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Hardware Building Blocks 
for High Performance 

Software Defined Radios
The author explores some alternative hardware for software defined radio use.

Low-cost, highly capable digital 
hardware is proliferating everywhere. 
Do names like Arduino, Beagle Board, 
Raspberry Pi, BeMicro or SoCkit mean 
anything to you? Is this some kind of secret 
code that has to do with very small Italian 
dogs that eat spherical fruit for breakfast? 
Not hardly! While the first three are names 
of low-cost embedded microcontroller 
(MCU) boards, the last two represent their 
counterparts in the world of programmable 
hardware. Wait, you say; microcontrollers 
are programmable hardware. This is true, 
but what makes BeMicro and SoCkit boards 
different is that they each contain a Field 

Programmable Gate Array (FPGA). See the 
“MCU Versus FPGA” sidebar for a look 
at the differences between an MCU and an 
FPGA.

An MCU executes instructions from 
a pre-defined instruction set in sequential 
order; the hardware is fixed, but the sequence 
of instructions is programmable. An FPGA, 
on the other hand, has no fixed instruction 
set or sequence of instructions, operates on 
data in parallel and has programmable logic 
and interconnections. Software defined 
radio (SDR) implementations can benefit 
greatly from the FPGA parallel hardware 
architecture.

And Now for Something Completely 
Different — A Software Defined 
Radio!

A few RF boards can be added to 
standard, off-the-shelf digital development 
kits to build a high-performance software 
defined radio. What these SDRs lack in 
polish, they make up for in performance. 
When you assemble a collection of 
boards, some of which were designed for a 
completely different purpose than building 
an SDR, what you end up with may not look 
pretty. If performance is your goal, however, 
you will not be disappointed.
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I will present a hardware overview of the 
BeMicro series (BeMicro, BeMicroSDK, 
BeMicroCV and BeMicroCV-A9) FPGA 
development boards and the SoCkit System-
on-a-Chip (SoC) FPGA development board, 
along with the SDRstickTM RF front-end 
boards necessary to transform them into a 
full-fledged digital down conversion receiver 
or a digital up conversion transmitter, or both 
at the same time!

Together, these boards make several 
different configurations of very high-
performance digital down conversion/digital 
up conversion radios possible for only 
moderate cost.

System Functional Categories
We can break an SDR system down into 

three main functional categories (see Figure 
1 for an example), starting from the operator 
and working our way toward the antenna:

1) User interface (UI)
2) Data engine
3) RF section (receiver front-end, 

transmitter strip)
This is definitely a simplified view, but 

still useful. Common SDR processes such as 
decimation, modulation and demodulation, 
digital filtering, data formatting and so on, 
are not necessarily confined to any one of 
the above broad functional categories. We 
will touch on these processes later on, but 
we will not dwell on the technical details. 
We will piece together our SDR and leverage 
the work others have already done to make 
it work.

The User Interface — 31 Flavors?
The user interface comes in many varieties: 

for different radios (such as openHPSDR, RF 
Space SDR-IQTM, FlexRadio Systems Flex-
6000TM); for different operating systems 
(Windows, Linux, MAC OS, Android); and 
for different specialized uses (such as GNU 
Radio, CW Skimmer, QtRadio). I have 
lumped these all into one category because 
they have one thing in common: they are the 
interface between the human and the radio. 
In reality, these software programs and the 
computers that run them perform many 
more tasks than just their one self-described 
function. In general, the user interface also 
performs modulation and demodulation, 
digital filtering, time-domain to frequency-
domain conversion (for waterfall and 
panadapter displays), and control of all radio 
hardware and hardware DSP functions. As 
we shall see, some of these functions may 
be performed in the data engine, or split 
between the user interface and data engine. 
In either case, the functions are already coded 
and working. All we have to do is connect 
them properly.

The Data Engine — Heavy Lifting
The data engine is the bridge between 

two data domains. On one side is the freshly 
digitized data from the receive portion of the 
RF section or the digital data stream destined 
to be converted to analog RF in the transmit 
portion of the RF section. On the other side 
is the data to and from the user interface, 
which is typically some type of computer. 
Notice that there are no analog components 
to the data; the conversion between analog 
signals and digital data takes place in the RF 
section (and sometimes in the user interface 
section in the case of microphone or receiver 
audio). The data engine deals strictly with 
digital data.

Since the data coming from the RF section 
(samples from the receiver’s ADC, for 
example) is in a different format than the data 
that is destined for the user interface section, 
the data engine must perform this conversion. 
The same is true for the outgoing data stream 
coming from the user interface section and 
ultimately destined for conversion to an 
analog transmit signal by the transmit DAC. 
The communications interface on the user 
interface side of the data engine in common 
SDRs today is either USB or Ethernet. Both 
USB and Ethernet use packets to transfer 
data, and since the raw data from ADCs or 
to DACs are in streams, packetization and 
de-packetization of the data must also be 
performed by the data engine.

The data engine may simply re-format 
raw data into packets (or packets into raw 
data), but often times the available data 
bandwidth on the user interface side does 
not match the required bandwidth on the 
RF section side. In the case of a low rate 
receiver ADC sending data over a high speed 
interface to the user interface, or a high speed 
interface from the user interface sending data 
to a low rate transmit DAC, the solution is 
easy since the packetized nature of USB and 
Ethernet allow idle periods where no data is 
sent. In the opposite case (high rate ADC to 
low speed interface or low speed interface 
to high rate DAC), receive data will be lost 
(user interface over-run), or the transmitter 
DAC will be starved for data (RF interface 
under-run). For example, in the HF2 digital 
down conversion receiver described later, 
the 16-bit ADC clocked at 122.88  MHz 
produces almost 2 Gbit/s of raw data. This 
data rate far exceeds the capacity of both high 
speed USB 2.0 at 480 Mbit/s and Gigabit 
Ethernet at 1 Gbit/s. The fact that both USB 
and Ethernet have packet overhead only 
makes the problem worse. The solution is 
implemented in the data engine hardware. 

In the receive path, the data engine simply 
throws some of the data away. This is done 
in the digital domain by a process known 
as decimation. The key to building a useful 

receiver is to know which data to keep. That 
is determined by the center frequency of 
the receiver display bandwidth. This is the 
digital equivalent of the local oscillator in a 
super heterodyne receiver. An explanation 
of the mathematics behind decimation is 
beyond the scope of this article, but there are 
excellent references.1, 2

In the transmit path, the raw data from 
the user interface is digitally up-converted to 
a full-bandwidth data stream and sent to the 
DAC in the RF section. This is accomplished 
using digital mixing, again determined by the 
center frequency of the transmit bandwidth. 
This center frequency is analogous to the 
local oscillator in a mixer type transmitter.

The RF Section — Still Analog After 
All These Years

The RF section is the interface between 
the outside world of RF and the digital world 
of, well, the rest of the radio! Any receiver 
front-end protection, filters or attenuators 
are included in this section, along with 
transmitter filters, power amplification and 
antenna switching. Most of these functions 
may also be performed in the digital portion 
of the SDR, at least to a limited extent. There 
are some things, however, that must be done 
in the analog hardware. An SDR is supposed 
to be a digital radio, so why can’t we do 
everything digitally? 

One reason is simple, and it also applies 
to conventional all-analog radios. The 
maximum ratings of the devices connected 
to the antenna port of the radio must not 
be exceeded. The other reason applies to 
SDR receivers, but generally not to all-
analog receivers. Any signals above the 
Nyquist frequency must be prevented from 
reaching the input to the receiver ADC. 
(The Nyquist frequency in a digital down 
conversion receiver is half the ADC sample 
clock frequency.)  What happens when either 
of these rules is violated depends on the 
particular SDR design, but performance is 
invariably compromised in some way.

Electrostatic discharge protection devices 
should be used at the antenna input to 
protect front-end components, and internal 
analog attenuators can prevent large input 
signals from overloading analog low-noise 
amplifiers (LNAs) or ADC inputs. Of course, 
attenuators reduce the amplitude of all 
signals, making them less useful than filters 
in some situations.

There are two reasons to use analog 
filters in an SDR. The first and foremost is 
to prevent any components in the front end 
from saturating, including active attenuators, 
low-noise amplifiers or ADC inputs. Once 
saturation occurs, devices behave in a 
non-linear fashion; no amount of digital 

1Notes appear on page 40.
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processing is likely to correct this. Filters 
used for this purpose can be either internal 
or external, or both. SDRs operated in the 
presence of strong in-band signals (such 
as near a powerful broadcast station) or 
connected to very large antennas may need 
external filters to prevent front-end overload, 
but many SDRs need no front-end overload 
filtering at all.

The second reason to use analog filtering 
is to prevent any signals above the Nyquist 
frequency from reaching the input to the 
ADC. Image signals above the Nyquist 
frequency will fold back, or alias, onto 
signals below the Nyquist frequency. Once 
this happens, the two signals (the desired 
signal and the image signal) will become 
indistinguishable from each other. This type 
of filter is called an anti-aliasing filter, and is 
most often internal to the SDR.

Data Engines
The SDRstickTM RF boards currently 

support three different data engines, and more 
if you include other FPGA development 
kits with HSMC expansion connectors. 
The data engines that I will discuss are all 
manufactured by Arrow Electronics.

BeMicro — Not Quite Enough
The introduction of the first Field 

Programmable Gate Array (FPGA) System 
Development Kit created the potential 
for inexpensive, easy to build (read: plug 
together) Software Defined Radios. While 
I can only guess at which one was the first 
one, the BeMicro FPGA development kit 
(Figure 2) was one of the first.

The original BeMicro FPGA development 
kit used an Altera EP3C16 Cyclone III FPGA 
containing about 16 K logic elements (logic 
elements). The small BeMicro PCB also 
sported a 16 MHz clock oscillator, 256 K 
× 16  bit static memory (SRAM), 8 user-
programmable LEDs, a USB programming/
power port and an 80  pin micro-edge 

connector (MEC) for I/O. Arrow designed the 
BeMicro as a showcase for the Altera NIOS 
II embedded soft-core CPU (see the side 
bar), and even provided lab materials with 
design examples to help beginning FGPA 
users get started quickly. The design tools 
are all free and downloadable from 
the Altera website: www.altera.com/
products/software/sfw-index.isp. The 
major drawback of the original BeMicro 
was the lack of any kind of high-speed 
communications interface. The only two 
external interfaces on the BeMicro are 
the USB port and the 80  pin micro-edge 
connector.

The BeMicro USB interface uses an 
FTDI interface chip. The FTDI interface chip 
can only operate at USB low or full-speed 
bit rates (1.5 or 12 Mbps, respectively). It 
connects directly to the dedicated FPGA 
serial programming (JTAG) port rather than 
general purpose FPGA pins. This makes it 
difficult for the FPGA programmer to use 
the USB port for a communications interface.

The BeMicro general-purpose I/O interface 
on the 80-pin micro-edge connector could 
be used for a high-speed communications 
interface. As you will see later, however, we 
need all 80 of these pins for the interface to 
the RF portion of our SDR. All in all, the 
BeMicro qualifies as a resounding “almost 
enough” hardware platform.

Along comes BeMicroSDK
The successor to the BeMicro, called 

the BeMicroSDK (the suffix stands for 
System Development Kit), added enough 
functionality to the somewhat limited 
original BeMicro to advance it from the 
“almost enough” to “now it is possible” 
SDR data engine category.3 Let’s see what 
the designers added to make BeMicroSDK 
(Figure 3) a viable SDR data engine. 

For starters, BeMicroSDK sports a 
10M/100M Ethernet port. We now have 
a relatively high-speed communications 
interface, at least compared to full-speed 
USB. Ethernet supports routable data 
packets and is as ubiquitous as USB on 
modern desktop and laptop computers. The 
memory size is increased from 512 Kbytes to 
64 Mbytes, and changed to DDR SDRAM. 
A micro-SD memory card socket and a 
temperature sensor have been added, as well 
as three push-button and two slide switches. 
These last few items are not of much use to 
us in building an SDR data engine, but the 
Ethernet and DDR memory sure are! In the 
excitement, I almost forgot to mention the 
FPGA upgrade: the 16  K logic elements 
Cyclone III has been replaced by the newer 
and larger 22 K logic elements Cyclone IV, an 
EP4CE22 device. The BeMicroSDK became 
the data engine for the first SDRstickTM SDR.

Figure 3 — The BeMicroSDK, with an Ethernet port, makes a good SDR data engine.

Figure 2 — The Original BeMicro board — not quite SDR material.
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BeMicroCV-A9 - More Logic Elements, 
Anyone?

The evolution of the BeMicro line 
continued with the introduction of the 
BeMicroCV (where the suffix stands for 
Cyclone V).4 While this is an interesting 
board (see Figure 4), in many ways it is a 
step backwards from the BeMicroSDK. It 
has a newer, but barely larger 25 K logic 
elements Cyclone V 5CEA2 device in 
place of the older Cyclone IV. The biggest 
problem for SDR use is the substitution of 
64 GPIO pins on two 40 pin headers for 
the Ethernet port. While lots of I/O pins 
are useful for many things, even 64 of them 
cannot make up for the loss of the Ethernet 
port. If the BeMicroCV is not suitable 
for use as an SDR data engine, why do I 
even mention it? The answer lies in the 
successor to the BeMicroCV, called the 
BeMicroCV-A9.

The BeMicroCV-A9 (Figure 5) is 
different from the BeMicroCV in only two 
ways, but these two differences make the A9 
(as it is called for short) an ideal SDR data 
engine. The first change is the re-purposing 
of 19 of the GPIO pins to add a Gigabit 
Ethernet port. This is a blazing fast channel 
for communicating with the user interface. 
The other change is to the FPGA. The A9 
board uses (not surprisingly) a Cyclone V 
5CEA9, with 301 K logic elements! It is the 
largest member of the Cyclone V CE series, 
and perfectly suited to the job of SDR data 
engine. Now that we have two candidates for 

the job of data engine, you might think that 
we can move on to the RF section. But wait, 
not so fast; we have one more board that has 
something to offer the SDR builder.

CPU+FPGA - SoCkit to me!
There is more to life than bread alone, 

and more to an SDR data engine than just 
the raw number of logic elements in its 
FPGA. There is a new kid on the block 
that offers the best of both the FPGA world 
and the MCU world. It is called the system 
on a chip field programmable gate array, 
mercifully abbreviated SoC FPGA. This 
relatively new class of programmable device 
integrates both an FPGA and an ARM 
processor on the same silicon chip. The 
processor portion of Altera’s SoC FPGA is 
called the hard processor system, or HPS 
for short. The term hard refers to the fact 
that the processor is hard-coded into the 
silicon, and not built by interconnecting 
programmable logic elements the way a soft-
core processor is made. The hard processor 
system runs much faster than a soft-core 
processor and requires a smaller area on the 
silicon die. The hard processor system of 
the Cyclone V SoC FPGA in our next data 
engine runs at 800 MHz, whereas most soft-
core processors are limited to a clock rate of 
around 300 MHz.

In a clever combination of the SoC 
abbreviation and the last word in the term 
system development kit, Arrow Electronics’ 
SoC FPGA board is called SoCkit.5 This 
somewhat obscure reference to a 1960s TV 

comedy show sketch does not escape older 
readers, I am sure. Young squirts can check 
Note 6.

The SoCkit board is built on a much 
larger form factor than the BeMicro series 
of data engines (see Figure 6). SoCkit’s 
larger physical size allows room for far more 
features than we have seen so far on our 
candidates for SDR data engine duty. Here is 
a partial feature list:

• Altera Cyclone V SoC FPGA with 
110 K logic elements and dual-core ARM 
Cortex-A9 CPU

• Two banks of DDR3 SDRAM (2 GByte 
total)

• Gigabit Ethernet port
• High Speed Mezzanine Connector 

(HSMC) expansion connector
• MicroSD Card connector
• USB serial port
• USB 2.0 OTG port
• USB Blaster programmer
• 128 × 64 pixel LCD display
• Video DAC with VGA connector
• Audio CODEC with line out/line in/mic 

in connectors
• 8 each: LEDs, pushbutton switches, 

slide switches
This is an impressive list of features for 

a board that costs under $300!7 Although 
Gigabit Ethernet is included, as well as a 
microSD card socket, there is no micro-
edge connector like there is on every 
BeMicro series board. We will have to 
connect our RF boards to the high speed 

Figure 4 — BeMicroCV — No Ethernet port makes this one a non-starter for SDR.
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Figure 5 — BeMicroCV-A9, The Ultimate SDR data engine?

Figure 6 — SoCkit board with AD1 adapter, HF2 receiver and TX2 transmitter.
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mezzanine connector (HSMC) instead. The 
HSMCMEC-AD1 adapter card (AD1 for 
short) was designed for this specific purpose 
(see Figure 7). The AD1 adapter plugs onto 
the high speed mezzanine connector port 
of virtually any development board (many 
off-the-shelf FPGA development boards 
have them) and provides two micro-edge 
connectors, one male and one female. The 
male, or board-edge connector accepts HF1 
or HF2 receiver boards, while the female 
socket accepts the TX2 transmitter board. 
(More on the RF boards in the next section.) 
The AD1 performs level translation, since 
high speed mezzanine connector voltage 
levels can be 1.8 V, 2.5 V or 3.3 V, while 
the micro-edge connector RF boards all use 
3.3  V signaling. The AD1 also provides 
separate receive and transmit connectors, 
allowing the TX2 transmitter to be used with 
the HF1 or HF2 receiver boards. Speaking of 
receivers, let’s move on now to discuss the 
RF section of our SDR.

Receivers
There are two models of SDRstickTM 

micro-edge connector-compatible receiver 
boards: UDPSDR-HF1 and UDPSDR-HF2. 
The less expensive HF1 front-end (Figure 8 
and Figure 9) performs decently, and employs 
a 14 bit ADC sampling at 80 mega samples 
per second. Paired with a BeMicroSDK 
or BeMicroCV-A9, the HF1 makes a fully 
functional 100 kHz to 30 MHz receiver. The 
TX2 transmitter cannot be used to make the 
system into a transceiver, since there is no 
micro-edge connector expansion connector 
on the HF1 receiver.

The high-performance HF2 receiver 
(Figure 10 and Figure 11) incorporates the 
same components and a similar architecture 
to the receive section as the openHPSDR 
Hermes board.8, 9 A Crystek CVHD-950 
extremely low phase noise oscillator clocks 
the 16-bit LTC2208 ADC at 122.88 MHz. 
A programmable 0 to 31 dB step attenuator 
(Mini-Circuits DAT-31-SP+) ahead of the 
LTC6400-20 20 dB gain differential ADC 
driver helps prevent overload. The HF2 
receiver board has a transmit expansion 
micro-edge connector for the TX2 transmitter 
board described in the next section. The HF2/
TX2 combination (along with a suitable data 
engine) makes a complete transceiver. Table 
1 shows a comparison of the features of the 
two receiver boards.

Transmitter
The TX2 transmitter (Figure 12 and 

Figure 13) uses the same components and 
a similar architecture to the transmit section 
of the openHPSDR Hermes board (see 
Note 9). The TX2 uses an Analog Devices 

Figure 7 — The AD1 high speed mezzanine connector to micro-edge connector adapter 
board.

Figure 8 — The HF1 100 kHz to 30 MHz receiver.

What is a Virtual Receiver?
SDR receivers are built from parallel FPGA logic and software programs that 

perform mathematical operations (digital signal processing, or DSP) on a raw 
stream of data from an ADC. The processed digital data stream can be routed to 
client software for further processing or converted back to the analog domain to 
drive a speaker. The same raw data stream may feed multiple instances of DSP 
hardware and software, and each DSP instance can be independently configured 
(for example, center frequency, modulation type, filtering, and so on). Each one 
of these instances of DSP hardware and software is called a virtual receiver 
(FlexRadio Systems calls it a “Slice Receiver.”) It is virtual because the receiver 
exists as a series of programmed processes rather than analog hardware, such as 
mixers and oscillators. Even though it is virtual, a virtual receiver is still implemented 
in hardware; it uses digital logic in place of analog components.
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Figure 10 — The high-performance HF2 100 kHz to 55 MHz receiver board.
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AD9744ARU 14 bit, 210 mega samples per 
second differential-output-current DAC. A 
two-stage transformer-coupled differential 
PA supplies 500 mW to the output connector 
through a 52 MHz low pass filter and a PIN-
diode T/R switch. An on-board +5 V switch 
mode power supply accepts a wide range 
DC input (9 V to 18 V) and provides enough 
current to power an HF2 receiver and 
either a BeMicroSDK or BeMicroCV-A9 
data engine. The TX2 sells for $179 from 
iQuadLabs.10

Amplifiers
The QRPp level of 500  mW may be 

enough some of the time, but there are other 
times when you need to trade in your slippers 
for a pair of boots (speaking in the RF sense, 
of course). The two options that I describe 
here are by no means the only viable ones. 
The first QRO solution is the Hardrock-50 
HF power amplifier kit.11 This kit (Figure 
14) is a 5  W input, 50  W output 160  m 
through 6 m amplifier, but you can add a 
10 dB gain, 5 W pre-driver board to make 
it a perfect match for the 500 mW output of 
the TX2 transmitter. There is an internal auto 
tuner in the works, and harmonic filtering is 
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Figure 14 — The Hardrock-50 HF power amplifier kit covers 160 m through 6 m.
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already designed into the amplifier. The TX2 
transmitter has an amplifier keying output 
that can be used to switch the Hardrock-50, 
or it can be done via RF detection (carrier 
operated).

TAPR offers the Pennywhistle 18  W 
power amplifier as a kit and the Alex TX low-
pass filter board assembled. Pennywhistle 
(Figure 15) will produce 16 W to 20 W of 
power from 500 mW of drive from 160 m 
through 6  m.12 Pennywhistle requires 
harmonic filtering at its output, which can be 
provided by the Alex TX low-pass filter board 
(Figure 16).13 The TX2 amplifier keying 
output can be used to control Pennywhistle, 
but there is no control port to control the Alex 
filter selection. An external manual controller 
or an interface to a computer or the data 
engine must be built to perform this function. 
Both the SoCkit and the BeMicroCV-A9 
have extra I/O pins that can be used for 
this purpose; the BeMicroSDK does not. If 
you are clever, you can figure out a way to 
re-purpose unused LED or switch I/O pins on 
the BeMicroSDK, since you only need two 
outputs to control Alex-TX.

Systems

Making an SDR
Now that we have discussed all of the 

pieces, let’s assemble them into an SDR. 
I will examine three SDR configurations, 
each built from the components described Figure 15 — The Pennywhistle power amplifier requires only 500 mW of drive for 18 W output.

Figure 16 — The Alex transmit low-pass filter board handles harmonic suppression.

above. To do this, we must focus not 
on the individual blocks, but on section 
interconnections, shown as horizontal lines 
between the three sections shown in Figure 1. 

In all three example SDRs, the physical 
connection between the user interface and 
the data engine is Ethernet cable. Physical 
connection is easy, but to get the user 
interface and the data engine to understand 

each other over this connection requires a bit 
more effort. To make this work, we will use 
a standard protocol over the wire called User 
Datagram Protocol (UDP). A datagram is 
made up of a header (which contains routing 
information and a checksum, among other 
things) and a block of user data. It is up to the 
originator of each datagram (the source) to 
place the bytes of user data into the datagram 
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in the order that the receiver of the datagram 
(the destination) expects. For this to work, 
the designers of the user interface and the 
designers of the data engine agree to organize 
the data within the block of user data in a 
pre-defined order. Just to confuse things even 
more, this definition is also called a protocol. 
For example, the openHPSDR version of 
PowerSDRTM uses openHPSDR Ethernet 
Protocol formatted data blocks. The upshot 
of all of this is that the data engine must 
build UDP packets that the user interface can 
understand. There are many different user 
interfaces and many different data engines, 
so how can this possibly work? As Paul 
Simon said, “would you explain about the 50 
ways…”14 Let’s look at three ways.

The ExtIO.dll Method
The High Definition Software Defined 

Radio (HDSDR) software user interface is 
a good example of a straightforward way 
for a single user interface to talk to many 
different data engines.15 The designers of 
HDSDR defined their data block format and 
wrote their user interface to recognize it. 
They wrote their code to accept an extension 
program called ExtIO.dll. This extension sits 
logically in between their user interface and 
the data engine and reformats data blocks 
from the data engine into standard HDSDR 
format data blocks. Each SDR designer 
writes a simple ExtIO.dll to convert his data 
format to HDSDR data format (and back) 
and includes this software with the SDR. 
The SDRstickTM radios come with an ExtIO.
dll for HDSDR.

Customize Your Data Engine
Another way for one data engine to 

talk to many different user interfaces is to 
just program it that way. The “P” in FPGA 
stands for “programmable,” so just program 
the data engine to format the data blocks 
for whatever user interface you want to use 
today. If the FPGA in the data engine has 
enough resources (like the BeMicroCV-A9 
has, for example), program it to recognize 
the user interface and automatically format 
the data for that particular program. The 
SDRstickTM does this, too! When HDSDR or 

Table 1
Comparison of the SDRstickTM HF1 and HF2 Receiver Boards

	 HF1	 HF2
Receive frequency range	 100 kHz to 30 MHz	 100 kHz to 55 MHz
Antenna connector	 SMA	 SMA
Front-end attenuator	 --	 0-31dB, 1dB steps
LPF	 RLP-30+ and anti-alias	 RLP-40+ and anti-alias
Pre-ADC gain	 20 dB	 20 dB
ADC	 LTC2249, 14-bit at 80 Msps	 LTC2208, 16-bit at 122.88 Msps
ADC clock source	 TCXO or FPGA	 Crystek CVHD-950 VCXO
Receive audio	 LTC2641 Audio DAC	 TLV320AIC23B CODEC
GPSDO reference input	 --	 10 MHz
Transmitter expansion
  micro-edge connector	 --	 yes
Cost10	 $169	 $399

Figure 17 — A complete cost-effective SDR receiver: BeMicroSDK with HF1.

PowerSDRTM user interfaces are started (other 
user interfaces do this, too), they broadcast 
a special packet to the network called a 
Discovery Packet. SDR data engines are 
designed to reply to this Discovery Packet by 
returning their network address and radio ID 
back to the user interface. Since the Discovery 
Packet also identifies the user interface, (and 
thus, the data format type that it understands), 
the data engine can use this information 
to decide what format to send back. For 
example, if PowerSDRTM sends a Discovery 
Packet to an SDRstickTM data engine, 
SDRstickTM responds with openHPSDR 
Ethernet format packets. If HDSDR sends 
a Discovery Packet to an SDRstickTM data 
engine, SDRstickTM responds with its native 
format packets, which are then converted to 
HDSDR native format by the SDRstickTM 
ExtIO.dll converter.

Customize Your user interface
A third way to hook the data engine and 

user interface together is to write your own 
user interface. While this may seem like a 
difficult solution (and it is not trivial), software 
can come to the rescue. The GNU Radio 
project might be the solution that you are 
looking for. For a GNU Radio receiver, the 
data engine formats data in its native mode. 
The SDR designer writes some software called 
a GNU Radio Source Block that converts the 
native mode data format into a standard GNU 

Radio format. Once the data is in this format, 
it can be used anywhere within GNU Radio to 
build custom radio software. (In the transmit 
direction, the interface is called a Sink Block.) 
GNU Radio has a learning curve to it, but 
it is an extremely powerful tool with which 
to build custom SDR user interfaces and 
applications. SDRstickTM radios come with 
GNU Radio Source and Sink Blocks. Please 
refer to “Digital Signal Processing and GNU 
Radio Companion” by John Petrich, W7FU, 
and Tom McDermott, N5EG, in this issue of 
QEX for Part 1 of an in-depth look at GNU 
Radio.16

Data Engine to RF Hardware
Connecting the RF front ends to the 

data engine is simple, since the boards are 
designed to plug together. A brief description 
of the interface follows. The HF1/HF2 
receiver interface from the ADC is made 
up of parallel data, an ADC clock and an 
overflow bit. The TX2 transmitter interface 
to the DAC is also parallel data and a DAC 
clock. The CODEC (for receive audio) and 
the RF step attenuator on the HF1/HF2 
receivers and the CODEC (for microphone 
audio) on the TX2 transmitter are each 
digitally interfaced to the data engine. The 
data engine uses several general purpose 
input/output (GPIO) pins for things like PTT, 
paddle dot and dash inputs and ADC and 
clock buffer control. The HF1 (Figure 9), 
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HF2 (Figure 11) and TX2 (Figure 13) block 
diagrams show the connections.

Receiver with BeMicroSDK and HF1
The most cost effective SDR platform is 

the receive-only BeMicroSDK data engine 
paired with the HF1 receiver (Figure 17). 
This creates an Ethernet-based receiver that 
covers 100 kHz to 30 MHz with 1.25 MHz 
receive bandwidth. This is wide enough to 
see the entire MW broadcast band on-screen 
in the panadapter display. It is also wide 
enough to fully display any of the Amateur 
Radio bands below 28 MHz, or enough of 
the 10 m band to display all of the activity on 
any one mode. This receiver costs just over 
$200, and is a good place to get your feet 
wet in FPGA-based SDR. This is by far the 
least expensive Ethernet-based, broadband 
SDR available. The FPGA program available 
for BeMicroSDK/HF1 does native UDP 
format at 1.25 MHz and 384 kHz receive 
bandwidths and Hermes UDP format at 
384 kHz bandwidth, both receive only.

Transceiver with BeMicroCV-A9, HF2 
and TX2

The most exciting SDR platform 
is the High-performance HF2 receiver 
married up with the TX2 transmitter and 
the BeMicroCV-A9 data engine (Figure 
18). Truly remarkable SDR functionality 
becomes possible with the sheer amount of 
logic present in the A9 data engine’s FPGA 
and the Gigabit Ethernet interface to move 
data. To put this into perspective, the A9 
data engine contains nearly eight times as 
many logic elements as the Hermes FPGA. 
While Hermes is limited to about seven 
virtual receivers, the A9 data engine has no 
such limitation. (See the “What is a Virtual 
Receiver?” sidebar.) 

The current FPGA program available for 
BeMicroCV-A9/HF2/TX2 does native UDP 
format at 1.92 MHz and 384 kHz receive 
bandwidths, and Hermes UDP format at 

MCU Versus FPGA
An embedded microcontroller (MCU) consists of many logic building blocks 

that are each designed to perform one function. For example, it has an Arithmetic 
Logic Unit (ALU), which carries out the mathematical operations specified by the 
instructions in the computer software. It has a Program Counter that keeps track of 
where in memory the current instruction is located. It has a Memory Management 
Unit (MMU) that controls accesses to main memory. There are many of these blocks, 
and each block is a collection of logic gates, memory cells, and transistor switches, 
each hard-wired to perform one function, and only that function. These small blocks 
are wired up into a large structure in order to make a functional MCU. This is, of 
course, a simplistic explanation of how millions of transistors are wired up to form a 
microcontroller, but it illustrates one main point. The MCU logic and interconnections 
between these pieces of logic are fixed. The hardware is designed to fetch an 
instruction and carry it out, fetch the next instruction and carry it out, repeating this 
process forever. Modern MCUs do this job very fast, but they can only perform the 
operations hard coded into their fixed instruction set. For example, an MCU might 
have instructions for addition, subtraction or writing to main memory, but it will not 
have an instruction to perform every complex mathematical operation that might be 
needed. The programmer writes software to break down these custom, complex 
mathematical operations into small sequential steps that each can be performed by a 
pre-defined instruction from the MCU’s instruction set.

An FPGA, on the other hand, has very little fixed logic and interconnections. To 
illustrate this concept, let’s imagine that we can take all of the gates and memory 
elements (small groups of these are called logic elements or LEs) that make up 
the MCU, disconnect them from each other and spread them out in a “sea of logic 
elements.” If we provide a way to connect these logic elements together in any order 
we like (in other words, program the FPGA), we can create just about any function we 
need. In fact, we can connect them back up just the way they were connected in the 
MCU, and we have (guess what?): an MCU! This is what is called a soft-core processor. 
One FPGA manufacturer — Altera — has a pre-programmed soft-core processor called 
NIOS II, but it is not the only one that we can make out of our sea of gates. A soft-core 
processor is not as efficient as an MCU, since all the logic interconnections take up 
space on the FPGA chip, making it bigger, and thus, more expensive to make. All the 
programmable logic interconnects also slow the soft-core processor down because they 
introduce more delay than the fixed logic interconnects of the MCU.

Soft-core processors are interesting and useful, but they are not the main attraction 
of FPGAs. Remember that MCUs execute instructions serially? FPGAs can perform 
their logic functions in parallel. Imagine that I need to perform 10 additions. Even with 
in-line coding (no loop), it will take the MCU 10 instructions to do this, and more if the 
20 addends must be fetched from memory first. If the MCU runs at 100 MHz (10 ns 
per clock cycle), and we assume that each instruction takes one clock cycle, it will 
take at least 100 ns to perform the 10 additions. If I program 10 adders into the FPGA, 
I can perform all 10 additions at the same time, requiring only one clock cycle to 
obtain all 10 sums. This is a simplistic example, but consider that even small FPGAs 
have tens of thousands of logic elements, and logic elements number in the millions in 
large FPGAs. FPGA hardware parallelism creates remarkable capability to implement 
algorithms that can benefit from this parallelism. 

Figure 18 — A complete high-performance SDR transceiver: BeMicroCV-A9 with HF2/TX2.
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384 kHz receive bandwidth. This only hints 
at what is possible. For instance, eleven 
virtual receivers can be designed into the 
FPGA logic, one for each of the Amateur 
bands, 160 m through 6 m. The full spectrum 
of every HF Amateur band (and the lowest 
VHF one, too!) can be simultaneously 
displayed. Using appropriate software, 
eleven users could connect to this radio, 
and each user would have a virtual receiver. 
Admittedly, such FPGA code and software 
does not yet exist. Now that hardware is 
available to support such features, however, 
the firmware and software are possible. The 
BeMicroCV-A9 is a prototype now, but 
should be available by the time you read this. 

Transceiver with SoCkit, AD1, HF2 
and TX2

The most flexible SDR platform 
replaces the BeMicroCV-A9 with the 
SoCkit development board and the AD1 
adapter (Figure 6). The SoCkit board FPGA 
contains fewer logic elements than the 
A9 board (110 K versus 301 K), but it has 
something the A9 does not: a dual-core ARM 
processor. With this processor (and the other 
SoCkit on-board resources), we can run an 
embedded operating system, such as Linux. 
Linux brings with it things like a full TCP/
IP stack, software control of packet data 
formatting and easy application development 
(compared to FPGA applications), among 
other things. The current FPGA program 
available for SoCkit/AD1/HF2/TX2 does 
native UDP format at 1.92 MHz and 384 kHz 
bandwidths, and Hermes UDP format at 
384 kHz bandwidth. 

The same virtual receiver scenario is 
possible with the SoCkit data engine that is 
possible with the A9, but other possibilities 
open up with the addition of Linux to the 
system. For example, we could write a 
server application to serve data up directly to 
remote clients. We can run this application 
right on the SoCkit board’s local processor, 
eliminating the computer normally necessary 
to perform this task. We have made an 
“NAR,” or Network Attached Radio! While 
I have just coined this term, you can bet that 
the concept is already here!

Conclusion
Advanced, high-performance hardware 

is available off-the shelf at reasonable 
cost. FPGA code is currently available 
to perform basic functions, while more 
advanced features are either planned or left 
to the user to implement. Some open-source 
FPGA example code is available, and can be 
used as a starting point for developers and 
experimenters.17 There are lots of SDR user 
interfaces to choose from, many under current 
development and some are open source.

Notes
1Steven W Smith, The Scientist and 

Engineer’s Guide to Digital Signal 
Processing, ISBN 0966017633, available for 
free download at: dspguide.com.

2Many DSP references can be found here: 
dspguru.com/dsp/links/books/online.

3Arrow Electronics BeMicroSDK information: 
arrownac.com/solutions/bemicro-sdk.

4Arrow Electronics BeMicroCV information: 
parts.arrow.com/item/detail/arrow-
development-tools/bemicrocv.

5Arrow Electronics SoCkit board information: 
arrownac.com/solutions/sockit.

6Comedians on the TV show Rowan and 
Martin’s Laugh-In used the term “sock it to 
me,” typically followed by a dousing with a 
bucket of water. See en.wikipedia.org/wiki/
Rowan_&_Martin%27s_Laugh-In.

7SoCkit ordering information: parts.arrow.
com/item/search/#st=sockit;renMeR.

8Scotty Cowling. WA2DFI, “The High 
Performance Software Defined Radio 
Project,” QEX, May/June 2014, pp 3-13.

9Hermes SDR information: openhpsdr.org/
wiki/index.php?title=HERMES.

 10HF1, HF2, TX2 and AD1 boards may be 
purchased from iQuadlabs.com.

11Hardrock-50 amplifier information: 
hobbypcb.com.

12TAPR Pennywhistle kits: tapr.org/kits_pw.
13TAPR Alex Filter boards: tapr.org/kits_alex.
14Paul Simon, 1975: en.wikipedia.org/

wiki/50_Ways_to_Leave_Your_Lover.
15HDSDR web page is: hdsdr.de.
16John Petrich, W7FU, and Tom McDermott, 

N5EG, “Digital Signal Processing and GNU 
Radio Companion: An Easy Way to Include 
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Jul/Aug, Part 2, QEX, Sep/Oct 2014.

17Hermes FPGA code is open-source: 
svn.tapr.org.
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