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More Filter Activites

1Notes appear on page 37.

Table 1
Coefficients for a 5 TAP FIR Filter

Coefficient	 16 bit Integer	 Floating Point
       0	 759	 0.02316
       1	 5455	 0.16647
       2	 9011	 0.27499
       3	 5455	 0.16647
       4	 759	 0.02316
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Figure 1 — This diagram is a z-space representation of a simple 5 tap FIR filter.

SDR: Simplified

FIR Filter Recap
Figure 1 shows a graphical representa-

tion of a 5 tap FIR filter. The coefficients 
are those calculated for a low pass filter 
with a cut-off frequency of 1100 Hz with 
8000  samples/s and 40  dB stop band 
attenuation. I used the FIR_filter_genera-
tor.exe program from the last installment.1 
Table 1 shows the coefficients in 16 bit 
integer and floating point representation. 
The formula for the filter is expressed as:

H(z) = 0.02316 z0 + 0.16647 z–1 + 
0.27499 z–2 + 0.16647 z–3 + 0.02316 z–4

I have always found “z” notation to be 
very confusing. It is a lot easier to visual-
ize with a picture such as Figure 1, where 
each “z” value is just the sample contained 
in one of the shift register positions. H(z) 
is just what comes out of the adder at the 
bottom of the filter in Figure 1. H(z) is the 
sequence of numbers that are calculated 
by our DSP. We put H(z) into a DAC and 
low pass filter, and get H(t) which is now a 
continuous time function that we can hear 
through a speaker or watch on an oscillo-
scope. The notation “H(z)” is the form you 
will commonly see in an engineering text 
for the response of a filter.

Filter Response Calculation
That is all very interesting, but it is not 

terribly useful for figuring out if our filter 
is really going to do what we want. The 
Fourier series that corresponds to our fil-
ter is what describes the actual frequency 
response for all possible input frequencies. 
This is similar to what happens when we 
use the Fourier series to create a square 
wave:

G(t) = sin (2π ft) + 1/3 sin (3 × 2πft) + 1/5 
sin (5 × 2πft) + 1/7 sin (7 × 2πft) + …

If you add up all of the harmonics, you 
get an exact square wave. If you stop after 
harmonic 19, for instance, you get a wave-
form that is close to a square wave but 
shows the Gibbs phenomenon. (You might 
want to use Octave or Gnuplot to see what 
happens.) This process takes information 
in the frequency domain (1, 1/3, 1/5, …) 
and converts it to a time domain represen-
tation. We have done an inverse Fourier 
transform to transform frequency domain 
information to time domain information.

In order to get a true representation 
of the filter frequency response, we just 
need to replace each “z” with a repre-
sentation of the Fourier series for the 
filter. The task we are doing is a Fourier 

transform. Remember that the filter coef-
ficients describe the operation of the filter 
in the time domain and a Fourier transform 
changes time domain information into fre-
quency domain information. The transform 
of our filter looks like this:

H(f) = 0.02316 (cos (0 × 2πf) –j sin
(0 × 2πf)) + 0.16647 (cos (1 × 2πf) –j sin 

(1 × 2πf)) + 0.27499 (cos (2 × 2πf) –j sin 
(2 × 2πf)) + 0.16647 (cos (3 × 2πf) –j sin 
(3 × 2πf)) + 0.02316 (cos (4 × 2πf) –j sin 
(4 × 2πf))

Since cos (0) is one and sin (0) is zero, 
this simplifies to:

H(f) = 0.02316 + 0.16647 (cos (1 × 2πf) 
–j sin (1 × 2πf)) + 0.27499 (cos (2 × 2πf) –j 
sin (2 × 2πf)) + 0.16647 (cos (3 × 2πf) –j sin 
(3 × 2πf)) + 0.02316 (cos (4 × 2πf) –j sin (4 
× 2πf))

Remember that each cos (x × 2πf) –j sin 
(x × 2πf) is just a single sine wave repre-
sented in rectangular form (x and y) rather 
than polar form (amplitude and phase 
angle). In signal processing, we actually 
refer to rectangular form as I (the cos term) 
and Q (the sin term) rather than what we 
did in algebra class with x and y.

Putting the Software in SDR
I did an on-line search and found no 

program that automates the process of 
calculating a set of filter coefficients and 
displaying the resulting filter response. That 
doesn’t mean one doesn’t exist, but it does 
not show up in a search. MATLAB and 
Octave each have a function that will com-

pute the frequency response if you give 
it an array holding the filter values. Both 
require a fair amount of programming to do 
the computations and display. I find both as 
incomprehensible as most DSP math!

Since no program exists, I have cre-
ated a program that incorporates the filter 
calculations with a Kaiser window and then 
displays the response. Figure 2 shows the 
main window for the program with repre-
sentative values filled in. It allows you to 
enter the same information as the C pro-
gram from the May/June column. Figure 
3 shows a representative output window 
for the program. The program is available 
on the ARRL QEX files website, and the 
source code is included.2

I wrote the program in Visual Basic 
2010 Express because it is the easiest 
environment I know to write a Windows 
program. This is not your father’s BASIC. 
It isn’t even very much like Visual Basic 
4 (the last one I used regularly) or Visual 
Basic 6. In 2008, Microsoft did a major re-
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Figure 2 — This screen shot is the main 
window of the filter response program.

Figure 3 — Here is a representative output window of the filter response program.
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Figure 4 — This block diagram shows the software SSB transmit generator using  
the filter method.

write of Visual Basic to make it significantly 
more object oriented and to incorporate 
the .NET framework as an integral part of 
the language. Perhaps the biggest change 
from all previous BASIC systems is that all 
arrays start at index zero instead of index 
one. If you are a C programmer, you will 
find the new Visual Basic to be a minor 
change in syntax. It took me about 10 min-
utes to modify the syntax of the C console 
program from the last column to do the 
Kaiser window and coefficient calculations 
in Visual Basic.

The .NET features for doing Windows 
programs are a real boon for writing pro-
grams with one exception. I find the Chart 
tool to be totally incomprehensible. I was 
able to get a barely useful X-Y plot of the 
filter response after 3 days of fighting the 
many layers of parameters. I figured out 
how to do the same tasks in Gnuplot in 
about 3 hours when I first started learn-
ing that tool. Fortunately, Gnuplot comes 
with an executable image that can be run 
from another program to simply pop up 
a new window. I have incorporated that 
mechanism into our program. The program 
can still use some improvement to make it 
easier to have Gnuplot do the display. It is 
left as an “exercise for the reader” until I get 
a chance to get back to improve it. For now, 
we need to get back to making a radio!

An SSB Transmit Generator
Now that we have the ability to create a 

sine wave using the DDS program and to 
create a sharp cutoff filter, we can create a 
filter method SSB generator. The structure 
of our program is the same as if it were 
implemented in analog hardware. Figure 4 
shows the block diagram of the system. The 
program operates in a serial fashion: first 

the baseband filter limits the audio to a band 
of 300 Hz to 3 kHz, second it computes the 
phase value for the carrier, third is the multi-
plication for the balanced mixer, and finally 
the undesired sideband is removed. The filter 
response program shows that the low audio 
cutoff is only useful with 200 taps or more. At 
100 taps the rejection is only on the order of 
12 dB below 100 Hz. Likewise, the opposite 
sideband filter requires on the order of 700 
to 1000 taps to give approximately 60 dB of 
opposite sideband suppression. The large 
number of taps also makes the skirts very 
steep, so that we can use the filter to also 
further reduce any carrier feed through. 

There are a number of compromises 
we could make if we were going to make a 
real transmitter. The first is setting the lower 
frequency limit for audio. Simply using a 
dc block in the analog portion of the audio 
chain will set a lower boundary on the fre-
quency. The response will be zero at 0 Hz 
and rise very rapidly to the frequency we 
set. This reduces the need for a sharp cutoff 
in DSP. The close in rejection of audio above 
3 kHz is 45 dB or more. Additionally, there 

is almost no energy above 3  kHz in the 
human voice, so energy in that region will 
likely be at least 60 dB below the lower fre-
quencies after filtering. Limiting the higher 
frequencies allows us to use a 6 kHz wide 
sideband selection filter instead of the nor-
mal 3 kHz filter to get better skirt response. 
A low pass or high pass filter would also 
work and give approximately the same skirt 
response, but we want to be sure to elimi-
nate any residual energy at baseband in 
the case of a lower sideband transmission. 
The wider bandwidth limits the lower fre-
quency for our carrier. We want the carrier 
frequency to be as high as possible in order 
to limit image response when we up convert 
to our final RF signal. This experimental 
transmitter is not really suitable as a real 
transmitter because the CODEC limits the 
highest frequency to 20 kHz. It is truly just 
an audio CODEC. When I have more time, I 
would like to go back to the Blackfin Stamp 
so that I can use the DAC08 at 1 MHz sam-
ple frequency for transmit and build an ADC 
board that can also sample near 1 MHz. My 
goal is to make a 6 m sideband rig to fill in 
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Figure 5 — This graph is the response of the 200 tap baseband filter.

Figure 6 — This graph is the response of the 700 tap sideband selection filter  
for a carrier at 18 kHz. It shows the response of the opposite sideband. 
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Figure 7 — Here is the response of the 700 tap filter, showing a wider frequency view. The filter is 6 kHz wide to 
allow for a steep skirt on the carrier side. The 6 dB cutoff point is set to 300 Hz away from the carrier.

Figure 8 — The response of a 1000 tap filter is represented in this graph. It shows the trade off of more  
calculations versus out of band rejection.
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Figure 9 — Here is a block diagram of the SSB receiver using DSP.

Figure 10 — Odd and even square waves in 
the time domain.

Figure 11 — This is the Ideal filter response for the 5 tap filter, showing its  
even order characteristic.

one of the holes in my station.
We have a practical limit with respect to 

the number of taps in the filters. Each tap 
requires one multiply-accumulate opera-
tion, which is an MAC in the DSP world. 
(Unfortunately, MAC also means Media 
Access Control if you are a networking 
hardware person and an object lesson 
in why three letter initials can be a bad 
idea!) The DSP is capable of one MAC 
for each MHz of clock frequency for each 
portion of the hardware chain. The C5535 
has two multipliers in the chain, so it is 
capable 200 million MACs (TI uses the ini-
tials MMAC) if the processor is running at 
100 MHz and the library software uses both 
multipliers. Our experiments are running 
the CODEC at a 48 kHz sample rate, so 
our transmitter with 200 taps for audio and 
1000 taps for sideband selection will need 
57.6 MMACs to do its job. Regular software 
also requires one or two instructions per 
clock cycle. If we take the worst case of 
one multiplier used and one instruction per 
cycle, we have approximately 40 per cent of 
the DSP left over for regular computing with 
a 100 MHz clock. The best case is 70% of 
capacity left over.

An SSB Receiver
Figure 9 shows how we can reverse the 

steps above to create an SSB receiver. We 
simply run the “RF” from a down converter 
into one channel of the CODEC. We set the 
“RF” filter frequency to select the desired 
signal, multiply it with the output of our DDS 
generator, and then filter the resulting audio. 
The audio filter produces better audio if it 
is a band pass filter than just a low pass 
filter because the RF filter will allow some 
opposite sideband energy to pass at very 
low frequencies.

Odd and Even Functions
We need to get a little closer to the math 

in preparation for dealing with the 90° phase 
shift that is important to a lot of DSP opera-
tions. At the beginning of this column, we 
looked at the Fourier series for our filters 
in both the time domain and the frequency 
domain. The series is a general case where 
the phase and amplitude are arbitrary. The 
case of a square wave is more than just 
a curiosity. Figure 10 shows two different 
square waves with appropriate time scale. 

They are identical in frequency and ampli-
tude and both extend from negative infinity 
to positive infinity. They differ in phase by 
90°, though. The top waveform is called 
an even function because the value of the 
waveform at 1 second is the same as the 
value at –1 second. The bottom waveform 
is called an odd function because the value 
of the waveform at –1 second is equal to the 
value at 1 second but multiplied by –1. This 
has implications for the Fourier series for 
the two waveforms. The even function has 
the Fourier series:

G(t) = cos (2πt) – 1⁄3 cos (3 × 2πt) + 
1⁄5 cos (5 × 2πt) – 1⁄7 cos (7 × 2πt) + …
The odd function has the Fourier series:

G(t) = sin (2πt) + 1⁄3 cos (3 × 2πt) + 1⁄5 cos 
(5 × 2πt) + 1⁄7 cos (7 × 2πt) – …

Our implementations of FIR filters have 
always been even functions in the frequency 
domain. For that reason, the filter coef-
ficients have always been mirror images 
around the center. In the 5 tap example, tap 
one was the same as tap three and tap zero 
was the same as tap four. Since it is an odd 
size, you can think of tap 2 being the same 
for zero and “minus zero” since it is exactly 
in the center. The coefficients have exact 
mirror image pairs for an even number of 
coefficients. Figure 11 shows the ideal filter 
response of the 5 tap filter for positive and 
negative frequencies.

Mathematicians call certain phenomena 
“degenerate cases.” A point is a degener-
ate case of a circle: it has a radius of 0. In 
DSP we have a degenerate case called 

an all pass filter. It passes all frequencies 
with unchanged amplitude. There are two 
cases of all pass filters, however: one is odd 
and one is even! Figure 12 shows the two 
responses.

We generate the filter constants for an 
FIR by taking the Fourier transform of the 
frequency response. The transform of our 
even all pass filter is another degenerate 
case. To get out exactly what you put in, you 
just multiply each sample by one (cos 0). 
This is shown in the top of Figure 13, where 
we end up with a single coefficient. When 
we put in a cosine wave we get the cosine 
wave back out. Our odd all pass filter has a 
Fourier series that contains only sine terms 
rather than cosine terms. Those coefficients 
correspond exactly to our Fourier series for 
the odd square wave. The positive values 
are 0, 1⁄3, 0, 1⁄5, 0, 1⁄7 … Since it is an odd 
function, the values for our DSP implemen-
tation will be –1⁄7, –0, –1⁄5, –0, –1/3, –0, –1, 
0, 1, 0, 1⁄3, 0, 1⁄5, 0, 1⁄7.

The important implication for the odd 
function all pass filter is that putting in a 
cosine wave at any frequency will produce 
a sine wave with the exact frequency of the 
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Figure 14 — This is the amplitude response 
of a 247 tap Hilbert Transform with a 48 kHz 

sample rate.

Figure 13 — The filter coefficients for even order and odd order 
all pass filters are shown on this graph.

Figure 12 — Here are even order and odd order all pass filters.

input. This is an exact 90° phase shift! The 
odd order all pass filter is called a Hilbert 
Transform when implemented in DSP.

The exact 90° phase shift is exactly 
what we need for many RF signal genera-
tion tasks. There is no free lunch, however! 
Remember that there is that nasty discon-
tinuity in the frequency response at dc. We 
saw before that any sharp change in the fre-
quency domain causes the Gibbs phenom-
enon to appear. It is the same here. We get 
a constant phase shift, but the amplitude 
is not constant and rings at the frequency 
of the discontinuity (0 Hz and ½ fs in this 
case). We saw before that increasing the 
number of filter coefficients to a very large 
number will compress the ringing in the 
frequency response to a small portion of 
the total, but will not eliminate the 8% over-
shoot. A useful Hilbert transform will require 
a large number of coefficients to move the 
bulk of the amplitude error below our lowest 
frequency of interest. Another limitation of 
the Hilbert transform is that it requires an 
odd number of coefficients.

The Phasing Method
Chapter 11of Experimental Methods 

in RF Design presents a good description 
of the use of the phasing method in DSP 
for an 18  MHz transceiver.3 Chapter 9 
describes the theory of the phasing method 
with equations to show how amplitude error 
and phase error affect opposite sideband 
suppression. 

The heart of the phasing method is the 
same amplitude but 90° phase difference 

between the two channels. Any deviation 
from exactly 90° and any amplitude imbal-
ance cause less than perfect opposite 
sideband suppression. The rule of thumb 
is that 0.1 dB of amplitude imbalance plus 
one degree of phase error will limit side-
band suppression to –40 dB. Those limits 
are representative of what is possible with 
analog components with temperature fluc-
tuations and normal component variations. 
DSP eliminates the issues with component 
changes from ideal. We get response that is 
only limited by the precision of the ADC and 
DAC and the number of taps we choose to 
implement. Since a Hilbert Transform does 
not have phase error, the opposite sideband 
suppression is determined solely by ampli-
tude imbalance. Figure 14 recreates the 
example from Chapter 11 and shows that a 
247 tap filter at 48 kHz sample rate will have 
0.02 dB amplitude imbalance near 300 Hz. 
That will yield opposite sideband suppres-
sion of 52 dB.

Every other coefficient of the Hilbert 
Transform is zero, as is the center, so a 
247 tap transform will only need 123 mul-
tiply-accumulate operations if implemented 
efficiently. This is a significant savings over 
the filter method example given earlier, 
which required 1000 multiply-accumulate 
operations for equivalent performance. The 
TI library contains a Hilbert transform func-
tion, but it is not clear if it implements a cycle 
saving algorithm different from an FIR filter. 
The software for this issue does not contain 
any phasing examples. I hope to include 
that next time.
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