
32 QEX – September/October

SDR: Simplified

Ray Mack, W5IFS

17060 Conway Springs Ct, Austin, TX 78717; w5ifs@arrl.net

The past year has been full of activities
that kept me away from writing this series.
That is all behind me now, so we can get back
to experiments and learning about software
defined radios.

Introduction to CIC Filters
We looked briefly at the theory of the

sampling down converter (decimator) in the
Nov/Dec 2009 issue and the sampling up
converter (interpolator) in the Jan/Feb 2010
issue. An interpolator is typically used in a
transmitter to increase the sample rate of a
signal in preparation for frequency trans-
lation to the final frequency. A decimator
is typically used in a receiver to lower the
sample rate and also translate the signal to a
lower frequency. In the interpolator, we add
zero samples in between our existing sam-
ples and then low pass filter the sequence to
eliminate images of the original. The result is
a new sequence of samples that has the same
spectrum as the original but with samples at
a much higher rate. A decimator works simi-
larly, but we throw away existing samples
and low pass filter the sequence to eliminate
unwanted aliases of higher frequencies. This
new sequence also has the same spectrum (or
an aliased spectrum) as the original, but with
a lower sample rate.

The filter for an interpolator or a decima-
tor can be a finite impulse response (FIR)
or infinite impulse response (IIR) filter. The
problem with both types of filters is that they
require a large number of multiply opera-
tions, which consume a large number of
DSP processor cycles. Eugene Hogenauer
developed a very useful simplification of
the sample conversion/filter configuration
called a cascaded integrator comb (CIC) fil-
ter. He presented this design in an article in
the IEEE Transactions on Acoustics, Speech
and Signal Processing in April 1981.1 The
important aspect of CIC filters is that only
addition, subtraction, and delay operations

1Notes appear on page 36.

Z-1

+
-

+
+X

Figure 1 — Z Transform diagram of an integrator. The new output is the sum of
the previous output and the new sample

We resume the SDR series in this issue with a look at
Cascaded Integrator Comb Filters.

Z-M

+

-

-
+X

Figure 2 — Z Transform diagram of a comb. The new output is the difference of
the present sample and a delayed sample. The number M designates how many

steps happened during the delay.

Mark
Typewritten Text
Copyright (C)2011 ARRL, All Rights Reserved

 QEX – September/October 2011 33

I R↓II C C C

C R↑CC I I I

I R↓II C C C

C R↑CC I I I

Figure 3 — The top diagram shows a decimator, where the sample rate is reduced by a value “R.” The bottom diagram shows an interpolator
where the sample rate is increased by a value “R.” Note that the difference between the two is the order of the combs and integrators as well as

the direction of the rate change. The combs are on the low sample rate side of both systems.

are required for implementation.
As with most things in life, improving

one aspect of a system requires compromise
in other aspects. This is also true of CIC
filters where we trade the simplification of
eliminating multipliers for restricting the
filter response. A CIC filter can only be low
pass. Additionally, there is a limited subset
of possible low pass responses constrained
by the sample rate change and number of
stages in the comb and integrator stages.
The most important property of a CIC filter
is that it can be very easily implemented in
hardware either in an FPGA or as part of the
dedicated logic of an IC such as the AD9874
and AD9957.

How a CIC Filter Works
Matthew Donadio has written a very

good description on his website of how a
CIC filter works, along with the associated
mathematics (in case you want to see what
the Z-transform equations look like). 2 I
have borrowed several of his examples. We
haven’t used standard Z-transform graphical
notation up to now, but I believe it will help
you understand the framework.

The integrator is an infinite impulse
response filter. Figure 1 shows how it works
and how simple it is. The integrator holds a
running total of all previous samples. The
integrator adds the last output value (z–1) to
the current input value (x). Ordinarily, we
would worry about overflow in an integra-
tor because a dc component in the signal
will cause the integrator to overflow. The
combination of the comb and the integrator,
however, cancels any problems with over-
flow (see Donadio for details). The integrator
is a single pole low pass filter with infinite

Listing 1
GnuPlot

R=8

N=4

M=1

set angles radians

#set the grid lines to dots

set grid linetype 13, linetype 13

#turn on the x and y tic marks

set grid mxtics

set grid mytics

#set the intervals for major and minor grids

set xtics 0.05

set mxtics 2

set mytics 5

#set a large number of samples to create a smooth plot

set samples 100000

#set the x axis to span fs*-0.125 to fs*0.5

set xrange [-0.125:0.5]

#set the y span from -80dB to 0 dB

set yrange [-80:0]

set ylabel “dB”

Set xlabel “Frequency (f/fs)”

sinc(x) = (sin(3.14 * x * R))/(sin(3.14 * x))

CIC(x) = abs(sinc(x))

db_response(x) = (20 * log10 ((CIC(x)**N)/(R**N)))

plot db_response(x) with lines 1

34 QEX – September/October

 0

 5

 10

 15

 20

 25

-0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

dB

Frequency (f/fs)

CIC(x)**N

Figure 4 — The sin x/x shape of a CIC filter.
The lobes decrease quickly because the

sin x/x function is raised to a power.

gain at dc. Hogenauer figured out that the
system doesn’t care about overflow as long as
the integrators are implemented with adders
using two’s complement addition that allow
wrap around when overflow occurs, and that
the number of bits in the word is as big as the
expected output word.

[Wikipedia tells us that “the two’s com-
plement of a binary number is defined as the
value obtained by subtracting the number
from a large power of two (specifically, from
2N for an N-bit two’s complement). The two’s
complement of the number then behaves like
the negative of the original number in most
arithmetic, and it can coexist with positive
numbers in a natural way.” — Ed.]3

The comb is a finite impulse response
stage that subtracts a previous sample
from the present sample. The amount of
delay between the present sample and the
delayed sample is called the differential
delay and is denoted as M by most authors.
Figure 2 shows the operation of the comb. A
real implementation of a CIC filter is com-
posed of multiple integrator-comb sections
that are cascaded. A CIC filter has exactly
the same number of integrators as combs.
Remember the associative property of math
from elementary school: you can rearrange
the order of the additions in a sequence and
the result of the sequence does not change
(a + (–b) + c + d + (–e) + (–f) is identical to
a + c + d – b – e – f). A CIC filter with rate
change uses that property to group all of
the integrators together and to group all of
the combs together. We place either a down
sample or up sample rate changer between
the combs and integrators. Figure 3 shows
that a decimator is an integrator section fol-
lowed by a down rate change, which is then
followed by a comb section. An interpolator
turns the system around and puts the comb
section first, followed by an up rate changer,
which is followed by an integrator section. It
is very useful for a hardware implementation
that the number of integrators and combs is
independent (within reason) from the rate
change and that, in general, you can rear-
range the inputs, outputs, and rate change to
create a decimator and interpolator with the
same blocks.

Richard Lyons has a third way of
explaining the operation of a CIC fil-
ter.4 Unfortunately, Lyons, Donadio, and
Hogenauer do not do a really good job of
connecting the relationship between the rate
change and the differential delay in the comb.
Lyons comes closest when he describes the
sinc shape in terms of the differential delay

Listing 2
C Program CIC filter
int accumulator_1, accumulator_2, accumulator_3, sample;
int comb_1_out, comb_1_delay;
int comb_2_out, comb_2_delay;
int comb_3_out, comb_3_delay;
#define RATE_CHANGE 9 // 1 + desired rate change

int integrator (int new_sample, int integrator_accumulator)
{
 return (accumulator + new_sample);
}
int main(void)
{
int i;
 i = 0;
 while (1)
 {
 sample = read_adc();
 // do the accumulation in reverse order so it ripples
 // in the correct way
 accumulator_3 = integrator(accumulator_2, accumulator_3);
 accumulator_2 = integrator(accumulator_1, accumulator_2);
 accumulator_1 = integrator(sample, accumulator_1);
 if ((i % RATE_CHANGE) == 0)
 {
 comb_3_out = comb_2_out – comb_3_delay;
 comb_2_out = comb_1_out – comb_2_delay;
 comb_1_out = accumulator_3 – comb_1_delay;
 comb_1_delay = accumulator_3;
 comb_2_delay = comb_1_out;
 comb_3_delay = comb_2_out;
 write_output_dac(comb_3_out);
 i = 0;
 }
 i++;
 }
}

 QEX – September/October 2011 35

Figure 6 — The response of a CIC decimator filter with R = 6, M = 1, and N = 3. The droop is
less in this filter, but alias energy is larger by 10 dB.

Figure 5 — The response of a CIC decimator filter with R = 8, M = 1, and N = 4. The shaded
areas show the energy in the input spectrum that is included in the output of the filter.

-80

-70

-60

-50

-40

-30

-20

-10

 0

-0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

dB

Frequency (f/fs)

db_response(x)

in the comb section. What he did not explic-
itly say is that the sinc shape of a combined
comb and integrator is the product of the
rate change (R) and M. Both Donadio and
Lyons express the number of nulls in the
CIC response as a function of the differential
delay, M, but they leave out the very impor-
tant requirement that it applies when R =
1 (no rate increase or decrease). A normal
implementation places the rate change ahead
of the comb, so the effect is to transfer the
number of nulls from M to R. When we add

a rate change, we swap the values, so R has a
value greater than one and M = 1.

Implementation Details
There are three parameters that affect

the implementation of a CIC filter. “R” is
the up sample rate or down sample rate.
“M” is the delay in the comb section and is
almost always either one or two. “N” is the
number of stages in the comb section (which
is required to be the same as the number

of integrator sections). The simplification
of separating the combs into one section
and the integrators into a second section is
advantageous for the speed required of the
storage elements for the combs. The combs
always operate at the low frequency end of
the system and the integrators work at the
high speed side of the system.

Notice that the associative property
would also allow a decimator with the
comb first and the integrator after the
down converter. Either configuration will
give the same results. The reason we
always put the comb on the low sample
rate side of the system is pragmatic. The
comb requires one additional storage
element (for the usual M = 1 situation)
over what is required for an integrator.
Each storage element consumes power
when it is clocked. A faster clock and
more storage registers translate directly into
additional power dissipation. The additional
power is an issue when implementing a CIC
filter in hardware such as an FPGA.

Figure 4 shows the (sin x) / x (also called
the sinc function) shape of the frequency
response of a CIC filter. The full equation is:

	
() sin

sin
H

 
 
 
 
 

=
π
π

N

Mf
f

R

f

[Eq 1]

If x is very small, then sin(x) is approxi-
mately x. When R is a large value the denom-
inator becomes πf / R so you can approximate
the shape of the frequency response in the
first region (with the help of a lot of Algebra)
as:

	
	
	 () s n
H

i
N

RMf
RM

RMf
f

π
π

 
 
 

=

[Eq 2]

The frequency response has nulls when f
is equal to a multiple of 1 / RM. We looked
in detail at the sinc function when study-
ing the frequency response of a real world
DAC (Jan/Feb 2010 QEX). A CIC filter suf-
fers from the same frequency droop issue
when the output bandwidth is substantial
compared to the output sample frequency.
Another important characteristic of the CIC
filter is that the aliases for decimation and
images for interpolation occur centered on
the nulls of the response. Figure 5 shows a
representation of the response of a decima-
tor with R = 8, M = 1 and N = 4, where the
original data is sampled at 48 kHz and the
desired bandwidth is 1.2 kHz. The shading
shows both the baseband energy as well as
a non-trivial amount of energy in the higher
frequencies that is aliased into the base band

36 QEX – September/October

and contributes to noise in the system. The
alias energy in the first Nyquist zone is down
only 52 dB at 1.2 kHz. The baseband energy
has 2 dB of droop over the pass band. Fig-
ure 6 shows a different filter where R = 6
and N = 3. Here we see that lowering N and
R has improved the amount of droop to only
1 dB and the alias energy only occupies three
Nyquist zones. The alias energy in the first
Nyquist zone at 1.2 kHz is only down about
42 dB, however. Listing 1 is a Gnuplot pro-
gram that will plot the normalized response
of a CIC filter. It was used to create Figures
5 and 6.

The solution to the droop issue is to
implement a combination system where
the initial rate conversion is aggressive, fol-
lowed by an FIR droop compensation filter.
The compensation filter should have a shape
that is the inverse of the sinc shape over the
desired baseband frequencies. In our exam-
ple of a 48 kHz sampled signal that has been
reduced by a factor of 8 to a 6 kHz sampled

signal, we would want an FIR that increases
response up to perhaps 3 kHz to compensate
for the droop.

The last issue is bit growth that results
from the filter gain. The gain is (RM)N from
Equation 2. The number of bits required at
the output of the CIC filter is:

BOUT = N log2 RM + BIN

where BOUT is the number of bits in each
output word and Bin is the number of input
bits. Each integrator and comb section will
require BOUT bits in order to avoid the prob-
lem with overflow in the integrator sections.
The bit growth is not likely to be an issue for
a DSP processor which will likely have 32 bit
registers. It can be a problem for FPGA based
systems, however. The integrators and combs
need to be built with enough bits to handle
the largest combination of sections and rate
change. Once such a system is built, though,
any rate change below that maximum will be

accommodated by the design.
Listing 2 shows a C program that imple-

ments a rudimentary CIC filter in software
on a DSP chip. Read_adc() and write_dac()
are left as exercises for the reader. Code very
similar to that shown could be used to imple-
ment an FPGA version, which uses a VHDL
compiler.

Notes
1E. B. Hogenauer, “An Economical Class

of Digital Filters For Decimation and
Interpolation,” IEEE Transactions on
Acoustics, Speech and Signal Processing,
Volume 29, April 1981 pp:155-162.

2Matthew P. Donadio, “CIC Filter Introduction”,
18 July 2000, dspguru.com/dsp/tutorials/
cic-filter-introduction.

3See the Wikipedia entry at
http://en.wikipedia.org/wiki/Two’s_complement.

4Richard Lyons, “Understanding Cascaded
Integrator-Comb Filters,” EE Times,
March 31, 2005.

Vector Network Analyzer Model VNA 2180
Measures impedance magnitude, phase and transmission parameters for
antennas, fi lters, and discrete components - using one or two ports.
■ Frequency range is 5KHz to 180MHz.
■ Data plots include: impedance, SWR, return

loss, S11 and S21.
■ Plots can be saved for before and after

comparisons.
■ Dual Smith charts with zoom and rotation.
■ Time Domain Reflectometer (TDR) Functions.
■ New – 6 port VNA multiplexer for measuring directive arrays including

Phase/Magnitude vector scope software.

n

ons.
g directive arrays including

www.arraysolutions.com
Sunnyvale, Texas USA
Phone 214-954-7140
sales@arraysolutions.com
Fax 214-954-7142

Array Solutions analyzers are used by amateur, commercial, and professional broadcast engineers.
See our web site for other products and additional details on these analyzers.

ACOM
Sales and Service for
Amplifi ers and Accessories

Other Quality Products from Array Solutions...
Prosistel Rotators
Strongest Rotators
on the Market

OptiBeam Antennas
German Engineering means
High Performance

Phillystran, Inc.
Offi cial Worldwide
Phillystran Distributor

Hofi ®

Surge Arrestors &
Antenna Switches

RigExpert
Analyzers and
Interfaces

Array Solutions Your Source for Outstanding Radio Products

Top-ranked Measurement Equipment from Array Solutions

AIM uhf
Analyzer

Announcing the NEW: PowerAIM 120
Vector Impedance Analyzer for Broadcast Engineers

PowerMaster II
■ New Larger, Sharp & Fast

LCD Display
■ Reduced Energy consumption
■ USB and RS-232 interface built-in
■ New - Both 3kW and 10kW

couplers on one display - switched
■ Hi / Lo Power Level Monitoring
■ Supports 2 like couplers simultaneously

(3kW & 3kW, 3kW & V/UHF, 10kW & 10kW)
■ SWR Threshold Protection (with amp PTT bypass)

n

d

■ Frequency range from
5 kHz to 1 GHz.

■ Data plots include SWR, RL,
R + X, series and parallel, magnitude, phase, and more.

■ Dual Smith charts with rotation and 20 markers.
■ Plots and calibration fi les can be saved and used anytime

in CVS and dynamic formats.
■ AIM 4170C is still in production covering 5kHz to 180 MHz.
■ Time Domain Reflectometer (TDR) Functions.

NEW!
NEW!

NEW!

Single and Dual Rack
Mount available

New “Power Master
Basic” Software

FREE!

■ Patented, unique technology offers the broadcast engineer the full
capabilities of a single port network analyzer

■ Small, lightweight, software-
driven instrument

■ Easy to carry on airlines and in
the fi eld.

■ Very simple to set up and use.
■ Safe measurements in RF-dense

broadcast environments.
■ Time Domain Reflectometer (TDR) Functions.

