Copyright

Ray Mack, W5IFS

(C)2015 ARRL, All

Rights

17060 Conway Springs, Austin, TX 78717: whifs@arrl.net

Reserved

SDR Simplified

Step One towards a working SDR.

Beginning A Real Radio

We have looked at a lot of topics related
to SDR and DSP over the past years. It is
time to actually build a radio. The goal is to
design a VLF/LF/MF/HF radio that puts the
transmitter and receiver as close as possible
to the antenna. The first step is to create a
desktop radio that handles SSB voice, CW,
and AM, and covers the frequency range
from 10 kHz to 30 MHz. We will take the
system step by step and assemble a complete
working transceiver.

Human Factors in Device Design

Perhaps I am old school, but I believe
that radios should be radios and computers
should be computers. From a human
factors perspective, controlling a radio
with a computer means you have multiple
interconnect and control interfaces to
manage, so the system does neither very
well, especially when you want to use the
computer as a computer! A single device
that encapsulates the entire user interface
is much simpler to manage as a user. The
worst interface I have seen in a tool was an
early computer controlled Hewlett-Packard
oscilloscope. There was one adjust knob and
one select button. Everything else was done
with menus on a screen. It was impossible
to make a set of measurements without
constantly taking your eyes off your work.
I was lucky I didn’t fry more circuits from
having the probe slip. I quickly went back
to a much older analog scope because it was
easier to use by feel alone.

There are a number of radios currently
on the market that I believe share a similar
failure of human factors. One hand-held
radio has three levels of menus with each of
the 16 buttons on the panel having at least
three different mode-specific functions. You
have to look directly at the radio in order to
control just about every function, and you
will also need the manual at hand in order to
navigate the menu structure for even simple

top-level functions. For me, if I cannot do the
basic control functions within two minutes
of walking up to a radio for the first time, the
interface has failed.

Especially in a mobile radio, it is
important that we be able to control the
common functions with a small number of
dedicated knobs and buttons. At the top level
of control, we need an on/off button, volume
control, a frequency control, and probably
band select. These functions need to be
discernable without looking at the radio!
The next level, which also needs dedicated
buttons, would include things such as noise
blanking, selectivity, A/B band selection,
and transmission mode. These might need a
quick glance at the screen for confirmation,
but should never require visual engagement
to perform the function. Each time one
changes frequency (either band change or
tuning within a band) the radio should give
a clear indication on the screen of both the
frequency and mode with nothing more
than a quick glance. A desktop radio can
be slightly more complicated because we
can devote our entire attention to the user
interface. The user interface should not be so

complicated, however, that it gets in the way
of the primary function of the radio, which is
to communicate!

Figure 1 shows the front panel design
of my proposed desktop radio. The central
feature is the 7 inch TFT display, which
provides 800 x 480 pixels.! The industry
calls this WVGA resolution (Wide VGA).
My first design for a radio used a 4.3 inch
WQVGA resolution screen (Wide-Quarter
VGA) which is 480 x 272 pixels because
the displays were inexpensive and a large
number of manufacturers make equivalent
devices. The size and resolution became
popular because it was used in the Playstation
Portable game system. Now, smart phones
are our friend. The proliferation of smart
phones has pushed resolution to WVGA in
both 5 inch and 7 inch sizes from the same
manufacturers and at reasonable prices.

The button and knob usage and layout
is inspired by any number of analog radios
I have used over the years. The main
difference is that the tuning knob is moved

"Notes appear on page 44.

Q BAND
Volume

Filter

Q Menu

Menu Mode

Adjust Menu

Display
b 4 D D D
Fl F2 e

geoe

Figure 1 — Here is my proposed front panel layout for a self contained SDR. The display
panel has 800 x 480 pixels, to give a full color internal computer display of control functions
and data. The menu keys along the left have dedicated functions and the keys along the
bottom are soft function keys.

QEX — May/June 2015 39

Mark
Typewritten Text
Copyright (C)2015 ARRL, All Rights Reserved

PTT and Key

s

FPGA
s Down B
Converter
Speaker
— BeagleBone
Black <1 T| DSP
e
FPGA
T Up T
Converter
LCD

QX1505-Mack02

ADC

DAC

Preamp,
| < Attenuator, |euif—
And Filters
Power
> Amplifier

Figure 2 — A block diagram of the proposed transceiver. There are three main processing elements: the BeagleBone Black Linux computer,
the Analog Devices DSP, and the FPGA hardware accelerator.

to the right side to accommodate the full
size screen. Almost all analog desktop radios
place the tuning knob in the center, with
small readouts along the top of the panel.
Feel free to comment on any aspects of the
layout. The tuning knob is the focus of our
laboratory exercise this time.

Top Level System Design

Figure 2 is the block diagram of the
transceiver system. We are still going to
want all of the graphics-intensive functions
that we see on a computer controlled SDR,
such as ones using PowerSDR, so we will
need a computer that can run a modified
version of one of those programs. The
BeagleBone Black (just BeagleBone from
here) is an inexpensive prototype computer
that fits the bill for our needs. In fact, it is a
complete Linux computer on a 2 x 3.5 inch
circuit board. It is based on a 1 GHz Texas
Instruments Sitarra AD3359 processor.

The AD3359 has internal support for TFT
LCDs for the display, quadrature encoder
support for our frequency control knob,
and ADC support for our analog controls
like volume. All of the normal peripheral
interface buses such as USB, 12S, SPI, and
I2C are available for the other devices we
will need to control. Ethernet is available
for debugging and other network uses. The
MCcASP interface ports are actually enhanced
12S ports similar to those used for audio
CODECs on sound cards. We will use at
least one of those ports for receiving data
for waterfall and spectrum displays from the
main DSP portion of the radio.

Any computer that does more than the
very basic bare metal control is going to
need an operating system to help us manage
the various software tasks in the system.
Some systems such as our DSP portion need
exact or very fast response to incoming data.

40 QEX May/June 2015

These are called hard real time systems.
Even a slip of a few milliseconds can cause
problems for the system. Our user interface
is less demanding. Our eyes and hands need
feedback about 10 to 20 times per second
in order for us to perceive that tasks are
happening continuously. A difference of 10
to 50 ms will not change our perception of
continuous control. These systems are called
soft real time.

Windows is far from a real time operating
system. It is not uncommon for the mouse
pointer to pause noticeably as we move it
across the screen. Modern Linux is a better
system. It includes real time extensions
that allow for implementing soft real time
systems. Fortunately, the BeagleBone comes
with Linux installed. Linux also provides us
with the advantage that many of the SDR
functions we will implement for the display
are supported in the Linux versions of
software like PowerSDR.

Using the Quadrature Encoder

We will use the quadrature encoder in the
same way we use the wheel on the mouse
for a PC. Turning one direction will increase
the frequency and turning it the other way
will decrease frequency. Figure 3 shows
several quadrature optical encoders I have
collected over the years. An optical encoder
is made of an opaque disc with equally
spaced slots that let light transmit from one
or more LEDs on one side of the disk to two
phototransistors on the other side of the disk.
The phototransistors are arranged so that
there is overlap of both the light phase and
the dark phase. The transitions are arranged
so that the square wave signals from the
two phototransistors are 90° out of phase
(hence quadrature encoding). The 90° offset
allows the electronic hardware to determine
the direction that the encoder is turning.

This operation is shown in Figure 4. In our
example, when the A signal goes low to high
before the B signal goes low to high (and
the A signal goes high to low before the B
signal goes high to low), the shaft is rotating
clockwise. The converse is true; when the B
signal goes from low to high before the A
signal, the shaft is rotating counterclockwise.

Of course, we can attach the A and B
signals to GPIO pins (general purpose 1/O)
and watch their state every few milliseconds
in software, but the load on a CPU to perform
this relatively mundane operation is huge.
Instead, the AM3359 provides up to three
Enhanced Quadrature Encoder Pulse (eQEP)
modules that can be used to gather motion
data. The eQEP module is useful for both
human interface encoders and electric motor
feedback. For our purposes, we only need
the A and B input pins to allow the module to
count pulses up or down. The eQEP module
contains the QPOSCNT register, which
keeps a running tally of both clockwise and
counterclockwise (the British refer to this as
anti-clockwise in some documents).

The finest resolution optical encoder has
64 pulses per revolution, but those are likely
too expensive for use in our radio. A cost
effective one (CUI C14D32P-A3, $17.22
at Digi-Key) has 32 pulses per revolution.
We can start the position counter register at
half scale so that we almost never have to
do the logic required to handle overflow or
underflow of the register. Each time we read
the register, we simply subtract the previous
count from the present count to determine
how many changes and the direction of the
changes since we last read the register.

There is a timer that is part of the eQEP
hardware. It is possible to set up the timer
to capture the position counter every time
the counter matches the compare value. The
time for the capture and the position counter
can be used to determine the rotation velocity

Figure 3 —This photo shows three optical encoders and a mechanical encoder. The two in the middle also contain a push button switch. One
is Standard Grigsby and the other is Grayhill, but the traces on the circuit board appear identical.

of the encoder. We can use the velocity
to modify our frequency change logic, to
change the frequency faster if the velocity
is higher. This could be a feature in a future
version of the software. Many systems use
this velocity mechanism to adapt the speed
of change of a variable to the speed of the
control knob.

Connecting the Encoder to
Hardware

There are three eQEP blocks that show
up on various pins depending on how the
hardware is configured in software. We need
to look at the pins that are available on P8
and P9 of the BeagleBone. We look at the
tables on pages 70 and 72 of the BeagleBone
user manual to see which pins are used, and
their functions. The eQEP2 pins conflict with
the eMMC1 pins, which are used for the SD
card, and the eQEP1 pins conflict with the
LCD. This leaves us with pins 27 and 42 on
header P9 as available for eQEPO operation.
Page 71 of the manual indicates that pin 42
is connected to processor pin B12 and C18.
In order to use this header pin for eQEPO, we
need to set B12 for use as an eQEP input and
C18 as a GPIO input. We could also make
sure the pin is safe by removing the extra
resistor as described in the user manual.

The BeagleBone has 3.3 V circuits, so
my older 5 V encoders need some level
adjustment. The circuit in Figure 5 shows
the circuit that lowers the signal to 3.3 V. The
user manual warns that using 5 V signals will
damage the circuits. If you buy a brand new
encoder, you will want to select a version that
works at 3.3 V.

Linux Introduction

Linux is a computer operating system that
hasitsroots in the Unix operating system from
AT&T. If you have ever written a truly useful
program, especially in C, you have run into
bugs that have caused your program to “crash
and burn.” When you do that with an Arduino
project or an SDR running on a dedicated
DSP, there are no real consequences. You just

debug to find your problem, edit, compile,
and restart the debug process. On a computer
such as a PC running Windows or Linux,
however, your program could do real damage
to things like the hard disk or burn up the
CPU if your program crashes in the absence
of some sort of protection. Windows 3.1
ran on top of MS-DOS, which did not have
any protection mechanism, and crashing
the system was a normal occurrence. The
solution is a hardware/software mechanism
called protected mode. Linux has always run
in protected mode and Windows, starting
with NT 3.1, now runs in protected mode.
The protection comes from special
hardware inside the CPU, called the memory
management unit and a bit in the status
register called the supervisor bit. When the
supervisor bit is turned “on,” the system
is in Supervisor Mode and all software
has complete access to everything on the
computer: all I/O ports and every memory
location. This is what allows rogue software
to do damage. When the supervisor bit is
“off,” the software is in User Mode and the
software is very limited in what it can access.
This restriction is forced by the memory
management unit hardware. In general, a
User Mode program cannot touch any I/O
ports since those are considered essential to
proper operation of the computer. The only
resource a User Mode program can touch
is a small amount of memory, which is just
large enough to run the program. So, for
example, you cannot directly toggle a bit on

the parallel port or the modem control lines
on a serial port from a program that you run
from the command line.

So, how can we connect a new device
like the quadrature optical encoder to the
computer and use it for input in our SDR
program? A protected mode operating
system implements functions that are part of
a device driver, to give us protected access to
hardware. A device driver is responsible for
collecting information from your User Mode
program and then passing that information
to the operating system. These are usually
a call to read() or write(). Once the read or
write call verifies that your information is not
going to crash the system, it uses an operating
system mechanism to shift the computer
from User Mode to Supervisor Mode. The
code inside the operating system, running in
Supervisor Mode, now has permission to talk
directly to the I/O ports of the hardware of
the computer. It does the read or write from
the hardware and then sends the requested
information back up through the protection
system and then changes the CPU back into
User Mode. Now, you can access the data
provided by the device driver. We will use
a device driver to connect to the quadrature
encoder.

The operating system has basically
two functions: protect the computer
hardware from defective programs, and
allow multiple independent programs to
run “simultaneously” on one CPU. On the
BeagleBone, Linux creates the illusion of

i
QEPA |

|
|
QEPB

Clockwise
Rotation

QX1505-Mack04

No Counterclockwise No
Rotation Rotation Rotation

Figure 4 — An illustration of the waveforms for clockwise rotation. The circle shows what the
optical disk looks like. Notice that the sensors need to be positioned near the inner part of
the clear slot so that the light and dark areas are the same size.

QEX — May/June 2015 41

5V Optical Encoder

H

| |
6
i i sv
| '3
} ! 51kQ 5.1kQ)
i & i { 3.3V
> >
i L 3 3
1 5 T T To
! (} A BeagleBone
|
4
|
—_ 3}
! N {8
|
|
|
|
|
|
|
|
|
|
|

- }
’J7 { GND

QX1505-Mack05

Figure 5 —The schematic of my level shifter to allow use of a 5V optical encoder in the 3.3V
BeagleBone system.

simultaneous operation of multiple programs
by time division multiplexing the operation
of multiple user programs. This is easy
because programs do not need the CPU while
they are waiting on some piece of hardware.
During the time one program is waiting,
Linux runs another program that has work
to do.

Linux comes in many different flavors
including Debian, Gentoo, and Fedora.
These are called distributions or “distros.”
If you have used desktop Linux, it is likely
you have used Ubuntu, which is a version
of Debian optimized for desktop use. The
distribution shipped on the BeagleBone is
Debian.

Connecting the Encoder to Linux

One of the nice features of Linux is
that it has a mechanism to install a device
driver into the kernel from the User Mode
command line. Device drivers that are a part
of a distribution are simply compiled into the
kernel and are always present. Since a driver
for the TI eQEP is not part of the distribution,
we must design our own driver and install it
from the command line.

A device driver must implement the init()
and exit() functions as a minimal set. Of
course, such a driver would not be especially
useful. The read() and write() functions are
required as the next level of operation to
be useful. The write() function will simply
return without any operation since there is
no actual write that can occur. It is included
so a call to the generic write() function from
User Mode will not cause an error. There
are two final functions needed to provide the
mechanism to glue a User Mode program to
our driver: open() and close().

42 QEX May/June 2015

Listing 1 shows the init() and exit()
functions. The program listings and various
other files associated with this article are
available for download from the ARRL QEX
files website.?> The init() function must set
up the hardware and do the other tasks to
connect the hardware to the kernel. The exit()
function can be trivial because we will have
minimal resources to release or other cleanup
to do. In fact, normal operation will never
exit from the driver. So exit() only needs
to disconnect the /proc/eqep file from the
kernel and then exit. We put kprintf() calls in
these two functions so we can see the results
of installing or removing the driver on the
console as a sanity check.

The init() function must connect our
driver to a device file so we can open the
file as a character device in a User Mode
program. The first operation is to tell the
kernel where to put the interface for the
device file. It is convention that installable
drivers are placed in the /proc directory. This
is the location of the driver for User Mode
program use; it is not where the actual binary
file (eqep.o) is located. The kernel also needs
us to connect our driver data and functions
and tell it who owns the file. Next, the init
function must set up the eQED hardware for
use by the driver. We set the mode for the
e¢QEPO A and B input pins to MODE1 and
then turn on the eQEP hardware.

We need to decide how to encode the
data from the encoder into data that is read
from the file. The easiest way is to simply
encode the data as a signed 8 bit value. It is
very unlikely that we can spin the knob fast
enough to generate more than 127 pulses
between reads of the device file. To that end,
the read() function will read the position

register and subtract the half value from the
register. Then the value will be truncated to
an 8 bit value. This makes the logic simple,
as shown in Listing 2. For now, the write()
function does nothing. If we decide later
that it would be nice to set parameters of
operation, we can extend the driver so writes
to the device file affect its operation.

We compile and link the program and
create a file called eqep.o. You can place it
in any convenient directory. I prefer /root just
because that is where I put things when using
the QNX operating system. Change to /root
and type the command:

insmod eqgep.o

You should see the message from the
init() function show up on the console. We
will now be able to interact with the eQEP
driver by opening and reading the file /proc/

eqep.

An Example User Mode Program

Listing 3 is an example User Mode
program that looks at the eQEP driver every
100ms and displays an absolute frequency
that is adjusted by turning the encoder. We
initialize the program to display 7100.00
kHz. Each position change of our encoder
will adjust the frequency up or down by 0.01
kHz.

Making a Build Computer

It is possible to set up the BeagleBone
to build the software we need, but it would
require a USB hard disk and other accessories
to make it a real computer. It is much
easier to build using an existing computer
(workstation) and transfer the drivers and
programs to the BeagleBone (target). My
suggestion is to set up a computer with a
dual boot of Windows and Ubuntu Linux. The
current version of “long term support” Linux
is 14.04. Ubuntu is supported by Canonical
which is a company in the United Kingdom.
A lot of what makes Ubuntu a truly usable
desktop solution is because of their efforts
and support. You can find much information
on the Internet for support of BeagleBone
and Ubuntu.

I have both Windows 7 and Windows 8
systems that I have set up as dual boot. I
recommend avoiding a Windows 8 machine
if you can. There are issues with getting the
dual boot menu to populate correctly. My
Windows 8 machine requires that I power
cycle and hit <esc> to force it into the BIOS
mode, where I select <F9> to go to the boot
menu. I can probably fix it at some point, but
I prefer working on SDR projects.

The following is an abbreviated set of
instructions for those who feel comfortable
doing normal computer building operations.
There are very detailed instructions, notes,

and pointers to on-line resources in the zip
file on the ARRL QEX files website site for
this issue. See Note 2.

The first step is to make sure you are
connected to the Internet for the whole
process. There are numerous updates that
must come from the Internet. You download
the ISO image from the Ubuntu site and burn
a DVD (since it is 900 MB of data, it won’t
fit on a CD). Ubuntu is free, but the $16
suggested donation is a small amount to help
them maintain stable, working software. You
will need to use the Windows Disk Manager
utility to reduce the size of your hard disk for
Windows, to make an unused partition. I set
mine to 250 GB out of 750 GB, but about
100 MB should be enough. My system is
almost fully set up, and uses 6 MB of space.

Now that you have an unused partition,
you need to power cycle and boot from your
DVD. If your system does not boot the DVD,
start up in the BIOS configuration mode.
This varies from computer to computer. It is
always <esc>, , or a function key. You
need to make sure that your BIOS is set up to
boot from the DVD as the first option. Your
system will boot into a small program called
GRUB that lets you select the operation to
perform. You want to “install Linux” rather
than “try Linux.” The system will start up
and prompt you for various actions. You
want to install Linux beside Windows, so
you can choose which way to boot each
time. The system will prompt you to install
in the newly created empty partition. Let the
system complete the task and you will have
a working Linux computer. Be sure to write
down the password that you select! This is
the administrator (root) password, which you
will use very frequently. I also recommend
that you select the “automatically log me
in” option at that point. When the system
re-boots, select Linux from the boot menu.
When you are prompted to update Ubuntu,
select yes, because we need the extra
packages that get installed at this point.

The Ubuntu desktop looks similar to a
Windows desktop, but has some unfamiliar
characteristics. The “X” to kill a program
is on the left rather than the right of each
program window. There is a task bar, but
it operates differently from Windows.
Basically it is where programs are “pinned.”
The top left icon is the Ubuntu “search your
computer” program. Click on that icon and
type in “ClassicMenu.” Double click the
program icon that is displayed. That will
place a small “Ubuntu icon” on the top right
of the menu bar. Selecting that icon now
gives you something much more like the
Windows ““Start Menu.”

The next step is to click on the settings
icon (the adjustable wrench on top of a gear)
on the left bar. Double click on Appearance

and change “Show the menus for a window”
from “in the menu bar” to “in the window’s
title bar.” This makes the menus look a
lot more like Windows. The system still
automatically hides the menu, but it stays
on the window instead of the top of the
display. Programs in Ubuntu do not typically
have “Close” or “Exit” buttons. Changes
take effect immediately in many cases. The
other thing I found different is the lack of
a scroll bar on windows. The scroll tool
automatically hides. It is at the right side of
each window and pops up if you hover the
cursor above it. Once it displays, it operates
similarly to a Windows scroll bar.

We use the command console for most
software development tasks in Linux. This
is a holdover from old Unix days. Select the
ClassicMenu icon/Utilities/Terminal to bring
up a command window. One really nice
feature of the terminal is that it remembers
your command history even across power
cycles.

We need to install a lot of software
developer programs at this point. First, we
need the cross compiler, arm-linux-gnueabi-
gcc, and associated tools. Ubuntu was
installed with the native x86 version of the
compiler, but we need the ARM version for
the BeagleBone. The command to do this is:
sudo apt-get install gcc-arm-linux-gnueabi
You can think of “sudo” as meaning “do
this command as super user.” It changes
your security permission from normal
user to super user for the next 15 minutes.
Only super users are allowed to do certain
operations, such as install new software.
This is another mechanism to keep you from
accidentally killing your computer. After you
type the command, the computer will ask
you for your password.

Next, you need to get Eclipse, which is an
IDE (integrated development environment)
for building programs. This is the same
IDE that we saw when we used Code
Composer for the Texas Instruments
DSP board. The command here is:
sudoapt-getinstall eclipseeclipse-cdt g++ gcc
This gets and installs the Eclipse IDE and the
plugin for C development as well as updating
the g++ and gcc compilers in case they are
out of date. We need a few more utilities:
sudo apt-get install git build-essential 1zop
u-boot-tools

Git is a configuration management tool
that we need to use to retrieve files for the
kernel from the public repository for the
BeagleBone Linux distribution. The files are
compressed so we need the 1zop tool to
decompress those files, and we might need
the u-boot files for later operations. The next
step is to create a build directory for the Linux
kernel and other necessary software. I choose
to call it bbb_linux, but you can pick any

name you like. Do the following commands:

sudo mkdir /bbb_linux
sudo chown ray /bbb_linux
cd /bbb_linux

Of course, substitute your login name for
“ray.”’

The last operation before we can actually
do some work is to retrieve the kernel
directory tree: git clone git://github.com/
beaglebone/linux

This git command will create a new
directory /bbb_linux/linux and store the
Linux tree there. The next step is to build
the kernel. We need to build the kernel
and collect the necessary header files.
The instructions for doing that are more
complicated and not amenable to including
here. Please download the files from the
ARRL QFEX files website for a truly detailed
sequence. (See Note 2.) A big problem is that
much of what you will find on the Internet is
out of date or incomplete. My instructions
capture the errors you can uncover and how
to avoid them, at least at the time of this
writing!

Quick Start for the BeagleBone

You will want to read the quick start
instructions on the BeagleBone website.?
The most important admonition at this point
is to always use the power switch next to
the Ethernet connector to shut down the
BeagleBone. Failure to do so can leave the
power controller IC in an indeterminate state.
The first step is to plug your BeagleBone
into the PC using just the USB cable. The
BeagleBone will show up as a removable
drive with various files for Windows. You
will not be able to see the Linux file system,
though. The next step is to install the
USB driver that lets you connect to the
BeagleBone with an IP address through
USB. The IP address is always 192.168.7.2.
You can connect to the BeagleBone through
Chrome or Firefox (not Internet Explorer) by
typing in the IP address.

The next steps install a new kernel image
from the repository. Step one is to download
the latest image from the beagleboard.org
website. Store it someplace convenient like
the desktop on the PC. Next, you need to
get 7-zip from its website and install it.* Use
7-zip to convert the compressed .img.xz file
on your desktop to a 4 GB uncompressed
.img file. Get the program Win32imager
from Ubuntu. Be very careful when you
run Win32imager. It only lets you write
removable media, but if you have multiple
devices plugged in, you could accidentally
kill the wrong device. Plug the micro-SD
card into the adapter and plug that into your
PC. Use Win32imager to write the image to
the SD card.

QEX — May/June 2015 43

We Design And Manufacture
To Meet Your Requirements
*Protoype or Production Quantities

800-522-2253

This Number May Not
Save Your Life...

But it could make it a lot easier!
Especially when it comes to
ordering non-standard connectors.

RF/MICROWAVE CONNECTORS,
CABLES AND ASSEMBLIES

Specials our specialty. Virtually any SMA, N,
TNC, HN, LC, RP, BNC, SMB, or SMC
delivered in 2-4 weeks.

Cross reference library to all major
manufacturers.

Experts in supplying “hard to get” RF
connectors.

Our adapters can satisfy virtually any
combination of requirements between series.
Extensive inventory of passive RF/Microwave
components including attenuators,
terminations and dividers.

* No minimum order.

NeM\L

s Cahle & Connectors
for the Electronics Industry

NEMAL ELECTRONICS INTERNATIONAL, INC.
12240 N.E. 14TH AVENUE
NORTH MIAMI, FL 33161
TEL: 305-899-0900 ® FAX: 305-895-8178
E-MAIL: INFO@NEMAL.COM
BRASIL: (011) 5535-2368

URL: WWW.NEMAL.COM

Now is the time to connect the
infrastructure for your BeagleBone. Turn
off the BeagleBone. Disconnect the USB
cable from the PC. Attach a micro-HDMI
cable from the board to your monitor (you
might need a HDMI to DVI adapter), a USB
hub, a keyboard, a mouse, and a network
cable. Insert the micro-SD card with the
new image and a 5 V power supply. This
is a place where the current instructions
on the Internet are wrong. The image is
not set up to automatically copy the new
image from the SD card into the internal
eMMC flash drive. You need to navigate to
Applications/Accessories and double click
on LXTerminal. You need to change to the /
media/rootfs directory. Use the “sudo chown
debian boot”” command so you can save files
in the directory. Now change to the boot
directory and “sudo chown debian uEnv.txt”
so you can edit the file. The easiest way is to
navigate to the file using the file manager,
right click, and select edit. Find the line that
begins “#cmdline=init=/opt” and remove the
“#”. Save the file. Shutdown the BeagleBone
and restart it. The new image should take
hold of the boot process and you will see the
various operations on the monitor. Once it
finishes, the system will power off, so you
know it is finished. The uEnv.txt file will be
removed from the rootfs/boot directory so
you do not have to worry about the process
happening twice. You can see which install is
active on your BeagleBone by the command
“cat /opt/dogtag”.

Plans for Next Time
My inspiration for the next step is the
yearly scheduled transmissions from the

Alexanderson alternator in Sweden, which
transmits every year on the last Sunday in
June or first Sunday in July (Alexanderson
Day) on 17.2 kHz. I tried unsuccessfully
to listen for it during a special transmission
event on February 13, 2015. I am hoping to
have a minimal SDR up and running to listen
for it this summer. The system will use the
BeagleBone, the LCD, and an audio codec. It
should also be useful for listening to WWVB
on 60 kHz. I was able to copy WWVB quite
easily from the parking lot at work in Cedar
Park, TX (an Austin suburb) using an old
tube based test receiver.

Notes

"Thin film transistor (TFT) is a special type
of LCD in which each pixel of the display
is controlled by an individual transistor
deposited on the glass surface. All LCD TV
screens use TFT glass. A consequence of
the way TFT works is that it requires a con-
stant refresh of the data to be displayed, a
horizontal clock, a vertical clock, and a pixel
clock. These clocks create a signal that is
very similar to a standard analog TV signal.
The Sitarra processors include internal
hardware that produces these signals with
no software involvement.

2The program listings and other various files
associated with this article are available for
download from the ARRL QEX files website.
Go to www.arrl.org/gexfiles/ and look for
the file 5x15_Mack_SDR.zip.

3The top level of support for the BeagleBone
Black is found at www.beagleboard.org.
The newest image for the BeagleBone is
found at www.beagleboard.org/latest-
images.

“You can find more information about the
7-Zip program, and download the program
file at www.7-zip.org.

% A Forum for Communications Experimenters Subscription Order Card

QEX features technical articles, columns, and other items of interest to radio amateurs and communications
professionals. Virtually every part of the magazine is devoted to useful information for the technically savvy.

Subscribe Today: Toll free 1-888-277-5289 « On Line www.arrl.org/QEX

Subscription Rates: 1 year (six issues)
ARRL MEMBER: for ARRL Membership rates and benefits go to www.arrl.org/join

[JUS $24.00 []US via First Class $37.00 []Intl. & Canada by air mail $31.00

NON MEMBER:

[JUS $36.00 []US via First Class $49.00 []Intl. & Canada by air mail $43.00
[JRenewal []New Subscription

Name: Call Sign:

Address:

City: State: ZIP: Country:

[JCheck []Money Order [] Credit Card Monies must be in US funds and checks drawn on a US Bank

Charge to: [] W

Account #:

SE)

Exp. Date:

Signature:

44 QEX May/June 2015

Published by:
ARRL, 225 Main St,
Newington, CT 06111-1494 USA

Contact circulation@arrl.org
with any questions or go to
www.arrl.org

Web Code: QEC

Project #350

