Copyright

Ray Mack, W5IFS

(C)2013 ARRL, All

Rights

17060 Conway Springs Ct, Austin, TX 78717; wbifs@arrl.net

Reserved.

SDR Simplified

A Look at Noise Reduction and Adaptive Filters

(Any sufficiently advanced technology is indistinguishable
from magic.—Arthur C. Clark)

Statistics and the Nature of Noise

I will give you a little exposure to statistics
(in case you haven’t used it before) because
noise concepts heavily involve statistics. I rec-
ommend Chapter 2 of the book The Scientist
and Engineer’s Guide to Digital Signal
Processing by Steven Smith for a good start-
ing point or refresher on statistics as well as a
good DSP book.!

In general, we mean Gaussian white noise

"Notes appear on page 46.

when we talk about noise in radio systems.
Figure 1 shows the Gaussian distribution and
the spectrum (which has a value of 1 from —o
to o). The Gaussian distribution is the bell
curve we probably all experienced when our
grades were “curved” by our teachers. The
sample size in that case was no more than
probably 30 samples. In electronics, we have
a continuous system with an infinite number
of samples of voltage in the system we are
measuring. The Gaussian distribution is a very
close approximation to what we see in the real

world for 99.9997 percent of noise voltages.
The equation allows for an extremely low
probability of a negative infinite and positive
infinite voltage which, of course, will never
happen in a real system (at least hopefully not
in our lifetimes). Perhaps those occurred dur-
ing the Big Bang. The 99.9997 percent proba-
bility corresponds to +4.5 standard deviations
and is the number used in the incorrectly
named 6 Sigma manufacturing goal.

Another important characteristic of white
noise is that it is uncorrelated. This is impor-

Spectrum — .

1.8

1.6

14

12

Voltage
-

0.8

0.6

04

0.2

-100 75

-50 25 0 25

Frequency

TN ot

08

50 75 100

|] | i 1 : :
Gaussian Probability wed]

0.6

04

02

Probability of Voltage (not normalized)

-1.5 -1 -0.5 0 0.5 1

Vollage

1.5 2 25 3 35

Figure 1 — (Bottom) A plot of the Gaussian probability distribution. (Top) The spectrum that corresponds to Gaussian

white noise from -100MHz to 100 MHz.

QEX — March/April 2013 39

Mark
Typewritten Text
Copyright (C)2013 ARRL, All Rights Reserved.

tant if we implement an algorithm that acts to
correlate an input signal. When I first started
studying noise, I had trouble understanding the
probability shape and the frequency spectrum.
The Gaussian shape describes the probability
function of any particular voltage at any partic-
ular time. However, noise is a totally random
process, so it is reasonable for the voltage to
change very quickly or very slowly as well as
change from a large negative value to a large
positive value. These describe the voltage as
a time function. Remember that very quick
changes in time translate into very broad fre-
quency spectrum. The dirac delta function has
an infinite frequency spectrum with a constant
value. Random noise actually contains signals
that come very close to random instances of
very small dirac delta functions.

The Moving Average Filter

Smith observed that the moving average
filter is frequently the first choice by engineers
looking to reduce noise because of its simplic-
ity. The moving average filter is optimal when
one wants to reduce noise in time encoded
signals. It is also one of the worst filters for fre-
quency encoded signals. The moving average
filter excels at reducing noise in signals where
we need to keep the sharpest step response.

Two radio examples that can benefit from the
moving average filter are receiver AGC and
transmitter ALC. Receiver AGC is an excel-
lent example where we are interested in detect-
ing the edge of a step in signal level. Figure 2
shows an example of a 100 mV square wave
such as an AGC input with 25 mV;, white
noise (top plot) and the results of passing
it through an eight element moving aver-
age filter (bottom plot) or four element filter
(middle plot). The rise times of the edges are
lengthened but the edges remain very sharp.
It is interesting how much noise even a four
element filter will remove. A moving average
filter is actually a special case of FIR filter
where each tap has the value 1/N with N being
the number of taps.

The moving average filter is especially
easy to implement in C code because all of the
values have equal weight. That means that we
do not care about the order we add each value.
Listing one shows two different implementa-
tions in C. The first implements a circular
buffer of arbitrary size that replaces the old-
est sample with the newest sample and then
computes the average. The second example
illustrates improved efficiency of execution if
the circular buffer size is a power of two.

The Matched Filter

The matched filter is another optimal time
domain signal noise reduction technique. If
you know the exact wave shape of the desired
signal ahead of time, you can use the cross
correlation function to determine when that
signal occurs. A matched filter looks very
similar to an FIR filter in implementation. An
FIR filter works by performing a convolution
of the input time samples with the impulse
response of the desired frequency response.
A cross correlation filter also passes the time
samples through the filter, but the values in the
filter are an exact replica of the desired signal.
Figure 3 shows the damped sinusoid expected
waveform that we used for an implantable defi-
brillator using magnetic pulses with pulse posi-
tion modulation for encoding. The top graph
shows the sample values used for the matched
filter calculation. Figure 4 shows the expected
signal with noise and the output of the correla-
tion machine. The signal plus noise contains
random noise (not really white noise) and two
pulses. One pulse is a positive version of our
signal that begins at sample 23 and the second
is a negative version that begins at sample 57.
The noise is roughly 25 mV;pand the signals
are also 25 mVp,p. You really have to use a lot

150

125

100

75

Voltage
U
=

25 =

I\

=25

-50

30 40 50 60

70 80 90 100

150

125

100 7

Voltage
W
=)

30 40 50 60

70 80 90 100

Voltage
v
=

30 40 50 60

Timao

70 80 90 100

Figure 2 — (Top) A plot of an example AGC square pulse contained in random noise. (Bottom) The output of an 8 tap moving
average filter. (Middle) The output from a four tap moving average filter.

40 QEX - March/April 2013

Listing 1
Two Moving Average Filters

#define NUMBER _OF SAMPLES 11@@// an arbitrary number that fits
// the number of samples we want
// to average

@

int@sample store [NUMBER OF SAMPLES][@

int next index;

int arbitrary moving average (int new value)
unsigned int i;
int accumulator;

// store the new sample in the ring buffer

sample store[next index] = new value;

// set up the pointer to the next entry in the ring buffer
next index++;

if (next index == NUMBER OF SAMPLES)

next index = 0;

// we do not care about the sample order

// because of the commutative property of addition
accumulator = 0;

for (i=0; i < NUMBER OF SAMPLES; 1++)

accumulator += sample storel[i];

// the function result is the new moving average value
return (accumulator / NUMBER OF SAMPLES) ;

}

#define ARRAY SIZE 8 // This value must be a power of two
// for the logic to work

#define MASK 0x7 // the bit pattern to mask for the array
// size

#define BITS IN SIZE 3 // the number of bits that correspond to

// the exponent of the array size
// 8 == 2%%3

int binary moving average (int new value)

unsigned int i;

int accumulator;

// store the new sample in the ring buffer

sample store[next index] = new value;

// set up the pointer to the next entry in the ring buffer
// we save several instructions because the bit masking
// replaces a compare and several load instructions
next index++;

next index &= MASK;

// we do not care about the sample order

// because of the commutative property of addition
accumulator = 0;

for (i=0; 1 < ARRAY SIZE; i++)

accumulator += sample storel[i];

// the function result is the new moving average value
// a shift operation takes an order of magnitude fewer
// CPU cycles compared to an arbitrary divide

return (accumulator >> BITS IN SIZE);

QEX — March/April 2013 41

Voltage

Voltage

150

100

50

-100

0 025 05 075 1

125 15 1795 2 225 25275 3 32535 375 4 425 45 475 5 525 55 5795 6 625

150

100

50

0 025 05 075 1

125 1.5 L1795 2 225 25 275 3 325 35 375 4 425 45475 5 52555 5795 6 625

Time

Figure 3 — (Bottom) The waveform used for our matched filter example. (Top) The sampled version of the waveform used in the matched filter.

Voltage

Voltage

150

100

50

-100

-150

150

100

50

-100

-150

// . \
\ /
/
/ \
P \ / /
\ / \ /
\ / \ /
\ /
/ \
\ ./ \
N/
10 20 30 40 50 60 70 80 90 100
Yot et gl et
T /Y \Y SV T VYN
10 20 30 40 50 60 70 80 90 100

Time

Figure 4 — (Bottom) Two matched filter pulses buried in noise. The first pulse is a positive version and the second pulse is an inverted version.
(Top) The output of the matched filter showing two real pulses and a third pulse that is actually noise.

42 QEX - March/April 2013

Main
Channel

® P Output

s+nl

Filter
Output
X

Noise S
Refix oe——nf’ Adaptive Filter

eI

Figure 5 — A block diagram of an adaptive noise cancelling system..

Listing 2
An LMS Example

#define NUMBER OF TAPS 64
int LMS weights [NUMBER OF TAPS];
int sample data [NUMBER_OF TAPS] ;

int newest sample;

void LMS weight adjuster (int new sample, int error, int gain)

{

int i, j, k;

sample data[newest sample] = new sample;

// our pointer to input data in its circular buffer
1 = newest sample;

// our pointer into the weight array

j = 0;

// going backwards through an array is

// an excellent example of where a do- while

// construct works best

do
{ | . | . | |
LMS weights[j] = LMS weights[j] + (2 * error * gain * sample datalil);
J++;
i--5
if (1 < 0)
{
i = NUMBER OF TAPS - 1;
} while (i != newest sample);

// point to the next position in the data circular buffer
newest sample++;
if (newest sample == NUMBER_ OF TAPS)

newest sample = 0;

}

QEX — March/April 2013 43

of imagination to see the two pulses among the
noise. We get two output pulses that look like
a single cycle of a sine wave. This is a con-
sequence of our signal being a damped sine.
Other signal shapes would have other shapes.
We identify our two pulses because there is
a positive peak followed by a roughly equal
negative peak or a negative peak followed by
a positive peak. The peaks of the output will
always be 8 samples apart for this particular
waveform. There is noise in the output since
even noise will have some resemblance to the
desired signal. In this particular sequence, the
noise very much looks like our signal begin-
ning around sample 83, but the signal level is
not enough to declare a pulse if we require the
output to be above 50. The beauty is that the
correlation greatly enhances the detection of
the signal compared to the noise. The code for
this issue contains an Excel spreadsheet where
I have implemented the moving average filter
and the matched filter.”

The Adaptive Transversal Filter

An FIR filter is a transversal filter because
the signal traverses the filter from input to
output in a serial fashion. An FIR filter is a
fixed function, however. There are many algo-
rithms that can be used to modify the filter
coefficients in order to accomplish varying

filter performance as the signal environment
varies; it adapts to the changing environment.
We normally encounter two such scenarios in
amateur radio. The first is adaptive notching of
heterodynes or CW signals in the pass band of
an SSB signal. The other is reduction of white

noise on an SSB or CW signal. In the second
case, the desired signal actually occupies small
numbers of bins in the received spectrum and
the signals are highly correlated where the noise
is totally uncorrelated to the desired signal. My
first DSP system to implement these functions

Main
Channel

N

Adaptive Filter

Filter
QOutput
X

2rr

Figure 6 — A modified adaptive system using the input signal for both the main
channel and the noise reference channel.

1000

900 \

800

700

600

500

Response
e

400

300

200

100

-100
-10

Frror

30 40 50

Figure 7 — A plot of a Quadratic response function. The LMS function has a response that corresponds to this type of response.

44 QEX — March/April 2013

was the RadioShack DSP-40. Timewave and
others make newer systems that are even better
at adaptive notching and white noise reduction.
Both functions are very easy to implement
at baseband because the noise is confined to
our audio bandwidth and we can sample fast
enough to have narrow frequency bins.

Figure 5 shows one method for adaptive
noise reduction. We have a signal plus noise
input from the main antenna plus an auxil-
iary noise antenna feeding the system. The
noise at the main and auxiliary channels are
related, but may vary over time so that a fixed
filter implementation will not be optimum. The
noise channel is applied to an adaptive filter
that creates a second signal that is subtracted
from the main channel. If the adaptive filter is
perfect, the control signal will exactly match
the noise contained in the main channel and the
output will be the desired signal with no noise.
This is rarely (if ever) possible, but our goal is
to reduce as much as possible the noise in the
output signal.

This is where the math gets messy again.
We start by assuming that s, n,, n,, and x are
statistically stationary, meaning the mean and
standard deviation do not change with time,
and that they have a zero mean value. We also
assume that s is uncorrelated with n, and n,,
but nyand n, are correlated. These are pretty
safe assumptions in the real world. It is way
beyond our scope to describe why, but the
expected value of the product of two signals
that are uncorrelated with zero mean is equal
to zero. Likewise, the expected value of the
square of any signal is the square of its value
(auto-correlation). The output of our system is:

err=s+n, —x
Squaring (which gives us power):
err’ =5 +(n, —x)* +2s(n, — x)

Now we take the expected value of all of the
elements:

E[err’]= E[s’
E[err’]= E[s’

1+ E[(n, _x)z] +2E[s(n, —x)]
1+ E[(ny —x)*]

The last term falls out because the two signals
are not correlated. (Yes, it seems like magic
to me too.) If we adjust our filter to minimize
the power in the error signal (which is also our
output signal) we will maximize the signal
power in relation to the noise power. We do
not accidentally reduce the signal, s, instead
of the noise (which would also reduce the total
power) because the signal, x, is derived only
from the noise that is present in both channels.

A voice signal is actually composed of a
fundamental frequency plus harmonics with
some small sidebands around each of the fun-
damental plus harmonics. If we could create a
filter that was a series of band pass filters that
passed only the fundamental and harmonics

while attenuating all of the other frequencies
in the input spectrum, we could get rid of all of
the noise power at those other frequencies. We
would still have the noise power that falls in the
same bins as our voice signal, but the potential
improvement in signal to noise is huge. This is
exactly what an adaptive noise canceller does.
It constantly tracks the changing characteristics
of the voice signal (which, for the purposes
of tracking, change rather slowly) and imple-
ments just the number of narrow band pass
filters to pass the voice and eliminate the noise.

What do we do if we do not have a viable
reference noise channel? Figure 6 shows a
modification of the system of Figure 5. Our
input consists of a correlated signal and an
uncorrelated broadband component (white
noise in our receiver systems). We place a
delay between the input channel and the refer-
ence channel sufficient to make the signal in
the input uncorrelated from the reference. The
information in the reference channel remains
correlated with the main channel. The result
is that we attempt to minimize the correlated
signal power in the error signal. The output
is taken from the output of the adaptive filter
rather than from the adder.

The separation of the correlated signal such
as a constant sine wave from an uncorrelated
signal can also be used as an adaptive notch
filter. Again, by placing a significant delay
between the reference and the input channels,
we can take a signal such as voice that becomes
less correlated as the time difference increases
and create a noise signal which is basically
uncorrelated. The sine wave interference has
almost perfect correlation even after significant
delay so the adaptive noise canceller will create
an adaptive notch at the frequency.

The LMS (Least Mean Squared)
Algorithm

Figure 7 shows a plot of a quadratic equa-
tion (one having squared terms). We created a
function with the same general shape when we
squared the error signal in Figure 5. The square
of the error signal will always fall on the line
and our goal is to adjust the filter values so that
we find the bottom of the curve. The equation
for a real system is actually a three dimensional
surface, but we will simplify it to be a simple
curve in one plane. All adaptive algorithms look
at where we were with the last error estimate
and where we are with this estimate. The goal is
to always have the difference move in a negative
direction on the curve. The Least Mean Squared
(LMS) algorithm is constrained to work with a
transversal filter, so it is not a general algorithm
for all systems. The LMS algorithm is probably
the most used adaptive technique for electronic
DSP implementations because DSP processors
are designed to implement transversal filters.
Figure 8 shows an implementation of an adap-
tive linear combiner. It is just a normal FIR

7o+ MILLIWATTS
= KILOWATTS™

Wore Watts per Dollar

In Stock Now!

Semiconductors
for Manufacturing

and Servicing
Communications
Equipment

« RF Modules -~
Semlconductors
P Transmitter Tubes

Se Habla Espanol = We Export

Phone: 760-744-0700

Toll-Free: 800-737-2787

(Orders only) 800-RF PARTS

Website: www.rfparts.com

Fax: 760-744-1943
888-744-1943

Email: rfp@rfparts.com

RF PARTS

cC OMUP A NY

From Miflliwatls fo Kilowalis®"

Figure 8 — A block diagram of the LMS algorithm implementation.

NATIONAL RF, INC.

ATTENUATOR
Switchable,
T-Pad Attenuator,
100 dB max - 10 dB min
BNC connectors

VECTOR-FINDER
Handheld VHF direction
finder. Uses any FM xcvr.

Audible & LED display
VF-142Q, 130-300 MHz

$239.95 AT-100,
VF-142QM, 130-500 MHz $89.95
$289.95

TYPE NLF-2
LOW FREQUENCY
ACTIVE ANTENNA

AND AMPLIFIER
A Hot, Active, Noise
Reducing Antenna System

DIAL SCALES
The perfect finishing touch

'/,-inch shaft couplings.
NPD-1, 3%,x2 3/4,

that will sit on your desk 7;1323;9
and copy 2200, 1700, and NPD-2 5}, X35,
600 through 160 Meter 8'1, d 8 &
. H rive
Experimental and Amateur $44.95
Radio Signals! NPD-3 5;/ X3 5y
Type NLF-2 System: 6'1’ d 3 &
$369.95 anve
$49.95

NATIONAL RF, INC
7969 ENGINEER ROAD, #102
SAN DIEGO, CA 92111

FAX 858.571.5909
www.NationalRF.com

858.565.1319

46 QEX — March/April 2013

for your homebrew projects.

filter but instead of each tap value being a filter
coefficient, it is an adaptive weight value. The
math guys call this a weight vector. The math
gets really messy with vectors and matrices and
such, but as with a lot of DSP, we can ignore
the math and go right to the implementation.
We need just a little math to describe the LMS
equation, though. We call the set of weights a
vector where W, is just [Wy,, W, Wy, Wy,...]
from Figure 8. Likewise, the input signal vec-
tor X i just [Xp.X6XouX.- - - In an FIR filter,
the coefficients are static so W,,, (the values at
z") would be exactly identical to W,. That is
not the case in an adaptive filter. The adaptive
process first calculates the output of the filter
and then replaces all of the weight values every
time we add a new data sample to the filter. In
essence we have two filter processes going on
in parallel. Fortunately, the math is actually
quite simple:

Wir = Wi+ Zug X

where u is just a constant gain value and &
the single data value that is the output of the
error calculation. The software simply walks
down the present set of weight values and data
values and does two multiply operations and
one addition per element to create the new
set of weights. Listing 2 shows how simple
the process is in C. The listing is a represen-
tative expression of the algorithm. An actual
implementation is included in the source code
for this issue, but can also be downloaded
as part of version 1.8.0 of PowerSDR.*> The

file Imadyf.c contains all of the code used in
PowerSDR.

Reader Feedback

Peter Traneus Anderson wrote the first
article about digital down conversion for QEX
in 1996.* He reminded me that one must be
careful when looking at the commercial digi-
tal down converter chips that are designed for
broadband digital applications. Digital may
work just fine at 100 dB spurious free dynamic
range (SFDR), but narrow band applications
frequently need 120 dB to 160 dB SFDR.
Commercial applications have improved in the
past 17 years, though, and some of the com-
mercial chips should do quite well in narrow
band applications.

Gary Heckman, KC7FHP, has been fol-
lowing our work for some time and did some
work on his own to understand the Hilbert
Transform. He implemented the algorithm
in MS-BASIC/QBASIC and had good results.
I have included his e-mail to me (which
includes the BASIC source code) in the ZIP
file for this issue.

More Reading

I recommend two books that I used as
reference for this installment. I have already
mentioned the book by Smith.! It is very well
written and uses a conversational style. He
also tries to keep the ugly math to a minimum.
I also used Adaptive Signal Processing by
Bernard Widrow and Samuel Stearns.’ This
book is full of really nasty math, so it will not
help you much unless you can suffer through
sophomore level engineering math. It is inter-
esting that Widrow has a couple of equations
named after him and that a lot of the earliest
work in adaptive DSP signal processing only
goes back to the 1960s. This is a very new area
of study and products like the DSP-40 were
available very shortly after the concepts were
developed in academia and Bell Labs.

Notes

'Steven Smith, The Scientist and Engineer’s
Guide to Digital Signal Processing,
Prentice-Hall, 1997.

2www.arrl.org/qexfiles. Look for SDR
Simplified 3-2013.zip.

Ssupport.flexradio.com/Downloads.
aspx?fr=1

“’A Better and Simpler A/D for the DDC-
Based Receiver”, by Peter Traneus
Anderson, KC1HR, QEX, August 1996,
pages 21 to 24.

SBernard Widrow and Samuel Stearns,
Adaptive Signal Processing, Prentice-Hall,

=

