Copyright

Scotty Cowling, WA2DFI

(C)2015 ARRL, All

Rights

PO Box 26843, Tempe, AZ 85285: scotty @tonks.com

Reserved

Hands On SDR

In this installment we take a look under
the hood of a stand-alone software defined
radio field programmable gate array (FPGA),
to see just how logic gates and registers build
a useful radio.

In this second column, I will show you
how to set up an FPGA coding environment
with free development tools, walk you
through the code of an SDR design example
and show you how to compile the example
code and run it on real hardware. All of
this will be very hands-on. We will, of
necessity, cover some SDR theory, but we
will be taking the background mathematics
as a given and instead focus on how we
implement the math functions inside the
FPGA. We will be reviewing the design
at what is called the RTL (register-transfer
level) in an HDL (hardware description
language) known as Verilog. The other main
language used by FPGA designers is called
VHDL, but we will not cover that here. Don’t
be intimidated by all of these TLAs (three
letter acronyms); professionals use these
by the boatload to make themselves SMK
(sound more knowledgeable). Okay, Okay,
so I made up that last one, but you get the
idea. Don’t I SMK already?

Is this for me?

As with each of these columns, limited
space begs the questions: “What do I need to
know?” and “What equipment do I need?”

You will need a basic working knowledge
of the Verilog hardware description language.
You should be able to pick this up easily by
following one of the many on-line tutorials.'
I will try to keep the code explanations
as simple as possible, but it is beyond the
scope of a few pages to describe Verilog
in any detail. As with most programming
languages, a few basic constructs go a long
way. If you learn these few constructs, you
can at least read and understand the code
snippets. Also keep in mind that Verilog
is used, among other things, to define the
behavior of many different types of FPGAs
or other hardware, write simulation code and
design test benches. (A test bench is a virtual
environment built to test the functionality
of a piece of software or hardware.) Any
Verilog skill that you pick up will be useful
in understanding other FPGA programs that
you encounter.

For hardware, you will need some
kind of Altera FPGA development kit. To
actually run the code that we are going to
compile in this column, you will need a
BeMicroSDK FPGA development kit and a
UDPSDR-HF1 Receiver, (see Photo A) both
available from Arrow Electronics.>?® Even if
you do not have the hardware, you can still
follow along with the text and learn about

"Notes appear on page 18

FPGA coding for SDRs. Note that, while
you will need some Verilog programming
knowledge, advanced math skills and RF
design experience are still absent. We are
analyzing an existing SDR, not designing
one from scratch.

For design software, we are in luck.
Altera offers their Quartus Il FPGA design
software as a free download from the
Internet for the FPGAs in their Cyclone®
family of parts. Both Linux and Windows
versions are available. The BeMicroSDK
board contains an EP4CE22F17C7 part
from the Altera Cyclone® IV E family of
FPGAs, so we can use the free version of
Quartus II design tools.

Software Installation

After you have read up a bit on Verilog
(or already grasp at least the basics), the next
task is to download and install the Quartus
1I software. Go to the Altera web site (WWW.
altera.com) under the Design Tools &
Services tab and select Design Software.*
Click on Quartus IT Web Edition Software
and then the Download Web Edition
Software — Free button. Select release 14.0,
pick your operating system and download
method (Akamai DLM3 Download
Manager is faster, but is only available for
Windows users) and make sure that you
have selected the Combined Files tab.
When you are sure that you have made your

Photo A —The BeMicroSDK data engine together with the HF1 RF front-end board.

QEX — March/April 2015 9

Mark
Typewritten Text
Copyright (C)2015 ARRL, All Rights Reserved

selections correctly, click on the blue down-
arrow to begin the download. Be patient, the
download is large at about 2.1 GB (Windows)
or 4.0 GB (Linux), and may take some time if
your connection is slow.

Note that the 14.0 (and newer) releases
of Quartus II require a 64-bit operating
system, Windows 7 or later or Red Hat
Linux. (I have successfully installed and
run Quartus II 14.0 on 64-bit Ubuntu Linux
14.04LTS. If you are a Linux expert and are
willing to read the Altera forums, you can
likely make it work; it is beyond the scope
of this column to help you with this!) If you
do not have a 64-bit operating system, then
you must download and install the previous
version (13.1) of Quartus II. To run Quartus
II version 13.1, you need Windows XP SP2
or later, 32- or 64-bit version. Simply select
13.1 in the Select Release dialog box before
you begin your download. Don’t worry if
you need to run the older Quartus II version;
the enhancements made to the newer 14.0
version do not really affect us when using the
older Cyclone® IV parts.

A few notes on PC hardware are in
order. Pretty much any PC that will run
the SDR software (see the Sep/Oct 2014
QEX Hands On SDR column) will run the
Quartus II software.’> The most important
hardware your Quartus II PC must have is
memory. At least 2 GB is a minimum. Slower
processors are okay (if you are willing to wait
longer for compiles to finish), but stability

of the software is not as good with less
memory. Even simple FPGA compiles are
significantly more compute intensive than
compiling a “Hello World” program in C.

For help on getting Quartus II set up,
and more hardware information on the
BeMicroSDK, please take a look at the
BeMicroSDK Embedded System Lab,
modules 1, 2 and 3, available on line.® Don’t
worry thatit was written for Quartus Il version
12.1; with a few obvious adjustments, it is a
good Lab to follow to gain more experience
before we jump into our real SDR code.

To get a copy of the FPGA source code,
download a copy of the Quartus archive
from the SDRstick website.” The archive
not only contains the source files (with a
.v extension), but the pin assignment file
(.gsf extension), timing constraints file (.sdc
extension) and many other files needed to
successfully compile the complete project.
Once you have downloaded the archive file,
start the Quartus II software and click on
<file><open project...>. Navigate to the
.qar file that you downloaded and click on
it. From the dialog box that opens, select the
destination folder (usually the default is fine)
and click OK. Quartus will extract all of the
files from the archive and set up the project,
all ready to go.

Quartus Il Quick Tips
While a Quartus tutorial is beyond the
scope of this column, here are a few quick

tips to get you started.® When you open
Quartus 11, you see a tool bar across the top
of the window, and four “panes” within the
window. See Figure 1. The upper left pane
is the Project Navigator pane, below that
is the Tasks pane, and across the bottom is
the Messages pane. If you look closely, you
will see these exact names in the title bar of
each pane. The remaining upper right-hand
pane is the Workspace area, where we will
look at source code and report files, among
other things.

At the bottom of the Project Navigator
pane, there are several tabs: Hierarchy,
Files, Design Units and so on. Click on the
Files tab to see a list of all of the files in the
project. You will see many Verliog source
files (.v), a few ROM data files (.hex), a
timing constraints file (.sdc) and a few others.
Double-click on a Verilog source file in the
Project Navigator pane and Quartus opens
the file in the Workspace for you to view or
edit. You can open as many files as you like;
Quartus will make a tab in the Workspace
for each file so you can switch quickly
between them. Before we dig into specific
sections of the code, let’s take a look at the
overall architecture of the FPGA firmware.

High-Level Overview

The FPGA RF processing is shown in
Figure 2 and the audio processing is shown
in Figure 3. The overall topology closely
follows that of an analog direct conversion

% Quartus Il 32-bit - C:/usr/dFi/zaphyr/UDPSDR-HF1/Quartushf1_testcods_D1142013_restorad/udpsdr_hf0 - udpsdr_hfo

Eie Ecit Wew Frojact fesinmaerts 3rocessig Tools Window deb

Gearchaltera.com | @

P15 D @] &G a9 | s

HEIER A A)

P B R L @

[project havigator 58 x| | 4 ronpilstion Reaort - ucpedr 1 (1 | @uper e B | @ reow 0 | @feqphwecitey @ | @ btowy @ | @ saondr 0 | @arderocy 0 | @ iy @
FE g praceuaiey g anclrrloraaeis @ o~ | >EEE
L2 zivher 655 /i - AM demadilatar -~
[EIE (=14 // Demodulate the AM audic signal. P
8 sy 657 //
1 ey 658 wirc signed [15:0] om in i; // Saturatcd/rounded in phase componcrt of decimated output
_gf'—mﬂv 659 wire signed [15:0] am in quadrature comporent of decimated oatput
-rﬂgﬁfﬁv 660 wire am sLrb; a velid
@ o dermedy 661 wire signed [15:0] am_data: / nemndmared aM dara
L8 -am 2 port ~deny 662 wire signed |15:0] audic data; /i F: ed audio data _
i 5] autut fir romhex 663 wire audio strb; // Filtered audio data valid strobe
S ot B un 664
S ubul_firy £l 665 // BSaturate end round the CIC ocutputs to get frem 24 bics down to 16.
8 spi iy 666 Bsal_rnd #(
i sinary_t kedir 667 TUIN Sk (28),
£ i%ﬂqt_d‘ﬁpsw ~||| 668 TONC SIZE (),
Ay verzray | @ Fie | o s | La|p] 669 OUR STak. 18
= 670 |) sat rad an inst (
[Tests Tax]| 671 .d1 (cicz_i),
i N 7 oot]| 512 a2 tciez),
673 a (am_in_i),
= o || 674 el (am_in q)
« |3 B ComaicDesgn 09 0 ::: |
< B B Anabcis & Synthacis o3 onf| 2F R R B . . ~
7 & b Fitor (Placo & Pouts) oooi|| 677 // Instantiate the AM demodulator, which calculates the amplitude of tas 2
& & B Acsertler (Cerecste prograrming files) |03 00| 678 // received samples (i.e. data_out = sgrt(i_in~2 + q_in~2)).
L & B TimeQuest Timng Adalrsis 0Joo|| 679 ij?mirismnrl #(
& B EDA Rerlist Wnhiter 680 DATA_SIZE (18)
& Prgram Ceviva iCpen Srrorammery 601) am demod iret (

602 e - (ade clk ouzi,

683 (reset_n), v
< ‘ > ‘”‘ . i I i | i o > Wi
A= e &) @& @] [T <o vl
z D M=ssace fa

46 WorsL-vase removal slack is 0.573

4 HOTST-rAZe MiTimm Dilse width slack 1= 8.204

14 Repors Metasteh:lizy: Fourd 4 synchrerizer eaains.

02 Teszgn iz nct fully constrained for setup requirements

02 Des-gn i3 nct full: strained f£or hold requircmerts

Quartus IT 32-bit TimsCues=t Timing Anelyzer was successful. 0 errors, 21 warrings

g ® Z93000 Quartus IT Full Compilalicvn was successlul, J zroors, 263 wacnirgs B
§i‘ﬁ | >
| =\ Fysfer (@) _prccessng (545 /

0% O30

Figure 1 —This screen shot shows the Quartus I/ design software.

10 QEX March/April 2015

receiver. We start with two multipliers
(quadrature mixer) fed by a Numerically
Controlled Oscillator (NCO) acting as a
digital local oscillator. The result is then
filtered by two Cascaded Integrator-Comb
(CIC) filters, demodulated by calculating
the magnitude (square root of the sum of the X data
squares), filtered again by a Finite Impulse From F _1
Response (FIR) low-pass filter and scaled to RF ADC
provide a variable audio gain. The processed
data is then clocked out to an audio DAC via
a Serial Peripheral Interface (SPI) port. The
SAT/RND blocks perform a saturation and
rounding function to prevent overflow when
we reduce the number of bits in the data path. cict_q
We will take an in-depth look at four
of these blocks (multiplier, NCO, CIC and cict_i 23
demodulator) and a cursory look at the rest of
them. If you study the complete source code,
you will discover that there are many more
housekeeping and control functions that 14-Stage
we do not cover. I have to leave something CIC Filter cic2 i SATRND | AM Demod
for you to figure out for yourself after you -1 . I L I
become a Verilog expert! * o4 16

5-Stage
SAT/RND L CIC Filter
cic_in_i

»| I »>1 1

=1

cic_in_q 25

14

22

23

am_data

Ver@r pb—r—

16

Even though I have reproduced small
pieces of code here, you will find it helpful 8 cic2_q am_in_q
to open the “real thing” in the Quartus »| Q »| Q »| Q
Workspace because the color formatting will 2 16
make things easier to follow. To get started,
open the Verilog source file udpsdr_hf0.v by

QX1503-Cowling02

double-clicking it. This file is the top-level
file in the design. How do we know this? Figure 2 — HF1 FPGA test code RF section block diagram.
Take a quick look at the Hierarchy tab in the

Project Navigator, and you will see it listed

at the top level.

Quadrature Mixer G dac_din

Scroll down to about line 570 in the FIR LP Filter Gain/ SPI dac_sclk
udpsdr_hf0.v file that you just opened, , Scale _ VF dac_cs |
or look at Figure 4 (line numbers in the am_data audio_data audio_out dac_clIr_|
file may be slightly different than in the t’+’ \ > >
figure). Anything after the “//” on a line 16 16 16 4
is a comment, so lines 568 and 569 just
document the function of the block. Lines QX1503-Cowling03
570 to 579 are called an “always block™;

To
Audio
DAC

-

this block is a wrapper that contains some
circuitry. In our case, this circuitry consists Figure 3 — HF1 FPGA test code AF section block diagram.

Sidebar: HF0, HF1 and BeRadio

Throughout the Verilog code, you will see references to BeRadio, HFO and HF1. While they seem to be interchangeable,
they are not quite synonymous. Here is the 5-minute explanation of these terms. The SDRstick series of receivers originally
consisted of three boards with three ascending performance levels: HFO (12 bits at 10 Msps), HF1 (14 bits at 80 Msps)
and HF2 (16 bits at 122.88 Msps). Since the HFO was designed as a low-cost SDR demonstrator board to be used with
BeMicroSDK, and other boards (such as the BelnMotion motor control board) already made use of the “Be” prefix, the name
BeRadio was coined. BeRadio and HFO are thus the exact same board.

BeRadio/HFO was marketed by Arrow Electronics for only a limited time, and is no longer available. HFO and HF1 are
almost identical designs, however. They are so close, in fact, that they are built on the same base circuit board and differ only
in the components that are soldered to the board. Such close hardware design kinship is the reason that HFO/BeRadio and
HF1 can share large portions of their FPGA firmware. If you look closely, you can see that the Quartus HF1_testcode project
was made from only slight modifications to the HFO project code.®

QEX — March/April 2015 11

of two registers, one named i_data and the
other named q_data. The width of these
registers is defined in the code on lines 493
and 494 (not shown), but we can get a clue
as to their width by looking at the widths
defined in the initialization assignments on
lines 572 and 573. The term 30’h0 means a
value that is 30 bits wide, with a hexadecimal
value of zero.

The list of edges and signals in parentheses
immediately following the @ on line 570
is called the sensitivity list. In our case,
whenever adc_clk_out rises from 0 to 1 or
reset_n falls from 1 to 0, all of the statements
within the always block are evaluated. The

568
569
570
571
572
573
574
575
576
577
578
579

// Shift received signal to zero by multiplying (mixing)
// with the local oscillator.
always @ (posedge adc_clk out or negedge reset n) begin

if (!reset n) begin
i data <= 30’h0;
g data <= 30'h0;
end

else begin

i data <= fcos * rx data;
q data <= fsin * rx data;
end

end

Figure 4 —This is a piece of the Verilog code for a quadrature mixer.

25 module z nco (

26 input wire clk,

217 input wire reset n,

28 input wire [31:0] phase inc,
29 output wire [15:0] fcos,

30 output wire [15:0] fsin

31);

32 //

33

34 // ---- Phase Accumulator

35 reg [31:0] accum;

36

37 // Accumulate the current phase
38 always @ (posedge clk or negedge
39 if (!reset n) begin

40 accum <= 32'h0;

41 end

42 else begin

43 accum <= accum + phase_ inc;
44 end

45 end

46 //

47

48 // ---- Lookup Tables

49 // Cosine lookup table.

50 lut_cos lut cos_inst (

51 .address (accum[31:20]),

52 .clock (clk),

53 .q (fcos[15:0])

54)3

55

56 // Sine lookup table.

57 lut sin lut_sin inst (

58 .address (accum[31:20]),

59 .clock (clk),

60 .g (f£sin[15:0])

61);

62 //

63 endmodule

//
//
//

//
!/

System clock
System reset
Phase increment

Cosine output
Sine output

// Phase accumulator

increment every clock cycle

reset n)

begin

Figure 5 —This piece of Verilog code is for a numerically controlled oscillator (NCO).

12 QEX March/April 2015

begin keyword is used to define the boundary
of the always block, and is matched with the
end keyword on line 579. Every begin must
have a matching end; they are paired just like
parentheses. Note that the end statements are
all indented to start in the same column as the
beginning column of the line containing the
matching begin keyword: line 574 aligns with
line 571, line 578 aligns with line 575 and line
579 aligns with line 570. This is an example of
good, easy to read Verilog coding style.

This always block defines the operation of
the two 30-bit registers, i_data and q_data.
The falling edge of reset_n (which is the
assertion of reset, since reset_n is active low)
causes both registers to be cleared (lines 571
to 574). Note that the or in the sensitivity list
means that this happens irrespective of the
adc_clk_out clock state, therefore making
this reset an asynchronous one. The rising
edge of adc_clk_out (as long as reset_n is
de-asserted) will cause i_data to be updated
with the value of the product of fcos and rx_
data, while q_data is updated with the value
of the product of fsin and rx_data (lines 575
to 578). This is our quadrature “mixer”: two
numerical multipliers.

Note the widths of the inputs to each
multiplier. (You can look in the code on
lines 444, 488 and 489 or look on the block
diagram in Figure 2.) When we multiply, the
bit width of the output is the sum of the widths
of the inputs, so we must make sure that the
variable that is assigned the product is defined
to be wide enough. This is a signed multiply
because both inputs and outputs are declared
as signed numbers. If you forget to declare
these as signed numbers, the Verilog compiler
will implement an unsigned multiplier, which
is a common Verilog coding error to be
avoided. One other thing to note is the order
of the assignments in the always block. The
reset code is implemented as the first part
of an if...else construct to ensure that the
asynchronous reset takes precedence over the

synchronous multiply operation. However, all
variable values within the block are updated
at the same time, regardless of the order of the
assignment statements. All 60 bits of i_data
and q_data are updated simultaneously in
parallel (whether set to zero by reset_n or
to the products of other variables by adc_
clock_out). I have reviewed this simple block
of code in detail because it is the first one.
We will move a bit faster on the next blocks,
focusing more on what the block does rather
than how Verilog works.

Numerically Controlled Oscillator
(NCO)

The next block that we will analyze is the
numerically controlled oscillator, or NCO.
The NCO is a bit different than a simple
oscillator in that it produces two sine wave
outputs that are 90° out of phase. The first
output is named fcos and will be used to
calculate i_data values. The other output
is named fsin and will be used to calculate
q_data values. These variable names should
already be familiar, as they are used by the
quadrature mixer discussed earlier.

The behavior of the z_nco module is
defined in the nco.v file, the majority of
which is reproduced in Figure 5. The module
is instantiated in the main file (see lines 560
to 566 of udpsdr_hf0.v) in much the same
way a component is placed on a schematic:
call out the module name, give it a unique
instance name (like a reference designator
on a schematic, for example R22 or U3)
and connect up inputs and outputs to the
module. The direction, type, width and name
of module I/O signals are defined on lines
26 to 30.

The NCO outputs are derived from
two lookup tables, lut_cos and lut_sin. A
phase accumulator named accum is used
as an address into the lookup tables. The
accumulator is incremented on every clock

cycle by a number of counts determined by
the value of the module input, phase_inc.
The larger the value of phase_inc, the
faster the lookup tables are “scanned,”
and therefore the higher the NCO output
frequency. You can take a look at the 16-bit
values in the lookup tables by opening the
cos.hex and sin.hex files in the files tab of
the Quartus Project Navigator pane (make
sure you specify 16 bits as the width when
asked). You might ask, “How did you create
the two look up table files?” Well, that is
a very good question. We actually wrote a
small program in Python to calculate the
values in the two hex files. We then used a
Quartus memory generator wizard to use the
hex files to initialize two 4096 x 16 SRAM
blocks as read-only memories (ROMs). The
two ROMS become our look-up tables. Take
a look at the wizard-generated lut_cos.v and
lut_sin.v files and you can probably figure
out how we did it.

The astute reader is probably wondering
why we used two ROMs instead of just
offsetting the address into one ROM to
achieve the desired 90° phase shift. (You
sure are full of good questions today!) The
answer is that the logic is simpler and we
are lazy. Remember that both lookup tables
are accessed every clock cycle. If you want
two 16-bit numbers (one for sine and one
for cosine) every clock cycle from the same
ROM, then you have to read it twice as fast
as the clock. While this is possible, it is not as
simple as just using more memory. After all,
that 16 K bytes of memory is not being used
for anything else... (Now I am talking like a
software guy.)

Saturate and Round Module

If you would like to explore this function
in detail, open the sat_rnd.v file by double-
clicking it in the Quartus Project Navigator
files tab. This is a parameterizable module,

Integrator Stages

Comb Stages QX1503-Cowling06

combq[0] combq[N-1]
+ soe + — so e —
> O/ — ——
+ + + +
Fs Fs/R

integ[0] integ[N—1] comb][0] comb[N-1]
“ J N J N J “ J

Y Y Y Y

Stage 1 Stage N Stage 1 Stage N

Figure 6 — Here is a pipelined CIC decimating filter block diagram.

QEX — March/April 2015 13

17

18 #(

19 parameter IN SIZE = 16, // Input data width

20 parameter OUT SIZE = 16, // Output data width

21 parameter N STAGES = 5, // Number of stages

22 parameter DEC RATE = 10 // Decimation rate

23)

24 input wire clk, // System clock

25 input wire reset n, // System reset

26 input wire instrobe, // Input sample valid strobe

27 input wire signed [IN SIZE-1:0] inl data, // Channel 1 input sample

28 input wire signed [IN SIZE-1:0] in2 data, // Channel 2 input sample

29 output wire outstrobe, // Output sample valid strobe

30 output reg signed [OUT SIZE-1:0] outl data, // Channel 1 output sample

31 output reg signed [OUT SIZE-1:0] out2 data // Channel 2 output sample

32)

33 /) e e e e e e e
34

35 // ---- Function Definitions ——-—————-—————-———————————(——(——(—(——
36 // Function to calculate ceiling of Log base 2 of a value.

37 function integer clog b2;

38 input [31:0] value;

39 integer tmp;

40 begin

41 tmp = value - 1;

42 for (clog b2 = 0; tmp > 0; clog b2 = clog b2 + 1) tmp = tmp >> 1;

43 end

44 endfunction

45 /) mmmm e e e e e e e e e e
46

47 // ==== USer Parameters ————— ==
48 // Derive internal parameters from input parameters using the Log2 function.

49 /) mmmm e e e e e e e e
50 localparam CNTR SIZE = clog b2 (DEC_RATE) ; //Size of sample decimation counter

51 localparam ACC SIZE = IN SIZE + (N _STAGES*CNTR SIZE); //Width of integration accumulators

52/ mm
53

54 // —--= Module Control —————————— o
55 reg [CNTR SIZE-1:0] sample count; // Sample decimation counter

56 reg combstrobe; // Strobe for activating comb stages
57 reg [1:0] del strobe; // Pipelined comb strobe to match
latency

58

59 // Generate internal strobe for every DEC_RATE input strobes.

60 always @(posedge clk or negedge reset n) begin

61 if (!reset n) begin

62 sample count <= { (CNTR_SIZE) {1'b0}};

63 end

64 else begin

module z cic

Figure 7 — Part 1 of the Verilog code for a cascaded integrator-comb filter.

14 QEX March/April 2015

65 del strobe <= {del strobel[0]

combstrobe};

DEC_RATE - 1) begin

sample count <= {(CNTR_SIZE) {1'b0}};

sample count <= sample count + 1’bl;

Bl /) mm e

66 if (instrobe) begin

67 if (sample count

68

69 combstrobe <= 1’bl;
70 end

71 else begin

72

73 combstrobe <= 1’b0;
74 end

75 end

76 else begin

77 combstrobe <= 1’b0;

78 end

79 end

80 end

82

83 // ---- Integrator Stages

84 reg signed [ACC_SIZE-1:0]

85 reg signed [ACC_

86 integer i;
87

88 // For each integration stage,
89 // first stage integrates the input data.
90 always @ (posedge clk or

91 if (!reset n) begin

92 for (i 0

93 integl[i] <= 0;
94 integ2[i] <= 0;
95 end

96 end

97 else begin

98 if (instrobe)

99 integl[0]

100 integ2[0]

101 for

102 integl[i]
103 integ2[i]
104 end

105 end

106 end

107 end

SIZE-1:0]

; 1 < N_STAGES;

negedge reset n)

begin
<= integll[0]
<= integ2[0] + {{(ACC_SIZE-IN SIZE){in2 data[IN_SIZE-1]}},in2 data};

[N_STAGES-1:0];
[N_STAGES-1:0];

begin

i =1+ 1) begin

// Array of
// Array of
// FOR loop

integrate the value of the previous stage.

integrators for channel 1
integrators for channel 2

variable

The

+ {{(ACC_SIZE-IN STZE){inl data[IN SIZE-11}},inl data};

(1 =1; 1 < N_STAGES; i = i + 1) begin

<= integl[i]
<= integ2[i]

+ integl[i-11];
+ integ2[i-11;

QEX — March/April 2015 15

meaning that certain characteristics of the
module can be defined when it is instantiated
by setting values of pre-defined parameters.
These parameter values are used by the
code to modify the way the module behaves.
Take a look at the block diagram in Figure
2. Notice that the SAT/RND module is
used twice, once before the first CIC filter
and once after the second CIC filter. In the
former case, it reduces the data width from
30 to 24 bits and in the latter case, from 24 to
16 bits. (See udpsdr_hf0.v lines 605 to 617
and 666 to 675 for the two instantiations.) |
will explain how it does this after I describe
the function of this module.

The SAT/RND module performs three
operations on its input data. First it truncates
the data to a specific bit width by removing
a number of least-significant bits from the
input data. Next it rounds the result to the
nearest value based on the discarded bits.
Finally, it checks to make sure that the
rounded value can be represented properly
in the output bit width (in other words, there
is no overflow or underflow). Note that the
input and output data are signed numbers.
If overflow is detected, the output is set to
the maximum positive value (sign bit is 0,
all other bits are 1). If underflow is detected,
the maximum negative value is used instead
(sign bit is 1, all other bits are 0). These
numbers are called saturation values.

When the module is instantiated,
parameters IN_SIZE, OUT_SIZE and
TRUNC_SIZE are specified corresponding
to the input bit width, output bit width and
the number of bits to remove, respectively.
The same module is used in both places in
our block diagram, but each is instantiated
with different values for the three parameters.
This is useful, since we save ourselves the
work of writing two different modules. Of
course, TANSTAAFL (yes, it is more than
three letters, and yes, [am going to make you
turn to the end of the column to look it up),’
so we end up with a slightly more complex
module as a result. This sure seems like a lot
of trouble just to reduce the number of bits in
the data stream, but it is essential to minimize
overflow and underflow discontinuities.

Cascaded Integrator-Comb (CIC)
Filters

I have deliberately given you less and
less assistance in analyzing the Verilog code
in the last three sections. The goal is for you
to eventually be able to read and digest new
sequences of code on your own. This next
section will test your skill (and perhaps your
patience, too) with yet more complexity.
Take a look at Figure 6, the block diagram
of the CIC filter. Each circle containing a
> represents an adder and each block is a
register. An adder-register pair is called an

16 QEX March/April 2015

accumulator. 1 have shown only two stages
of the filter (first and last) for brevity, but the
ellipsis shows where additional stages are
inserted. The switch symbol shown between
the integrator stages and the comb stages
represents a reduction in the clock rate by a
factor equal to the decimation rate, R. Thus,
the left-most CIC filter shown in Figure 2
(5-stages) consists of ten accumulators and
five registers for each data path (i and q),
along with the register clocking circuitry,
which I will explain shortly.

This is a parameterized design, with input
and output bit widths, number of stages and
the decimation rate set at instantiation time.
The numbers given on lines 19 to 22 of Figure
7 are the defaults that are used if one or more
parameters are not set at instantiation. You
can look in udpsdr_hf0.v lines 621 to 624
and 638 to 641 for the instantiated values
for the 5-stage and 14-stage CIC filters,
respectively. The 5-stage filter uses an IN_
SIZE of 22, OUT_SIZE of 23, N_STAGES
of 5 and DEC_RATE of 25.

Let’s look at the register and accumulator
structure in the code before we see how the
registers are clocked. The integration stage
accumulator register arrays integ1 and integ2
are defined on lines 84 and 85 of Figure 7.
The bit range (register width) is defined in
the left-hand set of square brackets. The array
index range is defined in the right-hand set
of brackets. Notice that the number of bits in
these accumulator registers is wider than the
input bit width since we need to hold the sum
of many input samples. (See line 51 for the
definition of ACC_SIZE.) The number of
registers in each array is equal to the number
of stages in the filter. The behavior of the
accumulators is defined within the always
block on lines 90 to 107 of Figure 7. The first
accumulator adds the sign-extended input
data to its current value on each clock. The
remaining accumulators each sum the output
from the previous accumulator and their own
current value on each clock using the for loop
on lines 101 to 104.

The comb and combq registers are
defined on lines 111 to 114 of Figure 8.
The comb registers are used as registers
in the accumulators (they each directly
follow an adder), while the combq registers
store the value of each accumulator’s (+)
input, to be used one clock cycle later at the
accumulator’s (-) input. The always block on
lines 151 to 162 performs one last function
that is not shown in the block diagram
of Figure 6: it truncates the output to the
number of bits specified by the OUT_SIZE
parameter and rounds to the nearest bit.

Notice that every one of the four always
blocks in Figures 7 and 8 are clocked by the
clk input clock. It is much easier to analyze
the register timing of this synchronous design

than it would be if the output registers were
clocked by a different clock signal. So where
does the decimation occur, then? Remember
that the output data rate is equal to the input
rate divided by the decimation rate. If you
look at Figure 8, line 130 you will see that
while the always block is evaluated on every
clk edge, the if condition will be true only
when combstrobe is true. Take a look at the
always block in Figure 7, lines 60 to 80; this
is where combstrobe is generated. With a bit
of study, you can see that one combstrobe is
generated for every DEC_RATE instrobe
assertions. The output rate will therefore be
slower than the input rate by a factor equal to
the decimation rate.

Altera’s AN455 application note is an
excellent place to start for more information
on CIC filters in FPGAs.!°

AM Demodulator

The AM demodulator code is in the am_
demod.v file, most of which is reproduced
in Figure 9. The magnitude of the AM
demodulator output is equal to the square
root of the sum of the squares of the i and
q input components. The always block on
lines 40 to 51 squares the incoming i and q
values. The assign statement on line 55 then
adds them together, while the always block
on lines 76 to 83 takes the square root of the
sum. Note that we delay the strobe_in signal
to account for the number of clock cycles that
are required to calculate the magnitude, and
then assign the delayed signal to the strobe_
out of the module on line 86. This is called
pipelining the signal.

Finite Impulse Response (FIR) Low-
pass Filter

While explaining the coding of an FIR
filter is beyond the scope of this column,
there are good references on the Internet.!! 12
Basically, the FIR filter is just a digital low-
pass filter consisting of a series of multipliers
and registers feeding a large adder tree. The
FIR filter requires a table of coefficients that
are typically supplied by a ROM, in much
the same way that the numerically controlled
oscillator stores its lookup tables. Altera
provides a software wizard to assist you in
calculating the coefficients. The number of
multipliers, called taps, plus the values of
the coefficients, determines the LPF cutoff
frequency and its slope. The FIR filter code
is in the file output_fir.v, which also uses the
three files output_fir_rom.v, output_fir_
rom.hex and ram_2_port_rden.v.

Audio Gain, Scaling and Serial
Peripheral Interface (SPI)

The filtered audio is multiplied by an
audio gain coefficient to set the desired

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
16l
162
163
164

// ---- Comb Stages

reg signed [ACC_SIZE-1:
reg signed [ACC SIZE-1:
reg signed [ACC SIZE-1:
reg signed [ACC_SIZE-1:

integer j;

// For each comb stage,

] combl [N _STAGES-1:0];
] comblg [N STAGES-1:0];
] comb2 [N STAGES-1:0];
]

comb2q [N_STAGES-1:0];

Array
FOR loop

comb stages for channel
delayed comb values for
comb stages for channel
delayed comb values for

variable

subtract the previous value of the previous stage from

// the current value of the previous stage. The first stage subtracts from the

// value of the final in

always @ (posedge clk or

tegration stage.

negedge reset n) begin

channel 1
2

channel 2

if (!reset n) begin
for (j = 0; jJ < N_STAGES; j = j + 1) begin
combl[j] <= 0;
comblg[j] <= 0;
comb2[j] <= 0;
comb2g[j] <= 0;
end
end
else begin
if (combstrobe) begin
combl [0] <= integl[N_STAGES-1] - comblqg[0];
comblqg[0] <= integl[N_STAGES-1];
comb2 [0] <= integ2[N_STAGES-1] - comb2q[0];
comb2qg[0] <= integ2[N_STAGES-1];
for (j = 1; j < N_STAGES; j = j + 1) begin
combl[]] <= combl[j-1] - comblqg[j];
comblqgl[j] <= combl[j-1];
comb2[]] <= comb2[j-1] - comb2qg[j];
comb2qg[j] <= comb2[]j-1];
end
end
end
end
e b
// ---- Output

// Assign final element of delayed comb strobe as the output strobe.

assign outstrobe =

del strobe[l];

// Round off LSBs of final comb output to get filter output.

always @ (posedge clk or

if (!reset n) begin
outl data <= 0;
out2 data <= 0;
end

else begin

outl data <= combl[N_STAGES-1] [
combl [N_STAGES-1] [
out2 data <= comb2[N_STAGES-1] [
comb2 [N_STAGES-1] [
end
end
//
endmodule

negedge reset n) begin

ACC_SIZE-1:ACC SIZE-OUT SIZE] +
ACC_SIZE-OUT SIZE-1];
ACC_SIZE-1:ACC SIZE-OUT SIZE] +
ACC_SIZE-OUT SIZE-1];

Figure 8 — Part 2 of the Verilog code for a cascaded integrator-comb filter.

QEX — March/April 2015

17

volume. Selected bits of the result are
formatted and serially shifted out to match
the serial peripheral interface (SPI) of the
audio DAC on the HF1 board. The bits are
selected to provide the loudest volume while
still preventing DAC overload.

Perceptive readers will note that this
code actually contains a NIOS II soft-core
CPU to control some functions. We have
deliberately avoided adding the complexity
of an embedded CPU to our discussion,
leaving that topic instead for another day. If
you are ambitious, the entire source for the
NIOS II CPU is included in the Quartus
Archive (.qar file) for your amusement.

What’s Next?

Now that you have a working knowledge
of FPGA techniques for SDR, what can you
do next? The openHPSDR project is open
source, so why not take a look at the FPGA
code for the Mercury receiver, Pennylane
transmitter, Metis Ethernet interface or even
the Hermes transceiver? Each one of these
boards has an on-board FPGA and Verilog
code to match. It is all available from the
openHPSDR repository, and you are now
qualified to download it, read it, understand it
and even modify, compile and run it on your
own HPSDR hardware if you like." ' The
tools that you have used today are the very
same tools that the developers use when they
write or update the code.

Next time we can cover how to
compile, download and execute code in
the BeMicroSDK FPGA, or we can go off
in another direction, such as GNU Radio.
Please drop me an e-mail if you have any
suggestions for topics you would like to see
covered in future Hands-On-SDR columns
or even just to let me know whether or not
you found this discussion useful.

Notes

"Many Verilog tutorials and references are
available by searching “Verilog tutorial” with
your favorite search engine. Here are a few
links:

Tutorial: doulos.com/knowhow/verilog_
designers_guide/.

Tutorial: vol.verilog.com/VOL/main.htm.

Reference: sutherland-hdl.com/online_
verilog_ref_guide/vlog_ref_top.html.

Reference: see.ed.ac.uk/~gerard/Teach/
Verilog/manual/.

2The BeMicroSDK development kit circuit
board is available from Arrow Electronics:
parts.arrow.com/item/detail/arrow-
development-tools/bemicrosdk.

3The UDPSDR-HF1 development kit circuit
board is available from Arrow Electronics:
parts.arrow.com/item/detail/arrow-
development-tools/udpsdr-hf1.

“You can download the free Altera Web
Edition software from the Altera website:
altera.com/products/software/quartus-ii/

web-edition/qts-we-index.html.

5Scotty Cowling, WA2DFI, “Hands On SDR,"

QEX, Sep/Oct 2014, pp 31 — 38.
SDownload the Altera BeMicroSDK embedded
system lab document: download.silicon-
expert.com/pdfs/2013/5/20/12/17/55/611/
arrowd_/manual/bemicro_sdk_embed-
ded_system_hw_lab_qgsys_v12_1.pdf.

"The source code is available from the
SDRstick SVN at svn.sdrstick.com under
the <sdrstick-release/BeMicroSDK/
udpsdr-hf1/firmware/source> directory.
The file name is <hf1_testcode_11182014.
gar>

8Introduction to Quartus Il Software: <altera.
com/literature/manual/quartus2_intro-
duction.pdf>

STANSTAAFL, or “There ain’t no such thing
as a free lunch” has several popular
usages, including in science fiction and
economics. See <en.wikipedia.org/wiki/
There_ain%27t_no_such_thing_as_a_
free_lunch>

0Altera AN455, “Understanding CIC
Compensation Filters,” <altera.com/
literature/an/an455.pdf>

"FIR Filter Design from Altera Wiki:
<alterawiki.com/wiki/FIR_Filter_Design_
in_Arria_V/Cyclone_V_DSP_Block_
Using_VHDL _Inferring>

2Implementing FIR Filters and FFTs, Altera
white paper: <altera.com/literature/wp/
wp-01140-fir-fit-dsp.pdf>

8Look in the TAPR repository svn.tapr.org in
<main/trunk> under the board name

“The openHPSDR hardware is available from
TAPR at tapr.org/hpsdr_index.html

5The HFO source code can be found at svn.
sdrstick.com in the <sdrstick-release/
beradio/beradio-firmware/source>
directory. The file name is <BeRadio_
lab_01232013.qgar>

15 module am demod

16 #(

17 parameter DATA SIZE = 16 // Bits in data path

18) (

19 input wire clk, // System clock

20 input wire reset n, // Asynchronous system reset

21 input wire strobe in, // Input data valid strobe

22 input wire signed [DATA SIZE-1:0] i in, // In-phase input data

23 input wire signed [DATA SIZE-1:0] g in, // Quadrature input data

24 output wire strobe out, // Output data valid strobe

25 output wire signed [DATA SIZE-1:0] data out // Output data

26);

2]) e e
28

29 // -=--= BAM Demodulator =——=——=——=—————m
30 reg [2:0] strb sr; // Shift register to pipeline input strobe

31 reg signed [2*DATA SIZE-1:0] i sqrqg; // Squared in-phase data

32 reg signed [2*DATA SIZE-1:0] g sqgrqg; // Squared quadrature data

33 wire [2*DATA SIZE:0] sqrsum; // Sum of squares of in-phase and quadrature data
34 reg [2*DATA SIZE-1:0] sgrsumg; // Registered sum of squares

35 wire [DATA SIZE-1:0] sqrt_data; // Bmplitude of received data

36 reg signed [DATA SIZE-1:0] sqrtqg; // Registered amplitude of received data

Figure 9 — Here is a sample piece of Verilog code for an AM demodulator.

18 QEX March/April 2015

37

38 // Square the in-phase and quadrature components of the input.
39 // Pipeline the input strobe to match latency.

40 always @(posedge clk or negedge reset n) begin

41 if (!reset_n) begin

42 strb_sr <= 3'h0;

43 i sqrg <= {(2*DATA SIZE) {1'b0}};
44 q_sqrq <= {(2*DATA SIZE){1'b0}};
45 end

46 else begin

47 strb sr <= {strb sr([1:0], strobe in};
48 i sqrq <=1 in * i in;

49 q_sqrq <= g in * g in;

50 end

51 end

52

53 // Sum of the squares plus one to implement rounding. If bit 0 is set, this
54 // rounds up (more positive).

55 assign sqgrsum = i sqrqg + g sqrq + {{(2*DATA SIZE-1){1’b0}},1'bl};

56

57 // Register the sum of the squares after rounding off the LSB.

58 always @ (posedge clk or negedge reset n) begin

59 if (!reset n) begin

60 sgrsumg <= {(2*DATA SIZE) {1'b0}};
61 end

62 else begin

63 sgrsumg <= sqrsum[2*DATA SIZE:1];
64 end

65 end

66

67 // Calculate the amplitude of the received signal as the square root of the
68 // sum of the squares.
69 sgrt sqgrt inst (

70 .radical (sgrsumqg),
71 .q (sqgrt _data),

72 .remainder ()

73)

74

75 // Register the square root output.
76 always @ (posedge clk or negedge reset n) begin

77 if (!reset n) begin

78 sqrtg <= {DATA SIZE{1’b0}};
79 end

80 else if (strb sr[l]) begin

81 sqrtg <= sqrt data;

82 end

83 end

84

85 // Assign output strobe and data.

86 assign strobe out = strb sr[2];

87 assign data out = sqrtqg;

88 [/ mm e
89 endmodule

QEX — March/April 2015 19

