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Hands On SDR

1Notes appear on page 18

In this installment we take a look under 
the hood of a stand-alone software defined 
radio field programmable gate array (FPGA), 
to see just how logic gates and registers build 
a useful radio.

In this second column, I will show you 
how to set up an FPGA coding environment 
with free development tools, walk you 
through the code of an SDR design example 
and show you how to compile the example 
code and run it on real hardware. All of 
this will be very hands-on. We will, of 
necessity, cover some SDR theory, but we 
will be taking the background mathematics 
as a given and instead focus on how we 
implement the math functions inside the 
FPGA. We will be reviewing the design 
at what is called the RTL (register-transfer 
level) in an HDL (hardware description 
language) known as Verilog. The other main 
language used by FPGA designers is called 
VHDL, but we will not cover that here. Don’t 
be intimidated by all of these TLAs (three 
letter acronyms); professionals use these 
by the boatload to make themselves SMK 
(sound more knowledgeable). Okay, Okay, 
so I made up that last one, but you get the 
idea. Don’t I SMK already?

Is this for me?
As with each of these columns, limited 

space begs the questions: “What do I need to 
know?” and “What equipment do I need?” 

You will need a basic working knowledge 
of the Verilog hardware description language. 
You should be able to pick this up easily by 
following one of the many on-line tutorials.1 
I will try to keep the code explanations 
as simple as possible, but it is beyond the 
scope of a few pages to describe Verilog 
in any detail. As with most programming 
languages, a few basic constructs go a long 
way. If you learn these few constructs, you 
can at least read and understand the code 
snippets. Also keep in mind that Verilog 
is used, among other things, to define the 
behavior of many different types of FPGAs 
or other hardware, write simulation code and 
design test benches. (A test bench is a virtual 
environment built to test the functionality 
of a piece of software or hardware.) Any 
Verilog skill that you pick up will be useful 
in understanding other FPGA programs that 
you encounter. 

For hardware, you will need some 
kind of Altera FPGA development kit. To 
actually run the code that we are going to 
compile in this column, you will need a 
BeMicroSDK FPGA development kit and a 
UDPSDR-HF1 Receiver, (see Photo A) both 
available from Arrow Electronics.2, 3 Even if 
you do not have the hardware, you can still 
follow along with the text and learn about 

FPGA coding for SDRs. Note that, while 
you will need some Verilog programming 
knowledge, advanced math skills and RF 
design experience are still absent. We are 
analyzing an existing SDR, not designing 
one from scratch.

For design software, we are in luck. 
Altera offers their Quartus II FPGA design 
software as a free download from the 
Internet for the FPGAs in their Cyclone® 
family of parts. Both Linux and Windows 
versions are available. The BeMicroSDK 
board contains an EP4CE22F17C7 part 
from the Altera Cyclone® IV E family of 
FPGAs, so we can use the free version of 
Quartus II design tools.

 
Software Installation

After you have read up a bit on Verilog 
(or already grasp at least the basics), the next 
task is to download and install the Quartus 
II software. Go to the Altera web site (www.
altera.com) under the Design Tools & 
Services tab and select Design Software.4 
Click on Quartus II Web Edition Software 
and then the Download Web Edition 
Software – Free button. Select release 14.0, 
pick your operating system and download 
method (Akamai DLM3 Download 
Manager is faster, but is only available for 
Windows users) and make sure that you 
have selected the Combined Files tab. 
When you are sure that you have made your 

Photo A — The BeMicroSDK data engine together with the HF1 RF front-end board.
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selections correctly, click on the blue down-
arrow to begin the download. Be patient, the 
download is large at about 2.1 GB (Windows) 
or 4.0 GB (Linux), and may take some time if 
your connection is slow. 

Note that the 14.0 (and newer) releases 
of Quartus II require a 64-bit operating 
system, Windows 7 or later or Red Hat 
Linux. (I have successfully installed and 
run Quartus II 14.0 on 64-bit Ubuntu Linux 
14.04LTS. If you are a Linux expert and are 
willing to read the Altera forums, you can 
likely make it work; it is beyond the scope 
of this column to help you with this!) If you 
do not have a 64-bit operating system, then 
you must download and install the previous 
version (13.1) of Quartus II. To run Quartus 
II version 13.1, you need Windows XP SP2 
or later, 32- or 64-bit version. Simply select 
13.1 in the Select Release dialog box before 
you begin your download. Don’t worry if 
you need to run the older Quartus II version; 
the enhancements made to the newer 14.0 
version do not really affect us when using the 
older Cyclone® IV parts.

A few notes on PC hardware are in 
order. Pretty much any PC that will run 
the SDR software (see the Sep/Oct 2014 
QEX Hands On SDR column) will run the 
Quartus II software.5 The most important 
hardware your Quartus II PC must have is 
memory. At least 2 GB is a minimum. Slower 
processors are okay (if you are willing to wait 
longer for compiles to finish), but stability 

of the software is not as good with less 
memory. Even simple FPGA compiles are 
significantly more compute intensive than 
compiling a “Hello World” program in C.

For help on getting Quartus II set up, 
and more hardware information on the 
BeMicroSDK, please take a look at the 
BeMicroSDK Embedded System Lab, 
modules 1, 2 and 3, available on line.6 Don’t 
worry that it was written for Quartus II version 
12.1; with a few obvious adjustments, it is a 
good Lab to follow to gain more experience 
before we jump into our real SDR code.

To get a copy of the FPGA source code, 
download a copy of the Quartus archive 
from the SDRstick website.7 The archive 
not only contains the source files (with a 
.v extension), but the pin assignment file 
(.qsf extension), timing constraints file (.sdc 
extension) and many other files needed to 
successfully compile the complete project. 
Once you have downloaded the archive file, 
start the Quartus II software and click on 
<file><open project…>. Navigate to the 
.qar file that you downloaded and click on 
it. From the dialog box that opens, select the 
destination folder (usually the default is fine) 
and click OK. Quartus will extract all of the 
files from the archive and set up the project, 
all ready to go.

Quartus II Quick Tips
While a Quartus tutorial is beyond the 

scope of this column, here are a few quick 

tips to get you started.8 When you open 
Quartus II, you see a tool bar across the top 
of the window, and four “panes” within the 
window. See Figure 1. The upper left pane 
is the Project Navigator pane, below that 
is the Tasks pane, and across the bottom is 
the Messages pane. If you look closely, you 
will see these exact names in the title bar of 
each pane. The remaining upper right-hand 
pane is the Workspace area, where we will 
look at source code and report files, among 
other things. 

At the bottom of the Project Navigator 
pane, there are several tabs: Hierarchy, 
Files, Design Units and so on. Click on the 
Files tab to see a list of all of the files in the 
project. You will see many Verliog source 
files (.v), a few ROM data files (.hex), a 
timing constraints file (.sdc) and a few others. 
Double-click on a Verilog source file in the 
Project Navigator pane and Quartus opens 
the file in the Workspace for you to view or 
edit. You can open as many files as you like; 
Quartus will make a tab in the Workspace 
for each file so you can switch quickly 
between them. Before we dig into specific 
sections of the code, let’s take a look at the 
overall architecture of the FPGA firmware.

High-Level Overview
The FPGA RF processing is shown in 

Figure 2 and the audio processing is shown 
in Figure 3. The overall topology closely 
follows that of an analog direct conversion 

Figure 1 — This screen shot shows the Quartus II design software.
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receiver. We start with two multipliers 
(quadrature mixer) fed by a Numerically 
Controlled Oscillator (NCO) acting as a 
digital local oscillator. The result is then 
filtered by two Cascaded Integrator-Comb 
(CIC) filters, demodulated by calculating 
the magnitude (square root of the sum of the 
squares), filtered again by a Finite Impulse 
Response (FIR) low-pass filter and scaled to 
provide a variable audio gain. The processed 
data is then clocked out to an audio DAC via 
a Serial Peripheral Interface (SPI) port. The 
SAT/RND blocks perform a saturation and 
rounding function to prevent overflow when 
we reduce the number of bits in the data path. 

We will take an in-depth look at four 
of these blocks (multiplier, NCO, CIC and 
demodulator) and a cursory look at the rest of 
them. If you study the complete source code, 
you will discover that there are many more 
housekeeping and control functions that 
we do not cover. I have to leave something 
for you to figure out for yourself after you 
become a Verilog expert!

Even though I have reproduced small 
pieces of code here, you will find it helpful 
to open the “real thing” in the Quartus 
Workspace because the color formatting will 
make things easier to follow. To get started, 
open the Verilog source file udpsdr_hf0.v by 
double-clicking it. This file is the top-level 
file in the design. How do we know this? 
Take a quick look at the Hierarchy tab in the 
Project Navigator, and you will see it listed 
at the top level.

Quadrature Mixer
Scroll down to about line 570 in the 

udpsdr_hf0.v file that you just opened, 
or look at Figure 4 (line numbers in the 
file may be slightly different than in the 
figure). Anything after the “//” on a line 
is a comment, so lines 568 and 569 just 
document the function of the block. Lines 
570 to 579 are called an “always block”; 
this block is a wrapper that contains some 
circuitry. In our case, this circuitry consists 

Sidebar: HF0, HF1 and BeRadio
Throughout the Verilog code, you will see references to BeRadio, HF0 and HF1. While they seem to be interchangeable, 

they are not quite synonymous. Here is the 5-minute explanation of these terms. The SDRstick series of receivers originally 
consisted of three boards with three ascending performance levels: HF0 (12 bits at 10 Msps), HF1 (14 bits at 80 Msps) 
and HF2 (16 bits at 122.88 Msps). Since the HF0 was designed as a low-cost SDR demonstrator board to be used with 
BeMicroSDK, and other boards (such as the BeInMotion motor control board) already made use of the “Be” prefix, the name 
BeRadio was coined. BeRadio and HF0 are thus the exact same board.

BeRadio/HF0 was marketed by Arrow Electronics for only a limited time, and is no longer available. HF0 and HF1 are 
almost identical designs, however. They are so close, in fact, that they are built on the same base circuit board and differ only 
in the components that are soldered to the board. Such close hardware design kinship is the reason that HF0/BeRadio and 
HF1 can share large portions of their FPGA firmware. If you look closely, you can see that the Quartus HF1_testcode project 
was made from only slight modifications to the HF0 project code.15
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of two registers, one named i_data and the 
other named q_data. The width of these 
registers is defined in the code on lines 493 
and 494 (not shown), but we can get a clue 
as to their width by looking at the widths 
defined in the initialization assignments on 
lines 572 and 573. The term 30’h0 means a 
value that is 30 bits wide, with a hexadecimal 
value of zero.

The list of edges and signals in parentheses 
immediately following the @ on line 570 
is called the sensitivity list. In our case, 
whenever adc_clk_out rises from 0 to 1 or 
reset_n falls from 1 to 0, all of the statements 
within the always block are evaluated. The 

568 // Shift received signal to zero by multiplying (mixing)

569 // with the local oscillator.

570 always @(posedge adc_clk_out or negedge reset_n) begin

571     if (!reset_n) begin

572         i_data <= 30’h0;

573         q_data <= 30’h0;

574     end

575     else begin

576         i_data <= fcos * rx_data;

577         q_data <= fsin * rx_data;

578     end

579 end

25 module z_nco (

26   input  wire clk,                	 // System clock

27   input  wire reset_n,            	 // System reset

28   input  wire [31:0] phase_inc,		  // Phase increment

29   output wire [15:0] fcos,        	 // Cosine output 
30   output wire [15:0] fsin         	 // Sine output

31 );

32 // --------------------------------------------------------

33 

34 // ---- Phase Accumulator ---------------------------------

35 reg [31:0] accum;                     // Phase accumulator

36 

37 // Accumulate the current phase increment every clock cycle

38 always @(posedge clk or negedge reset_n) begin

39   if (!reset_n) begin

40      accum <= 32’h0;

41   end

42   else begin

43      accum <= accum + phase_inc;

44   end

45 end

46 // --------------------------------------------------------

47  

48 // ---- Lookup Tables -------------------------------------

49 // Cosine lookup table.

50 lut_cos lut_cos_inst (

51   .address ( accum[31:20] ),

52   .clock ( clk ),

53   .q ( fcos[15:0] )

54 );

55   

56 // Sine lookup table.

57 lut_sin lut_sin_inst (

58   .address ( accum[31:20] ),

59   .clock ( clk ),

60   .q ( fsin[15:0] )

61 );

62 // --------------------------------------------------------

63 endmodule

Figure 4 — This is a piece of the Verilog code for a quadrature mixer.

Figure 5 — This piece of Verilog code is for a numerically controlled oscillator (NCO).
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begin keyword is used to define the boundary 
of the always block, and is matched with the 
end keyword on line 579. Every begin must 
have a matching end; they are paired just like 
parentheses. Note that the end statements are 
all indented to start in the same column as the 
beginning column of the line containing the 
matching begin keyword: line 574 aligns with 
line 571, line 578 aligns with line 575 and line 
579 aligns with line 570. This is an example of 
good, easy to read Verilog coding style.

This always block defines the operation of 
the two 30-bit registers, i_data and q_data. 
The falling edge of reset_n (which is the 
assertion of reset, since reset_n is active low) 
causes both registers to be cleared (lines 571 
to 574). Note that the or in the sensitivity list 
means that this happens irrespective of the 
adc_clk_out clock state, therefore making 
this reset an asynchronous one. The rising 
edge of adc_clk_out (as long as reset_n is 
de-asserted) will cause i_data to be updated 
with the value of the product of fcos and rx_
data, while q_data is updated with the value 
of the product of fsin and rx_data (lines 575 
to 578). This is our quadrature “mixer”: two 
numerical multipliers.

Note the widths of the inputs to each 
multiplier. (You can look in the code on 
lines 444, 488 and 489 or look on the block 
diagram in Figure 2.) When we multiply, the 
bit width of the output is the sum of the widths 
of the inputs, so we must make sure that the 
variable that is assigned the product is defined 
to be wide enough. This is a signed multiply 
because both inputs and outputs are declared 
as signed numbers. If you forget to declare 
these as signed numbers, the Verilog compiler 
will implement an unsigned multiplier, which 
is a common Verilog coding error to be 
avoided. One other thing to note is the order 
of the assignments in the always block. The 
reset code is implemented as the first part 
of an if…else construct to ensure that the 
asynchronous reset takes precedence over the 

synchronous multiply operation. However, all 
variable values within the block are updated 
at the same time, regardless of the order of the 
assignment statements. All 60 bits of i_data 
and q_data are updated simultaneously in 
parallel (whether set to zero by reset_n or 
to the products of other variables by adc_
clock_out). I have reviewed this simple block 
of code in detail because it is the first one. 
We will move a bit faster on the next blocks, 
focusing more on what the block does rather 
than how Verilog works.

Numerically Controlled Oscillator 
(NCO)

The next block that we will analyze is the 
numerically controlled oscillator, or NCO. 
The NCO is a bit different than a simple 
oscillator in that it produces two sine wave 
outputs that are 90° out of phase. The first 
output is named fcos and will be used to 
calculate i_data values. The other output 
is named fsin and will be used to calculate 
q_data values. These variable names should 
already be familiar, as they are used by the 
quadrature mixer discussed earlier. 

The behavior of the z_nco module is 
defined in the nco.v file, the majority of 
which is reproduced in Figure 5. The module 
is instantiated in the main file (see lines 560 
to 566 of udpsdr_hf0.v) in much the same 
way a component is placed on a schematic: 
call out the module name, give it a unique 
instance name (like a reference designator 
on a schematic, for example R22 or U3) 
and connect up inputs and outputs to the 
module. The direction, type, width and name 
of module I/O signals are defined on lines 
26 to 30.

The NCO outputs are derived from 
two lookup tables, lut_cos and lut_sin. A 
phase accumulator named accum is used 
as an address into the lookup tables. The 
accumulator is incremented on every clock 

cycle by a number of counts determined by 
the value of the module input, phase_inc. 
The larger the value of phase_inc, the 
faster the lookup tables are “scanned,” 
and therefore the higher the NCO output 
frequency. You can take a look at the 16-bit 
values in the lookup tables by opening the 
cos.hex and sin.hex files in the files tab of 
the Quartus Project Navigator pane (make 
sure you specify 16 bits as the width when 
asked). You might ask, “How did you create 
the two look up table files?” Well, that is 
a very good question. We actually wrote a 
small program in Python to calculate the 
values in the two hex files. We then used a 
Quartus memory generator wizard to use the 
hex files to initialize two 4096 × 16 SRAM 
blocks as read-only memories (ROMs). The 
two ROMS become our look-up tables. Take 
a look at the wizard-generated lut_cos.v and 
lut_sin.v files and you can probably figure 
out how we did it.

The astute reader is probably wondering 
why we used two ROMs instead of just 
offsetting the address into one ROM to 
achieve the desired 90° phase shift. (You 
sure are full of good questions today!) The 
answer is that the logic is simpler and we 
are lazy. Remember that both lookup tables 
are accessed every clock cycle. If you want 
two 16-bit numbers (one for sine and one 
for cosine) every clock cycle from the same 
ROM, then you have to read it twice as fast 
as the clock. While this is possible, it is not as 
simple as just using more memory. After all, 
that 16 K bytes of memory is not being used 
for anything else… (Now I am talking like a 
software guy.)

Saturate and Round Module
If you would like to explore this function 

in detail, open the sat_rnd.v file by double-
clicking it in the Quartus Project Navigator 
files tab. This is a parameterizable module, 

25 module z_nco (

26   input  wire clk,                	 // System clock

27   input  wire reset_n,            	 // System reset

28   input  wire [31:0] phase_inc,		  // Phase increment

29   output wire [15:0] fcos,        	 // Cosine output 
30   output wire [15:0] fsin         	 // Sine output

31 );

32 // --------------------------------------------------------

33 

34 // ---- Phase Accumulator ---------------------------------

35 reg [31:0] accum;                     // Phase accumulator

36 

37 // Accumulate the current phase increment every clock cycle

38 always @(posedge clk or negedge reset_n) begin

39   if (!reset_n) begin

40      accum <= 32’h0;

41   end

42   else begin

43      accum <= accum + phase_inc;

44   end

45 end

46 // --------------------------------------------------------

47  

48 // ---- Lookup Tables -------------------------------------

49 // Cosine lookup table.

50 lut_cos lut_cos_inst (

51   .address ( accum[31:20] ),

52   .clock ( clk ),

53   .q ( fcos[15:0] )

54 );

55   

56 // Sine lookup table.

57 lut_sin lut_sin_inst (

58   .address ( accum[31:20] ),

59   .clock ( clk ),

60   .q ( fsin[15:0] )

61 );

62 // --------------------------------------------------------

63 endmodule
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17  module z_cic

18  #(

19      parameter IN_SIZE  = 16,                           	 // Input data width

20      parameter OUT_SIZE = 16,                           	 // Output data width

21      parameter N_STAGES = 5,                            	 // Number of stages

22      parameter DEC_RATE = 10                            	 // Decimation rate

23  ) (

24      input    wire  clk,                                	 // System clock

25      input    wire  reset_n,                            	 // System reset

26      input    wire  instrobe,                           	 // Input sample valid strobe

27      input    wire  signed [IN_SIZE-1:0] in1_data,      	 // Channel 1 input sample

28      input    wire  signed [IN_SIZE-1:0] in2_data,      	 // Channel 2 input sample

29      output   wire  outstrobe,                          	 // Output sample valid strobe

30      output   reg   signed [OUT_SIZE-1:0] out1_data,	 // Channel 1 output sample

31      output   reg   signed [OUT_SIZE-1:0] out2_data 	 // Channel 2 output sample

32  );

33  // -----------------------------------------------------------------------------------------------

34  

35  // ---- Function Definitions ---------------------------------------------------------------------

36  // Function to calculate ceiling of Log base 2 of a value.

37  function integer clog_b2;

38      input [31:0] value;

39      integer tmp;

40      begin

41          tmp = value - 1;        

42          for (clog_b2 = 0; tmp > 0; clog_b2 = clog_b2 + 1) tmp = tmp >> 1;

43      end

44  endfunction

45  // -----------------------------------------------------------------------------------------------

46 

47  // ---- User Parameters --------------------------------------------------------------------------

48  // Derive internal parameters from input parameters using the Log2 function.

49  // -----------------------------------------------------------------------------------------------

50 localparam CNTR_SIZE = clog_b2(DEC_RATE);             	 //Size of sample decimation counter

51 localparam ACC_SIZE  = IN_SIZE + (N_STAGES*CNTR_SIZE);	 //Width of integration accumulators

52// -------------------------------------------------------------------------------------------------

53 

54  // ---- Module Control ---------------------------------------------------------------------------

55  reg [CNTR_SIZE-1:0] sample_count;                      	 // Sample decimation counter

56  reg combstrobe;                                        	 // Strobe for activating comb stages

57  reg [1:0] del_strobe;                                  	 // Pipelined comb strobe to match 

latency

58 

59  // Generate internal strobe for every DEC_RATE input strobes.

60  always @(posedge clk or negedge reset_n) begin

61      if (!reset_n) begin

62          sample_count <= {(CNTR_SIZE){1’b0}};

63      end

64      else begin

Figure 7 — Part 1 of the Verilog code for a cascaded integrator-comb filter.
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65          del_strobe <= {del_strobe[0] , combstrobe};

66          if (instrobe) begin

67              if (sample_count == DEC_RATE - 1) begin

68                  sample_count <= {(CNTR_SIZE){1’b0}};

69                  combstrobe <= 1’b1;

70              end

71              else begin

72                  sample_count <= sample_count + 1’b1;

73                  combstrobe <= 1’b0;

74              end

75          end

76          else begin

77              combstrobe <= 1’b0;

78          end

79      end

80 end

81  // -----------------------------------------------------------------------------------------------

82  

83  // ---- Integrator Stages ------------------------------------------------------------------------

84  reg signed [ACC_SIZE-1:0] integ1 [N_STAGES-1:0];       	 // Array of integrators for channel 1

85  reg signed [ACC_SIZE-1:0] integ2 [N_STAGES-1:0];       	 // Array of integrators for channel 2

86  integer i;                                             	 // FOR loop variable

87  

88  // For each integration stage, integrate the value of the previous stage. The

89  // first stage integrates the input data.

90  always @(posedge clk or negedge reset_n) begin

91      if (!reset_n) begin

92          for (i = 0; i < N_STAGES; i = i + 1) begin

93             integ1[i] <= 0;

94             integ2[i] <= 0;

95          end

96      end

97      else begin

98          if (instrobe) begin

99              integ1[0]       <= integ1[0] + {{(ACC_SIZE-IN_SIZE){in1_data[IN_SIZE-1]}},in1_data};

100             integ2[0]       <= integ2[0] + {{(ACC_SIZE-IN_SIZE){in2_data[IN_SIZE-1]}},in2_data};

101             for (i = 1; i < N_STAGES; i = i + 1) begin

102                 integ1[i]   <= integ1[i] + integ1[i-1];

103                 integ2[i]   <= integ2[i] + integ2[i-1];

104             end

105         end

106     end

107 end
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meaning that certain characteristics of the 
module can be defined when it is instantiated 
by setting values of pre-defined parameters. 
These parameter values are used by the 
code to modify the way the module behaves. 
Take a look at the block diagram in Figure 
2. Notice that the SAT/RND module is 
used twice, once before the first CIC filter 
and once after the second CIC filter. In the 
former case, it reduces the data width from 
30 to 24 bits and in the latter case, from 24 to 
16 bits. (See udpsdr_hf0.v lines 605 to 617 
and 666 to 675 for the two instantiations.) I 
will explain how it does this after I describe 
the function of this module.

The SAT/RND module performs three 
operations on its input data. First it truncates 
the data to a specific bit width by removing 
a number of least-significant bits from the 
input data. Next it rounds the result to the 
nearest value based on the discarded bits. 
Finally, it checks to make sure that the 
rounded value can be represented properly 
in the output bit width (in other words, there 
is no overflow or underflow). Note that the 
input and output data are signed numbers. 
If overflow is detected, the output is set to 
the maximum positive value (sign bit is 0, 
all other bits are 1). If underflow is detected, 
the maximum negative value is used instead 
(sign bit is 1, all other bits are 0). These 
numbers are called saturation values.

When the module is instantiated, 
parameters IN_SIZE, OUT_SIZE and 
TRUNC_SIZE are specified corresponding 
to the input bit width, output bit width and 
the number of bits to remove, respectively. 
The same module is used in both places in 
our block diagram, but each is instantiated 
with different values for the three parameters. 
This is useful, since we save ourselves the 
work of writing two different modules. Of 
course, TANSTAAFL (yes, it is more than 
three letters, and yes, I am going to make you 
turn to the end of the column to look it up),9 
so we end up with a slightly more complex 
module as a result. This sure seems like a lot 
of trouble just to reduce the number of bits in 
the data stream, but it is essential to minimize 
overflow and underflow discontinuities.

Cascaded Integrator-Comb (CIC) 
Filters

I have deliberately given you less and 
less assistance in analyzing the Verilog code 
in the last three sections. The goal is for you 
to eventually be able to read and digest new 
sequences of code on your own. This next 
section will test your skill (and perhaps your 
patience, too) with yet more complexity. 
Take a look at Figure 6, the block diagram 
of the CIC filter. Each circle containing a 
S represents an adder and each block is a 
register. An adder-register pair is called an 

accumulator. I have shown only two stages 
of the filter (first and last) for brevity, but the 
ellipsis shows where additional stages are 
inserted. The switch symbol shown between 
the integrator stages and the comb stages 
represents a reduction in the clock rate by a 
factor equal to the decimation rate, R. Thus, 
the left-most CIC filter shown in Figure 2 
(5-stages) consists of ten accumulators and 
five registers for each data path (i and q), 
along with the register clocking circuitry, 
which I will explain shortly.

This is a parameterized design, with input 
and output bit widths, number of stages and 
the decimation rate set at instantiation time. 
The numbers given on lines 19 to 22 of Figure 
7  are the defaults that are used if one or more 
parameters are not set at instantiation. You 
can look in udpsdr_hf0.v lines 621 to 624 
and 638 to 641 for the instantiated values 
for the 5-stage and 14-stage CIC filters, 
respectively. The 5-stage filter uses an IN_
SIZE of 22, OUT_SIZE of 23, N_STAGES 
of 5 and DEC_RATE of 25. 

Let’s look at the register and accumulator 
structure in the code before we see how the 
registers are clocked. The integration stage 
accumulator register arrays integ1 and integ2 
are defined on lines 84 and 85 of Figure 7. 
The bit range (register width) is defined in 
the left-hand set of square brackets. The array 
index range is defined in the right-hand set 
of brackets. Notice that the number of bits in 
these accumulator registers is wider than the 
input bit width since we need to hold the sum 
of many input samples. (See line 51 for the 
definition of ACC_SIZE.) The number of 
registers in each array is equal to the number 
of stages in the filter. The behavior of the 
accumulators is defined within the always 
block on lines 90 to 107 of Figure 7. The first 
accumulator adds the sign-extended input 
data to its current value on each clock. The 
remaining accumulators each sum the output 
from the previous accumulator and their own 
current value on each clock using the for loop 
on lines 101 to 104.

The comb and combq registers are 
defined on lines 111 to 114 of Figure 8. 
The comb registers are used as registers 
in the accumulators (they each directly 
follow an adder), while the combq registers 
store the value of each accumulator’s (+) 
input, to be used one clock cycle later at the 
accumulator’s (–) input. The always block on 
lines 151 to 162 performs one last function 
that is not shown in the block diagram 
of Figure 6: it truncates the output to the 
number of bits specified by the OUT_SIZE 
parameter and rounds to the nearest bit.

Notice that every one of the four always 
blocks in Figures 7 and 8 are clocked by the 
clk input clock. It is much easier to analyze 
the register timing of this synchronous design 

than it would be if the output registers were 
clocked by a different clock signal. So where 
does the decimation occur, then? Remember 
that the output data rate is equal to the input 
rate divided by the decimation rate. If you 
look at Figure 8, line 130 you will see that 
while the always block is evaluated on every 
clk edge, the if condition will be true only 
when combstrobe is true. Take a look at the 
always block in Figure 7, lines 60 to 80; this 
is where combstrobe is generated. With a bit 
of study, you can see that one combstrobe is 
generated for every DEC_RATE instrobe 
assertions. The output rate will therefore be 
slower than the input rate by a factor equal to 
the decimation rate.

Altera’s AN455 application note is an 
excellent place to start for more information 
on CIC filters in FPGAs.10

AM Demodulator
The AM demodulator code is in the am_

demod.v file, most of which is reproduced 
in Figure 9. The magnitude of the AM 
demodulator output is equal to the square 
root of the sum of the squares of the i and 
q input components. The always block on 
lines 40 to 51 squares the incoming i and q 
values. The assign statement on line 55 then 
adds them together, while the always block 
on lines 76 to 83 takes the square root of the 
sum. Note that we delay the strobe_in signal 
to account for the number of clock cycles that 
are required to calculate the magnitude, and 
then assign the delayed signal to the strobe_
out of the module on line 86. This is called 
pipelining the signal.

Finite Impulse Response (FIR) Low-
pass Filter

While explaining the coding of an FIR 
filter is beyond the scope of this column, 
there are good references on the Internet.11, 12 
Basically, the FIR filter is just a digital low-
pass filter consisting of a series of multipliers 
and registers feeding a large adder tree. The 
FIR filter requires a table of coefficients that 
are typically supplied by a ROM, in much 
the same way that the numerically controlled 
oscillator stores its lookup tables. Altera 
provides a software wizard to assist you in 
calculating the coefficients. The number of 
multipliers, called taps, plus the values of 
the coefficients, determines the LPF cutoff 
frequency and its slope. The FIR filter code 
is in the file output_fir.v, which also uses the 
three files output_fir_rom.v, output_fir_
rom.hex and ram_2_port_rden.v.

Audio Gain, Scaling and Serial 
Peripheral Interface (SPI)

The filtered audio is multiplied by an 
audio gain coefficient to set the desired 
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110 // ---- Comb Stages ------------------------------------------------------------------------------

111 reg signed [ACC_SIZE-1:0] comb1 [N_STAGES-1:0];    // Array of comb stages for channel 1

112 reg signed [ACC_SIZE-1:0] comb1q [N_STAGES-1:0];   // Array of delayed comb values for channel 1

113 reg signed [ACC_SIZE-1:0] comb2 [N_STAGES-1:0];    // Array of comb stages for channel 2

114 reg signed [ACC_SIZE-1:0] comb2q [N_STAGES-1:0];   // Array of delayed comb values for channel 2

115 integer j;                                         // FOR loop variable

116 

117 // For each comb stage, subtract the previous value of the previous stage from

118 // the current value of the previous stage. The first stage subtracts from the

119 // value of the final integration stage.

120 always @(posedge clk or negedge reset_n) begin

121     if (!reset_n) begin

122         for (j = 0; j < N_STAGES; j = j + 1) begin

123             comb1[j]  <= 0;

124             comb1q[j] <= 0;

125             comb2[j]  <= 0;

126             comb2q[j] <= 0;

127         end

128     end

129     else begin

130         if (combstrobe) begin

131             comb1[0]       <= integ1[N_STAGES-1] - comb1q[0];

132             comb1q[0]      <= integ1[N_STAGES-1];

133             comb2[0]       <= integ2[N_STAGES-1] - comb2q[0];

134             comb2q[0]      <= integ2[N_STAGES-1];

135            for (j = 1; j < N_STAGES; j = j + 1) begin

136                 comb1[j]   <= comb1[j-1] - comb1q[j];

137                 comb1q[j]  <= comb1[j-1];

138                 comb2[j]   <= comb2[j-1] - comb2q[j];

139                 comb2q[j]  <= comb2[j-1];

140             end

141         end

142     end

143 end

144 // -----------------------------------------------------------------------------------------------

145 

146 // ---- Output -----------------------------------------------------------------------------------

147 // Assign final element of delayed comb strobe as the output strobe.

148 assign outstrobe = del_strobe[1];

149 

150 // Round off LSBs of final comb output to get filter output.

151 always @(posedge clk or negedge reset_n) begin

152     if (!reset_n) begin

153         out1_data <= 0;

154         out2_data <= 0;

155     end

156     else begin

157         out1_data <= comb1[N_STAGES-1][ACC_SIZE-1:ACC_SIZE-OUT_SIZE] +

158                      comb1[N_STAGES-1][ACC_SIZE-OUT_SIZE-1];

159         out2_data <= comb2[N_STAGES-1][ACC_SIZE-1:ACC_SIZE-OUT_SIZE] +

160                      comb2[N_STAGES-1][ACC_SIZE-OUT_SIZE-1];

161     end

162 end

163 // -----------------------------------------------------------------------------------------------

164 endmodule

Figure 8 — Part 2 of the Verilog code for a cascaded integrator-comb filter.
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15 module am_demod

16 #(

17     parameter DATA_SIZE = 16                  	 // Bits in data path

18 ) (

19     input   wire  clk,                              // System clock

20     input   wire  reset_n,                          // Asynchronous system reset

21     input   wire  strobe_in,                        // Input data valid strobe

22     input   wire  signed  [DATA_SIZE-1:0] i_in,     // In-phase input data

23     input   wire  signed  [DATA_SIZE-1:0] q_in,     // Quadrature input data

24     output  wire  strobe_out,                       // Output data valid strobe

25     output  wire  signed  [DATA_SIZE-1:0] data_out  // Output data

26 );

27 // --------------------------------------------------------------------------------------

28 

29 // ---- AM Demodulator ------------------------------------------------------------------

30 reg  [2:0] strb_sr;                     // Shift register to pipeline input strobe

31 reg  signed [2*DATA_SIZE-1:0] i_sqrq;   // Squared in-phase data

32 reg  signed [2*DATA_SIZE-1:0] q_sqrq;   // Squared quadrature data

33 wire [2*DATA_SIZE:0] sqrsum;            // Sum of squares of in-phase and quadrature data

34 reg  [2*DATA_SIZE-1:0] sqrsumq;         // Registered sum of squares

35 wire [DATA_SIZE-1:0] sqrt_data;         // Amplitude of received data

36 reg  signed [DATA_SIZE-1:0] sqrtq;      // Registered amplitude of received data

volume. Selected bits of the result are 
formatted and serially shifted out to match 
the serial peripheral interface (SPI) of the 
audio DAC on the HF1 board. The bits are 
selected to provide the loudest volume while 
still preventing DAC overload.

Perceptive readers will note that this 
code actually contains a NIOS II soft-core 
CPU to control some functions. We have 
deliberately avoided adding the complexity 
of an embedded CPU to our discussion, 
leaving that topic instead for another day. If 
you are ambitious, the entire source for the 
NIOS II CPU is included in the Quartus 
Archive (.qar file) for your amusement.

What’s Next?
Now that you have a working knowledge 

of FPGA techniques for SDR, what can you 
do next? The openHPSDR project is open 
source, so why not take a look at the FPGA 
code for the Mercury receiver, Pennylane 
transmitter, Metis Ethernet interface or even 
the Hermes transceiver? Each one of these 
boards has an on-board FPGA and Verilog 
code to match. It is all available from the 
openHPSDR repository, and you are now 
qualified to download it, read it, understand it 
and even modify, compile and run it on your 
own HPSDR hardware if you like.13, 14 The 
tools that you have used today are the very 
same tools that the developers use when they 
write or update the code.

Next time we can cover how to 
compile, download and execute code in 
the BeMicroSDK FPGA, or we can go off 
in another direction, such as GNU Radio. 
Please drop me an e-mail if you have any 
suggestions for topics you would like to see 
covered in future Hands-On-SDR columns 
or even just to let me know whether or not 
you found this discussion useful.

Notes
1Many Verilog tutorials and references are 

available by searching “Verilog tutorial” with 
your favorite search engine. Here are a few 
links: 

Tutorial: doulos.com/knowhow/verilog_
designers_guide/.

Tutorial: vol.verilog.com/VOL/main.htm.
Reference: sutherland-hdl.com/online_ 

verilog_ref_guide/vlog_ref_top.html.
Reference: see.ed.ac.uk/~gerard/Teach/

Verilog/manual/.
2The BeMicroSDK development kit circuit 

board is available from Arrow Electronics: 
parts.arrow.com/item/detail/arrow-
development-tools/bemicrosdk.

3The UDPSDR-HF1 development kit circuit 
board is available from Arrow Electronics: 
parts.arrow.com/item/detail/arrow-
development-tools/udpsdr-hf1.

4You can download the free Altera Web 
Edition software from the Altera website: 

altera.com/products/software/quartus-ii/
web-edition/qts-we-index.html.

5Scotty Cowling, WA2DFI, “Hands On SDR,” 

QEX, Sep/Oct 2014, pp 31 – 38.
6Download the Altera BeMicroSDK embedded 

system lab document: download.silicon-
expert.com/pdfs/2013/5/20/12/17/55/611/
arrowd_/manual/bemicro_sdk_embed-
ded_system_hw_lab_qsys_v12_1.pdf.

7The source code is available from the 
SDRstick SVN at svn.sdrstick.com under 
the <sdrstick-release/BeMicroSDK/
udpsdr-hf1/firmware/source> directory. 
The file name is <hf1_testcode_11182014.
qar>

8Introduction to Quartus II Software: <altera.
com/literature/manual/quartus2_intro-
duction.pdf>

9TANSTAAFL, or “There ain’t no such thing 
as a free lunch” has several popular 
usages, including in science fiction and 
economics. See <en.wikipedia.org/wiki/
There_ain%27t_no_such_thing_as_a_
free_lunch>

10Altera AN455, “Understanding CIC 
Compensation Filters,” <altera.com/ 
literature/an/an455.pdf>

11FIR Filter Design from Altera Wiki: 
<alterawiki.com/wiki/FIR_Filter_Design_
in_Arria_V/Cyclone_V_DSP_Block_
Using_VHDL_Inferring>

12Implementing FIR Filters and FFTs, Altera 
white paper: <altera.com/literature/wp/
wp-01140-fir-fft-dsp.pdf>

13Look in the TAPR repository svn.tapr.org in 
<main/trunk> under the board name

14The openHPSDR hardware is available from 
TAPR at tapr.org/hpsdr_index.html

15The HF0 source code can be found at svn.
sdrstick.com in the <sdrstick-release/
beradio/beradio-firmware/source> 
directory. The file name is <BeRadio_
lab_01232013.qar>

Figure 9 — Here is a sample piece of Verilog code for an AM demodulator.
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37 

38 // Square the in-phase and quadrature components of the input.

39 // Pipeline the input strobe to match latency.

40 always @(posedge clk or negedge reset_n) begin

41     if (!reset_n) begin

42         strb_sr    <= 3’h0;

43         i_sqrq     <= {(2*DATA_SIZE){1’b0}};

44         q_sqrq     <= {(2*DATA_SIZE){1’b0}};

45     end

46     else begin

47         strb_sr    <= {strb_sr[1:0], strobe_in};

48         i_sqrq     <= i_in * i_in;

49         q_sqrq     <= q_in * q_in;

50     end

51 end

52

53 // Sum of the squares plus one to implement rounding. If bit 0 is set, this

54 // rounds up (more positive).

55 assign sqrsum = i_sqrq + q_sqrq + {{(2*DATA_SIZE-1){1’b0}},1’b1};

56 

57 // Register the sum of the squares after rounding off the LSB.

58 always @(posedge clk or negedge reset_n) begin

59     if (!reset_n) begin

60         sqrsumq    <= {(2*DATA_SIZE){1’b0}};

61     end

62     else begin

63         sqrsumq    <= sqrsum[2*DATA_SIZE:1];

64     end

65 end

66 

67 // Calculate the amplitude of the received signal as the square root of the

68 // sum of the squares.

69 sqrt sqrt_inst (

70     .radical (sqrsumq),

71     .q (sqrt_data),

72     .remainder ()

73 );

74 

75 // Register the square root output.

76 always @(posedge clk or negedge reset_n) begin

77     if (!reset_n) begin

78         sqrtq <= {DATA_SIZE{1’b0}};

79     end

80     else if (strb_sr[1]) begin

81         sqrtq <= sqrt_data;

82     end

83 end

84 

85 // Assign output strobe and data.

86 assign strobe_out = strb_sr[2];

87 assign data_out   = sqrtq;

88 // -----------------------------------------------------------------------------------------

89 endmodule




