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Figure 2 — Here is the actual frequency response of an “ideal” FIR filter with 1000 Hz cutoff, 
8000 Hz sample rate and 20 coefficients. The filter response is shown with linear scaling 

rather than the magnitude in dB.

SDR: Simplified

Ray Mack, W5IFS 

17060 Conway Springs Ct, Austin, TX 78717; w5ifs@arrl.net

Filter Design Program
Wes Hayward,W7ZOI, Rick Campbell, 

KK7B, and Bob Larkin, W7PUA, present 
a short description of DSP techniques and 
filtering in Experimental Methods in RF 
Design.1 One of the best items included 
with the book is a BASIC program (written 
by Bob Larkin, W7PUA) on the CD, that 
will calculate the coefficients for a finite 
impulse response (FIR) filter. It is a very well  
written program, but not terribly useful in a 
modern world without QBasic or GWBasic 
programs on our computers. Luckily, I still 
have a version of BASIC that came with 
MS-DOS 3.0 for the original IBM PC back 
in the 80s that I used to verify my port of the 
program to C.

One of the programs in the 5x12_Mack_
SDR.zip file for this installment is the  
program that I have written that implements 
the BASIC code in C.2 The present incar-
nation is designed to create a C source file 
with the FIR filter coefficients and related 
information. The logic of the program is 
entirely Bob’s, but even Bob used code from 
another source. In making sure I had the 
new program correct, I verified the Bessel 
calculation with the source Bob used from 
the second edition of Numerical Recipes 
in C.3 This is a fantastic book that you can 
read in its entirety on the web. To paraphrase 
Newton, “we see farther because we stand on 
the shoulders of giants.”

The Gibbs Phenomenon
The program starts with a rectangular 

shaped ideal filter. Figure 1 shows such a 
low pass filter with a 1000 Hz cutoff and a  
8000 Hz sample rate. The coefficients of 
an FIR filter are generated by calculating 
the Fourier transform of the filter frequency 
response to determine the impulse response 
in the time domain. For all but the simplest 
filter shapes, the Fourier transform can get 
pretty messy. It turns out that the Fourier 
transform and impulse response for the low 
pass, high pass, and band pass response is the 
same rather simple equation with different 
parameters based on the cutoff frequencies. 
In essence, all three filter types are variations 
of a rectangular pulse shape.

Let’s choose to create a filter with  

1Notes appear on page 44.

Figure 1 — This graph shows the ideal filter response of a 1000 Hz low pass filter with  
8000 Hz sample rate.
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Figure 3 — Part A shows an “ideal” low pass filter with 40 coefficients. Part B shows the 
same filter, but with 200 coefficients. Part C shows the same filter, but with 1000 coefficients. 

You can see that each filter has the characteristic 8.9% overshoot and undershoot.
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while (1)
{
   /* Read 16-bit left channel Data */
   EZDSP5535_I2S_readLeft(&data1);
   /* Read 16-bit right channel Data */
   EZDSP5535_I2S_readRight(&data2);
   // perform the IF filtering
   error = fir(&data1, coefficients, &data1, 
               delay_buffer, 1, 
               number_of_coefficients);
   //Do the demodulation
   switch (modulation_type)
   {
      case AM:   // square law detector
         demod_sample *= demod_sample;
         break;
      case FM:
         demod_sample = demod_FM(data1);
         break;
      case CW:
         demod_sample = demod_CW(data1);
         break;
      case LSB:
         demod_sample = demod_LSB(data1);
         break;
      case USB:
         demod_sample = demod_USB(data1);
         break;
   }
   // perform the baseband filtering
   error = fir(&demod_sample, baseband_coefficients, 
        &demod_sample, demod_delay_buffer, 
          1, number_of_baseband_coefficients);
   /* Write 16-bit left channel Data */
   EZDSP5535_I2S_writeLeft(data1);
   /* Write 16-bit right channel Data */
   EZDSP5535_I2S_writeRight(data2);
   // If any key has been hit in the debugger, we exit
   if (_kbhit())
   {
      break;
   }
}

applies a Bessel function to the coefficients 
to set a desired amount of stop band attenua-
tion close to the pass band in exchange for a 
more gradual transition band and a flat pass 
band. The Kaiser window is named after 
J. F. Kaiser, who decided to use some very 
obscure (even for mathematicians) and dif-

Table 1 — Frequency Register Values for the Allowed Sample Rates

   Rate	 R	 J	 D	 P	 MADC & NDAC	 DOSR & AOSR	 PLL Frequency
    8000	 1	 1	 792	 2	 2	 128	 10.752
  16000	 1	 1	 792	 1	 2	 128	 21.504
  24000	 1	 3	 584	 1	 2	 128	 43.008
  48000	 1	 7	 1680	 1	 2	 128	 86.016
  96000	 1	 7	 1680	 1	 1	 128	 86.016
192000	 1	 7	 1680	 1	 1	 64	 86.016

20 coefficients. The resulting filter response 
looks something like Figure 2. You see that 
the pass band has ripples every 200 Hz and 
the stop band has ripples also spaced every 
200 Hz. The ripples don’t look very big 
when plotted on a linear scale. They are 
pretty serious when you plot them as dB, 
however. These ripples are called the Gibbs 
Phenomenon (first discovered in 1848 and 
named for J. Willard Gibbs who described 
the phenomenon in detail in 1899). The 
short description of the phenomenon is that 
any discontinuity in one domain causes an 
infinite series in the other domain. In the 
case of our filter, the sharp discontinuity at 
1000 Hz in the frequency domain requires 
an infinite number of coefficients in the 
time domain to implement that frequency  
spectrum. Since we cannot implement our 
filter in the time domain with an infinite num-
ber of coefficients, the 20 coefficients create  
20 discrete bins each 200 Hz wide (4000 Hz 
/ 20). If we had chosen a 40 coefficient filter, 
the size of the ripples in the pass band and 
stop band would be smaller in both width 
(now only 100 Hz wide) and height because 
the sum of the series is closer to convergence. 
The longer filter is a closer approximation to 
the original function. Figure 3 shows how 
increasing numbers of coefficients increase 
the slope of the transition but that even very 
large numbers of coefficients will not elimi-
nate the issues right at the edge of the transi-
tion region. Gibbs found that an FIR filter 
will have 8.9 % maximum ripple for the first 
ripple on either side of the transition, regard-
less of the number of filter coefficients.

The Kaiser Window
Gibbs observed that as a function becomes 

smoother, the coefficients of the transform 
near the center become much larger and coef-
ficients further away quickly tend toward zero. 
There are two ways to force the frequency 
response to have fewer ripples and approach 
a smooth shape. The first is to design a filter 
that is not ideal, has sloped shoulders, and 
a gradual transition from pass band to stop 
band. The problem with this approach is that it 
requires using the Fourier Transform to calcu-
late the coefficients and the results are unique 
for each filter. The second way is to start with 
an ideal response, with its simple calculations, 
and then force the coefficients to have a shape 
that has significant central coefficients but 
with the coefficients near the edges rapidly 
approaching zero. This process is called win-
dowing. There are many functions that can be 
multiplied against the ideal filter coefficients 
to achieve varying amounts of pass band or 
stop band ripple reduction or both. The transi-
tion rate from pass band to stop band is also 
affected. Each window method has its own 
set of advantages and disadvantages. As with 
most other situations in engineering, you can 
affect stop band or pass band or transition rate: 
pick two!

The C program uses a Kaiser window that 

Listing 1 — The code for the main signal processing loop.

ficult to calculate functions called prolate 
spheroidal functions. Kaiser windows are 
probably some of the best for controlling 
the depth of the first side lobe while still 
giving a rapid transition. Fortunately, Bob 
Larkin handled the nasty math in his original 
program.
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More TI Software Resources
TI gives away a package called DSPLIB 

that can be used for any of their DSP fami-
lies. Go to www.ti.com/lit/ug/spru422j/
spru422j.pdf to download the Programmer’s 
Reference. Then go to www.ti.com/tool/
sprc100 to download the zip file containing 
the library and its source code. You need to 
place the header file dsplib.h in the ccsv4\
tools\compiler\include directory. Place all 
of the library files in the ccsv4\tools\com-
piler\lib directory. You will need the source 
files because the library is compiled in the 
small memory model and the other libraries 
are in large memory model. For this program, 
you need fir.asm in your project directory.

We are interested in the function “fir.” 
You will find the reference information on 
page 4-46 of the reference manual. The func-
tion takes six arguments. The first argument 
is the address of the array of input samples. 
The second is the address of the array of fil-
ter coefficients. The next one is the address 
of the output buffer, which can also be the 
address of the input buffer for computation 
in-place. The fourth argument is the address 
of the delay buffer, which holds all of the his-
tory of the filter. This buffer is equal in size to 
the number of coefficients plus one more that 
holds the array index of the oldest entry. The 
C language does not include the size of an 
array as part of the array storage. That means 
we have to keep track of the size as another 
piece of data. The “fir” function uses the fifth 
argument to hold the size of the input array 
and the sixth is the size of the filter coefficient 
array. All of the arguments are 16 bit signed 
or unsigned numbers.

Figure 4 shows the concept of an FIR fil-
ter. In fact, this structure applies to any FIR 
operation where “filter” can encompass any 
manipulation such as a Hilbert transform 
(90° phase shift with no amplitude change). 
The figure shows a trivial example where the 
delay line (a shift register when implemented 
in hardware) starts with all registers holding 
zero. It goes through the first six sample peri-
ods showing the data in the delay line and the 
calculations that occur. The data samples are 
(–1, –2, –1, 2, 5, 10) and the six coefficients 
are (–1, 2, 6, 6, 2, –1).

The code for this experiment uses the fir() 
function in its single element mode. The data 
word is applied to all of the delay elements 
and the total is added together to produce a 
single output word. The intermediate his-
tory is held in the delay_buffer array that is 
declared inside our automatically created 
data file. The documentation calls for the 
array to be initialized to all zeros, but that 
occurs automatically as part of the C startup 
when delay_buffer is copied into memory.

The Bare Metal Filter and Receiver 
Program

The last step in making a radio with a 
band pass filter is to port the filter coefficient 

calculation into our receiver so that we can 
tune the filter to any signal within the pass 
band. The biggest risk in moving the FIR 
filter coefficient task into our DSP is running 
out of program memory. The FIR coefficient 
calculation uses floating point and numerous 
math library functions that consume quite a 
lot of program memory.

In addition to calculating the coefficients, 
we need to set the PLL to achieve the design 
sample rate. We saw in the Mar/Apr issue 
that we need to calculate both an integer and 
fractional value to set the sample rate. Here 
is the equation:

  
( )PLLCLK  R J.D

PLL_FREQ = 
P

× ×

The PLLCLK value is  12 MHz 
[Remember from the last issue that the dot 
between the J and the D is the notation for the 
multiplication factor. If R = 1, P = 1, J = 7 and 
D = 1680, then the expression (R × J.D) = (1 
× 7.1680). — Ed.] Fortunately, the data sheet 
gives the values for 12 MHz MCLK to gen-
erate 48 kHz and 44.1 kHz so we only have 
to do the calculations for the other allowed 
sample rates. Table 1 captures the register 
values for the sample rates.

The result at this point is the output of 
our tunable IF filter. The next step is to con-
vert the IF signal to a baseband signal. The 
output of the conversion to baseband always 
contains extra signals that we do not want in 
our output. The last DSP step is to filter out 
those signals so we are left with our audio. 
The baseband filter is a short length (20 coef-
ficients) low pass filter to eliminate frequen-
cies that are far removed from audio. The last 
step is a call to read the console for input that 
will halt the signal processing and return to 
the tuning input dialog. Since the interface 
is a “teletype terminal,” it is not what one 
would want in a real radio, but it works for 
our experiments. The console input must be 
a non-blocking call so that the program will 
continue DSP operations if there was no ter-
minal activity.

Listing 1 contains the main logic for the 
DSP loop. The switch statement selects the 
type of signal to be demodulated. At this 
point, I have only implemented the AM 
demodulator. The other modulation types 
require that a function is implemented, but 
they all return without performing any action.

Filter Response Program
Gnu Octave has a function (freqz) that is 

supposed to allow you to plot the frequency 
of either an Infinite Impulse Response (IIR) 
or FIR filter. The interface is not espe-
cially easy to use, however. The zip file for 
this installment also includes a frequency 
response calculator. The output of the pro-
gram is a set of X-Y points in a text file that 
you can import into Gnu Octave, Gnuplot, or 
a spreadsheet such as Excel, so that you can 
see the plot. Plotting in Gnuplot is especially 
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easy, since you can run a script and simply 
repeat the last command to plot the new data. 
While we are experimenting with various 
types of filters and windows, the ability to 
see the response is very useful. It is especially 
useful to zoom the plot to just a portion of the 
total frequency range of the system. 

Figure 4 — Here is a graphical description of an FIR filter implementation. The sequence shows how the first 6 samples enter the delay line, 
and gives the first 6 output samples.
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Notes

1Hayward, Campbell, Larkin, Experimental 
Methods in RF Design, The American Radio 
Relay League, 2003.

2The software files described in this Column 
are available for download from the ARRL 

QEX files website. Go to www.arrl.org/qex-
files and look for the file 5x10_Mack_SDR.
zip.

3Press, Teukolsky, Verling, Flannery, Numerical 
Recipes in C, Cambridge University Press, 
1992.




