gation delay and is illustrated by Figure 4.

For modern switching logic, typical
propagation delay values are in the 1 to 15
nanosecond range. (It is useful to remem-
ber that the propagation delay along a wire
or printed-circuit-board trace is about 1.0 to
1.5 ns per inch.) Propagation delay is the
result of cumulative transition times as well
as transistor switching delays, reactive ele-
ment charging times and the time for signals
to travel through wires. In complex circuits,
different propagation delays through different
paths can cause problems when pulses must
arrive somewhere at exactly the same time.

The effect of these delays on digital devices
can be seen by looking at the speed of the
digital pulses. Most digital devices use clock

4 Combinational Logic

Having defined a way to use voltage levels
to physically represent digital numbers, we
can apply digital signal theory to design use-
ful circuits. Digital circuits combine binary
inputs to produce a desired binary output or
combination of outputs. This simple combi-
nation of Os and 1s can become very power-
ful, implementing everything from simple
switches to powerful computers.

4 Digital Basics

A digital circuit falls into one of two types:
combinational logic or sequential logic. In
a combinational logic circuit, the output
depends only on the present inputs (if we
ignore propagation delay). In contrast, in a
sequential logic circuit, the output depends on
the present inputs, the previous sequence of
inputs and often a clock signal. Later sections
of this chapter will examine some circuits

Volts
5
0 1
0
Time—
(A)
Volts Rise Time Fall Time

I

1
Time—>
HBKO05_05-54 (B)

Figure 3 — (A) An ideal digital pulse and
(B) a typical actual pulse, showing the
gradual transition between states.

Input Signal

|
|
Input . Qutput |
Digital

O Circuit O :
|
|
Output Signal |

Propagation

Delay

HBK05_05-55 Time—»

Figure 4 — Propagation delay in a digital
circuit.

pulses. If two pulses are supposed to arrive at
a logic circuit at the same time, or very close
to the same time, the path length for the two
signals cannot be any different than two to
three inches. This can be a very significant
design problem for high-speed logic designs.

built using the basics established here.

4.1 Boolean Algebra and the
Basic Logical Operators
Combinational circuits are composed of
logic gates, which perform binary operations.
Logic gates manipulate binary numbers, so
you need an understanding of the algebra of

binary numbers to understand how logic gates
operate. Boolean algebra is the mathematical
systemused to describe and design binary dig-
ital circuits. It is named after George Boole,
the mathematician who developed the system.
Standard algebra has a set of basic operations:
addition, subtraction, multiplication and divi-
sion. Similarly, Boolean algebra has a set of
basic operations, called logical operations:
NOT, AND and OR.

The function of these operators can be
described by either a Boolean equation or a
truth table. A Boolean equation describes an
operator’s function by representing the inputs
and the operations performed on them. An
equation is of the form “B = A,” while an
expression is of the form “A.” In an assign-
ment equation, the inputs and operations
appear on the right and the result, or output,
is assigned to the variable on the left.

A truth table describes an operator’s func-
tion by listing all possible inputs and the corre-
sponding outputs. Truth tables are sometimes
written with Ts and Fs (for true and false)
or with their respective equivalents, 1s and
0Os. In company databooks (catalogs of logic
devices acompany manufactures), truth tables
are usually written with Hs and Ls (for high
and low). In the figures, 1 will mean high and
0 will mean low. This representation is called
positive logic. The meaning of different logic
types and why they are useful is discussed in
a later section.

Each Boolean operator also has two circuit
symbols associated with it. The traditional
symbol —used by ARRL and other US publi-
cations—appears on top ineach of the figures;
for example, the triangle and bubble for the
NOT function in Figure 7. In the traditional
symbols, a small circle, or bubble, always
represents “NOT.” (This bubble is called a
state indicator.)

Appearing just below the traditional sym-
bol is the newer ANSI/IEEE Standard sym-
bol. This symbol is always a square box with
notations inside it. In these newer symbols, a
small triangular flag represents “NOT.” The
new notation is an attempt to replace the
detailed logic drawing of a complex func-
tion with a simpler block symbol. Adoption
of the newer symbols has been spotty, and
you are therefore still more likely to see the
traditional symbols for basic logic functions
than the ANSI/IEEE symbols.

4.2 Common Gates

Figures 5, 6 and 7 show the truth tables,
Boolean algebra equations and circuit sym-
bols for the three basic Boolean operations:
AND, OR and NOT, respectively. All combi-
national logic functions, no matter how com-
plex, can be described in terms of these three
operators. Each truth table can be converted
into words. The truth table for the two-input
AND gate can be expressed as “the output C

LOGIC BOOLEAN TRUTH
SYMBOL EQUATION TABLE
A w—
c AlB]cC
B —
C=A'B 0fojo
C=AB of1]0
A—qg & 11010
——C
B — 1 1 1
AND HBKO5_05-56

Figure 5 — Two-input AND gate.

LOGIC BOOLEAN TRUTH
SYMBOL EQUATION TABLE
A—Y c
AlB|cC
B—1
ofo]o
C=A+B NERE
A—m =21 1 0 1
—cC
B —| B K
OR HBKO05 05-57
Figure 6 — Two-input OR gate.
LOGIC BOOLEAN TRUTH
SYMBOL EQUATION TABLE
A—Do— B
Al B
B=A o1
1 1]o0
A— B

NOT

(INVERTER) HBKO05_05-58

Figure 7 — Inverter.

is a 1 only when the inputs are both 1s.” This
can be seen by examining the output column
C — it remains at a 0 and becomes a 1 only
when the input column A and the input col-
umn B are both 1s — the last line of the table.

The NOT operation is also called inver-
sion, negation or complement. The circuit that
implements this function is called an inverter
or inverting buffer. The most common nota-
tion for NOT is abar over a variable or expres-
sion. For example, NOT A is denoted A. This
is read as either “Not A” or as “A bar.” A less
common notation is to denote Not A by A',
which is read as “A prime.” You will also see
various other notations in schematic diagrams
and component data sheets, such as a leading
exclamation point or has symbol — !A or #A
indicating “Not A.”

While the inverting buffer and the nonin-
verting buffer covered later have only one
input and output, many combinational logic
elements can have multiple inputs. When a
combinational logic element has two or more
inputs and one output, it is called a gate. (The
term “gate” has a number of different but

specific technical uses. For a clarification of
the many definitions of gate, see the section
on Synchronicity and Control Signals, later
in this chapter.) For simplicity, the figures and
truth tables for multiple-input elements will
show the operations for only two inputs, the
minimum number. Remember, though, that
it is quite common to have gates with more
than two inputs. A three-, four-, or eight-input
gate works in the exact same manner as a
two-input gate.

The output of an AND functionis 1 only if
all of the inputs are 1. Therefore, if any of the
inputs are 0, then the output is 0. The notation
for an AND is either a dot (¢) between the
inputs, as in C = A*B, or nothing between the
inputs, as in C = AB. Read these equations as
“C equals A AND B”

The OR gate detects if one or more inputs
are 1. In other words, if any of the inputs are 1,
then the output of the OR gate is 1. Since this
includes the case where more than one input
may be 1, the OR operationis alsoknownas an
INCLUSIVE OR. The OR operation detects
if at least one input is 1. Only if all the inputs
are 0, then the output is 0. The notation for
an OR is a plus sign (+) between the inputs,
as in C = A + B. Read this equation as “C
equals A OR B.”

4.3 Additional Gates

More complex logical functions are
derived from combinations of the basic logi-
cal operators. These operations — NAND,
NOR, XOR and the noninverter or buffer
— are illustrated in Figures 8 through 11,
respectively. As before, each is described by
a truth table, Boolean algebra equation and
circuit symbols. Also as before, except for the
noninverter, each could have more inputs than
the two illustrated.

The NAND gate (short for NOT AND)
is equivalent to an AND gate followed by a
NOT gate. Thus, its output is the complement
of the AND output: The output is a O only if
all the inputs are 1. If any of the inputs is O,
then the outputisa 1.

The NOR gate (short for NOT OR) is
equivalent to an OR gate followed by a NOT
gate. Thus, its output is the complement of
the OR output: If any of the inputs are 1, then
the output is a 0. Only if all the inputs are 0,
then the outputisa 1.

The operations so far enable a designer to
determine two general cases: (1) if all inputs
have a desired state or (2) if at least one input
has adesired state. The XOR and XNOR gates
enable a designer to determine if one and only
one input of a desired state is present.

The XOR gate (read as EXCLUSIVE OR)
is a combination of an OR and a NAND gate.
It has an output of 1 if one and only one of the
inputs is a 1 state. The output is O otherwise.
The symbol for XOR is @. This is easy to
remember if you think of the “+” OR symbol

Digital Basics 5

LOGIC BOOLEAN TRUTH
SYMBOL EQUATION TABLE
A —
c AlB|C
B —
ofo|1
C=A-B 0 1 1
A—p & 1 0 1
d— C
B — 1 110
NAND HBK05_05-59

Figure 8 — Two-input NAND gate.

LOGIC BOOLEAN TRUTH
SYMBOL EQUATION TABLE
I >
AlB]C
B
—‘ oJof1
C=A+B o111 o
A—q 21 1]10]0
pb—— C
B — 111]0
NOR HBK05_05-60

Figure 9 — Two-input NOR gate.

LOGIC BOOLEAN TRUTH
SYMBOL EQUATION TABLE
A
¢ Als]c
B - -
C=AB+AB 0jojo
C=A®B ol
A— =1 1o+
B — c 111]o0
XOR
(EXCLUSIVE OR) HBK05_05.61

Figure 10 — Two-input XOR gate.

LOGIC BOOLEAN TRUTH

SYMBOL EQUATION TABLE
A—D— B

AlB

B=A ofjo

BUFFER HBK05_05-62

Figure 11 — Noninverting buffer.

enclosed in an “O” for only one.

The XOR gate is also known as a “half
adder,” because in binary arithmetic it does
everything but the “carry” operation. The fol-
lowing examples show the possible binary
additions for a two-input XOR.

A 0 0 1 1
B 0 1 0 1
Sum 0 1 1 0

The XNOR gate (read as EXCLUSIVE

6 Digital Basics

NOR) is the complement of the XOR gate.
The output is O if one and only one of the
inputsisa 1. The outputis 1 either if all inputs
are 0 or more than one input is 1.

NONINVERTERS (BUFFERS)

A noninverter, also known as a buffer,
amplifier or driver, at first glance does not
seem to do anything. It simply receives an
inputand produces the same output. Inreality,
it is changing other properties of the signal
in a useful fashion, such as amplifying the
current level. While not useful for logical
operations, applications of a noninverter
include providing sufficient current to drive
a number of gates or some other circuit such
asarelay;interfacing between two logic fami-
lies; obtaining a desired pulse rise time; and
providing a slight delay to make pulses arrive
at the proper time.

TRI-STATE GATES

Under normal circumstances, a logic ele-
ment can drive or feed several other logic
elements. A typical AND gate might be able
to drive or feed 10 other gates. This is known
as fan-out. However, with certain exceptions
only one gate output can be connected to a
single wire. If you have two possible driving
sources to feed one particular wire, some logic
network that probably includes a number OR
gates must be used.

In many applications, including comput-
ers, data is routed internally on a set of wires
called buses. The data on the bus can come
from many circuits or drivers, and many other
devices may be listening on the bus. To elimi-
nate the need for the network of OR gates to
drive each bus wire, a set of gates known as
tri-state gates are used.

The symbol and truth table for a tri-state
gate are shown in Figure 12. A tri-state gate
can be any of the common gates previously
described, but with one additional control
lead. When this lead is enabled (it can be
designed to allow either a O or a 1 to enable
it) the gate operates normally, according to
the truth table for that type of gate. However,
when the gate is not enabled, the output goes
to a high impedance (Hi-Z), and so far as
the output wire is concerned, the gate does
not exist.

Each device that has to send data down a
bus wire is connected to the bus wire through
a tri-state gate. However, as long as only one
device, through its tri-state gate, is enabled,
itis as though all the other connected tri-state
gates do not exist.

4.4 Boolean Theorems

The analysis of a circuit starts with a logic
diagram and then derives a circuit description.
In digital circuits, this description is in the
form of a truth table or logical equation. The

LOGIC TRUTH
SYMBOL TABLE
A | Control | B
A_I?_B 0 | Enabled | 0
1 | Enabled | 1
Control
0 | Disabled [Hi-Z
HBKO5_05-63 1 | Disabled |Hi-Z

Figure 12 — Tri-State gate.

synthesis, or design, of a circuit goes in the
reverse: starting with an informal description,
determining an equation or truth table and
then expanding the truth table to components
that will implement the desired response. In
both of these processes, we need to either sim-
plify or expand a complex logical equation.

To manipulate an equation, we use math-
ematical theorems. Theorems are statements
thathave been proven to be true. The theorems
of Boolean algebra are very similar to those
of standard algebra, such as commutivity and
associativity. Proofs of the Boolean algebra
theorems can be found in an introductory
digital design textbook.

BASIC THEOREMS

Table 5 lists the theorems for a single vari-
able and Table 6 lists the theorems for two
or more variables. These tables illustrate the
principle of duality exhibited by the Boolean
theorems: Each theorem has a dual in which,
after swapping all ANDs with ORs and all 1s
with Os, the statement is still true.

The tables also illustrate the precedence of
the Boolean operations: the order in which
operations are performed when not speci-
fied by parenthesis. From highest to lowest,
the precedence is NOT, AND then OR. For
example, the distributive law includes the
expression “A + BeC.” This is equivalent to

§ EQUIVALENT BOOLEAN
‘g LOGIC SYMBOLS EQUATION
!
H

(A) (8) (©)

Figure 13 — Equivalent gates from
DeMorgan’s Theorem: Each gate in column
A is equivalent to the opposite gate in
column B.The Boolean equations in
column C formally state the equivalences.

“A + (B*C).” The parenthesis around (B*C)
can be left out since an AND operation has
higher priority than an OR operation. Prece-
dence for Boolean algebra is similar to the
convention of standard algebra: raising to a
power, then multiplication, then addition.

DeMORGAN’S THEOREM

One of the most useful theorems in Boolean
algebra is DeMorgan’s Theorem:

AeB=A+B
and its dual
A+B=As.B.

Table 5
Boolean Algebra Single Variable
Theorems

The truth table in Table 7 proves these
statements. DeMorgan’s Theorem provides
a way to simplify the complement of a large
expression. It also enables a designer to
interchange a number of equivalent gates, as
shown by Figure 13.

The equivalent gates show that the dual-
ity principle works with symbols the same
as it does for Boolean equations: just swap
ANDs with ORs and switch the bubbles. For
example, the NAND gate — an AND gate
followed by an inverter bubble — becomes
an OR gate preceded by two inverter bubbles.
DeMorgan’s Theorem is important because
it means any logical function can be imple-
mented using either inverters and AND gates
or inverters and OR gates. Also, the ability
to change placement of the bubbles using
DeMorgan’s Theorem is useful in dealing
with mixed logic, to be discussed next.

POSITIVE AND NEGATIVE LOGIC

a signal performs a named action or denotes a
condition when it is “high” or 1. In negative
logic, or low true, a lower voltage means true
(1) and a higher voltage means false (0). An
active low signal performs an action or denotes
a condition when it is “low” or 0.

In both logic types, true = 1 and false = 0;
but whether true means high or low differs.
Company databooks are drawn for general
truth tables: an H for high and an L for low.
(Some tables also have an X fora “don’t care”
state. “Don’t care” means that the output does
not depend on the state of that variable.) The
function of the table can differ depending on
whether it is interpreted for positive logic or
negative logic.

Device data sheets often show positive
logic convention, or positive logic is assumed.
However, a signal into an IC is represent-
ed with a bar above it, indicating that the
“enable” on that wire is active low — it does

Identities: Asi=A A+0=A not mean negative logic (0 V = a logical 1)
Null elements: Ae0=0 A+1=1 The truth tables shown in the figures in this is used! Similarly a bubble on the input of a
Idempotence: AsA=A A+A=A chapteraredrawnforpositivelogic.Inpositive logic element also usually means active low.
Complements: AeA=0 A+A=1 logic, or hightrue,ahigher voltage meanstrue ~ These can be sources of confusion.
Involution: A=A (logic 1) while a lower voltage means false Figure 14 shows how a general truth table
(logic0). Thisis alsoreferredtoas active high: ~ differs when interpreted for different logic
types. The same truth table gives two equiva-
lent gates: positive logic gives the function of
Table 6
Boolean Algebra Multivariable Theorems
Commutativity: AeB=B°A
A+B=B+A AB|C A B|C A B|C
LL|H 001 T 1[0
Associativity: (AeB)eC=A+(B*C) L HIH 0 1)1 10]0
(A+B)+C=A+(B+0C) HLIH o1 0 110
HH|L 11]0 001
Distributivity: (A+B)s(A+C)=A+B+C
A*B+A*C=A*B+0C)
Covering: A (A+B)=A — > :D°_
A+A*B=A %
. _ g (A) (B) (©)
Combining: (A+B)e(A+B)=A T True =1 =High True =1 =Low
AeB+A*B=A
Consensus: AeB+A sC+BeC=A*B+A*C Figure 14 — (A) A general truth table,
(A + B) ° (K + C) ° (B + C) — (A + B) ° (ﬂ + C) (B) a truth table and NAND symbol for
A+AB=A+B positive logic and (C) a truth table and
NOR symbol for negative logic.
Table 7
DeMorgan's Theorem
(A)A*B=A+B
(B)A+B=A*B
(©)
(1) 2 ®)) 5) (6)) 8) 9) (10)
A B A B AsB A*B A+B A+B A*B A+B
0 0 1 1 0 1 0 1 1 1
0 1 1 0 0 1 1 0 0 1
1 0 0 1 0 1 1 0 0 1
1 1 0 0 1 0 1 0 0 0

(A) and (B) are statements of DeMorgan’s Theorem. The truth table at (C) is proof of these statements: (A) is proven by the
equivalence of columns 6 and 10 and (B) by columns 8 and 9.

Digital Basics 7

a NAND gate while negative logic gives the
function of a NOR gate.

Note that these gates correspond to the
equivalent gates from DeMorgan’s Theorem.
A bubble on an input or output terminal indi-
cates an active low device. The absence of
bubbles indicates an active high device.

Like the bubbles, signal names can be used
to indicate logic states. These names can aid
the understanding of a circuit by indicating
control ofanaction (GO,/ENABLE) or detec-
tion of a condition (READY, /ERROR). The
action or condition occurs when the signal is

5 Sequential Logic

The previous section discussed combina-
tional logic, whose outputs depend only on
the present inputs. In contrast, in sequential
logic circuits, the new output depends notonly
on the present inputs but also on the present
outputs. The present outputs depended on the
previous inputs and outputs and those earlier
outputs depended on even earlier inputs and
outputs and so on. Thus, the present outputs
depend on the previous sequence of inputs and
the system has memory. Having the outputs
become part of the new inputs is known as
feedback.

5.1 Synchronicity and Control
Signals

When a combinational circuit is given a
set of inputs, the outputs take on the expected
values after a propagation delay during which
the inputs travel through the circuit to the out-
put. In asequential circuit, however, the travel
through the circuitis more complicated. After
application of the firstinputs and one propaga-
tion delay, the outputs take on the resulting
state; but then the outputs start trickling back
through and, after a second propagation delay,
new outputs appear. The same happens after
a third propagation delay. With propagation
delays in the nanosecond range, this cycle
around the circuit is rapidly and continually
generating new outputs. A user needs to know
when the outputs are valid.

There are two types of sequential circuits:
synchronous circuits and asynchronous cir-
cuits, which are analyzed differently for valid
outputs. In asynchronous operation, the out-
puts respond to the inputs immediately after
the propagation delay. To work properly, this
type of circuit must eventually reach a stable
state: the inputs and the fed back outputs result
inthe new outputs staying the same. When the
nonfeedback inputs are changed, the feedback
cycle needs to eventually reach a new stable
state. Generally, the output of this type of logic
is not valid until the last input has changed,

8 Digital Basics

inits active state. When a signal is in its active
state, it is called asserted; a signal not in its
active state is called negated or deasserted.
A prefix can easily indicate a signal’s
active state. Active low signals are preceded
by a symbol such as /, |, ! or # (for example
/READY or 'READY). Active low signals
are also denoted by an overscore, such as
CL. Active high signals have no prefix or
overscore. As an example, see the truth table
for a flip-flop later in this chapter. Standard
practice is that the signal name and input
pin match (have the same active level). For

and enough time has elapsed for all propaga-
tion delays to have occurred.

In synchronous operation, the outputs
change state only at specific times. These
times are determined by the presence of a
particular input signal: a clock, toggle, latch
orenable. Synchronicity is important because
it ensures proper timing: all the inputs are
present where needed when the control signal
causes a change of state.

CONTROL SIGNALS

Some authors vary the meanings slightly
for the different control signals. The following
is a brief illustration of common uses, as well
as showing uses for noun, verb and adjective.
Enabling acircuit generally means the control
signal goes to its asserted level, allowing the
circuittochange state. Latchimplies memory:
alatch circuit can store a bit of information. A
latch signal can cause acircuit to keepits pres-
ent state indefinitely. Gate can have several
meanings, some unrelated to synchronous
control. For example, a gate can be a signal
used to trigger the passage of other signals
through a circuit. A gate can also be a logic
circuit with two or more inputs and one out-
put, as used earlier in this chapter. Of course,
“gate” can also be one of the electrodes of an
FET as described in another chapter. Totoggle
means a signal changes state, from 1 to 0 or

HBK05_05-66

tHort| =tactive

t .
Duty cycle = —active
period
Frequency =
period

Figure 15 — Clock signal terms. The duty
cycle would be t, / tpeg|op for an active
high signal and t_ / tpegop for an active
low signal.

example, an input with a bubble (active low)
may be called /READY, while an input with
no bubble (active high) is called READY.
Output signal names should always match
the device output pin.

In this chapter, positive logic is used unless
indicated otherwise. Although using mixed
logic can be confusing, it does have some
advantages. Mixed logic combined with DeM-
organ’s Theorem can promote more effective
use of available gates. Also, well-chosen signal
names and placement of bubbles can promote
more understandable logic diagrams.

vice versa. A clock signal is one that toggles
at a regular rate.

Clock control is the most common method
of synchronizing logic circuits, so ithas some
additional terms as illustrated by Figure 15.
The clock period is the time between succes-
sive transitions in the same direction; the clock
frequency is the reciprocal of the period. A
pulse or clock tick is the first edge in a clock
period, or sometimes the period itself or the
first half of the period. The duty cycle is the
percentage of time that the clock signal is at
its asserted level. A common application of
the use of clock pulses is to limit the input
to a logic circuit such that the circuit is only
enabled on one clock phase; that is the inputs
occur before the clock changes to a logic 1.

HBK05_05-67 | |
| |
(A) | |
| |
D (Input) |

(B)
Clock

(©)
Q (Output) for
Level-Triggered] _—

FF | |

(D)

Q (Output) for
Edge-Triggered
FF

Figure 16 — Level-triggered vs edge-
triggered for a D flip-flop: (A) D input,

(B) clock input, (C) output Q for level-
triggered: circuit responds whenever
clock is 1. (D) output Q for edge-triggered:
circuit responds only at rising edge of
clock. Notice that the short negative pulse
on the D input is not reproduced by the
edge-triggered flip-flop.

The outputs are sampled only after this point;
perhaps when the clock next changes back
to a logic 0.

The reaction of a synchronous circuit to
its control signal is static or dynamic. Static,
gated or level-triggered control allows the
circuit to change state whenever the con-
trol signal is at its active or asserted level.
Dynamic, or edge-triggered, control allows
the circuit to change state only when the
control signal changes from unasserted to
asserted. By convention, a control signal is
active high if state changes occur when the
signal is high or at the rising edge and active
low in the opposite case. Thus, for positive
logic, the convention is enable = 1 or enable
goes from O to 1. This transition from O to 1 is
called positive edge-triggered and isindicated
by a small triangle inside the circuit box. A
circuit responding to the opposite transition,
from 1to 0, is called negative edge-triggered,
indicated by a bubble with the triangle.

Whetheracircuitislevel-triggered oredge-
triggered can affect its output, as shown by
Figure 16. The D input includes a very brief
pulse, called a glitch, which may be caused
by noise. The differing results at the output
illustrate how noise can cause errors. We have
both edge and level triggered circuits avail-
able so that we can meet the requirements of
our particular design.

5.2 Flip-Flops

Flip-flops are the basic building blocks
of sequential circuits. A flip-flop is a device
with two stable states: the set state (1) and
the reset or cleared state (0). The flip-flop
can be placed in one or the other of the two
states by applying the appropriate input. Since
a common use of flip-flops is to store one bit
of information, some use the term latch inter-
changeably with flip-flop. A set of latches, or
flip-flops holding an n-bit number is called a
register. While gates have special symbols,
the schematic symbol for most sequential
logic components is a rectangular box with
the circuit name or abbreviation, the signal
names and assertion bubbles. For flip-flops,
the circuit name is usually omitted since the
signal names are enough to indicate a flip-flop
and its type. The four basic types of flip-flops
are the S-R, D, T and J-K. The most com-
mon flip-flops available to Amateurs today
are the J-K and D- flip-flops; the others can
be synthesized if needed by utilizing these
two varieties. Table 8 provides a summary of
symbols and truth tables for these four types
of flip-flops.

TRIGGERING A FLIP-FLOP

Although the S-R (Set-reset) flip flop is
no longer generally available or used, it does
provide insight in basic flip-flop operations
and triggering. It is also not uncommon to

S|R|Q|Q
o s Q O olo|ala
FF oO(1]0]1
— 1701110
11122
Symbol State Table
(A) (©)
R—‘
Q
Q
S—
Circuit
HBK0095 (B)

Figure 17 — Unclocked S-R Flip-Flop.

(A) schematic symbol. (B) circuit diagram.

(C) state table or truth table.

build S-R flip-flops out of gates for jobs such
as switch contact debouncing. In Figure 17
the symbol for an S-R flip flop and its truth
table are accompanied by a logic implemen-
tation, using NOR gates. As the truth table
shows, this basic implementation requires a
positive or logic 1 input on the set input to put
the flip-flop in the Q or set state. Remove the
input, and the flip flop stays in the Q state,
which is what is expected of a flip-flop. Not
until the S input receives a logic 1 input does
the flip- flop change state and go to the reset
or Q=0 state.

Note that the input can be a short pulse or
a level; as long as it is there for some mini-
mum duration (established by the propagation
delay of the gates used), the flip-flop will
respond. By contrast the clocked S-R flip-
flop in Figure 18 requires both a positive
level to be present at either the S or R inputs
and a positive clock pulse. The clock pulse
is ANDed with the S or R input to trigger the
flip—flop. In this case the flip-flop shown is
implemented with a set of NOR gates.

A final triggering method is edge trigger-
ing. Here, instead of using the clock pulse as
shown in the timing diagram of Figure 18,
just the edge of the clock pulse is used. The
edge-triggered flip-flop helps solves a prob-
lem with noise. Edge-triggering minimizes
the time during which a circuit responds to its

oO—S QF—0

O—O0Op> CLK Symbol
(A)

OoO—R afb—o

S O——] G1A G3A

| G2B

G # O a

>

4A
D:-_ G4B r O Q

s|R|CK| Q| Q
X[x| o|ql|dg
olo| 1 |aqlq
01 1 011
110 1 110
111 1 217
Truth Table
HBKO05_05-69 C)

Clock K/ &
OC|
N B [
R O— G1B G3B
Circuit
(B)

Timing Diagram
(D)

Figure 18 — Master-Slave Flip-Flop. (A) logic symbol. (B) NAND gate implementation.

(C) truth table. (D) timing diagram.

Digital Basics 9

PR PR
o—po oo o—po oo
o—Pc o—c
al—o e am®)
CL CL
Positive Edge Negative Edge
(A) (B)
Clear | Preset |Clock | D | Q | Q
0 1 X X0 1
X=10r0 1 0 X X |1 0
0 0 X X1 1 | Unused State
1 1 _ 111 0
1 1 _ 0|0 1
Truth Table for a positive edge-triggered D flip-flop
HBIK05_05-70 (©)
Figure 19 — (A & B) The D flip-flop. (C) A truth table for the positive edge-triggered
D flip-flop.
PR Preset |Clear |J [K |C |Q |Q
o—J («] S¥¢) 0 1 [X[X[X][1]0
1 0 X[X[X |01
0 0 X[X[X|1]1 Unused State
o—apc 1 1T 1o [1 01
1 1 110 {110
A 1 1 0 |0 [X |Q | Q| Unchanged State
Oo—K of—o 1 1 1|1 | |Toggle
CL
T JK flip-flop truth table
(A) (B) HBKO05_05-71

Figure 20 — (A) JK flip-flop. (B) JK flip-flop truth table.

inputs: the chance of a glitch occurring during
the nanosecond transition of a clock pulse
is remote. A side benefit of edge-triggering
is that only one new output is produced per
clock period. Edge-triggering is denoted by
a small rising-edge or falling-edge symbol in
the clock column of the flip-flop’s truth table.
Itcanalso appear, instead of the clock triangle,
inside the schematic symbol.

MASTER/SLAVE FLIP-FLOP

One major problem with the simple flip-
flop shown up to now is the question of when
is there a valid output. Suppose a flip-flop
receives input that causes it to change state;
at the same time the output of this flip-flop
is being sampled to control some other logic
element. There is a real risk here that the out-
put will be sampled just as it is changing and
thus the validity of the output is questionable.

A solution to this problem is a circuit that
samples and stores its inputs before changing
its outputs. Such a circuit is built by placing
two flip-flops in series; both flip-flops are
triggered by a common clock but an inverter
on the second flip-flop’s clock input causes it
to be asserted only when the first flip-flop is
notasserted. The action fora given clock pulse

10 Digital Basics

isas follows: The first, or master, flip-flop can
change only when the clock is high, sampling
and storing the inputs. The second, or slave,
flip-flop gets its input from the master and
changes when the clock is low. Hence, when
the clock is 1, the input is sampled; then when
the clock becomes 0, the output is gener-
ated. Note that a bubble may appear on the
schematic symbol’s clock input, reminding
us that the output appears when the clock is
asserted low. This is conventional for TTL-
style J-K flip-flops, but it can be different for
CMOS devices.

The master/slave method isolates output
changes from input changes, eliminating the
problem of series-fed circuits. It also ensures
only one new output per clock period, since
the slave flip-flop responds to only the single
sampled input. A problem can still occur,
however, because the master flip-flop can
change more than once while it is asserted;
thus, there is the potential for the master to
sample at the wrong time. There is also the
potential that either flip-flop can be affected
by noise.

A master-slave, S-R clocked input flip-flop
synthesized from NAND gates, Figure 18B,
is accompanied by its logic symbol, Figure

18A. From the logic symbols you can tell
that the output changes on a negative-going
clock edge.

G3A and G3B form the master set-rest flip-
flop, and G4A and G4B the slave flip flop.
The input signals S and R are controlled by
the positive going edge of the clock through
gates G1A and G1B. G2A and G2B control
the inputs into the slave flip-flop; these inputs
are the outputs of the master flip-flop. Note
G5 inverts the clock; thus while the positive-
going edge places new data into the master
flip-flop, the other edge of the clock transfers
the output of the master into the slave on the
following negative clock edge.

D FLIP-FLOP

In a D (data) flip-flop, the data input is
transferred to the outputs when the flip-flop
is enabled. The logic level at the D input is
transferred to Q when the clock is positive;
the Q output retains this logic level until the
next positive clock pulse (see Figure 19).
The truth table summarizes this operation. If
D = 1 the next clock pulse makes Q = 1.
If D =0, the next clock pulse makes Q =0. A
D flip-flop is useful to store one bit of infor-
mation. A collection of D flip-flops forms
a register.

J-K FLIP-FLOP

The J-K flip-flop, shown schematically in
Figure 20A, has five inputs. The unit shown
uses both positive active inputs (the J and K
inputs) and negative active inputs (note the
bubbles on the C or clock, PR or preset and
CL or clear inputs). With these inputs almost
any other type of flip-flop may be synthesized.

The truth table of Figure 20B provides an
explanation. Lines (rows) 1 and 2 show the
preset and clear inputs and their use. These are
active low, meaning that when one (and only
one) of them goes to a logic 0, the flip-flop
responds, just as if it was a S-R or set-reset
flip-flop. Make PR a logic 0, and leave CL a
logic 1, and the flip-flop goes into the Q =1
state (line 1). Do the reverse (line 2) —-PR =1,
CL =0and the flip-flop goes into a Q' =1 state.
When these two inputs are used, J, K and C are
marked as X or don’t care, because the PR and
CL inputs override them. Line 3 corresponds
to the unused state of the R-S flip-flop.

Line 5 shows that if J = 1 and K = 0, the
next clock transition from high to low sets Q
=1 and Q' = 0. Alternately, line 4 shows J =
0and K= 1sets Q=0and Q' = 1. Therefore
if a signal is applied to J, and the inverted
signal sent to K, the J-K flip-flop will mimic
a D flip-flop, echoing its input.

The mostunique feature of the J-K flip-flop
is line 7. If both J and K are connectedtoa 1,
then each clock 1 to O transition will flip or
toggle the flop-flop. Thus the J-K flip-flop can
be used as a T flip-flop, as in a ripple counter
(see the following Counters section.)

Table 8

D Flip-Flop

Qt) Q)| D -
0 0 0 —D Q-
0 1 1
1 0 0 —CLK Q-
1 1 1 R

[
Qt) Q)| D s ol
0 0 0
0 1 1 -
] 5 ; —CLK Q-
1 1 0

5 HBK0920
Qb Q) s | R
ol o | o] x -1 Q-
o | 1] 1] o
1 0 0 1 —RrR Q-
11 x| o
.
QM Qt+) s | R 4, S ol
o] o 0| x
o | 1 1] x _
1] o0 | x| 1 1« :
1 1 X | 0 [

5.3 Groups of Flip-Flops

COUNTERS

Groups of flip-flops can be combined to
make counters. Intuitively, a counter is a cir-
cuit that starts at state 0 and sequences up
through states 1, 2, 3, to m, where m is the
maximum number of states available. From
state m, the nextstate will return the counter to
0. This describes the most common counter:
the n-bit binary counter, with n outputs corre-
sponding to 2" = m states. Such a counter can
be made fromn flip-flops, as shown in Figure
21. This figure shows implementations for
each of the types of synchronicity. Both cir-
cuits pass the data count from stage to stage.
In the asynchronous counter, Figure 21A, the
clock is also passed from stage to stage and
the circuit is called ripple or ripple-carry.

The J-K flip-flop truth table shows that with
PR (Preset) and CL (Clear) both positive, and
therefore not effecting the operation, the flip-
flop will toggle if J and K are tied to a logic
1. In Figure 21A the first stage has its J and K
inputs permanently tied to a logic 1, and each
succeeding stage has its J and K inputs tied
to Q of the proceeding stage. This provides a
direct ripple counter implementation.

Design ofasynchronous counteris bit more
involved. It consists of determining, for a par-
ticular count, the conditions that will make
the next stage change at the same clock edge
when all the stages are changing.

Toillustrate this, notice the binary counting
table of Figure 21. The right-hand column
represents the lowest stage of the counter.
It alternates between 1 and O on every line.
Thus, for the first stage the J and K inputs are
tied to logic 1. This provides the alternation
required by the counting table.

The middle column or second stage of the
counter changes state right after the lower
stage is a 1 (lines C, E and G). Thus if the Q
output of the lowest stage is tied to the J and
K inputs of the second stage, each time the
output of the lowest stage is a 1 the second
stage toggles on the next clock pulse.

Finally, the third column (third stage) tog-
gles when both the first stage and the second
stage are both 1s (line D). Thus by ANDing
the Q outputs of the first two stages, and then
connecting them to the J and K inputs of the
third stage, the third stage will toggle when-
ever the first two stages are 1s.

There are formal methods for determin-
ing the wiring of synchronous counters. The
illustration above is one manual method that
may be used to design a counter of this type.
The advantage of the synchronous counter is
that at any instant, except during clock pulse
transition, all counter stage outputs are cor-
rect and delay due to propagation through the
flip flops is not a problem.

In the synchronous counter, Figure 21B,
each stage is controlled by a common clock
signal.

There are numerous variations on this first
example of a counter. Most counters have the
ability to clear the count to 0. Some counters
can also preset to a desired count. The clear
and preset control inputs are often asynchro-
nous — they change the output state without
being clocked. Counters may either count up
(increment) or down (decrement). Up/down
counters can be controlled to count in either
direction. Counters can have sequences other
than the standard numbers, forexample aBCD
counter.

Counters are also notrestricted to changing
state on every clock cycle. An n-bit counter

that changes state only after m clock pulses is
called adivider or divide-by-m counter. There
are still 2" = m states; however, the output
after p clock pulses is now p / m. Combining
different divide-by-m counters can result in
almost any desired count. For example, a base
12 counter can be made from a divide-by-2
and a divide-by-6 counter; a base 10 (decade)
counter consists of a divide-by-2 and a BCD
divide-by-5 counter.

The outputs of these counters are binary. To
produce output in decimal form, the output of
a counter would be provided to a binary-to-
decimal decoder chip and/or an LED display.

REGISTERS

Groups of flip-flops can be combined to
make registers, usually implemented with D
flip-flops. A register stores n bits of informa-
tion, delivering that information in response
to a clock pulse. Registers usually have asyn-
chronous set to 1 and clear to O capabilities.

Storage Register

A storage register simply stores temporary
information, for example, incoming informa-
tion or intermediate results. The size is related
to the basic size of information handled by
a computer: 8 flip-flops for an 8-bit or byte
register or 16 bits for a word register. Figure
22 shows a typical circuit and schematic sym-
bols for an 8-bit storage register.

Shift Register

Shift registers also store information and
provideitinresponse toaclock signal, but they
handle their information differently: When a
clock pulse occurs, instead of each flip-flop
passing its result to the output, the flip-flops
pass their data to each other, up and down the
row. For example, in up mode, each flip-flop
receives the output of the preceding flip-flop.
A data bit starting in flip-flop DO in a left
shifter would move to D1, then D2 and so on
until it is shifted out of the register. If a 0 was
input to the least significant bit, D0, on each
clock pulse then, when the last data bit has
been shifted out, the register contains all Os.

Shift registers can be left shifters, right
shifters or controlled to shift in either direc-
tion. The most general form, a universal shift
register, has two control inputs for four states:
Hold, Shift right, Shift left and Load. Most
also have asynchronous inputs for preset,
clear and parallel load. The primary use of
shift registers is to convert parallel informa-
tion to serial or vice versa. Additional uses
for a shift register are to delay or synchronize
data, and to multiply or divide a number by
a factor 2n. Data can be delayed simply by
taking advantage of the Hold feature of the
register control inputs. Multiplication and
division with shift registers is best explained
by example: Suppose a 4-bit shift register
currently has the value 1000 = 8. A right shift

Digital Basics 11

Note — +5V Qy +5V Q, +5V Q, -
AllJ and K —~ —~_ Binary
inppts tied to | | | | Counting Table
logic 1 or +5V J al—4 J Q— J Q Q, Q; Qg
Input A|lO0O 0 O
— ~ p B P B B|0o 0 1
K Q K Q K Q c|0 1 0
(A) | | | D0 1 1
E|1 0 O
+5V +5V +5V Fl1 o 1
Q G|1 1 0
—~ H{1 1 1
+5V
®) LJ Q J Q—L[Q1 J o aq,
D D |_>
IK Q —K Q K Q
+5V
Clock () () HBK05_05-72

Figure 21 — Three-bit binary counter using J-K flip-flops: (A) asynchronous or ripple,

(B) synchronous.

results in the new parallel output 0100 =4 =
8 /2. A second right shift results in 0010 =2
= (8/2) /2. Together the 2 right shifts per-
formed a division by 22. In general, shifting
right n times is equivalent to dividing by 2n.
Similarly, shifting left multiplies by 22. This
can be useful to compiler writers to make a
computer program run faster.

5.4 Multivibrators

Multivibrators are a general type of circuit
with three varieties: bistable, monostable and

astable. The only truly digital multivibrator
is bistable, having two stable states. The flip-
flopis abistable multivibrator: both of its two
states are stable; it can be triggered from one
stable state to the other by an external signal.
The other two varieties of multivibrators are
partly analog circuits and partly digital. While
their output is one or more pulses, the internal
operation is strictly analog.

MONOSTABLE MULTIVIBRATOR

A monostable or one-shot multivibrator
has one energy-storing element inits feedback

paths, resulting in one stable and one quasi-
stable state. [t can be switched, or triggered, to
its quasi-stable state; then returns to the stable
state after a time delay. Thus, when triggered,
the one-shot multivibrator puts out a pulse of
some duration, T.

A very common integrated circuit used for
non-precision generation of a signal pulse
is the 555 timer IC. Figure 23 shows a 555
connected as a one-shot multivibrator. The
one-shot is activated by a negative-going
pulse between the trigger input and ground.
The trigger pulse causes the output (Q) to go
positive and capacitor C to charge through
resistor R. When the voltage across C reaches
two-thirds of V¢, the capacitor is quickly
discharged to ground and the output returns
to 0. The output remains at logic 1 for a time
determined by

T=11RC

where:
R =resistance in ohms, and
C = capacitance in farads.

A very common, but again, non-precision
application of this circuit is the generation
of a delayed pulse. If there is a requirement
to generate a 50 us pulse, but delayed from a
trigger by 20 ms, two 555s mightbe used. The
first 555, configured as an astable multivibra-
tor, generates the 20-ms pulse, and the trailing
edge of the 20-ms pulse is used to trigger a
second 555 that in turn generates the 10 us
pulse. See the Circuits and Components
chapter for more information on the 555 timer
and related circuits.

8-bit Storage Register
D7 — — Y7
-
D6 — — Y6
P
D5 — — Y5
P
L]
L
L]
DO —1 — YO
n'd
Load
(A)

HBKO05_05-74
—4 D7 Y7 }—
—4 D6 Y6 f—
—4 D5 Y5 f—
—] D4 Y4 |—
—4 D3 Y3 |—
—4 D2 Y2 |—
—4 D1 Y1 fp— |
A
—4 D0 YO f— ®
D LOAD
e
(B) INPUT
HBK05_05-73 (B) T=11RC

OUTPUT
O | |
+5V

(@]
1 8
GND Ve
555 é R
2 7
DIS-
TRIGGER >
3
Q THRESHOLD |2
== c
4 CONTROL || 5
RESET yoLTAGE

.
I

Figure 22 — An eight-bit storage register: (A) circuit and (B)

schematic symbol.

12 Digital Basics

Figure 23 — (A) A 555 timer connected as a monostable

multivibrator. (B) The equation to calculate values where T is
the pulse duration in seconds, R is in ohms and C is in farads.

ASTABLE MULTIVIBRATOR

An astable or free-running multivibra-
tor has two energy-storing elements in its
feedback paths, resulting in two quasi-stable
states. It continuously switches between these
two states without external excitation. Thus,
the astable multivibrator puts out a sequence
of pulses. By properly selecting circuit com-
ponents, these pulses can be of a desired fre-
quency and width.

Figure 24 shows a 555 timer IC connected
as an astable multivibrator. The capacitor C
charges to two-thirds V¢ through R1 and
R2 and discharges to one-third V(through
R2. The ratio R1 : R2 sets the asserted high
duty cycle of the pulse: tygy/ tperiop- The
output frequency is determined by:

146
(R1+2R2)C

where:
R1 and R2 are in ohms,
C is in farads and
fis in hertz.

It may be difficult to produce a 50% duty
cycle due to manufacturing tolerance for the
resistors R1 and R2. One way to ensure a
50% duty cycle is to run the astable multi-
vibrator at 2f and then divide by 2 with a
toggle flip-flop.

Astable multivibrators, and the 555 inte-
grated circuit in particular, are very often

OUTPUT
! LI L
(
+5V
1 8
| GND Ve
555 R1
2 N
TRIGGER CHARGE é
R2
3
Q 6
THRESHOLD
4 CONTROL | 5
RESET VOLTAGE J_o.1 uF
=<c - 1.46
/J; (R1+ (2x R2))C
®) thigh Ry
15-75 tperiod R2

Figure 24 — (A) A 555 timer connected as an astable multivibrator. (B) The equations
to calculate values for R1, R2 in ohms and C in farads, where f is the clock frequency

in Hertz.

used to generate clock pulses. Although this
is a very inexpensive and minimum hardware
approach, the penalty is stability with tem-
perature. Since the frequency and the pulse

6 Digital Integrated Circuits

Integrated circuits (ICs) are the corner-
stone of digital logic devices. Modern tech-
nology has enabled electronics to become
smaller and smaller in size and less and less
expensive. Much of today’s complex digital
equipment would be impossible to build with
discrete transistors and discrete components.

An IC is a miniature electronic module of
components and conductors manufactured as
asingle unit. All you see is a ceramic or black
plastic package and the silver-colored pins
sticking out. Inside the package is a piece of
material, usually silicon, created (fabricated)
in such a way that it conducts an electric
current to perform logic functions, such as a
gate, flip-flop or decoder.

As each generation of ICs surpassed the
previous one, they became classified accord-

ing to the number of gates on a single chip.
These classifications are roughly defined as:
Small-scale integration (SSI):
10 or fewer gates on a chip.
Medium-scale integration (MSI):
10-100 gates.
Large-scale integration (LSI):
100-1000 gates.
Very-large-scale integration (VLSI):
1000 or more gates.

Though SSI and MSI logic chips are still
useful for building circuits to handle very
simple tasks, it is more common to see them
eitherused along with or completely replaced
by programmable logic arrays and microcon-
trollers. In many cases you will see the smaller
logic circuits referred to as “glue logic.”

dimensions are set by resistors and capacitors,
drift with temperature and to some extent
aging of components will result in changes
withtime. Thisis nodifferent than the problem
faced by designers of L-C controlled VFOs.

6.1 Comparing Logic Families

When selecting devices for a circuit, a
designer is faced with choosing between
many families and subfamilies of logic ICs.
The determination of which logic subfamily
is right for a specific application is based
upon several desirable characteristics: logic
speed, power consumption, fan-out, noise
immunity and cost. From a practical view-
point, the primary IC families available and
in common use today are CMOS, with TTL
adistant second place. Within these families,
there are tradeoffs that can be made with
respect to individual circuit capabilities,
especially in the areas of speed and power
consumption. Except under the most de--
manding circumstances, normal commercial
grade temperature rating will do for amateur

Digital Basics 13

TOTAL
FAN-OUT = 4

HBKO05_05-76

Figure 25 — Nonverting buffers used to
increase fan-out: Gate A (fan-out = 2) is
connected to two buffers, B and C, each
with a fan-out of 2. Result is a total fan-
out of

service.

FAN-OUT

Fan-out is a term with which you will need
to become familiar when working with TTL
logic families such as 7400, 74LS or 74S. A
gate output can supply only a limited amount
of current. Therefore, a single output can only
drive alimited number of inputs. The measure
of driving ability is called fan-out, expressed
as the number of inputs (of the same subfam-
ily) that can be driven by a single output. If a
logic family that is otherwise desirable does
not have sufficient fan-out, consider using
noninverting buffers to increase fan-out, as
shown by Figure 25.

Another approach is to use a CMOS logic
family. These families typically have output
drivers capable of sourcing or sinking 20
to 25 mA, and input current leakage in the
microampere range. Thus, fan-out is seldom
a problem when using these devices.

NOISE IMMUNITY

The noise margin was illustrated in Figure
2. The choice of voltage levels for the binary
states determines the noise margin. If the gap
is too small, a spurious signal can too easily
produce the wrong state. Too large a gap,
however, produces longer, slower transitions
and thus decreased switching speeds.

Circuitimpedance also plays a partin noise
immunity, particularly if the noise is from
external sources such as radio transmitters.
At low impedances, more energy is needed
to change a given voltage level than at higher
impedances.

6.2 Bipolar Logic Families

Two broad categories of digital logic ICs
are bipolar and metal-oxide semiconductor
(MOS). Numerous manufacturing techniques
have been developed to fabricate each type.
Each surviving, commercially available fam-
ily has its particular advantages and disadvan-
tages and has found its own special niche in
the market. The designer is cautioned, how-
ever, that sometimes this niche is simply the

14 Digital Basics

ongoing maintenance of old products. There
are still very old logic families available for
reasonable prices that would be considered
quite obsolete and generally not suitable for
new designs.

Bipolar semiconductor ICs usually employ
NPN junction transistors. (Bipolar ICs can be
manufactured using PNP transistors, but NPN
transistors make faster circuits.) While early
bipolar logic was faster and had higher power
consumption than MOS logic, the speed dif-
ference has largely disappeared as manufac-
turing technology has developed.

There are several families of bipolar logic
devices, and within some of these families
there are subfamilies. The most-used bipo-
lar logic family is transistor-transistor logic
(TTL). Another bipolar logic family, Emitter
Coupled Logic (ECL), has exceptionally high
speed but high power consumption.

TRANSISTOR-TRANSISTOR LOGIC
(TTL)

The TTL family saw widespread accep-
tance through the 1960s, 1970s and 1980s
because it was fast compared to early MOS
and CMOS logic, and has good noise immu-
nity. It was by far the most commonly used
logic family for a couple of decades. Though
TTL logic is not in widespread use today for
new designs, the device numbering system
devised for TTL chips survives to this day for
newer technologies. You will also often see
TTL, especially the later low power, higher
speed TTL subfamilies, in various equipment
you may use and repair.

TTL Subfamilies

The original standard TTL used bipolar
transistors and “totem-pole” outputs (see Fig-
ure 26A and B), which were a great improve-
ment over the earlier diode-transistor logic
(DTL) and resistor-transistor logic (RTL).
Still, TTL logic consumed quite a bit of power
even at idle, and there were limits on how

many inputs could be driven by a single out-
put. Later versions used Schottky diodes to
greatly improve switching speed, and reduced
power requirements were introduced.

TTL IC identification numbers begin
with either 54 or 7 The 54 prefix denotes an
extended military temperature range of —55
to 125 °C, while 74 indicates a commercial
temperature range of 0 to 70 °C. The next
letters, in the middle of the TTL device num-
ber, indicate the TTL subfamily. Following
the subfamily designation is a 2, 3 or 4-digit
device-identification number. For example,
a 7400 is a standard TTL NAND gate and a
74LS00 is a low-power Schottky NAND gate
(The NAND gate is the workhorse TTL chip).
A partial list of TTL subfamilies includes:

74xx standard TTL

H 74Hxx High-speed

L 74Lxx Low-power

S 74Sxx Schottky

F 74Fxx Fairchild Advanced
Schottky

LS 74LSxx Low-power Schottky

AS 74ASxx Advanced Schottky

ALS 74ALSxx Advanced

Low-power Schottky

Each subfamily is a compromise between
speed and power consumption. Table 5.9
shows some of these characteristics. Because
the speed-power product is approximately
constant, less power consumption generally
results in lower speed and vice versa. The
advanced low power Schottky devices (ALS,
F) offer both increased speed and reduced
power consumption. Historically, an addi-
tional consideration to the speed-versus-
power trade-off has been the cost trade-off.
For the amateur, this is not nearly the factor
it once was as component costs are relatively
low for the newer, faster, lower powered parts.

When aTTL gate changes state, the amount
of current thatitdraws changes rapidly. These
changes in current, called switching tran-

Table 9

TTL and CMOS Subfamily Performance Characteristics

TTL Family Propagation Per Gate Power Speed Power Product
Delay (ns) Consumption (mW) (pico-joules)

Standard 9 10 90

L 33 1 33

H 6 22 132

S 3 20 60

F 3 8.5 25.5

LS 9 2 18

AS 1.6 20 32

ALS 5 1.3 6.5

CMOS Family Operating with

5<Voe <55V f=100kHz f=1 MHz f=10 MHz =100 kHz f=1MHz =10 MHz

HC 18 0.0625 0.6025 6.0025 1.1 10.8 108

HCT 18 0.0625 0.6025 6.0025 1.1 10.8 108

AC 5.25 0.080 0.755 7.505 0.4 3.9 39

ACT 75 0.080 0.755 7.505 0.4 3.6 36

~_

SN7404

Input

SN7400

Q5

Input 1 I—
Input 2 I—

t

Vee =+5V

+Vee
Input Output
Inverter
Output
Ground
+Vee
Input 1
P Output
Input 2
NAND Gate
(Positive Logic)
Output
Input 1
npu Output
Input 2
Ground Invert OR Gate

(Alternative Form)

R1

R3
100 Q

4 kQ

Q1

Input 1 I—
Input 2 I—

Q5

_? QOutput

Q3

() Ground

Input

Output

Ground

HBKO05_05-77

sients, appear on the power supply line and
can cause false triggering of other devices. For
thisreason, the power bus should be adequate-
ly decoupled. For proper decoupling of TTL
circuits, connect a 0.01 to 0.1 uF capacitor
from V¢ to ground near each device to mini-
mize the transient currents caused by device
switching and magnetic coupling. These
capacitors must be low-inductance, high-
frequency RF capacitors (ceramic capacitors
are preferred). In addition, a large-value (50
to 100 uF) capacitor should be connected
from V(to ground somewhere on the board
to accommodate the continually changing
Icc requirements of the total V¢ bus line.
These are generally low-inductance tantalum
capacitors.

Darlington and Open-Collector
Outputs

Figure 26C and D show variations from the
totem-pole configuration. They are the Dar-
lington transistor pair and the open-collector
configuration respectively.

The Darlington pair configuration replaces
the single transistor Q4 with two transistors,
Q4 and Q5. The effect is to provide more
current-sourcing capability in the high state.
This has two benefits: (1) the rise time is
decreased and (2) the fan-out is increased.

Transistor(s) on the output in both the
totem-pole and Darlington configura-
tions provide active pull-up. Omitting the
transistor(s) and providing an external resistor
for passive pull-up gives the open-collector
configuration. This configuration, unfortu-
nately, results in slower rise time, since a rela-
tively large external resistor mustbe used. The
technique has some very useful applications,
however: driving other devices, performing
wired logic, busing and interfacing between
logic devices.

Devices that need other than a 5-V supply
can be driven with the open-collector output
by substituting the device for the external
resistor. Example devices include LEDs,
relays and solenoids. Inductive devices like
relay coils and solenoids need a protection
diode across the coil. You must pay atten-
tion to the current ratings of open-collector
outputs in such applications. You may need
a switching transistor to drive some relays or
other high-current loads.

Open-collector outputs can perform

Figure 26 — Example TTL circuits and
their equivalent logic symbols: (A) an
inverter and (B) a NAND gate, both with
totem-pole outputs. (C) A NAND gate with
a Darlington output. (D) A NAND gate
with an open-collector output. (Indicated
resistor values are typical. Identification
of transistors is for text reference only.
These are not discrete components but
parts of the silicon die.)

Digital Basics 15

TQ;
T 1T

Figure 27 —
The outputs

+Vee

of two open-
collector-output
AND gates

are shorted
together (wire

+Vee

ANDed) to
produce an
output the

[same as would

T 1T
T IT

be obtained
from a 4-input
AND gate.

(A)

(B) HBKO05_05-78

wired logic, rather than gated IC logic, by
wire-ANDing the outputs. This can save the
designer an AND gate, potentially simpli-
fying the design. Wire-ANDed outputs are
several open-collector outputs connected to
a single external pull-up resistor. The over-
all output, then, will only be high when all
pull-down transistors are OFF (all connected
outputs are high), effectively performing
an AND of the connected outputs. If any
of the connected outputs are low, the out-
put after the external resistor will be low.
Figure 27 illustrates the wire-ANDing of
open-collector outputs.

The wire-ANDed concept can be applied
to several devices sharing a common bus. At
any time, all but one device has a high-imped-
ance (off) output. The remaining device,
enabled with control circuitry, drives the bus
output.

Open-collector outputs are also useful for
interfacing TTL gates to gates from other
logic families. TTL outputs have a minimum
high level of 2.4 V and a maximum low level
of 0.4 V. When driving non-TTL circuits, a
pull-up resistor (typically 2.2 k€2) connected
to the positive supply can raise the high level
to 5 V. If a higher output voltage is needed, a
pull-up resistor on an open-collector output
can be connected to a positive supply greater
than 5V, so long as the chip output voltage
and current maximums are not exceeded.

Three-State Outputs

While open-collector outputs can perform
bus sharing, a more popular method is three-
state output, or tristate, devices. The three
states are low, high and high impedance, also
called Hi-Z or floating. An output in the high-
impedance state behaves as if it is discon-
nected from the circuit, except for possibly
a small leakage current. Three-state devices
have an additional disable input. When the
enable input is active, the device provides

16 Digital Basics

high and low outputs just as it would nor-
mally; when enable is inactive, the device
goes into its high-impedance state.

A bus is a common set of wires, usually
used for data transfer. A three-state bus has
several three-state outputs wired together.
With control circuitry, all devices on the bus
but one have outputs in the high-impedance
state. The remaining device is enabled, driv-
ing the bus with high and low outputs. Care
should be taken to ensure only one of the
output devices can be enabled at any time,
since simultaneously connected high and
low outputs may result in an incorrect logic
voltage. (The condition when more than one
driver is enabled at the same time is called
bus contention.) Also, the large current drain
from V . to ground through the high driver
to the low driver can potentially damage the
circuit or produce noise pulses that can affect
overall system behavior.

Unused TTL Inputs

A design may result in the need for an
n-input gate when only an n + m input gate
is available. In this case, the recommended
solution for extraneous inputs is to give the
extra inputs a constant value that won’t affect
the output. A low input is easily provided by
connecting the input to ground. A high input
can be provided with either an inverter whose
input is ground or with a pull-up resistor. The
pull-upresistoris preferred rather than a direct
connection to power because the resistor lim-
its the current, thus protecting the circuit from
transient voltages. Usually, a 1-kQ to 5-kQ2
resistor is used; a single 1-k(2 resistor can
handle up to 10 inputs.

It’s important to properly handle all inputs.
Design analysis would show that an uncon-
nected, or floating TTL input is usually high
but can easily be changed low by only a small
amount of capacitively-coupled noise.

6.3 Metal Oxide
Semiconductor (MOS)
Logic Families

While bipolar devices use junction transis-
tors, MOS devices use field effect transis-
tors (FETs). MOS is characterized by simple
device structure, small size (high density) and
ease of fabrication. MOS circuits use the NOR
gate as the workhorse chip rather than the
NAND. MOS families, specifically CMOS,
are used extensively in most digital devices
today because of their low power consump-
tion and high speed.

P-CHANNEL MOS (PMOS)

The first MOS devices to be fabricated
were PMOS, conducting electrical current by
the flow of positive charges (holes). PMOS
power consumption is much lower than that
of bipolar logic, but its operating speed is
also lower. The only extensive use of PMOS
was in calculators and watches, where low
speed is acceptable and low power consump-
tion and low cost are desirable. PMOS was
replaced by NMOS, which offered substan-
tially higher switching speeds.

N-CHANNEL MOS (NMOS)

With improved fabrication technol-
ogy, NMOS became feasible and provided
improved performance and TTL compat-
ibility. The speed of NMOS is at least twice
that of PMOS, since electrons rather than
holes carry the current. NMOS also has
greater gain than PMOS and supports greater
packaging density through the use of smaller
transistors. NMOS has been almost com-
pletely obsoleted by CMOS.

COMPLEMENTARY MOS (CMOS)

CMOS combines both P-channel and
N-channel devices on the same substrate to
achieve high noise immunity and low pow-
er consumption: less than 1 mW per gate
and negligible power during standby. This
accounts for the widespread use of CMOS in
battery-operated equipment. The high imped-
ance of CMOS gates makes them susceptible
to electromagnetic interference, however,
particularly if long traces are involved. Con-
sideratrace /4-wavelength long between input
and output. The output is a low-impedance
point, hence the trace is effectively grounded
at this point. You can get high RF potentials
Ys-wavelength away, which disturbs circuit
operation.

A notable feature of CMOS devices is
that the logic levels swing to within a few
millivolts of the supply voltages. The input-
switching threshold is approximately one half
the supply voltage (Vpp — Vgg). This char-
acteristic contributes to high noise immunity
on the input signal or power supply lines.
CMOS input-current drive requirements are

minuscule, so the fan-out is great, at least in
low-speed systems. For high-speed systems,
the input capacitance increases the dynamic
power dissipation and limits the fan-out.

CMOS Subfamilies

There are a large number of CMOS sub-
families available. Like TTL, the original
CMOS has largely been replaced by later
subfamilies using improved technologies; in
turn, these will be replaced with even newer
families as technology evolves. The original
family, called the 4000 series, has numbers
beginning with 40 or 45 followed by two or
three numbers to indicate the specific device.
4000B is second generation CMOS. When
introduced, this family offered low power
consumption but was fairly slow and not easy
to interface with TTL.

Later CMOS subfamilies offer improved
performance and, in some cases, TTL com-
patibility. For simplicity, the later subfami-
lies were given numbers similar to the TTL
numbering system, with the same leading
numbers, 54 or 74, followed by 1 to 4 letters
indicating the subfamily and as many as 5
numbers indicating the specific device. The
subfamily letters usually include a “C” to
distinguish them as CMOS.

Following is a description of some of the
CMOS device families available. As there are
a substantial number of families offered by
specific manufacturer, and there are new fami-
lies being introduced frequently, this informa-
tion is by no means exhaustive. A check of IC
suppliers’ and manufacturers’ Web sites will
provide the designer with a complete selection
of choices to meet his or her requirements.

4000 4071B Standard CMOS
C 74Cxx CMOS versions of
TTL

Largely obsolete today, devices in the 74C
subfamily are pin and functional equivalents of
many of the most popular parts in the 7400 TTL
family. Itmay be possible toreplace all TTLICs
in a particular circuit with 74C-series CMOS,
but this family should not be mixed with TTL in
a circuit without careful design considerations.
Devices in the C series are typically 50% faster
than the 4000 series.

HC 74HCxx High-speed CMOS

Devices in the 74HC subfamily have speed
and drive capabilities similar to Low-power
Schottky (LS) TTL but with better noise immu-
nity and greatly reduced power consumption.
High-speed refers to faster than the previous
CMOS family, the 4000-series.

HCT 74HCTxx High-Speed CMOS,
TTL compatible

Devices in this subfamily were designed to
interface TTL to CMOS systems. The HCT
inputs recognize TTL levels, while the out-
puts are CMOS compatible. HCT chips are

commonly used as lower powered, drop-in
replacements for their pin compatible LS TTL
counterparts.

AC 74ACxxxxx Advanced CMOS

Devicesin this family have reduced propaga-
tion delays, increased drive capabilities and can
operate at higher speeds than standard CMOS.
They are comparable to Advanced Low-power
Schottky (ALS) TTL devices.

ACT 74ACTxxxxx Advanced CMOS,
TTL compatible

This subfamily combines the improved per-
formance of the AC series with TTL-compat-
ible inputs.

AHCT 74AHCTxxxx Advanced High
Speed CMOS,
TTL Compatible

This subfamily is substantially faster than
HC and HCT, but only slightly faster than ACT
in switching speed. It has lower output drive
capacity than AC/ACT.

New CMOS subfamilies are being intro-
duced regularly. The current move is to lower
voltage operation; where 5 V was the most
common supply voltage until a few years ago,
3.3 V and lower supplies are becoming more
common. Many newer microprocessors, micro-
controllers and intelligent peripheral chips
require 3.3 V logic.

LVC 74LVCxxxx Low Voltage CMOS

This subfamily uses a 3.3 V supply rather
than 5 V. It offers low propagation delay (under
5 ns typical), extremely low supply current,
robust output drive capabilities, and 5-V TTL
compatible inputs.

ALVC 74ALVCxxxx Advanced Low
Voltage CMOS
Even faster than LVC, this family offers prop-
agation delays if under 3ns. Current demands
are slightly higher, but still lower than 5V

CMOS.

VCX 74VCXxxxx Low voltage

CMOS
This family operates at supply voltages of

1.8 or 3.6 V. Offering high switching speeds
and low propagation delays, it does not have
TTL-compatible buffered inputs.

As with TTL, each CMOS subfamily has
characteristics that may make it suitable or
unsuitable for a particular design. You should
consult the manufacturer’s data books for
complete information on each subfamily
being considered.

CMOS Circuits

A simplified diagram of a CMOS logic
inverteris shownin Figure 28. When the input
is low, the resistance of Q2 is low so a high
current flows from V. Since Q1 s resistance
is high, Q2 sinks current from the output,
pulling it low. When the input is high, the
opposite occurs: Q1°s resistance is low, Q2’s
is high and Q1 sources current to the output,
driving it high. The diodes are to protect the
circuit against static charges.

Special Considerations

Some of the diodes in the input- and out-
put-protection circuits are an inherent part
of the manufacturing process. Even with the
protection circuits, however, CMOS ICs are
susceptible to damage from static charges.
To protect against damage from static, the
pins should not be inserted in Styrofoam as
is sometimes done with other components.
Instead, a spongy conductive foam, usually
black or pink in color, is available for this
purpose. Before removing a CMOS IC from
its protective material, make certain that your
body is grounded. Touching nearly any large
metal object before handling the ICs is prob-
ably adequate to drain any static charge off
your body. Some people prefer to touch a
grounded metal object or to use a conductive
bracelet connected to the ground terminal of a
three-wire ac outlet through a 10-MQ resistor.
Since wall outlets aren’t always wired prop-
erly, you should measure the voltage between
the ground terminal and any metal objects you
might touch. Connecting yourself to ground
through a 1-MQ to 10-MQ resistor will limit

* * O Vip
|:4—J a1
1-5kQ 15-300Q
Input) p———O Output
IH Q2
HBKO05_05-79 & & O Vgs

Figure 28 — Internal structure of a CMOS inverter.

Digital Basics 17

any current that might flow through your body.

AllCMOS inputs should be tied to an input HBKO5_05-80
signal. A positive supply voltage or ground is 5.0 Vee
suitableifaconstantinputis desired. Undeter- High
mined CMOS inputs, even on unused gates, 4.0 3.84 3.76

. . . VoH .
may cause gate outputs to oscillate. Oscillat- Min
ing gates draw high current, and may overheat 30 VO i High-State
and self destruct. i 04 2.7 0 DC Noise Margin

The low power consumption of CMOS ICs : y ViH yin
made them attractive for satellite applications, 2.0 >0 ViH i
but standard CMOS devices proved to be Abnormal
sensitive to low levels of radiation — cosmic 10 0.8 v v
rays, gamma rays and X rays. Later, radia- L Max Cow-State _ L Max
tion-hardened CMOS ICs, able to tolerate 04 05 e 5 05 | Fvor,, DC NOE:WMarg'" VoL i
106 rads, made them suitable for space appli- 0.0 0
cations. (A rad is a unit of measurement for s oS He e Ve

: S -) L ASALS | HCT ACT ALVC | pigh State DC Noise Margin =V o = Vi
absorbed doses of ionizing radiation, equiva- Min M Min
lent to 102 joules per kilogram.) <— TTL — > <— CMOS —>| Low State DC Noise Margin =V . =Vor

SUMMARY

. Figure 29 — Differences in logic levels for some TTL and CMOS families.
There are many types of logic ICs, each

with its own advantages and disadvantages.
Regardless of the application, consult up-to-
date product specification sheets and manu-
facturer literature when designing logic
circuits. IC data sheets, application notes,
databooks and more are available from IC
manufacturers via their Web sites. By using Ve, Tyzpital e Vg
a search engine and entering a few key word

specifications, you will locate application i out IN
notes, tutorials and a host of other informa- (Active Pull-Up)
6.4 Interfacing Logic

tion.
/J7 /J7vss
(A)
Families

Each semiconductor logic family has its 5V 15V
own advantages in particular applications. T 47k 3.3k T
When adesign mixes ICs from different logic VWV i
families, the designer must account for the v 3.9k v
differing voltage and current requirements o Minimum o
each logic family recognizes. The designer — ouT IN
must ensure the appropriate interface exists (Active Pull-Up)
between the point at which one logic fam- 2N4401
ily ends and another begins. Knowledge of /J7 1N914 gmgggg /J7Vss
the specific input/output (I/O) characteristics
of each device is necessary, and knowledge
of the general internal structure is desirable
to ensure reliable digital interfaces. Typical
internal structures have been illustrated for nY
each common logic family. Figure 29 illus- 2y
trates the logic level changes for different TTL
and CMOS families. Data sheets should be Veo 36k
consulted for manufacturer’s specifications. Vdd

Often more than one conversion scheme is TTL out 3/

possible, depending on whether the designer (hotive Pull-Up) (CA314W cMOoS
wishes to optimize power consumption or _1-

speed. Usually one quality must be traded off /_J7 J_ 2 Voo
for the other. The following section discuss- 0.1/J; 15k

(8)

es some specific logic conversions. Where
an electrical connection between two logic
systems isn’t possible, an optoisolator can
sometimes be used.

&
<(

HBK05_05-81 (C)

Figure 30 — TTL to CMOS interface circuits: (A) pull-up resistor, (B) common-base level
shifter and (C) op amp configured as a comparator.

18 Digital Basics

TTL DRIVING CMOS

TTL and low-power TTL can drive 74C
series CMOS directly over the commer-
cial temperature range without an external
pull-up resistor. However, they cannot drive
4000-series CMOS directly, and for HC-series
devices, a pull-up resistor is recommended.
The pull-up resistor, connected between the
output of the TTL gate and V¢ as shown in
Figure 30A, ensures proper operation and
enough noise margin by making the high out-
putequal to Vpp. Since the low output voltage
will also be affected, the resistor value must
be chosen with both desired high and low
voltage ranges in mind. Resistor values in the
range 1.5kQ to 7kQ should be suitable for all
TTL families under worst conditions. A larger
resistance reduces the maximum possible
speed of the CMOS gate; a lower resistance
generates a more favorable RC product but at
the expense of increased power dissipation.

HCT-series and ACT-series CMOS devices
were specifically designed to interface non-
CMOS devices to a CMOS system. An HCT
device acts as a simple buffer between the
non-CMOS (usually TTL) and CMOS device
and may be combined with a logic function if
a suitable HCT device is available.

When the CMOS device is operating from
a power supply other than +5 V, the TTL
interface is more complex. One fairly simple
technique uses a TTL open-collector output
connected to the CMOS input, with a pull-up
resistor from the CMOS input to the CMOS
power supply. Another method, shown in
Figure 30B, is a common-base level shifter.
The level shifter translates a TTL output sig-
naltoa+15V CMOS signal while preserving
the full noise immunity of both gates. An
excellentconverter from TTL to CMOS using
dual power supplies is to configure an opera-
tional amplifier as a comparator, as shown in
Figure 30C. An FET opampis shown because
its output voltage can usually swing closer
to the rails (+ and — supply voltages) than a
bipolar device.

CMOS DRIVING TTL

Certain CMOS devices (including most
modern 5 V powered CMOS logic families)
can drive TTL loads directly. The output volt-
ages of CMOS are compatible with the input
requirements of TTL, but the input-current
requirement of TTL limits the number of TTL
loads that a CMOS device can drive from a
single output (the fan-out).

Interfacing CMOS to TTL is a bit more
complicated when the CMOS is operating
at a voltage other than +5 V. One technique
is shown in Figure 31A. The diode blocks
the high voltage from the CMOS gate when
it is in the high output state. A germanium
diode is preferred because its lower forward-
voltage drop provides higher noise immunity

+15V

Voo

CMOS
4000B OR

ouT

+5V

Vee

68 kQ

INJ Low-POWER

74C SERIES

1N270

(A) /J_’

TTL

+15V +5V
Voo Vee
CMOS l\ Voo
40008 OR out IN JemoSN_OUT INJ LOW-POWER
40507 TTL
74C SERIES
Vss
/J_/VSS /J‘/
77
(B)
1
1 — 2
— 3
A4
? 10k 16
TTL logic gate
CMOS logic gate 1N4732
47V
HBK0201 (©)

Figure 31 — CMOS to TTL interface circuits. (A) blocking diode chosen when different
supply voltages are used. The diode is not necessary if both devices operate with a
+5 V supply. (B) CMOS noninverting buffer IC. (C) Resistor/Zener circuit clamps the

voltage to the TTL input at 7 V.

for the TTL device in the low state. The 68-kQ)
resistor pulls the input high when the diode
is reverse biased.

A simple resistor/Zener circuit, shown in
Fig. 31C, can also be used. This clamps the
voltage to the TTL input at 7 V.

There are two CMOS devices specifically
designed to interface CMOS to TTL when
TTL is using a lower supply voltage. The
CD4050 is a noninverting buffer that allows
its input high voltage to exceed the supply
voltage. This capability allows the CD4050
to be connected directly between the CMOS
and TTL devices, as shown in Figure 31B.
The CD4049 is an inverting buffer that has
the same capabilities as the CD4050.

5V DRIVING 3.3V LOGIC

Low voltage logic operating with 3.3t0 3.6
V supplies is becoming more and more com-
mon. Some of these logic families have 5 V
tolerant inputs and can be driven directly by
TTL levels; others require buffering to keep
inputs at or below the supply voltage. Output
levels may or may not be sufficient to drive
TTL level inputs reliably under all conditions.

The use of TTL compatible buffers (74LVC,
74ALVC) on input signals is a safe way to
drive these devices. Since the low logic volt-
ages are compatible, a simple Zener clamp
arrangement may also be sufficient.

3.3V DRIVING 5V LOGIC

Output voltages of most 3.3 V logic fami-
lies are sufficient to drive the inputs of TTL-
level devices. In some cases, the high level
output voltage of a 3.3 V powered device
may approach the lower end of the TTL level
device’s input range. In these cases, a pull-up
resistor to 3.3 V will usually be sufficient. Itis
also possible to use an IC or transistor buffer.

6.5 Programmable Logic

As digital logic designs became more
and more complex, the size and power
consumption of their implementations grew.
PLDs (Programmable Logic Devices) were
introduced to allow the designer to produce
application-specific logic without the expense
and delay of fabricating custom chips. As
explained earlier, the design of a logic circuit

Digital Basics 19

begins with a description; this description
is used to determine an equation; then the
equation is expanded to components. With
programmable logic we can shortcut this
process by implementing the equations
themselves, programming theminto a generic
array of gates.

Several families of programmable logic
devices have been introduced over the years.
The earliest were Programmable Array Logic

(PAL) chips, consisting of an array of gates
whose inputs, interconnections and outputs
could be configured by blowing internal fuses
according to a specific design. PALs were
followed by Generic Array Logic (GALs),
which have more gates and more flexible
I/O pin logic. GALs are also erasable and
reprogrammable.

Later developments led to the Field
Programmable Gate Array (FPGA) and other

7 Analog-Digital Interfacing

Quite often, logic circuits must either drive
or be driven from non-logic sources. A very
common requirement is sensing the presence
or absence of a high (as compared to +5 V)
voltage or perhaps turning on or off a 120 V
ac device or moving the motor in an antenna
rotator. A similar problem occurs when two
different units in the shack must be interfaced
because induced ac voltages or ground loops
can cause problems with the desired signals.

A slow speed but safe way to interface
such circuits is to use a relay. This provides
absolute isolation between the logic circuits
and the load. Figure 32A shows the correct
way to provide this connection. The relay
coil is selected to draw less than the available
current from the driving logic circuit. The
diode, most often a 1IN914 or equivalent
switching diode, prevents the inductive
load from back-biasing the logic circuit and
possibly destroying it.

It is often not possible to find a relay that
meets the load requirements and has a coil
that can be driven directly from the logic
output. Figure 32B shows two methods of
using transistors to allow the use of higher
power relays with logic gates.

Electro-optical couplers such as opto-
isolators and solid state relays can also be
used for this circuit interfacing. Figure 32C
uses an optoisolator to interface two sets of
logic circuits that must be keptelectrically iso-
lated, and Figure 32D uses a solid state relay
to control an ac line supply to a high current
load. Note that this example uses a solid state
relay with internal current limiting on the
input side; the LED input has an impedance
of approximately 300 Q. Some devices may
need a series resistor to set the LED current;
always consult the device data sheet to avoid
exceeding device limits of the relay or the pro-
cessor’s I/O pin. See the Circuits and
Components chapter for more information
on optiosolators.

Forsafelyusingsignals with voltages higher
than logic levels as inputs, the same simple
resistor and Zener diode circuit similar to that

20 Digital Basics

programmable logic arrays. These devices
can contain anywhere from several hundred
to millions of logic gates, and up to more
than a thousand I/O pins. The connections
between gates, and thus the device’s function,
is determined by complex program code.
PLDs can be made to replace large numbers
of individual SSI, MSI and even LSI chips,
up to and including entire microprocessor
cores.

HBK0202 +5V
1Ns004 &[]
Logic)
Signal
(A)
+12V +24V
1Na00s & [N4004 &[]
. 1k
Logic
Signal 2N2222 é_wic' ,_@: 2N7000
igna
r77
(B)
4N35 AQG12212
Logic 1 6 Logic y + 02)
Signal (2'2“0" Signal ({
y=| A° = AC
2 4 o1 Load
N.C.)
/Jv $3 /J7 i (
(€) (D)

Figure 32— Interface circuits for logic driving real-world loads. (A) driving a relay from
a logic output; (B) using a bipolar transistor or MOSFET to boost current capacity; (C)
using an optoisolator for electrical isolation; (D) using a solid-state relay for switching

ac loads.

shown in Figure 31C can be used to clamp
the input voltage to an acceptable level. Care
must be used to choose a resistor value that
will not load the input signal unacceptably.

7.1 Analog-Digital Converters

Of course not all signals in the real world
are digital. It is often desirable to know
the exact voltage of an analog sensor, for
example, or to measure the level of something
— light, water, current or some other input.
Similarly, an analog output can be quite
useful for controlling or indicating things
that are better left in the analog domain. For
this reason we have two types of converters.
The analog-to-digital converter (ADC) and
digital-to-analog converter (DAC) handle
these tasks for us, and they are often fairly
easy to use. Additional information on ADCs
and DACs may be found in the Circuits and
Components chapter.

ADC AND DAC DIGITAL
INTERFACES

Interfaces for ADC and DAC chips are
generally classed as serial or parallel. Serial
interfaces can vary in speed, complexity and
the number of wires required for operation. A
serial interface has the advantage of requiring
a small number of processor I/O pins to
accommodate data of any length. Whether
your ADC is providing 8, 10 or 12 bits, the
same small number of I/O signals are used.
Some of the most common serial interfaces
used for ADC and DAC chips are as follows:

Serial Peripheral Interconnect (SPI). This
four-wire, synchronous bus and protocol use

a common CLK signal, plus data lines for
master-to-slave (Master Out-Slave In, or
MOSI) and slave-to-master (Master In-Slave
Out, or MISO). Multiple devices can be used
by providing each with its own Slave Select
(SS) signal. Speeds can range up to 70 Mbit/s,
depending on the capabilities of the master
and slave devices.

Microwire. This earlier predecessor to SPI
implements a half-duplex subset of SPI using
the same signals.

Inter-IC Communication (I2C) bus.
Originally developed by Philips, this
synchronous two-wire bus and protocol use
apair of open-drain lines, Serial Clock (SCL)
and Serial Data (SDA). Communication is
controlled by a master node, though there
may be more than one master attached to the
bus. Many peripheral devices can be attached
to an I12C bus; a device address is sent by
the master to initiate communication with
a slave. Speeds range from 10 kbit/s (low
speed) to 100 kbit/s (standard) to 400 kbit/s
(high speed) and higher.

Parallel interfaces generally have eight or
more data lines, plus a chip select, read/write
and interrupt controls. The read and write
signals may be separate, or may be a single
read/write signal —low for WR, and high for
RD, for example, or vice versa. The interrupt
signal can be used to indicate the end of a
conversion cycle to the CPU. In this way
the processor can tell the converter to start
a conversion, then continue processing until
the conversion is complete. This can allow
more processing to be done without waiting
idly for the ADC or DAC to complete its
conversion.

PROGRAMMING AND
COMMUNICATION

Many ADC chips have multiplexed inputs
that allow you to use one chip to sample
and digitize more than one analog input.
In these devices, there is a single converter
but several inputs that can be internally
switched. Additionally, it is common to be
able to program the inputs as single-ended
or differential. In the case of the popular
ADCO0832, for example, you can use its
two analog input pins as two separate
inputs, or as a single differential input. The
ADCO0838 expands this to eight single-ended
or four differential inputs. In the case of the
ADCO0832, modes can be mixed. This allows
the use of various combinations of single-
ended and differential inputs, as needed.

Programming and selecting the inputs is
done by sending a series of bits from the
processor to the ADC at the beginning of
the conversion cycle. Figure 33 shows a
diagram of the signal timing used with the
ADCO0834 ADC. In the case of the ADC0834,
a series of four bits are sent by the CPU to
the ADC to select single ended or differential
mode, the polarity of the input, and which of
the four inputs (or two input pairs) is to be
selected. Immediately following the fourth
bit, the ADC starts its conversion and starts
sending the resulting data to the CPU. Other
chips in this family and many from different
manufacturers use a similar scheme; the
number of program bits sent by the CPU
depends on the number of inputs present.

Some chips are also configurable for data
format as well. For example, a 12 bit ADC

1 2 3 4 5

6 7 8 9 10 11 12 13 14 15

16

Clock |

17 18 19 20

(SARS) _|

Data Out
(DO)

MUX Settling —==
Time

(CLK) L_
_»I teeT.up Output Data
Chip Select
(CS) Address MUX
Start .
Bit DDD/Sign
D?Itje;)ln Don't Care (DI Disabled until next conversion cycle)
SGL/DIF SB?ilte1Ct l«—— A/D Conversion Process —>|
SAR Status

| Tri-state

rf MSB First Data ———>t=—— LSB First Data ———>

7 6 5 4 3 2 A1
(MSB)

4 5 6 7
(MSB)

HBK0203

Figure 33 — ADC0834 timing diagram. Much more information about this device is available from the National

Semiconductor datasheet.

Digital Basics 21

ADS7810 PIC16F887
D7 RC7
D6 RC6
D5 RC5
D4 RC4
D3 RC3
D2 RC2
D1 RC1
DO RCO

HBE RB3
cs RB2
R/C RB1
BUSY RBO

(A) Parallel Interface

+5V +5V
ADCO-8032 PIC16F88
Vce cs RB5
Analog —] CH1 DI RB2/SDO
Inputs 4 CcHO CLK RB4/SCL
GND DO RB1/SDI

il il

HBK0204 (B) Serial Interface

Figure 34 — A/D converter to microcon-
troller interfacing: (A) parallel; (B) serial.

22 Digital Basics

may be programmable to send a sign bit fora
total of 13 data bits rather than 12. Data may
also be sent LSB first or MSB first. Some
chips are configurable for either parallel or
serial data transfer; this selection is generally
made by pulling a pin or pins high or low to
select the mode. In all cases, a careful reading
of the device data sheet is your best bet for
successful integration of the converter into
your project.

INTERFACING TO YOUR
MICROCONTROLLER

Probably the simplest way to interface an
external ADC to your microcontroller is by
using a parallel interface. In this case, one
simply manipulates the I/O pins from the CPU
to start the conversion, thenreads the resulting
data from the data lines. This method is often
less desirable than a serial connection, though,
due to the limited number of I/O pins usually
available. Figure 34A shows an example of a
parallel interface between a 12 bit ADC (the
ADS7810) and a PIC microcontroller (the
PIC16F887). In this example, only eight data
lines are used for twelve data bits. The HBE
signal is used to gate the four high order bits
onto the data lines after the low order bits
have been read. This saves four I/O pins on
the microcontroller.

Serial connections save I/O pins, allow the
use of physically smaller IC packages, and
can be quite easy to implement. Figure 34B
shows an example of a serial interface. If your
CPU has a hardware SPI/Microwire interface
built in, communication with the ADC can
be quite simple from a program standpoint.
Simply send the program word, if required,
and read the resulting data — either one or

two bytes, depending on the ADC resolution.
If you do not have built-in hardware SPI, the
program code to “bit-bang” the interface
is fairly simple to implement. (See www.
dlpdesign.com/images/bit-bang-usb.pdf
for more information on bit-bang.)

Note that Figure 34B shows separate
grounds for the processor and ADC. This is
required to keep switching noise and transients
from affecting the accuracy of readings. A
separate analog supply is also recommended.
The analog supply should be well filtered
using a combination of smaller ceramic or
monolithic, and bulk tantalum or other low-
ESR capacitors. This should be done for the
analog supply and reference voltage supplies.
The more noise you can eliminate from the
analog supply, the more reliable your readings
will be.

MICROCONTROLLERS WITH
BUILT-IN CONVERTERS

Itisnotatallunusual tofind microcontrollers
with built-in analog-to-digital converters,
complete with multiplexers, analog supply
pins and Vygp inputs. For example, many
Microchip PIC processors are equipped with
10bit ADCs, and have 5, 8 ormore pins thatcan
be configured as multiplexed analog inputs. A
few also have digital-to-analog, though this is
not nearly as common. While these devices
can be extremely useful, there are some
limitations. Reference voltages are generally
limited to the device’s supply voltage. Internal
CPU-generated noise may also somewhat
limit the usefulness of the converter. With
careful attention to device specifications and
limitations, though, a built-in ADC may meet
the needs of a wide range of uses.

8 Microcontroller Overview

This section surveys microcontroller
characteristics and applications as they
pertain to typical Amateur Radio projects
and equipment. The reader interested in
using microcontrollers is directed to the
many books and Internet resources that exist
for learning how to apply microcontrollers.
Manufacturer websites such as Microchip
(www.microchip.com), Freescale (www.
freescale.com) and Atmel (www.atmel.com)
are a good place to start. There are also a
number of message boards, forums and email
lists devoted to specific processor families,
such as the PICList (www.piclist.com) or
the Arduino User Forum (http://arduino.
cc/forum). Local users groups are often
active in large cities. Online communities
of microprocessor users are very fluid —
use Internet search engines to find current
resources.

8.1 Selecting a
Microcontroller

There are a number of microcontroller
families available from several manufactures,
each with its own advantages and
disadvantages. At the time of this writing, the
more popular options for amateur use come
from Microchip (PIC product line), Atmel
(AVR, ATMega, 8051 and other product
lines), Freescale (68HC11, HCO8, HC16 and
other product lines), and many manufacturers
who are building chips based on the venerable
Intel 8051 architecture. In addition to these
you will see and hear of the Texas Instruments
MSP430, ARM, and many others.

Designing projects using microcontrollers
can range from relatively simple to quite
complex. On the simpler end of the scale
are several products intended to bring
microcontroller based design ability to
people who would otherwise not be able to
use these devices. Various breadboard kits
and development systems are available to
simplify hardware development and program
downloading. The following three systems
are particular popular:

® Arduino (www.arduino.cc) — based on
an AVR microcontroller, Arduino boards are
available with a variety of capabilities and
interfaces. Add-on modules called “shields”
are added to interfaces provided on the
Arduino board. Software is written in C or
C++ and downloaded to the microcontroller.
The manufacturer provides free development
software.

® Parallax BASIC Stamp (www.parallax.
com) — a single-board system containing a
PIC microcontroller preloaded with PBASIC.
Software is written in an editor program on
the PC and then downloaded.

® PICAXE — a variety of PIC micro-
controller with a special form of BASIC.
Various sizes of microcontrollers are
available with different numbers of I/O pins
and clock speeds. The user is responsible for
building the circuit board that supports the
microcontroller.

In each of these cases, the user does not
necessarily need to have adeep understanding
of the details of the microcontroller or its
operation. The circuit can be designed with
attention paid to keeping signal levels within
the limits of the device. Then, one simply
writes a program to perform the functions
required. To be sure, there are trade-offs.
The built-in firmware required to allow the
user to write a program may be in a simple
language such as BASIC that takes up space
and processor cycles, so execution speed
is not as fast and programs are somewhat
limited.

The BASIC Stamp and PICAXE use
specific variants of the PIC microcontroller,
so if you need features that are not present
in those chips you will need to take a differ-
ent approach. Still, these can be extremely
valuable tools that the average amateur
can use with very little time and money
invested.

There is a very broad range of micro-
controllers available to meet nearly any need.
Available devices include 8 bit, 16 bit and 32
bit processors with internal program memory
ranging from 512 words up to 256 kbytes
and more. At the low end are very low cost,
physically small devices (down to 8 pin ICs)
that can perform relatively simple tasks with
ease. Larger, faster processors may include
more memory, more I/O pins, and specialized
peripherals. Some of the more common
features are ADCs, DACs, pulse width
modulation (PWM) outputs, USB interface
hardware or digital signal processing.

I/0 REQUIREMENTS

Selecting a microcontroller for a new
projectinvolves evaluating your requirements
and prior experience. First, evaluate the
number of inputs and outputs you are likely
to need. If, for example, you need to sample
ananalog voltage and two switch closures and
generate a serial data stream, you will need
one analog input and three or more digital I/O
pins. Depending on memory requirements,
even some of the smallest devices will fit
the bill. For a more elaborate design, you
may need to scan a 4x4 key switch matrix,
drive an LCD module with a parallel interface,
control a number of LEDs and interface to
a PC through a USB port. In this case, the
number of I/O pins needed will eliminate a
large number of devices from consideration.

CPU SIZE, PERFORMANCE AND
MEMORY

If you are a computer user, you are used
to seeing 32 bit and 64 bit microprocessors,
many with more than one CPU core on
the same chip. In the world of embedded
microcontrollers, things are a little different.
Instead of handling an operating system
and a large number of different programs,
the microcontroller only has to execute one
program and is completely dedicated to that
task. Unless you require very high speed I/O,
need very intensive processing or will be using
DSP, asimple 8 bit processor may be more than
sufficient. There are dozens of ham related
products that use embedded controllers —
iambic keyers, APRS transponders, repeater
controllers, antennarotator controls and many
other accessories that all use simple 8 bit
processors with surprisingly small amounts
of program memory. On the other hand, if you
are designing a new rig or antenna tuner that
will require DSP, chances are you may need
a more robust processor.

If you are unsure of what your project will
require, you may want to pick a processor
family that has scalable, pin-compatible
members. For example, Microchip offers
processors ranging from 8 bit and 5 million
instructions per second (MIPS) with 7 kbytes
of program memory, to 16 bit with 48 kbytes
of program memory at 30 MIPS. All are pin-
compatible, soif you find you need more speed,
more memory or more built-in peripherals,
you can drop in a different processor without
changing the hardware.

Also take into account the physical
packaging. Some products are available in
through-hole, dual inline (DIP) packages;
others are available only in surface mount
versions. This can make a difference if you
lack the equipment, expertise or desire to
work with surface mount components.

SPECIALIZED PERIPHERALS

Will you need a USB interface? Analog
inputs? DSP? Precision timekeeping? It may
be easier to select a processor that has the
features you need built in. On the other hand,
itisrelatively easy to add an external real-time
clock, ADCor DAC, andittakes only afew I/O
pins. There are several USB interface chips
available that will handle communication
with your PC, and present an asynchronous
serial data interface to the microcontroller.
This can save a lot of firmware development
time and frustration.

HARDWARE COST AND
DEVELOPMENT TOOLS

The cost of the actual microcontroller may
be a factor, or it may not. If you are building a

Digital Basics 23

one-off project for your own use, there is not
much difference between using a $3 chip and
a $30 chip with a built-in BASIC interpreter.
The difference in time and effort to develop
the firmware may make it well worth the extra
money for the easier-to-use solution. If you
plan to manufacture your device for a larger

audience, the cost difference may lead you to
make a different choice.

Take into account the cost of the software
and hardware tools needed for development.
Does the manufacturer offer a free set of
firmware development tools, or will you have
to spend extra money for an assembler or

9 Personal Computer Interfaces

This section provides an overview of the
personal computer (PC)digital interfaces used
in the amateur station. Detailed information
on using these interfaces is available online,
especially in users groups and specialized
forums for specific software and hardware
applications. This book's chapters on DSP
and SDR Fundamentals, Digital Modes
and Protocols, and the online supplement
on Digital Communications provide more
information on specific applications and
techniques. The Station Accessories chapter
includes PC interface construction projects,
as well.

9.1 Parallel vs Serial
Signaling

To communicate a word to someone across
the room, you could hold up flash cards
displaying the letters of the word. If you hold
up four flash cards, each with a letter on it, all
at once, then you are transmitting in parallel.
If, instead, you hold up each of the flashcards
one at a time, then you are transmitting in
serial. Parallel means all the bits in a group
are handled exactly at the same time. Serial
means each of the bits is sent in turn over a
single channel or wire, according to an agreed
sequence. Figure 35 illustrates parallel and
serial signaling.

Both parallel and serial signaling are
appropriate for certain circumstances.
Parallel signaling is faster, since all bits are
transmitted simultaneously, but each bit needs
its own conductor, which can be expensive.
Parallel signaling is more likely to be used
for internal communications. For spanning
longer distances, such as to an external device,
serial signaling is more appropriate. Each bit
is sentin turn, socommunication is slower, but
italso is less expensive, since fewer channels
are needed between the devices.

Most amateur digital communications
use serial transmission to minimize cost
and complexity. The number of channels
needed for signaling also depends on the
operational mode. One channel is required
per bit for simplex (one-way, from sender
to receiver only) and for half-duplex (two-
way communication, but only one person

24 Digital Basics

can talk at a time), but two channels per bit
are needed for full-duplex (simultaneous
communications in both directions).

PARALLEL I/0 INTERFACING

Figure 36 shows an example of a parallel
input/output interface, similar to the parallel
printer ports once common in PCs. Typically,
they have eight data lines and one or more
handshaking lines. Handshaking involves a

HBKO05_05-90

MSBs
Bz| 70 0 1 1 0 1 0 »Channel7

Bs| © 1 0 1 1 0 1 1 » Channel6

Bs| 7 1 1 0 0 0 1 0 »Channel5

N
By|] © 0 1T 1 0 1 1 0) Channel4

N
Bs| 1.0 T 0 1 1 0 1) Channel3

N
Bo| © 0 17T 00 0 1 1 »Channel2

N
By| 7 1 0 1 1 0 0 0 »Channelft

N
Bpl] 01 0 1T 0 1T 1 1 »Channel0

— LSBs
Bit N
Periog [LIE LB 3[2]1]0]) Time
(A)
Bt FT6T5[2 312700 Time
Period 14
N Single
170 10 1 0 1 0
ﬁ v> Channel
B; |—1
Bsl——o0
Bs 1
Bsl 0
By 1
B, 0
B, 1
Bo 0 (B)

Figure 35 — Parallel (A) and serial (B)
signaling. Parallel signaling in this
example uses 8 channels and is capable
of transferring 8 bits per bit period. Serial
transfer only uses 1 channel and can
send only 1 bit per bit period.

compiler? Is there a low cost development
kit available with the PC interface you need?
Does the device require a simple PC interface
to program, or a more expensive dedicated
programmer? Do you have any previous
experience with the processor family, or will
it be a completely new effort for you?

number of functions to coordinate the data
transfer. Forexample, the READY lineindicates
that data are available on all eight data lines.
If only the READY line is used, however, the
receiver may not be able to keep up with the
data. Thus, the STROBE line is added so the
receiver can determine when the transmitter
is ready for the next character.

Interfacing to the parallel port is very
simple and can be done in many languages
and under many operating systems. It is an
easy way to get a PC to act as a controller in
the shack and around the home, with from 8
to 12 independent input or output wires. You
can get an old computer either virtually free
or for just a few dollars and use it exclusively
as a controller. (New computers usually do
not have a parallel port.)

By searching the Internet for acombination
of “parallel port interface” and the language
of your choice (for example, Visual BASIC
or C), you can find detailed interfacing and
programming instructions. It is a good and
relatively simple place to “roll your own,”
compared to the protocol requirements of
interfacing with the serial port or USB.

SERIAL 1/0 INTERFACING

Serial input/output interfacing is more
complex than parallel, since the data must
be transmitted based on an agreed sequence.
For example, transmitting the 8 bits (b7, b6, . .
.b0) of aword includes specifying whether the
least significantbit, b0, or the most significant

DATA
Parallel External
/0 Device
READY
STROBE
HBK05_05-91

Figure 36 — Parallel interface with READY
and STROBE handshaking lines.

bit, b7, is sent first. Fortunately, a number of
standards have been developed to define the
agreed sequence, or encoding scheme.

In order to use a serial interface between
a computer and a serial device such as a
modem, printer or a new transceiver, several
things must be set the same on both ends
of the connection. The first is the data rate,
the choices for which are usually limited to
specific values between 300 and 115200 bits
per second for historical reasons. The next is
the data format — 7 or 8 bits, and with even,
odd or no parity. Finally, both devices must
be using the same handshaking method. The
usual choices are RTS/CTS, DSR/DTR, or
XON/XOFF. The first two use extra signals
(and therefore extra wires) to indicate when
the transmitting device has data to send, and
when the receiving device is able to accept
data. In the third method, XON/XOFF, the
device receiving data will send an XOFF
control character to the transmitting device
to indicate that it can no longer accept data.
When the transmitting device sees the XOFF
it stops sending until it receives an XON from
the other end. Each method has its advantages
and disadvantages. Forexample, XON/XOFF
needs no extra wires, but response is not
instantaneous. Both ends must have some
data buffer space and logic to support the
handshake.

9.2 Standard Data Interfaces

This section covers a set of common data
interfaces used in the amateur station. See the
Component Data and References chapter
for details on computer connector pinouts.

SIGNALING LEVELS

Inside equipment and for short runs of wire
between equipment, the normal practice is
to use neutral keying; that is, simply to key
a voltage such as +5 V on and off. In neutral
keying, the off condition is considered to
be 0 V. Over longer runs of wire, the line is
viewed as a transmission line, with distributed
inductance and capacitance. It takes longer
to make the transition from 0 to 1 or vice
versabecause of the additional inductance and
capacitance. This decreases the maximum
speed at which data can be transferred on the
wire and also may cause the 1s and Os to be
different lengths, called bias distortion. Also,
longer lines are more likely to pick up noise,
which can make it difficult for the receiver to
decide exactly when the transition takes place.
Because of these problems, bipolar keying is
used on longer lines. Bipolar keying uses one
polarity (forexample +) for alogical 1 and the
other (— in this example) for a 0. This means
that the decision threshold at the receiver is
0 V. Any positive voltage is taken as a 1 and
any negative voltage as a 0.

EIA-RS-232

The serial bus protocol EIA-RS-232
addresses this issue (however, a Mark “1” is
anegative voltage and a Space “0” is positive).
Generally called RS-232, this protocol
defines connectors and voltages between data
terminal equipment (DTE) such as a PC, and
datacommunications equipment (DCE), such
as a modem or TNC.

The connector is the DB-25 (25 pin), or
DB-9 (9 pin) version — though RS-232
interfaces have also been implemented
using nonstandard connectors such as RJ45,
3.5 mm audio plugs and many others.
Signaling voltages are defined between
+3 V and +25 V for logic “0” and between
-3 Vand-25V forlogic “1.” Although the top
data rate addressed in the specification is only
20 kbit/s, speeds of up to 115 kbit/s are
commonly used. Communications distances
of hundreds of meters are possible at
reasonable data rates.

Since neutral keying is usually used inside
equipment and bipolar keying for lines
leaving equipment, signals must be converted
between bipolar and neutral. Discrete level
shifters or op amp circuits may perform this
task, or low cost specialized IC line drivers
and receivers are available.

UNIVERSAL SERIAL BUS (USB)

USB is a computer standard for an
intelligent serial data transfer protocol, and
it has become the standard for nearly all
connections between a PC and its external
peripherals. It has largely replaced serial,
parallel, keyboard and mouse ports as well as
SCSI and numerous other buses in consumer
PCs.

Inaddition to higher speed than RS-232 and
parallel ports, USB offers reasonable power
availability to its loads, or functions. Under
certain circumstances, up to 127 hubs and
functions may connect to a single computer.
USB requires that each function have on-
board intelligence and that it negotiate with
the host for power and bandwidth allocation.
USB also has the major advantage of hot-
pluggablity — the PC need not reboot when
new functions are added.

The USB connectors use four-conductor
cable, with two bidirectional, differential data
lines, power, and ground. Approximately
5 V at 100 mA is allowed per function, with
up to 500 mA available if the host system
has the capability. This means that relatively
sophisticated devices, such as modems, small
video cameras, or hand-held scanners may
operate from the bus without additional power
supplies. It has also become common to use
USB forconnecting and charging awiderange
of devices such as cellular phones, cameras
and GPS units. When a USB connecting cable
is used, proper connections and proper flow
are ensured by using a rectangular (USB

“A”) connector on the host and a different
connector (USB “B”, Mini-B or Micro-B)
on the attached function.

There are currently two USB standards in
general use. USB 1.1, somewhat obsolete but
common in PCsjustafew years old, is capable
of 12 megabits per second (12 Mbit/s). USB
2.0 is the later standard and is rated up to
480 Mbit/s. Most USB 2.0 ports will allow
the use of older USB 1.1 devices — that is,
they are backward compatible. However
maximum cable lengths and available power
to devices may be affected. USB 3.0 uses
additional wires and some new connectors
to enable communication at up to 5 Gbit/s in
its SuperSpeed configuration.

Older PCs that have just one or two USB
ports can have additional ports by adding an
inexpensive USB port expander, commonly
called a USB hub. Some units obtain their
power from the host computer’s USB port,
and distribute only the USB signals along
with the remaining power available from the
host. Others come with a small power supply
that provides the normal power to each new
USB port.

If the PC does not have any USB ports,
an expansion card can be used to add USB
ports. It is quite common to see new personal
computers without any serial or parallel ports,
with USB replacing these functions. If you
need to use your older serial or parallel
peripheral devices with these “legacy-free”
PC systems, adapter cables are available to
connect them to USB ports.

ETHERNET

For wired networks, 100BaseT or “fast
Ethernet” has been the standard for a number
of years, with low cost hubs and switches
commonly available. The 100BaseT systems
are rated to 100 Mbit/s and use unshielded,
twisted-pair Category 5 network cable. Each
computer on the network connects to a central
hub or switch.

More recently, 1000BaseT (gigabit Ether-
net, or GigE) and is quickly replacing
100BaseT even at the consumer level. Gigabit
Ethernet also uses Cat 5 cable, though Cat Se
or Cat 6 is often recommended. Explanation
of the MBaseN and Category N terminology
can be found in many available networking
books.

Mutual interference with ham station
operation is not uncommon. A 10 Mbit/s
signal, if all bit positions are filled, means
that unshielded wire is carrying 10 MHz and
various harmonics of 10 MHz around the
shack. When digital words are going through
the network, any number of frequencies may
be present on the wires and the wires may be
very susceptible to pick-up from HF, VHF
and UHF signals. In addition, cable and
DSL modems may not only transmit various

Digital Basics 25

frequencies (especially on VHF) but lose data
when a few hundred watts on a ham band
is present. Some RF in the shack that can
normally be ignored can easily bring down
a network. Unfortunately, it is also common
for this equipment to have “noisy” switching
power supplies that can wreak havoc on a
ham’s sensitive receiver. See the RF
Interference chapter for more informationon
dealing with RFI from networking equipment.

WIRELESS NETWORKS — WIFI

The other technology commonly found in
home and office networks is IEEE 802.11
wireless. These networks use low-power,
spread spectrum transceivers operating in the
2.4 and 5.2-5.8 GHz range to transfer data
at nominal rates up to 54 Mbit/s and higher.
Olderequipmentused the 801.11b protocol at
11 Mbit/s; newer gear commonly found atlow
prices uses 802.11g at 54 Mbit/s maximum
data rate. The 802.11n protocol supports
data rates up to several hundred megabits per
second in the 2.4 and 5 GHz ranges.

These data rates are the maximum under
ideal conditions, and it is not uncommon to
see links running at significantly lower speeds
as the wireless access point (WAP) and the
wireless adapter dynamically adapt to the
conditions. Still, performance is adequate for
most uses, and the lack of network cabling
makes wireless networking attractive in many
situations.

10 Glossary of Digital Electronics Terms

AND gate — A logic circuit whose output
is 1 only when all of its inputs are 1.

Astable (free-running) multivibrator —
A circuit that alternates between two
unstable states. This circuit could be
considered as an oscillator that produces
square waves.

Asynchronous flip-flop — A circuit, also
called a latch, that changes output state
depending on the data inputs, without
requiring a clock signal.

Binary — A base-2 number system used in
digital electronics that uses the symbols
Oand 1.

Binary coded decimal (BCD) — A simple
method for converting binary values
to and from decimal for inputs and
outputs for user-oriented digital systems.
BCD was widely used in the days of
7-segment LED displays but is not
common today.

Bistable multivibrator — Another name
for a flip-flop circuit that has two stable
output states.

26 Digital Basics

Wireless networks actually appeartobeless
susceptible to mutual interference, since they
are not connected to long runs of unshielded
wire that easily act as both transmitting and
receiving antennas. The frequency bands
used for wireless networks are reasonably
far removed from normal ham operations at
frequencies below 2.4 GHz, but a high power
VHF or UHF station may interfere with such
a network. Also, some of the channels used
for 802.11b and 802.11g network equipment
fall within the amateur spectrum allocation in
the 2.4 GHz band.

CABLE REPLACEMENT —
BLUETOOTH AND ZIGBEE

A number of low power, short range data
links have been created to replace cable based
interfaces suchas USB and RS-232. These are
digital protocols that use unlicensed spectrum
in the ISM bands. Two of the most popular as
of early 2013 are Bluetooth (www.bluetooth.
com) and Zigbee (www.zigbee.org). Most
technologies of this type are either initially or
permanently developed as implementations
of an IEEE 802.x standard.

Bluetooth data links operate in the 2.4 GHz
band and are primarily used for streaming
audio and high speed digital links up to
several megabits per second. Bluetooth links
use frequency-hopping spread-spectrum
technology. It can also support personal area

Boolean algebra — The mathematical
system used to describe and design
binary used digital circuits, named after
George Boole.

Bus —A set of wires through which data is
routed internally within computers and
other digital devices.

Clock — A signal that toggles at a regular
rate. Clock control is the most common
method of synchronizing logic circuits.

Combinational logic — A type of circuit
element in which the output depends on
the present inputs. (Also see Sequential
logic.)

Complementary metal-oxide
semiconductor (CMOS) — A type
of construction used to make digital
integrated circuits. CMOS is composed
of both N-channel and P-channel MOS
devices on the same chip.

Counter (divider, divide-by-n counter) —
A circuit that is able to change from one
state to the next each time it receives
an input signal. A counter produces an

networks (piconets or PANs) at various levels
of security. Up to seven devices can share a
Bluetooth interface with a host. A process
called synchronization is used to associate
the various devices.

Zigbee is designed for ad-hoc mesh
networking applications and operates in
the 902 MHz ISM band in North America.
Zigbee’s maximum data rate is 250 kbit/sec.
Because of the lower data rate, most Zigbee
applications are designed for control and
monitoring applications.

REPLACING COM AND LPT PC
INTERFACES

USB-to-serial and USB-to-parallel
adapters are relatively inexpensive and easy
to find. Note, however, that not all of them
support all of the handshaking signals we
may require, and some may have delays or
inadequate drivers. Be prepared to try several
different brands to find one that works with
your equipment. Users groups for specific
equipment or software are good resources
to find out what brands and models of port
replacement accessories are compatible and
operate properly. While they are becoming
less common, there is also still a market for
add-in PCIbus cards to add serial, parallel and
other ports to desktop computers.

output signal every time a predetermined
number of input signals have been
received.

Decimal — The base-10 number system
we use every day that uses the symbols
0 through 9.

DeMorgan’s Theorem — In Boolean
algebra, a way to simplify the
complement of a large expression or
to enable a designer to interchange a
number of equivalent gates.

Digital IC — An integrated circuit whose
output is either on (1) or off (0).

Dynamic (edge-triggered) input — A
control signal that allows a circuit to
change state only when the control
signal changes from unasserted to
asserted.

Exclusive OR gate — A logic circuit
whose output is 1 when either of two
inputs is 1 and whose output is 0 when
neither input is 1 or when both inputs
are 1.

Fan-out — The ability of a logic element

to drive or feed several other logic
elements.

Field Programmable Gate Array (FPGA)
— A type of programmable logic array
that can contain several hundred to
millions of logic gates and up to 1000 or
more /O pins.

FireWire (IEEE-1394) — A very high
speed serial protocol capable of up to
400 Mbit/s of sustained transfer.

Flip-flop (bistable multivibrator) — A
circuit that has two stable output states,
and which can change from one state to
the other when the proper input signals
are detected.

Gate — A combinational logic element
with two or more inputs and one output.
The output state depends upon the state
of the inputs.

Handshaking — Functions to coordinate
data transfer.

Hexadecimal — A base-16 number system
widely used in computer systems that
uses the 0,1,2,3,4,5,6,7,8,9,A,B,C.D,EF.

Integrated circuit — A device composed
of many bipolar or field-effect transistors
manufactured on the same chip, or
wafer, of silicon.

Inverter — A logic circuit with one input
and one output. The output is 1 when the
input is 0, and the output is O when the
input is 1.

Latch — Another name for a bistable
multivibrator (flip-flop) circuit. The
term latch reminds us that this circuit
serves as a memory unit, storing a bit of
information.

Linear IC — An integrated circuit whose
output voltage is a linear (straight line)
representation of its input voltage.

Logic probe — A simple piece of test
equipment used to indicate high or low

logic states (voltage levels) in digital-
electronic circuits.

Microcontroller — A “computer on a
chip” that usually consists of a relatively
small microprocessor along with some
amount of program memory, data
memory, input/output ports and often
some specialized peripheral devices.

Monostable multivibrator (one shot) — A
circuit that has one stable state. It can be
forced into an unstable state for a time
determined by external components, but
it will revert to the stable state after that
time.

NAND (NOT AND) gate — A logic circuit
whose output is 0 only when both inputs
are 1.

Noninverter — A logic circuit with one
input and one output, and whose output
state is the same as the input state (0
or 1). Sometimes called a noninverting
buffer.

NOR (NOT OR) gate — A logic circuit
whose output is 0 if either input is 1.

OR gate — A logic circuit whose output is
1 when either input is 1.

Parallel — A digital signaling method in
which all the bits in a group are handled
exactly at the same time.

Programmable logic device (PLD) — A
device that includes a generic array of
gates that can be controlled by program
code. PLDs can be made to replace large
numbers of individual ICs.

Propagation delay — The time delay
between providing an input to a digital
circuit and seeing a response at the
output.

Register — A set of latches or flip-flops
storing an n-bit number.

RS-232 — The most common serial bus
protocol.

11 References and Bibliography

DIGITAL ELECTRONICS

Bignell and Donovan, Digital Electronics
(Delmar Learning, 2006)

Holdsworth, B., Digital Logic Design
(Newnes, 2002)

Lancaster and Berlin, CMDS Cookbook
(Newnes, 1997)

Tocci, Widmer and Moss, Digital Systems:
Principles and Applications (Prentice
Hall, 2006)

Tokheim, R., Digital Electronics:
Principles and Applications (McGraw-
Hill, 2008)

Logic simulation software: “Getting
Started with Digital Works” www.spu.
edu/cs/faculty/bbrown/circuits/howto.
html

MICROPROCESSORS AND
MICROCONTROLLERS

Dumas, J., Computer Architecture:
Fundamentals and Principles of
Computer Design (CRC Press, 2005)

Gilmore, C., Microprocessors: Principles
and Applications (McGraw-Hill, 1995)

Johnson, C., AA@ZZ, ““Learning to PIC
with a PIC-EL” (Parts 1 and 2), OST,
May 2007 (pp. 37-42) and June 2007
(pp. 33-36)

RS-422 — A serial protocol similar to
RS-232, but employing fully differential
data lines.

Serial — A digital signaling method in
which each bit is sent in turn over a
single channel or wire, according to an
agreed sequence.

Sequential logic — A type of circuit
element in which the output depends on
the present inputs, the previous sequence
of inputs and often a clock signal. (Also
see Combinational logic.)

Square wave — A periodic waveform
that alternates between two values, and
spends an equal time at each level. It is
made up of sine waves at a fundamental
frequency and all odd harmonics.

Static (level-triggered, or gated) input —
A control signal that allows the circuit to
change state whenever the control signal
is at its active or asserted level.

Synchronous flip-flop — A circuit whose
output state depends on the data inputs,
but that will change output state only
when it detects the proper clock signal.

Transition region — The undefined region
between the two binary states. Also
known as the noise margin.

Transition time — The time it takes a
digital circuit to change state. The
transition from a O to a 1 state is called
the rise time, and the transition from a 1
to a 0 state is called the fall time.

Tri-state gate — A gate with one
additional control lead. When enabled,
the gate operates normally; when not
enabled, the output goes to a high
impedance.

Truth table — A chart showing the outputs
for all possible input combinations to a
digital circuit.

Universal serial bus (USB) — A computer
standard for an intelligent serial data
transfer protocol.

Klotz, L., WA5ZNU (Ed.), Ham Radio for
Arduino and PICAXE (ARRL, 2013)

Korneev and Kiselev, Modern
Microprocessors (Charles River Press,
2004)

Popiel, G., KW5GP, Arduino for Ham
Radio (ARRL, 2014)

Popiel, G., KW5GP, More Arduino
Projects for Ham Radio (ARRL, 2017)

Spencer, M., WASSME, ARRL’s PIC
Programming for Beginners (ARRL,
2010)

Tocci and Ambrosio, Microprocessors
and Microcomputers: Hardware and
Software (Prentice-Hall, 2002)

Digital Basics 27

