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SDR Simplified: Demystitying
PID Control Loops

The real story behind how a Proportional-Integral-Differential (PID)
control loop works. Ray gives insights into how to build one
and tune it for reasonable operation.

An Introduction to Closed Loop
Control

We use closed loop control all the time in
Amateur Radio. Regulated power supplies,
phase locked loops, and oven control of
crystal oscillator temperature are a few
examples. All of these systems follow the
block diagram shown in Figure 1. The goal
is to control a physical property and maintain
it at some value. Figure 2 shows the classic
plot of the three types of step response of
a controlled system can exhibit. The most
stable (but not necessarily most desirable)
response is over-damped response. This is
the same response you get with a step in
voltage on a simple RC circuit. It approaches
the target voltage slowly until the difference
between desired and actual is essentially
zero. A faster response is the critically
damped response. This is the response you
get in an RLC circuit with extremely low
Q. The resistance is so large that oscillations
cannot get started. The fastest response
possible is with an under-damped system.
This is the same response you get in an RLC
system with some moderate value of Q. The
trade off in this system is significant cycles
of oscillation above and below the desired
value early in the response but with a rapid
convergence to the desired value. The other
trade-off is that the initial overshoot can be
substantial.

Before the advent of computer circuit
analysis, it was easiest to design circuits
in the frequency domain using Laplace
transforms to turn capacitors and inductors
into poles and zeros in the frequency
analysis. By moving poles and zeros around,
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Figure 1 — Block diagram of a typical control feedback system.
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Figure 2 —The response curves of the classic control loop responses. £&=0.5 shows the under
damped response, £=1.0 shows a critically damped response, and £&=1.5 shows an over
damped responses.

QEX May/June 2016 39


Mark
Typewritten Text
Copyright (C)2016 ARRL, All Rights Reserved.


you could modify the circuit response from
over-damped, to critically-damped, or even
to under-damped. The design process of
creating a system with poles and zeroes is
pretty daunting — but engineers still work
this way when the situation fits.

The Full PID Loop

As in all electronics systems, you can
evaluate operation in either the frequency
domain or the time domain. You can do a
lot of mathematical manipulations to convert
an analog circuit with several capacitors —
and occasionally an inductor or two — into
a basic formula that has a single integral
term, a single proportional term, and a single
derivative term — a proportional-integral-
derivative or PID loop. Its form looks like
this:

Control Voltage = a_[error(t)dt

+ bxerror(t) @
. d[error(t)]
dt

Don’t tune out if this equation means
absolutely nothing to you, it is really quite
simple as we will see.

Figure 3 shows an op-amp circuit that
implements a hardware system with the
performance of Eq. (1), and implements
the control equation block from Figure 1.
The top op-amp implements the integral
term with the a parameter set by the ratio
of C1/R1. The middle op-amp is a standard
inverting amplifier where b is set by the ratio

of R3/R2. The bottom op-amp implements
the derivative term where c is set by the ratio
of R4/C2. Op-amps work by converting the
feedback current into a voltage. In these
amplifiers, the input current is equal to the
feedback current. The top op-amp performs
an integrator function because the output will
charge or discharge the capacitor C1 as long
as the error voltage is not equal to zero. The
voltage across a capacitor is the integral of
the current through the capacitor. When the
error voltage goes to zero the voltage on the
capacitor will stay at some value. Likewise,
the bottom op-amp implements a derivative
function because the current through a
capacitor (C2) is equal to the derivative of the
voltage across it. If the input voltage does not
change, then no current flows and the output
of the op-amp is zero. The final amplifier is
a summing amplifier with a gain of -1, so the
whole system implements Eq. (1). In a real
circuit, it may be possible to combine one
or more of the circuits around an op-amp
to make the circuit simpler, but it helps our
illustration to see each term implemented
individually.

The Proportional Part

It is possible to implement only a subset
of a PID loop. I have used many loops that
needed only the proportional and integral
terms because the system was so slow
that the differential term added nothing to
performance. Of course, the simplest PID
loop uses only the proportional term (a
and c of Eq. (1) are zero). The problem for
purely proportional control is that it requires
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Figure 3 — A representative op-amp circuit that implements the PID control.
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that we know the exact transfer function to
describe the difference between the set point
and the feedback from the driving function.
If the system drifts or external factors alter
the transfer function, the system will have
some small amount of error that is set by the
proportional term gain. The error can be made
small by increasing the proportional term
gain, but the system is likely to overshoot the
set point during transients. For this reason,
control loops almost never operate in just
proportional mode.

The Integral Part of PID

In many systems, we want the error to
be as close to zero as possible when the
system is in control. The integral portion
of the PID equation provides that feature.
Oddly, I have never seen this explanation
in any control text book! In fact, when the
system is in control, only the integral portion
drives the output; the proportional term is
exactly zero. The integral term ramps up to
the required drive voltage slowly over time
— where “slowly” is relative to your system
operation — so that the error becomes zero.
This allows the proportional term to operate
more quickly to bring the system back into
control if something knocks the system out
of control. In general, we try to have the
proportional term do its work about 10 times
faster than the integral portion. The integral
term supplies an adaptive feature to the PID
loop that will compensate for external and
internal drift or error.

The Differential Part of PID

Some systems need to respond very
quickly to either a step change of the set
point or an external push from stability. The
differential term provides that quick but
short-duration “kick” to push the system
close to equilibrium. In general, we design the
integral term to be slowest, the proportional
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Figure 4 — A plot of power vs. ambient
temperature for the OCXO control loop.
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Figure 5 — A schematic showing a clamp of the integral function in an analog implementation.
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Figure 6 — The schematic of an example sampled PID control loop.

term to be ten times faster, and the differential
term to be ten times faster than proportional
term. The differential term is most useful in a
system where a large, quick (but short), drive
will move the system almost immediately
closer to the control point. An example is
a motor driven system like anti-lock brakes

where putting a short 10x overdrive pulse of
current through the motor will quickly move
the actuator. In order for the differential term
to be useful, the drive system must have
significant overdrive capability compared to
the amount of drive normally needed by the
proportional and integral terms for slower
control changes.

A (More or Less) Real Example

It helps to understand how things work
if we can see how to implement a real
system. Let’s see how we would implement
a heater for an oven controlled crystal
oscillator (OCXO) that is designed to keep
the crystal at 60° C £ 0.1° C. The first piece
of information is the plot of the amount of
heat in watts that is required to maintain the
crystal at a given temperature relative to a
constant ambient temperature (Figure 4).

Next we need to implement the feedback
system to control the temperature. While
we could implement the system with
op-amps, this type of system is more easily

implemented with a small microcontroller
that has an on-board ADC for input and a
PWM port for output. Using a computer
allows us to create the control loop as a
sampled system that directly implements
the PID equation. Sampled systems do
not actually implement an integrator or
differentiator. Instead they approximate
those functions as a sum of samples and
difference between samples, but the results
are essentially identical to integration and
differentiation if we sample fast enough.

There is a feature of the integral function
for both the op-amp and also the sampled
systems that may not be obvious. The integral
can grow to be either a very large positive or
very large negative number if the error exists
for any length of time. The op-amp integrator
has a physical limitation: the output cannot
exceed the positive rail or the negative rail.
Once the output reaches the rail value, it is
limited or saturated. We will look at tuning
the integral term later, but for now we look at
a way to limit the integral saturation to some
value less than the rail. In an op-amp, we
can use diodes to clamp the output to a value
less than the rail as shown in Figure 5. In a
sampled computer system, we can implement
the “clamp” in software. Clamping the
integral term is necessary especially in slow
systems such as our heater example.
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Listing 1

/****************************

The control loop function that implements
PID control of an OCXO
*****************************/
#define PROPORTIONAL PARAMETER 4
#define INTEGRAL PARAMETER 2
#define DIFFERENTIAL PARAMETER 0
// differential value turned off by setting to zero.
// Set to positive value to implement differential action
#define INTEGRAL RAIL 100
#define NEG INTEGRAL RAIL -100
// maximum or minimum value that the integral term can
// attain. This limits overshoot for very large excursions.
void PID_control_ loop (int target ADC_reading)
{
int error, ADC value;
int integral accumulator, integral term;
int differential term, last error;
int proportional term;
int timer value;
int PWM_value;

integral accumulator = 0;
while (1) // an infinite control loop
{
// sit here and burn cycles until the next sample time
while (TimerLoadGet (TIMERO BASE, TIMER A) != 0)
{} // empty loop
// restart the timer
TimerLoadSet (TIMERO BASE, TIMER A, 10000) ;
ADC value = read ADC(); // a helper function that reads the ADCO pin.
error = target ADC reading - ADC value;
proportional term = PROPORTIONAL PARAMETER * error;
integral accumulator += INTEGRAL_ PARAMETER * error;
if (integral accumulator > INTEGRAL RAIL)
integral accumulator = INTEGRAL RAIL;
else if (integral accumulator < NEG INTEGRAL RAIL)
integral accumulator = NEG INTEGRAL RAIL;
integral term = integral accumulator;
differential term = DIFFERENTIAL PARAMETER * (last error - error);
last _error = error;
PWM value = proportional term + integral term + differential term;
if (PWM value > 400)
PWM value = 400;
else if (PWM value < 0)
PWM_value = 0;
PWMPulseWidthSet (PWM BASE, PWM OUT 0, PWM value) ;
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Implementing and Tuning

I implemented the example for this
explanation using a Texas Instruments Tiva
129 Launchpad because it is an inexpensive
and capable system that has the peripherals
needed for the control loop: an ADC, a
PWM, and a timer. Additionally, you can
set the Code Composer Studio to a mode
that displays debug print in the console, so
you do not need a serial connection to the
target while debugging. Code Composer
also comes with a set of functions that mirror
the internal ROM functions for controlling
the peripherals. These functions really make
writing software much easier!

Figure 6 shows a schematic of the
example heater control that could be used for
an OCXO. My experimental setup uses the
150 Q resistor to provide up to 1 W of heat
with a 12.6 V power supply. The resistor is
placed on one side of a cube of aluminum
0.5 inch per side and the thermistor is
placed opposite the heating resistor. The two
resistors and the aluminum are enclosed in
plank foam shipping material to insulate the
assembly from ambient. The next step is to
determine the set point. I chose an Ametherm
1 k Q NTC thermistor with response curve
B. From the table of relative resistance vs.
temperature, we get 318 Q at 60 °C. This
means the feedback voltage will be 1.21 V
when the system is in control. Note that we
need to limit the input voltage to a value less
than 3.3 V using the bipolar transistor. The

target ADC value is (1.21/3.30) x 4096 or
1638. The example PWM setup from the
Tiva 129 data sheet uses a 10 MHz clock to
set the PWM frequency to 25 kHz and gives
a range of 0 — 400 for the PWM value. The
Launchpad uses a 25 MHz crystal, so the
actual frequency is 62.5 kHz but still with
0—400 PWM range.

Listing 1 shows the sequence of software

Errata

commands that implements the PID loop.
It is quite simple. Step one, wait for 10 ms
timer to elapse. This sets the loop to operate
with a constant 10 ms sample period. Step
two reads the ADC and compares against the
target to determine the error value. The next
step calculates each of the three parts of the
PID equation and generates the control value.
The last step applies the control value to the
PWM hardware. The full set of software
including the hardware configuration is
available on the QFXfiles web page, www.
arrl.org/qexfiles, as well as from dsp-radio-
resources.info.

Tuning the loop is a lot easier if you have
a laptop to watch the output while you put
the assembly in your refrigerator and freezer.
Start with the assembly sitting on your desk,
which is pretty close to 22 °C. Place the
assembly in the foam insulation and close
it. Start the system running and watch the
error value in the console of Code Composer
Studio. The error will start out positive and
approach zero. You will know how well
the system is working by whether the error
change slows a lot when close to zero or
goes right past zero to become negative. This
process can take quite a while depending
on the thermal mass of your system. You
can adjust the integral parameter larger or
smaller to set one of the classic responses.
The proportional parameter also affects the
response. Setting the proportional parameter
too large can cause the system to oscillate
because it overcompensates for small errors.
In most systems a critically damped response
provides the best compromise. That means
that the integral term is modest as is the
proportional term. You could use an upside
down “microduster” or other cold source to
give a cold spike to the system to investigate
how adding a differential term can rapidly
bring the system back into control after a
spike of hot or cold.

Correcting the Formula for Return Loss in the ANSI Standard

Edward Wetherhold, W3NQN, IEEE Life Member, reports that a correction was approved
to the equation for Return Loss in the ANSI/EIA-364-108-2000 Standard. The correction
places a minus sign before the original and incorrect equation to make the resultant and
corrected Return Loss (dB) to be positive. The corrected equation is,

Return Loss = —20log,, | I |=—-20log,, | s11]

where I" = 511 is the voltage reflection coefficient.
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