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SDR: Simplified

Ray Mack, W5IFS 

17060 Conway Springs Ct, Austin, TX 78717; w5ifs@arrl.net

The past year has been full of activities 
that kept me away from writing this series. 
That is all behind me now, so we can get back 
to experiments and learning about software 
defined radios.

Introduction to CIC Filters
We looked briefly at the theory of the 

sampling down converter (decimator) in the 
Nov/Dec 2009 issue and the sampling up 
converter (interpolator) in the Jan/Feb 2010 
issue. An interpolator is typically used in a 
transmitter to increase the sample rate of a 
signal in preparation for frequency trans-
lation to the final frequency. A decimator 
is typically used in a receiver to lower the 
sample rate and also translate the signal to a 
lower frequency. In the interpolator, we add 
zero samples in between our existing sam-
ples and then low pass filter the sequence to 
eliminate images of the original. The result is 
a new sequence of samples that has the same 
spectrum as the original but with samples at 
a much higher rate. A decimator works simi-
larly, but we throw away existing samples 
and low pass filter the sequence to eliminate 
unwanted aliases of higher frequencies. This 
new sequence also has the same spectrum (or 
an aliased spectrum) as the original, but with 
a lower sample rate.

The filter for an interpolator or a decima-
tor can be a finite impulse response (FIR) 
or infinite impulse response (IIR) filter. The 
problem with both types of filters is that they 
require a large number of multiply opera-
tions, which consume a large number of 
DSP processor cycles. Eugene Hogenauer 
developed a very useful simplification of 
the sample conversion/filter configuration 
called a cascaded integrator comb (CIC) fil-
ter. He presented this design in an article in 
the IEEE Transactions on Acoustics, Speech 
and Signal Processing in April 1981.1 The 
important aspect of CIC filters is that only 
addition, subtraction, and delay operations 

1Notes appear on page 36.

Z-1

+
-

+
+X

Figure 1 — Z Transform diagram of an integrator. The new output is the sum of 
the previous output and the new sample

We resume the SDR series in this issue with a look at  
Cascaded Integrator Comb Filters.
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Figure 2 — Z Transform diagram of a comb. The new output is the difference of 
the present sample and a delayed sample. The number M designates how many 

steps happened during the delay.
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Figure 3 — The top diagram shows a decimator, where the sample rate is reduced by a value “R.” The bottom diagram shows an interpolator 
where the sample rate is increased by a value “R.” Note that the difference between the two is the order of the combs and integrators as well as 

the direction of the rate change. The combs are on the low sample rate side of both systems.

are required for implementation.
As with most things in life, improving 

one aspect of a system requires compromise 
in other aspects. This is also true of CIC 
filters where we trade the simplification of 
eliminating multipliers for restricting the 
filter response. A CIC filter can only be low 
pass. Additionally, there is a limited subset 
of possible low pass responses constrained 
by the sample rate change and number of 
stages in the comb and integrator stages. 
The most important property of a CIC filter 
is that it can be very easily implemented in 
hardware either in an FPGA or as part of the 
dedicated logic of an IC such as the AD9874 
and AD9957.

How a CIC Filter Works
Matthew Donadio has written a very 

good description on his website of how a 
CIC filter works, along with the associated 
mathematics (in case you want to see what 
the Z-transform equations look like). 2 I 
have borrowed several of his examples. We 
haven’t used standard Z-transform graphical 
notation up to now, but I believe it will help 
you understand the framework. 

The integrator is an infinite impulse 
response filter. Figure 1 shows how it works 
and how simple it is. The integrator holds a 
running total of all previous samples. The 
integrator adds the last output value (z–1) to 
the current input value (x). Ordinarily, we 
would worry about overflow in an integra-
tor because a dc component in the signal 
will cause the integrator to overflow. The 
combination of the comb and the integrator, 
however, cancels any problems with over-
flow (see Donadio for details). The integrator 
is a single pole low pass filter with infinite 

Listing 1 
GnuPlot

R=8 

N=4 

M=1 

 

set angles radians

#set the grid lines to dots 

set grid linetype 13, linetype 13

#turn on the x and y tic marks 

set grid mxtics 

set grid mytics

#set the intervals for major and minor grids 

set xtics 0.05 

set mxtics 2 

set mytics 5

#set a large number of samples to create a smooth plot 

set samples 100000

#set the x axis to span fs*-0.125 to fs*0.5 

set xrange [-0.125:0.5]

#set the y span from -80dB to 0 dB 

set yrange [-80:0] 

set ylabel “dB”

Set xlabel “Frequency (f/fs)” 

sinc(x) = (sin(3.14 * x * R))/(sin(3.14 * x)) 

CIC(x) = abs(sinc(x)) 

db_response(x) = (20 * log10 ( (CIC(x)**N)/(R**N) ) )  

plot db_response(x) with lines 1 
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Figure 4 — The sin x/x shape of a CIC filter. 
The lobes decrease quickly because the 

sin x/x function is raised to a power.

gain at dc. Hogenauer figured out that the 
system doesn’t care about overflow as long as 
the integrators are implemented with adders 
using two’s complement addition that allow 
wrap around when overflow occurs, and that 
the number of bits in the word is as big as the 
expected output word. 

[Wikipedia tells us that “the two’s com-
plement of a binary number is defined as the 
value obtained by subtracting the number 
from a large power of two (specifically, from 
2N for an N-bit two’s complement). The two’s 
complement of the number then behaves like 
the negative of the original number in most 
arithmetic, and it can coexist with positive 
numbers in a natural way.” — Ed.]3

The comb is a finite impulse response 
stage that subtracts a previous sample 
from the present sample. The amount of 
delay between the present sample and the 
delayed sample is called the differential 
delay and is denoted as M by most authors. 
Figure 2 shows the operation of the comb. A 
real implementation of a CIC filter is com-
posed of multiple integrator-comb sections 
that are cascaded. A CIC filter has exactly 
the same number of integrators as combs. 
Remember the associative property of math 
from elementary school: you can rearrange 
the order of the additions in a sequence and 
the result of the sequence does not change 
(a + (–b) + c + d + (–e) + (–f) is identical to 
a + c + d – b – e – f). A CIC filter with rate 
change uses that property to group all of 
the integrators together and to group all of 
the combs together. We place either a down 
sample or up sample rate changer between 
the combs and integrators. Figure 3 shows 
that a decimator is an integrator section fol-
lowed by a down rate change, which is then 
followed by a comb section. An interpolator 
turns the system around and puts the comb 
section first, followed by an up rate changer, 
which is followed by an integrator section. It 
is very useful for a hardware implementation 
that the number of integrators and combs is 
independent (within reason) from the rate 
change and that, in general, you can rear-
range the inputs, outputs, and rate change to 
create a decimator and interpolator with the 
same blocks.

Richard Lyons has a third way of 
explaining the operation of a CIC fil-
ter.4 Unfortunately, Lyons, Donadio, and 
Hogenauer do not do a really good job of 
connecting the relationship between the rate 
change and the differential delay in the comb. 
Lyons comes closest when he describes the 
sinc shape in terms of the differential delay 

Listing 2
C Program CIC filter
int accumulator_1, accumulator_2, accumulator_3, sample;
int comb_1_out, comb_1_delay;
int comb_2_out, comb_2_delay;
int comb_3_out, comb_3_delay;
#define RATE_CHANGE   9  // 1 + desired rate change

int integrator (int new_sample, int integrator_accumulator)
{
  return (accumulator + new_sample);
}
int main(void)
{
int i;
  i = 0;
  while (1)
  {
    sample = read_adc();
    // do the accumulation in reverse order so it ripples
    // in the correct way
    accumulator_3 = integrator(accumulator_2, accumulator_3);
    accumulator_2 = integrator(accumulator_1, accumulator_2);
    accumulator_1 = integrator(sample, accumulator_1);
    if ((i % RATE_CHANGE) == 0)
    {
      comb_3_out = comb_2_out – comb_3_delay;
      comb_2_out = comb_1_out – comb_2_delay;
      comb_1_out = accumulator_3 – comb_1_delay;
      comb_1_delay = accumulator_3;
      comb_2_delay = comb_1_out;
      comb_3_delay = comb_2_out;
      write_output_dac(comb_3_out);
      i = 0;
    }
    i++;
  }
}
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Figure 6 — The response of a CIC decimator filter with R = 6, M = 1, and N = 3. The droop is 
less in this filter, but alias energy is larger by 10 dB.

Figure 5 — The response of a CIC decimator filter with R = 8, M = 1, and N = 4. The shaded 
areas show the energy in the input spectrum that is included in the output of the filter.
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in the comb section. What he did not explic-
itly say is that the sinc shape of a combined 
comb and integrator is the product of the 
rate change (R) and M. Both Donadio and 
Lyons express the number of nulls in the 
CIC response as a function of the differential 
delay, M, but they leave out the very impor-
tant requirement that it applies when R = 
1 (no rate increase or decrease). A normal 
implementation places the rate change ahead 
of the comb, so the effect is to transfer the 
number of nulls from M to R. When we add 

a rate change, we swap the values, so R has a 
value greater than one and M = 1.

Implementation Details
There are three parameters that affect 

the implementation of a CIC filter. “R” is 
the up sample rate or down sample rate. 
“M” is the delay in the comb section and is 
almost always either one or two. “N” is the 
number of stages in the comb section (which 
is required to be the same as the number 

of integrator sections). The simplification 
of separating the combs into one section 
and the integrators into a second section is 
advantageous for the speed required of the 
storage elements for the combs. The combs 
always operate at the low frequency end of 
the system and the integrators work at the 
high speed side of the system.

Notice that the associative property 
would also allow a decimator with the 
comb first and the integrator after the 
down converter. Either configuration will 
give the same results. The reason we 
always put the comb on the low sample  
rate side of the system is pragmatic. The 
comb requires one additional storage 
element (for the usual M = 1 situation) 
over what is required for an integrator. 
Each storage element consumes power 
when it is clocked. A faster clock and  
more storage registers translate directly into 
additional power dissipation. The additional 
power is an issue when implementing a CIC 
filter in hardware such as an FPGA.

Figure 4 shows the (sin x) / x (also called 
the sinc function) shape of the frequency 
response of a CIC filter. The full equation is:
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If x is very small, then sin(x) is approxi-
mately x. When R is a large value the denom-
inator becomes πf / R so you can approximate 
the shape of the frequency response in the 
first region (with the help of a lot of Algebra) 
as:
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The frequency response has nulls when f 
is equal to a multiple of 1 / RM. We looked 
in detail at the sinc function when study-
ing the frequency response of a real world 
DAC (Jan/Feb 2010 QEX). A CIC filter suf-
fers from the same frequency droop issue 
when the output bandwidth is substantial 
compared to the output sample frequency. 
Another important characteristic of the CIC 
filter is that the aliases for decimation and 
images for interpolation occur centered on 
the nulls of the response. Figure 5 shows a 
representation of the response of a decima-
tor with R = 8, M = 1 and N = 4, where the 
original data is sampled at 48 kHz and the 
desired bandwidth is 1.2 kHz. The shading 
shows both the baseband energy as well as 
a non-trivial amount of energy in the higher 
frequencies that is aliased into the base band 
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and contributes to noise in the system. The 
alias energy in the first Nyquist zone is down 
only 52 dB at 1.2 kHz. The baseband energy 
has 2 dB of droop over the pass band. Fig- 
ure 6 shows a different filter where R = 6 
and N = 3. Here we see that lowering N and 
R has improved the amount of droop to only 
1 dB and the alias energy only occupies three 
Nyquist zones. The alias energy in the first 
Nyquist zone at 1.2 kHz is only down about 
42 dB, however. Listing 1 is a Gnuplot pro-
gram that will plot the normalized response 
of a CIC filter. It was used to create Figures 
5 and 6.

The solution to the droop issue is to 
implement a combination system where 
the initial rate conversion is aggressive, fol-
lowed by an FIR droop compensation filter. 
The compensation filter should have a shape 
that is the inverse of the sinc shape over the 
desired baseband frequencies. In our exam-
ple of a 48 kHz sampled signal that has been 
reduced by a factor of 8 to a 6 kHz sampled 

signal, we would want an FIR that increases 
response up to perhaps 3 kHz to compensate 
for the droop.

The last issue is bit growth that results 
from the filter gain. The gain is (RM)N from 
Equation 2. The number of bits required at 
the output of the CIC filter is:

BOUT = N log2 RM + BIN

where BOUT is the number of bits in each 
output word and Bin is the number of input 
bits. Each integrator and comb section will 
require BOUT bits in order to avoid the prob-
lem with overflow in the integrator sections. 
The bit growth is not likely to be an issue for 
a DSP processor which will likely have 32 bit 
registers. It can be a problem for FPGA based 
systems, however. The integrators and combs 
need to be built with enough bits to handle 
the largest combination of sections and rate 
change. Once such a system is built, though, 
any rate change below that maximum will be 

accommodated by the design.
Listing 2 shows a C program that imple-

ments a rudimentary CIC filter in software 
on a DSP chip. Read_adc() and write_dac() 
are left as exercises for the reader. Code very 
similar to that shown could be used to imple-
ment an FPGA version, which uses a VHDL 
compiler.

Notes
1E. B. Hogenauer, “An Economical Class 

of Digital Filters For Decimation and 
Interpolation,” IEEE Transactions on 
Acoustics, Speech and Signal Processing, 
Volume 29, April 1981 pp:155-162.

2Matthew P. Donadio, “CIC Filter Introduction”, 
18 July 2000, dspguru.com/dsp/tutorials/
cic-filter-introduction.

3See the Wikipedia entry at
http://en.wikipedia.org/wiki/Two’s_complement.

4Richard Lyons, “Understanding Cascaded 
Integrator-Comb Filters,” EE Times, 
March 31, 2005.
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