

Editor's note: Section and figure references in this article are from the 2013 edition of the ARRL Handbook. This material was originally contributed to the Handbook by Joe Moell, K0OV.

Direction-Finding Techniques

The ability to locate a transmitter quickly with RDF techniques is a skill you will acquire only with practice. It is very important to become familiar with your equipment and its limitations. You must also understand how radio signals behave in different types of terrain at the frequency of the hunt. Experience is the best teacher, but reading and hearing the stories of others who are active in RDF will help you get started.

Verify proper performance of your portable RDF system before you attempt to track signals in unknown locations. Of primary concern is the accuracy and symmetry of the antenna pattern. For instance, a lopsided figure-8 pattern with a loop, Adcock, or TDOA set leads to large bearing errors. Nulls should be exactly 180° apart and exactly at right angles to the loop plane or the array boom. Similarly, if feed-line pickup causes an off-axis main lobe in your VHF RDF beam, your route to the target will be a spiral instead of a straight line.

Perform initial checkout with a low-powered test transmitter at a distance of a few hundred feet. Compare the RDF bearing indication with the visual path to the transmitter. Try to "find" the transmitter with the RDF equipment as if its position were not known. Be sure to check all nulls on antennas that have more than one.

If imbalance or off-axis response is found in the antennas, there are two options available. One is to correct it, insofar as possible. A second option is to accept it and use some kind of indicator or correction procedure to show the true directions of signals. Sometimes the end result of the calibration procedure is a compromise between these two options, as a perfect pattern may be difficult or impossible to attain.

The same calibration suggestions apply for fixed RDF installations, such as a base station HF Adcock or VHF beam. Of course it does no good to move it to an open field. Instead, calibrate the array in its intended operating position, using a portable or mobile transmitter. Because of nearby obstructions or reflecting objects, your antenna may not indicate the precise direction of the transmitter. Check for imbalance and systemic error by taking readings with the test emitter at locations in several different directions.

The test signal should be at a distance of 2 or 3 miles for these measurements, and should be in as clear an area as possible during transmissions. Avoid locations where power

lines and other overhead wiring can conduct signal from the transmitter to the RDF site. Once antenna adjustments are optimized, make a table of bearing errors noted in all compass directions. Apply these error values as corrections when actual measurements are made.

MOBILE RDF SYSTEM INSTALLATION

Of these mobile VHF RDF systems, the Doppler type is clearly the simplest from a mechanical installation standpoint. A four-whip Doppler RDF array is easy to implement with magnetic mount antennas. Alternately, you can mount all the whips on a frame that attaches to the vehicle roof with suction cups. In either case, setup is rapid and requires no holes in the vehicle.

You can turn small VHF beams and dual-antenna arrays readily by extending the mast through a window. Installation on each model vehicle is different, but usually the mast can be held in place with some sort of cup in the arm rest and a plastic tie at the top of the window, as in **Fig 21.139**. This technique works best on cars with frames around the windows, which allow the door to be opened with the antenna in place. Check local vehicle codes, which limit how far your antenna may protrude beyond the line of the fenders. Larger antennas may have to be put on the passenger

side of the vehicle, where greater overhang is generally permissible.

The window box (**Fig 21.140**) is an improvement over through-the-window mounts. It provides a solid, easy-turning mount for the mast. The plastic panel keeps out bad weather. You will need to custom-design the box for your vehicle model. Vehicle codes may limit the use of a window box to the passenger side.

For the ultimate in convenience and versatility, cast your fears aside, drill a hole through

Fig 21.139 — A set of TDOA RDF antennas is light weight and mounts readily through a sedan window without excessive overhang.

Fig 21.134 — K0OV uses this mobile setup for RDF on several bands, with separate antennas for each band that mate with a common lower mast section, pointer and 360° indicator. Antenna shown is a heavy gauge wire quad for 2 meters.

Fig 21.140 — A window box allows the navigator to turn a mast mounted antenna with ease while remaining dry and warm. No holes in the vehicle are needed with a properly designed window box.

the center of the roof and install a waterproof bushing. A roof-hole mount permits the use of large antennas without overhang violations. The driver, front passenger and even a rear passenger can turn the mast when required. The installation in **Fig 21.134** uses a roof-hole bushing made from mating threaded PVC pipe adapters and reducers. When it is not in use for RDF, a PVC pipe cap provides a watertight cover. There is a pointer and 360° indicator at the bottom of the mast for precise bearings.

PREPARING TO HUNT

Successfully tracking down a hidden transmitter involves detective work — examining all the clues, weighing the evidence and using good judgment. Before setting out to locate the source of a signal, note its general characteristics. Is the frequency constant, or does it drift? Is the signal continuous, and if not, how long are transmissions? Do transmissions occur at regular intervals, or are they sporadic? Irregular, intermittent signals are the most difficult to locate, requiring patience and quick action to get bearings when the transmitter comes on.

Refraction, Reflections and the Night Effect

You will get best accuracy in tracking ground wave signals when the propagation path is over homogeneous terrain. If there is

a land/water boundary in the path, the different conductivities of the two media can cause bending (refraction) of the wave front, as in **Fig 21.141A**. Even the most sophisticated RDF equipment will not indicate the correct bearing in this situation, as the equipment can only show the direction from which the signal is arriving. RDFers have observed this phenomenon on both HF and VHF bands.

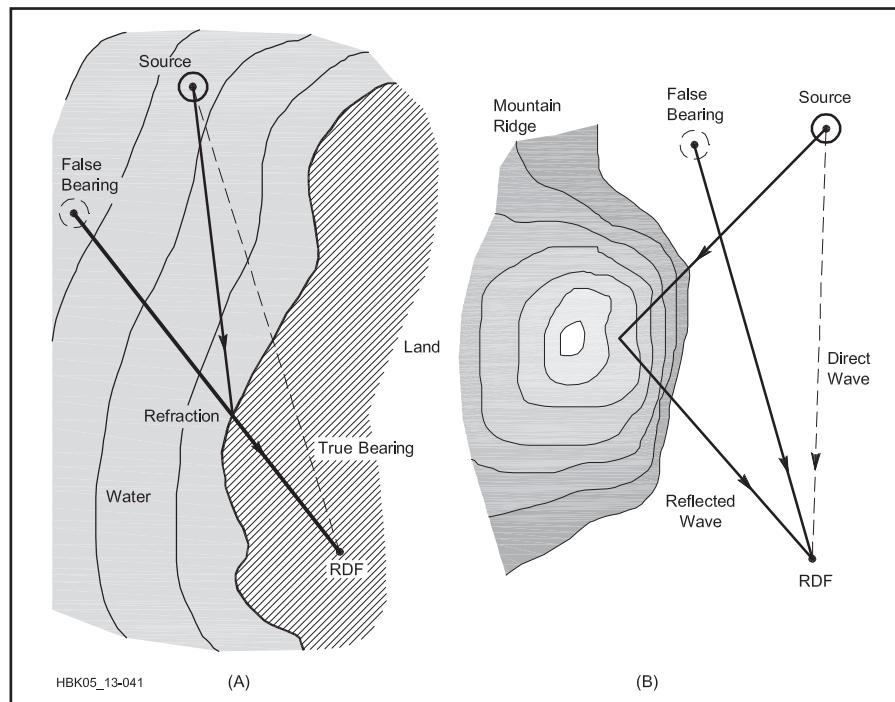
Signal reflections also cause misleading bearings. This effect becomes more pronounced as frequency increases. T-hunters regularly achieve strong signal bounces from distant mountain ranges on the 144-MHz band.

Tall buildings also reflect VHF/UHF signals, making mid-city RDF difficult. Hunting on the 440-MHz and higher amateur bands is even more arduous because of the plethora of reflecting objects.

In areas of signal reflection and multipath, some RDF gear may indicate that the signal is coming from an intermediate point, as in **Fig 21.141B**. High gain VHF/UHF RDF beams will show direct and reflected signals as separate S-meter peaks, leaving it to the operator to determine which is which. Null-based RDF antennas, such as phased arrays and loops, have the most difficulty with multi-path, because the multiple signals tend to make the nulls very shallow or fill them in entirely, resulting in no bearing indication at all.

If the direct path to the transmitter is masked by intervening terrain, a signal reflection from a higher mountain, building, water tower, or the like may be much stronger than the direct signal. In extreme cases, triangulation from several locations will appear to “confirm” that the transmitter is at the location of the reflecting object. The direct signal may not be detectable until you arrive at the reflecting point or another high location.

Objects near the observer such as concrete/steel buildings, power lines and chain-link fences will distort the incoming wavefront and give bearing errors. Even a dense grove of trees can sometimes have an adverse effect. It is always best to take readings in locations that are as open and clear as possible, and to take bearings from numerous positions for confirmation. Testing of RDF gear should also be done in clear locations.


Locating local signal sources on frequencies below 10MHz is much easier during daylight hours, particularly with loop antennas. In the daytime, D-layer absorption minimizes skywave propagation on these frequencies. When the D layer disappears after sundown, you may hear the signal by a combination of ground wave and high-angle skywave, making it difficult or impossible to obtain a bearing. RDFers call this phenomenon the *night effect*.

While some mobile T-hunters prefer to go it alone, most have more success by teaming up and assigning tasks. The driver concentrates on handling the vehicle, while the assistant (called the “navigator” by some teams) turns the beam, reads the meters and calls out bearings. The assistant is also responsible for maps and plotting, unless there is a third team member for that task.

MAPS AND BEARING-MEASUREMENTS

Possessing accurate maps and knowing how to use them is very important for successful RDF. Even in difficult situations where precise bearings cannot be obtained, a town or city map will help in plotting points where signal levels are high and low. For example, power line noise tends to propagate along the power line and radiates as it does so. Instead of a single source, the noise appears to come from a multitude of sources. This renders many ordinary RDF techniques ineffective. Mapping locations where signal amplitudes are highest will help pinpoint the source.

Several types of area-wide maps are suitable for navigation and triangulation. Street and highway maps work well for mobile work. Large detailed maps are preferable to thick map books. Contour maps are ideal for open country. Aeronautical charts are also suitable. Good sources of maps include

Fig 21.141 — RDF errors caused by refraction (A) and reflection (B). The reading at A is false because the signal actually arrives from a direction that is different from that to the source. At B, a direct signal from the source combines with a reflected signal from the mountain ridge. The RDF set may average the signals as shown, or indicate two lines of bearing.

auto clubs, stores catering to camping/hunting enthusiasts and city/county engineering departments.

A *heading* is a reading in degrees relative to some external reference, such as your house or vehicle; a *bearing* is the target signal's direction relative to your position. Plotting a bearing on a hidden transmitter from your vehicle requires that you know the vehicle location, transmitter heading with respect to the vehicle and vehicle heading with respect to true north.

First, determine your location, using landmarks or a navigation device such as a GPS receiver. Next, using your RDF equipment, determine the bearing to the hidden transmitter (0 to 359°) with respect to the vehicle. Zero degrees heading corresponds to signals coming from directly in front of the vehicle, signals from the right indicate 90°, and so on.

Finally, determine your vehicle's true heading, that is, its heading relative to true north. Compass needles point to magnetic north and yield magnetic headings. Translating a magnetic heading into a true heading requires adding a correction factor, called *magnetic declination*, which is a positive or negative factor that depends on your location. (*Declination* is the term as denoted on land USGS topographic maps. *Deviation* and *Variation* are terms used on nautical and aviation charts, respectively.)

Declination for your area is given on US Geological Survey (USGS) maps, though it undergoes long-term changes. Add the declination to your magnetic heading to get a true heading.

As an example, assume that the transmitted signal arrives at 30° with respect to the vehicle heading, that the compass indicates that the vehicle's heading is 15°, and the magnetic declination is +15°. Add these values to get a true transmitter bearing (that is, a bearing with respect to true north) of 60°.

Because of the large mass of surrounding metal, it is very difficult to calibrate an in-car compass for high accuracy at all vehicle headings. It is better to use a remotely mounted flux-gate compass sensor, properly corrected, to get vehicle headings, or to stop and use a hand compass to measure the vehicle heading from the outside. If you T-hunt with a mobile VHF beam or quad, you can use your manual compass to sight along the antenna boom for a magnetic bearing, then add the declination for true bearing to the fox.

Triangulation Techniques

If you can obtain accurate bearings from two locations separated by a suitable distance, the technique of *triangulation* will give the expected location of the transmitter. The intersection of the lines of bearing from each location provides a *fix*. Triangulation accuracy is greatest when stations are located such

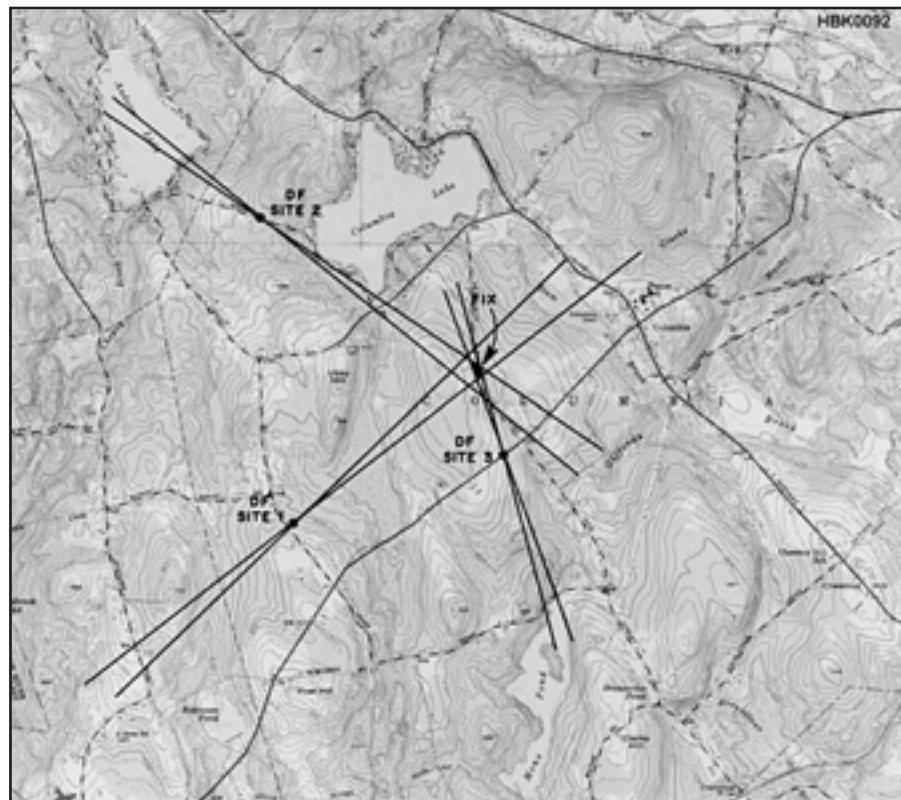


Fig 21.142 — Bearing sectors from three RDF positions drawn on a map for triangulation. In this case, bearings are from loop antennas, which have 180° ambiguity.

Fig 21.143 — Screen plot from a computerized RDF system showing three T-hunt bearings (straight lines radiating from small circles) and the vehicle path (jagged trace). The grid squares correspond to areas of standard topographic maps.

that their bearings intersect at right angles. Accuracy is poor when the angle between bearings approaches 0° or 180°.

There is always uncertainty in the fixes obtained by triangulation due to equipment limitations, propagation effects and measurement errors. Obtaining bearings from three or more locations reduces the uncertainty. A good way to show the probable area of the transmitter on the triangulation map is to draw bearings as a narrow sector instead of as a single line. Sector width represents the amount of bearing uncertainty. **Fig 21.142** shows a portion

of a map marked in this manner. Note how the bearing from Site 3 has narrowed down the probable area of the transmitter position.

Computerized Transmitter Hunting

A portable computer is an excellent tool for streamlining the RDF process. Some T-hunters use one to optimize VHF beam bearings, generating a two-dimensional plot of signal strength versus azimuth. Others have automated the bearing-taking process by using a computer to capture signal headings from a Doppler RDF set, vehicle heading

from a flux-gate compass, and vehicle location from a GPS receiver (Fig 21.143). The computer program can compute averaged headings from a Doppler set to reduce multipath effects.

Provided with perfect position and bearing information, computer triangulation could determine the transmitter location within the limits of its computational accuracy. Two bearings would exactly locate a fox. Of course, there are always uncertainties and inaccuracies in bearing and position data. If these uncertainties can be determined, the program can compute the uncertainty of the triangulated bearings. A “smart” computer program can evaluate bearings, triangulate the bearings of multiple hunters, discard those that appear erroneous, determine which locations have particularly great or small multipath problems and even “grade” the performance of RDF stations.

By adding packet radio connections to a group of computerized base and mobile RDF stations, the processed bearing data from each can be shared. Each station in the network can display the triangulated bearings of all. This requires a common map coordinate set among all stations. The USGS Universal Transverse Mercator (UTM) grid, consisting of 1×1-km grid squares, is a good choice.

The computer is an excellent RDF tool, but it is no substitute for a skilled “navigator.” You will probably discover that using a computer on a high-speed T-hunt requires a full-time operator in the vehicle to make full use of its capabilities.

SKYWAVE BEARINGS AND TRIANGULATION

Many factors make it difficult to obtain accuracy in skywave RDF work. Because of Faraday rotation during propagation, skywave signals are received with random polarization. Sometimes the vertical component is stronger, and at other times the horizontal. During periods when the vertical component is weak, the signal may appear to fade on an Adcock RDF system. At these times, determining an accurate signal null direction becomes very difficult.

For a variety of reasons, HF bearing accuracy to within 1 or 2° is the exception rather than the rule. Errors of 3 to 5° are common. An error of 3° at a thousand miles represents a distance of 52 miles. Even with every precaution taken in measurement, do not expect cross-country HF triangulation to pinpoint a signal beyond a county, a corner of a state or a large metropolitan area. The best you can expect is to be able to determine where a mobile RDF group should begin making a local search.

Triangulation mapping with skywave signals is more complex than with ground or direct waves because the expected paths

are great-circle routes. Commonly available world maps are not suitable, because the triangulation lines on them must be curved, rather than straight. In general, for flat maps, the larger the area encompassed, and the greater the error that straight-line triangulation procedures will give.

A highway map is suitable for regional triangulation work if it uses some form of conical projection, such as the Lambert conformal conic system. This maintains the accuracy of angular representation, but the distance scale is not constant over the entire map.

One alternative for worldwide areas is the azimuthal-equidistant projection, better known as a great-circle map. True bearings for great-circle paths are shown as straight lines from the center to all points on the Earth. Maps centered on three or more different RDF sites may be compared to gain an idea of the general geographic area for an unknown source.

For worldwide triangulation, the best projection is the *gnomonic*, on which all great circle paths are represented by straight lines and angular measurements with respect to meridians are true. Gnomonic charts are custom maps prepared especially for government and military agencies.

Skywave signals do not always follow the great-circle path in traveling from a transmitter to a receiver. For example, if the signal is refracted in a tilted layer of the ionosphere, it could arrive from a direction that is several degrees away from the true great-circle bearing.

Another cause of signals arriving off the great-circle path is termed *sidescatter*. It is possible that, at a given time, the ionosphere does not support great-circle propagation of the signal from the transmitter to the receiver because the frequency is above the MUF for that path. However, at the same time, propagation may be supported from both ends of the path to some mutually accessible point off the great-circle path. The signal from the source may propagate to that point on the Earth’s surface and hop in a sideways direction to continue to the receiver.

For example, signals from Central Europe have propagated to New England by hopping from an area in the Atlantic Ocean off the northwest coast of Africa, whereas the great-circle path puts the reflection point off the southern coast of Greenland. Readings in error by as much as 50° or more may result from sidescatter. The effect of propagation disturbances may be that the bearing seems to wander somewhat over a few minutes of time, or it may be weak and fluttery. At other times, however, there may be no telltale signs to indicate that the readings are erroneous.

CLOSING IN

On a mobile foxhunt, the objective is usually to proceed to the hidden T with minimum

time and mileage. Therefore, do not go far out of your way to get off-course bearings just to triangulate. It is usually better to take the shortest route along your initial line of bearing and “home in” on the signal. With a little experience, you will be able to gauge your distance from the fox by noting the amount of attenuation needed to keep the S-meter on scale.

As you approach the transmitter, the signal will become very strong. To keep the S-meter on scale, you will need to add an RF attenuator in the transmission line from the antenna to the receiver. Simple resistive attenuators are discussed in another chapter.

In the final phases of the hunt, you will probably have to leave your mobile and continue the hunt on foot. Even with an attenuator in the line, in the presence of a strong RF field, some energy will be coupled directly into the receiver circuitry. When this happens, the S-meter reading changes only slightly or perhaps not at all as the RDF antenna rotates, no matter how much attenuation you add. The cure is to shield the receiving equipment. Something as simple as wrapping the receiver in foil or placing it in a bread pan or cake pan, covered with a piece of copper or aluminum screening securely fastened at several points, may reduce direct pickup enough for you to get bearings.

Alternatively, you can replace the receiver with a field-strength meter as you close in, or use a heterodyne-type active attenuator. Plans for these devices are at the end of this chapter.

The Body Fade

A crude way to find the direction of a VHF signal with just a hand-held transceiver is the body fade technique, so named because the blockage of your body causes the signal to fade. Hold your HT close to your chest and turn all the way around slowly. Your body is providing a shield that gives the hand-held a cardioid sensitivity pattern, with a sharp decrease in sensitivity to the rear. This null indicates that the source is behind you (Fig 21.144).

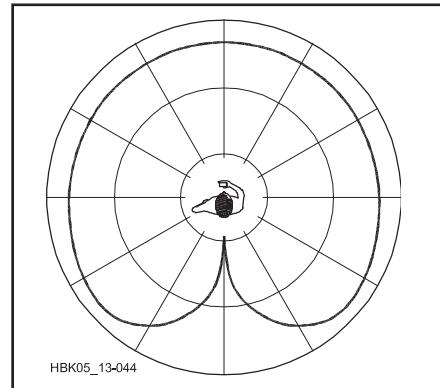


Fig 21.144 — When performing the body fade maneuver, a hand-held transceiver exhibits this directional pattern.

If the signal is so strong that you can't find the null, try tuning 5 or 10 kHz off frequency to put the signal into the skirts of the IF passband. If your hand-held is dual-band (144/440 MHz) and you are hunting on 144 MHz, try tuning to the much weaker third harmonic of the signal in the 440-MHz band.

The body fade null, which is rather shallow to begin with, can be obscured by reflections, multipath, nearby objects, etc. Step well away from your vehicle before trying to get a bearing. Avoid large buildings, chain-link fences, metal signs and the like. If you do not get a good null, move to a clearer location and try again.

Air Attenuators

In microwave parlance, a signal that is too low in frequency to be propagated in a waveguide (that is, below the *cutoff frequency*) is attenuated at a predictable logarithmic rate. In other words, the farther inside the waveguide, the weaker the signal gets. Devices that use this principle to reduce signal strength are commonly known as *air attenuators*. Plans for a practical model for insertion in a coax line are in *Transmitter Hunting* (see Bibliography).

With this principle, you can reduce the level of strong signals into your hand-held transceiver, making it possible to use the body fade technique at very close range. Glen Rick-

Fig 21.145 — The air attenuator for a VHF hand-held in use. Suspend the radio by the wrist strap or a string inside the tube.

erd, KC6TNF, documented this technique for *QST*. Start with a pasteboard mailing tube that has sufficient inside diameter to accommodate your hand-held. Cover the outside of the tube completely with aluminum foil. You can seal the bottom end with foil, too, but it probably will not matter if the tube is long enough. For durability and to prevent accidental shorts, wrap the foil in packing tape. You will also need a short, stout cord attached to the hand-held. The wrist strap may work for this, if long enough.

To use this air attenuation scheme for body fade bearings, hold the tube vertically against your chest and lower the hand-held into it until the signal begins to weaken (Fig 21.145). Holding the receiver in place, turn around slowly and listen for a sudden decrease in signal strength. If the null is poor, vary the depth of the receiver in the tube and try again. You do not need to watch the S-meter, which will likely be out of sight in the tube. Instead, use noise level to estimate signal strength.

For extremely strong signals, remove the “rubber duck” antenna or extend the wrist strap with a shoelace to get greater depth of suspension in the tube. The depth that works for one person may not work for another. Experiment with known signals to determine what works best for you.

Several RDF projects may be found on the *Handbook CD*.