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SDR Simplified
 A Look at Noise Reduction and Adaptive Filters

(Any sufficiently advanced technology is indistinguishable 
from magic.—Arthur C. Clark)

Statistics and the Nature of Noise
I will give you a little exposure to statistics 

(in case you haven’t used it before) because 
noise concepts heavily involve statistics. I rec-
ommend Chapter 2 of the book The Scientist 
and Engineer’s Guide to Digital Signal 
Processing by Steven Smith for a good start-
ing point or refresher on statistics as well as a 
good DSP book.1 

In general, we mean Gaussian white noise 

when we talk about noise in radio systems. 
Figure 1 shows the Gaussian distribution and 
the spectrum (which has a value of 1 from –∞ 
to ∞). The Gaussian distribution is the bell 
curve we probably all experienced when our 
grades were “curved” by our teachers. The 
sample size in that case was no more than 
probably 30 samples. In electronics, we have 
a continuous system with an infinite number 
of samples of voltage in the system we are 
measuring. The Gaussian distribution is a very 
close approximation to what we see in the real 

world for 99.9997 percent of noise voltages. 
The equation allows for an extremely low 
probability of a negative infinite and positive 
infinite voltage which, of course, will never 
happen in a real system (at least hopefully not 
in our lifetimes). Perhaps those occurred dur-
ing the Big Bang. The 99.9997 percent proba-
bility corresponds to ±4.5 standard deviations 
and is the number used in the incorrectly 
named 6 Sigma manufacturing goal.

Another important characteristic of white 
noise is that it is uncorrelated. This is impor-1Notes appear on page 46.

Figure 1 – (Bottom) A plot of the Gaussian probability distribution. (Top) The spectrum that corresponds to Gaussian 
white noise from -100MHz to 100 MHz.
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tant if we implement an algorithm that acts to 
correlate an input signal. When I first started 
studying noise, I had trouble understanding the 
probability shape and the frequency spectrum. 
The Gaussian shape describes the probability 
function of any particular voltage at any partic-
ular time. However, noise is a totally random 
process, so it is reasonable for the voltage to 
change very quickly or very slowly as well as 
change from a large negative value to a large 
positive value. These describe the voltage as 
a time function. Remember that very quick 
changes in time translate into very broad fre-
quency spectrum. The dirac delta function has 
an infinite frequency spectrum with a constant 
value. Random noise actually contains signals 
that come very close to random instances of 
very small dirac delta functions.

The Moving Average Filter
Smith observed that the moving average 

filter is frequently the first choice by engineers 
looking to reduce noise because of its simplic-
ity. The moving average filter is optimal when 
one wants to reduce noise in time encoded 
signals. It is also one of the worst filters for fre-
quency encoded signals. The moving average 
filter excels at reducing noise in signals where 
we need to keep the sharpest step response. 

Two radio examples that can benefit from the 
moving average filter are receiver AGC and 
transmitter ALC. Receiver AGC is an excel-
lent example where we are interested in detect-
ing the edge of a step in signal level. Figure 2 
shows an example of a 100 mV square wave 
such as an AGC input with 25 mVP-P white 
noise (top plot) and the results of passing 
it through an eight element moving aver-
age filter (bottom plot) or four element filter 
(middle plot). The rise times of the edges are 
lengthened but the edges remain very sharp. 
It is interesting how much noise even a four 
element filter will remove. A moving average 
filter is actually a special case of FIR filter 
where each tap has the value 1/N with N being 
the number of taps.

The moving average filter is especially 
easy to implement in C code because all of the 
values have equal weight. That means that we 
do not care about the order we add each value. 
Listing one shows two different implementa-
tions in C. The first implements a circular 
buffer of arbitrary size that replaces the old-
est sample with the newest sample and then 
computes the average. The second example 
illustrates improved efficiency of execution if 
the circular buffer size is a power of two. 

The Matched Filter
The matched filter is another optimal time 

domain signal noise reduction technique. If 
you know the exact wave shape of the desired 
signal ahead of time, you can use the cross 
correlation function to determine when that 
signal occurs. A matched filter looks very 
similar to an FIR filter in implementation. An 
FIR filter works by performing a convolution 
of the input time samples with the impulse 
response of the desired frequency response. 
A cross correlation filter also passes the time 
samples through the filter, but the values in the 
filter are an exact replica of the desired signal. 
Figure 3 shows the damped sinusoid expected 
waveform that we used for an implantable defi-
brillator using magnetic pulses with pulse posi-
tion modulation for encoding. The top graph 
shows the sample values used for the matched 
filter calculation. Figure 4 shows the expected 
signal with noise and the output of the correla-
tion machine. The signal plus noise contains 
random noise (not really white noise) and two 
pulses. One pulse is a positive version of our 
signal that begins at sample 23 and the second 
is a negative version that begins at sample 57. 
The noise is roughly 25 mVP-P and the signals 
are also 25 mVP-P. You really have to use a lot 

Figure 2 – (Top) A plot of an example AGC square pulse contained in random noise. (Bottom) The output of an 8 tap moving 
average filter. (Middle) The output from a four tap moving average filter.
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Listing 1

Two Moving Average Filters

#define NUMBER_OF_SAMPLES  11  // an arbitrary number that fits 
                               // the number of samples we want  
                               // to average 
 
int sample_store[NUMBER_OF_SAMPLES];  
int next_index; 
 
int arbitrary_moving_average(int new value) 
{ 
unsigned int i; 
int          accumulator; 
 
    // store the new sample in the ring buffer 
    sample_store[next_index] = new_value; 
    // set up the pointer to the next entry in the ring buffer 
    next_index++; 
    if (next_index ==  NUMBER_OF_SAMPLES) 
    { 
      next_index = 0; 
    } 
    // we do not care about the sample order 
    // because of the commutative property of addition 
    accumulator = 0; 
    for (i=0; i < NUMBER_OF_SAMPLES; i++) 
    { 
      accumulator += sample_store[i]; 
    } 
    // the function result is the new moving average value 
    return (accumulator / NUMBER_OF_SAMPLES); 
} 

#define ARRAY_SIZE   8       // This value must be a power of two 
                             // for the logic to work 
#define MASK         0x7     // the bit pattern to mask for the array 
                             // size 
#define BITS_IN_SIZE 3       // the number of bits that correspond to  
                             // the exponent of the array size 
                             // 8 == 2**3
int binary_moving_average(int new value) 
{ 
unsigned int i; 
int          accumulator; 
 
    // store the new sample in the ring buffer 
    sample_store[next_index] = new_value; 
    // set up the pointer to the next entry in the ring buffer 
    // we save several instructions because the bit masking 
    // replaces a compare and several load instructions 
    next_index++; 
    next_index &= MASK; 
    // we do not care about the sample order 
    // because of the commutative property of addition 
    accumulator = 0; 
    for (i=0; i < ARRAY_SIZE; i++) 
    { 
      accumulator += sample_store[i]; 
    } 
    // the function result is the new moving average value 
    // a shift operation takes an order of magnitude fewer 
    // CPU cycles compared to an arbitrary divide 
    return (accumulator >> BITS_IN_SIZE); 
} 
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Figure 3 – (Bottom) The waveform used for our matched filter example. (Top) The sampled version of the waveform used in the matched filter.

Figure 4 – (Bottom) Two matched filter pulses buried in noise. The first pulse is a positive version and the second pulse is an inverted version. 
(Top) The output of the matched filter showing two real pulses and a third pulse that is actually noise.
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Figure 5 – A block diagram of an adaptive noise cancelling system..

Listing 2

An LMS Example
 

#define NUMBER_OF_TAPS      64 
int   LMS_weights[NUMBER_OF_TAPS]; 
int   sample_data[NUMBER_OF_TAPS]; 
 
int   newest_sample; 
 
void LMS_weight_adjuster(int new_sample, int error, int gain) 
{ 
int   i, j, k; 
 
   sample_data[newest_sample] = new_sample; 
   // our pointer to input data in its circular buffer 
   i = newest_sample; 
   // our pointer into the weight array 
   j = 0; 
   // going backwards through an array is  
   // an excellent example of where a do- while 
   // construct works best 
   do 
   { 
      LMS_weights[j] = LMS_weights[j] + (2 * error * gain * sample_data[i]); 
      j++; 
      i--; 
      if (i < 0) 
      { 
         i = NUMBER_OF_TAPS - 1; 
      } 
   } while (i != newest_sample); 
   // point to the next position in the data circular buffer 
   newest_sample++; 
   if (newest_sample == NUMBER_OF_TAPS) 
   { 
      newest_sample = 0; 
   } 
} 
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of imagination to see the two pulses among the 
noise. We get two output pulses that look like 
a single cycle of a sine wave. This is a con-
sequence of our signal being a damped sine. 
Other signal shapes would have other shapes. 
We identify our two pulses because there is 
a positive peak followed by a roughly equal 
negative peak or a negative peak followed by 
a positive peak. The peaks of the output will 
always be 8 samples apart for this particular 
waveform. There is noise in the output since 
even noise will have some resemblance to the 
desired signal. In this particular sequence, the 
noise very much looks like our signal begin-
ning around sample 83, but the signal level is 
not enough to declare a pulse if we require the 
output to be above 50. The beauty is that the 
correlation greatly enhances the detection of 
the signal compared to the noise. The code for 
this issue contains an Excel spreadsheet where 
I have implemented the moving average filter 
and the matched filter.2

The Adaptive Transversal Filter
An FIR filter is a transversal filter because 

the signal traverses the filter from input to 
output in a serial fashion. An FIR filter is a 
fixed function, however. There are many algo-
rithms that can be used to modify the filter 
coefficients in order to accomplish varying 

Figure 7 – A plot of a Quadratic response function. The LMS function has a response that corresponds to this type of response.

Figure 6 – A modified adaptive system using the input signal for both the main 
channel and the noise reference channel.

filter performance as the signal environment 
varies; it adapts to the changing environment. 
We normally encounter two such scenarios in 
amateur radio. The first is adaptive notching of 
heterodynes or CW signals in the pass band of 
an SSB signal. The other is reduction of white 

noise on an SSB or CW signal. In the second 
case, the desired signal actually occupies small 
numbers of bins in the received spectrum and 
the signals are highly correlated where the noise 
is totally uncorrelated to the desired signal. My 
first DSP system to implement these functions 
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was the RadioShack DSP-40. Timewave and 
others make newer systems that are even better 
at adaptive notching and white noise reduction. 
Both functions are very easy to implement 
at baseband because the noise is confined to 
our audio bandwidth and we can sample fast 
enough to have narrow frequency bins.

Figure 5 shows one method for adaptive 
noise reduction. We have a signal plus noise 
input from the main antenna plus an auxil-
iary noise antenna feeding the system. The 
noise at the main and auxiliary channels are 
related, but may vary over time so that a fixed 
filter implementation will not be optimum. The 
noise channel is applied to an adaptive filter 
that creates a second signal that is subtracted 
from the main channel. If the adaptive filter is 
perfect, the control signal will exactly match 
the noise contained in the main channel and the 
output will be the desired signal with no noise. 
This is rarely (if ever) possible, but our goal is 
to reduce as much as possible the noise in the 
output signal.

This is where the math gets messy again. 
We start by assuming that s, n0, n1, and x are 
statistically stationary, meaning the mean and 
standard deviation do not change with time, 
and that they have a zero mean value. We also 
assume that s is uncorrelated with n0 and n1, 
but n0 and n1 are correlated. These are pretty 
safe assumptions in the real world. It is way 
beyond our scope to describe why, but the 
expected value of the product of two signals 
that are uncorrelated with zero mean is equal 
to zero. Likewise, the expected value of the 
square of any signal is the square of its value 
(auto-correlation). The output of our system is:

0err s n x= + −

Squaring (which gives us power):
2 2 2

0 0( ) 2 ( )err s n x s n x= + − + −

Now we take the expected value of all of the 
elements:

2 2 2
0 0

2 2 2
0

[ ] [ ] [( ) ] 2 [ ( )]

[ ] [ ] [( ) ]

E err E s E n x E s n x

E err E s E n x

= + − + −

= + −

 

The last term falls out because the two signals 
are not correlated. (Yes, it seems like magic 
to me too.) If we adjust our filter to minimize 
the power in the error signal (which is also our 
output signal) we will maximize the signal 
power in relation to the noise power. We do 
not accidentally reduce the signal, s, instead 
of the noise (which would also reduce the total 
power) because the signal, x, is derived only 
from the noise that is present in both channels.

A voice signal is actually composed of a 
fundamental frequency plus harmonics with 
some small sidebands around each of the fun-
damental plus harmonics. If we could create a 
filter that was a series of band pass filters that 
passed only the fundamental and harmonics 

while attenuating all of the other frequencies 
in the input spectrum, we could get rid of all of 
the noise power at those other frequencies. We 
would still have the noise power that falls in the 
same bins as our voice signal, but the potential 
improvement in signal to noise is huge. This is 
exactly what an adaptive noise canceller does. 
It constantly tracks the changing characteristics 
of the voice signal (which, for the purposes 
of tracking, change rather slowly) and imple-
ments just the number of narrow band pass 
filters to pass the voice and eliminate the noise.

What do we do if we do not have a viable 
reference noise channel? Figure 6 shows a 
modification of the system of Figure 5. Our 
input consists of a correlated signal and an 
uncorrelated broadband component (white 
noise in our receiver systems). We place a 
delay between the input channel and the refer-
ence channel sufficient to make the signal in 
the input uncorrelated from the reference. The 
information in the reference channel remains 
correlated with the main channel. The result 
is that we attempt to minimize the correlated 
signal power in the error signal. The output 
is taken from the output of the adaptive filter 
rather than from the adder. 

The separation of the correlated signal such 
as a constant sine wave from an uncorrelated 
signal can also be used as an adaptive notch 
filter. Again, by placing a significant delay 
between the reference and the input channels, 
we can take a signal such as voice that becomes 
less correlated as the time difference increases 
and create a noise signal which is basically 
uncorrelated. The sine wave interference has 
almost perfect correlation even after significant 
delay so the adaptive noise canceller will create 
an adaptive notch at the frequency.

The LMS (Least Mean Squared) 
Algorithm

Figure 7 shows a plot of a quadratic equa-
tion (one having squared terms). We created a 
function with the same general shape when we 
squared the error signal in Figure 5. The square 
of the error signal will always fall on the line 
and our goal is to adjust the filter values so that 
we find the bottom of the curve. The equation 
for a real system is actually a three dimensional 
surface, but we will simplify it to be a simple 
curve in one plane. All adaptive algorithms look 
at where we were with the last error estimate 
and where we are with this estimate. The goal is 
to always have the difference move in a negative 
direction on the curve. The Least Mean Squared 
(LMS) algorithm is constrained to work with a 
transversal filter, so it is not a general algorithm 
for all systems. The LMS algorithm is probably 
the most used adaptive technique for electronic 
DSP implementations because DSP processors 
are designed to implement transversal filters. 
Figure 8 shows an implementation of an adap-
tive linear combiner. It is just a normal FIR 
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filter but instead of each tap value being a filter 
coefficient, it is an adaptive weight value. The 
math guys call this a weight vector. The math 
gets really messy with vectors and matrices and 
such, but as with a lot of DSP, we can ignore 
the math and go right to the implementation. 
We need just a little math to describe the LMS 
equation, though. We call the set of weights a 
vector where Wk is just [W0k,W1k,W2k,W3k,…] 
from Figure 8. Likewise, the input signal vec-
tor Xk is just [X0k,X1k,X2k,X3k,…]. In an FIR filter, 
the coefficients are static so Wk+1 (the values at 
z-1) would be exactly identical to Wk. That is 
not the case in an adaptive filter. The adaptive 
process first calculates the output of the filter 
and then replaces all of the weight values every 
time we add a new data sample to the filter. In 
essence we have two filter processes going on 
in parallel. Fortunately, the math is actually 
quite simple:

Wk+1 = Wk + 2mekXk

where m is just a constant gain value and ek 
the single data value that is the output of the 
error calculation. The software simply walks 
down the present set of weight values and data 
values and does two multiply operations and 
one addition per element to create the new 
set of weights. Listing 2 shows how simple 
the process is in C. The listing is a represen-
tative expression of the algorithm. An actual 
implementation is included in the source code 
for this issue, but can also be downloaded 
as part of version 1.8.0 of PowerSDR.3 The 

file lmadf.c contains all of the code used in 
PowerSDR.

Reader Feedback
Peter Traneus Anderson wrote the first 

article about digital down conversion for QEX 
in 1996.4 He reminded me that one must be 
careful when looking at the commercial digi-
tal down converter chips that are designed for 
broadband digital applications. Digital may 
work just fine at 100 dB spurious free dynamic 
range (SFDR), but narrow band applications 
frequently need 120 dB to 160 dB SFDR. 
Commercial applications have improved in the 
past 17 years, though, and some of the com-
mercial chips should do quite well in narrow 
band applications.

Gary Heckman, KC7FHP, has been fol-
lowing our work for some time and did some 
work on his own to understand the Hilbert 
Transform. He implemented the algorithm 
in MS-BASIC/QBASIC and had good results. 
I have included his e-mail to me (which 
includes the BASIC source code) in the ZIP 
file for this issue.

More Reading
I recommend two books that I used as 

reference for this installment. I have already 
mentioned the book by Smith.1 It is very well 
written and uses a conversational style. He 
also tries to keep the ugly math to a minimum. 
I also used Adaptive Signal Processing by 
Bernard Widrow and Samuel Stearns.5 This 
book is full of really nasty math, so it will not 
help you much unless you can suffer through 
sophomore level engineering math. It is inter-
esting that Widrow has a couple of equations 
named after him and that a lot of the earliest 
work in adaptive DSP signal processing only 
goes back to the 1960s. This is a very new area 
of study and products like the DSP-40 were 
available very shortly after the concepts were 
developed in academia and Bell Labs.

Notes
1Steven Smith, The Scientist and Engineer’s 

Guide to Digital Signal Processing, 
Prentice-Hall, 1997.

2www.arrl.org/qexfiles. Look for SDR 
Simplified 3-2013.zip.

3support.flexradio.com/Downloads.
aspx?fr=1

4”A Better and Simpler A/D for the DDC-
Based Receiver”, by Peter Traneus 
Anderson, KC1HR, QEX, August 1996, 
pages 21 to 24.

5Bernard Widrow and Samuel Stearns, 
Adaptive Signal Processing, Prentice-Hall, 

Figure 8 – A block diagram of the LMS algorithm implementation.
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