Copyright

Scotty Cowling, WA2DFI

(C)2014 ARRL, All

Rights

P O Box 26843, Tempe, AZ 85285; scotty @tonks.com

Reserved

Hardware Building Blocks
for High Performance
Software Defined Radios

The author explores some alternative hardware for software defined radio use.

Low-cost, highly capable digital
hardware is proliferating everywhere.
Do names like Arduino, Beagle Board,
Raspberry Pi, BeMicro or SoCkit mean
anything to you? Is this some kind of secret
code that has to do with very small Italian
dogs that eat spherical fruit for breakfast?
Not hardly! While the first three are names
of low-cost embedded microcontroller
(MCU) boards, the last two represent their
counterparts in the world of programmable
hardware. Wait, you say; microcontrollers
are programmable hardware. This is true,
but what makes BeMicro and SoCkit boards
different is that they each contain a Field

Programmable Gate Array (FPGA). See the
“MCU Versus FPGA” sidebar for a look
at the differences between an MCU and an
FPGA.

An MCU executes instructions from
a pre-defined instruction set in sequential
order; the hardware is fixed, but the sequence
of instructions is programmable. An FPGA,
on the other hand, has no fixed instruction
set or sequence of instructions, operates on
data in parallel and has programmable logic
and interconnections. Software defined
radio (SDR) implementations can benefit
greatly from the FPGA parallel hardware
architecture.

And Now for Something Completely
Different — A Software Defined
Radio!

A few RF boards can be added to
standard, off-the-shelf digital development
kits to build a high-performance software
defined radio. What these SDRs lack in
polish, they make up for in performance.
When you assemble a collection of
boards, some of which were designed for a
completely different purpose than building
an SDR, what you end up with may not look
pretty. If performance is your goal, however,
you will not be disappointed.

QX1407-Cowling01 Antenna
n Digital Data Streams
Digital Data Packets
C t

omputer | sDRstick Tx2
r-—-———~~>"~"~"~"~"~"~"~~"~"~"~"~""~"¥"~"~"~ ~ T ~—T T T T T T T T T T T T —— a - ..
| | Transmitter
I I
I I
I) I
! Graphical | o | Ethemetnic 1 > | BEMICROCV-A9
I ser hn - or USB I/F I - Data Engine
I Interface I
\ \ Y
I I
I I
e | - SDRstick HF2

I Receiver
User Interface (Ul) Section Data Engine Section RF Section

Figure 1 — An example of functional SDR sections.

28 QEX - July/August 2014

Mark
Typewritten Text
Copyright (C)2014 ARRL, All Rights Reserved

I will present a hardware overview of the
BeMicro series (BeMicro, BeMicroSDK,
BeMicroCV and BeMicroCV-A9) FPGA
development boards and the SoCkit System-
on-a-Chip (SoC) FPGA development board,
along with the SDRstick™ RF front-end
boards necessary to transform them into a
full-fledged digital down conversion receiver
or a digital up conversion transmitter, or both
at the same time!

Together, these boards make several
different configurations of very high-
performance digital down conversion/digital
up conversion radios possible for only
moderate cost.

System Functional Categories

We can break an SDR system down into
three main functional categories (see Figure
1 for an example), starting from the operator
and working our way toward the antenna:

1) User interface (UI)

2) Data engine

3) RF section (receiver front-end,
transmitter strip)

This is definitely a simplified view, but
still useful. Common SDR processes such as
decimation, modulation and demodulation,
digital filtering, data formatting and so on,
are not necessarily confined to any one of
the above broad functional categories. We
will touch on these processes later on, but
we will not dwell on the technical details.
We will piece together our SDR and leverage
the work others have already done to make
it work.

The User Interface — 31 Flavors?

Theuserinterface comes in many varieties:
for different radios (such as openHPSDR, RF
Space SDR-IQ™, FlexRadio Systems Flex-
6000™); for different operating systems
(Windows, Linux, MAC OS, Android); and
for different specialized uses (such as GNU
Radio, CW Skimmer, QtRadio). I have
lumped these all into one category because
they have one thing in common: they are the
interface between the human and the radio.
In reality, these software programs and the
computers that run them perform many
more tasks than just their one self-described
function. In general, the user interface also
performs modulation and demodulation,
digital filtering, time-domain to frequency-
domain conversion (for waterfall and
panadapter displays), and control of all radio
hardware and hardware DSP functions. As
we shall see, some of these functions may
be performed in the data engine, or split
between the user interface and data engine.
In either case, the functions are already coded
and working. All we have to do is connect
them properly.

The Data Engine — Heavy Lifting

The data engine is the bridge between
two data domains. On one side is the freshly
digitized data from the receive portion of the
RF section or the digital data stream destined
to be converted to analog RF in the transmit
portion of the RF section. On the other side
is the data to and from the user interface,
which is typically some type of computer.
Notice that there are no analog components
to the data; the conversion between analog
signals and digital data takes place in the RF
section (and sometimes in the user interface
section in the case of microphone or receiver
audio). The data engine deals strictly with
digital data.

Since the data coming from the RF section
(samples from the receiver’s ADC, for
example) is in a different format than the data
that is destined for the user interface section,
the data engine must perform this conversion.
The same is true for the outgoing data stream
coming from the user interface section and
ultimately destined for conversion to an
analog transmit signal by the transmit DAC.
The communications interface on the user
interface side of the data engine in common
SDRs today is either USB or Ethernet. Both
USB and Ethernet use packets to transfer
data, and since the raw data from ADCs or
to DACs are in streams, packetization and
de-packetization of the data must also be
performed by the data engine.

The data engine may simply re-format
raw data into packets (or packets into raw
data), but often times the available data
bandwidth on the user interface side does
not match the required bandwidth on the
RF section side. In the case of a low rate
receiver ADC sending data over a high speed
interface to the user interface, or a high speed
interface from the user interface sending data
to a low rate transmit DAC, the solution is
easy since the packetized nature of USB and
Ethernet allow idle periods where no data is
sent. In the opposite case (high rate ADC to
low speed interface or low speed interface
to high rate DAC), receive data will be lost
(user interface over-run), or the transmitter
DAC will be starved for data (RF interface
under-run). For example, in the HF2 digital
down conversion receiver described later,
the 16-bit ADC clocked at 122.88 MHz
produces almost 2 Gbit/s of raw data. This
data rate far exceeds the capacity of both high
speed USB 2.0 at 480 Mbit/s and Gigabit
Ethernet at 1 Gbit/s. The fact that both USB
and Ethernet have packet overhead only
makes the problem worse. The solution is
implemented in the data engine hardware.

In the receive path, the data engine simply
throws some of the data away. This is done
in the digital domain by a process known
as decimation. The key to building a useful

receiver is to know which data to keep. That
is determined by the center frequency of
the receiver display bandwidth. This is the
digital equivalent of the local oscillator in a
super heterodyne receiver. An explanation
of the mathematics behind decimation is
beyond the scope of this article, but there are
excellent references.!-2

In the transmit path, the raw data from
the user interface is digitally up-converted to
a full-bandwidth data stream and sent to the
DAC in the RF section. This is accomplished
using digital mixing, again determined by the
center frequency of the transmit bandwidth.
This center frequency is analogous to the
local oscillator in a mixer type transmitter.

The RF Section — Still Analog After
All These Years

The RF section is the interface between
the outside world of RF and the digital world
of, well, the rest of the radio! Any receiver
front-end protection, filters or attenuators
are included in this section, along with
transmitter filters, power amplification and
antenna switching. Most of these functions
may also be performed in the digital portion
of the SDR, at least to a limited extent. There
are some things, however, that must be done
in the analog hardware. An SDR is supposed
to be a digital radio, so why can’t we do
everything digitally?

One reason is simple, and it also applies
to conventional all-analog radios. The
maximum ratings of the devices connected
to the antenna port of the radio must not
be exceeded. The other reason applies to
SDR receivers, but generally not to all-
analog receivers. Any signals above the
Nyquist frequency must be prevented from
reaching the input to the receiver ADC.
(The Nyquist frequency in a digital down
conversion receiver is half the ADC sample
clock frequency.) What happens when either
of these rules is violated depends on the
particular SDR design, but performance is
invariably compromised in some way.

Electrostatic discharge protection devices
should be used at the antenna input to
protect front-end components, and internal
analog attenuators can prevent large input
signals from overloading analog low-noise
amplifiers (LNAs) or ADC inputs. Of course,
attenuators reduce the amplitude of all
signals, making them less useful than filters
in some situations.

There are two reasons to use analog
filters in an SDR. The first and foremost is
to prevent any components in the front end
from saturating, including active attenuators,
low-noise amplifiers or ADC inputs. Once
saturation occurs, devices behave in a
non-linear fashion; no amount of digital

"Notes appear on page 40.

QEX — July/August 2014 29

processing is likely to correct this. Filters
used for this purpose can be either internal
or external, or both. SDRs operated in the
presence of strong in-band signals (such
as near a powerful broadcast station) or
connected to very large antennas may need
external filters to prevent front-end overload,
but many SDRs need no front-end overload
filtering at all.

The second reason to use analog filtering
is to prevent any signals above the Nyquist
frequency from reaching the input to the
ADC. Image signals above the Nyquist
frequency will fold back, or alias, onto
signals below the Nyquist frequency. Once
this happens, the two signals (the desired
signal and the image signal) will become
indistinguishable from each other. This type
of filter is called an anti-aliasing filter, and is
most often internal to the SDR.

Data Engines

The SDRstick™ RF boards currently
support three different data engines, and more
if you include other FPGA development
kits with HSMC expansion connectors.
The data engines that I will discuss are all
manufactured by Arrow Electronics.

BeMicro — Not Quite Enough

The introduction of the first Field
Programmable Gate Array (FPGA) System
Development Kit created the potential
for inexpensive, easy to build (read: plug
together) Software Defined Radios. While
I can only guess at which one was the first
one, the BeMicro FPGA development kit
(Figure 2) was one of the first.

The original BeMicro FPGA development
kitused an Altera EP3C16 Cyclone IIl FPGA
containing about 16 K logic elements (logic
elements). The small BeMicro PCB also
sported a 16 MHz clock oscillator, 256 K
x 16 bit static memory (SRAM), 8 user-
programmable LEDs, a USB programming/
power port and an 80 pin micro-edge

connector (MEC) for I/O. Arrow designed the
BeMicro as a showcase for the Altera NIOS
II embedded soft-core CPU (see the side
bar), and even provided lab materials with
design examples to help beginning FGPA
users get started quickly. The design tools
are all free and downloadable from
the Altera website: www.altera.com/
products/software/sfw-index.isp. The
major drawback of the original BeMicro
was the lack of any kind of high-speed
communications interface. The only two
external interfaces on the BeMicro are
the USB port and the 80 pin micro-edge
connector.

The BeMicro USB interface uses an
FTDI interface chip. The FTDI interface chip
can only operate at USB low or full-speed
bit rates (1.5 or 12 Mbps, respectively). It
connects directly to the dedicated FPGA
serial programming (JTAG) port rather than
general purpose FPGA pins. This makes it
difficult for the FPGA programmer to use
the USB port for acommunications interface.

The BeMicro general-purpose I/Ointerface
on the 80-pin micro-edge connector could
be used for a high-speed communications
interface. As you will see later, however, we
need all 80 of these pins for the interface to
the RF portion of our SDR. All in all, the
BeMicro qualifies as a resounding “almost
enough” hardware platform.

Along comes BeMicroSDK

The successor to the BeMicro, called
the BeMicroSDK (the suffix stands for
System Development Kit), added enough
functionality to the somewhat limited
original BeMicro to advance it from the
“almost enough” to “now it is possible”
SDR data engine category.® Let’s see what
the designers added to make BeMicroSDK
(Figure 3) a viable SDR data engine.

For starters, BeMicroSDK sports a
10M/100M Ethernet port. We now have
a relatively high-speed communications
interface, at least compared to full-speed
USB. Ethernet supports routable data
packets and is as ubiquitous as USB on
modern desktop and laptop computers. The
memory size is increased from 512 Kbytes to
64 Mbytes, and changed to DDR SDRAM.
A micro-SD memory card socket and a
temperature sensor have been added, as well
as three push-button and two slide switches.
These last few items are not of much use to
us in building an SDR data engine, but the
Ethernet and DDR memory sure are! In the
excitement, I almost forgot to mention the
FPGA upgrade: the 16 K logic elements
Cyclone III has been replaced by the newer
and larger 22 K logic elements Cyclone IV, an
EP4ACE22 device. The BeMicroSDK became
the data engine for the first SDRstick™ SDR.

Figure 3 —The BeMicroSDK, with an Ethernet port, makes a good SDR data engine.

30 QEX - July/August 2014

BeMicroCV-A9 - More Logic Elements,
Anyone?

The evolution of the BeMicro line
continued with the introduction of the
BeMicroCV (where the suffix stands for
Cyclone V).* While this is an interesting
board (see Figure 4), in many ways it is a
step backwards from the BeMicroSDK. It
has a newer, but barely larger 25 K logic
elements Cyclone V 5CEA2 device in
place of the older Cyclone IV. The biggest
problem for SDR use is the substitution of
64 GPIO pins on two 40 pin headers for
the Ethernet port. While lots of I/O pins
are useful for many things, even 64 of them
cannot make up for the loss of the Ethernet
port. If the BeMicroCV is not suitable
for use as an SDR data engine, why do I
even mention it? The answer lies in the
successor to the BeMicroCV, called the
BeMicroCV-A9.

The BeMicroCV-A9 (Figure 5) is
different from the BeMicroCV in only two
ways, but these two differences make the A9
(as it is called for short) an ideal SDR data
engine. The first change is the re-purposing
of 19 of the GPIO pins to add a Gigabit
Ethernet port. This is a blazing fast channel
for communicating with the user interface.
The other change is to the FPGA. The A9
board uses (not surprisingly) a Cyclone V
SCEA9, with 301 K logic elements! 1t is the
largest member of the Cyclone V CE series,
and perfectly suited to the job of SDR data
engine. Now that we have two candidates for

the job of data engine, you might think that
we can move on to the RF section. But wait,
not so fast; we have one more board that has
something to offer the SDR builder.

CPU+FPGA - SoCKkit to me!

There is more to life than bread alone,
and more to an SDR data engine than just
the raw number of logic elements in its
FPGA. There is a new kid on the block
that offers the best of both the FPGA world
and the MCU world. It is called the system
on a chip field programmable gate array,
mercifully abbreviated SoC FPGA. This
relatively new class of programmable device
integrates both an FPGA and an ARM
processor on the same silicon chip. The
processor portion of Altera’s SoC FPGA is
called the hard processor system, or HPS
for short. The term hard refers to the fact
that the processor is hard-coded into the
silicon, and not built by interconnecting
programmable logic elements the way a soft-
core processor is made. The hard processor
system runs much faster than a soft-core
processor and requires a smaller area on the
silicon die. The hard processor system of
the Cyclone V SoC FPGA in our next data
engine runs at 800 MHz, whereas most soft-
core processors are limited to a clock rate of
around 300 MHz.

In a clever combination of the SoC
abbreviation and the last word in the term
system development kit, Arrow Electronics’
SoC FPGA board is called SoCkit.> This
somewhat obscure reference to a 1960s TV

—5—

)CV“A =

e

AERAe MN\OWe

comedy show sketch does not escape older
readers, I am sure. Young squirts can check
Note 6.

The SoCkit board is built on a much
larger form factor than the BeMicro series
of data engines (see Figure 6). SoCkit’s
larger physical size allows room for far more
features than we have seen so far on our
candidates for SDR data engine duty. Here is
a partial feature list:

e Altera Cyclone V SoC FPGA with
110 K logic elements and dual-core ARM
Cortex-A9 CPU

o Two banks of DDR3 SDRAM (2 GByte
total)

¢ Gigabit Ethernet port

e High Speed Mezzanine Connector
(HSMC) expansion connector

e MicroSD Card connector

o USB serial port

¢ USB 2.0 OTG port

* USB Blaster programmer

¢ 128 x 64 pixel LCD display

e Video DAC with VGA connector

¢ Audio CODEC with line out/line in/mic
in connectors

o8 each: LEDs, pushbutton switches,
slide switches

This is an impressive list of features for
a board that costs under $300!” Although
Gigabit Ethernet is included, as well as a
microSD card socket, there is no micro-
edge connector like there is on every
BeMicro series board. We will have to
connect our RF boards to the high speed

Figure 4 — BeMicroCV — No Ethernet port makes this one a non-starter for SDR.

QEX — July/August 2014 31

B2

Zephyr
Engineering

pmeW#ww B
" BeMicroCV-A9 ATERAe N\TWo

Figure 5 — BeMicroCV-A9, The Ultimate SDR data engine?

Figure 6 — SoCkit board with AD1 adapter, HF2 receiver and TX2 transmitter.

32 QEX - July/August 2014

mezzanine connector (HSMC) instead. The
HSMCMEC-ADI adapter card (AD1 for
short) was designed for this specific purpose
(see Figure 7). The AD1 adapter plugs onto
the high speed mezzanine connector port
of virtually any development board (many
off-the-shelf FPGA development boards
have them) and provides two micro-edge
connectors, one male and one female. The
male, or board-edge connector accepts HF1
or HF2 receiver boards, while the female
socket accepts the TX2 transmitter board.
(More on the RF boards in the next section.)
The ADI1 performs level translation, since
high speed mezzanine connector voltage
levels can be 1.8 V, 2.5 V or 3.3 V, while
the micro-edge connector RF boards all use
3.3 V signaling. The ADI1 also provides
separate receive and transmit connectors,
allowing the TX2 transmitter to be used with
the HF1 or HF2 receiver boards. Speaking of
receivers, let’s move on now to discuss the
RF section of our SDR.

Receivers

There are two models of SDRstick™
micro-edge connector-compatible receiver
boards: UDPSDR-HF1 and UDPSDR-HF2.
The less expensive HF1 front-end (Figure 8
and Figure 9) performs decently, and employs
a 14 bit ADC sampling at 80 mega samples
per second. Paired with a BeMicroSDK
or BeMicroCV-A9, the HF1 makes a fully
functional 100 kHz to 30 MHz receiver. The
TX2 transmitter cannot be used to make the
system into a transceiver, since there is no
micro-edge connector expansion connector
on the HF1 receiver.

The high-performance HF2 receiver
(Figure 10 and Figure 11) incorporates the
same components and a similar architecture
to the receive section as the openHPSDR
Hermes board.®® A Crystek CVHD-950
extremely low phase noise oscillator clocks
the 16-bit LTC2208 ADC at 122.88 MHz.
A programmable O to 31 dB step attenuator
(Mini-Circuits DAT-31-SP+) ahead of the
LTC6400-20 20 dB gain differential ADC
driver helps prevent overload. The HF2
receiver board has a transmit expansion
micro-edge connector for the TX2 transmitter
board described in the next section. The HF2/
TX2 combination (along with a suitable data
engine) makes a complete transceiver. Table
1 shows a comparison of the features of the
two receiver boards.

Transmitter

The TX2 transmitter (Figure 12 and
Figure 13) uses the same components and
a similar architecture to the transmit section
of the openHPSDR Hermes board (see
Note 9). The TX2 uses an Analog Devices

(

Figure 7 —The AD1 high speed mezzanine connector to micro-edge connector adapter
board.

[
&
=
3
e
€
&
M
s
=
I
=
5
=
=
=
=
=
=
=
=
&
=
&
=
&

Figure 8 —The HF1 100 kHz to 30 MHz receiver.

What is a Virtual Receiver?

SDR receivers are built from parallel FPGA logic and software programs that
perform mathematical operations (digital signal processing, or DSP) on a raw
stream of data from an ADC. The processed digital data stream can be routed to
client software for further processing or converted back to the analog domain to
drive a speaker. The same raw data stream may feed multiple instances of DSP
hardware and software, and each DSP instance can be independently configured
(for example, center frequency, modulation type, filtering, and so on). Each one
of these instances of DSP hardware and software is called a virtual receiver
(FlexRadio Systems calls it a “Slice Receiver”) It is virtual because the receiver
exists as a series of programmed processes rather than analog hardware, such as
mixers and oscillators. Even though it is virtual, a virtual receiver is still implemented
in hardware; it uses digital logic in place of analog components.

QEX — July/August 2014 33

QX1407-Cowling09 PWR ———

- ADC
Low-Pass Anti Alias Driver 14b @ 80 MSPS
Filter Filter ADC

30 MHz 30 MHz 4

j | 20dB ADC T

A

External %

Antenna { o \

Y

Y

ESD 80 MHz

PROT :
) CLKOUT

UDPSDR-HF1 14 bits @ 80 MSPS SEL OSC

BeMicroSDK or BeMicroCV-A9 or HSMCMEC-AD1 (80 pins)

CLKIN

: 5 kHz []
Audio
- Q—' A\ T|°2

14b @ 50 KSPS Reconstruction -

Serial DAC - Headphone ||
Filter Driver

Y

Phones

Figure 9 — HF1 receiver block diagram.

H
J
>
oz
235
==
oz
a

BhEL6Z18
dn
8022911

Figure 10 —The high-performance HF2 100 kHz to 55 MHz receiver board.

34 QEX - July/August 2014

ADC

31 dB Step Low-Pass Dri Anti Alias 16b @ 122.88 MSPS
Attenuator Filter river Filter ADC ®
DATA
External 3 SMA 40 MHz 40 MHz g =
Antenna ¢ »| ATTEN — j — | 20 j = ADC o °
| 1 - =
]]
A b | A oA
L_: Optional l__j
ESD I LNALPF
PROT| | = b==—m——- - N
122.88 MHz)
o s 5V : \ 122_88 MHZ
w7 rRec |+ 33va / >
+ DRV_CLK_OUT_N
VCXO_CTL
»| REG [33VD -
ATN_SEL :j
7
BEMICRO_PWR
EXT SMA SINE TO EXT_OSC_10 MHZ
osc { >l sar -
IN 5
CODEC ,
7
UDPSDR-HF2 16 bits @ 122.88 MSPS _
LEFT
Audio o
- Codec RIGHT

QX1407-Cowling11

BeMicroSDK or BeMicroCV-A9 or HSMCMEC-AD1 (80 pins)

Phones

Figure 11 — HF2 receiver block diagram.

z ZEPHYR
ENGIN(ER-NG
- O

Figure 12 —The TX2 transmitter plugs into either the AD1 adapter or the HF2 receiver.

QEX — July/August 2014

35

10 3 SMA TR
RXIN
Low-Pass A Anti Alias 14b @ 210 MSPS
Filter 1] Filter DAC
SMA 52 MHz 40 MHz DATA
External . _ . ,
Antenna i —| —\ |<—>| TR] — DAC |- 4
T/R Switch A A
CLK
12VPA
LVL DAC/ALC
PWM |-
REG
1 5V BEMICRO_PWR
13.8VDC } . - H
PWRIN ¢ | SMPS »| REG { 33V
3
PTT/PADDLE L
7/
o 5
Q CODEC ,
2 7
E
o
(@]
N MIC AUD
< =
g — | Audio 2
5 Codec MIC BIAS JUMPER .
BLOCK [
- PTT
- 2
DOT/DASH ,

UDPSDR-TX2 14 bits @ up to 210 MSPS

BeMicroSDK or BeMicroCV-A9 or HSMCMEC-AD1 (80 pins)

Mic

Key

AD9744ARU 14 bit, 210 mega samples per
second differential-output-current DAC. A
two-stage transformer-coupled differential
PA supplies 500 mW to the output connector
through a 52 MHz low pass filter and a PIN-
diode T/R switch. An on-board +5 V switch
mode power supply accepts a wide range
DC input (9 V to 18 V) and provides enough
current to power an HF2 receiver and
either a BeMicroSDK or BeMicroCV-A9
data engine. The TX2 sells for $179 from
iQuadLabs.®

Amplifiers

The QRPp level of 500 mW may be
enough some of the time, but there are other
times when you need to trade in your slippers
for a pair of boots (speaking in the RF sense,
of course). The two options that I describe
here are by no means the only viable ones.
The first QRO solution is the Hardrock-50
HF power amplifier kit.!" This kit (Figure
14) is a 5 W input, 50 W output 160 m
through 6 m amplifier, but you can add a
10 dB gain, 5 W pre-driver board to make
it a perfect match for the 500 mW output of
the TX2 transmitter. There is an internal auto
tuner in the works, and harmonic filtering is

36 QEX - July/August 2014

Figure 13 —TX2 transmitter block diagram.

Figure 14 —The Hardrock-50 HF power amplifier kit covers 160 m through 6 m.

already designed into the amplifier. The TX2
transmitter has an amplifier keying output
that can be used to switch the Hardrock-50,
or it can be done via RF detection (carrier
operated).

TAPR offers the Pennywhistle 18 W
power amplifier as a kit and the Alex TX low-
pass filter board assembled. Pennywhistle
(Figure 15) will produce 16 W to 20 W of
power from 500 mW of drive from 160 m
through 6 m.'?> Pennywhistle requires
harmonic filtering at its output, which can be
provided by the Alex TX low-pass filter board
(Figure 16)." The TX2 amplifier keying
output can be used to control Pennywhistle,
but there is no control port to control the Alex
filter selection. An external manual controller
or an interface to a computer or the data
engine must be built to perform this function.
Both the SoCkit and the BeMicroCV-A9
have extra I/O pins that can be used for
this purpose; the BeMicroSDK does not. If
you are clever, you can figure out a way to
re-purpose unused LED or switch I/O pins on
the BeMicroSDK, since you only need two
outputs to control Alex-TX.

Systems

Making an SDR
Now that we have discussed all of the
pieces, let’s assemble them into an SDR.
I will examine three SDR configurations,
each built from the components described

ALEX TX Ver P1.1

above. To do this, we must focus not
on the individual blocks, but on section
interconnections, shown as horizontal lines
between the three sections shown in Figure 1.

In all three example SDRs, the physical
connection between the user interface and
the data engine is Ethernet cable. Physical
connection is easy, but to get the user
interface and the data engine to understand

C38 C54 Cés C75

k7 O W] y10 BT (a2 0[] yqc0 [T
5 |

1P \
el

.:]J‘ v,j"sjj’

W o
c2e c38 Cc53 Ccé5

@_KESH 2010

each other over this connection requires a bit
more effort. To make this work, we will use
a standard protocol over the wire called User
Datagram Protocol (UDP). A datagram is
made up of a header (which contains routing
information and a checksum, among other
things) and a block of user data. It is up to the
originator of each datagram (the source) to
place the bytes of user data into the datagram

Cc79

K18 [

Py

TF-MRQ.
£322822

Figure 16 —The Alex transmit low-pass filter board handles harmonic suppression.

QEX — July/August 2014 37

User

=+ 1z |_EDS

w
n
)
@
o)
=
(8]
w
@

| ED4 :

Figure 17 — A complete cost-effective SDR receiver: BeMicroSDK with HF1.

in the order that the receiver of the datagram
(the destination) expects. For this to work,
the designers of the user interface and the
designers of the data engine agree to organize
the data within the block of user data in a
pre-defined order. Just to confuse things even
more, this definition is also called a protocol.
For example, the openHPSDR version of
PowerSDR™ uses openHPSDR Ethernet
Protocol formatted data blocks. The upshot
of all of this is that the data engine must
build UDP packets that the user interface can
understand. There are many different user
interfaces and many different data engines,
so how can this possibly work? As Paul
Simon said, “would you explain about the 50
ways...”"* Let’s look at three ways.

The ExtIO.dll Method

The High Definition Software Defined
Radio (HDSDR) software user interface is
a good example of a straightforward way
for a single user interface to talk to many
different data engines.’* The designers of
HDSDR defined their data block format and
wrote their user interface to recognize it.
They wrote their code to accept an extension
program called ExtIO.dll. This extension sits
logically in between their user interface and
the data engine and reformats data blocks
from the data engine into standard HDSDR
format data blocks. Each SDR designer
writes a simple ExtIO.dll to convert his data
format to HDSDR data format (and back)
and includes this software with the SDR.
The SDRstick™ radios come with an ExtIO.
dll for HDSDR.

Customize Your Data Engine

Another way for one data engine to
talk to many different user interfaces is to
just program it that way. The “P” in FPGA
stands for “programmable,” so just program
the data engine to format the data blocks
for whatever user interface you want to use
today. If the FPGA in the data engine has
enough resources (like the BeMicroCV-A9
has, for example), program it to recognize
the user interface and automatically format
the data for that particular program. The
SDRstick™ does this, too! When HDSDR or

38 QEX - July/August 2014

Table 1

Comparison of the SDRstick™ HF1 and HF2 Receiver Boards

HF1
Receive frequency range
Antenna connector SMA
Front-end attenuator -

LPF
Pre-ADC gain 20dB
ADC LTC2249, 14-bit at 80 Msps

ADC clock source TCXO or FPGA
Receive audio
GPSDO reference input --
Transmitter expansion
micro-edge connector --

Cost'® $169

100 kHz to 30 MHz

RLP-30+ and anti-alias

LTC2641 Audio DAC

HF2

100 kHz to 55 MHz
SMA

0-31dB, 1dB steps
RLP-40+ and anti-alias
20dB

LTC2208, 16-bit at 122.88 Msps
Crystek CVHD-950 VCXO
TLV320AIC23B CODEC
10 MHz

yes
$399

PowerSDR™ user interfaces are started (other
user interfaces do this, too), they broadcast
a special packet to the network called a
Discovery Packet. SDR data engines are
designed to reply to this Discovery Packet by
returning their network address and radio ID
back to the user interface. Since the Discovery
Packet also identifies the user interface, (and
thus, the data format type that it understands),
the data engine can use this information
to decide what format to send back. For
example, if PowerSDR™ sends a Discovery
Packet to an SDRstick™ data engine,
SDRstick™ responds with openHPSDR
Ethernet format packets. If HDSDR sends
a Discovery Packet to an SDRstick™ data
engine, SDRstick™ responds with its native
format packets, which are then converted to
HDSDR native format by the SDRstick™
ExtIO.dll converter.

Customize Your user interface

A third way to hook the data engine and
user interface together is to write your own
user interface. While this may seem like a
difficult solution (and it is not trivial), software
can come to the rescue. The GNU Radio
project might be the solution that you are
looking for. For a GNU Radio receiver, the
data engine formats data in its native mode.
The SDR designer writes some software called
a GNU Radio Source Block that converts the
native mode data format into a standard GNU

Radio format. Once the data is in this format,
it can be used anywhere within GNU Radio to
build custom radio software. (In the transmit
direction, the interface is called a Sink Block.)
GNU Radio has a learning curve to it, but
it is an extremely powerful tool with which
to build custom SDR user interfaces and
applications. SDRstick™ radios come with
GNU Radio Source and Sink Blocks. Please
refer to “Digital Signal Processing and GNU
Radio Companion” by John Petrich, W7FU,
and Tom McDermott, NSEG, in this issue of
QEX for Part 1 of an in-depth look at GNU
Radio.'

Data Engine to RF Hardware

Connecting the RF front ends to the
data engine is simple, since the boards are
designed to plug together. A brief description
of the interface follows. The HF1/HF2
receiver interface from the ADC is made
up of parallel data, an ADC clock and an
overflow bit. The TX?2 transmitter interface
to the DAC is also parallel data and a DAC
clock. The CODEC (for receive audio) and
the RF step attenuator on the HF1/HF2
receivers and the CODEC (for microphone
audio) on the TX2 transmitter are each
digitally interfaced to the data engine. The
data engine uses several general purpose
input/output (GPIO) pins for things like PTT,
paddle dot and dash inputs and ADC and
clock buffer control. The HF1 (Figure 9),

©2013 ZEPhY!
UDPSOR HF2

MADE_ !
n

Figure 18 — A complete high-performance SDR transceiver: BeMicroCV-A9 with HF2/TX2.

HF2 (Figure 11) and TX2 (Figure 13) block
diagrams show the connections.

Receiver with BeMicroSDK and HF1

The most cost effective SDR platform is
the receive-only BeMicroSDK data engine
paired with the HF1 receiver (Figure 17).
This creates an Ethernet-based receiver that
covers 100 kHz to 30 MHz with 1.25 MHz
receive bandwidth. This is wide enough to
see the entire MW broadcast band on-screen
in the panadapter display. It is also wide
enough to fully display any of the Amateur
Radio bands below 28 MHz, or enough of
the 10 m band to display all of the activity on
any one mode. This receiver costs just over
$200, and is a good place to get your feet
wet in FPGA-based SDR. This is by far the
least expensive Ethernet-based, broadband
SDR available. The FPGA program available
for BeMicroSDK/HF1 does native UDP
format at 1.25 MHz and 384 kHz receive
bandwidths and Hermes UDP format at
384 kHz bandwidth, both receive only.

Transceiver with BeMicroCV-A9, HF2
and TX2

The most exciting SDR platform
is the High-performance HF2 receiver
married up with the TX2 transmitter and
the BeMicroCV-A9 data engine (Figure
18). Truly remarkable SDR functionality
becomes possible with the sheer amount of
logic present in the A9 data engine’s FPGA
and the Gigabit Ethernet interface to move
data. To put this into perspective, the A9
data engine contains nearly eight times as
many logic elements as the Hermes FPGA.
While Hermes is limited to about seven
virtual receivers, the A9 data engine has no
such limitation. (See the “What is a Virtual
Receiver?” sidebar.)

The current FPGA program available for
BeMicroCV-A9/HF2/TX?2 does native UDP
format at 1.92 MHz and 384 kHz receive
bandwidths, and Hermes UDP format at

MCU Versus FPGA

An embedded microcontroller (MCU) consists of many logic building blocks
that are each designed to perform one function. For example, it has an Arithmetic
Logic Unit (ALU), which carries out the mathematical operations specified by the
instructions in the computer software. It has a Program Counter that keeps track of
where in memory the current instruction is located. It has a Memory Management
Unit (MMU) that controls accesses to main memory. There are many of these blocks,
and each block is a collection of logic gates, memory cells, and transistor switches,
each hard-wired to perform one function, and only that function. These small blocks
are wired up into a large structure in order to make a functional MCU. This is, of
course, a simplistic explanation of how millions of transistors are wired up to form a
microcontroller, but it illustrates one main point. The MCU logic and interconnections
between these pieces of logic are fixed. The hardware is designed to fetch an
instruction and carry it out, fetch the next instruction and carry it out, repeating this
process forever. Modern MCUs do this job very fast, but they can only perform the
operations hard coded into their fixed instruction set. For example, an MCU might
have instructions for addition, subtraction or writing to main memory, but it will not
have an instruction to perform every complex mathematical operation that might be
needed. The programmer writes software to break down these custom, complex
mathematical operations into small sequential steps that each can be performed by a
pre-defined instruction from the MCU's instruction set.

An FPGA, on the other hand, has very little fixed logic and interconnections. To
illustrate this concept, let’s imagine that we can take all of the gates and memory
elements (small groups of these are called logic elements or LEs) that make up
the MCU, disconnect them from each other and spread them out in a “sea of logic
elements.” If we provide a way to connect these logic elements together in any order
we like (in other words, program the FPGA), we can create just about any function we
need. In fact, we can connect them back up just the way they were connected in the
MCU, and we have (guess what?): an MCU! This is what is called a soft-core processor.
One FPGA manufacturer — Altera — has a pre-programmed soft-core processor called
NIOS I, but it is not the only one that we can make out of our sea of gates. A soft-core
processor is not as efficient as an MCU, since all the logic interconnections take up
space on the FPGA chip, making it bigger, and thus, more expensive to make. All the
programmable logic interconnects also slow the soft-core processor down because they
introduce more delay than the fixed logic interconnects of the MCU.

Soft-core processors are interesting and useful, but they are not the main attraction
of FPGAs. Remember that MCUs execute instructions serially? FPGAs can perform
their logic functions in parallel. Imagine that | need to perform 10 additions. Even with
in-line coding (no loop), it will take the MCU 10 instructions to do this, and more if the
20 addends must be fetched from memory first. If the MCU runs at 100 MHz (10 ns
per clock cycle), and we assume that each instruction takes one clock cycle, it will
take at least 100 ns to perform the 10 additions. If | program 10 adders into the FPGA,
| can perform all 10 additions at the same time, requiring only one clock cycle to
obtain all 10 sums. This is a simplistic example, but consider that even small FPGAs
have tens of thousands of logic elements, and logic elements number in the millions in
large FPGAs. FPGA hardware parallelism creates remarkable capability to implement
algorithms that can benefit from this parallelism.

QEX — July/August 2014 39

g ’ —J
ABBINANENE
Digital

Communications

Make your reservations now for three days of |
learning and enjoyment at the Austin Marriott |
South hotel. The Digital Communications
Conference schedule includes technical and
introductory forums, demonstrations, a
Saturday evening banquet and an in-depth
Sunday seminar. This conference is for
everyone with an interest in digital
communications— beginner to expert.

Call Tucson Amateur Packet
Radio at: 972-671-8277, or go
online to www.tapr.org/dcc

T
[

LS il

TR |

(] oo LI 7 |
HIIIIIIL R A
m,ulllg [W I
| .un(ll)"

! I’
]y LS

i o] e
[T o MMM

TN

384 kHz receive bandwidth. This only hints
at what is possible. For instance, eleven
virtual receivers can be designed into the
FPGA logic, one for each of the Amateur
bands, 160 m through 6 m. The full spectrum
of every HF Amateur band (and the lowest
VHF one, too!) can be simultaneously
displayed. Using appropriate software,
eleven users could connect to this radio,
and each user would have a virtual receiver.
Admittedly, such FPGA code and software
does not yet exist. Now that hardware is
available to support such features, however,
the firmware and software are possible. The
BeMicroCV-A9 is a prototype now, but
should be available by the time you read this.

Transceiver with SoCkit, AD1, HF2
and TX2

The most flexible SDR platform
replaces the BeMicroCV-A9 with the
SoCkit development board and the ADI1
adapter (Figure 6). The SoCkit board FPGA
contains fewer logic elements than the
A9 board (110 K versus 301 K), but it has
something the A9 does not: a dual-core ARM
processor. With this processor (and the other
SoCkit on-board resources), we can run an
embedded operating system, such as Linux.
Linux brings with it things like a full TCP/
IP stack, software control of packet data
formatting and easy application development
(compared to FPGA applications), among
other things. The current FPGA program
available for SoCkit/AD1/HF2/TX2 does
native UDP format at 1.92 MHz and 384 kHz
bandwidths, and Hermes UDP format at
384 kHz bandwidth.

The same virtual receiver scenario is
possible with the SoCkit data engine that is
possible with the A9, but other possibilities
open up with the addition of Linux to the
system. For example, we could write a
server application to serve data up directly to
remote clients. We can run this application
right on the SoCkit board’s local processor,
eliminating the computer normally necessary
to perform this task. We have made an
“NAR,” or Network Attached Radio! While
I have just coined this term, you can bet that
the concept is already here!

Conclusion

Advanced, high-performance hardware
is available off-the shelf at reasonable
cost. FPGA code is currently available
to perform basic functions, while more
advanced features are either planned or left
to the user to implement. Some open-source
FPGA example code is available, and can be
used as a starting point for developers and
experimenters.”” There are lots of SDR user
interfaces to choose from, many under current
development and some are open source.

Notes

'Steven W Smith, The Scientist and
Engineer’s Guide to Digital Signal
Processing, ISBN 0966017633, available for
free download at: dspguide.com.

2Many DSP references can be found here:
dspguru.com/dsp/links/books/online.

3Arrow Electronics BeMicroSDK information:
arrownac.com/solutions/bemicro-sdk.

“Arrow Electronics BeMicroCV information:
parts.arrow.com/item/detail/arrow-
development-tools/bemicrocv.

5Arrow Electronics SoCkit board information:
arrownac.com/solutions/sockit.

5Comedians on the TV show Rowan and
Martin’s Laugh-In used the term “sock it to
me,” typically followed by a dousing with a
bucket of water. See en.wikipedia.org/wiki/
Rowan_&_Martin%27s_Laugh-In.

’SoCkit ordering information: parts.arrow.
com/item/search/#st=sockit;renMeR.

8Scotty Cowling. WA2DFI, “The High
Performance Software Defined Radio
Project,” QEX, May/June 2014, pp 3-13.

SHermes SDR information: openhpsdr.org/
wiki/index.php?title=HERMES.

°HF1, HF2, TX2 and AD1 boards may be
purchased from iQuadlabs.com.

""Hardrock-50 amplifier information:
hobbypcb.com.

2TAPR Pennywhistle kits: tapr.org/kits_pw.

STAPR Alex Filter boards: tapr.org/kits_alex.

"“Paul Simon, 1975: en.wikipedia.org/
wiki/50_Ways_to_Leave_Your_Lover.

HDSDR web page is: hdsdr.de.

8John Petrich, W7FU, and Tom McDermott,
N5EG, “Digital Signal Processing and GNU
Radio Companion: An Easy Way to Include
DSP in Your Radio Projects,” Part 1, QEX,
Jul/Aug, Part 2, QEX, Sep/Oct 2014.

"Hermes FPGA code is open-source:
svn.tapr.org.

Scotty Cowling, WA2DFI, was first
licensed in 1967 as WN2DFI, and has been
continuously active since that time. An Extra
Class licensee and ARRL Life Member; Scotty
is active while mobile on HF CW and on
APRS. He is an advisor for Explorer Post
599, a BSA affiliated ham club for teens in
the Phoenix, Arizona area. He also enjoys
minimalist QRP operating. He has participated
in every ARRL Field Day since 1968!

Scotty has been involved in the openHPSDR
project for the last 8 years, and has served
on the TAPR Board of Directors (2006-2012)
and as TAPR Vice President (2011-2012). He
is active in the production of openHPSDR
components and with other TAPR projects. He
is a co-founder of iQuadLabs, LLC, a supplier
of openHPSDR systems and other Software
Defined Radio components, and is President
of Zephyr Engineering, Inc, an engineering
consulting firm.

Scotty’s professional specialty is FPGA
and embedded systems hardware design. He
designed his first project with a microprocessor
in 1975 and his first FPGA project was in
1987. He holds a BSEE from Rensselaer
Polytechnic Institute and an MSEE from
Arizona State University.

