
 QEX July/August 2015 37

Scotty Cowling, WA2DFI

PO Box 26843, Tempe, AZ 85285: scotty@tonks.com

Hands-On SDR

1Notes appear on page 42

Sharing Radios on the Network
I would like to thank those of you that

took the time to drop me an e-mail and let
me know that my introduction to FPGA
programming for SDR was useful. In spite
of the positive feedback, I am going to shift
gears this installment. FPGA aficionados
do not despair; I will return to the world
of Verilog in my next column. As Monty
Python would say, “...and now for something
completely different”.1

In this column, I will show you how to
listen to various web-based SDRs around
the world. I will then walk you through the
procedure to set up your own server and
share your radio with others, both on your
local network and on the Internet. I am
going to limit my discussion to receive only.
Transmitting is possible, but in my opinion,
it is not quite ready for prime time. It is
much easier for many “listeners” to listen to
the same digitized and down-converted data
from the antenna than it is to figure out a way

to combine the audio from many “talkers”
into one stream of data, and up-convert it for
transmission. Well, maybe it is not that hard
to do, but this feature isn’t readily available
in any of the software that I could find on
line. This leads me to define the difference
between software controlled SDR and
software shared SDR. A software controlled
SDR is a radio intended to be used by one
operator. A software shared SDR is intended
to be used by more than one operator. A
shared SDR may or may not be capable of
supporting simultaneous users; a controlled
SDR does not even need this feature. See the
sidebar, Networks, Servers and Clients.

What Do I Need?
As usual, you probably want to know the

answers to a few questions: “What do I need
to know?” and “What equipment do I need?”

As a bare minimum, you need nothing
more than an Internet connected computer
running a browser. Since this is a Software
Defined Radio column, and you need a
computer to run the software, it is not

much of a leap of faith to assume that you
already meet the minimum criteria! All
of the software that I use in this month’s
column is available for free download. You
must be familiar with installing and running
Windows applications to take advantage of
this free software. To get the most out of the
final section on the QtRadio server, you must
be able to install and run Ubuntu Linux and
its applications.

You do not need any radio hardware if
you do not intend to set up a server; you
will be using other people’s radio hardware
instead. To run a RemoteSDR server, you
will need an RFSPACE radio (such as an
SDR-IQ). To run a ghpsdr3-alex server, you
will need one of the many supported radios.2
Even if you do not have any radio hardware
and just choose to follow along with the text,
you can still get in on the remote radio action
and have lots of fun!

Listen to Someone Else’s Radio
The simplest way to get your feet wet in

Internet shared radios is to just point your

Figure 1 — You can listen to the University of Twente browser-based WebSDR at: websdr.ewi.utwente.nl:8901.

Mark
Typewritten Text
Copyright (C)2015 ARRL, All Rights Reserved

38 QEX July/August 2015

browser here: websdr.ewi.utwente.nl:8901.
This is the University of Twente WebSDR
in The Netherlands. WebSDR is a wide-
band, multi client web-based SDR that was
originally set up in 2008, making it the oldest
on-line SDR. See Figure 1. Their hardware
has progressed through several increasingly
sophisticated iterations, and their web site
contains a wealth of historical and technical
information. Best of all, WebSDR does not
require you to install any software on your
computer in order to listen!

Now let’s move on to something that is a
bit more involved to set up, namely installing
client software on your device. Notice
that I said device instead of computer. The
software we will use next is available for
many devices, such as Android phones and
tablets, computers and tablets running Mac
OSX, Linux and Windows. On phones and
tablets, the client software is called an app,
short for application. The client for Windows
is called QtRadio, and you can download a
pre-built runtime version from the QtRadio
website.3 The Android app is called glSDR
and is available for free from the Google
play store.4 The source files for Linux and
Mac OSX are available, but you will have to
compile them yourself. We will get to this
later. For Windows, simply download the .zip
file and extract it to a new directory. Run the
QtRadio.exe program in the main directory
by double-clicking it; there is no installation
required. To make it easier to access, you can
create a shortcut and place it on your desktop.

Once QtRadio is running (Figure 2),
click on the Receiver menu in the upper left
corner and select Quick Server List. A new
window will open (Figure 3) showing all of

Figure 2 — This is a screenshot of the Windows QtRadio Client.

Figure 3 — Here is a screenshot of the QtRadio active dspserver list.

Figure 4 — A screenshot of the RemoteSDR Client connected to an SDR-IQ in The Netherlands.

 QEX July/August 2015 39

the available dspservers. Double click on one
that has 0 clients (highlighted in green) and
you are listening on that radio! If you select
a radio that is in use, you will not be able to
control it, but you will instead hear whatever
the master user (the one who is controlling
the radio) hears. You only get to control the
radio if you were first in line to select it.

RemoteSDR: Easy as Cake
Mangled idioms aside, I would like

to segue into the server application, but
the QtRadio server only runs under Linux
and is a bit complex to set up. Let’s take a
look instead at somewhat more hardware
limited server/client software that runs on
Windows but is very easy to install. The
limitation is that it requires an RFSPACE
radio to act as a server. Even if you do not
have an SDR-IQ or SDR-14 receiver from
RFSPACE, installing this software will be
a useful way to familiarize yourself with
simple SDR server/client systems.

The RemoteSDR software is available
as a free download, and it installs both
the server and client programs in one
operation.5 Download the Quick Start
Guide (QuickStartGuide107.pdf)
and the server/client software installer
(RemoteSdrClientWinSetup_114.exe).
Run the installer and select all the default
options. This will install both the client and
the server on your Windows computer. You
will see two new icons on your desktop: one
for the server and one for the client. Go ahead
and launch the client (Figure 4), click on the
Setup menu and select Network (Figure 5).
Enter a description for your client and then
click the Find SDR’s button. (Yes, I know
that should be plural rather than possessive,
but that’s the way the programmers typed
it!) Figure 6 shows a listing of the SDRs that
RemoteSDR found. Double click on your

selection, click OK and then click on the
Start button. You are now in control of the
remote radio!

Now that we can listen to someone else’s
radio, let’s set up the server to let others listen
to our radio. Unless you have an RFSPACE
radio such as an SDR-IQ, you will not be able
to do this, but let’s cover it quickly before
moving on to a more complex server that
supports many different hardware platforms.

When you installed the RemoteSDR
client application, remember that you also
installed the RemoteSDR server application.
Find its icon on your desktop and open it
(Figure 7). Click on Setup and select Server
Setup (Figure 8). All you need to enter here
is your SDR description and your location
in the Latitude and Longitude boxes and
click OK. Figure 9 is a block diagram of the
RemoteSDR client and server system.

Now open the RemoteSDR client and go to
Network Setup and Find SDR’s. You should
now see your own SDR listed among the
others. Try double clicking your own radio,
then OK and Start. Did it work? It probably
did not (mine didn’t). Why didn’t it work? Go
back to the client Network Setup screen and
look at the TCP address. This is the IP address
that was published by the server software.
It is the IP address that your ISP provided
to your modem and will not be accessible
from the local network side that your PC is
connected to. You must use a local address,
such as 127.0.0.1 (localhost) or the actual
IP address of your PC on the local network.
Look at the RemoteSDR server window for
these addresses. Pick one and type it into the
client Network Setup screen’s TCP IP Adr
boxes. Then click OK and Start and you will
be listening to your own radio!

In order for others to listen to your radio on
the Internet, you have to do one more thing:
forward the data from your Internet IP address
port 50000 to your local network port 50000.
See Figure 10 for an explanation of why this
needs to be done. You must set up a route in
your home router to make this connection, so

Figure 5 — This is the RemoteSDR Client
Network Setup screen.

Figure 6 — This is the RemoteSDR Client “Find SDR’s” screen.

Figure 7 — Here is the RemoteSDR Server
screen.

Figure 8 — The RemoteSDR Server Setup
screen allows you to configure your server.

that the external clients (on the Internet) can
connect to your server on your local network.
Note that your radio will appear in the list of
Internet SDRs even without port forwarding,
but no one outside your local network will
be able to connect to your radio and listen
until you set up port forwarding. For a more

40 QEX July/August 2015

detailed discussion, see section 3 of the
RemoteSDR Quick Start Guide.

And Now for Something Completely
Different (again)…

Actually, our final exercise is a tough one.
It is really more of the same as what we have
already done, but with different hardware and
under a different operating system. Let’s set
up a ghpsdr3-alex server under Ubuntu 14.04
Linux. We have already run the QtRadio
client software to listen to other servers on
the Internet. The obvious next step is to set
up a server of our own. The good news is that
the ghpsdr3-alex server software supports
many different hardware platforms (see Note
2). The not-so-good news is that it runs only
under Linux and is not trivial to set up. We
have never let that stop us before, however,

QX1507-Cowling09

SDR-IQ
RemoteSdr

Server
Application

Internet
RemoteSdr

Client
Application

Video
Monitor

List ServerSpeaker

QX1507-Cowling10

Router

Computer

Computer Internet

RemoteSdr Client

Connects to Public IP
68.154.49.41:50000

Your
ISP

Forwards
IP 68.154.49.41
Port 50000 To

IP 192.168.1.23
Port 50000

SDR-IQ

Computer

H
om

e

W
or

ld

192.168.1.54

192.168.1.23:50000

so let’s dive in!

Ghpsdr3-alex Server Linux Setup
Thanks to Dan Babcock, N4XWE,

we have a 10-step guide to install and run
ghpsdr3-alex on a computer running Ubuntu
14.04 LTS 32-bit Linux. This will install all
three parts of the software. The Server talks
to the hardware and the dspserver does the
heavy lifting and serves up receive data to the
QtRadio receiver client (see Figure 11).

Step 1: This step will make sure that your
system is up to date and has the compiler
tools installed. Make sure that the universe
repository is enabled (it is enabled by
default). Open a terminal window and run the
following commands.

$ sudo apt-get update
$ sudo apt-get upgrade

Figure 9 — RemoteSDR system block diagram (adapted from the graphic on the RFSPACE website).

Figure 10 — RemoteSDR system port forwarding diagram (adapted from the graphic on the RFSPACE website)

$ sudo apt-get install make
$ sudo apt-get install gcc
$ sudo apt-get install g++
$ sudo apt-get install autoconf
$ sudo apt-get install automake
$ sudo apt-get install autotools-dev
$ sudo apt-get install libtool
$ sudo apt-get install git
$ sudo apt-get install subversion

Step 2: Use the following command 20
times to install the 20 prerequisite packages
listed by name in Figure 12. Be sure to
substitute the name of each package from
that list for package in this command.

$ sudo apt-get install package
Step 3: Install qt5. Visit qt.io/download-

 QEX July/August 2015 41

QX1405-Cowling19

Server

ghpsdr
Receiver

Monitor
Receiver

HPSDR

dspserver

qtmonitor
Receiver

jmonitor
Receiver

QtRadio
Receiver

Receiver
Clients

USB Or Ethernet Interface
Multi-receiver Protocol

Ethernet Interface
Single Receiver Protocol

Ethernet Interface
Low Bandwidth

Figure 11 — This is the ghpsdr3-alex system diagram.

open-source and download the current
package for your system. Do not use
the recommended one; go to the Offline
Installers page and select the version that
matches your system (for example, Qt
5.4.1 for Linux 32-bit). Change the file
permissions to allow execution, and execute
it. Find where the qmake file is installed
using the output from the locate command.
Substitute this path for the example path in
the export command below. The path may
vary slightly if you are using 64-bit Linux.

$ chmod +x downloaded_file_name
$ sudo ./downloaded_file_name
$ sudo updatedb
$ locate /bin/qmake
$ export PATH=/opt/Qt5.4.1/5.4/gcc/
bin:$PATH

Step 4: Verify that path points to the qt5
version that you installed in Step 3 above.
(The qmake version is not important.)

$ qmake -v
The result should be something like below

showing the Qt version that you installed in
Step 3. The path may vary slightly if you are
using 64-bit Linux.

QMake version 3.0
Using Qt version 5.4.1 in /opt/
Qt5.4.1/5.4/gcc/bin

Step 5: Install the codec2 low bit rate
CODEC for audio encoding and decoding.

$ cd
$ mkdir src
$ cd src
$ svn co https://svn.code.sf.net/p/
freetel/code/codec2 codec2
$ cd codec2
$ mkdir build
$ cd build
$ cmake ../
$ sudo make
$ sudo make install
$ sudo ldconfig

Step 6: Move the codec2 header files to

the correct place.

$ cd /usr/local/include/codec2
$ sudo cp * ..

Step 7: Move the codec2 libraries to
the correct place. The directory in the first
command is for 32-bit Ubuntu. For 64-bit
Ubuntu it will likely be /usr/local/lib/
x86_64-linux-gnu instead.

$ cd /usr/local/lib/i386-linux-gnu
$ sudo cp * ..

Step 8: Install ghpsdr3-alex from the Git
repository.

cmake
freeglut3-dev
gcc-multilib
libconfig8-dev
libevent-dev
libfftw3-dev
libglu1-mesa-dev
libpulse-dev
libortp-dev
libqt4-opengl-dev
libsamplerate0-dev
libspeexdsp-dev
libssl-dev
libusb-0.1-4
libusb-1.0-0-dev
libusb-dev
libxcb-composite0-dev
portaudio19-dev
qtmobility-dev
xdg-utils

Figure 12 — This list shows the prerequisite
software packages to be installed in Step 2.

$ cd
$ cd src
$ git clone git://github.com/
alexlee188/ghpsdr3-alex
$ cd ghpsdr3-alex
$ git checkout master

Step 9: Compile the code.

$ autoreconf -i
$./configure
$ make -j4 all
$ sudo make install

Step 10: Run the server, dspserver and
client software. You will have to run each
of these in a separate window. To open a
new window, type <crtl><alt>T. Before
you run hpsdr-server, make sure that your
openHPSDR, Hermes or SDRstick hardware
is connected to the network and powered
up. If you are running other SDR hardware,
use the appropriate hardware server and
command-line options in place of hpsdr-
server.

$ hpsdr-server --metis --samplerate
384000
$ dspserver --hpsdr --lo 0
--nocorrectiq
$ QtRadio

42 QEX July/August 2015

When you run the second line in step 10
for the first time, the software will create a
new dspserver.conf template file for you
to fill in with important things like your call
sign, location, band, rig and antenna. This
information will be listed in the web database
that you see when you bring up the Quick
Server List in QtRadio. Edit this with your
favorite text editor to reflect your station
information. When you run the server for
the second time (after you have edited the
dspserver.conf file) you will be prompted to
create a key and self-signed certificate. The
three commands to do this are listed in the
prompt, but I have reproduced them below
to make it a bit easier for you after they have
scrolled off your screen. Run these three
commands and answer any questions you
are asked.

$ openssl genrsa –out pkey 2048
$ openssl req –new –key pkey –out
cert.req
$ openssl x509 –req –days 365 –in
cert.req –signkey pkey –out cert

To test your setup, click on Receiver in
the QtRadio toolbar and select Configure
(see Figure 13). In the Server tab, enter
127.0.0.1 and click Add Host (or just pick
127.0.0.1 from the drop-down list). Click
Close, then click on Receiver again, but this
time select Connect. A dialog box may pop
up with additional settings, depending on the
hardware that you are running. You can make
your choices and dismiss the dialog box, or
you can just drag it out of the way for now.
Meanwhile, you should be up and running
your own shared receiver! The IP address
127.0.0.1 is called the localhost address, and
connects the QtRadio client to the dspserver
via a direct connection within the computer.

Note that your receiver is now shown
in the list of online dspservers when you
display them by clicking Receiver and
selecting Quick Server List. You will notice,
however, that the IP address is not right, and
you cannot connect to it. There is one more
thing that we need to do before others can
connect to our local receiver, and that is set
up port forwarding for ports 8000 and 9000.
Since there are many kinds of routers, I
cannot give you specifics on how to do this.
On the Netgear router that I have, I set up
port forwarding so that any incoming packets
from the WAN (outside world) addressed to
any IP address on ports 8000 or 9000 forward
to the local computer on the LAN (local
network) that is running dspserver (mine
is at address 192.168.1.2). To make things
easier, you will probably need to set this
computer’s IP address to a fixed value rather
than use DHCP to assign it. After you set up
port forwarding, the IP address that you see

in the Active dspserver list should be the IP
address of your cable modem or router, and
you (and everyone else, too) should be able
to connect to your receiver from anywhere on
the Internet.

Back to Verilog
After this brief sojourn into the world

of Internet shared radios (and now that you
are a Linux and networking expert), my next
column will return to the topic of Verilog
programming for FPGAs. I will take a look
at porting the open-source code for the Altera
Cyclone III FPGA on the openHPSDR
Hermes board to the Cyclone V FPGA on
the BeMicroCVA9 development board from
Arrow.6 The result will be open-source SDR
code that anyone can use as a starting point
for their own customization, port to yet a
different FPGA family or just become more
familiar with SDR FPGA design techniques.

Notes
1See (en.wikipedia.org/wiki/And_Now_for_

Something_Completely_Different) for
information on the origin of the phrase.

2As of this writing, ghpsdr3-alex software
supports the following hardware: HPSDR,
SDRstick, Softrock, UHFSDR, Perseus,
SDR-IQ, HiQSDR, USRP and RTL-SDR
DVB-T dongle.

3Download the QtRadio client application
from here: napan.com/ve9gj/QtRadio_
Windows_Master_2014-09-02.zip

4The Android glSDR app is available
here: code.google.com/p/sdr-widget/
downloads/detail?name=glSDR32.
apk&can=2&q=

5The RemoteSDR software and Quick Start
Guide are available on this page: source-
forge.net/projects/remotesdrclient/files

6The BeMicroCVA9 should be available from
Arrow Electronics by the time you read
this: parts.arrow.com/item/detail/arrow-
development-tools/bemicrocva9

Networks and Servers and
Clients, Oh My!

While it might be obvious to
networking and software gurus, the
terms server and client might not
be as familiar to radio experts. In
simple terms, a server is a program
that serves up data to other programs
(called clients) that use the data in
some way (display it on your screen,
for example). The Internet consists of
many (and I mean billions) of servers
that deliver content to web clients. This
content can be HTML web pages,
MP3 music streams, MPEG4 video
streams or even SDR control and
audio streams.

A common example of a client is
your web browser. Whether you use
Firefox, Chrome, Internet Explorer or
something else, this client software
connects to a server on the Internet
to obtain its content, which it then
formats and displays on your monitor
(or sends it to your speakers or to
another application running on your
computer). Clients can also be set-top
boxes, game consoles, home theater
computers, and the list goes on and
on.

In our specific case, the server
provides the SDR content to one
or more clients. The clients may
request specific data (frequency,
mode, bandwidth, and so on) from the
server, and (if the system is designed
properly) the server responds with the
appropriate data. It is this server/client
architecture that enables many users
to share data from one set of receiver
hardware.

Figure 13 — This screenshot shows the Linux QtRadio Client.

