
40 QEX – May/June 2012

Figure 2 — Here is the actual frequency response of an “ideal” FIR filter with 1000 Hz cutoff,
8000 Hz sample rate and 20 coefficients. The filter response is shown with linear scaling

rather than the magnitude in dB.

SDR: Simplified

Ray Mack, W5IFS

17060 Conway Springs Ct, Austin, TX 78717; w5ifs@arrl.net

Filter Design Program
Wes Hayward,W7ZOI, Rick Campbell,

KK7B, and Bob Larkin, W7PUA, present
a short description of DSP techniques and
filtering in Experimental Methods in RF
Design.1 One of the best items included
with the book is a BASIC program (written
by Bob Larkin, W7PUA) on the CD, that
will calculate the coefficients for a finite
impulse response (FIR) filter. It is a very well
written program, but not terribly useful in a
modern world without QBasic or GWBasic
programs on our computers. Luckily, I still
have a version of BASIC that came with
MS-DOS 3.0 for the original IBM PC back
in the 80s that I used to verify my port of the
program to C.

One of the programs in the 5x12_Mack_
SDR.zip file for this installment is the
program that I have written that implements
the BASIC code in C.2 The present incar-
nation is designed to create a C source file
with the FIR filter coefficients and related
information. The logic of the program is
entirely Bob’s, but even Bob used code from
another source. In making sure I had the
new program correct, I verified the Bessel
calculation with the source Bob used from
the second edition of Numerical Recipes
in C.3 This is a fantastic book that you can
read in its entirety on the web. To paraphrase
Newton, “we see farther because we stand on
the shoulders of giants.”

The Gibbs Phenomenon
The program starts with a rectangular

shaped ideal filter. Figure 1 shows such a
low pass filter with a 1000 Hz cutoff and a
8000 Hz sample rate. The coefficients of
an FIR filter are generated by calculating
the Fourier transform of the filter frequency
response to determine the impulse response
in the time domain. For all but the simplest
filter shapes, the Fourier transform can get
pretty messy. It turns out that the Fourier
transform and impulse response for the low
pass, high pass, and band pass response is the
same rather simple equation with different
parameters based on the cutoff frequencies.
In essence, all three filter types are variations
of a rectangular pulse shape.

Let’s choose to create a filter with

1Notes appear on page 44.

Figure 1 — This graph shows the ideal filter response of a 1000 Hz low pass filter with
8000 Hz sample rate.

Mark
Typewritten Text
Copyright (C)2012 ARRL, All Rights Reserved

 QEX – May/June 2012 41

Figure 3 — Part A shows an “ideal” low pass filter with 40 coefficients. Part B shows the
same filter, but with 200 coefficients. Part C shows the same filter, but with 1000 coefficients.

You can see that each filter has the characteristic 8.9% overshoot and undershoot.

Quality

Transmitting

& Audio Tubes

• COMMUNICATIONS

• BROADCAST

• INDUSTRY

• AMATEUR

An Address to Remember:

www.rfparts.com

E-mail:

rfp@rfparts.com

FAX: 760-744-1943 or 888-744-1943

3CPX800A7

3CPX5000A7

3CW20000A7

3CX100A5

3CX400A7

3CX400U7

3CX800A7

3CX1200A7

3CX1200D7

3CX1200Z7

3CX1500A7

3CX2500A3

3CX2500F3

3CX3000A7

3CX6000A7

3CX10000A7

3CX15000A7

3CX20000A7

4CX250B

4CX250BC

4CX250BT

4CX250FG

4CX250R

4CX350A

4CX350F

4CX400A

4CX800A

4CX1000A

4CX1500A

4CX1500B

4CX3000A

4CX3500A

4CX5000A

4CX7500A

4CX10000A

4CX10000D

4CX15000A

4X150A

YC-130

YU-106

YU-108

YU-148

YU-157

572B

807

810

811A

812A

813

833A

833C

845

866-SS

872A-SS

5867A

5868

6146B

7092

3-500ZG

4-400A

M328 / TH328

M338 / TH338

M347 / TH347

M382

– TOO MANY TO LIST ALL –

Immediate Shipment from Stock

MILLIWATTS to KILOWATTS

From

More Watts per Dollar

s m

s m

Se Habla Español • We Export

TECH HELP / ORDER / INFO: 760-744-0700

ORDERS ONLY:

800-RF-PARTS • 800-737-2787

42 QEX – May/June 2012

while (1)
{
 /* Read 16-bit left channel Data */
 EZDSP5535_I2S_readLeft(&data1);
 /* Read 16-bit right channel Data */
 EZDSP5535_I2S_readRight(&data2);
 // perform the IF filtering
 error = fir(&data1, coefficients, &data1,
 delay_buffer, 1,
 number_of_coefficients);
 //Do the demodulation
 switch (modulation_type)
 {
 case AM: // square law detector
 demod_sample *= demod_sample;
 break;
 case FM:
 demod_sample = demod_FM(data1);
 break;
 case CW:
 demod_sample = demod_CW(data1);
 break;
 case LSB:
 demod_sample = demod_LSB(data1);
 break;
 case USB:
 demod_sample = demod_USB(data1);
 break;
 }
 // perform the baseband filtering
 error = fir(&demod_sample, baseband_coefficients,
 &demod_sample, demod_delay_buffer,
 1, number_of_baseband_coefficients);
 /* Write 16-bit left channel Data */
 EZDSP5535_I2S_writeLeft(data1);
 /* Write 16-bit right channel Data */
 EZDSP5535_I2S_writeRight(data2);
 // If any key has been hit in the debugger, we exit
 if (_kbhit())
 {
 break;
 }
}

applies a Bessel function to the coefficients
to set a desired amount of stop band attenua-
tion close to the pass band in exchange for a
more gradual transition band and a flat pass
band. The Kaiser window is named after
J. F. Kaiser, who decided to use some very
obscure (even for mathematicians) and dif-

Table 1 — Frequency Register Values for the Allowed Sample Rates

 Rate	 R	 J	 D	 P	 MADC & NDAC	 DOSR & AOSR	 PLL Frequency
 8000	 1	 1	 792	 2	 2	 128	 10.752
 16000	 1	 1	 792	 1	 2	 128	 21.504
 24000	 1	 3	 584	 1	 2	 128	 43.008
 48000	 1	 7	 1680	 1	 2	 128	 86.016
 96000	 1	 7	 1680	 1	 1	 128	 86.016
192000	 1	 7	 1680	 1	 1	 64	 86.016

20 coefficients. The resulting filter response
looks something like Figure 2. You see that
the pass band has ripples every 200 Hz and
the stop band has ripples also spaced every
200 Hz. The ripples don’t look very big
when plotted on a linear scale. They are
pretty serious when you plot them as dB,
however. These ripples are called the Gibbs
Phenomenon (first discovered in 1848 and
named for J. Willard Gibbs who described
the phenomenon in detail in 1899). The
short description of the phenomenon is that
any discontinuity in one domain causes an
infinite series in the other domain. In the
case of our filter, the sharp discontinuity at
1000 Hz in the frequency domain requires
an infinite number of coefficients in the
time domain to implement that frequency
spectrum. Since we cannot implement our
filter in the time domain with an infinite num-
ber of coefficients, the 20 coefficients create
20 discrete bins each 200 Hz wide (4000 Hz
/ 20). If we had chosen a 40 coefficient filter,
the size of the ripples in the pass band and
stop band would be smaller in both width
(now only 100 Hz wide) and height because
the sum of the series is closer to convergence.
The longer filter is a closer approximation to
the original function. Figure 3 shows how
increasing numbers of coefficients increase
the slope of the transition but that even very
large numbers of coefficients will not elimi-
nate the issues right at the edge of the transi-
tion region. Gibbs found that an FIR filter
will have 8.9 % maximum ripple for the first
ripple on either side of the transition, regard-
less of the number of filter coefficients.

The Kaiser Window
Gibbs observed that as a function becomes

smoother, the coefficients of the transform
near the center become much larger and coef-
ficients further away quickly tend toward zero.
There are two ways to force the frequency
response to have fewer ripples and approach
a smooth shape. The first is to design a filter
that is not ideal, has sloped shoulders, and
a gradual transition from pass band to stop
band. The problem with this approach is that it
requires using the Fourier Transform to calcu-
late the coefficients and the results are unique
for each filter. The second way is to start with
an ideal response, with its simple calculations,
and then force the coefficients to have a shape
that has significant central coefficients but
with the coefficients near the edges rapidly
approaching zero. This process is called win-
dowing. There are many functions that can be
multiplied against the ideal filter coefficients
to achieve varying amounts of pass band or
stop band ripple reduction or both. The transi-
tion rate from pass band to stop band is also
affected. Each window method has its own
set of advantages and disadvantages. As with
most other situations in engineering, you can
affect stop band or pass band or transition rate:
pick two!

The C program uses a Kaiser window that

Listing 1 — The code for the main signal processing loop.

ficult to calculate functions called prolate
spheroidal functions. Kaiser windows are
probably some of the best for controlling
the depth of the first side lobe while still
giving a rapid transition. Fortunately, Bob
Larkin handled the nasty math in his original
program.

 QEX – May/June 2012 43

More TI Software Resources
TI gives away a package called DSPLIB

that can be used for any of their DSP fami-
lies. Go to www.ti.com/lit/ug/spru422j/
spru422j.pdf to download the Programmer’s
Reference. Then go to www.ti.com/tool/
sprc100 to download the zip file containing
the library and its source code. You need to
place the header file dsplib.h in the ccsv4\
tools\compiler\include directory. Place all
of the library files in the ccsv4\tools\com-
piler\lib directory. You will need the source
files because the library is compiled in the
small memory model and the other libraries
are in large memory model. For this program,
you need fir.asm in your project directory.

We are interested in the function “fir.”
You will find the reference information on
page 4-46 of the reference manual. The func-
tion takes six arguments. The first argument
is the address of the array of input samples.
The second is the address of the array of fil-
ter coefficients. The next one is the address
of the output buffer, which can also be the
address of the input buffer for computation
in-place. The fourth argument is the address
of the delay buffer, which holds all of the his-
tory of the filter. This buffer is equal in size to
the number of coefficients plus one more that
holds the array index of the oldest entry. The
C language does not include the size of an
array as part of the array storage. That means
we have to keep track of the size as another
piece of data. The “fir” function uses the fifth
argument to hold the size of the input array
and the sixth is the size of the filter coefficient
array. All of the arguments are 16 bit signed
or unsigned numbers.

Figure 4 shows the concept of an FIR fil-
ter. In fact, this structure applies to any FIR
operation where “filter” can encompass any
manipulation such as a Hilbert transform
(90° phase shift with no amplitude change).
The figure shows a trivial example where the
delay line (a shift register when implemented
in hardware) starts with all registers holding
zero. It goes through the first six sample peri-
ods showing the data in the delay line and the
calculations that occur. The data samples are
(–1, –2, –1, 2, 5, 10) and the six coefficients
are (–1, 2, 6, 6, 2, –1).

The code for this experiment uses the fir()
function in its single element mode. The data
word is applied to all of the delay elements
and the total is added together to produce a
single output word. The intermediate his-
tory is held in the delay_buffer array that is
declared inside our automatically created
data file. The documentation calls for the
array to be initialized to all zeros, but that
occurs automatically as part of the C startup
when delay_buffer is copied into memory.

The Bare Metal Filter and Receiver
Program

The last step in making a radio with a
band pass filter is to port the filter coefficient

calculation into our receiver so that we can
tune the filter to any signal within the pass
band. The biggest risk in moving the FIR
filter coefficient task into our DSP is running
out of program memory. The FIR coefficient
calculation uses floating point and numerous
math library functions that consume quite a
lot of program memory.

In addition to calculating the coefficients,
we need to set the PLL to achieve the design
sample rate. We saw in the Mar/Apr issue
that we need to calculate both an integer and
fractional value to set the sample rate. Here
is the equation:

()PLLCLK R J.D

PLL_FREQ =
P

× ×

The PLLCLK value is 12 MHz
[Remember from the last issue that the dot
between the J and the D is the notation for the
multiplication factor. If R = 1, P = 1, J = 7 and
D = 1680, then the expression (R × J.D) = (1
× 7.1680). — Ed.] Fortunately, the data sheet
gives the values for 12 MHz MCLK to gen-
erate 48 kHz and 44.1 kHz so we only have
to do the calculations for the other allowed
sample rates. Table 1 captures the register
values for the sample rates.

The result at this point is the output of
our tunable IF filter. The next step is to con-
vert the IF signal to a baseband signal. The
output of the conversion to baseband always
contains extra signals that we do not want in
our output. The last DSP step is to filter out
those signals so we are left with our audio.
The baseband filter is a short length (20 coef-
ficients) low pass filter to eliminate frequen-
cies that are far removed from audio. The last
step is a call to read the console for input that
will halt the signal processing and return to
the tuning input dialog. Since the interface
is a “teletype terminal,” it is not what one
would want in a real radio, but it works for
our experiments. The console input must be
a non-blocking call so that the program will
continue DSP operations if there was no ter-
minal activity.

Listing 1 contains the main logic for the
DSP loop. The switch statement selects the
type of signal to be demodulated. At this
point, I have only implemented the AM
demodulator. The other modulation types
require that a function is implemented, but
they all return without performing any action.

Filter Response Program
Gnu Octave has a function (freqz) that is

supposed to allow you to plot the frequency
of either an Infinite Impulse Response (IIR)
or FIR filter. The interface is not espe-
cially easy to use, however. The zip file for
this installment also includes a frequency
response calculator. The output of the pro-
gram is a set of X-Y points in a text file that
you can import into Gnu Octave, Gnuplot, or
a spreadsheet such as Excel, so that you can
see the plot. Plotting in Gnuplot is especially

Se Habla Español • We Export

An Address to Remember:

www.rfparts.com

E-mail:

rfp@rfparts.com

TECH HELP / ORDER / INFO: 760-744-0700

ORDERS ONLY:

800-RF-PARTS • 800-737-2787

FAX: 760-744-1943 or 888-744-1943

• Wattmeters

• Transformers

• TMOS & GASFETS

• RF Power Transistors

• Doorknob Capacitors

• Electrolytic Capacitors

• Variable Capacitors

• RF Power Modules

• Tubes & Sockets

• HV Rectifiers

MILLIWATTS

 KILOWATTS

From

More Watts per Dollar

 to

s m

s m

44 QEX – May/June 2012

easy, since you can run a script and simply
repeat the last command to plot the new data.
While we are experimenting with various
types of filters and windows, the ability to
see the response is very useful. It is especially
useful to zoom the plot to just a portion of the
total frequency range of the system.

Figure 4 — Here is a graphical description of an FIR filter implementation. The sequence shows how the first 6 samples enter the delay line,
and gives the first 6 output samples.

QX1205-Mack04

00

X X X–1 2 6

0

X6

0

X2

0

X–1

Σ
1

1

0
0

0
0

0

(A)

0–1

X X X–1 2 6

0

X6

0

X2

0

X–1

Σ
2

0

–2
0

0
0

0

(B)

–2–1

–1–2

X X X–1 2 6

0

X6

0

X2

0

X–1

Σ
1

–9

–4

–6 0
0

0

(C)

–2–1

X X X–1 2 6

–1

X6

0

X2

0

X–1

Σ
–2

–22

–2
–12

–6 0
0

(D)

2–1

–12

X X X–1 2 6

–2

X6

–1

X2

0

X–1

Σ–5

–21

4
–6 –12 –2

0

(E)

25

X X X–1 2 6

–1

X6

–2

X2

–1

X–1

Σ
–10

3

10

12 –6 –4

1

(F)

105

QX1205-Mack04

00

X X X–1 2 6

0

X6

0

X2

0

X–1

Σ
1

1

0
0

0
0

0

(A)

0–1

X X X–1 2 6

0

X6

0

X2

0

X–1

Σ
2

0

–2
0

0
0

0

(B)

–2–1

–1–2

X X X–1 2 6

0

X6

0

X2

0

X–1

Σ
1

–9

–4

–6 0
0

0

(C)

–2–1

X X X–1 2 6

–1

X6

0

X2

0

X–1

Σ
–2

–22

–2
–12

–6 0
0

(D)

2–1

–12

X X X–1 2 6

–2

X6

–1

X2

0

X–1

Σ–5

–21

4
–6 –12 –2

0

(E)

25

X X X–1 2 6

–1

X6

–2

X2

–1

X–1

Σ
–10

3

10

12 –6 –4

1

(F)

105

QX1205-Mack04

00

X X X–1 2 6

0

X6

0

X2

0

X–1

Σ
1

1

0
0

0
0

0

(A)

0–1

X X X–1 2 6

0

X6

0

X2

0

X–1

Σ
2

0

–2
0

0
0

0

(B)

–2–1

–1–2

X X X–1 2 6

0

X6

0

X2

0

X–1

Σ
1

–9

–4

–6 0
0

0

(C)

–2–1

X X X–1 2 6

–1

X6

0

X2

0

X–1

Σ
–2

–22

–2
–12

–6 0
0

(D)

2–1

–12

X X X–1 2 6

–2

X6

–1

X2

0

X–1

Σ–5

–21

4
–6 –12 –2

0

(E)

25

X X X–1 2 6

–1

X6

–2

X2

–1

X–1

Σ
–10

3

10

12 –6 –4

1

(F)

105

QX1205-Mack04

00

X X X–1 2 6

0

X6

0

X2

0

X–1

Σ
1

1

0
0

0
0

0

(A)

0–1

X X X–1 2 6

0

X6

0

X2

0

X–1

Σ
2

0

–2
0

0
0

0

(B)

–2–1

–1–2

X X X–1 2 6

0

X6

0

X2

0

X–1

Σ
1

–9

–4

–6 0
0

0

(C)

–2–1

X X X–1 2 6

–1

X6

0

X2

0

X–1

Σ
–2

–22

–2
–12

–6 0
0

(D)

2–1

–12

X X X–1 2 6

–2

X6

–1

X2

0

X–1

Σ–5

–21

4
–6 –12 –2

0

(E)

25

X X X–1 2 6

–1

X6

–2

X2

–1

X–1

Σ
–10

3

10

12 –6 –4

1

(F)

105

Notes

1Hayward, Campbell, Larkin, Experimental
Methods in RF Design, The American Radio
Relay League, 2003.

2The software files described in this Column
are available for download from the ARRL

QEX files website. Go to www.arrl.org/qex-
files and look for the file 5x10_Mack_SDR.
zip.

3Press, Teukolsky, Verling, Flannery, Numerical
Recipes in C, Cambridge University Press,
1992.

