
	 The AMSAT Journal  January/February 2016  www.amsat.org	 7

Fox-1 Satellite
Telemetry Part 2:
FoxTelem

Chris Thompson • AC2CZ

FoxTelem is the AMSAT ground
station software for the Fox-1 series
of satellites that supports decoding

of the Data Under Voice (DUV) and
high speed telemetry. This article will
discuss some of the advanced features of
FoxTelem and will preview some of the
interesting things that will be available as
future satellites are launched.

How FoxTelem Works
At its simplest, FoxTelem reads audio from
a source, samples that audio into binary
digits, then decodes the binary format. You
can see this flow in Figure 1. The output
is a frame of telemetry data. The frame
is then unpacked into telemetry values.
We call them “raw” values because they
are the original source readings from the
instruments on the spacecraft. They are
shown when you click Display Raw Values
on one of the FoxTelem screens. We apply
conversion routines to give us human-
readable data when we display them on
the screens and graphs.

Let’s follow the flow in Figure 1 where
FoxTelem is reading audio from the
soundcard and decoding 200 bps DUV.
Let’s also assume the sample rate is 48000
samples per second. One bit will be stored
in 48000/200 = 240 samples. FoxTelem
then reads 70 bits worth of audio from
the soundcard, or 16800 samples.

The audio chunk contains the telemetry
and any voice transmissions. FoxTelem
runs the 70 bits through a digital filter to
remove all of the audio above 200 Hz. The
user can configure the filter, but in most
cases the standard 200 Hz Raised Cosine
Filter with 512 coefficients works well. We
have broken the audio into chunks, which
upsets the Digital Filter, giving us pops and
crackles as the audio cycles through. We
use the overlap add method to eliminate
this. In summary, we take the excess audio
that is created by the digital filter at the
end of a chunk and add it to the start of
the next chunk.

FoxTelem knows how wide one bit is by
counting the samples -- 240 samples for
200 bps when the sample rate is 48000.
The samples can be analyzed quickly and
tagged as a one or a zero. But that rapidly
fails because the first sample is very
unlikely to be the start of the first bit. It
is probably somewhere in the middle of a

bit. Step 1 in decoding the bits, therefore,
is recovering the clock.

Clock Recovery
Consider the situation in Figure 2 where
we examine the first five bits. Each bit has
200 samples of audio. We find that the
middle of the bit has values of something
like 0.5, 0.5, 0, 0.5, 1. The clock is clearly
misaligned. FoxTelem calculates when
each bit starts to transition, on average,
and works out how much the audio
stream needs to be shifted. It reads some
additional bits from the audio channel,
effectively pulling the audio stream
forward slightly. This will be a fraction of
a bit, and we end up with the situation in
Figure 3. If the clock stays aligned, then we
won’t need to adjust the clock again, but
that is never the case. The clock on the
spacecraft, in the hostile environment of
space, and the clock in your computer, safe
in your shack, do not stay aligned.

With the clock recovered, FoxTelem
samples each bit in the middle of the
sample period. At 9600 bps we only have
5 bits for each sample, so we average
the middle 3 bits to try to compensate
for noise. For 200 bps, we use a more
sophisticated algorithm that measures
the distance from the last bit. This better
compensates for sloping bits that have

Circular
Audio
Buffer

Sampling
and

Clock
Recovery

Circular
Bit

Buffer

Sync,
8b10b

Decode and
RS decode

Frame

So
u

n
d

ca
rd

Audio graph
and

Eye Diagram

Payloads

Tabs and
graphs

Server
Queue

Measurements

Allocate bits
to payloads

Source
Legend:

Storage Process GUI

Sharp digital
filter

Figure 2 - Mismatched sample periods Figure 3 - After we have read an extra third of a bit

Figure 1 - FoxTelem decoding from a soundcard

8	 The AMSAT Journal  January/February 2016  www.amsat.org

been distorted by high pass filtering,
such as those shown in Figure 4. You
can see that bits start at their full value
then steeply slope. If we have several bits
in a row representing 1, then the value
can drop below the centerline, and we
can incorrectly sample the last bit as a
zero. The “distance to last bit” algorithm
compensates for this and allows radios
such as the Yaesu FT-817 to be used as the
audio source.

Once the bits are sampled, they are
written into a large circular bit buffer,
shown in the middle of the flow in Figure
1. After each chunk of audio is sampled,
we check to see if the SYNC word has
been received, which is 1100000101 or
its compliment 0011111010. If we find
a SYNC word, then FoxTelem notes its
position in the circular bit buffer. A DUV
frame has 96 bytes (64 bytes of data and
32 check bytes). Each byte is sent from the
spacecraft as a 10-bit word. So, if we have
two SYNC words that are 960 bits apart,
then we might have a valid frame. We find
lots of SYNC words in random noise,
so we ignore SYNC words, waiting for a
valid frame length before trying to decode
further.

With two sync words the right distance
apart we sample at the next level of detail.
It’s like unwrapping a parcel with many
layers of paper. Taking 10 bits at a time and
decoding them into an 8-bit byte using
a lookup table decodes this next layer.
The bytes have been 8b10b encoded (see
en.wikipedia.org/wiki/8b/10b_
encoding) to minimize the number
of 1’s and 0’s that we get in a row. This
minimizes the slope of the bits and helps
with decoding when high pass filtering is
present.

Sometimes the 10-bit word is not in the
lookup table, so FoxTelem notes the
byte as corrupt. The 96 bytes are then
passed to the Reed Solomon Decoder
(see www.ka9q.net/code/fec/),
together with the list of corrupted bytes,
called “erasures.” The RS Decoder uses
the 32 check bytes to fix any errors in
the received data. If it succeeds, then it
reports the number of errors corrected.
If it fails, then the frame is corrupt and
was either too damaged or was not a real
frame in the first place.

FoxTelem displays the number of errors
and erasures on the eye diagram (Figure
5). This is the number from the last

successfully decoded frame. You can also
plot the Errors and Erasures on a graph
from the Measurements Tab. This gives you
a feel for how corrupt the data stream is.

Unpacking the Data
We now have 64 bytes of valid data -- a
DUV frame -- from the spacecraft. The
raw data values are packed into the 64
bytes as tightly as possible. FoxTelem uses
a set of files in the spacecraft directory
to unpack the data. First, we decode the
header to work out what type of payload
we have inside the frame. The header is
laid out as follows:

| 1 0 1 1 0} [0 0 1]<- [FoxID] (3 bits)
= 001
| 0 0 0 0 0 0 0 1 <- {Reset count}
(16 bits = 000 00000001 10110 = 54)
| 0 1 0 1 1] {0 0 0
| 0 0 0 0 0 0 0 1 <- [Uptime] (25 bits
= 0000 00000000 00000001 01011 = 43
| 0 0 0 0 0 0 0 0
|{0 0 0 1}[0 0 0 0 <- {Frame type} (4
bits = 0001)

We might have hoped for a simpler layout,
but it turns out that this is rocket science,
and apparently, even when you try to
make it simple, somehow it becomes

Figure 4 - Bits distorted by high pass filtering

Figure 5 - Errors and erasures

	 The AMSAT Journal  January/February 2016  www.amsat.org	 9

UPDATE: A Full-
Duplex VHF-UHF
Satellite System
Using Flex SDR

Ronald G. Parsons • W5RKN
w5rkn@w5rkn.com

The article, “A Full-Duplex VHF-
UHF Satellite System Using SDR,”
that appeared in the July/August

2013 issue of The AMSAT Journal – www.
flexradio.com/downloads/w5rkn_
julyaugust2013withcover-pdf --
described a fixed ground station for working
satellites using two FlexRadio Systems®
radios. This update describes a number of
modifications and improvements to the
original station configuration. The two
transmit and receive radios were replaced
with a single Flex-6500, a tuning knob was
added, and a software program, FlexSATPC,
written by David Beumer, W0DHB, was
incorporated to tie all the functions together.
[See “Using SatPC32 with FlexRadio Systems
Radios,” p. 13.]

Implementation
Three major changes were made to the
system. The first was the addition of a
software program, FlexSATPC, which acts as
the system central control point. FlexSATPC
provides an interface between SatPC32,
the tracking and Doppler control software,
and SmartSDR, the FlexRadio control and
display software because SatPC32 does not
support SmartSDR. FlexSATPC also includes
a logging interface that enables all required
logging by just entering the callsign. All other
fields required for logging are automatically
entered. FlexSATPC also facilitates uplink
frequency calibration to match the satellite’s
transponder.

The second change was to improve the full-
duplex operation, made possible with version
1.5.0 of FlexRadio’s SmartSDR control
program. The third was adding a FlexControl
tuning and control knob. The knob controls
the frequency of the active slice and other
programmable functions. If the operator is
using the FlexControl to tune the radio and
a separate logging operator is entering data
in other programs, the FlexControl only
controls SmartSDR, leaving other programs
under mouse control. I made good use of

this feature when operating as W1AW/5
and W7O.

The original design used a FLEX-1500 for
transmit and a FLEX-3000 for receive, but
the required switching between various
bands and antennas was very complex. The
single antenna port on the FLEX-3000 made
it difficult to operate HF or satellites which
use HF such as AO-7 Mode A.

When FlexRadio introduced its newest
Signature Series model in May 2014, the
FLEX-6300, the SmartSDR software that
controls the new radio did not support use
of transverters. In August 2014, FlexRadio
added transverter support, so I replaced
the two radios in the original system with
one FLEX-6300. Effecting the change was
simple, requiring adjusting the CAT COM
port and moving the coax from the receive
transverter coax switch for the FLEX-3000
to the FLEX-6300 ANT2 port and moving
the coax from the transmit transverter coax
switch on the FLEX-1500 to the FLEX-6300
XVTR port. That left the FLEX-6300 ANT1
output free for 6-meter use.

FLEX-6300 users must be very careful with
implementing and operating a system that
allows the physical hardware to transmit
into the RX IF port of the transverters. I
tried to minimize this risk by automating
the signal routing and other software
settings. FlexSATPC also contains checks
to help avoid this potential problem. Still,
the operator must be aware of this risk and
operate accordingly.

To completely eliminate this risk, I traded
in my FLEX-6300 for a FLEX-6500, which
has a separate receive-only port RX A that
is connected to the RX IF ports of the
transverters. The XVTR port is connected
to the TX IF ports of the transverters for
transmitting.

Major Features

Full Duplex
The addition of full-duplex capability in
FlexRadio’s Signature Series radios – FLEX-
6300, 6500, and 6700 – enables the audio
from the radio’s receive slice to pass through
to the speakers/headphones even when
another slice is transmitting.

“Slice” is the term used by FlexRadio for a
segment of the entire spectrum sampled by

complex. The complexity results from the
spacecraft sending the most significant bit
first (as we can see with the FoxID), but
Fox’s computer is a little-endian system;
therefore, we get the least significant byte
first. Decoding the data is full of fun little
challenges like this.

Having sorted out the bit and byte order,
we next decode the header and recover
the Fox ID, Reset Count, Uptime and
Payload Type. The FoxID and Payload
Type tell us which layout we are going to
decode. Types 1, 2 and 3 are telemetry for
the spacecraft. Type 4 is experiment data.

We use the same bit and byte order logic
as the layouts in the spacecraft directory
to unpack the remaining 60 bytes into raw
values. The raw values are then written
to disk. If the user has selected Display
Raw Values, then these are shown on the
screen. Otherwise, each value is converted
to a human-readable form using a
conversion routine specified in the layout
file. The FoxTelem manual specifies these
conversions.

High Speed
High speed data is decoded in the same
way as DUV data. Each Frame is 52720
bits long. We search for SYNC words
in exactly the same way and attempt to
decode a frame when we find SYNC
words are the right distance apart.

Instead of running the Reed Solomon
Decoder for the whole frame, we break
the frame into 21 Reed Solomon words
and run the RS Decoder for each one.
The data is sent from the spacecraft with
the bytes allocated round robin to the RS
words. The check bytes are all sent at the
end of the frame in a block. This pattern
allows us to better cope with fading and
interference.

The high speed frame also contains a
header, so FoxTelem first decodes it and
identifies the spacecraft. Each high speed
frame then contains real time, max and
min telemetry payloads. The layout of
the rest of the high speed frame is then
determined by the experiments onboard
the spacecraft: Fox-1A contains Type
4 experiment payloads; Fox-1Cliff will
contain Type 5 camera lines; and Fox-1D
will contain either University of Iowa
HERCI data or Type 5 camera payloads.
We will talk more about these payloads in
a future article.

