
28 QEX January/February 2016

Scotty Cowling, WA2DFI

PO Box 26843, Tempe, AZ 85285: scotty@tonks.com

Hands-On-SDR

1Notes appear on page 34

In this installment, we move back toward
the basics (I didn’t say simple!) and delve a
bit more into the inner workings of the magi-
cal, mystical field programmable gate array,
or FPGA. This column relies heavily on what
I covered in my Mar/Apr 2015 column.1 If
you have not read that, or can’t remember
reading it, now would be a good time for a
quick review. Since I can’t remember writ-
ing it, I need to take a short break and read it
again myself…

In the Mar/Apr 2015 column, I showed
you how to set up an FPGA coding environ-
ment with free development tools, walked
you through the code of an SDR design
example, showed you how to compile the
example code and run it on real hardware.
We did cover some SDR theory, but we
took much of the background as a given and
instead focused on how we implemented
functions inside the FPGA.

This time we will be taking the open-
source code written for a variant of the
high-performance software-defined radio
(HPSDR) Hermes single-board transceiver
(specifically the Apache Labs Anan-10e) and
port it to the BeMicroCVA9 development
board from Arrow Electronics. This board
is used in the Hermes Lite project as well as
in the IQ2 transceiver and is also compat-
ible with the SDRstick HF1, HF2 and TX2
RF boards. I am going to focus on the HF2
receiver and TX2 transmitter boards, but I
will include enough information for you to
port the Hermes code to almost any compat-
ible RF front-end board. Given the price and
performance of the BeMicroCVA9, I expect
that a bevy of hardware designs will surface
once the word gets out. So let’s start getting
the word out!

We owe many thanks to Phil Harman,
VK6PH, Kirk Weedman, KD7IRS, and Alex
Shovkoplyas, VE3NEA, who wrote the orig-
inal code that we will use as a starting point.
As you look through the code, I think you
will be grateful for their work. Without their
significant efforts, we would have to write all
of this complicated code ourselves!

What Do We Need to Get Started?
As with each of these columns, limited

space begs the questions: “What do I need to
know?” and “What equipment do I need?”

You will need a basic working knowl-
edge of the Verilog hardware description
language. If you followed my Mar/Apr
column, you are prepared enough. We will
not be deep diving into the intricacies of the
code, since we are just porting the code to a
new device. My assumption is that the exist-
ing code is working, and we will try not to
introduce any new bugs as we port to the new
device. Of course, my assumption may prove
to be false, but that is a topic for another day:
debugging FPGA code!

For hardware, you wil l need a
BeMicroCVA9 development kit.2 To actually
run the code that we are going to compile in
this column, you will also need an HF2 board
(to receive), or both HF2 and TX2 boards
(to transceive).3, 4 As a lower-performance
(and less expensive) alternative, you can
use an HF1 or Hermes-Lite board, but you
will need to make other modifications to the
code if you go that route.5, 6 I believe that the
Hermes-Lite group has ported their firmware
to the BeMicroCVA9. After wading through
this column, you should be expert enough to
compile their source code and run it on the
BeMicroCVA9. Even if you do not have the
hardware, you can still follow along with the
text and learn about porting FPGA code to
new devices.

Like my Mar/Apr column, you will need
some Verilog programming knowledge, but
SDR knowledge in general is not required.
We are targeting a new device, not designing
code from scratch.

For design software, there is good news
and bad news. The good news is that Altera
offers their Quartus II FPGA design soft-
ware as a free download from the Internet
for the FPGAs in their Cyclone® family of
parts. Both Linux and Windows versions are
available. We will need two versions of the
Quartus II design software to complete the
porting work. The first version is Quartus II
version 13.1, which is the version that was
used to create the code that we are going to

port. The second version is the latest (as of
this writing), version 15.0. The bad news
is that Quartus II version 15.0 requires a
64-bit operating system. You will need 64-bit
Windows XP, Windows 7 or later or 64-bit
Linux in order to run this new version.

All of the information from my Mar/Apr
column applies to both Quartus versions.
Before you continue, you will need to down-
load and install both of the free Quartus II
versions (13.1 and 15.0) from the Altera web
site.7 To save some download time, you only
need to download Cyclone III and Cyclone
V device support for Quartus II version
13.1, and only Cyclone V device support for
Quartus II version 15.0.

Why Two Quartus Versions?
Before we get down to the meat and

potatoes, I need to explain some problems
that we face that are unique to our task. You
might ask “Why do we need two versions of
Quartus?” The answer is tied to the capabili-
ties of each Quartus version and the FPGA
part that we are migrating from as well as the
part we are migrating to. The Hermes code
targets the Cyclone III EP3C25Q240C8 (our
from part number), while the BeMicroCVA9
uses a Cyclone V 5CEFA9F23C8 (our to part
number). Quartus II version 13.1 supports all
Cyclone III parts and some of the Cyclone
V parts, but unfortunately not our to part
number. Quartus II version 15.0 supports all
Cyclone V parts (including our to part num-
ber), but no Cyclone III parts at all!

While it is certainly possible to migrate
Quartus versions and part families in one
step (which was my original intent for this
column), doing it that way is difficult. We
will follow an easier course by changing part
families first and then upgrading to the latest
version of Quartus. If the complexity of this
method frustrates you, try to remember that
this is the easy way. To paraphrase a com-
mon saying: “There are only two ways to do
this. If you don’t like this one, you for sure
won’t like the other one!” Here is the flow
of part numbers and Quartus versions that
we will use:

3C25 with v13.1  5CEFA7 with v13.1

Mark
Typewritten Text
Copyright (C)2016 ARRL, All Rights Reserved

 QEX January/February 2016 29

 5CEFA7 with v15.0  5CEFA9 with
v15.0

Notice that Quartus II version 13.1 does
not support our 5CEFA9F23C8 part, so we
pick a dummy part (5CEFA7F23C8) that it
does support just to get us into the Cyclone
V family. After we migrate to Quartus II
version 15.0, we will pick our final, correct
5CEFA9F23C8 target. Also, notice that in
the flow above, we only change one item
in each step: either the part number or the
Quartus version, but never both.

FPGA Code Porting Tasks
Now that we understand the mess that we

have gotten ourselves into, here is an outline
of the WA2DFI 6-step program to successful
FPGA code porting:

1) Open the design in the original Quartus
version.

2) Update the wizard-generated modules.
3) Add code to hook in new signals and

remove unused old signals.
4) Add new location properties.
5) Update the SDC timing constraints file

with new signals, and remove old signals.
6) Compile-debug-repeat.
While none of these steps is fraught with

peril, some are a bit more involved than oth-
ers. Let’s look at each step in more detail.

Open the Design
To get a copy of the FPGA source code,

download a copy of the Quartus archive
from the SDRstick SVN webserver.8 The
archive not only contains the source files

(with a .v extension), but the pin assignment
file (.qsf extension), timing constraints file
(.sdc extension) and many other files needed
to successfully compile the complete project.

Once you have downloaded the archive
file, start the Quartus II version 13.1 soft-
ware and click on <file><open project…>.
Navigate to the .qar file that you downloaded
and click on it. From the dialog box that
opens, select the destination folder (usually
the default is good) and click OK. Quartus
will extract all of the files from the archive
and set up the project, all ready to go. I
recommend that you fire off a trial compile
now (yes, right now!) with no changes. This
will tell you if you have everything set up
correctly. The compile button is the small
right-facing triangle on the toolbar. If you
prefer menus, the <Start Compilation> but-
ton is also under the <Processing> menu.
You should get a bunch of warnings from
Quartus, but no errors. If Quartus reports
errors, you must fix them before you can
continue.

Now that we have a good compile, we
need to do a little project clean up. By proj-
ect, I am referring to the group of files that
comprise the entire design. The Hermes
design has changed and evolved over time.
Some functions were removed or superseded
by new and improved ones. Other pieces of
code were rewritten to be more efficient. The
net result is that there are files included in
the project that are unused. Since we don’t
need to update unused modules, it is best
to remove them now. There are about two

dozen unused files that you can remove. I
have listed them in a text file that you can
download.9

First, remove the files on the list from
the project directory or subdirectory. If you
are cautious, like I am, create a new direc-
tory outside of the Quartus project and
move the files there. That way Quartus will
not be able to find them, but if you make a
mistake and remove a needed file, you can
easily restore it. Next, in Quartus, under the
<Project><Add/Remove Files in Project>
menu, remove the files from the project. You
might think that deleting (or moving) the
file is sufficient, but Quartus keeps track of
the files that it knows are in the project. You
must remove these or Quartus will look for
them (in vain, since you moved them) and
not be happy about not finding them. After
you remove all of the dunsel files, make sure
to click <apply> and <OK>.10

Check the Files tab of the Project
Navigator window to see a list of files in the
project. See Figure 1. You should recompile
the project to make sure that you did not
accidentally remove something that is neces-
sary. Before you do this, however, you need
to remove the intermediate database files for
past compiles. This will ensure that all traces
of the files that you removed are gone from
Quartus “memory” of compiles past. Go
into the project directory and remove the two
directories db and incremental_db along
with their contents. Don’t worry; Quartus
will re-create them as soon as you run a com-
pile, which you should now do. As before,
Quartus should report some warnings, but
no errors.

Update Wizard-Generated Modules
The Altera MegaWizard Plug-In Manager

was used to generate some of the modules in
the Hermes code. The wizard, as I call it, is
software built into Quartus that helps you
set parameters for Altera functions such as
FIFO, RAM and ROM memories, phase-
locked loops (PLLs) and other functions.
The Hermes design uses four PLLs, four
FIFO memories, three ROM memories, one
RAM memory and one multiplier for a total
of 13 Wizard generated modules. Each of
these modules must be updated first to the
Cyclone V family under Quartus II version
13.1 before we can open them in Quartus II
version 15.0.

Let’s now move our design to the Cyclone
V family. With the design open, select
<Assignments><Device> from the menu
bar. Select Cyclone V in the Family field.
A dialog box will appear asking if you want
to remove all location assignments. This
tells Quartus to remove the old pin assign-
ments that will no longer be valid when we
change to a different part. This is important,
since the Cyclone III pin numbers have

Altera Part Numbers Explained, Sort Of
Just in case you are wondering what all those numbers mean in that long and

involved FPGA part number, look no further. Our FPGA part number can be bro-
ken into 9 sections:

5C E F A9 F 23 C 8 N
The 5C signifies that our part is in Altera’s Cyclone V family of parts. Examples

of other Altera part families are Stratix 5 (5S) and Arria 10 (10A). The E in our
part number signifies Enhanced logic/memory, in other words, no embedded
hard-processor or high-speed transceivers (the digital logic kind of transceiver, not
the Amateur Radio variety). The F signifies that we have a hard memory controller,
which is a DDR memory controller pre-built for us in silicon so we do not have to
design one out of the FPGA fabric ourselves. The A9 tells us that this is the larg-
est device in the family, with 301K Logic Elements (LEs). In contrast, the smallest
member of the family, the A2, has only 25K LEs.

Moving along, F23 represents the package type. F stands for Fine Line Ball
Grid Array and 23 stands for the square package side dimension, 23mm. This
package has 484 connections, each consisting of a solder ball on the bottom of
the chip. The solder balls are arranged in a 22mm by 22mm square grid on 1mm
centers. Don’t try to mount this part with your American Beauty soldering iron!15

The C stands for commercial temperature range (0ºC to 85ºC); there are two
wider temperature ranges if needed. The 8 represents the speed grade. There are
only three grades, 6 being the fastest (and most expensive). The 8 graded parts
are the slowest (and cheapest), but still plenty fast enough for our application. As
you would expect, grade 7 parts are in between 6 and 8 in performance. Last but
not least, the N indicates lead-free packaging. No Ethyl for us, thank you.16 More
information than you ever wanted to know is available in the reference.17

30 QEX January/February 2016

about the same chance of being the same as
the Cyclone V pin numbers as my dog has
of becoming President. (My cat agrees with
me on this one.) This is especially true since
the packages (QFP240 versus FBGA484)
are completely different. So click Yes to
remove them. To narrow your choices, select
FBGA in the Package field, 484 in the Pin
count field and 8 in the Speed grade field.
Now select 5CEFA7F23C8 under Available
Devices with a single click. Note that you
will again have to confirm that you want
to remove all location assignments, even
though they have already been removed!
Click Yes and then OK. That’s it! You are
now are using a Cyclone V part! Well, not
the right part, and we are still using Quartus
II version 13.1. We will fix both of these
problems after we finish updating the wizard-
generated modules.

To update the wizard-generated modules,
we will use (are you ready for this?) the
wizard itself! We will open each module in
turn and tell the wizard to use the Cyclone V
family and regenerate the module. This will
work for all of the modules except the four
PLLs and the ROM memory. We will handle
them separately. To get started, click the IP
Components tab of the Project Navigator.
See Figure 2. You should see thirteen lines
in the window. Leave the PLLs alone for
now (PLL_IF, tx_pll, C122_PLL and
C10_PLL) as well as the firromH module.
Open sine_table_256 by double clicking on
it. The MegaWizard Plug-In Manager will
start. In the upper right corner, the Currently
selected device family will be Cyclone III
and the Match project/default box will be
checked. Uncheck this box and then select

Cyclone V from the Currently selected
device family drop-down menu. Click Finish
twice and the wizard will update the mod-
ule for you. Now repeat the same steps for
the other 7 modules (profileROM, SP_fifo,
firram48, Tx1_IQ_fifo, Rx_Audio_fifo,
Multiply2 and Mic_fifo).

The firromH module must be handled dif-
ferently, mainly because the designers broke
one of the rules and modified the firromH.v
file that the wizard created. There are reasons
why they did this (which I am not going to
elaborate on), but the consequences are that
the new wizard-generated firromH.v file will
over-write the modified old version. We will
have to re-modify the new file with the old
changes to make it work. Go ahead and open
the firromH module in the wizard and con-
vert it to the Cyclone V family just like you
did with the other modules. After you do this,
click on the Mem Init tab in the toolbar. We
must specify an existing file name in order
to satisfy the wizard, so click on the Browse
button and select the Polyphase_FIR direc-
tory and pick any of the files that end in .mif.
You will have to change the selection to MIF
files in the drop-down Files of type box at
the bottom of the window to make the .mif
files visible. It does not matter which file
you choose, since we are going to manually
change it in the firromH.v file in the next step.

Now we are going to modify the
firromH.v file that the wizard created for us.
(Shh, don’t tell the wizard!) In the Quartus
Project Navigator pane, click on the Files
tab, find the firromH.v file (hint: it is called
“Polyphase_FIR/firromH.v” because it is in
a project sub-directory) and open it by dou-
ble-clicking on it. After line 43, add line 44:

parameter MifFile = “missing_file.mif”;
Follow this with a blank line 45 to make

things readable. Next go to line 88 and
change it to read:

altsyncram_component.init_file =
MifFile,

Make sure to type it exactly as shown,
since capitalization and punctuation matter.
Save it and close the file. We will delve more
into why we made this change in the next
column, when we dig into the code. Right
now we need to finish up with the wizard by
updating the PLL modules.

Unfortunately, Cyclone V PLLs are dif-
ferent from Cyclone III PLLs, so we cannot
just upgrade them using the wizard. We must
create new ones and replace the old ones with
the new ones. First, remove the old PLL_IF,
C10_PLL, C122_PLL and tx_pll files from
the project using the Add/Remove Files in
Project menu. Each of these modules will
have several files (typically .v and .qip files);
make sure that you remove all of them. Next
remove the files from the project directory
and sub-directories. (The tx_pll files are in
the Ethernet sub-directory.) While you are
at it, remove the db and incremental-db
directories and their contents, just like you
did before.

To create a new PLL module, open
the wizard using <Tools><MegaWizard
Plug-In Manager> and select Create a new
custom megafunction from the list. From
the list of functions, pick Altera PLL v13.1
from the PLL submenu. In the output file box
append the name (for example, PLL_IF_
new) after the string that represents the proj-
ect directory. This will name your module
and place it in the project directory. All four

Figure 1 — Project Navigator view of files in the project.

Figure 2 — Project Navigator view of IP components in the project.

 QEX January/February 2016 31

PLL modules have these common settings:
• Device Speed Grade: 8
• PLL Mode: Integer-N PLL
• Operation Mode: direct
• Enable locked output port: checked
• Enable physical output clock param-

eters: checked
Set the other parameters for each module

to what I have listed in Table 1. Leave all
other parameters set to their default settings.
When you click Finish and Exit after speci-
fying all the parameters, Quartus will ask
you if you want to add the new IP to the proj-
ect. Click Yes. Since the PLL modules need
to be added to the project eventually, this will
save you a step later.

The last step is to open the source file that
instantiates each PLL, update the module
name and check (and correct, if necessary)
the module connections. The tx_pll is used
in the rgmii_send.v file in the Ethernet sub-
directory. The other three are instantiated in
the top level Hermes.v file. I will guide you
through the first one, and you can follow the
same procedure on the other three on your
own. (You didn’t think I was going to do all
of it for you, did you?) Open the top level
Hermes.v file and also the C122_PLL_
new.v file. Go to line 1385 in Hermes.v and
you will see the instantiation of C122_PLL.
The instantiated name is PLL_inst, and
the port names are inclk0, c0 and locked.
Observe that port inclk0 is connected to
_122MHz, port c0 is connected to osc80khz
and port locked is not connected to anything.
Now look at the C122_PLL_new.v file. You
will see that there are now four ports instead
of three: inclk0 is now called refclk, c0 is

now called outclk_1 and locked remains
unchanged. The new input is called rst; we
will not use it. Change line 1385 to read:

C 1 2 2 _ P L L _ n e w P L L _
i n s t (. r e f c l k (_ 1 2 2 M H z) ,
.outclk_1(osc_80khz), .locked(), .rst());
The C10_PLL_new and PLL_IF_new mod-
ules will require similar changes.

The astute reader will notice that the wiz-
ard allows you to turn off the locked output
when it is unused, but the new PLLs all have
an rst input that cannot be disabled. Ideally
this input should be connected to reset logic;
however, we will save code improvements
for a later time. I need to call your attention to
one other change that I slipped in while you
were not looking. I changed the reference
clock of the tx_pll module from 125 MHz
to 50 MHz. I did this out of necessity, since
the CVA9 does not have a 125 MHz clock
input! It does have a 50 MHz clock input,
but since we have not added it to the top-
level Hermes.v source file yet, just leave it at
125 MHz. We will fix it shortly.

Now that you are experienced in match-
ing up old port names to new port names, this
would be a good time to go back and check
the other nine wizard-generated modules
that we updated to make sure that the port
definitions in each module’s .v file match
up with the ports called out at the module’s
instantiation. Here’s a quick hint: all of
them are instantiated in Hermes.v except
for sine_table_256 (sidetone.v), Multiply2
(sidetone.v), profile_ROM (profile.v) fir-
romH (Polyphase_FIR/firx2r2.v) and fir-
ram48 (Polyphase_FIR/firx2r2.v).

As a short aside, I keep a note pad handy
to write down things like “change 125M
clock to 50M” as a note to myself. When you
are updating the code, you will likely per-
form many tasks out of order and it is easy to
forget a simple change that you queued up in
your memory and then forgot about it.

At this point, we are finished with
Quartus II version 13.1. Close Quartus and
re-open the project in Quartus II version
15.0. The new version of Quartus will ask
you if it should overwrite the database with
the new format. You can safely answer Yes.
Change the part number to 5CEFA9F23C8
and run a compile to see if we broke any-
thing. Now we are using version 15.0 with
the correct FPGA part number. The light at
the end of the tunnel is coming into view, and
it is not an oncoming train!

Add and Remove Code and Signals
The next step in our 6-step program is to

match up the old design (Hermes) signals
with the new design (CVA9) signals. We
must account for every one of the Hermes
signals, whether it is to remove it, change
it to match the new CVA9 hardware or
just connect it to its counterpart in the new
design. We must also account for every one
of the new design pins (CVA9) by either
ignoring it, adding code to support it or just
connecting it to its counterpart from the old
design. In order to be able to do all of this
cross checking, we need to map the old pin
names (in this case from the Hermes board)
to our new pins on the BeMicroCVA9 board.
Some of these signals connect to parts on the
BeMicroCVA9, and some connect directly
to the HF2 and TX2 boards that are plugged
into the BeMicroCVA9.

What we need is a table that shows the
old name alongside the new name and the
new FPGA pin number. (We will use the pin
numbers in the next section.) You could figure
this out for yourself, but I have created a file
for you containing a table of all of the signal
names in the design to give you a head start.
This Hermes_6_to_IQ2_pins table will tell
us which pins map directly onto new pins and
which do not.11 An excerpt of this table (show-
ing only the signals that we need to change) is
shown in Table 2. All of the changes will be
made to the top level Hermes.v file.

A quick look at the full table will reveal
that most Hermes signals have equivalent
(although differently named) BeMicroCVA9
signals. We can leave these alone. The other
signals fall into three categories:

1) The Hermes signal has a different or
shared function than the CVA9 signal.

2) The Hermes signal does not exist in the
CVA9 design.

3) The CVA9 signal does not exist in the
Hermes design.

In the first case, we must modify the

Table 1
Wizard Settings for New PLL Modules

	 PLL_IF_new	 tx_pll_new	 C10_PLL_new	 C122_PLL_new

Reference Clock	 122.88 MHz	 50.0 MHz	 10.0 MHz	 122.88 MHz
Number of clocks	 4	 4	 2	 2
Multiply Factor (M)	 4	 10	 64	 9
Divide Factor (N)	 1	 1	 2	 3

outclk0 cascade?	 N	 N	 Y	 Y
outclk0 Divide Factor (C)	 40	 4	 32	 192
outclk0 output	 12.288 MHz	 125 MHz	 n/a	 n/a
outclk0 phase shift	 0°	 0°	 0°	 0°

outclk1 cascade?	 N	 N	 N	 N
outclk1 Divide Factor (C)	160	 4	 125	 24
outclk1 output	 3.072 MHz	 125 MHz	 80 kHz	 80 kHz
outclk1 phase shift	 0°	 90°	 0°	 0°

outclk2 cascade?	 Y	 N	 n/a	 n/a
outclk2 Divide Factor (C)	256	 40	 n/a	 n/a
outclk2 output	 n/a	 12.5 MHz	 n/a	 n/a

outclk3 cascade?	 N	 N	 n/a	 n/a
outclk3 Divide Factor (C)	 40	 200	 n/a	 n/a
outclk3 output	 48 kHz	 2.5 MHz	 n/a	 n/a

32 QEX January/February 2016

Hermes code to connect to the CVA9 hard-
ware that is different from the Hermes hard-
ware. As an alternative, we can choose to not
implement the Hermes function on the dif-
ferent CVA9 hardware. This involves remov-
ing (typically by commenting out) code that
connects to the removed pins. As we will
explain next, you have to be careful when
removing inputs.

In the second case, we can simply remove
Hermes code that does not have CVA9 hard-
ware associated with it. We must be careful
to follow Hermes inputs all the way to their
destinations and remove them cleanly. We do
not want any floating inputs. There may be
one or more required inputs to the Hermes
code that came from hardware that does not
exist on the CVA9. We will have to add new
code to create these signals and set them to a
valid state.

In the third case we must add code to
the Hermes design to connect to the CVA9
hardware that does not exist in the Hermes
design. As an alternative, we can choose to
ignore the new hardware, but we must still
drive any output pins to some known state to
avoid hardware problems later.

Here are the index numbers (from the
Hermes_6_to_IQ2_pins table) that belong
to each category:

Category 1: 4, 5, 50, 51, 52, 53
Category 2: 28, 49, 67, 70, 73-76, 78-85,

91-104, 113-115
Category 3: 21, 22, 116-120

Category 1 Changes
These 7 pins all revolve around a hard-

ware difference between the Hermes and
the CVA9/HF2/TX2 hardware. Hermes
has a 31 dB step RF attenuator and a single
audio CODEC for receive audio output and
microphone audio input. These two devices
have separate serial interfaces (3-wire for the
attenuator and 3-wire for the CODEC). The
HF2 receiver has the same attenuator and
CODEC (which is used for receive audio
output only), but they share clock and data
lines, each having a separate chip-select. This
makes the interface 4 lines to both parts. To
complicate things, the TX2 transmitter has
another CODEC (used only for microphone
audio input) that shares the same clock and
data lines, but with its own separate chip
select. So now the new five-line interface
must communicate with three parts over
common clock and data lines using three
different chip-selects. Rather than devise
logic to adapt the two Hermes ports to the
special five-line CVA9/HF2/TX2 interface, I
have opted to just disable the HF2 and TX2
CODECs by tying their chip-selects to the
inactive state. The PowerSDRTM software can
use the sound card in place of the CODECs,
so this does not create a hardship. We can go
back later and add the code in if we want to. Ta

b
le

 2
E

xc
er

p
t

o
f

th
e

H
er

m
es

_6
_S

ep
t_

to
_I

Q
2_

P
in

s
F

ile

In
de

x	
H

er
m

es
 n

am
e	

H
er

m
es

 F
P

G
A

 p
in

	H
F

2
N

am
e	

T
X

2
N

am
e	

C
V

A
9

J2
 p

in
	

C
V

A
9

na
m

e	
C

V
A

9
F

P
G

A
 p

in
	

D
es

cr
ip

tio
n

4	
AT

T
N

_D
AT

A
	

39
	

S
P

I_
D

AT
A

	
S

P
I_

D
AT

A
	

62
*	

E
G

_P
58

	
V

20
	

D
at

a
O

ut
pu

t T
o

A
tte

nu
at

or

5	
AT

T
N

_C
LK

	
22

	
S

P
I_

C
LK

	
S

P
I_

C
LK

	
64

*	
E

G
_P

59
	

U
20

	
C

lo
ck

 O
ut

pu
t T

o
A

tte
nu

at
or

21
	

IN
A

14
		

IN

A
14

	
-	

41
	

E
G

_P
17

	
A

B
20

	
In

pu
t D

at
a

Fr
om

 A
D

C
22

	
IN

A
15

		

IN
A

15
	

-	
43

	
E

G
_P

18
	

Y
20

	
In

pu
t D

at
a

Fr
om

 A
D

C

28
	

S
H

D
N

	
19

4	
-	

-	
-	

-	
-	

S
hu

td
ow

n
O

ut
pu

t t
o

A
D

C

49
	

C
M

O
D

E
	

23
0	

-	
-	

-	
-	

-	
M

od
e

S
el

ec
t O

ut
pu

t T
o

C
O

D
E

C
 (

I2
C

 o
r

S
P

I)
50

	
nC

S
	

23
1	

P
H

_C
O

D
E

C
_n

C
S

	-
	

60
	

E
G

_P
57

	
V

19
	

C
hi

p
S

el
ec

t O
ut

pu
t T

o
C

O
D

E
C

51
	

nC
S

	
23

1	
-	

M
IC

_C
O

D
E

C
_n

C
S

	
57

	
E

G
_P

24
	

Y
21

	

52
	

M
O

S
I	

22
6	

S
P

I_
D

AT
A

	
S

P
I_

D
AT

A
	

62
*	

E
G

_P
58

	
V

20
	

S
P

I D
at

a
O

ut
pu

t T
o

C
O

D
E

C
53

	
S

S
C

K
	

22
4	

S
P

I_
C

LK
	

S
P

I_
C

LK
	

64
*	

E
G

_P
59

	
U

20
	

S
P

I C
lo

ck
 O

ut
pu

t t
o

C
O

D
E

C

67
	

P
H

Y
_C

LK
12

5	
14

9	
-	

-	
-	

-	 	

12
5

M
H

z
C

lo
ck

 In
pu

t F
ro

m
 P

H
Y

 P
LL

70
	

C
LK

_2
5M

H
Z

	
33

	
-	

-	
-	

-	
-	

25
 M

H
z

C
lo

ck
 In

pu
t F

ro
m

 P
H

Y
 o

sc
ill

at
or

73
	

S
C

K
	

68
	

-	
-	

-	
-	

-	
C

lo
ck

 O
ut

pu
t T

o
M

A
C

 E
E

P
R

O
M

74
	

S
I	

38
	

-	
-	

-	
-	

-	
D

at
a

O
ut

pu
t T

o
M

A
C

 E
E

P
R

O
M

 S
I p

in
75

	
S

O
	

70
	

-	
-	

-	
-	

-	
D

at
a

In
pu

t F
ro

m
 M

A
C

 E
E

P
R

O
M

 S
O

 p
in

76
	

C
S

	
87

	
-	

-	
-	

-	
-	

C
hi

p
S

el
ec

t O
ut

pu
t T

o
M

A
C

 E
E

P
R

O
M

77
	

N
C

O
N

F
IG

	
63

	
-	

-	
-	

R
E

C
O

N
F

	
G

6	
R

el
oa

d
F

P
G

A
 F

ro
m

 C
on

fig
 P

ro
m

 W
he

n
H

ig
h

11
6	

-	
-	

D
R

V
_C

LK
_O

U
T

_N
	-	

67
	

E
G

_P
29

	
U

21
	

O
ut

pu
t T

o
H

F
2:

 D
riv

e
12

2.
88

 M
H

z
to

 J
1

pi
n

5
11

7	
-	

-	
-	

D
A

C
_C

LK
	

3	
R

E
S

E
T

_E
X

P
n	

U
13

	
O

ut
pu

t T
o

T
X

2:
 C

lo
ck

 T
o

D
A

C
11

8	
-	

-	
-	

E
N

_R
X

_A
N

T
	

12
	

E
G

_P
37

	
M

7	
O

ut
pu

t T
o

T
X

2:
 T

/R
 S

w
itc

h
11

9	
-	

-	
-	

-	
-	

D
D

R
3_

C
LK

_5
0M

H
Z

	
H

13
	

In
pu

t F
ro

m
 5

0
M

H
z

O
sc

ill
at

or
12

0	
-	

-	
-	

-	
-	

C
LK

_2
4M

H
Z

	
M

9	
In

pu
t F

ro
m

 2
4M

H
Z

 O
sc

ill
at

or

*s
ha

re
d

pi
ns

 QEX January/February 2016 33

As they used to say in college, it is left as an
exercise for the student.

We will leave the signals at index 4
(ATTN_DATA) and index 5 (ATTN_CLK)
alone, which will allow normal control of the
RF attenuator. We will remove the signals at
index 50 and 51 (nCS), index 52 (MOSI) and
index 53 (SSCK). Open Hermes.v and look
at lines 154 to 156. Rather than delete the
lines of code that we might want to add back
in someday, just comment them out by add-
ing two slashes (//) at the beginning of each
line. To complete this change, we must also
remove the signals that drove these outputs.
Go to line 519 and delete the signals nCS,
MOSI and SSCK from inside the paren-
theses. (Yes, this will leave an empty field
between the parentheses. This is how you
specify no connection.) This effectively dis-
connects the .nCS, .MOSI and .SSCK ports
of the TLV320_SPI module from the top
level outputs that no longer exist. While this
is not a complete removal of the TLV320_
SPI module, it is close enough; Quartus will
remove the unused logic for us. We will still
have the ability to easily connect it back up at
a future date when we are ambitious enough
to combine its outputs with the attenuator
interface and make the CODECs work again.

Now that we have removed the signals
for the Hermes CODEC, we must define and
drive the two new CODEC chip selects to
their inactive state. Since they are active-low,
we will drive them high. Add these two lines
right after the SSCK port definition that you
just commented out:

output PH_CODEC_nCS,
output MIC_CODEC_nCS,

Insert the following lines of code in a
convenient place. Right after the module
definition around line 237 is a good place:

assign PH_CODEC_nCS = 1’b1;
assign MIC_CODEC_nCS = 1’b1;

Category 2 Changes
These are perhaps the easiest changes to

make. Inputs are handled differently than out-
puts. Outputs are handled as above: comment
out the output pin and remove (or comment
out) the source of the signal. Simply search
for each signal name in turn and comment out
its definition and its source. Inputs must be
tied to a known (typically inactive) state after
the input pin definition is commented out. We
must also define an internal pin to replace the
input pin definition that we commented out.
First, let’s identify the inputs from the list of
Category 2 changes listed above. They are
index numbers 67, 70, 75, 80, 91, 92, and
94 to 97. Find each of them in the full table,
locate the corresponding input pin definitions
in Hermes.v and comment them out. Note
that the inputs CLK_25MHZ, ANT_TUNE,

IO2, IO4, IO5, IO6 and IO8 are unused in the
code, so they require no further changes. The
signals SI and ADCMISO do need to be set
to a known state. To do this, insert the follow-
ing lines of code in a convenient place. Right
after the Category 1 lines you added above is
a good place:

wire SO;
assign SO = 1’b0;
wire ADCMISO;
assign ADCMISO = 1’b0;

The last input we need to handle is
special: the PHY_CLK125 clock input.
Remember from our scratchpad memo notes
that this clock does not exist in the CVA9.
We have already changed the tx_pll module
to use a 50 MHz clock, which we will now
add and connect up in place of the missing
125 MHz clock. Add the following code
after line 166 (just below the input PHY_
CLK125 line that you commented out:

input DDR3_CLK_50MHZ,

Now search for PHY_CLK125 (ctrl-F
opens a find window in Quartus) and change
it to DDR3_CLK_50MHZ in two places:
within the parentheses in the network mod-
ule instantiation (around line 400) and near
the end of the file in the always block heart-
beat LED definition. Yes, it will make the
heartbeat LED flash a bit slower, but that is
acceptable.

To remove the outputs, comment out
each output line in the module pin defini-
tions at the beginning of the file (just like
you did with the Category 1 outputs).
In addition, remove the pin from inside
the parentheses in a module instantiation
(again, just like you did with the category
1 outputs) or comment out the assignment
statement in which it appears. The signals
USEROUT0 – USEROUT7 are a special
case because they are assigned to the signals
Open_Collector[1] – Open_Collector[7],
respectively. You must comment out the
assignment (within the parentheses) of
Open_Collector in the instantiation of the
High_Priority_CC module (around line
1200) as well as the following assignment
(around line 1144):

wire [7:0] Open_Collector;

Category 3 Changes
The index 21 and 22 changes widen

the ADC data bus from the Hermes code
14 bit width to the HF2 receiver ADC width
of 16 bits. We need to change the code in
the always block that defines the variable
temp_ADC. This variable is already 16 bits
wide, but only the top 14 bits are connected
to the 14 INA inputs from the ADC. Change
line 135 to read:

input [15:0] INA,

Search for temp_ADC (around line 870)
and change the always block to read as follows:

always @ (posedge C122_clk) begin
  temp_DACD     <= {DACD, 2’b00};
  if (RAND) begin
   if (INA[0])
    temp_ADC <=  {~INA[15:1], INA[0]};
   else
     temp_ADC <= INA;
  end
  else
    temp_ADC <= INA;
end

For indexes 116 and 118 we need to add
two new output signals and assign values
to them. Index 117 is the output clock to
the transmit DAC. On the Hermes board,
the 122.88 MHz oscillator feeds the DAC
directly without FPGA involvement. The
TX2 transmitter DAC requires a clock from
the FPGA, so we must add it. Finally, index
120 is an unused 24 MHZ oscillator input.
Even though it is not currently used, we need
to assign it to an input so we can fix the input
pin location in the pin list. Add the following
pin definitions to the Hermes module pin list
at the beginning of the Hermes.v file:

output DRV_CLK_OUT_N,
output DAC_CLK,
output EN_RX_ANT,
input CLK_24MHZ,

If you insert these at the end of the pin
list, remember that a comma separates each
pin definition, and there is no comma after
the last one. Now insert the following code
in a convenient place (after your previous
Category 2 code additions is a good place):

assign DRV_CLK_OUT_N = 1’b1;
assign DAC_CLK = _122MHz;
assign EN_RX_ANT = 1’b1;

Go ahead and compile again, just to make
sure that you didn’t forget a semicolon or
make some other easy-to-fix syntax error.

Add New Location Properties
Do you remember those location proper-

ties that we removed when we changed part
numbers? We now have to add them back
into the design, except that we want to add
the pin numbers for our new device in place
of the old numbers that we removed. This is
why I included the pin numbers in Table 2.

The best way to add new location proper-
ties to the design is to write a script file that
contains a line for each new location assign-
ment. The format for each line is:

set_location_assignment PIN_xxxx –to
signal_name

where:
xxxx is the device pin number, and
signal_name is the pin name from the top

34 QEX January/February 2016

design file (Hermes.v).
Again, I have created a file for you to save

you the effort of typing all those lines into
the script file. You can download it from the
SDRstick SVN webserver.12

To run the script, place the file in your
top directory (that is, the directory that con-
tains your Hermes.qsf file and all of your
Verilog source files). Now add it to your
project using <Project> <Add/Remove
Files in Project…>. Under <Tools> <Tcl
Scripts…>, select the file and click Run. All
of your pin locations from the script file have
now been added. If you want to check your
new assignments (or maybe you just don’t
believe me) you can open the Assignment
Editor from (where else) the <Assignments>
<Assignment Editor> menu. You should
see all of your new Location assignments
listed. Run another compile to make sure
things are as they should be.

Update SDC Timing Constraints
The last task we must undertake is to

review the Hermes.sdc timing constraints
file line by line to remove constraints for
signals that we have removed, add (or
expand existing) constraints for new signals
and update constraints for anything that we
changed. I will cover this in my next column.
In the meantime, take a look at the file to
become familiar with it. Did I just give you a
homework assignment? Sorry.

Compile-Debug-Repeat
The focus of our efforts has been on

obtaining a good compile of our code under
the new Quartus version while targeting
the new FPGA part. That said, a successful
compile does not necessarily mean we have
a working design. Now is the time to review
all of those Quartus warnings that we have so
blithely been ignoring all this time. Most (if
not all) of them can be ignored, but we must
make sure of this. The cause of the ones that
cannot be ignored must be fixed. The final
step, of course, is to load the compiled pro-
gramming file into the BeMicroCVA9 and
test it to make sure that it works. I will cover
review of warnings and how to fix them, tim-
ing constraints update and how to load and
run the code on real hardware in my next col-
umn. An updated Quartus archive contain-
ing all of the changes that we have made is
available on the SDRstick SVN webserver.13

What’s Next?
Now that you know how to port FPGA

code to new devices, what can you do with
this skill? The openHPSDR project is open
source, and the Apache Labs Anan series of
transceivers are all powered by open-source
FPGA firmware. The FPGA code to imple-
ment any or all of the features of these trans-
ceivers is available for your use. When a new
feature comes out, you can look at how it is
done and integrate that function into your
radio. Better yet, you can add your own fea-
ture and show everyone else how to improve
their own rigs. That is the true benefit of
open-source!

Each openHPSDR board has an on-board
FPGA and Verilog code to match. All of it is
available from the openHPSDR repository,
and you are now qualified to port it to any
new hardware that you can scrounge up.14
The tools that you have used today are the
very same tools that the developers use when
they write or update the code.

As always, please drop me an e-mail
if you have any suggestions for topics you
would like to see covered in future Hands-
On-SDR columns or even just to let me
know whether or not you found this discus-
sion useful.

Notes
1Scotty Cowling, WA2DFI, “Hands On SDR,”

QEX, Mar/Apr 2015, pp 9-19.
2The BeMicroCVA9 board is available from

from Arrow Electronics: parts.arrow.com/
item/detail/arrow-development-tools/
bemicrocva9.

3The UDPSDR-HF2 receiver board is avail-
able from Arrow Electronics: parts.arrow.
com/item/detail/arrow-development-
tools/udpsdr-hf2.

4The UDPSDR-TX2 transmitter board is avail-
able from Arrow Electronics: parts.arrow.
com/item/detail/arrow-development-
tools/udpsdr-tx2.

5The UDPSDR-HF1 receiver board is avail-
able from Arrow Electronics: parts.arrow.
com/item/detail/arrow-development-
tools/udpsdr-hf1.

6For more information about Hermes-Lite see:
github.com/softerhardware/Hermes-Lite/
wiki.

Table 3
Files
Quartus archive of original source code:	 Hermes_6_Sept.qar
Table of pin cross references:	 Hermes_6_Sept_to_IQ2_pins.pdf
List of unused files:	 Hermes_6_Sept_unused_files.txt
Tcl script to reassign location properties:	 Hermes_6_Sept_map_pins.tcl
Quartus archive of ported source code:	 Hermes_6_Sept_ported.qar

7To download the free Altera Web Edition soft-
ware, go to: dl.altera.com/?edition=web.

8The source code is available from the
SDRstick SVN at: svn.sdrstick.com under
the <sdrstick-release/BeMicroCV-A9/
Hermes-HF2-Port/firmware/source> direc-
tory. The file name is <Hermes_6_Sept.
qar>. It is also available for download
from the ARRL QEX files web page. Go to
www.arrl.org/qexfiles and look for the file
1x16_Cowling_Hands_On_SDR.zip.

9The list of unused files is available from
the SDRstick SVN in the same direc-
tory as listed in Note 8. The file name is
<Hermes_6_Sept_unused_files.txt>.
This file is also part of the 1x16_Cowling_
Hands_On_SDR.zip file, also as listed in
Note 8.

10dunsel, noun, (slang, from Star Trek) a part
that serves no useful purpose.

11The cross reference of Hermes to IQ2 pins
is available from the SDRstick SVN in the
same directory as given in Note 8. The file
name is <Hermes_6_Sept_to_IQ2_pins.
xls>. The file is also included in the
1x16_Cowling_Hands_On_SDR.zip as
given in Note 8.

12The pin location Tcl script file is available
from the SDRstick SVN in the same direc-
tory as given in Note 8. The file name is
<Hermes_6_Sept_map_pins.tcl>. The
file is also included in the 1x16_Cowling_
Hands_On_SDR.zip file.

13Source code containing all of the changes
outlined in this column is available from the
SDRstick SVN at svn.sdrstick.com under
the <sdrstick-release/BeMicroCV-A9/
Hermes-HF2-Port/firmware/source> direc-
tory. The file name is <Hermes_6_Sept_
ported.qar>. This file is also included in the
ZIP file, as listed in Note 8.

14For HPSDR firmware, look in the TAPR
repository, svn.tapr.org in <main/trunk>
under the board name.

15American Beauty soldering irons of old were
massive and the larger ones could solder
copper pipes. Like the term “boat anchor,”
the term is an affectionate name for a tool
of the past. Lo and behold, they are still
in business! I especially like the handheld
unit shown at americanbeautytools.com/
Soldering-Irons/19/features.

16An obscure and wholly unwarranted refer-
ence to tetraethyllead (CH3CH2)4Pb, an
octane booster added to gasoline from
about 1920 until the early 1990s in the USA.
Premium gasoline was referred to as “Ethyl”
to us old timers.

17More information on part numbers can be
found in Altera’s Cyclone V Device Overview
at altera.com/en_US/pdfs/literature/hb/
cyclone-v/cv_51001.pdf.

