
  QEX  May/June 2016   39 

Ray Mack, W5IFS

17060 Conway Springs, Austin, TX 78717: w5ifs@arrl.net

SDR Simplified: Demystifying 
PID Control Loops

The real story behind how a Proportional-Integral-Differential (PID) 
control loop works. Ray gives insights into how to build one 

and tune it for reasonable  operation. 

An Introduction to Closed Loop 
Control

We use closed loop control all the time in 
Amateur Radio. Regulated power supplies, 
phase locked loops, and oven control of 
crystal oscillator temperature are a few 
examples. All of these systems follow the 
block diagram shown in Figure 1. The goal 
is to control a physical property and maintain 
it at some value. Figure 2 shows the classic 
plot of the three types of step response of 
a controlled system can exhibit. The most 
stable (but not necessarily most desirable) 
response is over-damped response. This is 
the same response you get with a step in 
voltage on a simple RC circuit. It approaches 
the target voltage slowly until the difference 
between desired and actual is essentially 
zero. A faster response is the critically 
damped response. This is the response you 
get in an RLC circuit with extremely low 
Q. The resistance is so large that oscillations 
cannot get started. The fastest response 
possible is with an under-damped system. 
This is the same response you get in an RLC 
system with some moderate value of Q. The 
trade off in this system is significant cycles 
of oscillation above and below the desired 
value early in the response but with a rapid 
convergence to the desired value. The other 
trade-off is that the initial overshoot can be 
substantial.

Before the advent of computer circuit 
analysis, it was easiest to design circuits 
in the frequency domain using Laplace 
transforms to turn capacitors and inductors 
into poles and zeros in the frequency 
analysis. By moving poles and zeros around, 
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Figure 1 – Block diagram of a typical control feedback system.
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Figure 2 – The response curves of the classic control loop responses. x=0.5 shows the under 
damped response, x=1.0 shows a critically damped response, and x=1.5 shows an over 
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you could modify the circuit response from 
over-damped, to critically-damped, or even 
to under-damped. The design process of 
creating a system with poles and zeroes is 
pretty daunting — but engineers still work 
this way when the situation fits.

 
The Full PID Loop

As in all electronics systems, you can 
evaluate operation in either the frequency 
domain or the time domain. You can do a 
lot of mathematical manipulations to convert 
an analog circuit with several capacitors — 
and occasionally an inductor or two — into 
a basic formula that has a single integral 
term, a single proportional term, and a single 
derivative term — a proportional-integral-
derivative or PID loop. Its form looks like 
this:

( )

( )
[ ( )] .

Control Voltage a error t dt

b error t
d error tc

dt

=

+ ×

+

∫
 		

Don’t tune out if this equation means 
absolutely nothing to you, it is really quite 
simple as we will see.

Figure 3 shows an op-amp circuit that 
implements a hardware system with the 
performance of Eq. (1), and implements 
the control equation block from Figure 1. 
The top op-amp implements the integral 
term with the a parameter set by the ratio 
of C1/R1. The middle op-amp is a standard 
inverting amplifier where b is set by the ratio 

of R3/R2. The bottom op-amp implements 
the derivative term where c is set by the ratio 
of R4/C2. Op-amps work by converting the 
feedback current into a voltage. In these 
amplifiers, the input current is equal to the 
feedback current. The top op-amp performs 
an integrator function because the output will 
charge or discharge the capacitor C1 as long 
as the error voltage is not equal to zero. The 
voltage across a capacitor is the integral of 
the current through the capacitor. When the 
error voltage goes to zero the voltage on the 
capacitor will stay at some value. Likewise, 
the bottom op-amp implements a derivative 
function because the current through a 
capacitor (C2) is equal to the derivative of the 
voltage across it. If the input voltage does not 
change, then no current flows and the output 
of the op-amp is zero. The final amplifier is 
a summing amplifier with a gain of ‑1, so the 
whole system implements Eq. (1). In a real 
circuit, it may be possible to combine one 
or more of the circuits around an op-amp 
to make the circuit simpler, but it helps our 
illustration to see each term implemented 
individually.

The Proportional Part
It is possible to implement only a subset 

of a PID loop. I have used many loops that 
needed only the proportional and integral 
terms because the system was so slow 
that the differential term added nothing to 
performance. Of course, the simplest PID 
loop uses only the proportional term (a 
and c of Eq. (1) are zero). The problem for 
purely proportional control is that it requires 

that we know the exact transfer function to 
describe the difference between the set point 
and the feedback from the driving function. 
If the system drifts or external factors alter 
the transfer function, the system will have 
some small amount of error that is set by the 
proportional term gain. The error can be made 
small by increasing the proportional term 
gain, but the system is likely to overshoot the 
set point during transients. For this reason, 
control loops almost never operate in just 
proportional mode.

The Integral Part of PID
In many systems, we want the error to 

be as close to zero as possible when the 
system is in control. The integral portion 
of the PID equation provides that feature. 
Oddly, I have never seen this explanation 
in any control text book! In fact, when the 
system is in control, only the integral portion 
drives the output; the proportional term is 
exactly zero. The integral term ramps up to 
the required drive voltage slowly over time 
— where “slowly” is relative to your system 
operation — so that the error becomes zero. 
This allows the proportional term to operate 
more quickly to bring the system back into 
control if something knocks the system out 
of control. In general, we try to have the 
proportional term do its work about 10 times 
faster than the integral portion. The integral 
term supplies an adaptive feature to the PID 
loop that will compensate for external and 
internal drift or error.

The Differential Part of PID
Some systems need to respond very 

quickly to either a step change of the set 
point or an external push from stability. The 
differential term provides that quick but 
short-duration “kick” to push the system 
close to equilibrium. In general, we design the 
integral term to be slowest, the proportional 
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Figure 3 – A representative op-amp circuit that implements the PID control.
Figure 4 – A plot of power vs. ambient 

temperature for the OCXO control loop.

QX1605-Mac04

10 20 30 40 50 60
Ambient Temperature, degrees C

0.0

0.2

0.4

0.6

0.8

1.0

1.2

O
ve

n 
he

at
er

 P
ow

er
, W

(1) 



  QEX  May/June 2016   41 

term to be ten times faster, and the differential 
term to be ten times faster than proportional 
term. The differential term is most useful in a 
system where a large, quick (but short), drive 
will move the system almost immediately 
closer to the control point. An example is 
a motor driven system like anti-lock brakes 
where putting a short 10× overdrive pulse of 
current through the motor will quickly move 
the actuator. In order for the differential term 
to be useful, the drive system must have 
significant overdrive capability compared to 
the amount of drive normally needed by the 
proportional and integral terms for slower 
control changes.

A (More or Less) Real Example
It helps to understand how things work 

if we can see how to implement a real 
system. Let’s see how we would implement 
a heater for an oven controlled crystal 
oscillator (OCXO) that is designed to keep 
the crystal at 60° C ± 0.1° C. The first piece 
of information is the plot of the amount of 
heat in watts that is required to maintain the 
crystal at a given temperature relative to a 
constant ambient temperature (Figure 4).

Next we need to implement the feedback 
system to control the temperature. While 
we could implement the system with 
op-amps, this type of system is more easily 

Figure 5 – A schematic showing a clamp of the integral function in an analog implementation.
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Figure 6 – The schematic of an example sampled PID control loop.

implemented with a small microcontroller 
that has an on-board ADC for input and a 
PWM port for output. Using a computer 
allows us to create the control loop as a 
sampled system that directly implements 
the PID equation. Sampled systems do 
not actually implement an integrator or 
differentiator. Instead they approximate 
those functions as a sum of samples and 
difference between samples, but the results 
are essentially identical to integration and 
differentiation if we sample fast enough.

There is a feature of the integral function 
for both the op-amp and also the sampled 
systems that may not be obvious. The integral 
can grow to be either a very large positive or 
very large negative number if the error exists 
for any length of time. The op-amp integrator 
has a physical limitation: the output cannot 
exceed the positive rail or the negative rail. 
Once the output reaches the rail value, it is 
limited or saturated. We will look at tuning 
the integral term later, but for now we look at 
a way to limit the integral saturation to some 
value less than the rail. In an op-amp, we 
can use diodes to clamp the output to a value 
less than the rail as shown in Figure 5. In a 
sampled computer system, we can implement 
the “clamp” in software. Clamping the 
integral term is necessary especially in slow 
systems such as our heater example.
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Listing 1

/****************************
The control loop function that implements
PID control of an OCXO
*****************************/
#define PROPORTIONAL_PARAMETER  4
#define INTEGRAL_PARAMETER 2
#define DIFFERENTIAL_PARAMETER 0 
// differential value turned off by setting to zero. 
// Set to positive value to implement differential action
#define INTEGRAL_RAIL  100
#define NEG_INTEGRAL_RAIL -100
// maximum or minimum value that the integral term can 
// attain. This limits overshoot for very large excursions. 

void PID_control_loop(int target_ADC_reading)
{
int error, ADC_value;
int integral_accumulator, integral_term;
int differential_term, last_error;
int proportional_term;
int timer_value;
int PWM_value;

  integral_accumulator = 0;
  while (1) // an infinite control loop
  {
    // sit here and burn cycles until the next sample time
    while (TimerLoadGet(TIMER0_BASE, TIMER_A) != 0)
    {} // empty loop
    // restart the timer
    TimerLoadSet(TIMER0_BASE, TIMER_A, 10000); 
    ADC_value = read_ADC(); // a helper function that reads the ADC0 pin.
    error = target_ADC_reading – ADC_value;
    proportional_term = PROPORTIONAL_PARAMETER * error;
    integral_accumulator += INTEGRAL_PARAMETER * error;
    if (integral_accumulator > INTEGRAL_RAIL)
        integral_accumulator = INTEGRAL_RAIL;
    else if (integral_accumulator <  NEG_INTEGRAL_RAIL)
        integral_accumulator = NEG_INTEGRAL_RAIL;
    integral_term = integral_accumulator;
    differential_term = DIFFERENTIAL_PARAMETER * (last_error – error);
    last_error = error;
    PWM_value = proportional_term + integral_term + differential_term;
    if (PWM_value > 400)
        PWM_value = 400;
    else if (PWM_value < 0)
       PWM_value = 0;
    PWMPulseWidthSet(PWM_BASE, PWM_OUT_0, PWM_value);
  }

}
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Implementing and Tuning
I implemented the example for this 

explanation using a Texas Instruments Tiva 
129 Launchpad because it is an inexpensive 
and capable system that has the peripherals 
needed for the control loop: an ADC, a 
PWM, and a timer. Additionally, you can 
set the Code Composer Studio to a mode 
that displays debug print in the console, so 
you do not need a serial connection to the 
target while debugging. Code Composer 
also comes with a set of functions that mirror 
the internal ROM functions for controlling 
the peripherals. These functions really make 
writing software much easier! 

Figure 6 shows a schematic of the 
example heater control that could be used for 
an OCXO. My experimental setup uses the 
150 W resistor to provide up to 1 W of heat 
with a 12.6 V power supply. The resistor is 
placed on one side of a cube of aluminum 
0.5 inch per side and the thermistor is 
placed opposite the heating resistor. The two 
resistors and the aluminum are enclosed in 
plank foam shipping material to insulate the 
assembly from ambient. The next step is to 
determine the set point. I chose an Ametherm 
1 k W NTC thermistor with response curve 
B. From the table of relative resistance vs. 
temperature, we get 318 W at 60 °C. This 
means the feedback voltage will be 1.21 V 
when the system is in control. Note that we 
need to limit the input voltage to a value less 
than 3.3 V using the bipolar transistor. The 
target ADC value is (1.21/3.30) × 4096 or 
1638. The example PWM setup from the 
Tiva 129 data sheet uses a 10 MHz clock to 
set the PWM frequency to 25 kHz and gives 
a range of 0 – 400 for the PWM value. The 
Launchpad uses a 25 MHz crystal, so the 
actual frequency is 62.5 kHz but still with 
0 – 400 PWM range.

Listing 1 shows the sequence of software 

commands that implements the PID loop. 
It is quite simple. Step one, wait for 10 ms 
timer to elapse. This sets the loop to operate 
with a constant 10 ms sample period. Step 
two reads the ADC and compares against the 
target to determine the error value. The next 
step calculates each of the three parts of the 
PID equation and generates the control value. 
The last step applies the control value to the 
PWM hardware. The full set of software 
including the hardware configuration is 
available on the QEXfiles web page, www.
arrl.org/qexfiles, as well as from dsp-radio-
resources.info.

Tuning the loop is a lot easier if you have 
a laptop to watch the output while you put 
the assembly in your refrigerator and freezer. 
Start with the assembly sitting on your desk, 
which is pretty close to 22  °C. Place the 
assembly in the foam insulation and close 
it. Start the system running and watch the 
error value in the console of Code Composer 
Studio. The error will start out positive and 
approach zero. You will know how well 
the system is working by whether the error 
change slows a lot when close to zero or 
goes right past zero to become negative. This 
process can take quite a while depending 
on the thermal mass of your system. You 
can adjust the integral parameter larger or 
smaller to set one of the classic responses. 
The proportional parameter also affects the 
response. Setting the proportional parameter 
too large can cause the system to oscillate 
because it overcompensates for small errors. 
In most systems a critically damped response 
provides the best compromise. That means 
that the integral term is modest as is the 
proportional term. You could use an upside 
down “microduster” or other cold source to 
give a cold spike to the system to investigate 
how adding a differential term can rapidly 
bring the system back into control after a 
spike of hot or cold.
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Errata
Correcting the Formula for Return Loss in the ANSI Standard

Edward Wetherhold, W3NQN, IEEE Life Member, reports that a correction was approved 
to the equation for Return Loss in the ANSI/EIA-364-108-2000 Standard. The correction 
places a minus sign before the original and incorrect equation to make the resultant and 
corrected Return Loss (dB) to be positive. The corrected equation is,

where G = s11 is the voltage reflection coefficient. 

Return Loss s= − = −20 20 1110 10log | | log | |Γ




