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Fox-1 Satellite 
Telemetry Part 2:
FoxTelem

Chris Thompson • AC2CZ

FoxTelem is the AMSAT ground 
station software for the Fox-1 series 
of satellites that supports decoding 

of the Data Under Voice (DUV) and 
high speed telemetry. This article will 
discuss some of the advanced features of 
FoxTelem and will preview some of the 
interesting things that will be available as 
future satellites are launched. 

How FoxTelem Works
At its simplest, FoxTelem reads audio from 
a source, samples that audio into binary 
digits, then decodes the binary format. You 
can see this flow in Figure 1. The output 
is a frame of telemetry data. The frame 
is then unpacked into telemetry values. 
We call them “raw” values because they 
are the original source readings from the 
instruments on the spacecraft. They are 
shown when you click Display Raw Values 
on one of the FoxTelem screens. We apply 
conversion routines to give us human-
readable data when we display them on 
the screens and graphs.
 

Let’s follow the flow in Figure 1 where 
FoxTelem is reading audio from the 
soundcard and decoding 200 bps DUV. 
Let’s also assume the sample rate is 48000 
samples per second. One bit will be stored 
in 48000/200 = 240 samples. FoxTelem 
then reads 70 bits worth of audio from 
the soundcard, or 16800 samples.

The audio chunk contains the telemetry 
and any voice transmissions. FoxTelem 
runs the 70 bits through a digital filter to 
remove all of the audio above 200 Hz. The 
user can configure the filter, but in most 
cases the standard 200 Hz Raised Cosine 
Filter with 512 coefficients works well. We 
have broken the audio into chunks, which 
upsets the Digital Filter, giving us pops and 
crackles as the audio cycles through. We 
use the overlap add method to eliminate 
this. In summary, we take the excess audio 
that is created by the digital filter at the 
end of a chunk and add it to the start of 
the next chunk. 

FoxTelem knows how wide one bit is by 
counting the samples -- 240 samples for 
200 bps when the sample rate is 48000. 
The samples can be analyzed quickly and 
tagged as a one or a zero. But that rapidly 
fails because the first sample is very 
unlikely to be the start of the first bit. It 
is probably somewhere in the middle of a 

bit. Step 1 in decoding the bits, therefore, 
is recovering the clock.

Clock Recovery
Consider the situation in Figure 2 where 
we examine the first five bits. Each bit has 
200 samples of audio. We find that the 
middle of the bit has values of something 
like 0.5, 0.5, 0, 0.5, 1. The clock is clearly 
misaligned. FoxTelem calculates when 
each bit starts to transition, on average, 
and works out how much the audio 
stream needs to be shifted. It reads some 
additional bits from the audio channel, 
effectively pulling the audio stream 
forward slightly. This will be a fraction of 
a bit, and we end up with the situation in 
Figure 3. If the clock stays aligned, then we 
won’t need to adjust the clock again, but 
that is never the case. The clock on the 
spacecraft, in the hostile environment of 
space, and the clock in your computer, safe 
in your shack, do not stay aligned.

With the clock recovered, FoxTelem 
samples each bit in the middle of the 
sample period. At 9600 bps we only have 
5 bits for each sample, so we average 
the middle 3 bits to try to compensate 
for noise. For 200 bps, we use a more 
sophisticated algorithm that measures 
the distance from the last bit. This better 
compensates for sloping bits that have 
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Figure 1 - FoxTelem decoding from a soundcard
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been distorted by high pass filtering, 
such as those shown in Figure 4. You 
can see that bits start at their full value 
then steeply slope. If we have several bits 
in a row representing 1, then the value 
can drop below the centerline, and we 
can incorrectly sample the last bit as a 
zero. The “distance to last bit” algorithm 
compensates for this and allows radios 
such as the Yaesu FT-817 to be used as the 
audio source.

Once the bits are sampled, they are 
written into a large circular bit buffer, 
shown in the middle of the flow in Figure 
1. After each chunk of audio is sampled, 
we check to see if the SYNC word has 
been received, which is 1100000101 or 
its compliment 0011111010. If we find 
a SYNC word, then FoxTelem notes its 
position in the circular bit buffer. A DUV 
frame has 96 bytes (64 bytes of data and 
32 check bytes). Each byte is sent from the 
spacecraft as a 10-bit word.  So, if we have 
two SYNC words that are 960 bits apart, 
then we might have a valid frame. We find 
lots of SYNC words in random noise, 
so we ignore SYNC words, waiting for a 
valid frame length before trying to decode 
further.

With two sync words the right distance 
apart we sample at the next level of detail. 
It’s like unwrapping a parcel with many 
layers of paper. Taking 10 bits at a time and 
decoding them into an 8-bit byte using 
a lookup table decodes this next layer. 
The bytes have been 8b10b encoded (see 
en.wikipedia.org/wiki/8b/10b_
encoding) to minimize the number 
of 1’s and 0’s that we get in a row. This 
minimizes the slope of the bits and helps 
with decoding when high pass filtering is 
present.

Sometimes the 10-bit word is not in the 
lookup table, so FoxTelem notes the 
byte as corrupt. The 96 bytes are then 
passed to the Reed Solomon Decoder 
(see www.ka9q.net/code/fec/), 
together with the list of corrupted bytes, 
called “erasures.” The RS Decoder uses 
the 32 check bytes to fix any errors in 
the received data. If it succeeds, then it 
reports the number of errors corrected. 
If it fails, then the frame is corrupt and 
was either too damaged or was not a real 
frame in the first place.

FoxTelem displays the number of errors 
and erasures on the eye diagram (Figure 
5). This is the number from the last 

successfully decoded frame. You can also 
plot the Errors and Erasures on a graph 
from the Measurements Tab. This gives you 
a feel for how corrupt the data stream is.

Unpacking the Data
We now have 64 bytes of valid data -- a 
DUV frame -- from the spacecraft. The 
raw data values are packed into the 64 
bytes as tightly as possible. FoxTelem uses 
a set of files in the spacecraft directory 
to unpack the data. First, we decode the 
header to work out what type of payload 
we have inside the frame. The header is 
laid out as follows:

| 1  0  1  1  0} [0  0  1]<- [FoxID] (3 bits) 
= 001
| 0  0  0  0  0   0  0  1 <- {Reset count} 
(16 bits = 000 00000001 10110 = 54)
| 0  1  0  1  1] {0  0  0
| 0  0  0  0  0   0  0  1 <- [Uptime] (25 bits 
= 0000 00000000 00000001 01011 = 43
| 0  0  0  0  0   0  0  0
|{0  0  0  1}[0   0  0  0 <- {Frame type} (4 
bits = 0001)

We might have hoped for a simpler layout, 
but it turns out that this is rocket science, 
and apparently, even when you try to 
make it simple, somehow it becomes 

Figure 4 - Bits distorted by high pass filtering 

Figure 5 - Errors and erasures
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UPDATE: A Full-
Duplex VHF-UHF 
Satellite System 
Using Flex SDR 

Ronald G. Parsons • W5RKN
w5rkn@w5rkn.com

The article, “A Full-Duplex VHF-
UHF Satellite System Using SDR,” 
that appeared in the July/August 

2013 issue of The AMSAT Journal – www.
flexradio.com/downloads/w5rkn_
julyaugust2013withcover-pdf -- 
described a fixed ground station for working 
satellites using two FlexRadio Systems® 
radios. This update describes a number of 
modifications and improvements to the 
original station configuration. The two 
transmit and receive radios were replaced 
with a single Flex-6500, a tuning knob was 
added, and a software program, FlexSATPC, 
written by David Beumer, W0DHB, was 
incorporated to tie all the functions together. 
[See “Using SatPC32 with FlexRadio Systems 
Radios,” p. 13.]

Implementation
Three major changes were made to the 
system. The first was the addition of a 
software program, FlexSATPC, which acts as 
the system central control point. FlexSATPC 
provides an interface between SatPC32, 
the tracking and Doppler control software, 
and SmartSDR, the FlexRadio control and 
display software because SatPC32 does not 
support SmartSDR. FlexSATPC also includes 
a logging interface that enables all required 
logging by just entering the callsign. All other 
fields required for logging are automatically 
entered. FlexSATPC also facilitates uplink 
frequency calibration to match the satellite’s 
transponder. 

The second change was to improve the full-
duplex operation, made possible with version 
1.5.0 of FlexRadio’s SmartSDR control 
program. The third was adding a FlexControl 
tuning and control knob. The knob controls 
the frequency of the active slice and other 
programmable functions. If the operator is 
using the FlexControl to tune the radio and 
a separate logging operator is entering data 
in other programs, the FlexControl only 
controls SmartSDR, leaving other programs 
under mouse control. I made good use of 

this feature when operating as W1AW/5 
and W7O.

The original design used a FLEX-1500 for 
transmit and a FLEX-3000 for receive, but 
the required switching between various 
bands and antennas was very complex. The 
single antenna port on the FLEX-3000 made 
it difficult to operate HF or satellites which 
use HF such as AO-7 Mode A. 

When FlexRadio introduced its newest 
Signature Series model in May 2014, the 
FLEX-6300,  the SmartSDR software that 
controls the new radio did not support use 
of transverters. In August 2014, FlexRadio 
added transverter support, so I replaced 
the two radios in the original system with 
one FLEX-6300. Effecting the change was 
simple, requiring adjusting the CAT COM 
port and moving the coax from the receive 
transverter coax switch for the FLEX-3000 
to the FLEX-6300 ANT2 port and moving 
the coax from the transmit transverter coax 
switch on the FLEX-1500 to the FLEX-6300 
XVTR port. That left the FLEX-6300 ANT1 
output free for 6-meter use.

FLEX-6300 users must be very careful with 
implementing and operating a system that 
allows the physical hardware to transmit 
into the RX IF port of the transverters. I 
tried to minimize this risk by automating 
the signal routing and other software 
settings. FlexSATPC also contains checks 
to help avoid this potential problem. Still, 
the operator must be aware of this risk and 
operate accordingly.

To completely eliminate this risk, I traded 
in my FLEX-6300 for a FLEX-6500, which 
has a separate receive-only port RX A that 
is connected to the RX IF ports of the 
transverters. The XVTR port is connected 
to the TX IF ports of the transverters for 
transmitting.

Major Features

Full Duplex
The addition of full-duplex capability in 
FlexRadio’s Signature Series radios – FLEX-
6300, 6500, and 6700 – enables the audio 
from the radio’s receive slice to pass through 
to the speakers/headphones even when 
another slice is transmitting. 

“Slice” is the term used by FlexRadio for a 
segment of the entire spectrum sampled by 

complex. The complexity results from the 
spacecraft sending the most significant bit 
first (as we can see with the FoxID), but 
Fox’s computer is a little-endian system; 
therefore, we get the least significant byte 
first. Decoding the data is full of fun little 
challenges like this.

Having sorted out the bit and byte order, 
we next decode the header and recover 
the Fox ID, Reset Count, Uptime and 
Payload Type. The FoxID and Payload 
Type tell us which layout we are going to 
decode. Types 1, 2 and 3 are telemetry for 
the spacecraft. Type 4 is experiment data. 

We use the same bit and byte order logic 
as the layouts in the spacecraft directory 
to unpack the remaining 60 bytes into raw 
values. The raw values are then written 
to disk. If the user has selected Display 
Raw Values, then these are shown on the 
screen. Otherwise, each value is converted 
to a human-readable form using a 
conversion routine specified in the layout 
file. The FoxTelem manual specifies these 
conversions.

High Speed
High speed data is decoded in the same 
way as DUV data. Each Frame is 52720 
bits long. We search for SYNC words 
in exactly the same way and attempt to 
decode a frame when we find SYNC 
words are the right distance apart.

Instead of running the Reed Solomon 
Decoder for the whole frame, we break 
the frame into 21 Reed Solomon words 
and run the RS Decoder for each one. 
The data is sent from the spacecraft with 
the bytes allocated round robin to the RS 
words. The check bytes are all sent at the 
end of the frame in a block. This pattern 
allows us to better cope with fading and 
interference.

The high speed frame also contains a 
header, so FoxTelem first decodes it and 
identifies the spacecraft. Each high speed 
frame then contains real time, max and 
min telemetry payloads. The layout of 
the rest of the high speed frame is then 
determined by the experiments onboard 
the spacecraft: Fox-1A contains Type 
4 experiment payloads; Fox-1Cliff will 
contain Type 5 camera lines; and Fox-1D 
will contain either University of Iowa 
HERCI data or Type 5 camera payloads. 
We will talk more about these payloads in 
a future article.


