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Digital Basics

1  Digital vs Analog
An analog signal can represent an infinitely variable indication of voltage, current, frequency, 

the position of a dial, or some other condition or value. As an example, using a potentiometer 
as a volume control will give you infinitely variable control over the volume of a signal. In 
theory, there is no limit to the difference in volume that can be produced. Though the control 
may be marked from 1 to 10, the actual value would have to be represented by a real number 
somewhere between 0 and 10. There are an infinite number of settings in between.

In its simplest form, a digital signal simply indicates the on or off state of some value or 
input signal. For example, the straight key you may use to key your CW transmitter (or the 
PTT switch of your voice transmitter) produces an on or off binary signal. In one state the 
transmitter produces an output signal of some sort; in the other state it does not. Another 
example is a simple light switch. The light is either on, or it’s off. We represent these two 
states using 0 for off and 1 for on.

Digital electronics gets more interesting when we combine several or many simple on/off 
digital states to perform more complex tasks. For example, a relatively simple digital circuit 
can connect the antenna to either the transmitter or the receiver depending on a PTT or other 
keying signal. It can turn a preamp on or off depending on the state of the transmitter, mute 
the speaker while transmitting, and even select an antenna based on the selected frequency 
band. No special digital integrated circuits (chips) are needed to do any of these tasks; we can 
simply use bipolar transistors or MOSFETs, driven to saturation, as on/off switches. Simple 
circuits like this can often even be implemented with relays or diodes. The important fact is 
that the system is digital. There is no “almost transmitting” or “PTT switch partially pressed” 
state — it’s either on, or it’s off.

A very useful aspect of digital electronics is our ability to construct simple circuits that can 
maintain their on/off state indefinitely, until 
some event causes them to change. These 
flip-flop circuits can be used in various com-
binations to form registers that store infor-
mation for later use or counters that count 
events and can be read or reset when needed. 
All of these circuits can be combined in ever 
larger groups until we finally arrive at the 
modern microprocessor. A microprocessor 
can accept input signals from many sources, 
follow a stored program to perform complex 
data storage and mathematical calculations, 
and produce output that we can use to do 
things that would be far more difficult with 
analog circuits.

So let’s revisit our volume control exam-
ple from the earlier paragraph. Let’s assume 
we have a volume control, but it is used as 
an input to a digital system that will pro-
duce output at the desired level. This is quite 

Figure 1 — An analog signal and its 
analog approximation. Note that the 
analog waveform has continuously 
varying voltage while the approximated 
waveform is composed of discrete steps.
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common in modern equipment, whether it is 
amateur or consumer gear. Since the control 
is now digital, we know we can’t have an infi-
nite number of values. However, a simple on/
off volume control would not be very useful. 
Using digital electronics, we can break the 
range between “off” and “fully on” into as 
many discrete steps as we need. With enough 
steps, we can give the user of the equipment 
an approximation of the original analog con-

trol while keeping the actual control digital.
By using coding, as discussed in the follow-

ing pages, the two binary values (off and on, 
or 0 and 1) can represent any number of real 
values. Figure 1 illustrates the contrast of an 
analog signal (in this case a sine wave) and its 
digital approximation. Four positive and four 
negative values are shown as an approxima-
tion to the sine wave, but any number of coded 
value steps can be used as an approximation. 

The more values are used to approximate the 
wave, the closer you can come to the actual 
wave form.

While the focus in this chapter will be on 
digital theory, many circuits and systems 
involve both digital and analog components. 
Often, a designer may choose between using 
digital technology, analog technology or a 
combination.

2  Number Systems
If you have been around computer hob-

byists, some of whom are also hams, you 
may have seen a T-shirt or bumper sticker 
that reads, “There are 10 kinds of people in 
the world: those who understand binary, and 
those who don’t.” If this has puzzled you in 
the past, after reading this chapter you will 
be able to laugh with the rest of us.

In order to understand digital electronics, 
you must first understand the binary num-
bering system. Any number system has two 
distinct characteristics: a set of symbols (digits 
or numerals) and a base or radix. A number 
is a collection of these digits, where the left-
most digit is the most significant digit (MSD) 
and the right-most digit is the least signifi-
cant digit (LSD). The value of this number 
is a weighted sum of its digits. The weights 
are determined by the system’s base and the 
digit’s position relative to the decimal point.

While these definitions may seem strange 
with all the technical terms, they will be 
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Table 5.1
Decimal Numbers
Example: 548

Digit = 5; Weight = 10; Position = 2

548 = 5(102) + 4(101) + 8(100)
= 5(100) + 4(10) + 8(1)
= 500 + 40 + 8
= 5 4 8

MSD LSD

Table 5.2
Decimal and Binary Number Equivalents
163 = 128 + 0 + 32 + 0 + 0 +0 + 2+   1        decimal

= 1(128) + 0(64) + 1(32) + 0(16) + 0(8) +0(4) + 1(2) +1(1)
= 1(27) + 0(26) + 1(25) + 0(24) + 0(23) +0(22) + 1(21) +1(20)

10100011 = 1 0 1 0 0   0 1 1        binary
MSB LSB

Number Systems
In order to understand digital electron-

ics, you must first understand the digital
numbering system. Any number system
has two distinct characteristics: a set of
symbols (digits or numerals) and a base or
radix. A number is a collection of these
digits, where the left-most digit is the most
significant digit (MSD) and the right-most
digit is the least significant digit (LSD).
The value of this number is a weighted
sum of its digits. The weights are deter-
mined by the system’s base and the digit’s
position relative to the decimal point.

While these definitions may seem
strange with all the technical terms, they
will be more familiar when seen in a deci-
mal system example. This is the “tradi-
tional” number system with which we are
all familiar.

DECIMAL
The decimal system is a base-10 sys-

tem, with ten symbols: {0, 1, 2, 3, 4, 5, 6,
7, 8, 9}. To count, we start at 0, and then
work our way up to the highest single value
allowed — 9. Therefore we count 0, 1, 2,3,
4, 5, 6, 7, 8, 9.

Consider 3 digits, represented by XXX.
We start at 000, and then fill up the first
(least significant) column, on the right:

XXX
000
001
002
003
…

009

We now reset the first column to the
lowest possible value, 0, and increase the
second column by 1.

010
011
012
013
…

019

We have again filled up the first col-
umn, so again reset it to 0, and increase the
second column by one.

020
021
022
023
…

029

We repeat this process, until we hit
099. At this point the second column is
filled, so we reset the first two columns to
00 and increase the third column by 1,
giving us 100. This is how our familiar
decimal or 10-digit number system
works; number systems working on other
bases work the same way.

Each column in a number has a prop-
erty called weight. As an example, look
at the decimal number, 548. The digits
are 5, 4, 8, where 5 is the most significant
digit since it is positioned to the far left
and 8 is the least significant digit since it
is positioned to the far right. The value of
this number is a weighted sum of its dig-
its, as shown in Table 5.1.

The weight of a position is the system’s
base raised to a power. In this case, for a
decimal system the base is 10, so each
position is weighted by 10P with the
power determined by the position rela-
tive to the decimal. For example, digit 8,
immediately to the left of the decimal, is
at position 0; therefore, its weight factor
is 100 = 1. Similarly, digit 5 is 2 positions
to the left of the decimal and has a weight
factor 102 =100. The value of the number
is the sum of each digit times its weight.

BINARY
Binary is a base-2 number system and

therefore limited to two symbols: {0, 1}.
The weight factors are now powers of 2,
like 20, 21 and 22. For example, the deci-
mal number, 163 and its equivalent binary
number, 10100011, are shown in Table
5.2.

The digits of a binary number are now
bits (short for binary digit). The MSD is
the most significant bit (MSB) and the
LSD is the least significant bit (LSB).
Four bits make a nibble and two nibbles,
or eight bits, make a byte. A word can
consist of two or four or more bytes.
These groupings are useful when convert-
ing to hexadecimal notation, which is
explained later.

Counting in binary follows the same
pattern illustrated for decimal. Consider
the three digit binary number XXX. First
fill up the right-hand column.

XXX
000
001

The column has been filed, and much
quicker then with decimal, since there are
only two values instead of 10. But just like
decimal, now reset the right-hand column
to 0, increase the next column by 1, and
continue.

XXX
000
001
010
011

|| |
Nibble Nibble

|

| |
 Byte = 8 digits

←

Table 1
Decimal Numbers

Table 2
Decimal and Binary Number Equivalents

more familiar when seen in a decimal sys-
tem example. See Table 1. This is the “tra-
ditional” number system with which we are  
all familiar. In the base-10 or decimal num-
bering system we use every day, the digits 
used are 0 through 9. The weights are powers 
of ten: 100 or 1 for the right-most column, 
101 or 10 for the next column, 102 or 100 
for the next and so on. Thus the number 548 
represents five hundreds, four tens and eight 
ones. In this case, 5 is the MSD, and 8 is the 
LSD. Once you understand this concept, it 
can be applied to numbering systems using 
bases other than 10 such as base-2, base-8, 
or even base-16.

2.1 Binary
Binary is a base-2 number system and 

therefore limited to two symbols: {0, 1}. The 
weight factors are now powers of 2, like 20, 21 
and 22. For example, the decimal number, 163 

and its equivalent binary number, 10100011, 
are shown in Table 2.

The digits of a binary number are now bits 
(short for binary digit). The MSD is the most 
significant bit (MSB) and the LSD is the least 
significant bit (LSB). Four bits make a nib-
ble (which you will occasionally see spelled 
nybble) and two nibbles, or eight bits, make a 
byte. The length of a word is dependent upon 
the hardware; it generally can consist of two 
or four or more bytes, but occasionally will be 
some other number of bits. These groupings 
are useful when converting to hexadecimal 
notation, which is explained later. It is impor-
tant to remember that while everyone agrees 
on the meaning of a bit, a nibble (regardless 
of spelling) and a byte, the meaning of word 
can vary.

Counting in binary follows the same 
pattern we would use for decimal or 
any other number system. Consider the three 
digit binary number XXX. First fill up the 
right-hand column.

Binary	 Decimal 
Number	 Equivalent
0000	 0
0001	 1

The column has been filled, and much 
quicker than with decimal, since there are 
only two values instead of 10. But just as we 
would with a decimal number, we now reset 
the right-hand column to 0, increase the next 
column by 1, and continue.



Digital Basics    3

Electrical Signals and Components 5.41

Fig 5.54 — (A) An ideal digital pulse
and (B) a typical actual pulse, showing
the gradual transition between states.

briefly mentioned can be even easier: get
a calculator with a binary and/or hex mode
option. One warning for this technique:
this chapter doesn’t discuss negative bi-
nary numbers. If your calculator does not
give you the answer you expected, it may
have interpreted the number as negative.
This would happen when the number’s
binary form has a 1 in its MSB, such as the
highest (leftmost) bit for the binary mode’s
default size. To avoid learning about nega-
tive binary numbers, always use a leading
0 when you enter a number in binary or hex
into your calculator.

Physical Representation of Binary States
STATE LEVELS

Most digital systems use the binary
number system because many simple
physical systems are most easily described
by two state levels (0 and 1). For example,
the two states may represent “on” and
“off,” a punched hole or the absence of a
hole in paper tape or a card, or a “mark”
and “space” in a communications trans-
mission. In electronic systems, state lev-
els are physically represented by voltages.
A typical choice is

state 0 = 0 V
state 1 = 5 V

Since it is unrealistic to obtain these
exact voltage values, a more practical
choice is a range of values, such as

state 0 = 0.0 to 0.4 V
state 1 = 2.4 to 5.0 V

Fig 5.53 illustrates this representation
of states by voltage levels. The undefined
region between the two binary states is
also known as the transition region or
noise margin.

Transition Time
The gap in Fig 5.53, between binary 0

and binary 1, shows that a change in state
does not occur instantly. There is a transi-
tion time between states. This transition
time is a result of the time it takes to charge
or discharge the stray capacitance in wires
and other components because voltage
cannot change instantaneously across a
capacitor. (Stray inductance in the wires
also has an effect because the current
through an inductor can’t change instanta-
neously.) The transition from a 0 to a 1
state is called the rise time, and is usually
specified as the time for the pulse to rise

Fig 5.53 — Representation of binary
states 1 and 0 by a selected range of
voltage levels.

from 10% of its final value to 90% of its
final value. Similarly, the transition from
a 1 to a 0 state is called the fall time, with
a similar 10% t0 90% definition. Note that
these times need not be the same. Fig
5.54A shows an ideal signal, or pulse, with

zero-time switching. Fig 5.54B shows a
typical pulse, as it changes between states
in a smooth curve.

Rise and fall times vary with the logic
family used and the location in a circuit.
Typical values of transition time are in the
microsecond to nanosecond range. In a
circuit, distributed inductances and ca-
pacitances in wires or PC-board traces
may cause rise and fall times to increase as
the pulse moves away from the source.

Propagation Delay
Rise and fall times only describe a rela-

tionship within a pulse. For a circuit, a
pulse input into the circuit must propagate
through the circuit; in other words it must
pass through each component in the cir-
cuit until eventually it arrives at the circuit
output. The time delay between providing
an input to a circuit and seeing a response
at the output is the propagation delay and
is illustrated by Fig 5.55.

For modern switching logic, typical
propagation delay values are in the 1 to 15
nanosecond range. (It is useful to remem-

Fig 5.55 — Propagation delay in a
digital circuit.

Table 5.4
Number System Conversions

Hex Remainder Binary Remainder

16  |163 2   163
      |10 3      LSB  81 1 LSB
       |0 A      MSB  40 1

20 0
10 0
 5 0
2 1

 1 0
0 1 MSB

A3 hex                                           1010 0011 binary

Chapter 5.pmd 4/30/2009, 1:54 PM41

Table 4
Number System Conversions

Table 3
Binary Coded Decimal Number Conversion

5.40 Chapter 5

Now the first two columns are full, so
reset both back to 0 and increase the next
column by 1 and continue:

XXX
000
001
010
011
100
101
110

                  111 and so on.

Examination of the set of binary num-
bers from 0 to 15 shows some important
characteristics:

Binary Value Decimal Value

0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9
1010 10
1011 11
1100 12
1101 13
1110 14
1111 15

Notice each column starts with 0. The
first (right-most) column alternates; every
other value is a 0 and a 1. The second col-
umn alternates every two values, that is
there are two 0’s followed by two 1’s. The
third column has groups of four 0’s and
four 1’s, and the fourth column has groups
of eight 0’s and eight 1’s. Thus you can
make up a binary counting table by simply
following this pattern.

HEXADECIMAL
The hexadecimal, or hex, base-16 num-

ber system is widely used in personal com-
puters for its ease in conversion to and
from binary numbers and the fact that it is
somewhat more human-friendly than long
strings of 1’s and 0’s. A base-16 number
requires 16 symbols. Since our normal
mathematical number, as set up in the deci-
mal system, has only 10 digits (0 through
9), a set of additional new symbols is re-
quired. Hex uses both numbers and char-
acters in its set of sixteen symbols:
{0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}. Here,
the letters A to F have the decimal equiva-
lents of 10 to 15 respectively: A=10, B=11,
C=12, D=13, E=14 and F=15. Again, the
weights are powers of the base, such as
160, 161 and 162.

The four-bit binary listing in the previ-

ous paragraph shows that the individual
16 hex digits can be represented by a four-
bit binary number. Four binary digits are
called a nibble.

Since a byte is equal to eight binary
digits, two hex digits provide a byte — the
equivalent of 8 binary digits. Conversion
from binary to hex is therefore simplified.
Take a binary number, divide it into groups
of four binary digits starting from the right,
and convert each of the four binary digits
to an individual value.

Conversion from hex to binary is
equally convenient; replace each hex digit
with its four-bit binary equivalent. As an
example, the decimal number 163 is shown
in Table 5.2 as binary 10100011. Divide
the binary number in groups of four, so
1010 is equivalent to decimal 10 or “A”
hex, and 0011 is equivalent to decimal 3,
thus decimal number 163 is equivalent to
hex A3.

BINARY CODED DECIMAL (BCD)
Scientists have experimented with

many devices out of a desire for fast com-
putations. Initially, analog computers
were developed and used for many appli-
cations, especially military applications.
It was not unusual to see analog computers
aboard US navy ships as recently as the
mid-1960s, where they were used to direct
naval gunfire.

Analog computers have a very large
disadvantage; they could not be readily
reprogrammed. They did have a very great
advantage; their output was more human
readable than digital computers. Very few
humans can get used to either binary or
hexadecimal read-outs!

The binary number system representa-
tion is the most appropriate form for fast
internal computations since there is a
direct mathematical relationship for every
bit in the number. To interface with a user
— who usually wants to see I/O in terms of
decimal numbers — other codes are more
useful. The Binary Coded Decimal (BCD)
system is the simplest and most widely
used form for inputs and outputs of user-
oriented digital systems.

In the Binary Coded Decimal (BCD)
system, each decimal digit is expressed as
a corresponding 4-bit binary number. In
other words, the decimal digits 0 to 9 are

encoded as the bit strings 0000 to 1001. To
make the number easier to read, a space is
left between each 4-bit group. For ex-
ample, the decimal number 163 is equiva-
lent to the BCD number 0001 0110 0011,
as shown in Table 5.3.

A generic code could use any n-bit string
to represent a piece of information. BCD
uses 4 bits because that is the minimum
needed to represent a 9. All four bits are
always written; even a decimal 0 is written
as 0000 in BCD.

The important difference between BCD
and the previous number systems is that,
starting with decimal 10, BCD loses the
standard mathematical relationship of a
weighted sum. BCD is simply a cut-off
hexadecimal. Instead of using the 4-bit
code strings 1010 to 1111 for decimal 10
to 15, BCD uses 0001 0000 to 0001 0101.
There are other n-bit decimal codes in use
and, even for specifically 4 bits, there are
millions of combinations to represent the
decimal digits 0-9. BCD is the simplest
way to convert between decimal and a bi-
nary code; thus it is the ideal form for I/O
interfacing. The binary number system,
since it maintains the mathematical rela-
tionship between bits, is the ideal form for
the computer’s internal computations.

CONVERSION TECHNIQUES
An easy way to convert a number from

decimal to another number system is to
do repeated division, recording the re-
mainders in a tower just to the right. The
converted number, then, is the remain-
ders, reading up the tower. This technique
is illustrated in Table 5.4 for hexadeci-
mal and binary conversions of the deci-
mal number 163.

For example, to convert decimal 163 to
hex, repeated divisions by 16 are per-
formed. The first division gives 163/16 =
10 remainder 3. The remainder 3 is written
in a column to the right. The second divi-
sion gives 10/16 = 0 remainder 10. Since 10
decimal = A hex, A is written in the remain-
der column to the right. This division gave
a divisor of 0 so the process is complete.
Reading up the remainders column, the re-
sult is A3. The most common mistake in
this technique is to forget that the Most
Significant Digit ends up at the bottom.

Another technique that should be

←

Table 5.3
Binary Coded Decimal Number Conversion

0 0 0 1 0 1 1 0 0 0 1 1 BCD

= 1(20) 1(22) + 1(21) 1(21) + 1(20)
= (1) (4 + 2) (2 + 1)

163 = 1 6 3 decimal

| | | | ||

0010	 2
0011	 3

Now the first two columns are full, so reset 
both back to 0 and increase the next column 
by 1 and continue:

0100	 4
0101	 5
0110	 6
0111	 7
1000	 8
…
1111	 15
And so on.

2.2 Hexadecimal
The hexadecimal, or hex, base-16 number 

system is widely used in computer systems 
for its ease in conversion to and from binary 
numbers and the fact that it is somewhat more 
human-friendly than long strings of 1s and 
0s. A base-16 number requires 16 symbols. 
Since our normal mathematical number, as 
set up in the decimal system, has only 10 
digits (0 through 9), a set of additional new 
symbols is required. Hex uses both numbers 
and characters in its set of sixteen symbols: 
{0, 1, 2, 3, 4, 5,6, 7, 8, 9, A, B, C, D, E, F}. 
Here, the letters A to F have the decimal 
equivalents of 10 to 15 respectively: A=10, 
B=11, C=12, D=13, E=14 and F=15. Again, 
the weights are powers of the base, such as 
160, 161 and 162.

The four-bit binary listing in the previous 
paragraph shows that the individual 16 hex 
digits can be represented by a four-bit binary 
number. Since a byte is equal to eight binary 
digits, two hex digits provide a byte — the 
equivalent of 8 binary digits. Conversion from 
binary to hex is therefore simplified. Take a 
binary number, divide it into groups of four 
binary digits starting from the right, and con-
vert each of the four binary digits to an indi-
vidual value.

Conversion from hex to binary is equally 
convenient; simply replace each hex digit with 
its four-bit binary equivalent. As an example, 
the decimal number 163 is shown in Table 2 as 
binary 10100011. Divide the binary number 
in groups of four, so 1010 is equivalent to 
decimal 10 or “A” hex, and 0011 is equivalent 
to decimal 3, thus decimal number 163 is 
equivalent to hex A3.

2.3 Binary Coded Decimal 
(BCD)

The binary number system representation 
is the most appropriate form for fast internal 
computations since there is a direct math-
ematical relationship for every bit in the num-
ber. To interface with a human user — who 
usually wants to see inputs and outputs in 
terms of decimal numbers — other codes 
are more useful. The Binary Coded Decimal 

(BCD) system is a simple method for convert-
ing binary values to and from decimal for 
inputs and outputs for user-oriented digital 
systems. Back in the days when the most 
common method of presenting output to a 
user was via seven-segment LED displays, 
BCD was widely used. Since we now mostly 
use powerful microprocessors that can easily 
present information in decimal form, BCD is 
not nearly as common as it once was. You may, 
however, run into BCD when using or repair-
ing older digital gear. It is also used in some 
chips intended for use in digital voltmeters.

In the BCD system, each decimal digit is 
expressed as a corresponding 4-bit binary 
number. In other words, the decimal digits 
0 to 9 are encoded as the bit strings 0000 to 
1001. To make the number easier to read, a 
space is left between each 4-bit group. For 
example, the decimal number 163 is equiva-
lent to the BCD number 0001 0110 0011, as 
shown in Table 3.

The important difference between BCD 
and the previous number systems is that, start-
ing with decimal 10, BCD loses the standard 
mathematical relationship of a weighted sum. 
BCD is simply a cut-off hexadecimal. Instead 
of using the 4-bit code strings 1010 to 1111 
for decimal 10 to 15, BCD uses 0001 0000 
to 0001 0101. This is one of the reasons that 
we have moved away from BCD.

2.4 Conversion Techniques
An easy way to convert a number from 

decimal to another number system is to do 
repeated division, recording the remainders 

in a tower just to the right. The converted 
number, then, is the remainders, reading up 
the tower. This technique is illustrated in  
Table 4 for hexadecimal and binary conver-
sions of the decimal number 163.

For example, to convert decimal 163 to hex, 
repeated divisions by 16 are performed. The 
first division gives 163/16 = 10 remainder 3. 
The remainder 3 is written in a column to the 
right. The second division gives 10/16 = 0 
remainder 10. Since 10 decimal = A hex, A is 
written in the remainder column to the right. 
This division gave a divisor of 0 so the pro-
cess is complete. Reading up the remainders 
column, the result is A3. The most common 
mistake in this technique is to forget that the 
Most Significant Digit ends up at the bottom.

Another technique that should be briefly 
mentioned can be even easier: use a calculator 
with a binary and/or hex mode option. Many 
inexpensive and readily available calculators 
intended for scientific and programming use 
will convert between number systems quite 
easily. In addition, calculator programs are 
available for all types of personal computers 
regardless of the operating system used.

One warning for this technique: this chap-
ter doesn’t discuss negative binary numbers. 
If your calculator does not give you the answer 
you expected, it may have interpreted the 
number as negative. This would happen when 
the number’s binary form has a 1 in its MSB, 
such as the highest (leftmost) bit for the binary 
mode’s default size. To avoid learning about 
negative binary numbers the hard way, always 
use a leading 0 when you enter a number in 
binary or hex into your calculator.
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3  Physical Representation of Binary States

Figure 2 — Representation of binary 
states 1 and 0 by a selected range of 
voltage levels.

Figure 3 — (A) An ideal digital pulse and 
(B) a typical actual pulse, showing the 
gradual transition between states.

Figure 4 — Propagation delay in a digital 
circuit.

3.1 State Levels
Most digital systems use the binary number 

system because many simple physical sys-
tems are most easily described by two state 
levels (0 and 1). For example, the two states 
may represent “on” and “off” or a “mark” and 
“space” in a communications transmission. In 
electronic systems, state levels are physically 
represented by voltages. A typical choice is
state 0 = 0 V
state 1 = 5 V

Since it is unrealistic to obtain these exact 
voltage values, a more practical choice is a 
range of values, such as
state 0 = 0.0 to 0.4 V
state 1 = 2.4 to 5.0 V

Figure 2 illustrates this representation of 
states by voltage levels. The undefined region 
between the two binary states is also known as 
the transition region or noise margin.

3.2 Transition Time
The gap in Figure 2, between binary 0 and 

binary 1, shows that a change in state does 
not occur instantly. There is a transition time 
between states. This transition time is a result 
of the time it takes to charge or discharge the 
stray capacitance in wires and other compo-
nents because voltage cannot change instanta-
neously across a capacitor. (Stray inductance 
in the wires also has an effect because the 
current through an inductor can’t change 
instantaneously.) The transition from a 0 to 
a 1 state is called the rise time, and is usually 
specified as the time for the pulse to rise from 
10% of its final value to 90% of its final value. 
Similarly, the transition from a 1 to a 0 state 
is called the fall time, with a similar 10% to 
90% definition. Note that these times need not 
be the same. Figure 3A shows an ideal signal, 
or pulse, with zero-time switching. Figure 3B 
shows a typical pulse, as it changes between 
states in a smooth curve.

Rise and fall times vary with the logic fam-
ily used and the location in a circuit. Typical 
values of transition time are in the microsec-
ond to nanosecond range. In a circuit, distrib-
uted inductances and capacitances in wires or 

PC-board traces may cause rise and fall times 
to increase as the pulse moves away from the 
source. One reason rise and fall times may be 
of interest to the radio designer is because of 
the possibility of generating RF noise in a 
digital circuit.

3.3 Propagation Delay
Rise and fall times only describe a relation-

ship within a pulse. For a circuit, a pulse input 
into the circuit must propagate through the 
circuit; in other words it must pass through 
each component in the circuit until eventually 
it arrives at the circuit output. The time delay 
between providing an input to a circuit and 
seeing a response at the output is the propa-
gation delay and is illustrated by Figure 4.

For modern switching logic, typical 
propagation delay values are in the 1 to 15 
nanosecond range. (It is useful to remem-
ber that the propagation delay along a wire 
or printed-circuit-board trace is about 1.0 to  
1.5 ns per inch.) Propagation delay is the 
result of cumulative transition times as well 
as transistor switching delays, reactive ele-
ment charging times and the time for signals 
to travel through wires. In complex circuits, 
different propagation delays through different 
paths can cause problems when pulses must 
arrive somewhere at exactly the same time.

The effect of these delays on digital devices 
can be seen by looking at the speed of the 
digital pulses. Most digital devices use clock 

pulses. If two pulses are supposed to arrive at 
a logic circuit at the same time, or very close 
to the same time, the path length for the two 
signals cannot be any different than two to 
three inches. This can be a very significant 
design problem for high-speed logic designs.

4  Combinational Logic
Having defined a way to use voltage levels 

to physically represent digital numbers, we 
can apply digital signal theory to design use-
ful circuits. Digital circuits combine binary 
inputs to produce a desired binary output or 
combination of outputs. This simple combi-
nation of 0s and 1s can become very power-
ful, implementing everything from simple 
switches to powerful computers.

A digital circuit falls into one of two types: 
combinational logic or sequential logic. In 
a combinational logic circuit, the output 
depends only on the present inputs (if we 
ignore propagation delay). In contrast, in a 
sequential logic circuit, the output depends on 
the present inputs, the previous sequence of 
inputs and often a clock signal. Later sections 
of this chapter will examine some circuits 

built using the basics established here.

4.1 Boolean Algebra and the 
Basic Logical Operators

Combinational circuits are composed of 
logic gates, which perform binary operations. 
Logic gates manipulate binary numbers, so 
you need an understanding of the algebra of 
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binary numbers to understand how logic gates 
operate. Boolean algebra is the mathematical 
system used to describe and design binary dig-
ital circuits. It is named after George Boole, 
the mathematician who developed the system. 
Standard algebra has a set of basic operations: 
addition, subtraction, multiplication and divi-
sion. Similarly, Boolean algebra has a set of 
basic operations, called logical operations: 
NOT, AND and OR.

The function of these operators can be 
described by either a Boolean equation or a 
truth table. A Boolean equation describes an 
operator’s function by representing the inputs 
and the operations performed on them. An 
equation is of the form “B = A,” while an 
expression is of the form “A.” In an assign-
ment equation, the inputs and operations 
appear on the right and the result, or output, 
is assigned to the variable on the left.

A truth table describes an operator’s func-
tion by listing all possible inputs and the corre-
sponding outputs. Truth tables are sometimes 
written with Ts and Fs (for true and false) 
or with their respective equivalents, 1s and 
0s. In company databooks (catalogs of logic 
devices a company manufactures), truth tables 
are usually written with Hs and Ls (for high 
and low). In the figures, 1 will mean high and 
0 will mean low. This representation is called 
positive logic. The meaning of different logic 
types and why they are useful is discussed in 
a later section.

Each Boolean operator also has two circuit 
symbols associated with it. The traditional 
symbol — used by ARRL and other US publi-
cations — appears on top in each of the figures; 
for example, the triangle and bubble for the 
NOT function in Figure 7. In the traditional 
symbols, a small circle, or bubble, always 
represents “NOT.” (This bubble is called a 
state indicator.)

Appearing just below the traditional sym-
bol is the newer ANSI/IEEE Standard sym-
bol. This symbol is always a square box with 
notations inside it. In these newer symbols, a 
small triangular flag represents “NOT.” The 
new notation is an attempt to replace the 
detailed logic drawing of a complex func-
tion with a simpler block symbol. Adoption 
of the newer symbols has been spotty, and 
you are therefore still more likely to see the 
traditional symbols for basic logic functions 
than the ANSI/IEEE symbols.

4.2 Common Gates
Figures 5, 6 and 7 show the truth tables, 

Boolean algebra equations and circuit sym-
bols for the three basic Boolean operations: 
AND, OR and NOT, respectively. All combi-
national logic functions, no matter how com-
plex, can be described in terms of these three 
operators. Each truth table can be converted 
into words. The truth table for the two-input 
AND gate can be expressed as “the output C 

specific technical uses. For a clarification of 
the many definitions of gate, see the section 
on Synchronicity and Control Signals, later 
in this chapter.) For simplicity, the figures and 
truth tables for multiple-input elements will 
show the operations for only two inputs, the 
minimum number. Remember, though, that 
it is quite common to have gates with more 
than two inputs. A three-, four-, or eight-input 
gate works in the exact same manner as a 
two-input gate.

The output of an AND function is 1 only if 
all of the inputs are 1. Therefore, if any of the 
inputs are 0, then the output is 0. The notation 
for an AND is either a dot (•) between the 
inputs, as in C = A•B, or nothing between the 
inputs, as in C = AB. Read these equations as 
“C equals A AND B.”

The OR gate detects if one or more inputs 
are 1. In other words, if any of the inputs are 1, 
then the output of the OR gate is 1. Since this 
includes the case where more than one input 
may be 1, the OR operation is also known as an 
INCLUSIVE OR. The OR operation detects 
if at least one input is 1. Only if all the inputs 
are 0, then the output is 0. The notation for 
an OR is a plus sign (+) between the inputs, 
as in C = A + B. Read this equation as “C 
equals A OR B.”

4.3 Additional Gates
More complex logical functions are 

derived from combinations of the basic logi-
cal operators. These operations — NAND, 
NOR, XOR and the noninverter or buffer 
— are illustrated in Figures 8 through 11, 
respectively. As before, each is described by 
a truth table, Boolean algebra equation and 
circuit symbols. Also as before, except for the 
noninverter, each could have more inputs than 
the two illustrated.

The NAND gate (short for NOT AND) 
is equivalent to an AND gate followed by a 
NOT gate. Thus, its output is the complement 
of the AND output: The output is a 0 only if 
all the inputs are 1. If any of the inputs is 0, 
then the output is a 1.

The NOR gate (short for NOT OR) is 
equivalent to an OR gate followed by a NOT 
gate. Thus, its output is the complement of 
the OR output: If any of the inputs are 1, then 
the output is a 0. Only if all the inputs are 0, 
then the output is a 1.

The operations so far enable a designer to 
determine two general cases: (1) if all inputs 
have a desired state or (2) if at least one input 
has a desired state. The XOR and XNOR gates 
enable a designer to determine if one and only 
one input of a desired state is present.

The XOR gate (read as EXCLUSIVE OR) 
is a combination of an OR and a NAND gate. 
It has an output of 1 if one and only one of the 
inputs is a 1 state. The output is 0 otherwise. 
The symbol for XOR is ⊕. This is easy to 
remember if you think of the “+” OR symbol 

Figure 5 — Two-input AND gate.

Figure 6 — Two-input OR gate.

Figure 7 — Inverter.

is a 1 only when the inputs are both 1s.” This 
can be seen by examining the output column 
C — it remains at a 0 and becomes a 1 only 
when the input column A and the input col-
umn B are both 1s — the last line of the table.

The NOT operation is also called inver-
sion, negation or complement. The circuit that 
implements this function is called an inverter 
or inverting buffer. The most common nota-
tion for NOT is a bar over a variable or expres-
sion. For example, NOT A is denoted A. This 
is read as either “Not A” or as “A bar.” A less 
common notation is to denote Not A by A', 
which is read as “A prime.” You will also see 
various other notations in schematic diagrams 
and component data sheets, such as a leading 
exclamation point or has symbol — !A or #A 
indicating “Not A.”

While the inverting buffer and the nonin-
verting buffer covered later have only one 
input and output, many combinational logic 
elements can have multiple inputs. When a 
combinational logic element has two or more 
inputs and one output, it is called a gate. (The 
term “gate” has a number of different but 
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Figure 11 — Noninverting buffer.

Figure 9 — Two-input NOR gate.

enclosed in an “O” for only one.
The XOR gate is also known as a “half 

adder,” because in binary arithmetic it does 
everything but the “carry” operation. The fol-
lowing examples show the possible binary 
additions for a two-input XOR.

A	 0	 0	 1	 1
B	 0	 1	 0	 1
Sum	 0	 1	 1	 0

The XNOR gate (read as EXCLUSIVE 

NOR) is the complement of the XOR gate. 
The output is 0 if one and only one of the 
inputs is a 1. The output is 1 either if all inputs 
are 0 or more than one input is 1.

NONINVERTERS (BUFFERS)
A noninverter, also known as a buffer, 

amplifier or driver, at first glance does not 
seem to do anything. It simply receives an 
input and produces the same output. In reality, 
it is changing other properties of the signal 
in a useful fashion, such as amplifying the 
current level. While not useful for logical 
operations, applications of a noninverter 
include providing sufficient current to drive 
a number of gates or some other circuit such 
as a relay; interfacing between two logic fami-
lies; obtaining a desired pulse rise time; and 
providing a slight delay to make pulses arrive 
at the proper time.

TRI-STATE GATES
Under normal circumstances, a logic ele-

ment can drive or feed several other logic 
elements. A typical AND gate might be able 
to drive or feed 10 other gates. This is known 
as fan-out. However, with certain exceptions 
only one gate output can be connected to a 
single wire. If you have two possible driving 
sources to feed one particular wire, some logic 
network that probably includes a number OR 
gates must be used.

In many applications, including comput-
ers, data is routed internally on a set of wires 
called buses. The data on the bus can come 
from many circuits or drivers, and many other 
devices may be listening on the bus. To elimi-
nate the need for the network of OR gates to 
drive each bus wire, a set of gates known as 
tri-state gates are used.

The symbol and truth table for a tri-state 
gate are shown in Figure 12. A tri-state gate 
can be any of the common gates previously 
described, but with one additional control 
lead. When this lead is enabled (it can be 
designed to allow either a 0 or a 1 to enable 
it) the gate operates normally, according to 
the truth table for that type of gate. However, 
when the gate is not enabled, the output goes 
to a high impedance (Hi-Z), and so far as 
the output wire is concerned, the gate does 
not exist.

Each device that has to send data down a 
bus wire is connected to the bus wire through 
a tri-state gate. However, as long as only one 
device, through its tri-state gate, is enabled, 
it is as though all the other connected tri-state 
gates do not exist.

4.4 Boolean Theorems
The analysis of a circuit starts with a logic 

diagram and then derives a circuit description. 
In digital circuits, this description is in the 
form of a truth table or logical equation. The 

Figure 10 — Two-input XOR gate.

Figure 8 — Two-input NAND gate.

synthesis, or design, of a circuit goes in the 
reverse: starting with an informal description, 
determining an equation or truth table and 
then expanding the truth table to components 
that will implement the desired response. In 
both of these processes, we need to either sim-
plify or expand a complex logical equation.

To manipulate an equation, we use math-
ematical theorems. Theorems are statements 
that have been proven to be true. The theorems 
of Boolean algebra are very similar to those 
of standard algebra, such as commutivity and 
associativity. Proofs of the Boolean algebra 
theorems can be found in an introductory 
digital design textbook.

BASIC THEOREMS
Table 5 lists the theorems for a single vari-

able and Table 6 lists the theorems for two 
or more variables. These tables illustrate the 
principle of duality exhibited by the Boolean 
theorems: Each theorem has a dual in which, 
after swapping all ANDs with ORs and all 1s 
with 0s, the statement is still true.

The tables also illustrate the precedence of 
the Boolean operations: the order in which 
operations are performed when not speci-
fied by parenthesis. From highest to lowest, 
the precedence is NOT, AND then OR. For 
example, the distributive law includes the 
expression “A + B•C.” This is equivalent to  

Figure 12 — Tri-State gate.

Figure 13 — Equivalent gates from 
DeMorgan’s Theorem: Each gate in column 
A is equivalent to the opposite gate in 
column B. The Boolean equations in 
column C formally state the equivalences.
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either a 0 or a 1 to enable it) the gate oper-
ates normally, according to the truth table
for that type of gate. However, when the
gate is not enabled, the output goes to a
high impedance, and so far as the output
wire is concerned, the gate does not exist.

Each device that has to send data down
a bus wire is connected to the bus wire
through a tri-state gate. However, as long
as only one device, through its tri-state
gate, is enabled, it is as though all the other
connected tri-state gates do not exist.

BOOLEAN THEOREMS
The analysis of a circuit starts with a

logic diagram and then derives a circuit
description. In digital circuits, this descrip-
tion is in the form of a truth table or logical
equation. The synthesis, or design, of a cir-
cuit goes in the reverse: starting with an
informal description, determining an equa-
tion or truth table and then expanding the
truth table to components that will imple-
ment the desired response. In both of these
processes, we need to either simplify or
expand a complex logical equation.

To manipulate an equation, we use
mathematical theorems. Theorems are
statements that have been proven to be
true. The theorems of Boolean algebra are
very similar to those of standard algebra,
such as commutivity and associativity.
Proofs of the Boolean algebra theorems
can be found in an introductory digital
design textbook.

BASIC THEOREMS
Table 5.5 lists the theorems for a single

variable and Table 5.6 lists the theorems
for two or more variables. These tables
illustrate the principle of duality exhibited
by the Boolean theorems: Each theorem

Table 5.5
Boolean Algebra Single Variable
Theorems

Identities: A • 1 = A A + 0 = A
Null elements: A • 0 = 0 A + 1 = 1
Idempotence: A • A = A A + A = A
Complements: A • A = 0 A + A = 1
Involution: (A) = A

Table 5.7
DeMorgan’s Theorem

(A) A • B = A + B
(B) A + B = A • B
(C)
(1) (2) (3) (4)  (5)  (6)  (7)  (8)  (9)  (10)

A B A B A • B A • B A + B A + B A • B A + B
0 0 1 1   0   1   0   1   1   1
0 1 1 0   0   1   1   0   0   1
1 0 0 1   0   1   1   0   0   1
1 1 0 0   1   0   1   0   0   0

(A) and (B) are statements of DeMorgan’s Theorem. The truth table at (C) is proof of these statements: (A) is proven by the
equivalence of columns 6 and 10 and (B) by columns 8 and 9.

has a dual in which, after swapping all
ANDs with ORs and all 1s with 0s, the
statement is still true.

The tables also illustrate the precedence
of the Boolean operations: the order in
which operations are performed when not
specified by parenthesis. From highest to
lowest, the precedence is NOT, AND then
OR. For example, the distributive law in-
cludes the expression “A + B•C.” This is
equivalent to “A + (B•C).” The parenthe-
sis around (B•C) can be left out since an
AND operation has higher priority than an
OR operation. Precedence for Boolean
algebra is similar to the convention of stan-
dard algebra: raising to a power, then
multiplication, then addition.

DeMorgan’s Theorem
One of the most useful theorems in

Boolean algebra is DeMorgan’s Theorem:
A • B = A + B and its dual A + B = A • B.
The truth table in Table 5.7 proves these
statements. DeMorgan’s Theorem pro-
vides a way to simplify the complement of
a large expression. It also enables a de-
signer to interchange a number of equiva-
lent gates, as shown by Fig 5.64.

The equivalent gates show that the dual-
ity principle works with symbols the same
as it does for Boolean equations: just swap
ANDs with ORs and switch the bubbles.
For example, the NAND gate — an AND
gate followed by an inverter bubble —
becomes an OR gate preceded by two in-
verter bubbles. DeMorgan’s Theorem is
important because it means any logical
function can be implemented using either
inverters and AND gates or inverters and
OR gates. Also, the ability to change
placement of the bubbles using
DeMorgan’s Theorem is useful in dealing
with mixed logic, to be discussed next.

POSITIVE AND NEGATIVE LOGIC
The truth tables shown in the figures in

this chapter are drawn for positive logic.
In positive logic, or high true, a higher
voltage means true (logic 1) while a lower

Table 5.6
Boolean Algebra Multivariable Theorems

Commutativity: A • B = B • A
A + B = B + A

Associativity: (A • B) • C = A • (B • C)
(A + B) + C = A + (B + C)

Distributivity: (A + B) • (A + C) = A + B • C
A • B + A • C = A • (B + C)

Covering: A • (A + B) = A
A + A • B = A

Combining: (A + B) • (A + B) = A
A • B + A • B= A

Consensus: A • B + A  • C + B • C = A • B + A • C
(A + B) • (A + C) • (B + C) = (A + B) • (A + C)
A + AB = A + B

Table 5
Boolean Algebra Single Variable 
Theorems

Table 6
Boolean Algebra Multivariable Theorems

Table 7
DeMorgan's Theorem

Figure 14 — (A) A general truth table, 
(B) a truth table and NAND symbol for 
positive logic and (C) a truth table and 
NOR symbol for negative logic.

“A + (B•C).” The parenthesis around (B•C) 
can be left out since an AND operation has 
higher priority than an OR operation. Prece-
dence for Boolean algebra is similar to the 
convention of standard algebra: raising to a 
power, then multiplication, then addition.

DeMORGAN’S THEOREM
One of the most useful theorems in Boolean 

algebra is DeMorgan’s Theorem:

 A • B = A + B

and its dual

 A + B = A • B.

The truth table in Table 7 proves these 
statements. DeMorgan’s Theorem provides 
a way to simplify the complement of a large 
expression. It also enables a designer to 
interchange a number of equivalent gates, as 
shown by Figure 13.

The equivalent gates show that the dual-
ity principle works with symbols the same 
as it does for Boolean equations: just swap 
ANDs with ORs and switch the bubbles. For 
example, the NAND gate — an AND gate 
followed by an inverter bubble — becomes 
an OR gate preceded by two inverter bubbles. 
DeMorgan’s Theorem is important because 
it means any logical function can be imple-
mented using either inverters and AND gates 
or inverters and OR gates. Also, the ability 
to change placement of the bubbles using 
DeMorgan’s Theorem is useful in dealing 
with mixed logic, to be discussed next.

POSITIVE AND NEGATIVE LOGIC
The truth tables shown in the figures in this 

chapter are drawn for positive logic. In positive 
logic, or high true, a higher voltage means true 
(logic 1) while a lower voltage means false 
(logic 0). This is also referred to as active high: 

a signal performs a named action or denotes a 
condition when it is “high” or 1. In negative 
logic, or low true, a lower voltage means true 
(1) and a higher voltage means false (0). An 
active low signal performs an action or denotes 
a condition when it is “low” or 0.

In both logic types, true = 1 and false = 0; 
but whether true means high or low differs. 
Company databooks are drawn for general 
truth tables: an H for high and an L for low. 
(Some tables also have an X for a “don’t care” 
state. “Don’t care” means that the output does 
not depend on the state of that variable.) The 
function of the table can differ depending on 
whether it is interpreted for positive logic or 
negative logic.

Device data sheets often show positive 
logic convention, or positive logic is assumed. 
However, a signal into an IC is represent-
ed with a bar above it, indicating that the 
“enable” on that wire is active low — it does 
not mean negative logic (0 V = a logical 1) 
is used! Similarly a bubble on the input of a 
logic element also usually means active low. 
These can be sources of confusion.

Figure 14 shows how a general truth table 
differs when interpreted for different logic 
types. The same truth table gives two equiva-
lent gates: positive logic gives the function of 
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a NAND gate while negative logic gives the 
function of a NOR gate.

Note that these gates correspond to the 
equivalent gates from DeMorgan’s Theorem. 
A bubble on an input or output terminal indi-
cates an active low device. The absence of 
bubbles indicates an active high device.

Like the bubbles, signal names can be used 
to indicate logic states. These names can aid 
the understanding of a circuit by indicating 
control of an action (GO, /ENABLE) or detec-
tion of a condition (READY, /ERROR). The 
action or condition occurs when the signal is 

in its active state. When a signal is in its active 
state, it is called asserted; a signal not in its 
active state is called negated or deasserted.

A prefix can easily indicate a signal’s 
active state. Active low signals are preceded 
by a symbol such as /, |, ! or # (for example 
/READY or !READY). Active low signals 
are also denoted by an overscore, such as 
CL. Active high signals have no prefix or 
overscore. As an example, see the truth table 
for a flip-flop later in this chapter. Standard 
practice is that the signal name and input 
pin match (have the same active level). For 

example, an input with a bubble (active low) 
may be called /READY, while an input with 
no bubble (active high) is called READY. 
Output signal names should always match 
the device output pin.

In this chapter, positive logic is used unless 
indicated otherwise. Although using mixed 
logic can be confusing, it does have some 
advantages. Mixed logic combined with DeM-
organ’s Theorem can promote more effective 
use of available gates. Also, well-chosen signal 
names and placement of bubbles can promote 
more understandable logic diagrams.

5  Sequential Logic
The previous section discussed combina-

tional logic, whose outputs depend only on 
the present inputs. In contrast, in sequential 
logic circuits, the new output depends not only 
on the present inputs but also on the present 
outputs. The present outputs depended on the 
previous inputs and outputs and those earlier 
outputs depended on even earlier inputs and 
outputs and so on. Thus, the present outputs 
depend on the previous sequence of inputs and 
the system has memory. Having the outputs 
become part of the new inputs is known as 
feedback.

5.1 Synchronicity and Control 
Signals

When a combinational circuit is given a 
set of inputs, the outputs take on the expected 
values after a propagation delay during which 
the inputs travel through the circuit to the out-
put. In a sequential circuit, however, the travel 
through the circuit is more complicated. After 
application of the first inputs and one propaga-
tion delay, the outputs take on the resulting 
state; but then the outputs start trickling back 
through and, after a second propagation delay, 
new outputs appear. The same happens after 
a third propagation delay. With propagation 
delays in the nanosecond range, this cycle 
around the circuit is rapidly and continually 
generating new outputs. A user needs to know 
when the outputs are valid.

There are two types of sequential circuits: 
synchronous circuits and asynchronous cir-
cuits, which are analyzed differently for valid 
outputs. In asynchronous operation, the out-
puts respond to the inputs immediately after 
the propagation delay. To work properly, this 
type of circuit must eventually reach a stable 
state: the inputs and the fed back outputs result 
in the new outputs staying the same. When the 
nonfeedback inputs are changed, the feedback 
cycle needs to eventually reach a new stable 
state. Generally, the output of this type of logic 
is not valid until the last input has changed, 

and enough time has elapsed for all propaga-
tion delays to have occurred.

In synchronous operation, the outputs 
change state only at specific times. These 
times are determined by the presence of a 
particular input signal: a clock, toggle, latch 
or enable. Synchronicity is important because 
it ensures proper timing: all the inputs are 
present where needed when the control signal 
causes a change of state.

CONTROL SIGNALS
Some authors vary the meanings slightly 

for the different control signals. The following 
is a brief illustration of common uses, as well 
as showing uses for noun, verb and adjective. 
Enabling a circuit generally means the control 
signal goes to its asserted level, allowing the 
circuit to change state. Latch implies memory: 
a latch circuit can store a bit of information. A 
latch signal can cause a circuit to keep its pres-
ent state indefinitely. Gate can have several 
meanings, some unrelated to synchronous 
control. For example, a gate can be a signal 
used to trigger the passage of other signals 
through a circuit. A gate can also be a logic 
circuit with two or more inputs and one out-
put, as used earlier in this chapter. Of course, 
“gate” can also be one of the electrodes of an 
FET as described in another chapter. To toggle 
means a signal changes state, from 1 to 0 or 

Figure 16 — Level-triggered vs edge-
triggered for a D flip-flop: (A) D input, 
(B) clock input, (C) output Q for level-
triggered: circuit responds whenever 
clock is 1. (D) output Q for edge-triggered: 
circuit responds only at rising edge of 
clock. Notice that the short negative pulse 
on the D input is not reproduced by the 
edge-triggered flip-flop.

Figure 15 — Clock signal terms. The duty 
cycle would be tH / tPERIOD for an active 
high signal and tL / tPERIOD for an active 
low signal.

vice versa. A clock signal is one that toggles 
at a regular rate.

Clock control is the most common method 
of synchronizing logic circuits, so it has some 
additional terms as illustrated by Figure 15. 
The clock period is the time between succes-
sive transitions in the same direction; the clock 
frequency is the reciprocal of the period. A 
pulse or clock tick is the first edge in a clock 
period, or sometimes the period itself or the 
first half of the period. The duty cycle is the 
percentage of time that the clock signal is at 
its asserted level. A common application of 
the use of clock pulses is to limit the input 
to a logic circuit such that the circuit is only 
enabled on one clock phase; that is the inputs 
occur before the clock changes to a logic 1. 
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The outputs are sampled only after this point; 
perhaps when the clock next changes back 
to a logic 0.

The reaction of a synchronous circuit to 
its control signal is static or dynamic. Static, 
gated or level-triggered control allows the 
circuit to change state whenever the con-
trol signal is at its active or asserted level. 
Dynamic, or edge-triggered, control allows 
the circuit to change state only when the 
control signal changes from unasserted to 
asserted. By convention, a control signal is 
active high if state changes occur when the 
signal is high or at the rising edge and active 
low in the opposite case. Thus, for positive 
logic, the convention is enable = 1 or enable 
goes from 0 to 1. This transition from 0 to 1 is 
called positive edge-triggered and is indicated 
by a small triangle inside the circuit box. A 
circuit responding to the opposite transition, 
from 1 to 0, is called negative edge-triggered, 
indicated by a bubble with the triangle.

Whether a circuit is level-triggered or edge-
triggered can affect its output, as shown by 
Figure 16. The D input includes a very brief 
pulse, called a glitch, which may be caused 
by noise. The differing results at the output 
illustrate how noise can cause errors. We have 
both edge and level triggered circuits avail-
able so that we can meet the requirements of 
our particular design.

5.2 Flip-Flops
Flip-flops are the basic building blocks 

of sequential circuits. A flip-flop is a device 
with two stable states: the set state (1) and 
the reset or cleared state (0). The flip-flop 
can be placed in one or the other of the two 
states by applying the appropriate input. Since 
a common use of flip-flops is to store one bit 
of information, some use the term latch inter-
changeably with flip-flop. A set of latches, or 
flip-flops holding an n-bit number is called a 
register. While gates have special symbols, 
the schematic symbol for most sequential 
logic components is a rectangular box with 
the circuit name or abbreviation, the signal 
names and assertion bubbles. For flip-flops, 
the circuit name is usually omitted since the 
signal names are enough to indicate a flip-flop 
and its type. The four basic types of flip-flops 
are the S-R, D, T and J-K. The most com-
mon flip-flops available to Amateurs today 
are the J-K and D- flip-flops; the others can 
be synthesized if needed by utilizing these 
two varieties. Table 8 provides a summary of 
symbols and truth tables for these four types 
of flip-flops.

TRIGGERING A FLIP-FLOP
Although the S-R (Set-reset) flip flop is 

no longer generally available or used, it does 
provide insight in basic flip-flop operations 
and triggering. It is also not uncommon to 

build S-R flip-flops out of gates for jobs such 
as switch contact debouncing. In Figure 17 
the symbol for an S-R flip flop and its truth 
table are accompanied by a logic implemen-
tation, using NOR gates. As the truth table 
shows, this basic implementation requires a 
positive or logic 1 input on the set input to put 
the flip-flop in the Q or set state. Remove the 
input, and the flip flop stays in the Q state, 
which is what is expected of a flip-flop. Not 
until the S input receives a logic 1 input does 
the flip- flop change state and go to the reset 
or Q=0 state.

Note that the input can be a short pulse or 
a level; as long as it is there for some mini-
mum duration (established by the propagation 
delay of the gates used), the flip-flop will 
respond. By contrast the clocked S-R flip-
flop in Figure 18 requires both a positive 
level to be present at either the S or R inputs 
and a positive clock pulse. The clock pulse 
is ANDed with the S or R input to trigger the 
flip–flop. In this case the flip-flop shown is 
implemented with a set of NOR gates.

A final triggering method is edge trigger-
ing. Here, instead of using the clock pulse as 
shown in the timing diagram of Figure 18, 
just the edge of the clock pulse is used. The 
edge-triggered flip-flop helps solves a prob-
lem with noise. Edge-triggering minimizes 
the time during which a circuit responds to its 

Figure 17 — Unclocked S-R Flip-Flop.  
(A) schematic symbol. (B) circuit diagram. 
(C) state table or truth table.

Figure 18 — Master-Slave Flip-Flop. (A) logic symbol. (B) NAND gate implementation. 
(C) truth table. (D) timing diagram.
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inputs: the chance of a glitch occurring during 
the nanosecond transition of a clock pulse 
is remote. A side benefit of edge-triggering 
is that only one new output is produced per 
clock period. Edge-triggering is denoted by 
a small rising-edge or falling-edge symbol in 
the clock column of the flip-flop’s truth table. 
It can also appear, instead of the clock triangle, 
inside the schematic symbol.

MASTER/SLAVE FLIP-FLOP
One major problem with the simple flip-

flop shown up to now is the question of when 
is there a valid output. Suppose a flip-flop 
receives input that causes it to change state; 
at the same time the output of this flip-flop 
is being sampled to control some other logic 
element. There is a real risk here that the out-
put will be sampled just as it is changing and 
thus the validity of the output is questionable.

A solution to this problem is a circuit that 
samples and stores its inputs before changing 
its outputs. Such a circuit is built by placing 
two flip-flops in series; both flip-flops are 
triggered by a common clock but an inverter 
on the second flip-flop’s clock input causes it 
to be asserted only when the first flip-flop is 
not asserted. The action for a given clock pulse 

is as follows: The first, or master, flip-flop can 
change only when the clock is high, sampling 
and storing the inputs. The second, or slave, 
flip-flop gets its input from the master and 
changes when the clock is low. Hence, when 
the clock is 1, the input is sampled; then when 
the clock becomes 0, the output is gener-
ated. Note that a bubble may appear on the 
schematic symbol’s clock input, reminding 
us that the output appears when the clock is 
asserted low. This is conventional for TTL-
style J-K flip-flops, but it can be different for 
CMOS devices.

The master/slave method isolates output 
changes from input changes, eliminating the 
problem of series-fed circuits. It also ensures 
only one new output per clock period, since 
the slave flip-flop responds to only the single 
sampled input. A problem can still occur, 
however, because the master flip-flop can 
change more than once while it is asserted; 
thus, there is the potential for the master to 
sample at the wrong time. There is also the 
potential that either flip-flop can be affected 
by noise.

A master-slave, S-R clocked input flip-flop 
synthesized from NAND gates, Figure 18B, 
is accompanied by its logic symbol, Figure 

18A. From the logic symbols you can tell 
that the output changes on a negative-going 
clock edge.

G3A and G3B form the master set-rest flip-
flop, and G4A and G4B the slave flip flop. 
The input signals S and R are controlled by 
the positive going edge of the clock through 
gates G1A and G1B. G2A and G2B control 
the inputs into the slave flip-flop; these inputs 
are the outputs of the master flip-flop. Note 
G5 inverts the clock; thus while the positive-
going edge places new data into the master 
flip-flop, the other edge of the clock transfers 
the output of the master into the slave on the 
following negative clock edge.

D FLIP-FLOP
In a D (data) flip-flop, the data input is 

transferred to the outputs when the flip-flop 
is enabled. The logic level at the D input is 
transferred to Q when the clock is positive; 
the Q output retains this logic level until the 
next positive clock pulse (see Figure 19). 
The truth table summarizes this operation. If 
D = 1 the next clock pulse makes Q = 1. 
If D = 0, the next clock pulse makes Q = 0. A 
D flip-flop is useful to store one bit of infor-
mation. A collection of D flip-flops forms 
a register.

J-K FLIP-FLOP
The J-K flip-flop, shown schematically in 

Figure 20A, has five inputs. The unit shown 
uses both positive active inputs (the J and K 
inputs) and negative active inputs (note the 
bubbles on the C or clock, PR or preset and 
CL or clear inputs). With these inputs almost 
any other type of flip-flop may be synthesized.

The truth table of Figure 20B provides an 
explanation. Lines (rows) 1 and 2 show the 
preset and clear inputs and their use. These are 
active low, meaning that when one (and only 
one) of them goes to a logic 0, the flip-flop 
responds, just as if it was a S-R or set-reset 
flip-flop. Make PR a logic 0, and leave CL a 
logic 1, and the flip-flop goes into the Q = 1 
state (line 1). Do the reverse (line 2) – PR = 1, 
CL = 0 and the flip-flop goes into a Q' = 1 state. 
When these two inputs are used, J, K and C are 
marked as X or don’t care, because the PR and 
CL inputs override them. Line 3 corresponds 
to the unused state of the R-S flip-flop.

Line 5 shows that if J = 1 and K = 0, the 
next clock transition from high to low sets Q 
= 1 and Q' = 0. Alternately, line 4 shows J = 
0 and K = 1 sets Q = 0 and Q' = 1. Therefore 
if a signal is applied to J, and the inverted 
signal sent to K, the J-K flip-flop will mimic 
a D flip-flop, echoing its input.

The most unique feature of the J-K flip-flop 
is line 7. If both J and K are connected to a 1, 
then each clock 1 to 0 transition will flip or 
toggle the flop-flop. Thus the J-K flip-flop can 
be used as a T flip-flop, as in a ripple counter 
(see the following Counters section.)

Figure 20 — (A) JK flip-flop. (B) JK flip-flop truth table.

Figure 19 — (A & B) The D flip-flop. (C) A truth table for the positive edge-triggered 
D flip-flop.
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that changes state only after m clock pulses is 
called a divider or divide-by-m counter. There 
are still 2n = m states; however, the output 
after p clock pulses is now p / m. Combining 
different divide-by-m counters can result in 
almost any desired count. For example, a base 
12 counter can be made from a divide-by-2 
and a divide-by-6 counter; a base 10 (decade) 
counter consists of a divide-by-2 and a BCD 
divide-by-5 counter.

The outputs of these counters are binary. To 
produce output in decimal form, the output of 
a counter would be provided to a binary-to-
decimal decoder chip and/or an LED display.

REGISTERS
Groups of flip-flops can be combined to 

make registers, usually implemented with D 
flip-flops. A register stores n bits of informa-
tion, delivering that information in response 
to a clock pulse. Registers usually have asyn-
chronous set to 1 and clear to 0 capabilities.

Storage Register
A storage register simply stores temporary 

information, for example, incoming informa-
tion or intermediate results. The size is related 
to the basic size of information handled by 
a computer: 8 flip-flops for an 8-bit or byte 
register or 16 bits for a word register. Figure 
22 shows a typical circuit and schematic sym-
bols for an 8-bit storage register.

Shift Register
Shift registers also store information and 

provide it in response to a clock signal, but they 
handle their information differently: When a 
clock pulse occurs, instead of each flip-flop 
passing its result to the output, the flip-flops 
pass their data to each other, up and down the 
row. For example, in up mode, each flip-flop 
receives the output of the preceding flip-flop. 
A data bit starting in flip-flop D0 in a left 
shifter would move to D1, then D2 and so on 
until it is shifted out of the register. If a 0 was 
input to the least significant bit, D0, on each 
clock pulse then, when the last data bit has 
been shifted out, the register contains all 0s.

Shift registers can be left shifters, right 
shifters or controlled to shift in either direc-
tion. The most general form, a universal shift 
register, has two control inputs for four states: 
Hold, Shift right, Shift left and Load. Most 
also have asynchronous inputs for preset, 
clear and parallel load. The primary use of 
shift registers is to convert parallel informa-
tion to serial or vice versa. Additional uses 
for a shift register are to delay or synchronize 
data, and to multiply or divide a number by 
a factor 2n. Data can be delayed simply by 
taking advantage of the Hold feature of the 
register control inputs. Multiplication and 
division with shift registers is best explained 
by example: Suppose a 4-bit shift register 
currently has the value 1000 = 8. A right shift 

Table 8

5.3 Groups of Flip-Flops
COUNTERS

Groups of flip-flops can be combined to 
make counters. Intuitively, a counter is a cir-
cuit that starts at state 0 and sequences up 
through states 1, 2, 3, to m, where m is the 
maximum number of states available. From 
state m, the next state will return the counter to 
0. This describes the most common counter: 
the n-bit binary counter, with n outputs corre-
sponding to 2n = m states. Such a counter can 
be made from n flip-flops, as shown in Figure 
21. This figure shows implementations for 
each of the types of synchronicity. Both cir-
cuits pass the data count from stage to stage. 
In the asynchronous counter, Figure 21A, the 
clock is also passed from stage to stage and 
the circuit is called ripple or ripple-carry.

The J-K flip-flop truth table shows that with 
PR (Preset) and CL (Clear) both positive, and 
therefore not effecting the operation, the flip-
flop will toggle if J and K are tied to a logic 
1. In Figure 21A the first stage has its J and K 
inputs permanently tied to a logic 1, and each 
succeeding stage has its J and K inputs tied 
to Q of the proceeding stage. This provides a 
direct ripple counter implementation.

Design of a synchronous counter is bit more 
involved. It consists of determining, for a par-
ticular count, the conditions that will make 
the next stage change at the same clock edge 
when all the stages are changing.

To illustrate this, notice the binary counting 
table of Figure 21. The right-hand column 
represents the lowest stage of the counter. 
It alternates between 1 and 0 on every line. 
Thus, for the first stage the J and K inputs are 
tied to logic 1. This provides the alternation 
required by the counting table.

The middle column or second stage of the 
counter changes state right after the lower 
stage is a 1 (lines C, E and G). Thus if the Q 
output of the lowest stage is tied to the J and 
K inputs of the second stage, each time the 
output of the lowest stage is a 1 the second 
stage toggles on the next clock pulse.

Finally, the third column (third stage) tog-
gles when both the first stage and the second 
stage are both 1s (line D). Thus by ANDing 
the Q outputs of the first two stages, and then 
connecting them to the J and K inputs of the 
third stage, the third stage will toggle when-
ever the first two stages are 1s.

There are formal methods for determin-
ing the wiring of synchronous counters. The 
illustration above is one manual method that 
may be used to design a counter of this type. 
The advantage of the synchronous counter is 
that at any instant, except during clock pulse 
transition, all counter stage outputs are cor-
rect and delay due to propagation through the 
flip flops is not a problem.

In the synchronous counter, Figure 21B, 
each stage is controlled by a common clock 
signal.

There are numerous variations on this first 
example of a counter. Most counters have the 
ability to clear the count to 0. Some counters 
can also preset to a desired count. The clear 
and preset control inputs are often asynchro-
nous — they change the output state without 
being clocked. Counters may either count up 
(increment) or down (decrement). Up/down 
counters can be controlled to count in either 
direction. Counters can have sequences other 
than the standard numbers, for example a BCD 
counter.

Counters are also not restricted to changing 
state on every clock cycle. An n-bit counter 
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Figure 22 — An eight-bit storage register: (A) circuit and (B) 
schematic symbol.

Figure 21 — Three-bit binary counter using J-K flip-flops: (A) asynchronous or ripple, 
(B) synchronous.

Figure 23 — (A) A 555 timer connected as a monostable 
multivibrator. (B) The equation to calculate values where T is  
the pulse duration in seconds, R is in ohms and C is in farads.

results in the new parallel output 0100 = 4 = 
8 / 2. A second right shift results in 0010 = 2 
= (8 / 2) / 2. Together the 2 right shifts per-
formed a division by 22. In general, shifting 
right n times is equivalent to dividing by 2n. 
Similarly, shifting left multiplies by 2n. This 
can be useful to compiler writers to make a 
computer program run faster.

5.4 Multivibrators
Multivibrators are a general type of circuit 

with three varieties: bistable, monostable and 

astable. The only truly digital multivibrator 
is bistable, having two stable states. The flip-
flop is a bistable multivibrator: both of its two 
states are stable; it can be triggered from one 
stable state to the other by an external signal. 
The other two varieties of multivibrators are 
partly analog circuits and partly digital. While 
their output is one or more pulses, the internal 
operation is strictly analog.

MONOSTABLE MULTIVIBRATOR
A monostable or one-shot multivibrator 

has one energy-storing element in its feedback 

paths, resulting in one stable and one quasi-
stable state. It can be switched, or triggered, to 
its quasi-stable state; then returns to the stable 
state after a time delay. Thus, when triggered, 
the one-shot multivibrator puts out a pulse of 
some duration, T.

A very common integrated circuit used for 
non-precision generation of a signal pulse 
is the 555 timer IC. Figure 23 shows a 555 
connected as a one-shot multivibrator. The 
one-shot is activated by a negative-going 
pulse between the trigger input and ground. 
The trigger pulse causes the output (Q) to go 
positive and capacitor C to charge through 
resistor R. When the voltage across C reaches 
two-thirds of VCC, the capacitor is quickly 
discharged to ground and the output returns 
to 0. The output remains at logic 1 for a time 
determined by

T = 1.1 RC

where:
R = resistance in ohms, and
C = capacitance in farads.

A very common, but again, non-precision 
application of this circuit is the generation 
of a delayed pulse. If there is a requirement 
to generate a 50 µs pulse, but delayed from a 
trigger by 20 ms, two 555s might be used. The 
first 555, configured as an astable multivibra-
tor, generates the 20-ms pulse, and the trailing 
edge of the 20-ms pulse is used to trigger a 
second 555 that in turn generates the 10 µs 
pulse. See the Circuits and Components 
chapter for more information on the 555 timer 
and related circuits.
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ASTABLE MULTIVIBRATOR
An astable or free-running multivibra-

tor has two energy-storing elements in its 
feedback paths, resulting in two quasi-stable 
states. It continuously switches between these 
two states without external excitation. Thus, 
the astable multivibrator puts out a sequence 
of pulses. By properly selecting circuit com-
ponents, these pulses can be of a desired fre-
quency and width.

Figure 24 shows a 555 timer IC connected 
as an astable multivibrator. The capacitor C 
charges to two-thirds VCC through R1 and 
R2 and discharges to one-third VCC through 
R2. The ratio R1 : R2 sets the asserted high 
duty cycle of the pulse: tHIGH / tPERIOD. The 
output frequency is determined by:

1.46f
(R1 2 R2) C

=
+

where:
R1 and R2 are in ohms,
C is in farads and
f is in hertz.

It may be difficult to produce a 50% duty 
cycle due to manufacturing tolerance for the 
resistors R1 and R2. One way to ensure a  
50% duty cycle is to run the astable multi
vibrator at 2f and then divide by 2 with a 
toggle flip-flop.

Astable multivibrators, and the 555 inte-
grated circuit in particular, are very often 

Figure 24 — (A) A 555 timer connected as an astable multivibrator. (B) The equations 
to calculate values for R1, R2 in ohms and C in farads, where f is the clock frequency 
in Hertz.

used to generate clock pulses. Although this 
is a very inexpensive and minimum hardware 
approach, the penalty is stability with tem-
perature. Since the frequency and the pulse 

dimensions are set by resistors and capacitors, 
drift with temperature and to some extent 
aging of components will result in changes 
with time. This is no different than the problem 
faced by designers of L-C controlled VFOs.

6  Digital Integrated Circuits
ing to the number of gates on a single chip. 
These classifications are roughly defined as:

Small-scale integration (SSI):  
10 or fewer gates on a chip.
Medium-scale integration (MSI):  
10-100 gates.
Large-scale integration (LSI):  
100-1000 gates.
Very-large-scale integration (VLSI):  
1000 or more gates.

Though SSI and MSI logic chips are still 
useful for building circuits to handle very 
simple tasks, it is more common to see them 
either used along with or completely replaced 
by programmable logic arrays and microcon-
trollers. In many cases you will see the smaller 
logic circuits referred to as “glue logic.”

6.1 Comparing Logic Families
When selecting devices for a circuit, a 

designer is faced with choosing between 
many families and subfamilies of logic ICs. 
The determination of which logic subfamily 
is right for a specific application is based  
upon several desirable characteristics: logic 
speed, power consumption, fan-out, noise 
immunity and cost. From a practical view-
point, the primary IC families available and 
in common use today are CMOS, with TTL 
a distant second place. Within these families, 
there are tradeoffs that can be made with 
respect to individual circuit capabilities, 
especially in the areas of speed and power 
consumption. Except under the most de-
manding circumstances, normal commercial 
grade temperature rating will do for amateur 

Integrated circuits (ICs) are the corner-
stone of digital logic devices. Modern tech-
nology has enabled electronics to become 
smaller and smaller in size and less and less 
expensive. Much of today’s complex digital 
equipment would be impossible to build with 
discrete transistors and discrete components.

An IC is a miniature electronic module of 
components and conductors manufactured as 
a single unit. All you see is a ceramic or black 
plastic package and the silver-colored pins 
sticking out. Inside the package is a piece of 
material, usually silicon, created (fabricated) 
in such a way that it conducts an electric 
current to perform logic functions, such as a 
gate, flip-flop or decoder.

As each generation of ICs surpassed the 
previous one, they became classified accord-
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service.

FAN-OUT
Fan-out is a term with which you will need 

to become familiar when working with TTL 
logic families such as 7400, 74LS or 74S. A 
gate output can supply only a limited amount 
of current. Therefore, a single output can only 
drive a limited number of inputs. The measure 
of driving ability is called fan-out, expressed 
as the number of inputs (of the same subfam-
ily) that can be driven by a single output. If a 
logic family that is otherwise desirable does 
not have sufficient fan-out, consider using 
noninverting buffers to increase fan-out, as 
shown by Figure 25.

Another approach is to use a CMOS logic 
family. These families typically have output 
drivers capable of sourcing or sinking 20 
to 25 mA, and input current leakage in the 
microampere range. Thus, fan-out is seldom 
a problem when using these devices.

NOISE IMMUNITY
The noise margin was illustrated in Figure 

2. The choice of voltage levels for the binary 
states determines the noise margin. If the gap 
is too small, a spurious signal can too easily 
produce the wrong state. Too large a gap, 
however, produces longer, slower transitions 
and thus decreased switching speeds.

Circuit impedance also plays a part in noise 
immunity, particularly if the noise is from 
external sources such as radio transmitters. 
At low impedances, more energy is needed 
to change a given voltage level than at higher 
impedances.

6.2 Bipolar Logic Families
Two broad categories of digital logic ICs 

are bipolar and metal-oxide semiconductor 
(MOS). Numerous manufacturing techniques 
have been developed to fabricate each type. 
Each surviving, commercially available fam-
ily has its particular advantages and disadvan-
tages and has found its own special niche in 
the market. The designer is cautioned, how-
ever, that sometimes this niche is simply the 

ongoing maintenance of old products. There 
are still very old logic families available for 
reasonable prices that would be considered 
quite obsolete and generally not suitable for 
new designs.

Bipolar semiconductor ICs usually employ 
NPN junction transistors. (Bipolar ICs can be 
manufactured using PNP transistors, but NPN 
transistors make faster circuits.) While early 
bipolar logic was faster and had higher power 
consumption than MOS logic, the speed dif-
ference has largely disappeared as manufac-
turing technology has developed.

There are several families of bipolar logic 
devices, and within some of these families 
there are subfamilies. The most-used bipo-
lar logic family is transistor-transistor logic 
(TTL). Another bipolar logic family, Emitter 
Coupled Logic (ECL), has exceptionally high 
speed but high power consumption.

TRANSISTOR-TRANSISTOR LOGIC 
(TTL)

The TTL family saw widespread accep-
tance through the 1960s, 1970s and 1980s 
because it was fast compared to early MOS 
and CMOS logic, and has good noise immu-
nity. It was by far the most commonly used 
logic family for a couple of decades. Though 
TTL logic is not in widespread use today for 
new designs, the device numbering system 
devised for TTL chips survives to this day for 
newer technologies. You will also often see 
TTL, especially the later low power, higher 
speed TTL subfamilies, in various equipment 
you may use and repair.

TTL Subfamilies
The original standard TTL used bipolar 

transistors and “totem-pole” outputs (see Fig-
ure 26A and B), which were a great improve-
ment over the earlier diode-transistor logic 
(DTL) and resistor-transistor logic (RTL). 
Still, TTL logic consumed quite a bit of power 
even at idle, and there were limits on how 

many inputs could be driven by a single out-
put. Later versions used Schottky diodes to 
greatly improve switching speed, and reduced 
power requirements were introduced.

TTL IC identification numbers begin 
with either 54 or 7 The 54 prefix denotes an 
extended military temperature range of –55 
to 125 °C, while 74 indicates a commercial 
temperature range of 0 to 70 °C. The next 
letters, in the middle of the TTL device num-
ber, indicate the TTL subfamily. Following 
the subfamily designation is a 2, 3 or 4-digit 
device-identification number. For example, 
a 7400 is a standard TTL NAND gate and a 
74LS00 is a low-power Schottky NAND gate 
(The NAND gate is the workhorse TTL chip). 
A partial list of TTL subfamilies includes:

	 74xx 	 standard TTL
H	 74Hxx	 High-speed
L	 74Lxx	 Low-power
S	 74Sxx	 Schottky
F	 74Fxx	 Fairchild Advanced 
		    Schottky
LS	 74LSxx	 Low-power Schottky
AS	 74ASxx	 Advanced Schottky
ALS	 74ALSxx	 Advanced 
		    Low-power Schottky

Each subfamily is a compromise between 
speed and power consumption. Table 5.9 
shows some of these characteristics. Because 
the speed-power product is approximately 
constant, less power consumption generally 
results in lower speed and vice versa. The 
advanced low power Schottky devices (ALS, 
F) offer both increased speed and reduced 
power consumption. Historically, an addi-
tional consideration to the speed-versus-
power trade-off has been the cost trade-off. 
For the amateur, this is not nearly the factor 
it once was as component costs are relatively 
low for the newer, faster, lower powered parts.

When a TTL gate changes state, the amount 
of current that it draws changes rapidly. These 
changes in current, called switching tran-

Figure 25 — Nonverting buffers used to 
increase fan-out: Gate A (fan-out = 2) is 
connected to two buffers, B and C, each 
with a fan-out of 2. Result is a total fan-
out of 

Table 9
TTL and CMOS Subfamily Performance Characteristics
TTL Family	 Propagation	 Per Gate Power	 Speed Power Product
	 Delay (ns)	 Consumption (mW)	 (pico-joules)
Standard	 9	 10	 90
L	 33	 1	 33
H	 6	 22	 132
S	 3	 20	 60
F	 3	 8.5	 25.5
LS	 9	 2	 18
AS	 1.6	 20	 32
ALS	 5	 1.3	 6.5

CMOS Family Operating with
 5 <VCC	 <5.5 V	 f=100 kHz	 f=1 MHz	 f=10 MHz	 f=100 kHz	 f=1 MHz	 f=10 MHz
HC	 18	 0.0625	 0.6025	 6.0025	 1.1	 10.8	 108
HCT	 18	 0.0625	 0.6025	 6.0025	 1.1	 10.8	 108
AC	 5.25	 0.080	 0.755	 7.505	 0.4	 3.9	 39
ACT	  75	 0.080	 0.755	 7.505	 0.4	 3.6	 36
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sients, appear on the power supply line and 
can cause false triggering of other devices. For 
this reason, the power bus should be adequate-
ly decoupled. For proper decoupling of TTL 
circuits, connect a 0.01 to 0.1 µF capacitor 
from VCC to ground near each device to mini-
mize the transient currents caused by device 
switching and magnetic coupling. These 
capacitors must be low-inductance, high-
frequency RF capacitors (ceramic capacitors 
are preferred). In addition, a large-value (50 
to 100 µF) capacitor should be connected 
from VCC to ground somewhere on the board 
to accommodate the continually changing 
ICC requirements of the total VCC bus line. 
These are generally low-inductance tantalum 
capacitors.

Darlington and Open-Collector 
Outputs

Figure 26C and D show variations from the 
totem-pole configuration. They are the Dar-
lington transistor pair and the open-collector 
configuration respectively.

The Darlington pair configuration replaces 
the single transistor Q4 with two transistors, 
Q4 and Q5. The effect is to provide more 
current-sourcing capability in the high state. 
This has two benefits: (1) the rise time is 
decreased and (2) the fan-out is increased.

Transistor(s) on the output in both the 
totem-pole and Darlington configura-
tions provide active pull-up. Omitting the 
transistor(s) and providing an external resistor 
for passive pull-up gives the open-collector 
configuration. This configuration, unfortu-
nately, results in slower rise time, since a rela-
tively large external resistor must be used. The 
technique has some very useful applications, 
however: driving other devices, performing 
wired logic, busing and interfacing between 
logic devices.

Devices that need other than a 5-V supply 
can be driven with the open-collector output 
by substituting the device for the external 
resistor. Example devices include LEDs, 
relays and solenoids. Inductive devices like 
relay coils and solenoids need a protection 
diode across the coil. You must pay atten-
tion to the current ratings of open-collector 
outputs in such applications. You may need 
a switching transistor to drive some relays or 
other high-current loads.

Open-collector outputs can perform 

Figure 26 — Example TTL circuits and 
their equivalent logic symbols: (A) an 
inverter and (B) a NAND gate, both with 
totem-pole outputs. (C) A NAND gate with 
a Darlington output. (D) A NAND gate 
with an open-collector output. (Indicated 
resistor values are typical. Identification 
of transistors is for text reference only. 
These are not discrete components but 
parts of the silicon die.)
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wired logic, rather than gated IC logic, by 
wire-ANDing the outputs. This can save the 
designer an AND gate, potentially simpli-
fying the design. Wire-ANDed outputs are 
several open-collector outputs connected to 
a single external pull-up resistor. The over-
all output, then, will only be high when all 
pull-down transistors are OFF (all connected 
outputs are high), effectively performing  
an AND of the connected outputs. If any  
of the connected outputs are low, the out- 
put after the external resistor will be low.  
Figure 27 illustrates the wire-ANDing of 
open-collector outputs.

The wire-ANDed concept can be applied 
to several devices sharing a common bus. At  
any time, all but one device has a high-imped-
ance (off) output. The remaining device, 
enabled with control circuitry, drives the bus 
output.

Open-collector outputs are also useful for 
interfacing TTL gates to gates from other 
logic families. TTL outputs have a minimum 
high level of 2.4 V and a maximum low level 
of 0.4 V. When driving non-TTL circuits, a 
pull-up resistor (typically 2.2 kΩ) connected 
to the positive supply can raise the high level 
to 5 V. If a higher output voltage is needed, a 
pull-up resistor on an open-collector output 
can be connected to a positive supply greater 
than 5 V, so long as the chip output voltage 
and current maximums are not exceeded.

Three-State Outputs
While open-collector outputs can perform 

bus sharing, a more popular method is three-
state output, or tristate, devices. The three 
states are low, high and high impedance, also 
called Hi-Z or floating. An output in the high-
impedance state behaves as if it is discon-
nected from the circuit, except for possibly 
a small leakage current. Three-state devices 
have an additional disable input. When the 
enable input is active, the device provides 

Figure 27 — 
The outputs 
of two open-
collector-output 
AND gates 
are shorted 
together (wire 
ANDed) to 
produce an 
output the 
same as would 
be obtained 
from a 4-input 
AND gate.

high and low outputs just as it would nor-
mally; when enable is inactive, the device 
goes into its high-impedance state.

A bus is a common set of wires, usually 
used for data transfer. A three-state bus has 
several three-state outputs wired together. 
With control circuitry, all devices on the bus 
but one have outputs in the high-impedance 
state. The remaining device is enabled, driv-
ing the bus with high and low outputs. Care 
should be taken to ensure only one of the 
output devices can be enabled at any time, 
since simultaneously connected high and 
low outputs may result in an incorrect logic 
voltage. (The condition when more than one 
driver is enabled at the same time is called 
bus contention.) Also, the large current drain 
from VCC to ground through the high driver 
to the low driver can potentially damage the 
circuit or produce noise pulses that can affect 
overall system behavior.

Unused TTL Inputs
A design may result in the need for an 

n-input gate when only an n + m input gate 
is available. In this case, the recommended 
solution for extraneous inputs is to give the 
extra inputs a constant value that won’t affect 
the output. A low input is easily provided by 
connecting the input to ground. A high input 
can be provided with either an inverter whose 
input is ground or with a pull-up resistor. The 
pull-up resistor is preferred rather than a direct 
connection to power because the resistor lim-
its the current, thus protecting the circuit from 
transient voltages. Usually, a 1-kΩ to 5-kΩ 
resistor is used; a single 1-kΩ resistor can 
handle up to 10 inputs.

It’s important to properly handle all inputs. 
Design analysis would show that an uncon-
nected, or floating TTL input is usually high 
but can easily be changed low by only a small 
amount of capacitively-coupled noise.

6.3 Metal Oxide 
Semiconductor (MOS)  
Logic Families

While bipolar devices use junction transis-
tors, MOS devices use field effect transis-
tors (FETs). MOS is characterized by simple 
device structure, small size (high density) and 
ease of fabrication. MOS circuits use the NOR 
gate as the workhorse chip rather than the 
NAND. MOS families, specifically CMOS, 
are used extensively in most digital devices 
today because of their low power consump-
tion and high speed.

P-CHANNEL MOS (PMOS)
The first MOS devices to be fabricated 

were PMOS, conducting electrical current by 
the flow of positive charges (holes). PMOS 
power consumption is much lower than that 
of bipolar logic, but its operating speed is  
also lower. The only extensive use of PMOS 
was in calculators and watches, where low 
speed is acceptable and low power consump-
tion and low cost are desirable. PMOS was 
replaced by NMOS, which offered substan-
tially higher switching speeds.

N-CHANNEL MOS (NMOS)
With improved fabrication technol-

ogy, NMOS became feasible and provided 
improved performance and TTL compat-
ibility. The speed of NMOS is at least twice  
that of PMOS, since electrons rather than 
holes carry the current. NMOS also has 
greater gain than PMOS and supports greater 
packaging density through the use of smaller 
transistors. NMOS has been almost com-
pletely obsoleted by CMOS.

COMPLEMENTARY MOS (CMOS)
CMOS combines both P-channel and 

N-channel devices on the same substrate to 
achieve high noise immunity and low pow-
er consumption: less than 1 mW per gate 
and negligible power during standby. This 
accounts for the widespread use of CMOS in 
battery-operated equipment. The high imped-
ance of CMOS gates makes them susceptible 
to electromagnetic interference, however, 
particularly if long traces are involved. Con-
sider a trace 1⁄4-wavelength long between input 
and output. The output is a low-impedance 
point, hence the trace is effectively grounded 
at this point. You can get high RF potentials 
1⁄4-wavelength away, which disturbs circuit 
operation.

A notable feature of CMOS devices is 
that the logic levels swing to within a few 
millivolts of the supply voltages. The input-
switching threshold is approximately one half 
the supply voltage (VDD – VSS). This char-
acteristic contributes to high noise immunity 
on the input signal or power supply lines. 
CMOS input-current drive requirements are 
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minuscule, so the fan-out is great, at least in 
low-speed systems. For high-speed systems, 
the input capacitance increases the dynamic 
power dissipation and limits the fan-out.

CMOS Subfamilies
There are a large number of CMOS sub-

families available. Like TTL, the original 
CMOS has largely been replaced by later 
subfamilies using improved technologies; in 
turn, these will be replaced with even newer 
families as technology evolves. The original 
family, called the 4000 series, has numbers 
beginning with 40 or 45 followed by two or 
three numbers to indicate the specific device. 
4000B is second generation CMOS. When 
introduced, this family offered low power 
consumption but was fairly slow and not easy 
to interface with TTL.

Later CMOS subfamilies offer improved 
performance and, in some cases, TTL com-
patibility. For simplicity, the later subfami-
lies were given numbers similar to the TTL 
numbering system, with the same leading 
numbers, 54 or 74, followed by 1 to 4 letters 
indicating the subfamily and as many as 5 
numbers indicating the specific device. The 
subfamily letters usually include a “C” to 
distinguish them as CMOS.

Following is a description of some of the 
CMOS device families available. As there are 
a substantial number of families offered by 
specific manufacturer, and there are new fami-
lies being introduced frequently, this informa-
tion is by no means exhaustive. A check of IC 
suppliers’ and manufacturers’ Web sites will 
provide the designer with a complete selection 
of choices to meet his or her requirements.

4000	 4071B	 Standard CMOS
C	 74Cxx	 CMOS versions of 
		  TTL

Largely obsolete today, devices in the 74C 
subfamily are pin and functional equivalents of 
many of the most popular parts in the 7400 TTL 
family. It may be possible to replace all TTL ICs 
in a particular circuit with 74C-series CMOS, 
but this family should not be mixed with TTL in 
a circuit without careful design considerations. 
Devices in the C series are typically 50% faster 
than the 4000 series.

HC	 74HCxx	 High-speed CMOS

Devices in the 74HC subfamily have speed 
and drive capabilities similar to Low-power 
Schottky (LS) TTL but with better noise immu-
nity and greatly reduced power consumption. 
High-speed refers to faster than the previous 
CMOS family, the 4000-series.

HCT	 74HCTxx	 High-Speed CMOS, 
		  TTL compatible

Devices in this subfamily were designed to 
interface TTL to CMOS systems. The HCT 
inputs recognize TTL levels, while the out-
puts are CMOS compatible. HCT chips are 

commonly used as lower powered, drop-in 
replacements for their pin compatible LS TTL 
counterparts.

AC	 74ACxxxxx	 Advanced CMOS

Devices in this family have reduced propaga-
tion delays, increased drive capabilities and can 
operate at higher speeds than standard CMOS. 
They are comparable to Advanced Low-power 
Schottky (ALS) TTL devices.

ACT	 74ACTxxxxx	 Advanced CMOS, 
		  TTL compatible

This subfamily combines the improved per-
formance of the AC series with TTL-compat-
ible inputs.

AHCT	 74AHCTxxxx	 Advanced High 
		  Speed CMOS,  
		  TTL Compatible

This subfamily is substantially faster than 
HC and HCT, but only slightly faster than ACT 
in switching speed. It has lower output drive 
capacity than AC/ACT. 

New CMOS subfamilies are being intro-
duced regularly. The current move is to lower 
voltage operation; where 5 V was the most 
common supply voltage until a few years ago, 
3.3 V and lower supplies are becoming more 
common. Many newer microprocessors, micro-
controllers and intelligent peripheral chips 
require 3.3 V logic.

LVC	 74LVCxxxx	 Low Voltage CMOS

This subfamily uses a 3.3 V supply rather 
than 5 V. It offers low propagation delay (under 
5 ns typical), extremely low supply current, 
robust output drive capabilities, and 5-V TTL 
compatible inputs.

ALVC	 74ALVCxxxx	  Advanced Low 
		  Voltage CMOS

Even faster than LVC, this family offers prop-
agation delays if under 3ns. Current demands 
are slightly higher, but still lower than 5V 
CMOS.

VCX	 74VCXxxxx	  Low voltage 
		  CMOS

This family operates at supply voltages of 

1.8 or 3.6 V. Offering high switching speeds 
and low propagation delays, it does not have 
TTL-compatible buffered inputs.

As with TTL, each CMOS subfamily has 
characteristics that may make it suitable or 
unsuitable for a particular design. You should 
consult the manufacturer’s data books for 
complete information on each subfamily 
being considered.

CMOS Circuits
A simplified diagram of a CMOS logic 

inverter is shown in Figure 28. When the input 
is low, the resistance of Q2 is low so a high 
current flows from VCC. Since Q1’s resistance 
is high, Q2 sinks current from the output, 
pulling it low. When the input is high, the 
opposite occurs: Q1’s resistance is low, Q2’s 
is high and Q1 sources current to the output, 
driving it high. The diodes are to protect the 
circuit against static charges.

Special Considerations
Some of the diodes in the input- and out-

put-protection circuits are an inherent part 
of the manufacturing process. Even with the 
protection circuits, however, CMOS ICs are 
susceptible to damage from static charges. 
To protect against damage from static, the 
pins should not be inserted in Styrofoam as 
is sometimes done with other components. 
Instead, a spongy conductive foam, usually 
black or pink in color, is available for this 
purpose. Before removing a CMOS IC from 
its protective material, make certain that your 
body is grounded. Touching nearly any large 
metal object before handling the ICs is prob-
ably adequate to drain any static charge off 
your body. Some people prefer to touch a 
grounded metal object or to use a conductive 
bracelet connected to the ground terminal of a 
three-wire ac outlet through a 10-MΩ resistor. 
Since wall outlets aren’t always wired prop-
erly, you should measure the voltage between 
the ground terminal and any metal objects you 
might touch. Connecting yourself to ground 
through a 1-MΩ to 10-MΩ resistor will limit 

Figure 28 — Internal structure of a CMOS inverter.
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any current that might flow through your body.
All CMOS inputs should be tied to an input 

signal. A positive supply voltage or ground is 
suitable if a constant input is desired. Undeter-
mined CMOS inputs, even on unused gates, 
may cause gate outputs to oscillate. Oscillat-
ing gates draw high current, and may overheat 
and self destruct.

The low power consumption of CMOS ICs 
made them attractive for satellite applications, 
but standard CMOS devices proved to be 
sensitive to low levels of radiation — cosmic 
rays, gamma rays and X rays. Later, radia- 
tion-hardened CMOS ICs, able to tolerate  
106 rads, made them suitable for space appli-
cations. (A rad is a unit of measurement for 
absorbed doses of ionizing radiation, equiva-
lent to 10–2 joules per kilogram.)

SUMMARY
There are many types of logic ICs, each 

with its own advantages and disadvantages. 
Regardless of the application, consult up-to-
date product specification sheets and manu-
facturer literature when designing logic 
circuits. IC data sheets, application notes, 
databooks and more are available from IC 
manufacturers via their Web sites. By using 
a search engine and entering a few key word 
specifications, you will locate application 
notes, tutorials and a host of other informa-
tion.

6.4 Interfacing Logic 
Families

Each semiconductor logic family has its 
own advantages in particular applications. 
When a design mixes ICs from different logic 
families, the designer must account for the 
differing voltage and current requirements 
each logic family recognizes. The designer 
must ensure the appropriate interface exists 
between the point at which one logic fam-
ily ends and another begins. Knowledge of 
the specific input/output (I/O) characteristics 
of each device is necessary, and knowledge 
of the general internal structure is desirable 
to ensure reliable digital interfaces. Typical 
internal structures have been illustrated for 
each common logic family. Figure 29 illus-
trates the logic level changes for different TTL 
and CMOS families. Data sheets should be 
consulted for manufacturer’s specifications.

Often more than one conversion scheme is 
possible, depending on whether the designer 
wishes to optimize power consumption or 
speed. Usually one quality must be traded off 
for the other. The following section discuss-
es some specific logic conversions. Where 
an electrical connection between two logic 
systems isn’t possible, an optoisolator can 
sometimes be used.

Figure 29 — Differences in logic levels for some TTL and CMOS families.

Figure 30 — TTL to CMOS interface circuits: (A) pull-up resistor, (B) common-base level 
shifter and (C) op amp configured as a comparator.
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TTL DRIVING CMOS
TTL and low-power TTL can drive 74C 

series CMOS directly over the commer-
cial temperature range without an external 
pull-up resistor. However, they cannot drive 
4000-series CMOS directly, and for HC-series 
devices, a pull-up resistor is recommended. 
The pull-up resistor, connected between the 
output of the TTL gate and VCC as shown in 
Figure 30A, ensures proper operation and 
enough noise margin by making the high out-
put equal to VDD. Since the low output voltage 
will also be affected, the resistor value must 
be chosen with both desired high and low 
voltage ranges in mind. Resistor values in the 
range 1.5 kΩ to 7 kΩ should be suitable for all 
TTL families under worst conditions. A larger 
resistance reduces the maximum possible 
speed of the CMOS gate; a lower resistance 
generates a more favorable RC product but at 
the expense of increased power dissipation.

HCT-series and ACT-series CMOS devices 
were specifically designed to interface non-
CMOS devices to a CMOS system. An HCT 
device acts as a simple buffer between the 
non-CMOS (usually TTL) and CMOS device 
and may be combined with a logic function if 
a suitable HCT device is available.

When the CMOS device is operating from 
a power supply other than +5 V, the TTL 
interface is more complex. One fairly simple 
technique uses a TTL open-collector output 
connected to the CMOS input, with a pull-up 
resistor from the CMOS input to the CMOS 
power supply. Another method, shown in  
Figure 30B, is a common-base level shifter. 
The level shifter translates a TTL output sig-
nal to a +15 V CMOS signal while preserving 
the full noise immunity of both gates. An 
excellent converter from TTL to CMOS using 
dual power supplies is to configure an opera-
tional amplifier as a comparator, as shown in 
Figure 30C. An FET op amp is shown because 
its output voltage can usually swing closer 
to the rails (+ and – supply voltages) than a 
bipolar device.

CMOS DRIVING TTL
Certain CMOS devices (including most 

modern 5 V powered CMOS logic families) 
can drive TTL loads directly. The output volt-
ages of CMOS are compatible with the input 
requirements of TTL, but the input-current 
requirement of TTL limits the number of TTL 
loads that a CMOS device can drive from a 
single output (the fan-out).

Interfacing CMOS to TTL is a bit more 
complicated when the CMOS is operating 
at a voltage other than +5 V. One technique 
is shown in Figure 31A. The diode blocks 
the high voltage from the CMOS gate when 
it is in the high output state. A germanium 
diode is preferred because its lower forward-
voltage drop provides higher noise immunity 

Figure 31 — CMOS to TTL interface circuits. (A) blocking diode chosen when different 
supply voltages are used. The diode is not necessary if both devices operate with a 
+5 V supply. (B) CMOS noninverting buffer IC. (C) Resistor/Zener circuit clamps the 
voltage to the TTL input at 7 V.

for the TTL device in the low state. The 68-kΩ 
resistor pulls the input high when the diode 
is reverse biased.

A simple resistor/Zener circuit, shown in 
Fig. 31C, can also be used. This clamps the 
voltage to the TTL input at 7 V.

There are two CMOS devices specifically 
designed to interface CMOS to TTL when 
TTL is using a lower supply voltage. The 
CD4050 is a noninverting buffer that allows 
its input high voltage to exceed the supply 
voltage. This capability allows the CD4050 
to be connected directly between the CMOS 
and TTL devices, as shown in Figure 31B. 
The CD4049 is an inverting buffer that has 
the same capabilities as the CD4050.

5 V DRIVING 3.3 V LOGIC
Low voltage logic operating with 3.3 to 3.6 

V supplies is becoming more and more com-
mon. Some of these logic families have 5 V 
tolerant inputs and can be driven directly by 
TTL levels; others require buffering to keep 
inputs at or below the supply voltage. Output 
levels may or may not be sufficient to drive 
TTL level inputs reliably under all conditions. 

The use of TTL compatible buffers (74LVC, 
74ALVC) on input signals is a safe way to 
drive these devices. Since the low logic volt-
ages are compatible, a simple Zener clamp 
arrangement may also be sufficient.

3.3 V DRIVING 5 V LOGIC
Output voltages of most 3.3 V logic fami-

lies are sufficient to drive the inputs of TTL-
level devices. In some cases, the high level 
output voltage of a 3.3 V powered device 
may approach the lower end of the TTL level 
device’s input range. In these cases, a pull-up 
resistor to 3.3 V will usually be sufficient. It is 
also possible to use an IC or transistor buffer.

6.5 Programmable Logic
As digital logic designs became more 

and more complex, the size and power 
consumption of their implementations grew. 
PLDs (Programmable Logic Devices) were 
introduced to allow the designer to produce 
application-specific logic without the expense 
and delay of fabricating custom chips. As 
explained earlier, the design of a logic circuit 
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begins with a description; this description 
is used to determine an equation; then the 
equation is expanded to components. With 
programmable logic we can shortcut this 
process by implementing the equations 
themselves, programming them into a generic 
array of gates.

Several families of programmable logic 
devices have been introduced over the years. 
The earliest were Programmable Array Logic 

Figure 32— Interface circuits for logic driving real-world loads. (A) driving a relay from 
a logic output; (B) using a bipolar transistor or MOSFET to boost current capacity; (C) 
using an optoisolator for electrical isolation; (D) using a solid-state relay for switching 
ac loads.

(PAL) chips, consisting of an array of gates 
whose inputs, interconnections and outputs 
could be configured by blowing internal fuses 
according to a specific design. PALs were 
followed by Generic Array Logic (GALs), 
which have more gates and more flexible 
I/O pin logic. GALs are also erasable and 
reprogrammable.

Later developments led to the Field 
Programmable Gate Array (FPGA) and other 

programmable logic arrays. These devices 
can contain anywhere from several hundred 
to millions of logic gates, and up to more 
than a thousand I/O pins. The connections 
between gates, and thus the device’s function, 
is determined by complex program code. 
PLDs can be made to replace large numbers 
of individual SSI, MSI and even LSI chips,  
up to and including entire microprocessor 
cores.

7  Analog-Digital Interfacing
Quite often, logic circuits must either drive 

or be driven from non-logic sources. A very 
common requirement is sensing the presence 
or absence of a high (as compared to +5 V) 
voltage or perhaps turning on or off a 120 V 
ac device or moving the motor in an antenna 
rotator. A similar problem occurs when two 
different units in the shack must be interfaced 
because induced ac voltages or ground loops 
can cause problems with the desired signals.

A slow speed but safe way to interface 
such circuits is to use a relay. This provides 
absolute isolation between the logic circuits 
and the load. Figure 32A shows the correct 
way to provide this connection. The relay 
coil is selected to draw less than the available 
current from the driving logic circuit. The 
diode, most often a 1N914 or equivalent 
switching diode, prevents the inductive 
load from back-biasing the logic circuit and 
possibly destroying it.

It is often not possible to find a relay that 
meets the load requirements and has a coil 
that can be driven directly from the logic 
output. Figure 32B shows two methods of 
using transistors to allow the use of higher 
power relays with logic gates.

Electro-optical couplers such as opto
isolators and solid state relays can also be 
used for this circuit interfacing. Figure 32C 
uses an optoisolator to interface two sets of 
logic circuits that must be kept electrically iso- 
lated, and Figure 32D uses a solid state relay 
to control an ac line supply to a high current 
load. Note that this example uses a solid state 
relay with internal current limiting on the 
input side; the LED input has an impedance 
of approximately 300 W. Some devices may 
need a series resistor to set the LED current; 
always consult the device data sheet to avoid 
exceeding device limits of the relay or the pro- 
cessor’s I/O pin. See the Circuits and 
Components chapter for more information 
on optiosolators.

For safely using signals with voltages higher 
than logic levels as inputs, the same simple 
resistor and Zener diode circuit similar to that 
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shown in Figure 31C can be used to clamp 
the input voltage to an acceptable level. Care 
must be used to choose a resistor value that 
will not load the input signal unacceptably.

7.1 Analog-Digital Converters
Of course not all signals in the real world 

are digital. It is often desirable to know 
the exact voltage of an analog sensor, for 
example, or to measure the level of something 
— light, water, current or some other input. 
Similarly, an analog output can be quite 
useful for controlling or indicating things 
that are better left in the analog domain. For 
this reason we have two types of converters. 
The analog-to-digital converter (ADC) and 
digital-to-analog converter (DAC) handle 
these tasks for us, and they are often fairly 
easy to use. Additional information on ADCs 
and DACs may be found in the Circuits and 
Components chapter.

ADC AND DAC DIGITAL 
INTERFACES

Interfaces for ADC and DAC chips are 
generally classed as serial or parallel. Serial 
interfaces can vary in speed, complexity and 
the number of wires required for operation. A 
serial interface has the advantage of requiring 
a small number of processor I/O pins to 
accommodate data of any length. Whether 
your ADC is providing 8, 10 or 12 bits, the 
same small number of I/O signals are used. 
Some of the most common serial interfaces 
used for ADC and DAC chips are as follows:

Serial Peripheral Interconnect (SPI). This 
four-wire, synchronous bus and protocol use 

a common CLK signal, plus data lines for 
master-to-slave (Master Out-Slave In, or 
MOSI) and slave-to-master (Master In-Slave 
Out, or MISO). Multiple devices can be used 
by providing each with its own Slave Select 
(SS) signal. Speeds can range up to 70 Mbit/s, 
depending on the capabilities of the master 
and slave devices.

Microwire. This earlier predecessor to SPI 
implements a half-duplex subset of SPI using 
the same signals.

Inter-IC Communication (I2C) bus. 
Originally developed by Philips, this 
synchronous two-wire bus and protocol use 
a pair of open-drain lines, Serial Clock (SCL) 
and Serial Data (SDA). Communication is 
controlled by a master node, though there 
may be more than one master attached to the 
bus. Many peripheral devices can be attached 
to an I2C bus; a device address is sent by 
the master to initiate communication with 
a slave. Speeds range from 10 kbit/s (low 
speed) to 100 kbit/s (standard) to 400 kbit/s 
(high speed) and higher.

Parallel interfaces generally have eight or 
more data lines, plus a chip select, read/write 
and interrupt controls. The read and write 
signals may be separate, or may be a single 
read/write signal — low for WR, and high for 
RD, for example, or vice versa. The interrupt 
signal can be used to indicate the end of a 
conversion cycle to the CPU. In this way 
the processor can tell the converter to start 
a conversion, then continue processing until 
the conversion is complete. This can allow 
more processing to be done without waiting 
idly for the ADC or DAC to complete its 
conversion.

Figure 33 — ADC0834 timing diagram. Much more information about this device is available from the National 
Semiconductor datasheet.

PROGRAMMING AND 
COMMUNICATION

Many ADC chips have multiplexed inputs 
that allow you to use one chip to sample 
and digitize more than one analog input. 
In these devices, there is a single converter 
but several inputs that can be internally 
switched. Additionally, it is common to be 
able to program the inputs as single-ended 
or differential. In the case of the popular 
ADC0832, for example, you can use its 
two analog input pins as two separate 
inputs, or as a single differential input. The 
ADC0838 expands this to eight single-ended 
or four differential inputs. In the case of the 
ADC0832, modes can be mixed. This allows 
the use of various combinations of single-
ended and differential inputs, as needed.

Programming and selecting the inputs is 
done by sending a series of bits from the 
processor to the ADC at the beginning of 
the conversion cycle. Figure 33 shows a 
diagram of the signal timing used with the 
ADC0834 ADC. In the case of the ADC0834, 
a series of four bits are sent by the CPU to 
the ADC to select single ended or differential 
mode, the polarity of the input, and which of 
the four inputs (or two input pairs) is to be 
selected. Immediately following the fourth 
bit, the ADC starts its conversion and starts 
sending the resulting data to the CPU. Other 
chips in this family and many from different 
manufacturers use a similar scheme; the 
number of program bits sent by the CPU 
depends on the number of inputs present.

Some chips are also configurable for data 
format as well. For example, a 12 bit ADC 
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may be programmable to send a sign bit for a 
total of 13 data bits rather than 12. Data may 
also be sent LSB first or MSB first. Some 
chips are configurable for either parallel or 
serial data transfer; this selection is generally 
made by pulling a pin or pins high or low to 
select the mode. In all cases, a careful reading 
of the device data sheet is your best bet for 
successful integration of the converter into 
your project.

INTERFACING TO YOUR 
MICROCONTROLLER

Probably the simplest way to interface an 
external ADC to your microcontroller is by 
using a parallel interface. In this case, one 
simply manipulates the I/O pins from the CPU 
to start the conversion, then reads the resulting 
data from the data lines. This method is often 
less desirable than a serial connection, though, 
due to the limited number of I/O pins usually 
available. Figure 34A shows an example of a 
parallel interface between a 12 bit ADC (the 
ADS7810) and a PIC microcontroller (the 
PIC16F887). In this example, only eight data 
lines are used for twelve data bits. The HBE 
signal is used to gate the four high order bits 
onto the data lines after the low order bits 
have been read. This saves four I/O pins on 
the microcontroller.

Serial connections save I/O pins, allow the 
use of physically smaller IC packages, and 
can be quite easy to implement. Figure 34B 
shows an example of a serial interface. If your 
CPU has a hardware SPI/Microwire interface 
built in, communication with the ADC can 
be quite simple from a program standpoint. 
Simply send the program word, if required, 
and read the resulting data — either one or 

two bytes, depending on the ADC resolution. 
If you do not have built-in hardware SPI, the 
program code to “bit-bang” the interface 
is fairly simple to implement. (See www.
dlpdesign.com/images/bit-bang-usb.pdf 
for more information on bit-bang.)

Note that Figure 34B shows separate 
grounds for the processor and ADC. This is 
required to keep switching noise and transients 
from affecting the accuracy of readings. A 
separate analog supply is also recommended. 
The analog supply should be well filtered 
using a combination of smaller ceramic or 
monolithic, and bulk tantalum or other low-
ESR capacitors. This should be done for the 
analog supply and reference voltage supplies. 
The more noise you can eliminate from the 
analog supply, the more reliable your readings 
will be.

MICROCONTROLLERS WITH  
BUILT-IN CONVERTERS

It is not at all unusual to find microcontrollers 
with built-in analog-to-digital converters, 
complete with multiplexers, analog supply 
pins and VREF inputs. For example, many 
Microchip PIC processors are equipped with 
10 bit ADCs, and have 5, 8 or more pins that can 
be configured as multiplexed analog inputs. A 
few also have digital-to-analog, though this is 
not nearly as common. While these devices 
can be extremely useful, there are some 
limitations. Reference voltages are generally 
limited to the device’s supply voltage. Internal 
CPU-generated noise may also somewhat 
limit the usefulness of the converter. With 
careful attention to device specifications and 
limitations, though, a built-in ADC may meet 
the needs of a wide range of uses.

Figure 34 — A/D converter to microcon-
troller interfacing: (A) parallel; (B) serial.
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8  Microcontroller Overview
This section surveys microcontroller 

characteristics and applications as they 
pertain to typical Amateur Radio projects 
and equipment. The reader interested in 
using microcontrollers is directed to the 
many books and Internet resources that exist 
for learning how to apply microcontrollers. 
Manufacturer websites such as Microchip 
(www.microchip.com), Freescale (www.
freescale.com) and Atmel (www.atmel.com) 
are a good place to start. There are also a 
number of message boards, forums and email 
lists devoted to specific processor families, 
such as the PICList (www.piclist.com) or 
the Arduino User Forum (http://arduino.
cc/forum). Local users groups are often 
active in large cities. Online communities 
of microprocessor users are very fluid — 
use Internet search engines to find current 
resources.

8.1 Selecting a 
Microcontroller

There are a number of microcontroller 
families available from several manufactures, 
each with its own advantages and 
disadvantages. At the time of this writing, the 
more popular options for amateur use come 
from Microchip (PIC product line), Atmel 
(AVR, ATMega, 8051 and other product 
lines), Freescale (68HC11, HC08, HC16 and 
other product lines), and many manufacturers 
who are building chips based on the venerable 
Intel 8051 architecture. In addition to these 
you will see and hear of the Texas Instruments 
MSP430, ARM, and many others.

Designing projects using microcontrollers 
can range from relatively simple to quite 
complex. On the simpler end of the scale 
are several products intended to bring 
microcontroller based design ability to 
people who would otherwise not be able to 
use these devices. Various breadboard kits 
and development systems are available to 
simplify hardware development and program 
downloading. The following three systems 
are particular popular:
 Arduino (www.arduino.cc) — based on 

an AVR microcontroller, Arduino boards are 
available with a variety of capabilities and 
interfaces. Add-on modules called “shields” 
are added to interfaces provided on the 
Arduino board. Software is written in C or 
C++ and downloaded to the microcontroller. 
The manufacturer provides free development 
software.
 Parallax BASIC Stamp (www.parallax.

com) — a single-board system containing a 
PIC microcontroller preloaded with PBASIC. 
Software is written in an editor program on 
the PC and then downloaded. 

 PICAXE — a variety of PIC micro
controller with a special form of BASIC. 
Various sizes of microcontrollers are 
available with different numbers of I/O pins 
and clock speeds. The user is responsible for 
building the circuit board that supports the 
microcontroller.

In each of these cases, the user does not 
necessarily need to have a deep understanding 
of the details of the microcontroller or its 
operation. The circuit can be designed with 
attention paid to keeping signal levels within 
the limits of the device. Then, one simply 
writes a program to perform the functions 
required. To be sure, there are trade-offs. 
The built-in firmware required to allow the 
user to write a program may be in a simple 
language such as BASIC that takes up space 
and processor cycles, so execution speed 
is not as fast and programs are somewhat 
limited. 

The BASIC Stamp and PICAXE use 
specific variants of the PIC microcontroller, 
so if you need features that are not present  
in those chips you will need to take a differ-
ent approach. Still, these can be extremely 
valuable tools that the average amateur  
can use with very little time and money 
invested.

There is a very broad range of micro
controllers available to meet nearly any need. 
Available devices include 8 bit, 16 bit and 32 
bit processors with internal program memory 
ranging from 512 words up to 256 kbytes 
and more. At the low end are very low cost, 
physically small devices (down to 8 pin ICs) 
that can perform relatively simple tasks with 
ease. Larger, faster processors may include 
more memory, more I/O pins, and specialized 
peripherals. Some of the more common 
features are ADCs, DACs, pulse width 
modulation (PWM) outputs, USB interface 
hardware or digital signal processing.

I/O REQUIREMENTS
Selecting a microcontroller for a new 

project involves evaluating your requirements 
and prior experience. First, evaluate the 
number of inputs and outputs you are likely 
to need. If, for example, you need to sample 
an analog voltage and two switch closures and 
generate a serial data stream, you will need 
one analog input and three or more digital I/O 
pins. Depending on memory requirements, 
even some of the smallest devices will fit 
the bill. For a more elaborate design, you 
may need to scan a 4×4 key switch matrix, 
drive an LCD module with a parallel interface, 
control a number of LEDs and interface to 
a PC through a USB port. In this case, the 
number of I/O pins needed will eliminate a 
large number of devices from consideration.

CPU SIZE, PERFORMANCE AND 
MEMORY

If you are a computer user, you are used 
to seeing 32 bit and 64 bit microprocessors, 
many with more than one CPU core on 
the same chip. In the world of embedded 
microcontrollers, things are a little different. 
Instead of handling an operating system 
and a large number of different programs, 
the microcontroller only has to execute one 
program and is completely dedicated to that 
task. Unless you require very high speed I/O, 
need very intensive processing or will be using 
DSP, a simple 8 bit processor may be more than 
sufficient. There are dozens of ham related 
products that use embedded controllers — 
iambic keyers, APRS transponders, repeater 
controllers, antenna rotator controls and many 
other accessories that all use simple 8 bit 
processors with surprisingly small amounts 
of program memory. On the other hand, if you 
are designing a new rig or antenna tuner that 
will require DSP, chances are you may need 
a more robust processor.

If you are unsure of what your project will 
require, you may want to pick a processor 
family that has scalable, pin-compatible 
members. For example, Microchip offers 
processors ranging from 8 bit and 5 million 
instructions per second (MIPS) with 7 kbytes 
of program memory, to 16 bit with 48 kbytes 
of program memory at 30 MIPS. All are pin-
compatible, so if you find you need more speed, 
more memory or more built-in peripherals, 
you can drop in a different processor without 
changing the hardware.

Also take into account the physical 
packaging. Some products are available in 
through-hole, dual inline (DIP) packages; 
others are available only in surface mount 
versions. This can make a difference if you 
lack the equipment, expertise or desire to 
work with surface mount components.

SPECIALIZED PERIPHERALS
Will you need a USB interface? Analog 

inputs? DSP? Precision timekeeping? It may 
be easier to select a processor that has the 
features you need built in. On the other hand, 
it is relatively easy to add an external real-time 
clock, ADC or DAC, and it takes only a few I/O 
pins. There are several USB interface chips 
available that will handle communication 
with your PC, and present an asynchronous 
serial data interface to the microcontroller. 
This can save a lot of firmware development 
time and frustration.

HARDWARE COST AND 
DEVELOPMENT TOOLS

The cost of the actual microcontroller may 
be a factor, or it may not. If you are building a 
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one-off project for your own use, there is not 
much difference between using a $3 chip and 
a $30 chip with a built-in BASIC interpreter. 
The difference in time and effort to develop 
the firmware may make it well worth the extra 
money for the easier-to-use solution. If you 
plan to manufacture your device for a larger 

audience, the cost difference may lead you to 
make a different choice.

Take into account the cost of the software 
and hardware tools needed for development. 
Does the manufacturer offer a free set of 
firmware development tools, or will you have 
to spend extra money for an assembler or 

compiler? Is there a low cost development 
kit available with the PC interface you need? 
Does the device require a simple PC interface 
to program, or a more expensive dedicated 
programmer? Do you have any previous 
experience with the processor family, or will 
it be a completely new effort for you?

Figure 35 — Parallel (A) and serial (B) 
signaling. Parallel signaling in this 
example uses 8 channels and is capable 
of transferring 8 bits per bit period. Serial 
transfer only uses 1 channel and can 
send only 1 bit per bit period.

Figure 36 — Parallel interface with READY 
and STROBE handshaking lines.

9  Personal Computer Interfaces
This section provides an overview of the 

personal computer (PC) digital interfaces used 
in the amateur station. Detailed information 
on using these interfaces is available online, 
especially in users groups and specialized 
forums for specific software and hardware 
applications. This book's chapters on DSP 
and SDR Fundamentals, Digital Modes 
and Protocols, and the online supplement 
on Digital Communications provide more 
information on specific applications and 
techniques. The Station Accessories chapter 
includes PC interface construction projects, 
as well.

9.1 Parallel vs Serial 
Signaling

To communicate a word to someone across 
the room, you could hold up flash cards 
displaying the letters of the word. If you hold 
up four flash cards, each with a letter on it, all 
at once, then you are transmitting in parallel. 
If, instead, you hold up each of the flashcards 
one at a time, then you are transmitting in 
serial. Parallel means all the bits in a group 
are handled exactly at the same time. Serial 
means each of the bits is sent in turn over a 
single channel or wire, according to an agreed 
sequence. Figure 35 illustrates parallel and 
serial signaling.

Both parallel and serial signaling are 
appropriate for certain circumstances. 
Parallel signaling is faster, since all bits are 
transmitted simultaneously, but each bit needs 
its own conductor, which can be expensive. 
Parallel signaling is more likely to be used 
for internal communications. For spanning 
longer distances, such as to an external device, 
serial signaling is more appropriate. Each bit 
is sent in turn, so communication is slower, but 
it also is less expensive, since fewer channels 
are needed between the devices.

Most amateur digital communications 
use serial transmission to minimize cost 
and complexity. The number of channels 
needed for signaling also depends on the 
operational mode. One channel is required 
per bit for simplex (one-way, from sender 
to receiver only) and for half-duplex (two-
way communication, but only one person 

can talk at a time), but two channels per bit 
are needed for full-duplex (simultaneous 
communications in both directions).

PARALLEL I/O INTERFACING
Figure 36 shows an example of a parallel 

input/output interface, similar to the parallel 
printer ports once common in PCs. Typically, 
they have eight data lines and one or more 
handshaking lines. Handshaking involves a 

number of functions to coordinate the data 
transfer. For example, the READY line indicates 
that data are available on all eight data lines. 
If only the READY line is used, however, the 
receiver may not be able to keep up with the 
data. Thus, the STROBE line is added so the 
receiver can determine when the transmitter 
is ready for the next character.

Interfacing to the parallel port is very 
simple and can be done in many languages 
and under many operating systems. It is an 
easy way to get a PC to act as a controller in 
the shack and around the home, with from 8 
to 12 independent input or output wires. You 
can get an old computer either virtually free 
or for just a few dollars and use it exclusively 
as a controller. (New computers usually do 
not have a parallel port.)

By searching the Internet for a combination 
of “parallel port interface” and the language 
of your choice (for example, Visual BASIC 
or C), you can find detailed interfacing and 
programming instructions. It is a good and 
relatively simple place to “roll your own,” 
compared to the protocol requirements of 
interfacing with the serial port or USB.

SERIAL I/O INTERFACING
Serial input/output interfacing is more 

complex than parallel, since the data must 
be transmitted based on an agreed sequence. 
For example, transmitting the 8 bits (b7, b6, . . 
. b0) of a word includes specifying whether the 
least significant bit, b0, or the most significant 
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bit, b7, is sent first. Fortunately, a number of 
standards have been developed to define the 
agreed sequence, or encoding scheme.

In order to use a serial interface between 
a computer and a serial device such as a 
modem, printer or a new transceiver, several 
things must be set the same on both ends 
of the connection. The first is the data rate, 
the choices for which are usually limited to 
specific values between 300 and 115200 bits 
per second for historical reasons. The next is 
the data format — 7 or 8 bits, and with even, 
odd or no parity. Finally, both devices must 
be using the same handshaking method. The 
usual choices are RTS/CTS, DSR/DTR, or 
XON/XOFF. The first two use extra signals 
(and therefore extra wires) to indicate when 
the transmitting device has data to send, and 
when the receiving device is able to accept 
data. In the third method, XON/XOFF, the 
device receiving data will send an XOFF 
control character to the transmitting device 
to indicate that it can no longer accept data. 
When the transmitting device sees the XOFF 
it stops sending until it receives an XON from 
the other end. Each method has its advantages 
and disadvantages. For example, XON/XOFF 
needs no extra wires, but response is not 
instantaneous. Both ends must have some 
data buffer space and logic to support the 
handshake.

9.2 Standard Data Interfaces
This section covers a set of common data 

interfaces used in the amateur station. See the 
Component Data and References chapter 
for details on computer connector pinouts.

SIGNALING LEVELS
Inside equipment and for short runs of wire 

between equipment, the normal practice is 
to use neutral keying; that is, simply to key 
a voltage such as +5 V on and off. In neutral 
keying, the off condition is considered to 
be 0 V. Over longer runs of wire, the line is 
viewed as a transmission line, with distributed 
inductance and capacitance. It takes longer 
to make the transition from 0 to 1 or vice 
versa because of the additional inductance and 
capacitance. This decreases the maximum 
speed at which data can be transferred on the 
wire and also may cause the 1s and 0s to be 
different lengths, called bias distortion. Also, 
longer lines are more likely to pick up noise, 
which can make it difficult for the receiver to 
decide exactly when the transition takes place. 
Because of these problems, bipolar keying is 
used on longer lines. Bipolar keying uses one 
polarity (for example +) for a logical 1 and the 
other (– in this example) for a 0. This means 
that the decision threshold at the receiver is 
0 V. Any positive voltage is taken as a 1 and 
any negative voltage as a 0.

EIA-RS-232
The serial bus protocol EIA-RS-232 

addresses this issue (however, a Mark “1” is 
a negative voltage and a Space “0” is positive). 
Generally called RS-232, this protocol 
defines connectors and voltages between data 
terminal equipment (DTE) such as a PC, and 
data communications equipment (DCE), such 
as a modem or TNC.

The connector is the DB-25 (25 pin), or 
DB-9 (9 pin) version — though RS-232 
interfaces have also been implemented 
using nonstandard connectors such as RJ45,  
3.5 mm audio plugs and many others. 
Signaling voltages are defined between  
+3 V and +25 V for logic “0” and between  
–3 V and –25 V for logic “1.” Although the top 
data rate addressed in the specification is only  
20 kbit/s, speeds of up to 115 kbit/s are 
commonly used. Communications distances 
of hundreds of meters are possible at 
reasonable data rates.

Since neutral keying is usually used inside 
equipment and bipolar keying for lines 
leaving equipment, signals must be converted 
between bipolar and neutral. Discrete level 
shifters or op amp circuits may perform this 
task, or low cost specialized IC line drivers 
and receivers are available.

UNIVERSAL SERIAL BUS (USB)
USB is a computer standard for an 

intelligent serial data transfer protocol, and 
it has become the standard for nearly all 
connections between a PC and its external 
peripherals. It has largely replaced serial, 
parallel, keyboard and mouse ports as well as 
SCSI and numerous other buses in consumer 
PCs.

In addition to higher speed than RS-232 and 
parallel ports, USB offers reasonable power 
availability to its loads, or functions. Under 
certain circumstances, up to 127 hubs and 
functions may connect to a single computer. 
USB requires that each function have on- 
board intelligence and that it negotiate with 
the host for power and bandwidth allocation. 
USB also has the major advantage of hot-
pluggablity — the PC need not reboot when 
new functions are added.

The USB connectors use four-conductor 
cable, with two bidirectional, differential data 
lines, power, and ground. Approximately  
5 V at 100 mA is allowed per function, with 
up to 500 mA available if the host system 
has the capability. This means that relatively 
sophisticated devices, such as modems, small 
video cameras, or hand-held scanners may 
operate from the bus without additional power 
supplies. It has also become common to use 
USB for connecting and charging a wide range 
of devices such as cellular phones, cameras 
and GPS units. When a USB connecting cable 
is used, proper connections and proper flow 
are ensured by using a rectangular (USB 

“A”) connector on the host and a different 
connector (USB “B”, Mini-B or Micro-B) 
on the attached function.

There are currently two USB standards in 
general use. USB 1.1, somewhat obsolete but 
common in PCs just a few years old, is capable 
of 12 megabits per second (12 Mbit/s). USB 
2.0 is the later standard and is rated up to 
480 Mbit/s. Most USB 2.0 ports will allow 
the use of older USB 1.1 devices — that is, 
they are backward compatible. However 
maximum cable lengths and available power 
to devices may be affected. USB 3.0 uses 
additional wires and some new connectors 
to enable communication at up to 5 Gbit/s in 
its SuperSpeed configuration.

Older PCs that have just one or two USB 
ports can have additional ports by adding an 
inexpensive USB port expander, commonly 
called a USB hub. Some units obtain their 
power from the host computer’s USB port, 
and distribute only the USB signals along 
with the remaining power available from the 
host. Others come with a small power supply 
that provides the normal power to each new 
USB port.

If the PC does not have any USB ports, 
an expansion card can be used to add USB 
ports. It is quite common to see new personal 
computers without any serial or parallel ports, 
with USB replacing these functions. If you 
need to use your older serial or parallel 
peripheral devices with these “legacy-free” 
PC systems, adapter cables are available to 
connect them to USB ports.

ETHERNET
For wired networks, 100BaseT or “fast 

Ethernet” has been the standard for a number 
of years, with low cost hubs and switches 
commonly available. The 100BaseT systems 
are rated to 100 Mbit/s and use unshielded, 
twisted-pair Category 5 network cable. Each 
computer on the network connects to a central 
hub or switch.

More recently, 1000BaseT (gigabit Ether- 
net, or GigE) and is quickly replacing 
100BaseT even at the consumer level. Gigabit 
Ethernet also uses Cat 5 cable, though Cat 5e 
or Cat 6 is often recommended. Explanation 
of the MBaseN and Category N terminology 
can be found in many available networking 
books.

Mutual interference with ham station 
operation is not uncommon. A 10 Mbit/s 
signal, if all bit positions are filled, means 
that unshielded wire is carrying 10 MHz and 
various harmonics of 10 MHz around the 
shack. When digital words are going through 
the network, any number of frequencies may 
be present on the wires and the wires may be 
very susceptible to pick-up from HF, VHF 
and UHF signals. In addition, cable and 
DSL modems may not only transmit various 
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frequencies (especially on VHF) but lose data 
when a few hundred watts on a ham band 
is present. Some RF in the shack that can 
normally be ignored can easily bring down 
a network. Unfortunately, it is also common 
for this equipment to have “noisy” switching 
power supplies that can wreak havoc on a  
ham’s sensitive receiver. See the RF 
Interference chapter for more information on 
dealing with RFI from networking equipment.

WIRELESS NETWORKS — WIFI
The other technology commonly found in 

home and office networks is IEEE 802.11 
wireless. These networks use low-power, 
spread spectrum transceivers operating in the 
2.4 and 5.2-5.8 GHz range to transfer data 
at nominal rates up to 54 Mbit/s and higher. 
Older equipment used the 801.11b protocol at 
11 Mbit/s; newer gear commonly found at low 
prices uses 802.11g at 54 Mbit/s maximum 
data rate. The 802.11n protocol supports 
data rates up to several hundred megabits per 
second in the 2.4 and 5 GHz ranges.

These data rates are the maximum under 
ideal conditions, and it is not uncommon to 
see links running at significantly lower speeds 
as the wireless access point (WAP) and the 
wireless adapter dynamically adapt to the 
conditions. Still, performance is adequate for 
most uses, and the lack of network cabling 
makes wireless networking attractive in many 
situations.

Wireless networks actually appear to be less 
susceptible to mutual interference, since they 
are not connected to long runs of unshielded 
wire that easily act as both transmitting and 
receiving antennas. The frequency bands 
used for wireless networks are reasonably 
far removed from normal ham operations at 
frequencies below 2.4 GHz, but a high power 
VHF or UHF station may interfere with such 
a network. Also, some of the channels used 
for 802.11b and 802.11g network equipment 
fall within the amateur spectrum allocation in 
the 2.4 GHz band.

CABLE REPLACEMENT — 
BLUETOOTH AND ZIGBEE

A number of low power, short range data 
links have been created to replace cable based 
interfaces such as USB and RS-232. These are 
digital protocols that use unlicensed spectrum 
in the ISM bands. Two of the most popular as 
of early 2013 are Bluetooth (www.bluetooth.
com) and Zigbee (www.zigbee.org). Most 
technologies of this type are either initially or 
permanently developed as implementations 
of an IEEE 802.x standard.

Bluetooth data links operate in the 2.4 GHz 
band and are primarily used for streaming 
audio and high speed digital links up to 
several megabits per second. Bluetooth links 
use frequency-hopping spread-spectrum 
technology. It can also support personal area 

networks (piconets or PANs) at various levels 
of security. Up to seven devices can share a 
Bluetooth interface with a host. A process 
called synchronization is used to associate 
the various devices.

Zigbee is designed for ad-hoc mesh 
networking applications and operates in 
the 902 MHz ISM band in North America. 
Zigbee’s maximum data rate is 250 kbit/sec. 
Because of the lower data rate, most Zigbee 
applications are designed for control and 
monitoring applications.

REPLACING COM AND LPT PC 
INTERFACES

USB-to-serial and USB-to-parallel 
adapters are relatively inexpensive and easy 
to find. Note, however, that not all of them 
support all of the handshaking signals we 
may require, and some may have delays or 
inadequate drivers. Be prepared to try several 
different brands to find one that works with 
your equipment. Users groups for specific 
equipment or software are good resources 
to find out what brands and models of port 
replacement accessories are compatible and 
operate properly. While they are becoming 
less common, there is also still a market for 
add-in PCI bus cards to add serial, parallel and 
other ports to desktop computers.

10  Glossary of Digital Electronics Terms
AND gate — A logic circuit whose output 

is 1 only when all of its inputs are 1.
Astable (free-running) multivibrator — 

A circuit that alternates between two 
unstable states. This circuit could be 
considered as an oscillator that produces 
square waves.

Asynchronous flip-flop — A circuit, also 
called a latch, that changes output state 
depending on the data inputs, without 
requiring a clock signal.

Binary — A base-2 number system used in 
digital electronics that uses the symbols 
0 and 1.

Binary coded decimal (BCD) — A simple 
method for converting binary values 
to and from decimal for inputs and 
outputs for user-oriented digital systems. 
BCD was widely used in the days of 
7-segment LED displays but is not 
common today.

Bistable multivibrator — Another name 
for a flip-flop circuit that has two stable 
output states.

Boolean algebra — The mathematical 
system used to describe and design 
binary used digital circuits, named after  
George Boole.

Bus —A set of wires through which data is 
routed internally within computers and 
other digital devices.

Clock — A signal that toggles at a regular 
rate. Clock control is the most common 
method of synchronizing logic circuits.

Combinational logic — A type of circuit 
element in which the output depends on 
the present inputs. (Also see Sequential 
logic.)

Complementary metal-oxide 
semiconductor (CMOS) — A type 
of construction used to make digital 
integrated circuits. CMOS is composed 
of both N-channel and P-channel MOS 
devices on the same chip.

Counter (divider, divide-by-n counter) — 
A circuit that is able to change from one 
state to the next each time it receives 
an input signal. A counter produces an 

output signal every time a predetermined 
number of input signals have been 
received.

Decimal — The base-10 number system 
we use every day that uses the symbols 
0 through 9.

DeMorgan’s Theorem — In Boolean 
algebra, a way to simplify the 
complement of a large expression or 
to enable a designer to interchange a 
number of equivalent gates.

Digital IC — An integrated circuit whose 
output is either on (1) or off (0).

Dynamic (edge-triggered) input — A 
control signal that allows a circuit to 
change state only when the control 
signal changes from unasserted to 
asserted.

Exclusive OR gate — A logic circuit 
whose output is 1 when either of two 
inputs is 1 and whose output is 0 when 
neither input is 1 or when both inputs 
are 1.

Fan-out — The ability of a logic element 
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to drive or feed several other logic 
elements.

Field Programmable Gate Array (FPGA) 
— A type of programmable logic array 
that can contain several hundred to 
millions of logic gates and up to 1000 or 
more I/O pins.

FireWire (IEEE-1394) — A very high 
speed serial protocol capable of up to 
400 Mbit/s of sustained transfer.

Flip-flop (bistable multivibrator) — A 
circuit that has two stable output states, 
and which can change from one state to 
the other when the proper input signals 
are detected.

Gate — A combinational logic element 
with two or more inputs and one output. 
The output state depends upon the state 
of the inputs.

Handshaking — Functions to coordinate 
data transfer.

Hexadecimal — A base-16 number system 
widely used in computer systems that 
uses the 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F.

Integrated circuit — A device composed 
of many bipolar or field-effect transistors 
manufactured on the same chip, or 
wafer, of silicon.

Inverter — A logic circuit with one input 
and one output. The output is 1 when the 
input is 0, and the output is 0 when the 
input is 1.

Latch — Another name for a bistable 
multivibrator (flip-flop) circuit. The 
term latch reminds us that this circuit 
serves as a memory unit, storing a bit of 
information.

Linear IC — An integrated circuit whose 
output voltage is a linear (straight line) 
representation of its input voltage.

Logic probe — A simple piece of test 
equipment used to indicate high or low 

logic states (voltage levels) in digital-
electronic circuits.

Microcontroller — A “computer on a 
chip” that usually consists of a relatively 
small microprocessor along with some 
amount of program memory, data 
memory, input/output ports and often 
some specialized peripheral devices.

Monostable multivibrator (one shot) — A 
circuit that has one stable state. It can be 
forced into an unstable state for a time 
determined by external components, but 
it will revert to the stable state after that 
time.

NAND (NOT AND) gate — A logic circuit 
whose output is 0 only when both inputs 
are 1.

Noninverter — A logic circuit with one 
input and one output, and whose output 
state is the same as the input state (0 
or 1). Sometimes called a noninverting 
buffer.

NOR (NOT OR) gate — A logic circuit 
whose output is 0 if either input is 1.

OR gate — A logic circuit whose output is 
1 when either input is 1.

Parallel — A digital signaling method in 
which all the bits in a group are handled 
exactly at the same time.

Programmable logic device (PLD) — A 
device that includes a generic array of 
gates that can be controlled by program 
code. PLDs can be made to replace large 
numbers of individual ICs.

Propagation delay — The time delay 
between providing an input to a digital 
circuit and seeing a response at the 
output.

Register — A set of latches or flip-flops 
storing an n-bit number.

RS-232 — The most common serial bus 
protocol.

RS-422 — A serial protocol similar to 
RS-232, but employing fully differential 
data lines.

Serial — A digital signaling method in 
which each bit is sent in turn over a 
single channel or wire, according to an 
agreed sequence.

Sequential logic — A type of circuit 
element in which the output depends on 
the present inputs, the previous sequence 
of inputs and often a clock signal. (Also 
see Combinational logic.)

Square wave — A periodic waveform 
that alternates between two values, and 
spends an equal time at each level. It is 
made up of sine waves at a fundamental 
frequency and all odd harmonics.

Static (level-triggered, or gated) input — 
A control signal that allows the circuit to 
change state whenever the control signal 
is at its active or asserted level.

Synchronous flip-flop — A circuit whose 
output state depends on the data inputs, 
but that will change output state only 
when it detects the proper clock signal.

Transition region — The undefined region 
between the two binary states. Also 
known as the noise margin.

Transition time — The time it takes a 
digital circuit to change state. The 
transition from a 0 to a 1 state is called 
the rise time, and the transition from a 1 
to a 0 state is called the fall time.

Tri-state gate — A gate with one 
additional control lead. When enabled, 
the gate operates normally; when not 
enabled, the output goes to a high 
impedance.

Truth table — A chart showing the outputs 
for all possible input combinations to a 
digital circuit.

Universal serial bus (USB) — A computer 
standard for an intelligent serial data 
transfer protocol.
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