
32 QEX – September/October 2012

Ray Mack, W5IFS	

17060 Conway Springs Ct, Austin, TX 78717; w5ifs@arrl.net	

More Filter Activites

1Notes appear on page 37.

Table 1
Coefficients for a 5 TAP FIR Filter

Coefficient	 16 bit Integer	 Floating Point
 0	 759	 0.02316
 1	 5455	 0.16647
 2	 9011	 0.27499
 3	 5455	 0.16647
 4	 759	 0.02316

QEX1209-Mack01

Figure 1 — This diagram is a z-space representation of a simple 5 tap FIR filter.

SDR: Simplified

FIR Filter Recap
Figure 1 shows a graphical representa-

tion of a 5 tap FIR filter. The coefficients
are those calculated for a low pass filter
with a cut-off frequency of 1100 Hz with
8000 samples/s and 40 dB stop band
attenuation. I used the FIR_filter_genera-
tor.exe program from the last installment.1
Table 1 shows the coefficients in 16 bit
integer and floating point representation.
The formula for the filter is expressed as:

H(z) = 0.02316 z0 + 0.16647 z–1 +
0.27499 z–2 + 0.16647 z–3 + 0.02316 z–4

I have always found “z” notation to be
very confusing. It is a lot easier to visual-
ize with a picture such as Figure 1, where
each “z” value is just the sample contained
in one of the shift register positions. H(z)
is just what comes out of the adder at the
bottom of the filter in Figure 1. H(z) is the
sequence of numbers that are calculated
by our DSP. We put H(z) into a DAC and
low pass filter, and get H(t) which is now a
continuous time function that we can hear
through a speaker or watch on an oscillo-
scope. The notation “H(z)” is the form you
will commonly see in an engineering text
for the response of a filter.

Filter Response Calculation
That is all very interesting, but it is not

terribly useful for figuring out if our filter
is really going to do what we want. The
Fourier series that corresponds to our fil-
ter is what describes the actual frequency
response for all possible input frequencies.
This is similar to what happens when we
use the Fourier series to create a square
wave:

G(t) = sin (2π ft) + 1/3 sin (3 × 2πft) + 1/5
sin (5 × 2πft) + 1/7 sin (7 × 2πft) + …

If you add up all of the harmonics, you
get an exact square wave. If you stop after
harmonic 19, for instance, you get a wave-
form that is close to a square wave but
shows the Gibbs phenomenon. (You might
want to use Octave or Gnuplot to see what
happens.) This process takes information
in the frequency domain (1, 1/3, 1/5, …)
and converts it to a time domain represen-
tation. We have done an inverse Fourier
transform to transform frequency domain
information to time domain information.

In order to get a true representation
of the filter frequency response, we just
need to replace each “z” with a repre-
sentation of the Fourier series for the
filter. The task we are doing is a Fourier

transform. Remember that the filter coef-
ficients describe the operation of the filter
in the time domain and a Fourier transform
changes time domain information into fre-
quency domain information. The transform
of our filter looks like this:

H(f) = 0.02316 (cos (0 × 2πf) –j sin
(0 × 2πf)) + 0.16647 (cos (1 × 2πf) –j sin

(1 × 2πf)) + 0.27499 (cos (2 × 2πf) –j sin
(2 × 2πf)) + 0.16647 (cos (3 × 2πf) –j sin
(3 × 2πf)) + 0.02316 (cos (4 × 2πf) –j sin
(4 × 2πf))

Since cos (0) is one and sin (0) is zero,
this simplifies to:

H(f) = 0.02316 + 0.16647 (cos (1 × 2πf)
–j sin (1 × 2πf)) + 0.27499 (cos (2 × 2πf) –j
sin (2 × 2πf)) + 0.16647 (cos (3 × 2πf) –j sin
(3 × 2πf)) + 0.02316 (cos (4 × 2πf) –j sin (4
× 2πf))

Remember that each cos (x × 2πf) –j sin
(x × 2πf) is just a single sine wave repre-
sented in rectangular form (x and y) rather
than polar form (amplitude and phase
angle). In signal processing, we actually
refer to rectangular form as I (the cos term)
and Q (the sin term) rather than what we
did in algebra class with x and y.

Putting the Software in SDR
I did an on-line search and found no

program that automates the process of
calculating a set of filter coefficients and
displaying the resulting filter response. That
doesn’t mean one doesn’t exist, but it does
not show up in a search. MATLAB and
Octave each have a function that will com-

pute the frequency response if you give
it an array holding the filter values. Both
require a fair amount of programming to do
the computations and display. I find both as
incomprehensible as most DSP math!

Since no program exists, I have cre-
ated a program that incorporates the filter
calculations with a Kaiser window and then
displays the response. Figure 2 shows the
main window for the program with repre-
sentative values filled in. It allows you to
enter the same information as the C pro-
gram from the May/June column. Figure
3 shows a representative output window
for the program. The program is available
on the ARRL QEX files website, and the
source code is included.2

I wrote the program in Visual Basic
2010 Express because it is the easiest
environment I know to write a Windows
program. This is not your father’s BASIC.
It isn’t even very much like Visual Basic
4 (the last one I used regularly) or Visual
Basic 6. In 2008, Microsoft did a major re-

Mark
Typewritten Text
Copyright (C)2012 ARRL, All Rights Reserved

 QEX – September/October 2012 33

Figure 2 — This screen shot is the main
window of the filter response program.

Figure 3 — Here is a representative output window of the filter response program.

QEX1209-Mack04

Figure 4 — This block diagram shows the software SSB transmit generator using
the filter method.

write of Visual Basic to make it significantly
more object oriented and to incorporate
the .NET framework as an integral part of
the language. Perhaps the biggest change
from all previous BASIC systems is that all
arrays start at index zero instead of index
one. If you are a C programmer, you will
find the new Visual Basic to be a minor
change in syntax. It took me about 10 min-
utes to modify the syntax of the C console
program from the last column to do the
Kaiser window and coefficient calculations
in Visual Basic.

The .NET features for doing Windows
programs are a real boon for writing pro-
grams with one exception. I find the Chart
tool to be totally incomprehensible. I was
able to get a barely useful X-Y plot of the
filter response after 3 days of fighting the
many layers of parameters. I figured out
how to do the same tasks in Gnuplot in
about 3 hours when I first started learn-
ing that tool. Fortunately, Gnuplot comes
with an executable image that can be run
from another program to simply pop up
a new window. I have incorporated that
mechanism into our program. The program
can still use some improvement to make it
easier to have Gnuplot do the display. It is
left as an “exercise for the reader” until I get
a chance to get back to improve it. For now,
we need to get back to making a radio!

An SSB Transmit Generator
Now that we have the ability to create a

sine wave using the DDS program and to
create a sharp cutoff filter, we can create a
filter method SSB generator. The structure
of our program is the same as if it were
implemented in analog hardware. Figure 4
shows the block diagram of the system. The
program operates in a serial fashion: first

the baseband filter limits the audio to a band
of 300 Hz to 3 kHz, second it computes the
phase value for the carrier, third is the multi-
plication for the balanced mixer, and finally
the undesired sideband is removed. The filter
response program shows that the low audio
cutoff is only useful with 200 taps or more. At
100 taps the rejection is only on the order of
12 dB below 100 Hz. Likewise, the opposite
sideband filter requires on the order of 700
to 1000 taps to give approximately 60 dB of
opposite sideband suppression. The large
number of taps also makes the skirts very
steep, so that we can use the filter to also
further reduce any carrier feed through.

There are a number of compromises
we could make if we were going to make a
real transmitter. The first is setting the lower
frequency limit for audio. Simply using a
dc block in the analog portion of the audio
chain will set a lower boundary on the fre-
quency. The response will be zero at 0 Hz
and rise very rapidly to the frequency we
set. This reduces the need for a sharp cutoff
in DSP. The close in rejection of audio above
3 kHz is 45 dB or more. Additionally, there

is almost no energy above 3 kHz in the
human voice, so energy in that region will
likely be at least 60 dB below the lower fre-
quencies after filtering. Limiting the higher
frequencies allows us to use a 6 kHz wide
sideband selection filter instead of the nor-
mal 3 kHz filter to get better skirt response.
A low pass or high pass filter would also
work and give approximately the same skirt
response, but we want to be sure to elimi-
nate any residual energy at baseband in
the case of a lower sideband transmission.
The wider bandwidth limits the lower fre-
quency for our carrier. We want the carrier
frequency to be as high as possible in order
to limit image response when we up convert
to our final RF signal. This experimental
transmitter is not really suitable as a real
transmitter because the CODEC limits the
highest frequency to 20 kHz. It is truly just
an audio CODEC. When I have more time, I
would like to go back to the Blackfin Stamp
so that I can use the DAC08 at 1 MHz sam-
ple frequency for transmit and build an ADC
board that can also sample near 1 MHz. My
goal is to make a 6 m sideband rig to fill in

34 QEX – September/October 2012

Figure 5 — This graph is the response of the 200 tap baseband filter.

Figure 6 — This graph is the response of the 700 tap sideband selection filter
for a carrier at 18 kHz. It shows the response of the opposite sideband.

 QEX – September/October 2012 35

Figure 7 — Here is the response of the 700 tap filter, showing a wider frequency view. The filter is 6 kHz wide to
allow for a steep skirt on the carrier side. The 6 dB cutoff point is set to 300 Hz away from the carrier.

Figure 8 — The response of a 1000 tap filter is represented in this graph. It shows the trade off of more
calculations versus out of band rejection.

36 QEX – September/October 2012

Figure 9 — Here is a block diagram of the SSB receiver using DSP.

Figure 10 — Odd and even square waves in
the time domain.

Figure 11 — This is the Ideal filter response for the 5 tap filter, showing its
even order characteristic.

one of the holes in my station.
We have a practical limit with respect to

the number of taps in the filters. Each tap
requires one multiply-accumulate opera-
tion, which is an MAC in the DSP world.
(Unfortunately, MAC also means Media
Access Control if you are a networking
hardware person and an object lesson
in why three letter initials can be a bad
idea!) The DSP is capable of one MAC
for each MHz of clock frequency for each
portion of the hardware chain. The C5535
has two multipliers in the chain, so it is
capable 200 million MACs (TI uses the ini-
tials MMAC) if the processor is running at
100 MHz and the library software uses both
multipliers. Our experiments are running
the CODEC at a 48 kHz sample rate, so
our transmitter with 200 taps for audio and
1000 taps for sideband selection will need
57.6 MMACs to do its job. Regular software
also requires one or two instructions per
clock cycle. If we take the worst case of
one multiplier used and one instruction per
cycle, we have approximately 40 per cent of
the DSP left over for regular computing with
a 100 MHz clock. The best case is 70% of
capacity left over.

An SSB Receiver
Figure 9 shows how we can reverse the

steps above to create an SSB receiver. We
simply run the “RF” from a down converter
into one channel of the CODEC. We set the
“RF” filter frequency to select the desired
signal, multiply it with the output of our DDS
generator, and then filter the resulting audio.
The audio filter produces better audio if it
is a band pass filter than just a low pass
filter because the RF filter will allow some
opposite sideband energy to pass at very
low frequencies.

Odd and Even Functions
We need to get a little closer to the math

in preparation for dealing with the 90° phase
shift that is important to a lot of DSP opera-
tions. At the beginning of this column, we
looked at the Fourier series for our filters
in both the time domain and the frequency
domain. The series is a general case where
the phase and amplitude are arbitrary. The
case of a square wave is more than just
a curiosity. Figure 10 shows two different
square waves with appropriate time scale.

They are identical in frequency and ampli-
tude and both extend from negative infinity
to positive infinity. They differ in phase by
90°, though. The top waveform is called
an even function because the value of the
waveform at 1 second is the same as the
value at –1 second. The bottom waveform
is called an odd function because the value
of the waveform at –1 second is equal to the
value at 1 second but multiplied by –1. This
has implications for the Fourier series for
the two waveforms. The even function has
the Fourier series:

G(t) = cos (2πt) – 1⁄3 cos (3 × 2πt) +
1⁄5 cos (5 × 2πt) – 1⁄7 cos (7 × 2πt) + …
The odd function has the Fourier series:

G(t) = sin (2πt) + 1⁄3 cos (3 × 2πt) + 1⁄5 cos
(5 × 2πt) + 1⁄7 cos (7 × 2πt) – …

Our implementations of FIR filters have
always been even functions in the frequency
domain. For that reason, the filter coef-
ficients have always been mirror images
around the center. In the 5 tap example, tap
one was the same as tap three and tap zero
was the same as tap four. Since it is an odd
size, you can think of tap 2 being the same
for zero and “minus zero” since it is exactly
in the center. The coefficients have exact
mirror image pairs for an even number of
coefficients. Figure 11 shows the ideal filter
response of the 5 tap filter for positive and
negative frequencies.

Mathematicians call certain phenomena
“degenerate cases.” A point is a degener-
ate case of a circle: it has a radius of 0. In
DSP we have a degenerate case called

an all pass filter. It passes all frequencies
with unchanged amplitude. There are two
cases of all pass filters, however: one is odd
and one is even! Figure 12 shows the two
responses.

We generate the filter constants for an
FIR by taking the Fourier transform of the
frequency response. The transform of our
even all pass filter is another degenerate
case. To get out exactly what you put in, you
just multiply each sample by one (cos 0).
This is shown in the top of Figure 13, where
we end up with a single coefficient. When
we put in a cosine wave we get the cosine
wave back out. Our odd all pass filter has a
Fourier series that contains only sine terms
rather than cosine terms. Those coefficients
correspond exactly to our Fourier series for
the odd square wave. The positive values
are 0, 1⁄3, 0, 1⁄5, 0, 1⁄7 … Since it is an odd
function, the values for our DSP implemen-
tation will be –1⁄7, –0, –1⁄5, –0, –1/3, –0, –1,
0, 1, 0, 1⁄3, 0, 1⁄5, 0, 1⁄7.

The important implication for the odd
function all pass filter is that putting in a
cosine wave at any frequency will produce
a sine wave with the exact frequency of the

QEX1209-Mack09

 QEX – September/October 2012 37

Figure 14 — This is the amplitude response
of a 247 tap Hilbert Transform with a 48 kHz

sample rate.

Figure 13 — The filter coefficients for even order and odd order
all pass filters are shown on this graph.

Figure 12 — Here are even order and odd order all pass filters.

input. This is an exact 90° phase shift! The
odd order all pass filter is called a Hilbert
Transform when implemented in DSP.

The exact 90° phase shift is exactly
what we need for many RF signal genera-
tion tasks. There is no free lunch, however!
Remember that there is that nasty discon-
tinuity in the frequency response at dc. We
saw before that any sharp change in the fre-
quency domain causes the Gibbs phenom-
enon to appear. It is the same here. We get
a constant phase shift, but the amplitude
is not constant and rings at the frequency
of the discontinuity (0 Hz and ½ fs in this
case). We saw before that increasing the
number of filter coefficients to a very large
number will compress the ringing in the
frequency response to a small portion of
the total, but will not eliminate the 8% over-
shoot. A useful Hilbert transform will require
a large number of coefficients to move the
bulk of the amplitude error below our lowest
frequency of interest. Another limitation of
the Hilbert transform is that it requires an
odd number of coefficients.

The Phasing Method
Chapter 11of Experimental Methods

in RF Design presents a good description
of the use of the phasing method in DSP
for an 18 MHz transceiver.3 Chapter 9
describes the theory of the phasing method
with equations to show how amplitude error
and phase error affect opposite sideband
suppression.

The heart of the phasing method is the
same amplitude but 90° phase difference

between the two channels. Any deviation
from exactly 90° and any amplitude imbal-
ance cause less than perfect opposite
sideband suppression. The rule of thumb
is that 0.1 dB of amplitude imbalance plus
one degree of phase error will limit side-
band suppression to –40 dB. Those limits
are representative of what is possible with
analog components with temperature fluc-
tuations and normal component variations.
DSP eliminates the issues with component
changes from ideal. We get response that is
only limited by the precision of the ADC and
DAC and the number of taps we choose to
implement. Since a Hilbert Transform does
not have phase error, the opposite sideband
suppression is determined solely by ampli-
tude imbalance. Figure 14 recreates the
example from Chapter 11 and shows that a
247 tap filter at 48 kHz sample rate will have
0.02 dB amplitude imbalance near 300 Hz.
That will yield opposite sideband suppres-
sion of 52 dB.

Every other coefficient of the Hilbert
Transform is zero, as is the center, so a
247 tap transform will only need 123 mul-
tiply-accumulate operations if implemented
efficiently. This is a significant savings over
the filter method example given earlier,
which required 1000 multiply-accumulate
operations for equivalent performance. The
TI library contains a Hilbert transform func-
tion, but it is not clear if it implements a cycle
saving algorithm different from an FIR filter.
The software for this issue does not contain
any phasing examples. I hope to include
that next time.

Notes
1Ray Mack, W5IFS, “SDR:Simplified, Filter

Design Program,” May/Jun 2012 QEX,
pp 40-44. The software files described in
that column are available for download
from the ARRL QEX files website. Go to
www.arrl.org/qexfiles and look for the file
5x12_Mack_SDR.zip.

2The software for this column is available for
download from the ARRL QEX files website.
Go to www.arrl.org/qexfiles and look for
the file 9x12_Mack_SDR.zip.

3Wes Hayward, W7ZOI, Rick Campbell,
KK7B, and Bob Larkin, W7PUA,
Experimental Methods in RF Design, The
American Radio Relay League, 2009, ISBN:
978-087259-923-9. ARRL Publication Order
No. 9239, $49.95. ARRL publications are
available from your local ARRL dealer or
from the ARRL Bookstore. Telephone toll
free in the US: 888-277-5289, or call 860-
594-0355, fax 860-594-0303; www.arrl.org/
shop; pubsales@arrl.org.

