Copyright

Scotty Cowling, WA2DFI

(C)2016 ARRL, All

Rights

PO Box 26843, Tempe, AZ 85285: scotty @tonks.com

Reserved

Hands-On-SDR

The author explains using the FPGA with SDR designs.

In this installment we will continue
onwards and upwards into more inner
workings of the Field Programmable Gate
Array or FPGA used in many of our SDR
designs. This column relies heavily on what
I covered in my Mar/Apr 2015 and Jan/Feb
2016 columns.'? If you have not read at least
the most recent one, please take a minute and
do a quick review. It has been a while since
we covered some of this material, so we will
start with a quick review here.

In the Mar/Apr 2015 column, we covered
getting the free tools set up and showed you
how to compile and run an example design.
In the Jan/Feb 2016 issue, we covered
porting of open-source FPGA code to run on
Arrow’s BeMicroCVA9 FPGA development
board used in the Hermes-Lite and 1Q2
Software Defined Radios.

Many revisions have been made to the
Hermes software that we used as a starting
point in my last column. As a review, I will
quickly cover the steps necessary to port the
newest version of the Hermes FPGA code
to the BeMicroCVA9. Please refer to my
last column for more detail or if you need a
refresher.

Once again, I want to thank Phil Harman,
VKG6PH, for his work in updating this FPGA
code. It is truly a Herculean task!

What Do We Need to Get Started?
As with each of these columns, I always
try to define what you need in the way of

knowledge and equipment to get the most
out of the “Hands On SDR experience”.
You will need a basic working knowledge of
the Verilog hardware description language.
Once again, my assumption is that the
existing code is working, and we will try
not to introduce any new bugs as we port to
the new device. As we did last time, we are
targeting a new device, not designing code
from scratch.

For hardware, you will need a
BeMicroCVA9 development kit.*> To actually
run the code that we are going to compile in
this column, you will also need an HF2 board
(to receive), or both HF2 and TX2 boards (to
transceive).*> As alower-performance (and less
expensive) alternative, you can use an HF1 or
Hermes-Lite, but you will need to make other
modifications to the code if you go that route.*’
I believe that the Hermes-Lite group has ported
their firmware to the BeMicroCVA9. After
wading through this column, you should be
expert enough to compile their source and run
it on the BeMicroCVA9. Even if you do not
have the hardware, you can still follow along
with the text and learn about porting FPGA
code to new devices.

For tools, we will still need two versions
of Altera’s Quartus FPGA design software to
complete the porting work. The first version is
Quartus II version 13.1, which is the version
that was used to create the code that we
are going to port. The second version is the
latest (and newly released as of this writing),

version 16.0. It is now called Quartus Prime
Lite, and requires a 64-bit operating system.
You will need 64-bit Windows XP, Windows
7 or later or 64-bit Linux in order to run this
new version. All of the information from my
Mar/Apr column applies to both Quartus
versions. Before you continue, you will need
to download and install both of the free web
versions (Quartus II version 13.1 and Quartus
Prime Lite 16.0) from the Altera web site.® To
save some download time, you only need to
download Cyclone III and Cyclone V device
support for Quartus II version 13.1, and only
Cyclone V device support for Quartus Prime
Lite version 16.0.

Why Two Quartus Versions?

The conditions that required us to use two
versions of the design software still exist,
even with the release of the new Quartus
Prime Lite 16.0. I explained this in my last
column, but it is important enough to bear
repetition here. The explanation is tied to
the capabilities of each Quartus version
and the FPGA part that we are migrating
from as well as the part we are migrating
to. The Hermes code targets the Cyclone III
EP3C25Q240C8 (our from part number),
while the BeMicroCVA9 uses a Cyclone
V 5CEFA9F23C8 (our to part number).
Quartus II version 13.1 supports all Cyclone
IIT parts and some of the Cyclone V parts,
but unfortunately not our fo part number.
Quartus Prime Lite version 16.0 supports

Table 1.

Clock name changes in the Hermes.sdc file.

Line(s)

19, 154

33, 143

34, 144, 184

35, 145, 184

37, 157

39, 158, 171

48, 156

155, 169, 171, 193
161

original name in Hermes.sdc file

PHY_CLK125
PLL_IF_inst|altpll_component|auto_generated|pll1|clk[0]
PLL_IF_inst|altpll_component|auto_generated|pll1|clk[1]
PLL_IF_inst|altpll_component|auto_generated|pll1|clk[2]
network_inst|rgmii_send_inst|tx_pll_inst|altpll_component|auto_generated|pll1|clk[2]
network_inst|rgmii_send_inst|tx_pll_inst|altpll_component|auto_generated|pll1|clk[4]
network_inst|rgmii_send_inst|tx_pll_inst|altpll_component|auto_generated|pll1|clk[1]
network_inst|rgmii_send_inst|tx_pll_inst|altpll_component|auto_generated|pll1|clk[0]
OSC_10MHZ PLL2_inst|altpll_component|auto_generated|pll1|clk[0]

30 QEX July/August 2016

Mark
Typewritten Text
Copyright (C)2016 ARRL, All Rights Reserved

all Cyclone V parts (including our to part
number), but no Cyclone III parts at all!
The easiest way to migrate to the new
part and new Quartus version is to change
part families first and then upgrade to the
latest version of Quartus as a separate
operation. Here is the flow of part numbers
and Quartus versions that we will use:
3C25 with v13.1 - 5CEFA7 with v13.1 >
SCEFA7 with v16.0 > 5CEFA9 with v16.0.

Notice that Quartus II version 13.1 does
not support our SCEFA9F23C8 part, so we
pick a dummy part (SCEFA7F23C8) that it
does support just to get us into the Cyclone
V family. After we migrate to Quartus Prime
Lite version 16.0, we will pick our final,
correct SCEFA9F23CS8 target. Also notice
that in the flow above, we only change one
item in each step: either the part number or
the Quartus version, but never both.

FPGA Code Porting Tasks

We covered these steps last time, but here
they are again:

* Open design in original Quartus version

¢ Update wizard-generated modules

* Add code to hook in new signals and
remove unused old signals

* Add new location properties

» Update SDC timing constraints file
with new signals and remove old signals

* Compile-debug-repeat.

I explained the first four steps in detail
last time, so I will focus on the last two this
time around. That doesn’t mean that I will
leave you completely on your own, just
don’t expect as much detail as last time.
We want save room to do some new things!
Unfortunately, we have some old things to
get out of the way before we can move on
to the new.

Open and Compile the Design

To get a copy of the FPGA source code,
download a copy of the Quartus archive from
the SDRstick SVN webserver.” Open the
archive in Quartus II version 13.1 and fire off
a trial compile right off the bat. This will tell
you if you have everything set up correctly.

You should get a bunch of warnings from
Quartus (I got 400!), but no errors. As usual,
if Quartus reports errors, you must fix them
before you can continue.

The cleanup step that we had to perform
last time has already been done as part of the
many upgrades that have been done since we
last looked at the code.

Update Wizard-generated Modules

The Hermes design uses four PLLs, seven
FIFO memories, four ROM memories, one
RAM memory, one multiplier and three other
functions for a total of 20 Wizard generated
modules. Check the IP Components tab
of the Project Navigator to see a list of IP
components and version numbers. Each of
these modules must be updated first to the
Cyclone V family under Quartus II version
13.1 before we can open them in Quartus
Prime Lite version 16.0.

Move the design to the Cyclone V family
and remove all location assignments. We
will add the new (and different) location
assignments for the new FPGA part number
later. Select the SCEFA7F23C8 part.
Note that this is not the final part, but an
intermediate one that we must pick due to
the vagarities of the Quartus software. And
we are still using Quartus II version 13.1. We
will fix both of these problems after we finish
updating the wizard-generated modules.

Update the 20 wizard-generated modules,
taking care with the PLLs and the firromH
module. Remember that Cyclone V PLLs are
different from Cyclone III PLLs, so you must
create new ones and replace the old ones with
the new ones. Close Quartus and re-open the
project in Quartus Prime Lite version 16.0.
The new version of Quartus will ask you if it
should overwrite the database with the new
format. You can safely answer Yes. Change
the part number to SCEFA9F23C8 and run a
compile to see if we broke anything. Now we
are using version 16.0 with the correct FPGA
part number. We are almost done!

Add and Remove Code and Signals
The next step in our 6-step program
is to match up the old design (Hermes)

signals with the new design (CVA9) signals.
Remember to account for every one of the
Hermes signals, as well as every one of the
new design pins (CVA9) by either ignoring it,
adding code to support it or just connecting it
to its counterpart from the old design. I have
created a file for you containing a table of
all of the signal names in the design to help
make the changes. This Hermes_1_May_
to_IQ2_pins table will tell us which pins
map directly onto new pins and which do
not.' T will not revisit the changes covered
in my last column; please refer back to it to
make the changes (see Note 2).

Add New Location Properties

Now it is time to add the new location
properties back in to replace the old ones that
we deleted when we changed part numbers.
Again, I have created a file for you to save
you the effort of typing all those lines into
the script file. You can download it from the
SDRstick SVN webserver."!

To run the script, place the file in your
top directory (that is, the directory that
contains your Hermes.qsf file and all of
your Verilog source files). Now add it to your
project using <Project> <Add/Remove
Files in Project...>. Under <Tools> <Tcl
Scripts...>, select the file and click Run.
All of your pin locations from the script file
have now been added. If you want to check
your new assignments (you should believe
me by now) you can open the Assignment
Editor from (where else) the <Assignments>
<Assignment Editor> menu. You should
see all of your new Location assignments
listed. Run a compile to make sure things are
as they should be.

Wow, all that work just to get to the
same point that we were at the end of the
last column! Well, not quite... This time
we started with FPGA code that is many
revisions better than the version that we
started with last time, and we are now using
the latest and greatest version of the Altera
tools (Quartus Prime Lite 16.0). And best
of all, we have proven that we have learned
enough to do it over and over again. Next
time, no peeking at the previous column!

new name in Hermes.sdc file
DDR3_CLK_50MHZ

PLL_IF_inst|pll_if_new_inst|altera_pll_i|cyclonev_pll|counter{0].output_counter|divclk
PLL_IF_inst|pll_if_new_inst|altera_pll_i|cyclonev_pll|counter{1].output_counter|divclk
PLL_IF_inst|pll_if_new_inst|altera_pll_i|cyclonev_pll|counter{3].output_counter|divclk
network_inst|rgmii_send_inst|tx_pll_inst|tx_pll_new_inst|altera_pll_i|cyclonev_plljcounter[2].output_counter|divclk
network_inst|rgmii_send_inst|tx_pll_inst|tx_pll_new_inst|altera_pll_i|cyclonev_pll|counter[3].output_counter|divclk
network_inst|rgmii_send_inst|tx_pll_inst|tx_pll_new_inst|altera_pll_i|cyclonev_pll|counter[1].output_counter|divclk
network_inst|rgmii_send_inst|tx_pll_inst|tx_pll_new_inst|altera_pll_i|cyclonev_pll|counter{0].output_counter|divclk
PLL2_inst|c10_pll_new_inst|altera_pll_i|cyclonev_pll|counter{1].output_counter|divclk

QEX July/August 2016 31

Update SDC Timing Constraints

Now we will update the Hermes.sdc
timing constraints file line by line to remove
constraints for signals that we have removed,
add (or expand existing) constraints for new
signals and update constraints for anything
that we changed. This is where we left off last
time, so it is time to do it now.

Most of the changes to the Hermes.sdc
file are due to the changes that we made to
the PLLs. The SDC file refers to the PLL pins
by name, and remember that we changed
some of them. We have to fix the names in
the SDC file so that the timing analyzer can
match them up with the design files. I have
listed the changed names in Table 1. The
first entry is not a PLL change, but a clock
pin name change. Remember that there is no
PHY_CLK125 clock from the Ethernet PHY
chip on the BeMicroCVA9. We changed
that to a 50 MHz clock (from an external
oscillator). The only place that this 125 MHz
clock was used was as a reference clock input
to the tx_pll. When we created tx_pll_new,
we simply changed the PLL programming a
bit so that it uses a SOMHz reference rather
than the original 125MHz reference. On line
19 of the Hermes.sdc file, change PHY_
CLK125 to DDR3_CLK_50MHZ in both
places it appears, then change the 8.000

after -“period” to 20.000. Why? Because
this number represents the clock period in
ns; 8ns period is 125 MHz and 20 ns period
is 50 MHz. Make the name changes shown
on each line in Table 1. Note that some lines
require multiple changes.

Next, we want to remove references to
any signal that we removed. Rather than
remove a line, comment it out by placing
an octothorpe (# symbol) in the first column
of the line'. Affected lines (and signal
names) are 88 (SO), 94 (ADCMISO), 120
(MOSI, nCS), 123 (CMODE only), 126
(J15_5, J15_6, SPI_SDO), 129 (CS, SCK,
SI), 132 (ADCMOSI, nADCCS), 196
(SSCK, ADCCLK, SPI_SCK only), 205
(USEROUT* only), 208 (ANT_TUNE,
104-108 only). Note that the lines that I have
marked “only” cannot be commented out,
since we are only removing the reference
to the listed signals. Other signals listed on
the same line must remain, so just delete
the signal(s) that I have indicated above and
leave the rest alone. Since we removed all
of the pins associated with the EEPROM
(since the CVA9 does not have one), we can
comment out line 211. Since we commented
out lines 94, 126 and 132, data_clk2 is no
longer used; we can comment out line 54
and remove line 147. (Leave just the “\” on

£33 TimeQuest Timing Analyzer - Cy/usr/dfi/radio/HPSDR/IQ2/Quartus/IQ2/Hermes -

Fle View Netist Constraints Reports Script Tools Window Help

@e

‘Sel Operating Conditions TimeQuest Timing Analyzer Summary

Quartus Prime Version
Timing Analyzer TimeQuest
Revision Name Hermes.
Device Family Cyclone V
Device Name SCEFA9F23C8
Timing Models. Final

Delay Model
Rise/Fal Delays Enabled

© Slow 1100mV 85C Model
Slow 1100mV 0C Model
Fast 1100mV 85C Model
Fast 1100mV 0C Model

Report me
[EB TimeQuest Timing Analyzer Summary

Advanced VO Timing
BB SDC File List

Tasks M@me x|
B Open Project... -
" Netiist Setup
P Create Timing Netlist
P Read SOC File
P Update Timing Netlist
P> Reset Design
I set Operating Condions.
" Reports
4 I~ sck
EJ Report Setup Summary
B Report Hold Summary
B Report Recovery Summary

.....................

i »

Slow 1100mV 85C Model

Version 16.0.0 Buid 211 04/727/2016 SJ Lite Edtion

© petected changes in source files.

© Low junction temperature is O degrees C
© High junction temperature is 85 degrees C
b read_sdc

© evaluating HOL-embedded SDC commands

S@a x|

© Rreading spc File: 'Hermes.sdc’
© periving PLL clocks

tcb update_timing_netlist
@ The following timing edges are non-unate.

tcb

|Console

Console /_History

@ rarallel compilation is enabled and will use 4 of the 4 processors detected

@ Clock uncertainty is not calculated until you update the timing netlist.

TimeQuest will assume pos-unate behavior for these edges in the clock network.
@ periving Clock uncertainty. Please refer to report_sdc in TimeQuest to see clock uncertainties.

Figure 1 —TimeQuest timing analyzer.

32 QEX July/August 2016

line 147 to preserve the line numbering.) The
last thing we will do is comment out lines
70 and 104 to eliminate unnecessary timing
constraints on the ASMI block, which we
upgraded to a Cyclone V version.

This should result in a Hermes.sdc file
that generates no warnings. To check to see
if we missed anything, open TimeQuest
by clicking on <TimeQuest Timing
Analyzer> under the <Tools> menu. Once
TimeQuest opens, double click on Update
Timing Netlist in the Tasks pane on the
left side of the screen. This will cause all
three tasks listed under Netlist Setup to run:
Create Timing Netlist, Read SDC File and
Update Timing Netlist. All three of these
lines should turn green, and a check mark
should appear next to each of them (see
Figure 1). Most importantly, though, is that
any warnings will appear in the Console pane
across the bottom of the screen. If you see
any warnings, then TimeQuest is not happy
with your Hermes.sdc file and you should
make corrections before proceeding. If you
want to see what a warning looks like, go
back to the Hermes.sdc file and undo one of
the fixes that you just put in. (As an example,
un-comment out line 70.) Save the SDC file,
return to the TimeQuest screen (or re-open
TimeQuest) and this time click on Reset
Design before you click on Update Timing
Netlist. Doing this tells TimeQuest to re-run
the three Netlist Setup tasks from scratch, so
you get a fresh read-in of the SDC file. Note
that you do not need to recompile the design
to do this. The design hasn’t changed; we are
merely checking the design against different
timing constraints to see if it meets them.
If you actually changed a timing parameter
(such as a clock period or an input delay),
you would have to recompile your design so
that Quartus could optimize the routing to try
and meet your new constraint.

Compile-Debug-Repeat

The last thing we will do this month is
to wade through some of the warnings that
Quartus generates to get a feel for which
ones can be safely ignored and which ones
you should fix. My last compile generated O
errors and 140 warnings. Your numbers may
be slightly different, but not too different.
This seems like an awful lot of warnings,
doesn’t it? After we review some (or most)
of these warnings and their causes, you will
see that, in fact, it really isn’t that many.
Quartus “warns” you about many things that
you either can’t do anything about because
they are generated by internal code that
you cannot edit or are simply unimportant,
such as a size mismatch in an assignment
statement. Quartus also warns you about
things that really are problems, just not fatal
ones. For example, suppose we forgot to

Fle Edt Vew Proect Assgnments Processng Toos Wedow Hep

O~ d r Hermes CrEFEOOCAVR
IProject Navigator [(\Herarery _ ~]=@s x|| & Compiktion Report - Hermes [x]
Entty-nstance | |Table of Contents (e3[4 Flow Sume —= ST
T — B Fow Sumemary Flow Status Successful - Th May 12 23:15:55 2016
B ermes b — Quartus Prime Version 16.0.0 Budd 211 0412772016 SJ Lite Edtion
: e o 5 o Revision Name Hermes
e Top-level Enty Name Hermes
B8 Flow EapseaTime o sy
B Flow 0S Summary Device SCEFASF23C8
) Flow Log Timing Models Fnal
Analysis & Synthesis Logic utization (in ALMs) 10,806/ 113,560 (10%)
Fiter Total registers 2218
© Fiow Messages Totalpins 851224 (38%)
© Flow Suppressed essages Total virtual pins 0
Sy Total bock memory bits 736,544 112,492,800 (6%)
% At Total DSP Blocks 241342(7%)
“meQuest Timing Analyzer Mepysmmtl 5
G 5 Total HSSI PMA RX Deserisizers 0
. —_——— 1 Total HSSITX PCSs 0
Tasks Compiation rJ=@# x Total HSSIPA TX Seriaizers 0
Task Total PLLS 418(50%)
P T | TotalDLLs. 0/4(0%)
> q
> Fiter 00
P Assembler (Generate programming fies) 00:q
P TmeQuest Timing Analysis q
P> EDA Netiist Writer
B £t Setings
) Program Device (Open Programmer)
‘ i y
x e
m ed = 800 (phreanes
Dlype 1 message
=l o Running Quartus Prime Analysis & Synthesis
o command: quartus_map --read_settings_files=on --write_settings_files=off Hermes -c Hermes
4 125092 TC1 script File Ethernet/tx_pll.qip not found
@ 20030 parallel compilation is enabled and will use 4 of the 4 processors detected
© 12021 Found 1 design units, including 1 entities, in source file ethernet/tx_pll_new.v
© 12021 Found 1 design units, including 1 entities, in source file rx_fifo_ctrl0.v
@ 12021 Found 2 design units, including 2 entities, in source file polyphase_fir/firx2r2.v
@ 12021 Found 1 design units, including 1 entities, in source file polyphase_fir/firromh.v
© 12021 Found 1 design units, including 1 entities, in source file polyphase_fir/firramis.v
@ 12021 Found 1 design units, including 1 entities, in source file polyphase_fir/cicinterpms.v
@ 12021 Found 2 design units, including 1 entities, in source file txi_iq_fifo.vhd
@ 12021 Found 1 design units, including 1 entities, in source file sine_table_256.v
gh @ 12021 Found 1 desian units. including 1 entities, in source file rx_audio_fifo.v
« i
£ |["System(1) | processing 712)

Figure 2 — Quartus Prime Lite 16.0 screen showing a warning in the message pane.

connect a signal to an I/O pin on the part.
Quartus will remove all of the unused logic
that connects to that signal. Maybe that is
OK if you did it intentionally. If it was an
oversight (we won’t say error), you will
be grateful that Quartus warns you that it
removed logic and why it did so. The bottom
line is that you must look at every warning to
determine if it is important enough for you to
investigate its cause. Since there are typically
many warnings, you must be able to quickly
assess the importance of each one. This takes
skill, and skill comes through experience. So
let’s get some experience now.

Start a new compile and let it run to
completion. After it finishes, scroll up in the
messages window (the full width pane across
the bottom of the Quartus window) to the first
line that appears in blue. Warning messages
are in blue and information messages are in
green. Error messages are in red and will
generally stop the compilation prematurely
(you should not see any of these). You may
or may not get the same messages that I get
or in the same order that I get them. It will
depend on the changes that you made versus
the ones that I made, and in what order you
made them as well as any mistakes that I
made that you did not (or vice-versa). It will
also depend to some extent on what options
you have set in your project. Most warning
messages will take you to the source of the
warning if you double-click on the warning
text, but not all of them will do this. Finding
the source of the warning is the first step.

Correcting it is the second, unless you decide
that it is unimportant and can remain.

The first blue line that I
encounter is (see Figure 2):
125092 Tcl Script File Ethernet/tx_pll.qip
not found

This is interesting, since it refers to an old
PLL that I removed from the project, tx_pll.
Click the triangle in column 1 to expand
the warning and get more information.
Unfortunately, this is one of those warnings
that you cannot click on, so we have to figure
it out for ourselves. The second line says:
125063 set_global_assignment -name
QIP_FILE Ethernet/tx_pll.qip

This is an assignment present in the
Hermes.gsf file. How do I know this? From
experience. How can you come to know this?
Google! Paste set_global_assignment into
Google search and the first hit explains more
than you ever wanted to know. Go ahead, try
it. The Quartus help page that Google points
you to explains what the command does, its
syntax, and so on. But all we need to know
is where it is located, so we can remove it.
It is in the project’s Quartus Settings File, or
Hermes.qsf. We must be especially careful
when modifying the gsf file; it is kind of
like editing your Windows registry. You can
damage you project beyond repair if you edit
this file with wild abandon. So here are three
rules to follow to keep you project safe.

1. NEVER edit the gsf file while Quartus
is open.

2. Always make a backup before opening

7o+ MILLIWATTS
= KILOWATTS™

More Watts per Dollar

In Stock Now!

Semiconductors
for Manufacturing

and Servicing
Communications
Equipment

* RF Modules -~ ™
Semlconductors
Transmitter Tubes

Se Habla Espanol » We Export

Phone: 760-744-0700

Toll-Free: 800-737-2787

(Orders only) 800-RF PARTS

Website: www.rfparts.com

Fax: 760-744-1943

888-744-1943

Email: rfp@rfparts.com

it | & |

RF PARTS

c OMP ANY

From Milliwatts to Kilowatts™

the file in a text editor

3. Use a text editor (like notepad) not a
word processor to make changes

Notice that in #1, the word never is in
bold, underlined italics. Quartus reads this
file in, modifies this internal copy and then
writes it out upon exit. If you change it while
Quartus has it open, you are wasting your
time, and just asking for trouble. So, after all
that, exit Quartus, open Hermes.gsf in your
favorite text editor, find the offending line
and delete it. Save the gsf file (remember:
text-only format) and exit your text editor.
Re-open the project in Quartus (hint: use
<Recent Projects> on the <File> menu).
But wait, all of my messages are gone! Don’t
panic, they were saved just for you. Under the
<Processing> menu, click <Compilation
Report>, or just type <ctrI>R if you are lazy
like me. When the report window opens, look
in the left pane for Flow Messages and click
on it. Like magic, all of your messages are
back, although in a different window. (You
sure are being picky!) On to the next warning!
10858 Verilog HDL warning at
Hermes.v(1068): object frequency_
change used but never assigned

This is one that you can double-click, so
go ahead and do it. Quartus automatically
opens the Hermes.v file and highlights
the offending line. Search through the file
(use <ctrl>F) to see where the variable
frequency_change is used. Note that it is
passed to the CC_encoder module using
the same name, so open CC_encoder.v and
search for it there. Note that it is an input to
CC_Encoder and used on line 108, but it is
never set to a value anywhere. This is what
Quartus is complaining about: shouldn’t you
set a variable to a value before you use it?
Well, yes, but... If you choose to ignore this
warning, you will get whatever the default
value for the variable frequency_change is.
Go back to your Flow Messages window,
and it tells you what value it will use. Darn
clever, this compiler. This is not fatal, so we
will opt to come back and fix it later. Next!
10034 Output port “outclk_2 at PLL_
IF_new_0002.v(17) has no driver

When you double-click on this one,
Quartus takes youtothe PLL,_IF_new_002.v
file and highlights line 17. But wait, we
didn’t create this file, the Wizard did. This
is one of those cases where we just leave
it alone and live with the warning. There
are lots of these “has no driver” warnings,
and they all point to Wizard-generated
files. We can ignore all of them. Next!
10230 Verilog HDL assignment warning
at sdr_send.v(118): truncated value with
size 32 to match size of target (8)

This kind of warning is very common.
It occurs whenever we try to assign a value
represented in a certain bit width to a variable
of a different width. Double click on the
warning to see line 118 in sdr_send.v. The

34 QEX July/August 2016

parameter NR has a width of 32 bits, while
the variable number_RX is only 8 bits wide.
Quartus tells us exactly what it is going
to do: truncate (i.e., discard) the 24 upper
bits of NR and use just the bottom 8 to set
number_RX. Since I would have to figure
out how to define an 8-bit parameter, and
the result is what I wanted anyway, I don’t
have to fix this one either. On to the next.
12030 Port “extclk” on the entity
instantiation of “cyclonev_pll” is
connected to a signal of width 1. The
formal width of the signal in the module
is 2. The extra bits will be left dangling
without any fan-out logic.

If you double click on this one,
you see that it is a Wizard generated
warning, so we can’t really fix it.
12020 Port ““ordered port 0’ on the entity
instantiation of “fir3” is connected to a
signal of width 32. The formal width of
the signal in the module is 1. The extra bits
will be ignored.

This looks like the last one, but it points
to receiver2.v, which is one of our files. This
is like the truncated value warning. On line
144 of receiver2.v, the first value inside the
parentheses is a zero. If you look at the file
firx2r2.v, you will see that this corresponds
to this input signal reset. The variable is one
bit wide, but the default width of a number is
32 bits wide. Now since the number is zero
in this case, it doesn’t much matter. A better
way would be to define the zero as a 1-bit
constant (instead of 32-bits) like this: 1’b0.

There are many more warnings
than I have space to cover, but
there is one more important one:
171167 Found invalid Fitter assignments.
See the Ignored Assignments panel in
the Fitter Compilation Report for more
information.

This usually means there are invalid
fitter assignments in the gsf file that should
be fixed or removed. To get to the Fitter
Compilation Report, in the left pane of the
compilation report click on the triangle next
to Fitter to expand it, and then click on
Ignored Assignments. Now you see a table
(containing only one line) that shows you the
name of the signal (PHY_CLK12S5 in this
case) and where it is located (the gsf file in
this case). You already know how to do this:
close Quartus, backup Hermes.qsf, open
Hermes.qsf and remove the offending line,
save the file, reopen the project in Quartus.

Hopefully this exercise has given you
a better feel for Quartus and what its
capabilities are along with the confidence
to jump in and get your feet wet. The final
step, of course, is to recompile the project,
see fewer warnings than before, then load
the compiled programming file into the
BeMicroCVA9 and test it to make sure that
it works. I will cover how to load and run the
code on real hardware in my next column.

An updated Quartus archive containing all of
the changes that we have made is available on
the SDRstick SVN webserver.!*

What’s Next?

Remember that the openHPSDR project
is open source, and the Apache Labs Anan
series of transceivers are all powered by open-
source FPGA firmware. Each openHPSDR
board has an on-board FPGA and Verilog
code to match. All of it is available from the
openHPSDR repository'*. Try your hand at
some FPGA coding, now that you see how
easy it is! The tools that you have used today
are the very same tools that the developers
use when they write or update the code.

Source code and reference files for this
article are on the www.arrl.org/QEXfiles
web page.

As always, please drop me an e-mail if you
have any suggestions for topics you would
like to see covered in future Hands-On-SDR
columns or even just to let me know whether
or not you found this discussion useful.

Notes

'Scotty Cowling, WA2DFI, “Hands On SDR”,
QEX, Mar/Apr 2015, pp 9-19.

2Scotty Cowling, WA2DFI, “Hands On SDR”,
QEX, Jan/Feb 2016, pp 28-34.

3BeMicroCVA9 from Arrow Electronics: arrow.
com/en/products/bemicrocva9/arrow-
development-tools

“UDPSDR-HF2 from Arrow Electronics: arrow.
com/en/products/udpsdr-hf2/arrow-
development-tools

SUDPSDR-TX2 from Arrow Electronics: arrow.
com/en/products/udpsdr-tx2/arrow-
development-tools

SUDPSDR-HF1 from Arrow Electronics: arrow.
com/en/products/udpsdr-hfi/arrow-
development-tools

"Hermes-Lite wiki: github.com/softerhard-
ware/Hermes-Lite/wiki

8Free Altera Web Edition software: dl.altera.
com/?edition=web

9The source code is available from the
SDRstick SVN at svn.sdrstick.com under
the <sdrstick-release/BeMicroCV-A9/
Hermes-HF2-Port/firmware/source> direc-
tory. The file name is <Hermes_1_May.qar>

°The cross reference of Hermes to 1Q2 pins
is available from the SDRstick SVN in the
same directory as above. The file name is
<Hermes_1_May_to_IQ2_pins.pdf>

""The pin location Tcl script file is available
from the SDRstick SVN in the same direc-
tory as above. The file name is <Hermes_1_
May_map_pins.tcl>

2Yes, a # symbol, commonly known as a
pound sign is called an octothorpe. See
en.wiktionary.org/wiki/octothorpe

3Source code containing all of the changes
outlined in this column is available from
the SDRstick SVN at svn.sdrstick.com
under the <sdrstick-release/BeMicroCV-A9/
Hermes-HF2-Port/firmware/source> direc-
tory. The file name is <Hermes_1_May_
ported.qar>

"“For HPSDR firmware, look in the TAPR
repository svn.tapr.org in <main/trunk>

