Copyright

Martin Ewing, AAGE

(C)2014 ARRL, All

Rights

28 Wood Rd, Branford, CT 06520; aa6e@arrl.net

Reserved

A Software-Based Remote
Recelver Solution

Need to get your receiver off site to avoid interference?
Here is how one amateur connected a remote radio to a club station
using a mixture of Linux, Windows, and Python.

The local interference environment is an
increasing problem for ham radio operation,
making weak signal operation impossible
at some times and frequencies. The ARRL
Staff Club Station, W1HQ, has this problem
in spades when W1AW, just across the
parking lot, is transmitting bulletins and
code practice on seven bands with high
power. Operating W1HQ on HF in the prime
evening hours is not possible. There is no
problem transmitting in this environment
— it’s a receiver problem. We could solve
the problem by setting up a full remote base
station, but for W1HQ, this is not necessary.
A remote receiver is all that we need. That is
the origin of this project.

There was only a small budget for a
remote operation, but we did have a number
of usable receivers, and we had an offer of
software support from an eager volunteer.
(That would be me.) So we were off and
running to develop a low-cost remote
receiving capability.

The club wanted a receiver capable
of operating at least CW and SSB on all
HF bands, controllable from the WIHQ
operating desk. It needed to be located far
enough from W1AW so that interference
was negligible, but close enough so that
propagation would be nearly the same at
both locations. The system that evolved
was a small remote computer that could
be deployed at a ham’s home (the “host
QTH”) and that would require little if any
local support. The remote would require
an all-band antenna of some kind, while
it would attach to the host’s home Internet
connection. At the base station (W1HQ), the

station computer would run control software
to manage the remote operation.

This article focuses mostly on the
software — how we developed a mixed C
and Python (and mixed Linux and Windows)
project with audio and Internet aspects.
Interested readers will probably want to
consult the code listings. These are provided
at www.aa6e.net/wiki/rrx_code and are
also available for download from the ARRL
QEX files website.! Additional project

"Notes appear on page 6.

details are available at www.aa6e.net/wiki/
WI1HQ_remote. Hardware construction is
straightforward for anyone with moderate
experience.

System Overview

Figure 1 shows the overall system design.
The BeagleBoard XM or “BBXM?” is an
inexpensive (~$150) single board computer
with a 1 GHz ARM processor, Ethernet
and USB connections, and on-board audio
capability.? It has 512 MB of RAM and

Audio

\

BeagleBoard XM

TenTec —— AFXMIT
Jupiter |a—»| RIGCTLD
Controlf (LINUX)
remoteste N
“base site
Audio
Ethernet
[>D\ Station PC
AFRECV
DISPLAY, REMOTE
KB, MOUSE (WINDOWS)

Figure 1 —This block diagram shows an overview of the remote receiver system.

QEX - January/February 2014 3

Mark
Typewritten Text
Copyright (C)2014 ARRL, All Rights Reserved

a microSD flash memory module serving
as a “hard drive” (typically 8 GB). The
BBXM will support a variety of operating
systems.” We installed Ubuntu Linux,
choosing to operate in a “headless” mode
without video graphics, mouse or keyboard.
In normal operation, the BBXM only
communicates via Ethernet to the base
station. (A video graphics port and serial I/O
port are available if needed for development
or testing.)

One required feature for the receiver
is full computer aided transceiver (CAT)
control.* That eliminated some fine older
radios that might have been used. In the end,
we selected a Ten-Tec Jupiter transceiver.
Its serial 1/O port can be connected to the
BeagleBoard through a USB-to-Serial
converter. (The BBXM’s on-board serial port
was reserved for maintenance use.)

The BBXM and a power supply were
packaged in a small case. Figure 2 shows the
remote system and the Jupiter transceiver.
Figure 3 shows the internal layout of the
BBXM, power supply and audio isolation
board. The power supply offers 12 V dc at
2 A to run the transceiver in receive mode.

At the base station location, a 3 GHz
Pentium IV PC running Windows XP is used
as the main station computer, supporting the
remote receive operation as well as other
station functions.

Software Design for the BeagleBoard
XM
We have worked out some software

approaches that may be useful to W1HQ and
the amateur community. We are providing
the software under the GNU General Public
License, so you are free to adapt it as you like
for your own use and education.’

Control

Remote control of the Jupiter transceiver
was easily implemented with the Hamlib
system.® Hamlib provides an interface
library coded in C that defines an application
programming interface (API), allowing
an application program to control any of a
large number of different Amateur Radio
transceivers, such as the Jupiter. Hamlib also
provides an Internet server that accepts rig
commands via Internet TCP/IP packets in a
simple text format. This server (rigetld) runs
on the BeagleBoard and accepts connections
from the base computer over a specified TCP/
IP port. Hamlib is available for download from
most Linux repositories. (Source code and
Windows versions are also available, but they
were not needed for our project.) A Google
search for hamlib will return numerous sites
for downloads and documentation.

Audio

Creating an efficient Internet audio
channel was the largest task in this project.
There are numerous streaming audio systems
available, but these can have long latencies
that don’t allow interactive Amateur Radio
communications. We might have chosen to
work with an open source VOIP scheme or
a service like Skype, but in the end we chose
to develop a simple transmission scheme that
works well in this application.

sweep vox

Figure 2 — Here is the remote control box containing the BeagleBoard XM computer and the
Ten Tec Jupiter transceiver.

4 QEX - January/February 2014

Our voice-to-Internet application is called
afxmit. It is written in C using the PortAudio
framework.” Afxmit samples the receiver
audio at 8 kHz (the lowest standard rate) with
16 bit resolution. (This is overkill for normal
Amateur Radio operations, giving frequency
response to 4 kHz and much more dynamic
range than amateur channels normally
require.) The program uses the Speex codec
to compress the audio before sending it to the
Internet.® With normal settings, we require
only about 3 kB/s of Internet bandwidth,
including Hamlib communications.

Note that the Speex codec in this
application solves a very different problem
than codecs used for digital voice over
RF channels, such as Codec2.® For RF
communications, a modem sends data on the
air, using the lowest possible bit rate while
being resistant to propagation changes and
interference. In our case, we are sending data
on the Internet, seeking a low bit rate while
preserving good communications fidelity.

Given a compressed bit stream from
Speex, how should it be transmitted? We
first looked at the Transmission Control
Protocol often called TCP/IP, which would
guarantee error-free end-to-end transfer.!’
The features of TCP, however, actually make
things harder for our application, because
if there are transmission errors, data will
be retransmitted, and the audio stream will
be delayed. For real-time streaming data
like ours, it’s usually better to forget about
missing packets or other errors and just move
on with the good data.

In the end, we adopted the User Datagram
Protocol (UDP) for audio transmission.
Audio data is taken by the BBXM audio
system, transmitted by UDP, and finally
played in real time by the base station
computer sound card. The two audio
clocks (input sound card and output sound
card) will always have slightly different
frequencies, meaning that the playback
buffer will eventually overflow or starve.
With appropriate framing, the receiver can
skip data or insert silent data as needed.

Speex provides a packet every 20 ms, and
the BeagleBoard buffers four of these for a
UDP packetevery 80 ms. There is no guarantee
of delivery, and no acknowledgement comes
back from the receiving computer. This is
a low-overhead method that works well
with our real-time audio transfer scheme.
An occasional missing packet or an over- or
under-flow is no problem. We can drop an
occasional excess packet or insert silence
as needed on a typical HF channel, and the
operator usually does not notice.

Afxmit listens on its UDP port for
commands from the base station computer to
set the codec parameters and to start or stop
sending audio.

Addressability and Security

The remote BBXM has to be addressable
from the Internet. Since we are relying on a
host Internet account, that means that the host
Amateur Radio operator’s Internet router
needs to be addressable. We use the dynamic
DNS addressing provided by Dyn to provide
data for an address like my-address.dyndns.
org." A small program on the BeagleBoard
runs occasionally to ensure that the Dyn
DNS database has the actual IP of the host’s
service.'? Using the host’s current numerical
address might work for a time without DNS,
but ISPs sometimes change your IP address
without notice.

To make the BeagleBoard available to
the outside network, we also need to insert
some “pinholes” in the host router’s firewall
configuration. Incoming traffic for ports
assigned to Secure Shell (SSH) terminal
traffic, rigetld, and afxmit is directed to
corresponding ports of the BBXM. With this
firewall setup, remote receiver traffic goes
straight from the host operator’s router to
the BeagleBoard and does not depend on the
host’s own computer in any way.

Login to the BeagleBoard is supported
using secure shell (SSH), which provides a
cryptographically secure link. Because the
base station software initiates its sessions
automatically, SSH logons are mainly useful
for system maintenance.

A similar level of security can be provided
for rigetld if needed, by implementing
an “SSH tunnel” for traffic for port 4532.
Unfortunately, UDP traffic cannot be tunneled
this way, so our audio link will always be
somewhat insecure without some further
work. (Software could restrict UDP responses
to certain IP addresses, for example.)

Base Station Computer Software

The main remaining component of our
system is the software application remote that
runs in the base station computer. It is written
in Python, a powerful language that runs well
on both Linux and Windows computers.'
With the help of the WxWidgets framework
for graphical user interface, remote provides
a virtual control panel for the remote receiver,
shown in Figure 4."* While this control panel
is tailored for the Ten Tec Jupiter transceiver,
it could be used with most other CAT
controllable rigs with minor changes.

We might highlight the FSpin class in
our Python code. This defines the control
widget that manages the setting of the VFO
frequency. It offers “up” and “down” buttons
for each frequency digit that allow rapid
tuning to a desired frequency. When the
FSpin control has keyboard focus, it will also
respond to the mouse wheel, which will tune
aparticular digit up or down. Direct frequency
entry from the keyboard is also supported.

Figure 3 —This is an internal view of the remote control box. The BeagleBoard XM is in the
lower right corner of the photo.

Another feature is the SMeter class. It is
adapted from the wxWidgets SpeedMeter.
Because our Hamlib connection will only
offer a new S-Meter reading every second
or so, we cannot provide the elegance of
some recent transceivers with LCD meter
emulations. (A convincing meter emulation
requires bandwidth!) Still, it is a useful
display, and it is calibrated.

Remote Communication

The user can run remote in either
a Windows or Linux based computer
environment. A number of things need to
happen that are outside the Python code. First,
remote launches a Windows batch file (or
Linux shell script) that starts an SSH session
with the remote computer. In a Windows
machine, we use PuTTY and plink for this
purpose.’* The SSH command runs a shell
script on the BeagleBoard remote that starts
the two server processes, rigetld and afxmit,
setting up the remote to listen for commands
from the base computer. Remote has a
module that manages Hamlib commands for
rigetld via a TCP/IP connection.

A separate C++ program, afrecv,
receives the UDP audio data sent from
afxmit. For a Linux base station, afrecv was
straightforward to code using the PortAudio
library. Alas, we needed a version of afrecv
to run under Windows. Could we port
PortAudio and Speex to Windows? It turned
out that porting Speex was straightforward,
but we had problems with PortAudio. We
finally selected the Windows XAudio2 API
instead.'s XAudio2 is part of the Microsoft

DirectX Software Development Kit. It is
a gaming-oriented audio system that is
functionally close enough to PortAudio
that afrecv can invoke either library by
conditional compilation. Afrecv and Speex
project files for Microsoft Visual C++ 2010
Express are provided with our other code at
the website mentioned earlier.

Remote directs afrecv to tell afxmit to
start and stop audio transmission on behalf
of the user. This involves running a batch file
(shell script), which can take noticeable time
to complete, especially under Windows. For
faster transmit/receive switching, we provide
a command that simply mutes the PC audio,
leaving the UDP stream running.

Interface Complication

We originally connected the Ten-Tec
Jupiter headphone output straight to the
BeagleBoard audio input, but there was some
weird behavior. A loud static crash in the
receiver would cause the computer to reboot.
After some head-scratching and consulting
of schematics, we saw that the Jupiter’s
speaker output and headphone jack are
driven by a bridge circuit, with both terminals
floating. Our static crash was injecting
unfriendly current surges into the computer’s
ground plane. The solution was an audio
isolation transformer, which you can see in
the left foreground of Figure 3.

Operating Results
The remote system is currently installed
at my home, about 30 miles away from

QEX - January/February 2014 5

ARRL Headquarters, where it uses a small
fraction of a cable TV Internet connection.
The Jupiter is normally connected to an 80 m
dipole, which is usable for reception across
the HF bands. Differential propagation
(favoring the transmitting site over the
receiving site, or vice versa) has not been a
problem so far, but we hope to eventually
move the remote site closer to WI1HQ.

The remote capability has given WIHQ
the option to be active in the face of severe
local interference from nearby W1AW, at a
modest cost. What is it like to use the system,
and what would we do differently if we were
doing it again?

The audio quality is good — good enough
to support PSK31, we believe, though this
has not been fully tested. One issue is the
delay time (latency) when tuning the receiver.
Tuning up and down the band is slower than
it would be on a local rig. Some of this
delay is caused by the Jupiter CAT interface,
which (like many radios) uses relatively
slow serial 57.6 kb/s communication. There
is also a delay in audio transmission caused
by audio buffering, the Internet, and the
Speex compression we use. We see about %2
second total delay. That’s enough to confuse
an operator monitoring transmission in real
time or scanning the band. It’s not a problem
for typical transmit/receive switching,
but it could be an issue in rapid-fire DX
or contest operation. There are software
parameters, particularly buffering ratios, that
can be adjusted if lower delays are required.
The minimum packet length with Speex
compression is 20 ms, but compression can
be turned off if needed. In general, increased
responsiveness requires less buffering, more
packets, and more Internet bandwidth.

If we were doing the project over, we
would naturally look at newer computer
options, if not newer radios. The BBXM
is still viable and attractive because of its
on-board audio system and its multiple I/O
ports. There are less expensive, smaller boards
now available such as the BeagleBone and
the Raspberry Pi, among others.!” These both
require off-board audio adapters, but a simple
USB audio “dongle” will probably work for
our 8 kHz monaural requirement. You should
be able to reduce the hardware cost and reduce
system size with one of these choices.

Python and wxWidgets work well for
the base station control program (remote).
With more recent versions of PyAudio
(a Python wrapping of PortAudio), it
should be possible to integrate the afrecv
function into the Python main program. This
would be especially attractive to a Linux
programmer who (like your author) needs to
port the application to Windows. Python and
wxWidgets work well on both platforms.

Building our own remote system has been

6 QEX - January/February 2014

VFO Freq. (Hz) Activi
8. 1. S q o
3
o o o
SIGNAL 7 1 5 2 1 8 0 Control Audio
=M/ /M e/ e/, Freq. from Keyboard
Bands
JlHQ Remote Receiver 160 @ 40 17 10 Modes
System Deve c(* ')'»-\/-«Ot i UsB cw AM
nd 80 3001506
3(;3 e ARRL Laboratory ® Ls8 CWR RITY
s 60 20 12 max
AF Gain
Bandwidth 12
NAR @ MED () WIDE : A”“’f"“"“h
AGC @.o on
~y OFF FAST RF Gain Noise Red.
50 @® off on
@® MED SLOW
Noise Blank Audio Link Controls
@off O10203 .
Stop Quit
4 5 6 _ L
Atten. Status Note
@® off on Normal Press spacebar for audio mute/funmute.

Figure 4 —This screenshot shows the virtual control panel, as displayed on the W1HQ
computer.

an interesting and educational challenge,
combining a number of technologies, and
not least, introducing a new capability to our
club station. Adding a transmit capability
for two-way remote operation should not be
too difficult, using some of the components
presented here. The base station code can
be readily adapted to other radios, or made
to run in another tiny computer like the
BeagleBone or Raspberry Pi.

Acknowledgements

I am very grateful for the support and
encouragement of Ed Hare, WIRFI, and
the entire ARRL Laboratory staff. Bob
Allison,, WB1GCM, kindly provided the
photographs.

Martin Ewing was first licensed in 1957
as KSMXF in New Mexico. He studied at
Swarthmore College and received a PhD
in Physics at the Massachusetts Institute of
Technology, specializing in Radio Astronomy,
the cosmic microwave background, and pulsars.
He joined Caltech Radio Astronomy working on
Very Long Baseline Interferometry, designing
digital correlators and developing a version
of the Forth computer language for real-time
control. At Yale University, he served as Director
of Information Technology in the Faculty of
Engineering. An ARRL Member, Martin became
an ARRL volunteer and Technical Advisor after
retiring. At the ARRL Laboratory, he works with
Software Defined Radio and applications of
small Linux computers.

Notes

"The software files associated with this article
are available for download from the ARRL
QEX files website. Go to www.arrl.org/
gexfiles and look for the file 1x14_Ewing.

zip.

2See http://beagleboard.org. More
recently, the BeagleBone series has been
introduced. See the website for additional
information.

3Go to: http://elinux.org/BeagleBoard.

“Computer Aided Transceiver (CAT) is Yaesu'’s
term for a radio’s computer control capabil-
ity. It is now used as a generic term.

SFor complete details of the GNU software
license, go to: www.gnu.org/licenses/gpl.
htm.

5See http://hamlib.org.

’See http://portaudio.org.

8For more information, see http://speex.org.
Since this project began, Speex has been
supplanted by Opus, http://opus-codec.org,
which is recommended for new applications.

9See www.codec2.org and www.rowetel.
com/blog/?page_id=2458.

'“This, and many other computer terms, can be
found by searching http://en.wikipedia.org.

1See http://dyn.com.

2Martin Ewing, AAGE, “DNS Choices for Your
Ham Server,” QST, Nov 2006, pp 77-78.

3See www.python.org.

“See www.wxwidgets.org.

®For more information about PuTTY and
to download the files, go to: www.chiark.
greenend.org.uk/~sgtatham/putty/
download.htmi.

'®You can learn more about Microsoft
XAudio2 and download the files at: msdn.
microsoft.com/en-us/library/windows/
desktop/hh405049(v=vs.85).aspx.

7For more information about the Raspberry
Pi computer, go to: www.raspberrypi.org.

